JP2006159057A - Method for manufacturing titanium-containing silicon oxide catalyst and catalyst - Google Patents

Method for manufacturing titanium-containing silicon oxide catalyst and catalyst Download PDF

Info

Publication number
JP2006159057A
JP2006159057A JP2004352357A JP2004352357A JP2006159057A JP 2006159057 A JP2006159057 A JP 2006159057A JP 2004352357 A JP2004352357 A JP 2004352357A JP 2004352357 A JP2004352357 A JP 2004352357A JP 2006159057 A JP2006159057 A JP 2006159057A
Authority
JP
Japan
Prior art keywords
catalyst
mold
titanium
solvent
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004352357A
Other languages
Japanese (ja)
Other versions
JP4834982B2 (en
Inventor
Jun Yamamoto
純 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2004352357A priority Critical patent/JP4834982B2/en
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to US11/720,649 priority patent/US7875570B2/en
Priority to KR1020077014960A priority patent/KR101254352B1/en
Priority to CN2012100482679A priority patent/CN102600820A/en
Priority to CN2005800477950A priority patent/CN101115561B/en
Priority to PCT/JP2005/022417 priority patent/WO2006062111A1/en
Priority to EP05814429A priority patent/EP1839750A4/en
Publication of JP2006159057A publication Critical patent/JP2006159057A/en
Application granted granted Critical
Publication of JP4834982B2 publication Critical patent/JP4834982B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To provide a titanium-containing silicon oxide catalyst which can be used in such a reaction that, for example, a hydroperoxide is reacted with an olefinic compound to obtain an oxirane compound and which can exhibit high activity and selectivity. <P>SOLUTION: A method for manufacturing the titanium-containing silicon oxide catalyst which satisfies the following conditions (1) to (4) is provided , (1) this catalyst has ≥10 Å average pore size, (2) pores accounting for ≥90% of the total pore volume have 5-200 Å pore size, (3) this catalyst has ≥0.2 cm<SP>3</SP>/g specific pore volume, and (4) a part or the whole of a silica source to be used as a raw material is a silicon compound whose hydrocarbon group is bonded directly to a silicon atom, and the method comprises a first step of mixing/agitating the silica source, a titanium source and a template in a solvent to obtain a solid containing catalyst components and the template and a second step of removing the template from the solid obtained at the first step. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、チタン含有珪素酸化物触媒の製造方法及び触媒に関するものである。更に詳しくは、本発明は、たとえばハイドロパーオキサイドとオレフィン型化合物からオキシラン化合物を得る反応に用いることができ、高い活性と選択性を発揮し得るチタン含有珪素酸化物触媒の製造方法及び該製造方法により得られる触媒に関するものである。   The present invention relates to a method for producing a titanium-containing silicon oxide catalyst and a catalyst. More specifically, the present invention can be used, for example, in a reaction for obtaining an oxirane compound from hydroperoxide and an olefin type compound, and a method for producing a titanium-containing silicon oxide catalyst capable of exhibiting high activity and selectivity, and the method for producing the same. It is related with the catalyst obtained by this.

触媒の存在下、ハイドロパーオキサイドとオレフィン型化合物からオキシラン化合物を得る方法は公知である。ここで用いられる触媒としてチタン含有珪素化物触媒があげられ、高性能触媒を得るために疎水性の向上を図る試みがなされている。   A method for obtaining an oxirane compound from a hydroperoxide and an olefin type compound in the presence of a catalyst is known. Examples of the catalyst used here include a titanium-containing silicide catalyst, and attempts have been made to improve hydrophobicity in order to obtain a high-performance catalyst.

たとえば特許文献1および2、非特許文献1〜4には、炭化水素基が珪素原子に直接結合した珪素化合物を触媒原料として用いることにより疎水性が向上した特定のチタン含有珪素酸化物触媒が開示されている。しかしながら、これらの触媒は、より高い活性と選択性を発現させるという観点からは、十分に満足し得るものとは言い難いものであった。   For example, Patent Documents 1 and 2 and Non-Patent Documents 1 to 4 disclose specific titanium-containing silicon oxide catalysts having improved hydrophobicity by using, as a catalyst raw material, a silicon compound in which a hydrocarbon group is directly bonded to a silicon atom. Has been. However, these catalysts are hardly satisfactory from the viewpoint of developing higher activity and selectivity.

特開平10-72212号公報JP-A-10-72212 特開2002-320860号公報Japanese Patent Laid-Open No. 2002-320860 Chem.Commun.,(1998)1899Chem. Commun., (1998) 1899 Chem.Lett.,(2001)648Chem. Lett., (2001) 648 Stud.Surf.Sci.Catal.,141(2002)189Stud.Surf.Sci.Catal., 141 (2002) 189 J.Mater.Chem.,12(2002)3078J. Mater. Chem., 12 (2002) 3078

かかる現状において本発明が解決しようとする課題は、たとえばハイドロパーオキサイドとオレフィンからオレフィンオキサイドを得る反応に用いることができ、高い活性と選択性を発揮し得るチタン含有珪素酸化物触媒の製造方法及び該製造方法により得られる触媒を提供する点にある。   The problems to be solved by the present invention under such circumstances are, for example, a method for producing a titanium-containing silicon oxide catalyst that can be used in a reaction for obtaining olefin oxide from hydroperoxide and olefin, and that can exhibit high activity and selectivity, and It is in the point which provides the catalyst obtained by this manufacturing method.

すなわち、本発明のうち第一の発明は、下記(1)〜(4)の全ての条件を充足するチタン含有珪素酸化物触媒の製造方法であって、下記の第一工程〜第二工程を含む製造方法に係るものである。
(1):平均細孔径が10Å以上であること
(2):全細孔容量の90%以上が5〜200Åの細孔径を有すること
(3):比細孔容量が0.2cm3/g以上であること
(4):原料として用いるシリカ源の一部又は全部が、炭化水素基が珪素原子に直接結合した珪素化合物であること
第一工程:シリカ源、チタン源及び型剤(テンプレート)を溶媒中で混合・攪拌することにより触媒成分及び型剤を含有する固体を得る工程であって、該溶媒中の水の割合が50重量%以下である工程
第二工程:第一工程で得た固体から型剤を除去する工程
That is, the first invention of the present invention is a method for producing a titanium-containing silicon oxide catalyst that satisfies all the following conditions (1) to (4), and includes the following first to second steps. It is related to the manufacturing method including.
(1): The average pore diameter is 10 mm or more (2): 90% or more of the total pore volume has a pore diameter of 5 to 200 mm (3): The specific pore volume is 0.2 cm 3 / g (4): Part or all of the silica source used as a raw material is a silicon compound in which a hydrocarbon group is directly bonded to a silicon atom. First step: Silica source, titanium source and mold (template) Is a step of obtaining a solid containing a catalyst component and a mold agent by mixing and stirring in a solvent, wherein the proportion of water in the solvent is 50% by weight or less. Second step: obtained in the first step Removing mold from solid

また、本発明のうち第二の発明は、上記の製造方法により得られるチタン含有珪素酸化物触媒に係るものである。   Moreover, 2nd invention among this invention concerns on the titanium containing silicon oxide catalyst obtained by said manufacturing method.

さらに、本発明のうち第三の発明は、上記の製造方法により得られるチタン含有珪素酸化物触媒の存在下、オレフィン型化合物とハイドロパーオキサイドを反応させることを特徴とするオキシラン化合物の製造方法に係るものである。   Furthermore, the third invention of the present invention is a method for producing an oxirane compound characterized by reacting an olefin type compound and hydroperoxide in the presence of a titanium-containing silicon oxide catalyst obtained by the above production method. It is concerned.

本発明により、たとえばハイドロパーオキサイドとオレフィン型化合物からオキシラン化合物を得る反応に用いることができ、高い活性と選択性を発揮し得るチタン含有珪素酸化物触媒の製造方法及び該製造方法により得られる触媒を提供することができる。   INDUSTRIAL APPLICABILITY According to the present invention, for example, a method for producing a titanium-containing silicon oxide catalyst that can be used in a reaction for obtaining an oxirane compound from a hydroperoxide and an olefin type compound and can exhibit high activity and selectivity, and a catalyst obtained by the production method Can be provided.

本発明の触媒は、下記(1)〜(4)の全ての条件を充足するチタン含有珪素酸化物からなる触媒である。   The catalyst of the present invention is a catalyst comprising a titanium-containing silicon oxide that satisfies all the following conditions (1) to (4).

条件の(1)は平均細孔径が10Å以上であることである。   The condition (1) is that the average pore diameter is 10 mm or more.

条件の(2)は、全細孔容量の90%以上が5〜200Åの細孔径を有することである。   Condition (2) is that 90% or more of the total pore volume has a pore diameter of 5 to 200 mm.

条件の(3)は、比細孔容量が0.2cm3/g以上であることである。ここで、比細孔容量とは触媒1g当りの細孔容量を意味している。 The condition (3) is that the specific pore volume is 0.2 cm 3 / g or more. Here, the specific pore volume means the pore volume per 1 g of catalyst.

条件の(4)は、原料として用いるシリカ源の一部又は全部が、炭化水素基が珪素原子に直接結合した珪素化合物であることである。   Condition (4) is that a part or all of the silica source used as a raw material is a silicon compound in which a hydrocarbon group is directly bonded to a silicon atom.

上記の条件(1)〜(3)についての測定は、窒素、アルゴン等の気体の物理吸着法を用い、通常の方法により測定することができる。   The measurement about said conditions (1)-(3) can be measured by a normal method using the physical adsorption method of gas, such as nitrogen and argon.

本発明の触媒は、X線回折(XRD)において、面間隔dを示すピークが存在してもよいし、存在しなくてよい。ここでいう面間隔dを示すピークとは、固体が有する結晶性や規則性に由来するピークのことであり、アモルファスな部分に由来するブロードなピークは存在していてもかまわない。   The catalyst of the present invention may or may not have a peak indicating an interplanar distance d in X-ray diffraction (XRD). The peak indicating the interplanar spacing d here is a peak derived from the crystallinity or regularity of the solid, and there may be a broad peak derived from an amorphous part.

本発明の触媒は、高活性であるという観点から、赤外線吸収スペクトルにおいて960±5cm-1の領域に吸収ピークを有するものであることが好ましい。このピークはシリカ骨格内に導入されたチタンに対応するものであると考えられる。 From the viewpoint of high activity, the catalyst of the present invention preferably has an absorption peak in the region of 960 ± 5 cm −1 in the infrared absorption spectrum. This peak is considered to correspond to titanium introduced into the silica skeleton.

本発明の触媒は下記の工程を有する製造方法によって製造される。
第一工程:シリカ源、チタン源及び型剤(テンプレート)を溶媒中で混合・攪拌することにより触媒成分及び型剤を含有する固体を得る工程であって、該溶媒中の水の割合が50重量%以下である工程
第二工程:第一工程で得た固体から型剤を除去する工程
The catalyst of the present invention is produced by a production method having the following steps.
First step: A step of obtaining a solid containing a catalyst component and a mold agent by mixing and stirring a silica source, a titanium source and a mold agent (template) in a solvent, and the proportion of water in the solvent is 50 Step that is not more than% by weight Second step: Step of removing the mold from the solid obtained in the first step

第一工程は、シリカ源、チタン源及び型剤(テンプレート)を溶媒中で混合・攪拌することにより触媒成分及び型剤を含有する固体を得る工程であって、該溶媒中の水の割合が50重量%以下である工程である。用いる試薬は固体状の場合は溶媒に溶解又は分散した溶液として用いるとよい。   The first step is a step of obtaining a solid containing a catalyst component and a mold agent by mixing and stirring a silica source, a titanium source and a mold agent (template) in a solvent, and the proportion of water in the solvent is This is a step of 50% by weight or less. When the reagent to be used is a solid, it may be used as a solution dissolved or dispersed in a solvent.

本発明では原料として用いるシリカ源の一部あるいは全部に、炭化水素基が珪素原子に直接結合した珪素化合物が用いられ、モノアルキルトリアルコキシシラン、ジアルキルジアルコキシシラン、トリアルキルモノアルコキシシラン、ビス(トリアルコキシシリル)アルカン、モノアリールトリアルコキシシラン、ジアリールジアルコキシシラン、ビス(トリアルコキシシリル)アリールなどが挙げられる。それらは単独で用いることも出来るし、数種を混合させて用いても良い。なかでもモノアルキルトリアルコキシシラン及び/又はモノアリールトリアルコキシシランが好適に用いられ、たとえばアルキル基又はアリール基としてはメチル、エチル、プロピル、ブチル、ビニル、プロペニル、シクロペンテニル、シクロヘキセニル、フェニル、トリル、キシリル、ナフチル等などの炭素数1〜16の炭化水素基があげられる。また上記のアルキル基、アリール基はN、O、P、ハロゲンなどを含む置換基を有していても良い。アルコキシ基としてはメトキシ、エトキシ、プロポキシ、ブトキシなどの炭素数1〜6の炭化水素基があげられる。   In the present invention, a silicon compound in which a hydrocarbon group is directly bonded to a silicon atom is used for a part or all of a silica source used as a raw material, and a monoalkyltrialkoxysilane, a dialkyldialkoxysilane, a trialkylmonoalkoxysilane, bis ( Trialkoxysilyl) alkane, monoaryltrialkoxysilane, diallyldialkoxysilane, bis (trialkoxysilyl) aryl and the like. They can be used alone or in a mixture of several kinds. Of these, monoalkyltrialkoxysilane and / or monoaryltrialkoxysilane are preferably used. For example, as alkyl group or aryl group, methyl, ethyl, propyl, butyl, vinyl, propenyl, cyclopentenyl, cyclohexenyl, phenyl, tolyl C 1-16 hydrocarbon groups such as xylyl, naphthyl and the like. The above alkyl group and aryl group may have a substituent containing N, O, P, halogen or the like. Examples of the alkoxy group include C1-C6 hydrocarbon groups such as methoxy, ethoxy, propoxy and butoxy.

触媒中のシリカ骨格を強固にするために、上記シリカ源とともにアモルファスシリカやアルコキシシラン、たとえばテトラメチルオルトシリケート、テトラエチルオルトシリケート、テトラプロピルオルトシリケートなどをシリカ源として用いることが好ましく、通常、上記シリカ源と混合して使用する。   In order to strengthen the silica skeleton in the catalyst, it is preferable to use amorphous silica or alkoxysilane, such as tetramethylorthosilicate, tetraethylorthosilicate, tetrapropylorthosilicate, etc. as the silica source together with the above silica source. Mix with source.

チタン源としては、チタンアルコキサイド、たとえばチタン酸テトラメチル、チタン酸テトラエチル、チタン酸テトラプロピル、チタン酸テトライソプロピル、チタン酸テトラブチル、チタン酸テトライソブチル、チタン酸テトラ−2−エチルヘキシル、チタン酸テトラオクタデシルやチタニウム(IV)オキシアセチルアセトナート、チタニウム(IV)ジイシプロポキシビスアセチルアセトナート等が、又はハロゲン化チタン、たとえば四塩化チタン、四臭化チタン、四沃化チタン等や硫酸チタニル等があげられる。   Titanium alkoxides such as tetramethyl titanate, tetraethyl titanate, tetrapropyl titanate, tetraisopropyl titanate, tetrabutyl titanate, tetraisobutyl titanate, tetra-2-ethylhexyl titanate, tetra titanate Octadecyl, titanium (IV) oxyacetylacetonate, titanium (IV) di-propoxy bisacetylacetonate, etc., or titanium halides such as titanium tetrachloride, titanium tetrabromide, titanium tetraiodide, etc. can give.

型剤としてはアルキルアンモニウム、ジアルキルアンモニウム、トリアルキルアンモニウム、ベンジルアンモニウムなどのカチオン界面活性剤、アルキル硫酸イオン、アルキルリン酸イオンなどのアニオン界面活性剤、ポリアルキレンオキサイドやそれらのブロックコポリマー、アルキルアミンなどのノニオン界面活性剤のいずれも適用可能である。なかでも下記の一般式(I)で表される第4級アンモニウムイオンが好適に用いられる。
[NR1234+ (I)
(式中、R1は炭素数2〜36の直鎖状又は分岐状の炭化水素基を表し、R2〜R4は炭素数1〜6のアルキル基を表す。)
As the type agent, cationic surfactants such as alkylammonium, dialkylammonium, trialkylammonium and benzylammonium, anionic surfactants such as alkylsulfate ions and alkylphosphate ions, polyalkylene oxides and their block copolymers, alkylamines, etc. Any of the above nonionic surfactants can be applied. Among these, quaternary ammonium ions represented by the following general formula (I) are preferably used.
[NR 1 R 2 R 3 R 4 ] + (I)
(In the formula, R 1 represents a linear or branched hydrocarbon group having 2 to 36 carbon atoms, and R 2 to R 4 represent an alkyl group having 1 to 6 carbon atoms.)

1は炭素数2〜36の直鎖状又は分岐状の炭化水素基であり、好ましくは炭素数10〜18のものである。R2〜R4は炭素数1〜6のアルキル基であり、R2〜R4の全てがメチル基であることが好ましい。一般式(I)で表される第4級アンモニウムイオンの具体例としては、ヘキサデシルトリメチルアンモニウム、ドデシルトリメチルアンモニウム、ベンジルトリメチルアンモニウム、ジメチルジドデシルアンモニウム、ヘキサデシルピリジニウム等のカチオンをあげることができる。 R 1 is a linear or branched hydrocarbon group having 2 to 36 carbon atoms, preferably 10 to 18 carbon atoms. R 2 to R 4 are each an alkyl group having 1 to 6 carbon atoms, and all of R 2 to R 4 are preferably methyl groups. Specific examples of the quaternary ammonium ion represented by the general formula (I) include cations such as hexadecyltrimethylammonium, dodecyltrimethylammonium, benzyltrimethylammonium, dimethyldidodecylammonium, hexadecylpyridinium and the like.

また、これらの一般式(I)で表される第4級アンモニウムイオンは単独で用いることもできるし、数種を混合させて用いてもよい。   Moreover, the quaternary ammonium ion represented by these general formula (I) can also be used independently, and several types may be mixed and used for it.

型剤を溶解させる溶媒の例としては、水やアルコール、たとえばメタノール、エタノール、n−プロパノール、2−プロパノール、n−ブタノール、sec−ブタノール、t−ブタノール、ビニルアルコール、アリルアルコール、シクロヘキサノール、ベンジルアルコール等やジオール、またそれらの混合物などをあげることができる。   Examples of solvents for dissolving the mold include water and alcohols such as methanol, ethanol, n-propanol, 2-propanol, n-butanol, sec-butanol, t-butanol, vinyl alcohol, allyl alcohol, cyclohexanol, benzyl Examples thereof include alcohols, diols, and mixtures thereof.

本発明においては型剤を溶解させている溶媒中の水の割合が50重量%以下であることが肝要であり、5〜40重量%であることが好ましく、10〜30重量%であることが更に好ましい。それにより高活性と高選択性を実現できる触媒を得るという本発明の目的を達成しうる。   In the present invention, it is important that the ratio of water in the solvent in which the mold is dissolved is 50% by weight or less, preferably 5 to 40% by weight, and preferably 10 to 30% by weight. Further preferred. Thereby, the object of the present invention of obtaining a catalyst capable of realizing high activity and high selectivity can be achieved.

シリカ源に対するチタン源の使用量はモル比で10-5〜1であり、好ましくは0.00008〜0.4である。また、これらのシリカ源及びチタン源の合計量に対する第4級アンモニウムイオンの使用量はモル比で10-2〜2とすることが好ましい。 The amount of titanium source used relative to the silica source is 10-5 to 1, preferably 0.00008 to 0.4, in molar ratio. Moreover, it is preferable that the usage-amount of the quaternary ammonium ion with respect to the total amount of these silica sources and titanium sources shall be 10 <-2 > -2 by molar ratio.

また、シリカ源とチタン源の反応を促進するために、混合溶液にアルカリ性又は酸性を付与させることが好ましい。アルカリ源としては第4級アンモニウムヒドロキシドが好ましく、例としてはテトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド等があげられるが、一般式(I)で表される第4級アンモニウムイオンの水酸化物を用いるのがより好ましい。また酸の例としては塩酸、硫酸、硝酸等の無機酸及び蟻酸、酢酸、プロピオン酸等の有機酸があげられる。   Moreover, in order to accelerate | stimulate reaction of a silica source and a titanium source, it is preferable to provide alkalinity or acidity to a mixed solution. The alkali source is preferably a quaternary ammonium hydroxide, and examples thereof include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, etc., and the quaternary represented by the general formula (I) It is more preferable to use ammonium ion hydroxide. Examples of the acid include inorganic acids such as hydrochloric acid, sulfuric acid and nitric acid, and organic acids such as formic acid, acetic acid and propionic acid.

混合・攪拌の温度は通常−30〜100℃である。混合・攪拌により固体が生成するが、更に固体を成長させるためにこれを熟成してもよい。熟成時間は通常180時間以下であり、熟成温度は通常0〜200℃である。熟成時に加熱を要する場合は、溶媒の気化を避けるために耐圧容器に移して密閉して行うのが好ましい。   The mixing / stirring temperature is usually -30 to 100 ° C. A solid is produced by mixing and stirring, and this may be aged in order to further grow the solid. The aging time is usually 180 hours or less, and the aging temperature is usually 0 to 200 ° C. When heating is required at the time of aging, it is preferably carried out by transferring to a pressure vessel and sealing in order to avoid vaporization of the solvent.

本発明の第二工程は、固体から型剤を除去する工程である。   The second step of the present invention is a step of removing the mold from the solid.

型剤の除去は第一工程で得た触媒成分及び型剤を含有する固体を溶媒抽出操作又は焼成操作に付すことにより達成できるが、なかでも抽出除去が好ましい。   The removal of the mold can be achieved by subjecting the solid containing the catalyst component and the mold obtained in the first step to a solvent extraction operation or a calcination operation, and extraction removal is particularly preferable.

溶媒による型剤を抽出する技術は、Whitehurstらによって報告されている(米国特許5143879号公報参照。)。抽出に用いる溶媒は、型剤に用いた化合物を溶解し得るものであればよく、一般に炭素数1から約12の常温で液状のオキサ及び/又はオキソ置換炭化水素を用いることができる。この種類の好適な溶媒としては、アルコール類、ケトン類、エーテル類(非環式及び環式のもの)及びエステル類を用いることができ、たとえば、メタノール、エタノール、エチレングリコール、プロピレングリコール、イソプロパノール、n−ブタノール及びオクタノールのようなヒドロキシ置換炭化水素;アセトン、ジエチルケトン、メチルエチルケトン及びメチルイソブチルケトンのようなオキソ置換炭化水素;ジイソブチルエーテルやテトラヒドロフランのような炭化水素エーテル;及び酢酸メチル、酢酸エチル、酢酸ブチル及びプロピオン酸ブチルのような炭化水素エステル等があげられるが、型剤の溶解能という観点からアルコール類が好ましく、なかでもメタノールが更に好ましい。これらの抽出溶媒の触媒成分及び型剤を含有する固体に対する重量比は、通常1〜1000であり、好ましくは5〜300である。また、抽出効果を向上させるために、これらの溶媒に酸又はそれらの塩を添加してもよい。用いる酸の例としては、塩酸、硫酸、硝酸、臭酸等の無機酸や有機酸であるぎ酸、酢酸、プロピオン酸などがあげられる。また、それらの塩の例としては、アルカリ金属塩、アルカリ土類金属塩、アンモニウム塩等があげられる。添加する酸又はそれらの塩の溶媒中の濃度は10mol/l以下が好ましく、5mol/l以下が更に好ましい。添加する酸又はそれらの塩の溶媒中の濃度が過大であると触媒成分中に存在するチタンが溶出し、触媒活性が低下する場合がある。   A technique for extracting a template with a solvent has been reported by Whitehurst et al. (See US Pat. No. 5,143,879). The solvent used for the extraction is not particularly limited as long as it can dissolve the compound used in the mold, and oxa- and / or oxo-substituted hydrocarbons that are liquid at room temperature having 1 to about 12 carbon atoms can be used. Suitable solvents of this type can include alcohols, ketones, ethers (acyclic and cyclic) and esters such as methanol, ethanol, ethylene glycol, propylene glycol, isopropanol, Hydroxy-substituted hydrocarbons such as n-butanol and octanol; oxo-substituted hydrocarbons such as acetone, diethyl ketone, methyl ethyl ketone and methyl isobutyl ketone; hydrocarbon ethers such as diisobutyl ether and tetrahydrofuran; and methyl acetate, ethyl acetate, acetic acid Examples thereof include hydrocarbon esters such as butyl and butyl propionate, and alcohols are preferable from the viewpoint of the solubility of the mold, and methanol is more preferable. The weight ratio of these extraction solvents to the solid containing the catalyst component and the mold is usually 1 to 1000, preferably 5 to 300. Moreover, in order to improve the extraction effect, an acid or a salt thereof may be added to these solvents. Examples of the acid used include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, and odorous acid, and organic acids such as formic acid, acetic acid, and propionic acid. Examples of such salts include alkali metal salts, alkaline earth metal salts, ammonium salts and the like. The concentration of the acid to be added or a salt thereof in the solvent is preferably 10 mol / l or less, more preferably 5 mol / l or less. If the concentration of the acid to be added or the salt thereof in the solvent is excessive, titanium present in the catalyst component may be eluted and the catalytic activity may be lowered.

溶媒と触媒成分及び型剤を含有する固体を十分に混合した後、液相部をろ過又はデカンテーションなどの方法により分離する。この操作を必要回数繰り返す。また触媒成分及び型剤を含有する固体を反応管等に充填し、抽出溶媒を流通させる方法により型剤を抽出することも可能である。溶媒抽出の終了はたとえば液相部の分析により知ることができる。抽出温度は0〜200℃が好ましく20〜100℃が更に好ましい。抽出溶媒の沸点が低い場合は、加圧して抽出を行ってもよい。   After thoroughly mixing the solvent, the solid containing the catalyst component and the mold, the liquid phase part is separated by a method such as filtration or decantation. This operation is repeated as many times as necessary. It is also possible to extract the mold by a method of filling a solid containing the catalyst component and the mold into a reaction tube and circulating an extraction solvent. The completion of the solvent extraction can be known, for example, by analyzing the liquid phase part. The extraction temperature is preferably 0 to 200 ° C, more preferably 20 to 100 ° C. When the boiling point of the extraction solvent is low, the extraction may be performed by applying pressure.

抽出処理後に得られた溶液中の型剤は回収して第一工程の型剤原料として再使用することもできる。また同様に抽出溶媒も通常の蒸留操作などにより精製して再使用することもできる。   The mold in the solution obtained after the extraction treatment can be recovered and reused as the mold raw material in the first step. Similarly, the extraction solvent can be purified and reused by a normal distillation operation or the like.

抽出操作後に固体に含まれる抽出溶媒は乾燥操作によって除去することもできるし、続けてシリル化を行う場合は、シリル化工程で用いるシリル化剤に対して実質上不活性な溶媒で置換除去することができる。   The extraction solvent contained in the solid after the extraction operation can be removed by a drying operation, and when subsequent silylation is performed, it is replaced with a solvent that is substantially inert to the silylating agent used in the silylation step. be able to.

乾燥除去の場合、乾燥装置としては温風もしくは減圧装置を装着したコニカル乾燥機や棚段乾燥機をあげることができる。   In the case of drying and removing, examples of the drying device include a conical dryer and a shelf dryer equipped with hot air or a decompression device.

置換除去の場合、固体に含まれる抽出溶媒を、続くシリル化工程で用いるシリル化剤に対して実質上不活性な溶媒で置換する。置換工程で用いられる置換溶媒はシリル化剤に対して実質上不活性で、かつ第二工程で用いた抽出溶媒を溶解させ得るという条件を満たすものであれば良い。   In the case of displacement removal, the extraction solvent contained in the solid is replaced with a solvent that is substantially inert to the silylating agent used in the subsequent silylation step. The substitution solvent used in the substitution step is not particularly limited as long as it is substantially inert to the silylating agent and satisfies the condition that the extraction solvent used in the second step can be dissolved.

置換操作に好適に用いられる溶媒は一般に炭素数1から約12の常温で液状の炭化水素類、ハロゲン化炭化水素類、ケトン類、エーテル類、エステル類、N,N−二置換アミド類、ニトリル類、三級アミン類などであり、たとえばヘキサン、シクロヘキサン、クロロホルム、ベンゼン、トルエン、キシレン、アセトン、ジエチルケトン、メチルエチルケトン、メチルイソブチルケトン、ジエチルエーテル、ジイソブチルエーテル、テトラヒドロフラン、ジオキサン、酢酸メチル、酢酸エチル、ジメチルホルムアミド、アセトニトリル、ピリジン、トリエチルアミン、ジメチルスルフォキシドなどがあげられる。続くシリル化工程との関係から好ましい置換溶媒は炭化水素類で、なかでもトルエンが更に好ましい。これらの溶媒は単独で用いることもできるし、数種類を混合した溶液を用いることもできる。   Solvents preferably used for the substitution operation are generally hydrocarbons, halogenated hydrocarbons, ketones, ethers, esters, N, N-disubstituted amides, nitriles having a carbon number of 1 to about 12 at room temperature. Such as hexane, cyclohexane, chloroform, benzene, toluene, xylene, acetone, diethyl ketone, methyl ethyl ketone, methyl isobutyl ketone, diethyl ether, diisobutyl ether, tetrahydrofuran, dioxane, methyl acetate, ethyl acetate, Examples include dimethylformamide, acetonitrile, pyridine, triethylamine, dimethyl sulfoxide and the like. In view of the subsequent silylation step, preferred substitution solvents are hydrocarbons, and among these, toluene is more preferred. These solvents can be used alone, or a mixed solution of several kinds can be used.

置換操作では置換溶媒と第二工程で得られた抽出溶媒を含有する固体を十分に混合した後、液相部をろ過又はデカンテーションなどの方法により分離する。この操作を必要回数繰り返す。また抽出溶媒を含有する固体を反応管等に充填し、置換溶媒を流通させる方法により置換することも可能である。触媒の生産性という観点から、本発明の第二工程からシリル化工程までを同一の反応器で行うことが好ましい。本置換操作の終了はたとえば液相部の分析により知ることができる。置換温度は0〜200℃が好ましく20〜100℃が更に好ましい。本操作で用いる溶媒の沸点が低い場合は、加圧して置換を行ってもよい。   In the substitution operation, the substitution solvent and the solid containing the extraction solvent obtained in the second step are sufficiently mixed, and then the liquid phase part is separated by a method such as filtration or decantation. This operation is repeated as many times as necessary. Moreover, it is also possible to replace by a method in which a solid containing an extraction solvent is filled in a reaction tube or the like and a replacement solvent is passed. From the viewpoint of catalyst productivity, it is preferable to carry out the second step to the silylation step of the present invention in the same reactor. The completion of this replacement operation can be known by, for example, analyzing the liquid phase part. The substitution temperature is preferably 0 to 200 ° C, more preferably 20 to 100 ° C. When the boiling point of the solvent used in this operation is low, substitution may be performed by applying pressure.

また置換工程に用いた置換溶媒は蒸留や抽出などの通常の方法により抽出溶媒を除去し、再使用することができる。   The substitution solvent used in the substitution step can be reused after removing the extraction solvent by a usual method such as distillation or extraction.

本発明の第一工程および第二工程を経て得られた固体は高い疎水性を有し、高活性・高選択性触媒として作用するが、更に性能を改善するために上記固体をシリル化処理を付すことによりシリル化された触媒を得ることができる。   The solid obtained through the first step and the second step of the present invention has high hydrophobicity and acts as a highly active and highly selective catalyst. However, in order to further improve the performance, the solid is subjected to silylation treatment. By attaching, a silylated catalyst can be obtained.

シリル化は第二工程で得られた固体にガス状のシリル化剤を反応させる気相法で行ってもよいし、溶媒中でシリル化剤と固体とを反応させる液相法で行ってもよいが、本発明においては液相法がより好ましい。通常、シリル化を液相法で行う場合は炭化水素類が好適に用いられる。抽出溶媒を置換操作によって除去した場合、シリル化溶媒は置換溶媒と必ずしも同一である必要はないが、溶媒の再使用の観点から同一であることが好ましい。   Silylation may be performed by a gas phase method in which a gaseous silylating agent is reacted with the solid obtained in the second step, or by a liquid phase method in which a silylating agent and a solid are reacted in a solvent. In the present invention, the liquid phase method is more preferable. Usually, when silylation is performed by a liquid phase method, hydrocarbons are preferably used. When the extraction solvent is removed by a substitution operation, the silylation solvent is not necessarily the same as the substitution solvent, but is preferably the same from the viewpoint of reuse of the solvent.

シリル化剤の例には、有機シラン、有機シリルアミン、有機シリルアミドとその誘導体、及び有機シラザン及びその他のシリル化剤があげられる。   Examples of silylating agents include organic silanes, organic silylamines, organic silylamides and derivatives thereof, and organic silazanes and other silylating agents.

有機シランの例としては、クロロトリメチルシラン、ジクロロジメチルシラン、クロロブロモジメチルシラン、ニトロトリメチルシラン、クロロトリエチルシラン、ヨードジメチルブチルシラン、クロロジメチルフェニルシラン、クロロジメチルシラン、ジメチルn-プロピルクロロシラン、ジメチルイソプロピルクロロシラン、t-ブチルジメチルクロロシラン、トリプロピルクロロシラン、ジメチルオクチルクロロシラン、トリブチルクロロシラン、トリヘキシルクロロシラン、ジメチルエチルクロロシラン、ジメチルオクタデシルクロロシラン、n-ブチルジメチルクロロシラン、ブロモメチルジメチルクロロシラン、クロロメチルジメチルクロロシラン、3-クロロプロピルジメチルクロロシラン、ジメトキシメチルクロロシラン、メチルフェニルクロロシラン、トリエトキシクロロシラン、ジメチルフェニルクロロシラン、メチルフェニルビニルクロロシラン、ベンジルジメチルクロロシラン、ジフェニルクロロシラン、ジフェニルメチルクロロシラン、ジフェニルビニルクロロシラン、トリベンジルクロロシラン、3-シアノプロピルジメチルクロロシランがあげられる。   Examples of organic silanes include chlorotrimethylsilane, dichlorodimethylsilane, chlorobromodimethylsilane, nitrotrimethylsilane, chlorotriethylsilane, iododimethylbutylsilane, chlorodimethylphenylsilane, chlorodimethylsilane, dimethyl n-propylchlorosilane, dimethylisopropyl Chlorosilane, t-butyldimethylchlorosilane, tripropylchlorosilane, dimethyloctylchlorosilane, tributylchlorosilane, trihexylchlorosilane, dimethylethylchlorosilane, dimethyloctadecylchlorosilane, n-butyldimethylchlorosilane, bromomethyldimethylchlorosilane, chloromethyldimethylchlorosilane, 3-chloro Propyldimethylchlorosilane, dimethoxymethylchlorosilane, methylphenol Examples thereof include nylchlorosilane, triethoxychlorosilane, dimethylphenylchlorosilane, methylphenylvinylchlorosilane, benzyldimethylchlorosilane, diphenylchlorosilane, diphenylmethylchlorosilane, diphenylvinylchlorosilane, tribenzylchlorosilane, and 3-cyanopropyldimethylchlorosilane.

有機シリルアミンの例としては、N−トリメチルシリルイミダゾール、N−t−ブチルジメチルシリルイミダゾール、N-ジメチルエチルシリルイミダゾール、N−ジメチルn−プロピルシリルイミダゾール、N−ジメチルイソプロピルシリルイミダゾール、N−トリメチルシリルアミン、N−トリメチルシリルジメチルアミン、N−トリメチルシリルジエチルアミン、N−トリメチルシリルピロール、N−トリメチルシリルピロリジン、N−トリメチルシリルピペリジン、1−シアノエチル(ジエチルアミノ)ジメチルシラン、ペンタフルオロフェニルジメチルシリルアミンがあげられる。   Examples of organic silylamines include N-trimethylsilylimidazole, Nt-butyldimethylsilylimidazole, N-dimethylethylsilylimidazole, N-dimethyln-propylsilylimidazole, N-dimethylisopropylsilylimidazole, N-trimethylsilylamine, N -Trimethylsilyldimethylamine, N-trimethylsilyldiethylamine, N-trimethylsilylpyrrole, N-trimethylsilylpyrrolidine, N-trimethylsilylpiperidine, 1-cyanoethyl (diethylamino) dimethylsilane, pentafluorophenyldimethylsilylamine.

有機シリルアミド及び誘導体の例としては、N,O−ビストリメチルシリルアセトアミド、N,O−ビストリメチルシリルトリフルオロアセトアミド、N−トリメチルシリルアセトアミド、N−メチル−N−トリメチルシリルアセトアミド、N−メチル−N−トリメチルシリルトリフルオロアセトアミド、N−メチル−N−トリメチルシリルヘプタフルオロブチルアミド、N-(t-ブチルジメチルシリル)−N−トリフルオロアセトアミド,N,O−ビス(ジエチルハイドロシリル)トリフルオロアセトアミドがあげられる。   Examples of organic silylamides and derivatives include N, O-bistrimethylsilylacetamide, N, O-bistrimethylsilyltrifluoroacetamide, N-trimethylsilylacetamide, N-methyl-N-trimethylsilylacetamide, N-methyl-N-trimethylsilyltrifluoro Examples include acetamide, N-methyl-N-trimethylsilylheptafluorobutyramide, N- (t-butyldimethylsilyl) -N-trifluoroacetamide, N, O-bis (diethylhydrosilyl) trifluoroacetamide.

有機シラザンの例としては、ヘキサメチルジシラザン、ヘプタメチルジシラザン、1,1,3,3−テトラメチルジシラザン,1,3−ビス(クロロメチル)テトラメチルジシラザン、1,3-ジビニル-1,1,3,3−テトラメチルジシラザン、1,3−ジフェニルテトラメチルジシラザンがあげられる。   Examples of organic silazanes include hexamethyldisilazane, heptamethyldisilazane, 1,1,3,3-tetramethyldisilazane, 1,3-bis (chloromethyl) tetramethyldisilazane, 1,3-divinyl- Examples include 1,1,3,3-tetramethyldisilazane and 1,3-diphenyltetramethyldisilazane.

その他のシリル化剤としては、N−メトキシ−N,O−ビストリメチルシリルトリフルオロアセトアミド、N−メトキシ−N,O−ビストリメチルシリルカーバメート、N,O−ビストリメチルシリルスルファメート、トリメチルシリルトリフルオロメタンスルホナート、N,N'−ビストリメチルシリル尿素があげられる。
好ましいシリル化剤はヘキサメチルジシラザンである。
Other silylating agents include N-methoxy-N, O-bistrimethylsilyl trifluoroacetamide, N-methoxy-N, O-bistrimethylsilyl carbamate, N, O-bistrimethylsilylsulfamate, trimethylsilyl trifluoromethanesulfonate, N, N′-bistrimethylsilylurea is exemplified.
A preferred silylating agent is hexamethyldisilazane.

本発明の触媒は、通常、触媒成分を含む固体を成型する工程により触媒成型体として用いられる。成型工程は、上述した型剤除去工程の前後、溶媒置換工程後及びシリル化工程後のいずれの段階で行ってもよいが、比表面積や細孔容量などの触媒物性の劣化を抑制するという観点から、型剤除去工程の前に行うことが好ましい。成型方法は圧縮成型、押し出し成型などのいずれの方法を用いてもよい。押し出し成型においては一般的に用いられる有機および無機バインダーを用いることができるが、バインダーの添加により触媒活性の低下が引き起こされる場合がある。本触媒成型体の製造にあたり、触媒強度及び触媒物性の観点から圧縮成型法が最も好ましい。   The catalyst of the present invention is usually used as a catalyst molded body by a step of molding a solid containing a catalyst component. The molding process may be carried out at any stage before or after the above-mentioned mold removing process, after the solvent replacement process, or after the silylation process, but the viewpoint of suppressing deterioration of catalyst physical properties such as specific surface area and pore volume. Therefore, it is preferably performed before the mold removing step. As the molding method, any method such as compression molding or extrusion molding may be used. In extrusion molding, commonly used organic and inorganic binders can be used, but the addition of the binder may cause a decrease in catalytic activity. In producing the catalyst molded body, the compression molding method is most preferable from the viewpoint of catalyst strength and catalyst physical properties.

圧縮成型法としてはロールプレス成型(ブリケッティング、コンパクティング)、油圧プレス成型、打錠成型などをあげることができる。圧縮の圧力は通常0.1〜10トン/cm2であり、好ましくは0.2〜5トン/cm2であり、更に好しくは0.5〜2トン/cm2である。圧力が低すぎると成型体の強度が不十分となる場合があり、一方圧力が高すぎると細孔が破壊され触媒物性が不十分なものとなる場合がある。圧縮成型を行うにあたり、触媒成分を含む固体が適当量の水分を含んでいることが好ましく、これにより低い圧縮圧力でも充分な強度の成型体をつくることができる。圧縮成型に付す材の含水率は1〜70重量%が好ましく、5〜40重量%が更に好ましい。水分量は湿った固体を乾燥させる際の乾燥度で調整してもよいし、十分乾燥させた固体に水を加えて調整してもよい。また、所望の性能に支障をきたさない範囲で、一般に用いられるバインダー等を加えてもよい。 Examples of the compression molding method include roll press molding (briquetting and compacting), hydraulic press molding, tableting molding and the like. The compression pressure is usually 0.1 to 10 ton / cm 2 , preferably 0.2 to 5 ton / cm 2 , more preferably 0.5 to 2 ton / cm 2 . If the pressure is too low, the strength of the molded body may be insufficient. On the other hand, if the pressure is too high, the pores may be destroyed and the physical properties of the catalyst may be insufficient. In performing compression molding, it is preferable that the solid containing the catalyst component contains an appropriate amount of moisture, so that a molded body having sufficient strength can be produced even at a low compression pressure. The water content of the material subjected to compression molding is preferably 1 to 70% by weight, more preferably 5 to 40% by weight. The amount of moisture may be adjusted by the degree of drying when the damp solid is dried, or may be adjusted by adding water to the sufficiently dried solid. In addition, a generally used binder or the like may be added as long as desired performance is not hindered.

成型体の形状は錠剤、球、リングなどいずれの形状であってもよい。そのままの形状で反応などに用いてもよいし、適当な大きさに破砕して用いてもよい。   The shape of the molded body may be any shape such as a tablet, a sphere, or a ring. It may be used in the reaction as it is, or may be crushed to an appropriate size.

本発明の触媒は、高い表面積と高度に分散したチタン活性点および高い疎水性を有することから、選択的酸化反応、たとえばオレフィンのエポキシ化反応の他、有機化合物の各種酸化反応に用いることが可能である。また所望により、アルミナ等の第三成分の添加で触媒の酸点をより強化することも可能であり、アルキル化反応や接触改質反応等にも使用することが可能である。   Since the catalyst of the present invention has a high surface area, highly dispersed titanium active sites and high hydrophobicity, it can be used for various oxidation reactions of organic compounds in addition to selective oxidation reactions such as olefin epoxidation reactions. It is. If desired, the acid point of the catalyst can be further strengthened by adding a third component such as alumina, and can be used for an alkylation reaction, a catalytic reforming reaction, or the like.

本発明の触媒は特にオレフィン型化合物とハイドロパーオキサイドを反応させるオキシラン化合物の製造方法に最適に使用され得る。   In particular, the catalyst of the present invention can be optimally used in a method for producing an oxirane compound in which an olefin type compound and a hydroperoxide are reacted.

オレフィン型化合物は、非環式、単環式、二環式又は多環式化合物であってよく、モノオレフィン型、ジオレフィン型又はポリオレフィン型のものであってよい。オレフィン結合が2以上ある場合には、これは共役結合又は非共役結合であってよい。炭素原子2〜60個のオレフィン型化合物が一般に好ましい。置換基を有していてもよいが、置換基は比較的安定な基であることが好ましい。このような炭化水素の例にはエチレン、プロピレン、ブテン−1、イソブチレン、ヘキセン−1、ヘキセン−2、ヘキセン−3、オクテン−1、デセン−1、スチレン、シクロヘキセン等があげられる。適当なジオレフィン型化合物の例にはブタジエン、イソプレンがあげられる。置換基が存在してもよく、その例にはハロゲン原子があげられ、更にまた、酸素、硫黄、窒素原子を、水素及び/又は炭素原子と共に含有する種々の置換基が存在してもよい。特に好ましいオレフィン型化合物はオレフィン型不飽和アルコール、及びハロゲンで置換されたオレフィン型不飽和炭化水素であり、その例にはアリルアルコール、クロチルアルコール、塩化アリルがあげられる。特に好適なものは炭素原子3〜40個のアルケンであって、これはヒドロキシル基又はハロゲン原子で置換されていてもよい。   The olefinic compound may be an acyclic, monocyclic, bicyclic or polycyclic compound, and may be of monoolefin type, diolefin type or polyolefin type. If there are two or more olefinic bonds, this may be a conjugated bond or a non-conjugated bond. Olefin type compounds having 2 to 60 carbon atoms are generally preferred. Although it may have a substituent, the substituent is preferably a relatively stable group. Examples of such hydrocarbons include ethylene, propylene, butene-1, isobutylene, hexene-1, hexene-2, hexene-3, octene-1, decene-1, styrene, cyclohexene and the like. Examples of suitable diolefin type compounds are butadiene and isoprene. Substituents may be present, examples include halogen atoms, and various substituents containing oxygen, sulfur, and nitrogen atoms together with hydrogen and / or carbon atoms may also be present. Particularly preferred olefin type compounds are olefin type unsaturated alcohols and olefin type unsaturated hydrocarbons substituted with halogen. Examples thereof include allyl alcohol, crotyl alcohol and allyl chloride. Particularly preferred are alkenes having 3 to 40 carbon atoms, which may be substituted with hydroxyl groups or halogen atoms.

ハイドロパーオキサイドの例として、有機ハイドロパーオキサイドをあげることができる。有機ハイドロパーオキサイドは、一般式
R−O−O−H
(ここにRは1価のヒドロカルビル基である。)
を有する化合物であって、これはオレフィン型化合物と反応して、オキシラン化合物及び化合物R−OHを生成する。好ましくは、基Rは炭素原子を3〜20個を有する基である。最も好ましくは、これは炭素原子3〜10個のヒドロカルビル基、特に、第2又は第3アルキル基又はアラルキル基である。これらの基のうちで特に好ましい基は第3アルキル基、及び第2又は第3アラルキル基であって、その具体例には第3ブチル基、第3ペンチル基、シクロペンチル基、2−フェニルプロピル−2基があげられ、更にまた、テトラリン分子の脂肪族側鎖から水素原子を除去することによって生じる種々のテトラニリル基もあげられる。
An organic hydroperoxide can be mention | raise | lifted as an example of a hydroperoxide. Organic hydroperoxides have the general formula R—O—O—H
(Where R is a monovalent hydrocarbyl group.)
Which reacts with an olefinic compound to produce an oxirane compound and a compound R—OH. Preferably, the group R is a group having 3 to 20 carbon atoms. Most preferably this is a hydrocarbyl group of 3 to 10 carbon atoms, in particular a secondary or tertiary alkyl group or an aralkyl group. Among these groups, particularly preferred groups are a tertiary alkyl group and a second or third aralkyl group, and specific examples thereof include a tertiary butyl group, a tertiary pentyl group, a cyclopentyl group, 2-phenylpropyl- 2 groups, and various tetranyl groups generated by removing hydrogen atoms from the aliphatic side chain of the tetralin molecule.

有機ハイドロパーオキサイドとしてクメンハイドロパーオキサイドを使用した場合には、その結果得られるヒドロキシル化合物は2−フェニル-2-プロパノールである。これは脱水反応によってα−メチルスチレンに変換できる。α−メチルスチレンは工業的に有用な物質である。   When cumene hydroperoxide is used as the organic hydroperoxide, the resulting hydroxyl compound is 2-phenyl-2-propanol. This can be converted to α-methylstyrene by a dehydration reaction. α-Methylstyrene is an industrially useful substance.

有機ハイドロパーオキサイドとして第3ペンチルハイドロパーオキサイドを使用したときに得られる第3ペンチルアルコールの脱水反応によって生じる第3アミレンは、イソプレンの前駆体として有用な物質である。第3ペンチルアルコールはオクタン価向上剤であるメチル第3ペンチルエーテルの前駆体としても有用である。   The third amylene produced by the dehydration reaction of the third pentyl alcohol obtained when the third pentyl hydroperoxide is used as the organic hydroperoxide is a substance useful as a precursor of isoprene. Tertiary pentyl alcohol is also useful as a precursor of methyl tertiary pentyl ether which is an octane improver.

有機ハイドロパーオキサイドとしてt-ブチルハイドロパーオキサイドを使用したときに得られるt-ブチルアルコールはオクタン価向上剤であるメチル-t-ブチルエーテルの前駆体として有用な物質である。   T-Butyl alcohol obtained when t-butyl hydroperoxide is used as the organic hydroperoxide is a useful substance as a precursor of methyl-t-butyl ether which is an octane number improver.

有機ハイドロパーオキサイド以外のハイドロパーオキサイドの例として過酸化水素をあげることができる。   Hydrogen peroxide can be given as an example of hydroperoxide other than organic hydroperoxide.

過酸化水素は化学式HOOHの化合物であって、通常水溶液の形で得ることができる。これはオレフィン型化合物と反応して、オキシラン化合物及び水を生成する。   Hydrogen peroxide is a compound of the chemical formula HOOH and can usually be obtained in the form of an aqueous solution. This reacts with the olefinic compound to produce an oxirane compound and water.

原料物質として使用される有機ハイドロパーオキサイド及び過酸化水素は、希薄又は濃厚な精製物又は非精製物であってよい。   The organic hydroperoxide and hydrogen peroxide used as raw materials may be a diluted or concentrated purified product or non-purified product.

エポキシ化反応は、溶媒及び/又は希釈剤を用いて液相中で実施できる。溶媒及び希釈剤は、反応時の温度及び圧力のもとで液体であり、かつ、反応体及び生成物に対して実質的に不活性なものでなければならない。溶媒は使用されるハイドロパーオキサイド溶液中に存在する物質からなるものであってよい。たとえばクメンハイドロパーオキサイドがクメンハイドロパーオキサイドとその原料であるクメンとからなる混合物である場合には、特に溶媒を添加することなく、これを溶媒の代用とすることも可能である。   The epoxidation reaction can be carried out in the liquid phase using a solvent and / or diluent. The solvent and diluent must be liquid under the temperature and pressure during the reaction and be substantially inert to the reactants and products. The solvent may consist of substances present in the hydroperoxide solution used. For example, when cumene hydroperoxide is a mixture of cumene hydroperoxide and cumene, which is a raw material thereof, it can be used as a substitute for a solvent without particularly adding a solvent.

エポキシ化反応温度は一般に0〜200℃であるが、25〜200℃の温度が好ましい。圧力は、反応混合物を液体の状態に保つのに充分な圧力でよい。一般に圧力は100〜10000kPaであることが有利である。   The epoxidation reaction temperature is generally 0 to 200 ° C, but a temperature of 25 to 200 ° C is preferable. The pressure may be sufficient to keep the reaction mixture in a liquid state. In general, the pressure is advantageously between 100 and 10000 kPa.

エポキシ化反応の終了後に、所望生成物を含有する液状混合物が触媒組成物から容易に分離できる。次いで液状混合物を適当な方法によって精製できる。精製は分別蒸留、選択抽出、濾過、洗浄等を含む。溶媒、触媒、未反応オレフィン型化合物、未反応ハイドロパーオキサイドは再循環して再び使用することもできる。   After completion of the epoxidation reaction, the liquid mixture containing the desired product can be easily separated from the catalyst composition. The liquid mixture can then be purified by a suitable method. Purification includes fractional distillation, selective extraction, filtration, washing and the like. The solvent, catalyst, unreacted olefin type compound and unreacted hydroperoxide can be recycled and reused.

本発明の触媒を用いた反応は、スラリー、固定床の形で行うことができ、大規模な工業的操作の場合には固定床を用いることが好ましい。本反応は、回分法、半連続法又は連続法によって実施できる。反応体を含有する液を固定床に通した場合には、反応帯域から出た液状混合物には、触媒が全く含まれていないか又は実質的に含まれていない。   The reaction using the catalyst of the present invention can be carried out in the form of a slurry or a fixed bed. In the case of a large-scale industrial operation, it is preferable to use a fixed bed. This reaction can be carried out by a batch method, a semi-continuous method or a continuous method. When the liquid containing the reactants is passed through a fixed bed, the liquid mixture exiting the reaction zone contains no or substantially no catalyst.

以下に実施例により本発明を説明する。
実施例1
触媒粉の調製
16重量%ヘキサデシルトリメチルアンモニウムヒドロキシド、64重量%メタノール、20重量%水で構成された型剤溶液125.0g(溶媒中の水は20/(64+20)=24重量%)を撹拌し、これに50℃でチタン酸テトライソプロピル1.85gと2−プロパノール10.0gの混合溶液を滴下して加えた。30分間撹拌した後、テトラメチルオルトシリケート30.5gとメチルトリメトキシシラン6.8gとの混合溶液を滴下した。その後、50℃で3時間攪拌を続けた。生じた沈殿をろ別した。
得られた沈殿を減圧下、70℃で8時間乾燥した。
The following examples illustrate the invention.
Example 1
Preparation of catalyst powder 125.0 g of a mold solution composed of 16% by weight hexadecyltrimethylammonium hydroxide, 64% by weight methanol and 20% by weight water (water in the solvent is 20 / (64 + 20) = 24% by weight) The mixture was stirred and a mixed solution of 1.85 g of tetraisopropyl titanate and 10.0 g of 2-propanol was added dropwise thereto at 50 ° C. After stirring for 30 minutes, a mixed solution of 30.5 g of tetramethylorthosilicate and 6.8 g of methyltrimethoxysilane was added dropwise. Thereafter, stirring was continued at 50 ° C. for 3 hours. The resulting precipitate was filtered off.
The obtained precipitate was dried at 70 ° C. under reduced pressure for 8 hours.

成型体の作製
乾燥して得られた白色固体30.0gに4.5gの水を霧吹きで加え良く混合したものを、錠剤成型器で圧縮成型した。得られた固体を破砕し、篩を用いて1.0〜2.0mmの触媒成型体を得た。1.0mm以下の固体はリサイクルして、再度圧縮成型した。
Production of molded body A mixture of 30.0 g of a white solid obtained by drying and well mixed with 4.5 g of water by spraying was compression molded with a tablet molding machine. The obtained solid was crushed, and a 1.0 to 2.0 mm catalyst molded body was obtained using a sieve. Solids of 1.0 mm or less were recycled and compression molded again.

型剤の抽出除去
次に、上記のとおり得られた成型体11.5gを内径16mmφのガラス製カラムに充填し、LHSV=6h-1で(1)室温下、100mlのメタノール、(2)45℃加熱下、200mlのメタノールと濃塩酸(含量36重量%)4gとの混合溶液、(3)45℃加熱下、200mlのメタノールをアップフローで順次カラムに通液した。通液終了後、カラム内のメタノールをカラム下部より抜き出し、80℃加熱下、10mmHgで1.5時間、触媒成型体を減圧乾燥した。
Extracting and removing the mold agents Next, the molded body 11.5g obtained as described above was packed into a glass column having an inner diameter diameter of 16 mm, LHSV = at 6h -1 (1) at room temperature, 100 ml of methanol, (2) 45 Under heating at 0 ° C., a mixed solution of 200 ml of methanol and 4 g of concentrated hydrochloric acid (content 36% by weight), (3) Under heating at 45 ° C., 200 ml of methanol was sequentially passed through the column in an up flow. After completion of the flow, methanol in the column was extracted from the lower part of the column, and the catalyst molded body was dried under reduced pressure at 10 mmHg for 1.5 hours under heating at 80 ° C.

プロピレンオキサイド(PO)の合成
上記のとおり得られた触媒成型体を25%クメンハイドロパーオキサイド(CHPO)とプロピレン(C3’)を用いてバッチ反応装置(オートクレーブ)で評価した。触媒1.0g、CHPO30.0g、C3’16.6gをオートクレーブに仕込み、自生圧力下、反応温度85℃、反応時間1.5時間(昇温込み)で反応させた。反応成績を表1に示す。
Synthesis of Propylene Oxide (PO) The molded catalyst obtained as described above was evaluated in a batch reactor (autoclave) using 25% cumene hydroperoxide (CHPO) and propylene (C 3 '). 1.0 g of catalyst, 30.0 g of CHPO, and 16.6 g of C 3 ′ were charged into an autoclave and reacted at a reaction temperature of 85 ° C. and a reaction time of 1.5 hours (temperature increase) under autogenous pressure. The reaction results are shown in Table 1.

実施例2
シリル化
実施例1で得られた触媒成型体3.0gを冷却管の装着されたガラス製フラスコに入れ、ヘキサメチルジシラザン2.0gとトルエン30.0gを加え110℃加熱下、1.5時間シリル化を行った。液分離後、110℃加熱下、10mmHgで1.5時間、触媒成型体を減圧乾燥した。
得られたシリル化触媒を実施例1と同様の方法でバッチ反応装置で評価を行った。反応成績を表1に示す。
Example 2
3.0 g of the molded catalyst obtained in silylation Example 1 was placed in a glass flask equipped with a cooling tube, 2.0 g of hexamethyldisilazane and 30.0 g of toluene were added, and heated at 110 ° C. for 1.5. Time silylation was performed. After the liquid separation, the molded catalyst was dried under reduced pressure at 10 mmHg for 1.5 hours under heating at 110 ° C.
The obtained silylation catalyst was evaluated by a batch reactor in the same manner as in Example 1. The reaction results are shown in Table 1.

比較例1
16重量%ヘキサデシルトリメチルアンモニウムヒドロキシド、11重量%メタノール、73重量%水で構成された型剤溶液125.0g(溶媒中の水は73/(11+73)=87重量%)を用いた以外は、実施例1と同様に触媒成型体を調製しバッチ反応装置で評価した。反応成績を表1に示す。
Comparative Example 1
Except for using 125.0 g of a mold solution composed of 16% by weight hexadecyltrimethylammonium hydroxide, 11% by weight methanol, and 73% by weight water (the water in the solvent is 73 / (11 + 73) = 87% by weight). A catalyst molded body was prepared in the same manner as in Example 1 and evaluated with a batch reactor. The reaction results are shown in Table 1.

比較例2
比較例1で得られた触媒成型体を実施例2と同様にシリル化しバッチ反応装置で評価した。反応成績を表1に示す。
Comparative Example 2
The molded catalyst obtained in Comparative Example 1 was silylated in the same manner as in Example 2 and evaluated with a batch reactor. The reaction results are shown in Table 1.

Figure 2006159057

*1:PO/C3’選択率=生成POモル/反応C3’モル*100
Figure 2006159057

* 1: PO / C 3 'selectivity = product PO mole / reaction C 3 ' mol * 100

Claims (7)

下記(1)〜(4)の全ての条件を充足するチタン含有珪素酸化物触媒の製造方法であって、下記の第一工程〜第二工程を含むチタン含有珪素酸化物触媒の製造方法。
(1):平均細孔径が10Å以上であること
(2):全細孔容量の90%以上が5〜200Åの細孔径を有すること
(3):比細孔容量が0.2cm3/g以上であること
(4):原料として用いるシリカ源の一部又は全部が、炭化水素基が珪素原子に直接結合した珪素化合物であること
第一工程:シリカ源、チタン源及び型剤(テンプレート)を溶媒中で混合・攪拌することにより触媒成分及び型剤を含有する固体を得る工程であって、該溶媒中の水の割合が50重量%以下である工程
第二工程:第一工程で得た固体から型剤を除去する工程
A method for producing a titanium-containing silicon oxide catalyst that satisfies all of the following conditions (1) to (4), comprising the following first step to second step.
(1): The average pore diameter is 10 mm or more (2): 90% or more of the total pore volume has a pore diameter of 5 to 200 mm (3): The specific pore volume is 0.2 cm 3 / g (4): Part or all of the silica source used as a raw material is a silicon compound in which a hydrocarbon group is directly bonded to a silicon atom. First step: Silica source, titanium source and mold (template) Is a step of obtaining a solid containing a catalyst component and a mold agent by mixing and stirring in a solvent, wherein the proportion of water in the solvent is 50% by weight or less. Second step: obtained in the first step Removing mold from solid
第一工程で用いられる型剤が下記の一般式(I)で表される第4級アンモニウムイオンである請求項1に記載の製造方法。
[NR1234+ (I)
(式中、R1は炭素数2〜36の直鎖状又は分岐状の炭化水素基を表し、R2〜R4は炭素数1〜6のアルキル基を表す。)
The production method according to claim 1, wherein the mold used in the first step is a quaternary ammonium ion represented by the following general formula (I).
[NR 1 R 2 R 3 R 4 ] + (I)
(In the formula, R 1 represents a linear or branched hydrocarbon group having 2 to 36 carbon atoms, and R 2 to R 4 represent an alkyl group having 1 to 6 carbon atoms.)
第一工程で用いられるシリカ源の一部がモノアルキルトリアルコキシシランおよび/又はモノアリールトリアルコキシシランである請求項1〜2のうちの一の請求項に記載の製造方法。 The manufacturing method according to claim 1, wherein a part of the silica source used in the first step is monoalkyltrialkoxysilane and / or monoaryltrialkoxysilane. 第二工程で用いられる型剤除去方法が溶媒抽出操作である請求項1〜3のうちの一の請求項に記載の製造方法。 The manufacturing method according to claim 1, wherein the mold removing method used in the second step is a solvent extraction operation. 請求項1記載の工程に加えて、型剤除去後の固体にシリル化処理を付すことによりシリル化された触媒を得る工程を有する請求項1〜4のうちの一の請求項に記載の製造方法。 In addition to the process of Claim 1, it has the process of obtaining the silylated catalyst by attaching | subjecting a silylation process to the solid after mold removal, The manufacture of Claim 1 of Claim 1-4 Method. 請求項1〜5のうちの一の請求項に記載の製造方法により得られるチタン含有珪素酸化物触媒。 A titanium-containing silicon oxide catalyst obtained by the production method according to one of claims 1 to 5. 請求項6記載の触媒の存在下、オレフィン型化合物とハイドロパーオキサイドを反応させるオキシラン化合物の製造方法。
The manufacturing method of the oxirane compound which makes an olefin type compound and a hydroperoxide react in presence of the catalyst of Claim 6.
JP2004352357A 2004-12-06 2004-12-06 Method for producing titanium-containing silicon oxide catalyst and catalyst Expired - Fee Related JP4834982B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2004352357A JP4834982B2 (en) 2004-12-06 2004-12-06 Method for producing titanium-containing silicon oxide catalyst and catalyst
KR1020077014960A KR101254352B1 (en) 2004-12-06 2005-11-30 Process for producing titanium-containing silicon oxide catalyst, the catalyst, and process for producing olefin oxide compound with the catalyst
CN2012100482679A CN102600820A (en) 2004-12-06 2005-11-30 Process for producing titanium-containing silicon oxide catalyst, the catalyst, and process for producing olefin compound with the catalyst
CN2005800477950A CN101115561B (en) 2004-12-06 2005-11-30 Method for manufacturing titanium-containing silicon oxide catalyst, catalyst and method for manufacturing alkylene oxide using the catalyst
US11/720,649 US7875570B2 (en) 2004-12-06 2005-11-30 Process for producing titanium-containing silicon oxide catalyst, the catalyst, and process for producing olefin compound with the catalyst
PCT/JP2005/022417 WO2006062111A1 (en) 2004-12-06 2005-11-30 Process for producing titanium-containing silicon oxide catalyst, the catalyst, and process for producing olefin oxide compound with the catalyst
EP05814429A EP1839750A4 (en) 2004-12-06 2005-11-30 Process for producing titanium-containing silicon oxide catalyst, the catalyst, and process for producing olefin oxide compound with the catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004352357A JP4834982B2 (en) 2004-12-06 2004-12-06 Method for producing titanium-containing silicon oxide catalyst and catalyst

Publications (2)

Publication Number Publication Date
JP2006159057A true JP2006159057A (en) 2006-06-22
JP4834982B2 JP4834982B2 (en) 2011-12-14

Family

ID=36661643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004352357A Expired - Fee Related JP4834982B2 (en) 2004-12-06 2004-12-06 Method for producing titanium-containing silicon oxide catalyst and catalyst

Country Status (2)

Country Link
JP (1) JP4834982B2 (en)
CN (1) CN101115561B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018511462A (en) * 2015-02-17 2018-04-26 ライオンデル ケミカル テクノロジー、エル.ピー. Epoxidation catalyst based on metal alkoxide pretreated support
WO2018186491A1 (en) * 2017-04-07 2018-10-11 住友化学株式会社 Method for producing titanium-containing silicon oxide, method for producing epoxide, and titanium-containing silicon oxide
WO2019176951A1 (en) 2018-03-15 2019-09-19 住友化学株式会社 Production method for titanium-containing silicon oxide molded article, and titanium-containing silicon oxide molded article
WO2020241052A1 (en) * 2019-05-29 2020-12-03 住友化学株式会社 Method for producing titanium-containing silicon oxide, method for producing epoxide, and titanium-containing silicon oxide
RU2805109C2 (en) * 2019-05-29 2023-10-11 Сумитомо Кемикал Компани, Лимитед Method for producing titanium-containing silicon oxide, method for producing epoxide and titanium-containing silicon oxide

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI698398B (en) * 2019-03-22 2020-07-11 東聯化學股份有限公司 Method and application of synthesizing titanium-containing silicon oxide material using biopolymer
CN111905707B (en) * 2020-08-04 2023-05-12 长江大学 Amorphous mesoporous TiO 2 -SiO 2 Catalyst and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0967115A (en) * 1995-08-29 1997-03-11 Nippon Chem Ind Co Ltd Mesoporous metallosilicate and its production
JPH1072212A (en) * 1996-06-07 1998-03-17 Asahi Chem Ind Co Ltd Mesoporous molecular sieve and its production
WO2004026852A1 (en) * 2002-09-20 2004-04-01 Arco Chemical Technology, L.P. Process for direct oxidation of propylene to propylene oxide and large particle size titanium silicalite catalysts for use therein
JP2004195379A (en) * 2002-12-19 2004-07-15 Sumitomo Chem Co Ltd Method for manufacturing titanium-containing silicon oxide catalyst, and catalyst

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19781813T1 (en) * 1996-06-07 1999-05-27 Asahi Chemical Ind Mesopore molecular sieve and process for its production
SG82626A1 (en) * 1998-08-04 2001-08-21 Sumitomo Chemical Co Titanium-containing silicon oxide catalyst

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0967115A (en) * 1995-08-29 1997-03-11 Nippon Chem Ind Co Ltd Mesoporous metallosilicate and its production
JPH1072212A (en) * 1996-06-07 1998-03-17 Asahi Chem Ind Co Ltd Mesoporous molecular sieve and its production
WO2004026852A1 (en) * 2002-09-20 2004-04-01 Arco Chemical Technology, L.P. Process for direct oxidation of propylene to propylene oxide and large particle size titanium silicalite catalysts for use therein
JP2004195379A (en) * 2002-12-19 2004-07-15 Sumitomo Chem Co Ltd Method for manufacturing titanium-containing silicon oxide catalyst, and catalyst

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018511462A (en) * 2015-02-17 2018-04-26 ライオンデル ケミカル テクノロジー、エル.ピー. Epoxidation catalyst based on metal alkoxide pretreated support
WO2018186491A1 (en) * 2017-04-07 2018-10-11 住友化学株式会社 Method for producing titanium-containing silicon oxide, method for producing epoxide, and titanium-containing silicon oxide
CN110475748A (en) * 2017-04-07 2019-11-19 住友化学株式会社 The Si oxide of the manufacturing method of the Si oxide of titaniferous, the manufacturing method of epoxides and titaniferous
KR20190138653A (en) * 2017-04-07 2019-12-13 스미또모 가가꾸 가부시끼가이샤 Method for producing titanium-containing silicon oxide, method for producing epoxide, and titanium-containing silicon oxide
JPWO2018186491A1 (en) * 2017-04-07 2020-02-27 住友化学株式会社 Method for producing titanium-containing silicon oxide, method for producing epoxide, and titanium-containing silicon oxide
CN110475748B (en) * 2017-04-07 2022-12-30 住友化学株式会社 Method for producing titanium-containing silicon oxide, method for producing epoxide, and titanium-containing silicon oxide
KR102493560B1 (en) 2017-04-07 2023-01-30 스미또모 가가꾸 가부시끼가이샤 Method for producing titanium-containing silicon oxide, method for producing epoxide, and titanium-containing silicon oxide
WO2019176951A1 (en) 2018-03-15 2019-09-19 住友化学株式会社 Production method for titanium-containing silicon oxide molded article, and titanium-containing silicon oxide molded article
KR20200131306A (en) 2018-03-15 2020-11-23 스미또모 가가꾸 가부시키가이샤 Method for producing a titanium-containing silicon oxide molded article, and a titanium-containing silicon oxide molded article
WO2020241052A1 (en) * 2019-05-29 2020-12-03 住友化学株式会社 Method for producing titanium-containing silicon oxide, method for producing epoxide, and titanium-containing silicon oxide
RU2805109C2 (en) * 2019-05-29 2023-10-11 Сумитомо Кемикал Компани, Лимитед Method for producing titanium-containing silicon oxide, method for producing epoxide and titanium-containing silicon oxide

Also Published As

Publication number Publication date
JP4834982B2 (en) 2011-12-14
CN101115561A (en) 2008-01-30
CN101115561B (en) 2012-05-30

Similar Documents

Publication Publication Date Title
JP4355404B2 (en) Method for producing oxirane compound
EP0734764A2 (en) Catalyst and process for producing oxirane compound
JP4889865B2 (en) Method for producing titanium-containing silicon oxide catalyst
KR101254352B1 (en) Process for producing titanium-containing silicon oxide catalyst, the catalyst, and process for producing olefin oxide compound with the catalyst
JP4265212B2 (en) Method for producing titanium-containing silicon oxide catalyst
KR100693773B1 (en) Molded catalyst, process for producing the molded catalyst, and process for producing oxirane compound
JP4834982B2 (en) Method for producing titanium-containing silicon oxide catalyst and catalyst
US7018950B2 (en) Process for producing titanium-containing silicon oxide catalyst
JP3797107B2 (en) Catalyst molded body, method for producing the catalyst molded body, and method for producing oxirane compound
JP2006255586A (en) Method for production of titanium-containing silicon oxide catalyst, and catalyst
JP2006289341A (en) Method for storing titanium-containing silicon oxide catalyst
JP3731384B2 (en) Titanium-containing silicon oxide catalyst, method for producing the catalyst, and method for producing propylene oxide
JP3788107B2 (en) Titanium-containing silicon oxide catalyst, method for producing the catalyst, and method for producing propylene oxide
JP2006159058A (en) Method for manufacturing titanium-containing silicon oxide catalyst and catalyst
JP4495272B2 (en) Method for producing oxirane compound
JP2003200056A (en) Method for producing titanium-containing silicone oxide catalyst and the catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070403

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080131

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110912

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees