WO2018181492A1 - 水素検出用素子、水素検出用素子の製造方法および水素検出装置 - Google Patents

水素検出用素子、水素検出用素子の製造方法および水素検出装置 Download PDF

Info

Publication number
WO2018181492A1
WO2018181492A1 PCT/JP2018/012805 JP2018012805W WO2018181492A1 WO 2018181492 A1 WO2018181492 A1 WO 2018181492A1 JP 2018012805 W JP2018012805 W JP 2018012805W WO 2018181492 A1 WO2018181492 A1 WO 2018181492A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
light
hydrogen storage
metal
storage metal
Prior art date
Application number
PCT/JP2018/012805
Other languages
English (en)
French (fr)
Inventor
喜明 西島
武 岩井
勲 平野
Original Assignee
国立大学法人横浜国立大学
東京応化工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人横浜国立大学, 東京応化工業株式会社 filed Critical 国立大学法人横浜国立大学
Priority to US16/495,471 priority Critical patent/US11067506B2/en
Priority to JP2019509987A priority patent/JP6775236B2/ja
Priority to CN201880021278.3A priority patent/CN110462380B/zh
Publication of WO2018181492A1 publication Critical patent/WO2018181492A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/005H2
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons
    • G01N21/554Attenuated total reflection and using surface plasmons detecting the surface plasmon resonance of nanostructured metals, e.g. localised surface plasmon resonance

Definitions

  • the present invention relates to a hydrogen detection element, a method for manufacturing a hydrogen detection element, and a hydrogen detection apparatus.
  • Patent Document 1 describes a technique for detecting hydrogen by using a hydrogen-sensitive dimming mirror to detect changes in the reflectance and transmittance of light associated with the hydrogenation.
  • Patent Document 2 uses a surface plasmon resonance element formed by forming periodic openings in a thin film of palladium, which is a hydrogen storage metal, to detect a change in optical frequency characteristics associated with the storage of hydrogen. Describes a technique for detecting hydrogen.
  • the conventional techniques as described above have a problem that it takes time to adsorb and desorb hydrogen to and from the hydrogen storage metal. Further, in the above-described prior art, the detection amount of hydrogen may be lowered because the amount of light detected varies due to the influence of various substances existing in the optical path of reflected light or transmitted light.
  • the present invention has been made in consideration of the above points, and a hydrogen detection element capable of detecting hydrogen with high accuracy without taking time to absorb and desorb hydrogen with respect to a hydrogen storage metal, and a hydrogen detection element.
  • An object of the present invention is to provide a manufacturing method and a hydrogen detector.
  • a hydrogen detecting element in which a hydrogen storage metal is arranged in a predetermined shape and size on a base material, and hydrogen is detected based on surface plasmon resonance induced by incident light.
  • the hydrogen storage metal is formed of a film body including palladium and a noble metal, and the spectrum of the light through the hydrogen storage metal stored with hydrogen is the absorption spectrum of carbon dioxide with respect to the light, and water.
  • a hydrogen detecting element having a peak in a wavelength band deviating from the absorption spectrum for the light.
  • the hydrogen detection element according to the first aspect, wherein the hydrogen storage metal is formed in a cylindrical shape protruding from the surface of the base material.
  • a hydrogen detection element according to the second aspect, wherein a plurality of the hydrogen storage metals are arranged at the positions of the vertices of an equilateral triangle.
  • the hydrogen storage metal is formed in a planar shape on the surface of the base material, and has a plurality of holes arranged at a predetermined diameter and pitch.
  • a hydrogen detection element is provided.
  • a hydrogen detection element in which the plurality of holes are arranged at the positions of the vertices of an equilateral triangle.
  • the hydrogen detecting element according to any one of the first to fifth aspects of the present invention, the light source unit capable of emitting the light, and the hydrogen detecting element are interposed.
  • a hydrogen detection device including a light receiving unit that receives the light and a detection unit that detects hydrogen based on a light reception result of the light receiving unit.
  • a hydrogen detection element in which a hydrogen storage metal is arranged in a predetermined shape and size on a base material, and hydrogen is detected based on surface plasmon resonance induced by incident light.
  • the hydrogen storage metal is formed of a film body containing palladium and a noble metal, and the peak of the spectrum of the light via the hydrogen storage metal stored with hydrogen is absorption of carbon dioxide with respect to the light.
  • a method for producing a hydrogen detection element that forms the hydrogen storage metal having a wavelength band that deviates from a spectrum and an absorption spectrum of water with respect to the light.
  • the hydrogen storage metal film is formed by sputtering the palladium and the noble metal while the substrate is heated to a predetermined temperature.
  • An element manufacturing method is provided.
  • the eighth aspect there is provided a method for manufacturing a hydrogen detection element in which the substrate is heated to 250 ° C. or higher.
  • the method for producing a hydrogen detection element wherein the hydrogen storage metal is formed into a columnar shape protruding from the surface of the substrate. Is provided.
  • the hydrogen storage metal has a plurality of holes arranged at a predetermined diameter and pitch on the surface of the base material.
  • a twelfth aspect of the present invention there is provided the method for manufacturing a hydrogen detection element according to the eleventh aspect, wherein the plurality of holes are arranged at the vertices of an equilateral triangle.
  • the present invention it is possible to provide a hydrogen detection element and a hydrogen detection device capable of detecting hydrogen with high accuracy without taking time for hydrogen adsorption / desorption with respect to the hydrogen storage metal.
  • FIG. 3 is a diagram showing the relationship between the hydrogen storage time of the hydrogen storage metal 3 and the peak value of the wavelength of infrared light that passes through the hydrogen detection element 1. It is a figure which shows the relationship between an infrared-light wavelength and the transmittance
  • FIG. 6 is a diagram showing a relationship between infrared light wavelength and transmittance when holes 4 are arranged in arrangement patterns P11 to P14 in hydrogen storage metal 3 (formed of palladium).
  • FIG. 1 is a schematic configuration diagram of a hydrogen detection apparatus 100 including a hydrogen detection element 1 according to the first embodiment.
  • the hydrogen detection apparatus 100 includes a hydrogen detection element 1, a nitrogen supply unit 11, a hydrogen supply unit 12, a mixer 13, a chamber 20, a light source unit 30, a light receiving unit 40, and a calculation unit 50.
  • the mixer 13 mixes nitrogen supplied from the nitrogen supply unit 11 and hydrogen supplied from the hydrogen supply unit 12 at a predetermined mixing ratio (for example, a hydrogen concentration of 4%), and passes through the pipe 14 to determine a predetermined value.
  • a predetermined mixing ratio for example, a hydrogen concentration of 4%
  • the chamber 20 houses the hydrogen detection element 1.
  • the chamber 20 is connected with a pipe 14 into which a mixed gas of nitrogen and hydrogen is introduced and a pipe 15 through which the mixed gas is exhausted.
  • the light source unit 30 emits light of a predetermined wavelength to the hydrogen detection element 1 in the chamber 20.
  • the light emitted from the light source unit 30 is, for example, infrared light.
  • the light receiving unit 40 receives light emitted from the light source unit 30 and transmitted through the hydrogen detection element 1.
  • the light receiving unit 40 in the present embodiment receives light transmitted through the hydrogen detection element 1.
  • the light receiving unit 40 outputs the result of receiving the light to the calculation unit 50.
  • the calculation unit 50 detects hydrogen by performing a calculation based on surface plasmon resonance (details will be described later) from the light reception result of the light receiving unit 40.
  • FIG. 2 is a partial cross-sectional view of the hydrogen detection element 1 in the thickness direction.
  • FIG. 3 is a photograph showing the hydrogen detection element 1 in plan view.
  • the hydrogen detection element 1 has a hydrogen storage metal 3 disposed on the surface 2 a of the base 2.
  • the base material 2 is formed of, for example, a silicon wafer.
  • the hydrogen storage metal 3 is a film body formed in a cylindrical shape with a diameter D protruding from the surface 2a.
  • the hydrogen storage metals 3 are arranged in one direction (left and right direction in FIG. 3) along the surface 2a with a period (pitch) PX (PX> D) larger than the diameter D.
  • the hydrogen storage metal 3 is disposed at the apex position of an equilateral triangle having a side length PX. Therefore, in FIG. 3, the rows of the hydrogen storage metals 3 arranged in the left-right direction are arranged in a period PY represented by ⁇ 3 ⁇ PX / 2 in the vertical direction in FIG.
  • the hydrogen occlusion metal 3 is a material whose dielectric constant (refractive index) changes when hydrogen is occluded.
  • the hydrogen occlusion metal 3 is formed of palladium having a thickness of 50 nm as an example.
  • the diameter D of the hydrogen storage metal 3 is set according to the detection target (resonance wavelength), and is, for example, 0.5 to 0.9 ⁇ m.
  • the hydrogen storage metal 3 is patterned by, for example, a photolithography process.
  • a palladium film is entirely formed on the surface 2a of the substrate 2 by sputtering or the like, and then a negative photoresist is applied by spin coating or the like.
  • the region where the hydrogen storage metal 3 is formed in the photoresist is exposed through a mask having an opening corresponding to the arrangement and diameter of the storage metal 3.
  • the palladium film other than the exposed region is removed by development and etching, whereby the hydrogen detecting element 1 in which the hydrogen storage metal 3 is patterned in the above-described arrangement is obtained.
  • the patterning of the hydrogen storage metal 3 is not limited to the above method.
  • the hydrogen detecting element 1 in which the hydrogen storage metal 3 is patterned in the above-described arrangement can be obtained.
  • infrared light for example, wavelength 1300 nm
  • the light source unit 30 illuminates the hydrogen detection element 1, and part of the infrared light passes through the hydrogen detection element 1. Then, it enters the light receiving unit 40. Since hydrogen is supplied to the chamber 20 via the mixer 13, the hydrogen storage metal 3 of the hydrogen detection element 1 housed in the hydrogen detection element 1 stores the hydrogen to permit the dielectric constant. (Refractive index) changes.
  • the transmittance of the infrared light transmitted through the hydrogen detection element 1 that is, the light receiving unit 40 is compared with the case where the hydrogen occlusion metal 3 does not occlude hydrogen). The amount of infrared light received) increases.
  • FIG. 5 shows the existence regions H1, H2, and H3 of the infrared absorption spectrum of water and the existence region C1 of the infrared absorption spectrum of carbon dioxide.
  • the spectrum of the infrared light transmitted through the hydrogen detection elements 1 having the arrangement patterns P1 to P4 includes the existence regions H1, H2, and H3 of the infrared absorption spectrum of water and the infrared of carbon dioxide. It has a peak in a wavelength band that is out of the absorption spectrum existence region C1. Therefore, at the time of hydrogen detection, the light receiving unit 40 can receive infrared light transmitted through the hydrogen detection element 1 while suppressing the influence of light absorption by water and carbon dioxide contained in the atmosphere in the optical path of infrared light. it can.
  • the calculation unit 50 transmits the infrared light before the hydrogen storage in the hydrogen detection element 1 and the infrared light transmission after the hydrogen storage. Hydrogen is detected according to the difference from the rate.
  • the infrared light spectrum that has passed through the hydrogen detection element 1 is the existence region H1, H2 of the infrared absorption spectrum of water.
  • the hydrogen storage metal 3 in an arrangement pattern (diameter D, period PX) having a peak in a wavelength band deviating from the existence region C1 of the infrared absorption spectrum of carbon dioxide, the optical path of infrared light Hydrogen can be detected with high accuracy in a state where the influence of light absorption by water and carbon dioxide contained in the atmosphere is suppressed.
  • the infrared light transmitted through the hydrogen detection element 1 is received.
  • a reflected light or diffracted light from the hydrogen storage metal 3 may be received.
  • the hydrogen storage metal 3 is arranged at the apex of the equilateral triangle so that the interval between the adjacent hydrogen storage metals 3 is increased. Regardless of the direction, the diffracted light has a constant period because of equal intervals.
  • the hydrogen detection element 1 and the hydrogen detection device 100 as in the case where the hydrogen storage metals 3 are arranged in a lattice pattern, the diffraction is received with the interval between the hydrogen storage metals 3 being different depending on the direction. Hydrogen detection with high accuracy is possible without fluctuation of the amount of light.
  • FIG. 6 is a schematic configuration diagram of a sputtering apparatus SP for forming a hydrogen storage metal film on the substrate 2.
  • the sputtering apparatus SP includes a substrate holder 60, a palladium sputtering unit 61 having a palladium target, and a gold sputtering unit 62 having a gold target.
  • a plurality (four in FIG. 6) of base materials 2 are held on the surface of the substrate holder 60 facing the palladium sputtering unit 61 and the gold sputtering unit 62.
  • the substrate holder 60 can rotate around an axis parallel to the normal of the opposing surface.
  • the sputtering apparatus SP is a space filled with an inert gas such as argon, and a high voltage (for example, 500 eV) is applied to the target for discharge, whereby the inert gas is atomized and collides with the target. It is knocked out and deposited on the substrate 2 to form a film.
  • a high voltage for example, 500 eV
  • palladium and gold are formed on the base material 2 by rotating the substrate holder 60.
  • a film body in which a palladium layer and a gold layer having a film thickness corresponding to the application time are alternately stacked is formed. Is possible.
  • FIG. 7 is a diagram showing the relationship between the elapsed time and the spectral loss when nitrogen gas is introduced after introducing hydrogen gas into the chamber 20 when the hydrogen storage metal 3 contains palladium and gold.
  • FIG. 7 shows the result of introducing nitrogen gas for 370 seconds from the start of introduction of hydrogen gas to 650 seconds after introduction of hydrogen gas for 280 seconds from the start of introduction (time 0 seconds).
  • the spectral loss is reduced and the infrared light transmittance is increased.
  • FIG. 8 is a diagram showing the relationship between the film thickness and the hydrogen storage time when the content ratio of palladium and gold in the hydrogen storage metal 3 is changed. Further, FIG. 8 shows the relationship between the film thickness and the hydrogen storage time when the substrate 2 is heated to 250 ° C. and when it is not heated (room temperature) when forming the palladium and gold films. .
  • a film body A (film body A indicated by ⁇ - ⁇ ) in which only the palladium film is formed while the base material 2 is heated to 250 ° C., and the content ratio of gold and palladium without heating the base material 2
  • Film body B (film body B indicated by ⁇ - ⁇ ) formed at a ratio of 1: 1
  • film body C (film body C formed at a content ratio of 2: 3 with the base material 2 heated to 250 ° C.) C) represented by ⁇ - ⁇
  • a film body D (film body D represented by ⁇ - ⁇ ) formed with gold and palladium in a content ratio of 1: 1 while the base material 2 was heated to 250 ° C.
  • the film thickness of the hydrogen storage metal 3 and the hydrogen storage time for each of the film bodies E (film bodies E indicated by XX) in which gold and palladium were formed at a content ratio of 2: 1 in the state of being heated to 250 ° C. The relationship is shown.
  • FIG. 9 is a diagram showing the relationship between the film thickness and the hydrogen release time when the content ratio of palladium and gold in the hydrogen storage metal 3 is changed. Also in FIG. 9, when the substrate 2 is heated to 250 ° C. and when not heated (room temperature) when depositing palladium and gold, the film thickness and the hydrogen release time are as follows. The relationship is shown.
  • the film bodies C and E with the same heating conditions and the palladium and gold films formed on the film body A formed only with palladium have a short hydrogen storage time and a short time for hydrogen. It was confirmed that detection was possible.
  • the film bodies A, C, D, and E, which are formed in a heated state regardless of whether or not the film body B is formed without heating have a short hydrogen storage time and detect hydrogen in a short time. It was confirmed that it was possible.
  • the film bodies B to E on which palladium and gold are formed are equivalent to (film body E) or longer in the hydrogen release time than the film body A on which only palladium is formed (film E).
  • Body B to D The superiority could not be confirmed.
  • the film bodies A, C, D, and E that are formed in a heated state regardless of whether or not the film body B is formed without heating are shorter in hydrogen release time (hydrogen reduction). Or disappearance) could be detected in a short time.
  • the film body E formed with gold and palladium at a content ratio of 2: 1 has a higher hydrogen storage rate and hydrogen release rate than the film body A formed with only palladium.
  • the hydrogen detection element 1 capable of promptly detecting hydrogen and detecting hydrogen release was constructed.
  • FIG. 10 is a partial cross-sectional view of the hydrogen detection element 1 in the thickness direction.
  • FIG. 11 is a photograph showing the hydrogen detection element 1 in plan view.
  • the hydrogen storage metal 3 is formed in a planar shape on the surface 2 a of the substrate 2.
  • the hydrogen storage metal 3 has a plurality of holes 4 arranged at predetermined positions. In other words, the hydrogen storage metal 3 is formed in a planar shape in a region excluding the hole 4 on the surface 2 a of the base 2.
  • the hole 4 is formed in a circular shape in plan view with a diameter D1.
  • the diameter D1 is, for example, about 0.5 to 0.8 ⁇ m.
  • the holes 4 are arranged in one direction along the surface 2a (vertical direction in FIG. 11) with a period (pitch) PY (PY> D) larger than the diameter D1.
  • the hole part 4 is arrange
  • the hydrogen storage metal 3 and the hole 4 are patterned by, for example, a photolithography process.
  • a photolithography process after forming a palladium film on the entire surface 2a of the base material 2 by sputtering or the like, a positive photoresist is applied by spin coating or the like, and then the plurality of holes The region where the hole 4 is formed in the photoresist is exposed through a mask having an opening corresponding to the arrangement and diameter of the portion 4. Thereafter, the palladium film at the position of the hole 4 is removed by development / etching, whereby the hydrogen detecting element 1 in which the hole 4 is patterned in the above arrangement in the hydrogen storage metal 3 is obtained.
  • the patterning of the hydrogen storage metal 3 and the hole 4 is not limited to the above method, and the above-described lift-off method can be used.
  • the holes in the photoresist are passed through a mask having openings corresponding to the arrangement and diameter of the plurality of holes 4. An area where the portion 4 is formed is exposed.
  • a palladium film is formed on the entire surface by sputtering or the like, and then a hole is formed using an organic solvent or the like.
  • Hydrogen detecting element in which the hole 4 is patterned in the above arrangement in the hydrogen storage metal 3 by using a lift-off method of removing the photoresist in the region where the portion 4 is formed and the palladium film formed on the photoresist. 1 can be obtained.
  • the hydrogen storage metal 3 formed of palladium
  • the hydrogen occlusion of the hydrogen occlusion metal 3 proceeds, the peak wavelength of the infrared light that passes through the hydrogen detection element 1 changes to the longer wavelength side. Further, when the hydrogen occlusion metal 3 (formed of palladium) advances in hydrogen occlusion, compared to the case where the hydrogen occlusion metal 3 does not occlude hydrogen, the transmittance of infrared light transmitted through the hydrogen detection element 1 (that is, the hydrogen occlusion metal 3 does not store hydrogen (ie The amount of infrared light received by the light receiving unit 40 is reduced.
  • the hydrogen storage metal 3 in any case is also formed of a film body in which only palladium is formed.
  • FIG. 13 shows the existence regions H1, H2, and H3 of the infrared absorption spectrum of water and the existence region C1 of the infrared absorption spectrum of carbon dioxide.
  • the spectrum of the infrared light that has passed through the hydrogen detection elements 1 of the arrangement patterns P11 to P14 is the presence region H1, H2, and H3 of the infrared absorption spectrum of water and the infrared of carbon dioxide. It has a peak in a wavelength band that is out of the absorption spectrum existence region C1. Therefore, at the time of hydrogen detection, the light receiving unit 40 can receive infrared light transmitted through the hydrogen detection element 1 while suppressing the influence of light absorption by water and carbon dioxide contained in the atmosphere in the optical path of infrared light. it can.
  • the hydrogen storage metal 3 formed of palladium and gold
  • the hydrogen storage metal 3 (formed of palladium and gold) and the hole 4 are patterned by the same photolithography process as described above except that, for example, only palladium is changed to palladium and gold.
  • the hydrogen occlusion of the hydrogen occlusion metal 3 (formed of palladium and gold) proceeds, the peak wavelength of infrared light transmitted through the hydrogen detection element 1 changes to the longer wavelength side.
  • the amount of change at that time is about 80 nm, which is smaller than that of the hydrogen storage metal 3 (formed of palladium).
  • the hydrogen storage metal 3 (formed of palladium and gold) has a hydrogen storage time of about 30 minutes, and is shorter than that of the hydrogen storage metal 3 (formed of palladium) (about 50 minutes). It can be confirmed that detection is possible in a short time.
  • the calculation unit 50 controls the infrared light transmittance before hydrogen storage in the hydrogen detection element 1 based on information received by suppressing the influence of light absorption by water and carbon dioxide, and after hydrogen storage. Hydrogen is detected according to the difference with the infrared light transmittance.
  • the hydrogen storage metal 3 is arranged in an arrangement pattern in which the spectrum of light has a peak in a wavelength band deviating from the existence region H1, H2, and H3 of the infrared absorption spectrum of water and the existence region C1 of the infrared absorption spectrum of carbon dioxide.
  • the holes 4 are arranged at the positions of the apexes of the equilateral triangle, the intervals between the adjacent holes 4 are equal regardless of the direction. As in the case where the holes 4 are arranged in a shape, it is possible to detect hydrogen with high accuracy without causing a situation in which the interval between the hole portions 4 varies and the plasmon resonance characteristics fluctuate.
  • a configuration in which a plurality of hydrogen storage metals 3 protruding from the surface 2a of the base material 2 is illustrated is exemplified, but the configuration is not limited thereto.
  • positions the hydrogen storage metal 3 protruded from the surface 2a of the base material 2 alone may be sufficient.
  • sputtering apparatus SP For the sputtering apparatus SP described in the second embodiment, various types of sputtering such as ion beam method, magnetron method, ECR method, and reactive sputtering may be applied in addition to the facing target method.
  • ion beam method magnetron method
  • ECR method reactive sputtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Nanotechnology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

基材に所定の形状および大きさで水素吸蔵金属が配置され、入射した光によって誘導される表面プラズモン共鳴に基づいて水素が検出される。水素吸蔵金属は、パラジウムと貴金属とを含む膜体で形成される。水素吸蔵した水素吸蔵金属を介した光のスペクトルは、二酸化炭素の光に対する吸収スペクトルC1と、水の光に対する吸収スペクトルH1~H3とから外れた波長帯域にピークを有する。

Description

水素検出用素子、水素検出用素子の製造方法および水素検出装置
 本発明は、水素検出用素子、水素検出用素子の製造方法および水素検出装置に関するものである。
 本願は、2017年3月31日に、日本に出願された特願2017-071285号に基づき優先権を主張し、その内容をここに援用する。
 近年、新しいエネルギー源としての水素の利用が注目を集めているが、安全上の配慮や水素に対する社会的な認知度の低さに起因して、水素を基盤とする産業の推進においては特に信頼性の高い水素検出技術の開発が最も重要な課題の一つとなっている。
 従来の水素検出手段としては、接触燃焼方式や半導体方式が多く用いられてきたが、これらの方式においては、センサ部に電気的な接点が存在するために発火の危険が伴い、防爆の対策が必要になるという欠点がある。そこで、上記のような欠点がなく、安全性の高さからセンサ部が全て光学系で構成される水素検出の方式が研究されている。
 例えば、特許文献1には、水素感応調光ミラーを用いて、その水素化に伴う光の反射率や透過率の変化を検出することにより水素を検出する技術が記載されている。また、特許文献2には、水素吸蔵金属であるパラジウムの薄膜に周期的な開口を形成して構成した表面プラズモン共鳴素子を利用して、その水素吸蔵に伴う光周波数特性の変化を検出することにより水素を検出する技術が記載されている。
特開2005-265590号公報 国際公開第2011/027899号
 しかしながら、上述したような従来技術では、水素吸蔵金属に対する水素の吸脱着に時間が掛かるという問題がある。また、上記の従来技術では、反射光または透過光の光路に存在する種々の物質の影響により検出される光量が変動するため水素の検出精度が低下する可能性がある。
 本発明は、以上のような点を考慮してなされたもので、水素吸蔵金属に対する水素の吸脱着に時間が掛かることなく水素を高精度に検出可能な水素検出用素子、水素検出用素子の製造方法および水素検出装置を提供することを目的とする。
 本発明の第1の態様に従えば、基材に所定の形状および大きさで水素吸蔵金属が配置され、入射した光によって誘導される表面プラズモン共鳴に基づいて水素が検出される水素検出用素子であって、前記水素吸蔵金属は、パラジウムと貴金属とを含む膜体で形成され、水素吸蔵した前記水素吸蔵金属を介した前記光のスペクトルは、二酸化炭素の前記光に対する吸収スペクトルと、水の前記光に対する吸収スペクトルとから外れた波長帯域にピークを有する水素検出用素子が提供される。
 本発明の第2の態様に従えば、第1の態様において、前記水素吸蔵金属は、前記基材の表面から突出する円柱状に成膜されている水素検出用素子が提供される。
 本発明の第3の態様に従えば、第2の態様において、前記水素吸蔵金属は、正三角形の頂点の位置に複数配置されている水素検出用素子が提供される。
 本発明の第4の態様に従えば、第1の態様において、前記水素吸蔵金属は、前記基材の表面に面状に成膜され、所定の直径およびピッチで配列された複数の孔部を有する水素検出用素子が提供される。
 本発明の第5の態様に従えば、第4の態様において、前記複数の孔部は、正三角形の頂点の位置に配置されている水素検出用素子が提供される。
 本発明の第6の態様に従えば、本発明の第1から第5のいずれか一つの態様の水素検出用素子と、前記光を出射可能な光源部と、前記水素検出用素子を介した前記光を受光する受光部と、前記受光部の受光結果に基づいて水素を検出する検出部と、を備える水素検出装置が提供される。
 本発明の第7の態様に従えば、基材に所定の形状および大きさで水素吸蔵金属が配置され、入射した光によって誘導される表面プラズモン共鳴に基づいて水素が検出される水素検出用素子の製造方法であって、前記水素吸蔵金属をパラジウムと貴金属とを含む膜体で形成するとともに、水素吸蔵した前記水素吸蔵金属を介した前記光のスペクトルのピークが、二酸化炭素の前記光に対する吸収スペクトルと、水の前記光に対する吸収スペクトルとから外れた波長帯域となる前記水素吸蔵金属を形成する水素検出用素子の製造方法が提供される。
 本発明の第8の態様に従えば、本発明の第7の態様において、前記基材を所定温度に加熱した状態で前記パラジウムおよび前記貴金属をスパッタにより前記水素吸蔵金属を成膜する水素検出用素子の製造方法が提供される。
 本発明の第9の態様に従えば、第8の態様において、前記基材を250℃以上に加熱する水素検出用素子の製造方法が提供される。
 本発明の第10の態様に従えば、第7から第9のいずれか一つの態様において、前記水素吸蔵金属を前記基材の表面から突出する円柱状に成膜する水素検出用素子の製造方法が提供される。
 本発明の第11の態様に従えば、第7から第9のいずれか一つの態様において、前記水素吸蔵金属を前記基材の表面に、所定の直径およびピッチで配列された複数の孔部を有する面状に成膜する水素検出用素子の製造方法が提供される。
 本発明の第12の態様に従えば、第11の態様において、前記複数の孔部を正三角形の頂点の位置に配置する水素検出用素子の製造方法が提供される。
 本発明では、水素吸蔵金属に対する水素の吸脱着に時間が掛かることなく水素を高精度に検出可能な水素検出用素子および水素検出装置を提供することが可能になる。
第1実施形態に係る水素検出用素子1を備えた水素検出装置100の概略的な構成図である。 第1実施形態に係る水素検出用素子1の厚さ方向の部分断面図である。 第1実施形態に係る水素検出用素子1を平面的に視た写真図である。 水素吸蔵金属3の水素吸蔵時間と、水素検出用素子1を透過する赤外光の波長のピーク値との関係を示す図である。 水素吸蔵金属3が配列パターンP1~P4で配列された場合の赤外光波長と透過率との関係を示す図である。 第2実施形態に係る水素吸蔵金属を成膜するスパッタ装置SPの概略的な構成図である。 チャンバー20に水素ガスを導入した後に窒素ガスを導入したときの経過時間とスペクトル損失との関係を示す図である。 水素吸蔵金属3においてパラジウムおよび金の含有比率を変えた場合の膜厚と水素吸蔵時間との関係を示す図である。 水素吸蔵金属3においてパラジウムおよび金の含有比率を変えた場合の膜厚と水素放出時間との関係を示す図である。 第3実施形態に係る水素検出用素子1の厚さ方向の部分断面図である。 第3実施形態に係る水素検出用素子1を平面的に視た写真図である。 第3実施形態に係る水素吸蔵金属3(パラジウムで形成)の水素吸蔵時間と、水素検出用素子1を透過する赤外光の波長のピーク値との関係を示す図である。 水素吸蔵金属3(パラジウムで形成)に孔部4が配列パターンP11~P14で配列された場合の赤外光波長と透過率との関係を示す図である。 第3実施形態に係る水素吸蔵金属3(パラジウムと金とで形成)の水素吸蔵時間と、水素検出用素子1を透過する赤外光の波長のピーク値との関係を示す図である。
 以下、本発明の水素検出用素子、水素検出用素子の製造方法および水素検出装置の実施の形態を、図1ないし図14を参照して説明する。
[第1実施形態]
 図1は、第1実施形態に係る水素検出用素子1を備えた水素検出装置100の概略的な構成図である。
 水素検出装置100は、水素検出用素子1、窒素供給部11、水素供給部12、混合器13、チャンバー20、光源部30、受光部40、および演算部50を備えている。
 混合器13は、窒素供給部11から供給される窒素と、水素供給部12から供給される水素とを所定の混合比率(例えば、水素濃度が4%)に混合し、配管14を介して所定の流量(例えば、500mL/h)でチャンバー20に供給する。チャンバー20は、水素検出用素子1を収納している。チャンバー20には、窒素と水素の混合気体が導入される配管14と、混合気体が排気される配管15とが接続されている。
 光源部30は、チャンバー20内の水素検出用素子1に対して所定波長の光を出射する。光源部30が出射する光は、一例として赤外光である。受光部40は、光源部30が出射し、水素検出用素子1を介した光を受光する。本実施形態における受光部40は、水素検出用素子1を透過した光を受光する。受光部40は、光を受光した結果を演算部50に出力する。演算部50は、受光部40による受光結果から表面プラズモン共鳴(詳細は後述)に基づく演算を実施して、水素を検出する。
 図2は、水素検出用素子1の厚さ方向の部分断面図である。図3は、水素検出用素子1を平面的に視た写真図である。
 図2に示すように、水素検出用素子1は、基材2の表面2a上に配置された水素吸蔵金属3を有している。基材2は、例えば、シリコンウエハで形成されている。
 水素吸蔵金属3は、表面2aから突出する直径Dの円柱状に成膜された膜体である。水素吸蔵金属3は、表面2aに沿った一方向(図3中、左右方向)に、直径Dよりも大きな周期(ピッチ)PX(PX>D)で配列されている。また、水素吸蔵金属3は、一辺の長さPXの正三角形の頂点位置に配置されている。従って、上記図3中、左右方向に並ぶ水素吸蔵金属3の列は、図3中、上下方向に√3×PX/2で表される周期PYで配列されている。
 水素吸蔵金属3は、水素を吸蔵したときに誘電率(屈折率)が変化する材料であり、本実施形態では、一例として、膜厚50nmのパラジウムで形成されている。水素吸蔵金属3の直径Dは、検出対象(共振波長)に応じて設定され、例えば、0.5~0.9μmである。
 上記の水素吸蔵金属3は、例えば、フォトリソグラフィ工程でパターニングされる。フォトリソグラフィ工程の一例としては、基材2の表面2a上にスパッタ等によってパラジウム膜を全面的に成膜した後に、スピンコート等によってネガ型のフォトレジストを塗布し、その後に、上記複数の水素吸蔵金属3の配置および直径に対応した開口部を有するマスクを介して、フォトレジストにおける水素吸蔵金属3が形成される領域を露光する。その後に、現像・エッチングにより露光領域以外のパラジウム膜を除去することにより、上記配列で水素吸蔵金属3がパターニングされた水素検出用素子1が得られる。
 なお、水素吸蔵金属3のパターニングは、上記の方法に限定されない。例えば、基材2の表面2a上にスピンコート等によってポジ型のフォトレジストを塗布した後に、上記複数の水素吸蔵金属3の配置および直径に対応した開口部を有するマスクを介して、フォトレジストにおける水素吸蔵金属3が形成される領域を露光する。そして、現像により水素吸蔵金属3が形成される領域のフォトレジストを除去した後に、スパッタ等によってパラジウム膜を全面的に成膜し、その後に有機溶媒などを用いてフォトレジストおよび当該フォトレジスト上に成膜されたパラジウム膜を取り去るリフトオフ法を用いることにより、上記配列で水素吸蔵金属3がパターニングされた水素検出用素子1を得ることができる。
 上記構成の水素検出装置100においては、光源部30から出射された赤外光(例えば、波長1300nm)が水素検出用素子1を照明し、赤外光の一部が水素検出用素子1を透過して受光部40に入射する。チャンバー20に対しては、混合器13を介して水素が供給されているため、水素検出用素子1に収納されている水素検出用素子1の水素吸蔵金属3は水素を吸蔵することで誘電率(屈折率)が変化する。
 図4は、水素吸蔵金属3の水素吸蔵時間(水素供給開始からの経過時間)と、直径D=0.8μm、周期PX=1.525μmの配列パターンで水素吸蔵金属3が配列された水素検出用素子1を透過する赤外光の波長のピーク値との関係を示す図である。図4に示されるように、水素吸蔵金属3の水素吸蔵が進むと、水素検出用素子1を透過する赤外光のピーク波長が長波長側に変化する。また、水素吸蔵金属3の水素吸蔵が進むと、水素吸蔵金属3が水素吸蔵していない場合と比較して、水素検出用素子1を透過する赤外光の透過率(すなわち、受光部40が受光する赤外光の光量)が上昇する。
 図5は、水素検出用素子1において、水素吸蔵金属3が直径D=0.63μm、周期PX=1.36μmの配列パターンP1で配列された場合、水素吸蔵金属3が直径D=0.68μm、周期PX=1.41μmの配列パターンP2で配列された場合、水素吸蔵金属3が直径D=0.72μm、周期PX=1.49μmの配列パターンP3で配列された場合、図4に示したように、水素吸蔵金属3が直径D=0.8μm、周期PX=1.525μmの配列パターンP4で配列された場合の赤外光波長と透過率との関係を示す図である。
 また、図5には、水の赤外吸収スペクトルの存在領域H1、H2およびH3と、二酸化炭素の赤外吸収スペクトルの存在領域C1とが示されている。図5に示されるように、配列パターンP1~P4の水素検出用素子1を透過した赤外光のスペクトルは、水の赤外吸収スペクトルの存在領域H1、H2およびH3と、二酸化炭素の赤外吸収スペクトルの存在領域C1とから外れた波長帯域にピークを有している。そのため、水素検出時に、受光部40は、赤外光の光路における雰囲気に含まれる水および二酸化炭素による吸光の影響を抑えた状態で水素検出用素子1を透過した赤外光を受光することができる。
 演算部50は、水および二酸化炭素による吸光の影響を抑えて受光された情報に基づき、水素検出用素子1における水素吸蔵前の赤外光の透過率と、水素吸蔵後の赤外光の透過率との差分に応じて水素を検出する。
 以上説明したように、本実施形態の水素検出用素子1および水素検出装置100においては、水素検出用素子1を透過した赤外光のスペクトルが、水の赤外吸収スペクトルの存在領域H1、H2およびH3と、二酸化炭素の赤外吸収スペクトルの存在領域C1とから外れた波長帯域にピークを有する配列パターン(直径D、周期PX)で水素吸蔵金属3を配置することにより、赤外光の光路における雰囲気に含まれる水および二酸化炭素による吸光の影響を抑えた状態で高精度に水素を検出することが可能になる。
 なお、上記実施形態では、水素検出用素子1を透過した赤外光を受光する構成としたが、例えば、水素吸蔵金属3からの反射光や回折光を受光する構成であってもよい。回折光を受光する場合、本実施形態の水素検出用素子1および水素検出装置100においては、水素吸蔵金属3が正三角形の頂点の位置に配置されることで隣り合う水素吸蔵金属3の間隔が方向に依らず等間隔であるため一定周期の回折光がとなる。そのため、本実施形態の水素検出用素子1および水素検出装置100においては、水素吸蔵金属3を格子状に配列した場合のように、方向に応じて水素吸蔵金属3の間隔が異なって受光した回折光の光量が変動することなく、高精度の水素検出が可能になる。
[第2実施形態]
 次に、水素検出用素子1の第2実施形態について、図6乃至図9を参照して説明する。
 上記第1実施形態では、水素吸蔵金属3がパラジウムで形成される構成を例示したが、第2実施形態ではパラジウムと触媒としての貴金属とを含む構成について説明する。貴金属としては、金 (Au)、銀 (Ag)、白金 (Pt)等を用いることが可能であるが、本実施形態では金を用いる場合について説明する。
 図6は、基材2上に水素吸蔵金属を成膜するスパッタ装置SPの概略的な構成図である。スパッタ装置SPは、基板ホルダー60、パラジウムターゲットを有するパラジウムスパッタ部61、および金ターゲットを有する金スパッタ部62を備えている。
 基板ホルダー60のパラジウムスパッタ部61および金スパッタ部62との対向面には複数(図6では4枚)の基材2が保持される。基板ホルダー60は、対向面の法線と平行な軸周りに回転可能である。
 スパッタ装置SPは、アルゴン等の不活性ガスで満たされた空間で、ターゲットに高電圧(例えば、500eV)をかけ放電させることで不活性ガスが原子化してターゲットに衝突することでターゲットの原子が叩き出され、基板2上に付着して成膜される。また、スパッタ装置SPにおいては、基板ホルダー60が回転することによりパラジウムおよび金が基材2上に成膜される。
 パラジウムターゲットおよび金ターゲットの双方に高電圧をかけることにより、基材2上には、パラジウムおよび金が同時に成膜される。また、基板ホルダー60が回転することにより、各基材2には、パラジウムおよび金が交互に成膜されることによりパラジウムおよび金が合金のように均一に配置された膜体が形成される。また、例えば、パラジウムスパッタ部61および金スパッタ部62に印加する電圧やスパッタ時間を調整することにより、任意の体積比または重量比でパラジウムおよび金が含まれる膜体を形成することが可能である。さらに、パラジウムターゲットおよび金ターゲットの一方にのみ交互に電圧を印加し、各印加時間を調整することにより、印加時間に対応した膜厚のパラジウム層および金層が交互に積層された膜体を形成することが可能である。
 図7は、水素吸蔵金属3がパラジウムおよび金を含む場合に、チャンバー20に水素ガスを導入した後に窒素ガスを導入したときの経過時間とスペクトル損失との関係を示す図である。図7においては、導入開始時(時間0秒)から280秒間水素ガスを導入した後に、水素ガス導入開始から650秒経過までの370秒間窒素ガスを導入した結果が示されている。図7に示されるように、チャンバー20への水素ガス導入に伴う水素吸蔵金属3の水素吸蔵により、スペクトル損失が低下して赤外光の透過率が上昇している。その後に窒素ガスを導入することにより、水素吸蔵金属3において水素が放出されることでスペクトル損失が増加して赤外光の透過率が水素ガス導入前のレベルに戻ることが確認できた。
 図8は、水素吸蔵金属3においてパラジウムおよび金の含有比率を変えた場合の膜厚と水素吸蔵時間との関係を示す図である。また、図8においては、パラジウムおよび金を成膜する際に基材2を250℃に加熱した場合と加熱しない場合(室温)とについて、膜厚と水素吸蔵時間との関係が示されている。より詳細には、基材2を250℃に加熱した状態でパラジウムのみを成膜した膜体A(□-□で示す膜体A)、基材2を加熱しないで金とパラジウムとを含有比率1:1で成膜した膜体B(▽-▽で示す膜体B)、基材2を250℃に加熱した状態で金とパラジウムとを含有比率2:3で成膜した膜体C(△-△で示すC)、基材2を250℃に加熱した状態で金とパラジウムとを含有比率1:1で成膜した膜体D(○-○で示す膜体D)、基材2を250℃に加熱した状態で金とパラジウムとを含有比率2:1で成膜した膜体E(×-×で示す膜体E)のそれぞれについて、水素吸蔵金属3の膜厚と水素吸蔵時間との関係が示されている。
 また、図9は、水素吸蔵金属3においてパラジウムおよび金の含有比率を変えた場合の膜厚と水素放出時間との関係を示す図である。図9においてもパラジウムおよび金を成膜する際に基材2を250℃に加熱した場合と加熱しない場合(室温)とについて、上記5つの成膜条件のそれぞれで膜厚と水素放出時間との関係が示されている。
 図8に示されるように、パラジウムのみを成膜した膜体Aに対して、加熱条件が同じでパラジウムおよび金を成膜した膜体C、Eは、水素吸蔵時間が短く水素を短時間で検出可能となることを確認できた。また、加熱しないで成膜した膜体Bに対して、加熱の有無に依らず加熱した状態で成膜した膜体A、C、D、Eは、水素吸蔵時間が短く水素を短時間で検出可能となることを確認できた。
 図9に示されるように、パラジウムのみを成膜した膜体Aに対して、パラジウムおよび金を成膜した膜体B~Eは、水素放出時間が同等(膜体E)または長くなり(膜体B~D)優位性を確認できなかった。また、加熱しないで成膜した膜体Bに対して、加熱の有無に依らず加熱した状態で成膜した膜体A、C、D、Eは、水素放出時間が短く水素放出(水素の減少または消失)を短時間で検出可能となることを確認できた。
 図8および図9に示される結果から、基材2を250℃に加熱した状態で水素吸蔵金属3をパラジウムのみで成膜した膜体A、パラジウムおよび金の両方で成膜した膜体C~Eはいずれも、基材2を加熱しないで成膜した膜体Bよりも水素吸蔵および水素放出が速く水素検出および水素放出検出が短時間で行える水素検出用素子1を構成することを確認できた。
 また、図8および図9に示される結果から、金とパラジウムとを含有比率2:1で成膜した膜体Eは、パラジウムのみを成膜した膜体Aよりも水素吸蔵速度および水素放出速度が同等以上であり、水素検出および水素放出検出を迅速に行える水素検出用素子1を構成することを確認できた。
[第3実施形態]
 次に、水素検出用素子1の第3実施形態について、図10乃至図14を参照して説明する。
 上記第1実施形態では、水素吸蔵金属3が基材2の表面から突出する円柱状である構成について説明したが、第3実施形態では、水素吸蔵金属3が孔部を有し基材2の表面2aに面状に成膜される構成について説明する。
 図10は、水素検出用素子1の厚さ方向の部分断面図である。図11は、水素検出用素子1を平面的に視た写真図である。本実施形態の水素検出用素子1は、基材2の表面2a上に水素吸蔵金属3が面状に成膜されている。水素吸蔵金属3には、所定の位置に配置された複数の孔部4が形成されている。換言すると、水素吸蔵金属3は、基材2の表面2aにおける孔部4を除いた領域に面状に成膜されている。
 孔部4は、直径D1の平面視円形に形成されている。直径D1は、一例として、0.5~0.8μm程度である。孔部4は、表面2aに沿った一方向(図11中、上下方向)に、直径D1よりも大きな周期(ピッチ)PY(PY>D)で配列されている。また、孔部4は、一辺の長さPYの正三角形の頂点位置に配置されている。従って、上記図11中、上下方向に並ぶ孔部4の列は、図11中、左右方向に√3×PY/2で表される周期PXで配列されている。このように、孔部4が所定の直径D1で所定の周期で配列された水素吸蔵金属3は、表面プラズモン共鳴特性により光がサブ波長の直径D1の孔部4を特性的な波長において透過する。
 上記の水素吸蔵金属3および孔部4は、例えば、フォトリソグラフィ工程でパターニングされる。フォトリソグラフィ工程の一例としては、基材2の表面2a上にスパッタ等によってパラジウム膜を全面的に成膜した後に、スピンコート等によってポジ型のフォトレジストを塗布し、その後に、上記複数の孔部4の配置および直径に対応した開口部を有するマスクを介して、フォトレジストにおける孔部4が形成される領域を露光する。その後に、現像・エッチングにより孔部4の位置のパラジウム膜を除去することにより、水素吸蔵金属3に上記配列で孔部4がパターニングされた水素検出用素子1が得られる。
 なお、本実施形態においても、水素吸蔵金属3および孔部4のパターニングは上記の方法に限定されず、上述したリフトオフ法を用いることができる。例えば、基材2の表面2a上にスピンコート等によってネガ型のフォトレジストを塗布した後に、上記複数の孔部4の配置および直径に対応した開口部を有するマスクを介して、フォトレジストにおける孔部4が形成される領域を露光する。そして、現像により露光領域以外(水素吸蔵金属3が成膜される領域)のフォトレジストを除去した後に、スパッタ等によってパラジウム膜を全面的に成膜し、その後に、有機溶媒などを用いて孔部4が形成される領域のフォトレジストおよび当該フォトレジスト上に成膜されたパラジウム膜を取り去るリフトオフ法を用いることにより、水素吸蔵金属3に上記配列で孔部4がパターニングされた水素検出用素子1を得ることができる。
 図12は、水素吸蔵金属3の水素吸蔵時間(水素供給開始からの経過時間)と、水素吸蔵金属3に直径D1=0.65μm、周期PY=1.525μmの配列パターンで孔部4が配列された水素検出用素子1を透過する赤外光の波長のピーク値との関係を示す図である。ここでの水素吸蔵金属3(パラジウムで形成)は、パラジウムのみを成膜した膜体で形成されている。
図12に示されるように、水素吸蔵金属3(パラジウムで形成)の水素吸蔵が進むと、水素検出用素子1を透過する赤外光のピーク波長が長波長側に変化する。また、水素吸蔵金属3(パラジウムで形成)の水素吸蔵が進むと、水素吸蔵金属3が水素吸蔵していない場合と比較して、水素検出用素子1を透過する赤外光の透過率(すなわち、受光部40が受光する赤外光の光量)が減少する。
 図13は、水素検出用素子1において、水素吸蔵金属3に孔部4が直径D=0.53μm、周期PY=1.36μmの配列パターンP11で配列された場合、水素吸蔵金属3に孔部4が直径D=0.57μm、周期PY=1.41μmの配列パターンP12で配列された場合、水素吸蔵金属3に孔部4が直径D=0.61μm、周期PY=1.49μmの配列パターンP13で配列された場合、図12に示したように、水素吸蔵金属3に孔部4が直径D=0.65μm、周期PY=1.525μmの配列パターンP14で配列された場合の赤外光波長と透過率との関係を示す図である。いずれの場合の水素吸蔵金属3も、パラジウムのみを成膜した膜体で形成されている。
 図13には、水の赤外吸収スペクトルの存在領域H1、H2およびH3と、二酸化炭素の赤外吸収スペクトルの存在領域C1とが示されている。図13に示されるように、配列パターンP11~P14の水素検出用素子1を透過した赤外光のスペクトルは、水の赤外吸収スペクトルの存在領域H1、H2およびH3と、二酸化炭素の赤外吸収スペクトルの存在領域C1とから外れた波長帯域にピークを有している。そのため、水素検出時に、受光部40は、赤外光の光路における雰囲気に含まれる水および二酸化炭素による吸光の影響を抑えた状態で水素検出用素子1を透過した赤外光を受光することができる。
 図14は、水素吸蔵金属3の水素吸蔵時間(水素供給開始からの経過時間)と、水素吸蔵金属3に直径D1=0.65μm、周期PY=1.525μmの配列パターンで孔部4が配列された水素検出用素子1を透過する赤外光の波長のピーク値との関係を示す図である。ここでの水素吸蔵金属3(パラジウムと金とで形成)は、金とパラジウムとを含有比率20:80で成膜した膜体で形成されている。
 水素吸蔵金属3(パラジウムと金とで形成)および孔部4は、例えば、パラジウムのみを、パラジウムおよび金に変更する他は、上記と同様のフォトリソグラフィ工程でパターニングされる。
図14に示されるように、水素吸蔵金属3(パラジウムと金とで形成)の水素吸蔵が進むと、水素検出用素子1を透過する赤外光のピーク波長が長波長側に変化する。その際の変化量は、約80nmであり、水素吸蔵金属3(パラジウムで形成)に比べて減少している。また、水素吸蔵金属3(パラジウムと金とで形成)は、水素吸蔵時間が30分程度であり、水素吸蔵金属3(パラジウムで形成)の場合(50分程度)に比べて短く、水素をより短時間で検出可能となることを確認できる。
 本実施形態においても、演算部50は、水および二酸化炭素による吸光の影響を抑えて受光された情報に基づき、水素検出用素子1における水素吸蔵前の赤外光の透過率と、水素吸蔵後の赤外光の透過率との差分に応じて水素を検出する。
 以上のように、本実施形態では、水素吸蔵金属3に複数の孔部4が配列された、いわゆる、メタルホールアレイ形式の水素検出用素子1においても、水素検出用素子1を透過した赤外光のスペクトルが、水の赤外吸収スペクトルの存在領域H1、H2およびH3と、二酸化炭素の赤外吸収スペクトルの存在領域C1とから外れた波長帯域にピークを有する配列パターンで水素吸蔵金属3に孔部4を配置することにより、赤外光の光路における雰囲気に含まれる水および二酸化炭素による吸光の影響を抑えた状態で高精度に水素を検出することが可能になる。
 また、本実施形態においては、孔部4が正三角形の頂点の位置に配置されているため、隣り合う孔部4の間隔が方向に依らず等間隔であるため、例えば、孔部4を格子状に配列した場合のように、方向に応じて孔部4の間隔が異なってプラズモン共鳴特性が変動してしまうような事態を生じさせることなく、高精度の水素検出が可能になる。
 以上、添付図面を参照しながら本発明に係る好適な実施形態について説明したが、本発明は係る例に限定されないことは言うまでもない。上述した例において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。
 例えば、上記第1、第2実施形態では、基材2の表面2aから突出する水素吸蔵金属3が複数配列される構成を例示したが、この構成に限定されない。例えば、基材2の表面2aから突出する水素吸蔵金属3を単体で配置する構成であってもよい。
 上記第2実施形態で説明したスパッタ装置SPについては、対向ターゲット法の他に、イオンビーム法、マグネトロン法、ECR法、反応性スパッタリングなど、さまざまな方式のスパッタリングを適用してもよい。
1…水素検出用素子、2…基材、2a…表面、3…水素吸蔵金属、4…孔部、100…水素検出装置

Claims (12)

  1.  基材に所定の形状および大きさで水素吸蔵金属が配置され、入射した光によって誘導される表面プラズモン共鳴に基づいて水素が検出される水素検出用素子であって、
     前記水素吸蔵金属は、パラジウムと貴金属とを含む膜体で形成され、
     水素吸蔵した前記水素吸蔵金属を介した前記光のスペクトルは、二酸化炭素の前記光に対する吸収スペクトルと、水の前記光に対する吸収スペクトルとから外れた波長帯域にピークを有する水素検出用素子。
  2.  前記水素吸蔵金属は、前記基材の表面から突出する円柱状に成膜されている
     請求項1記載の水素検出用素子。
  3.  前記水素吸蔵金属は、正三角形の頂点の位置に複数配置されている
     請求項2記載の水素検出用素子。
  4.  前記水素吸蔵金属は、前記基材の表面に面状に成膜され、所定の直径およびピッチで配列された複数の孔部を有する
     請求項1記載の水素検出用素子。
  5.  前記複数の孔部は、正三角形の頂点の位置に配置されている
     請求項4記載の水素検出用素子。
  6.  請求項1から5のいずれか一項に記載の水素検出用素子と、
     前記光を出射可能な光源部と、
     前記水素検出用素子を介した前記光を受光する受光部と、
     前記受光部の受光結果に基づいて水素を検出する検出部と、
     を備える水素検出装置。
  7.  基材に所定の形状および大きさで水素吸蔵金属が配置され、入射した光によって誘導される表面プラズモン共鳴に基づいて水素が検出される水素検出用素子の製造方法であって、
     前記水素吸蔵金属をパラジウムと貴金属とを含む膜体で形成するとともに、
     水素吸蔵した前記水素吸蔵金属を介した前記光のスペクトルのピークが、二酸化炭素の前記光に対する吸収スペクトルと、水の前記光に対する吸収スペクトルとから外れた波長帯域となる前記水素吸蔵金属を形成する水素検出用素子の製造方法。
  8.  前記基材を所定温度に加熱した状態で前記パラジウムおよび前記貴金属をスパッタにより前記水素吸蔵金属を成膜する
     請求項7記載の水素検出用素子の製造方法。
  9.  前記基材を250℃以上に加熱する
     請求項8記載の水素検出用素子の製造方法。
  10.  前記水素吸蔵金属を前記基材の表面から突出する円柱状に成膜する
     請求項7から9のいずれか一項に記載の水素検出用素子の製造方法。
  11.  前記水素吸蔵金属を前記基材の表面に、所定の直径およびピッチで配列された複数の孔部を有する面状に成膜する
     請求項7から9のいずれか一項に記載の水素検出用素子の製造方法。
  12.  前記複数の孔部を正三角形の頂点の位置に配置する
     請求項11記載の水素検出用素子の製造方法。
PCT/JP2018/012805 2017-03-31 2018-03-28 水素検出用素子、水素検出用素子の製造方法および水素検出装置 WO2018181492A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/495,471 US11067506B2 (en) 2017-03-31 2018-03-28 Hydrogen detection element, method for manufacturing hydrogen detection element, and hydrogen detection device
JP2019509987A JP6775236B2 (ja) 2017-03-31 2018-03-28 水素検出用素子、水素検出用素子の製造方法および水素検出装置
CN201880021278.3A CN110462380B (zh) 2017-03-31 2018-03-28 氢检测用元件、氢检测用元件的制造方法以及氢检测装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-071285 2017-03-31
JP2017071285 2017-03-31

Publications (1)

Publication Number Publication Date
WO2018181492A1 true WO2018181492A1 (ja) 2018-10-04

Family

ID=63675956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012805 WO2018181492A1 (ja) 2017-03-31 2018-03-28 水素検出用素子、水素検出用素子の製造方法および水素検出装置

Country Status (4)

Country Link
US (1) US11067506B2 (ja)
JP (1) JP6775236B2 (ja)
CN (1) CN110462380B (ja)
WO (1) WO2018181492A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7217458B2 (ja) * 2019-02-20 2023-02-03 国立大学法人横浜国立大学 ナノ構造体アレイ、水素検出用素子及び水素検出装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7340941B1 (en) * 2002-10-01 2008-03-11 Xsilogy, Inc. Dense thin film-based chemical sensors and methods for making and using same
JP2008196898A (ja) * 2007-02-09 2008-08-28 Osaka Prefecture プラズモン共鳴構造体及びその制御方法
US20080212102A1 (en) * 2006-07-25 2008-09-04 Nuzzo Ralph G Multispectral plasmonic crystal sensors
JP2008216055A (ja) * 2007-03-05 2008-09-18 Omron Corp 表面プラズモン共鳴センサ及び当該センサ用チップ
WO2011027899A1 (ja) * 2009-09-03 2011-03-10 日本航空電子工業株式会社 水素検出用表面プラズモン共鳴素子、表面プラズモン共鳴式光学水素検出器及び表面プラズモン共鳴を利用して光学的に水素を検出する方法
WO2011149031A1 (ja) * 2010-05-27 2011-12-01 Matsumura Eiji ガス分子が高密度に溶存した液体クラスレート
JP2014211362A (ja) * 2013-04-18 2014-11-13 国立大学法人横浜国立大学 ガス検出装置、ガス検出方法、及び光学部品
JP2017049253A (ja) * 2015-09-02 2017-03-09 サーモ フィッシャー サイエンティフィック (ブレーメン) ゲーエムベーハー レーザ吸収分光計のレーザ動作点の最適化

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3097234B2 (ja) * 1991-04-24 2000-10-10 エヌオーケー株式会社 ガスセンサ
JP3837508B2 (ja) * 2002-06-14 2006-10-25 独立行政法人産業技術総合研究所 表面プラズモン励起性貴金属微粒子状薄膜
JP4088711B2 (ja) * 2002-09-13 2008-05-21 ソニー株式会社 光電変換素子及びその製造方法、並びに光センサ及び太陽電池
JP2005265590A (ja) 2004-03-18 2005-09-29 Fujikura Ltd 水素センサ及びその利用
JP2008012495A (ja) * 2006-07-10 2008-01-24 Sumitomo Metal Mining Co Ltd 水素透過合金膜
US10529003B2 (en) * 2008-04-07 2020-01-07 Mohammad A. Mazed Optical biomodule for detection of diseases at an early onset
GB2459604B (en) * 2007-02-26 2011-07-06 Wisconsin Alumni Res Found Surface plasmon resonance compatible carbon thin films
US7695993B2 (en) * 2008-05-07 2010-04-13 Honeywell International Inc. Matrix nanocomposite sensing film for SAW/BAW based hydrogen sulphide sensor and method for making same
JP5671527B2 (ja) * 2009-05-25 2015-02-18 インスプリオン エービー 局在表面プラズモン共鳴(lspr)を使用するセンサ
US8547553B2 (en) * 2010-03-17 2013-10-01 General Electric Company Fiber optic hydrogen purity sensor and system
US8792102B2 (en) * 2010-10-28 2014-07-29 General Electric Company Interferometric spectral imaging of a two-dimensional array of samples using surface plasmon resonance
CN102513105A (zh) * 2011-12-16 2012-06-27 中国科学院生态环境研究中心 一种制氢催化剂
CN102608071A (zh) * 2012-02-21 2012-07-25 中国计量学院 基于飞秒激光微加工空芯pbgf写入lpg的m-z型氢气传感头
JP6344789B2 (ja) * 2012-08-24 2018-06-20 学校法人 創価大学 水素センサ、および、それを用いた検出装置
CN103822901B (zh) * 2014-03-10 2016-06-22 天津理工大学 基于倾斜光纤光栅对氢气浓度和环境温度的双参数测量装置
CN104749101A (zh) * 2015-04-12 2015-07-01 纳米籽有限公司 一种光学氢气传感器及其设计方法
WO2016187588A1 (en) * 2015-05-21 2016-11-24 Lamdagen Corporation Plasmonic nanoparticles and lspr-based assays
DE112016004203T5 (de) * 2015-09-16 2018-06-07 Koa Corporation Wasserstoffsensor
JP2017062954A (ja) 2015-09-25 2017-03-30 東芝ライテック株式会社 照明装置
KR20170127296A (ko) * 2016-05-11 2017-11-21 삼성전자주식회사 입력 장치 및 이를 구비하는 전자 장치
US20190245155A1 (en) * 2018-01-24 2019-08-08 Stephan HEATH Methods, products, and systems relating to making, providing, and using nanocrystalline cellulose superlattice solar cells to produce electricity

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7340941B1 (en) * 2002-10-01 2008-03-11 Xsilogy, Inc. Dense thin film-based chemical sensors and methods for making and using same
US20080212102A1 (en) * 2006-07-25 2008-09-04 Nuzzo Ralph G Multispectral plasmonic crystal sensors
JP2008196898A (ja) * 2007-02-09 2008-08-28 Osaka Prefecture プラズモン共鳴構造体及びその制御方法
JP2008216055A (ja) * 2007-03-05 2008-09-18 Omron Corp 表面プラズモン共鳴センサ及び当該センサ用チップ
WO2011027899A1 (ja) * 2009-09-03 2011-03-10 日本航空電子工業株式会社 水素検出用表面プラズモン共鳴素子、表面プラズモン共鳴式光学水素検出器及び表面プラズモン共鳴を利用して光学的に水素を検出する方法
WO2011149031A1 (ja) * 2010-05-27 2011-12-01 Matsumura Eiji ガス分子が高密度に溶存した液体クラスレート
JP2014211362A (ja) * 2013-04-18 2014-11-13 国立大学法人横浜国立大学 ガス検出装置、ガス検出方法、及び光学部品
JP2017049253A (ja) * 2015-09-02 2017-03-09 サーモ フィッシャー サイエンティフィック (ブレーメン) ゲーエムベーハー レーザ吸収分光計のレーザ動作点の最適化

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHAO, Z . ET AL.: "Annealing enhanced hydrogen absorption in nanocrystalline Pd/Au sensing films", JOURNAL OF APPLIED PHYSICS, vol. 97, no. 12, 15 June 2005 (2005-06-15), pages 124301 - 1 -124301-7, XP055549020 *

Also Published As

Publication number Publication date
JP6775236B2 (ja) 2020-10-28
CN110462380A (zh) 2019-11-15
CN110462380B (zh) 2022-05-24
JPWO2018181492A1 (ja) 2019-11-07
US11067506B2 (en) 2021-07-20
US20200088634A1 (en) 2020-03-19

Similar Documents

Publication Publication Date Title
JP5319300B2 (ja) プラズマ堆積微小多孔性の検体検出層
US7296460B2 (en) Apparatus and process for sensing fluoro species in semiconductor processing systems
CN106104257B (zh) 表面等离子体激元共振气体传感器、气体感测***和气体感测方法
Cho et al. Optically activated 3D thin‐shell TiO2 for super‐sensitive chemoresistive responses: toward visible light activation
US9726788B2 (en) Method for fabricating nanoantenna array, nanoantenna array chip and structure for lithography
JP4779656B2 (ja) ガスセンサ
WO2010092898A1 (ja) 赤外線光学フィルタおよびその製造方法
JP2010514937A (ja) プラズマ蒸着微孔性炭素材料
WO2018181492A1 (ja) 水素検出用素子、水素検出用素子の製造方法および水素検出装置
Ai et al. Chiral nanohole arrays
Perkins et al. Optoelectronic gas sensing platforms: from metal oxide lambda sensors to nanophotonic metamaterials
Zheng et al. Moisture‐Driven Switching of Plasmonic Bound States in the Continuum in the Visible Region
JP2016020887A (ja) センシング素子、及び、センシング方法
JP7217458B2 (ja) ナノ構造体アレイ、水素検出用素子及び水素検出装置
Yang et al. Enhanced evanescent field coupling of smart particles in tubular optical microcavity for sensing application
US7897057B1 (en) Sensor for detection of gas such as hydrogen and method of fabrication
Wilde et al. Ultraviolet-laser induced desorption of NO from the Cr 2 O 3 (0001) surface: Involvement of a precursor state?
CN113533257A (zh) 氢气传感器及其制备方法
WO1991002242A1 (fr) Capteur a filament en couche mince autoporte, son procede de fabrication et ses applications dans la detection de gaz et en chromatographie gazeuse
TW201418696A (zh) 氣體偵測系統以及用於氣體偵測系統之發光元件
US11868051B2 (en) Programmable nanolithography mask
WO2008143534A1 (en) Method for the preparation of thin film metal oxide cluster fluid sensors
CN113608289A (zh) 三氟化氮气体探测用红外滤光片及其制备方法
Smith II et al. Low-cost fiber optic hydrogen sensors
JP2005351754A (ja) センサ及びセンサの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18774979

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019509987

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18774979

Country of ref document: EP

Kind code of ref document: A1