WO2018180565A1 - 気流制御装置および延伸フィルムの製造方法 - Google Patents

気流制御装置および延伸フィルムの製造方法 Download PDF

Info

Publication number
WO2018180565A1
WO2018180565A1 PCT/JP2018/010340 JP2018010340W WO2018180565A1 WO 2018180565 A1 WO2018180565 A1 WO 2018180565A1 JP 2018010340 W JP2018010340 W JP 2018010340W WO 2018180565 A1 WO2018180565 A1 WO 2018180565A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
air
control device
tenter oven
airflow control
Prior art date
Application number
PCT/JP2018/010340
Other languages
English (en)
French (fr)
Inventor
竜太 阿部
西川 徹
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2018515159A priority Critical patent/JP7020402B2/ja
Priority to KR1020197027753A priority patent/KR102364565B1/ko
Priority to US16/497,158 priority patent/US11370161B2/en
Priority to CN201880021292.3A priority patent/CN110461570B/zh
Priority to EP18775583.0A priority patent/EP3603936B1/en
Publication of WO2018180565A1 publication Critical patent/WO2018180565A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/28Shaping by stretching, e.g. drawing through a die; Apparatus therefor of blown tubular films, e.g. by inflation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/04Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould using liquids, gas or steam
    • B29C35/045Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould using liquids, gas or steam using gas or flames
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • B29C55/08Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique transverse to the direction of feed
    • B29C55/085Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique transverse to the direction of feed in several stretching steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/20Edge clamps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D7/00Forming, maintaining, or circulating atmospheres in heating chambers
    • F27D7/02Supplying steam, vapour, gases, or liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D7/00Forming, maintaining, or circulating atmospheres in heating chambers
    • F27D7/06Forming or maintaining special atmospheres or vacuum within heating chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/04Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould using liquids, gas or steam
    • B29C35/045Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould using liquids, gas or steam using gas or flames
    • B29C2035/046Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould using liquids, gas or steam using gas or flames dried air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • B29K2101/12Thermoplastic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets
    • B29L2007/008Wide strips, e.g. films, webs

Definitions

  • the present invention relates to an airflow control device provided at the entrance or exit of a tenter oven suitable for manufacturing a stretched film made of a thermoplastic resin, and a method for producing a stretched film made of a thermoplastic resin using the airflow control device.
  • a stretched film made of a thermoplastic resin As a method for producing a stretched film made of a thermoplastic resin, generally, an unstretched film made of a thermoplastic resin using a tenter oven is stretched in the longitudinal direction to obtain a uniaxially stretched film, and then sequentially stretched in the width direction.
  • a biaxial stretching method or a simultaneous biaxial stretching method in which an unstretched film made of a thermoplastic resin is simultaneously stretched in the longitudinal direction and the width direction thereof is known.
  • a stretched film made of a thermoplastic resin obtained by any stretching method is superior in mechanical properties, thermal properties, electrical properties, etc. to an unstretched film made of a thermoplastic resin. It is widely used for various industrial material applications including packaging applications.
  • a tenter oven is a preheating step for heating a film to a desired temperature, a stretching step for widening the film to a desired width, a heat setting step for heat-treating the film at a desired temperature, and cooling the film to a desired temperature.
  • the film temperature in each step can be adjusted by spraying air heated to a desired temperature in advance onto the film via a spray nozzle.
  • MD flow air at different temperatures flows from the entrance / exit of the tenter oven and mixes with the heated air blown from the spray nozzle in the tenter oven, resulting in uneven heating efficiency of the film and uneven temperature of the film. is there.
  • the temperature unevenness of the film occurs, the characteristics in the width direction of the film and the thickness unevenness are caused, which not only deteriorates the quality of the product but also may cause a decrease in productivity due to film breakage in the tenter oven.
  • Patent Document 1 describes a method in which independent pressure adjusting chambers are provided at the inlet and the outlet of a tenter oven, respectively, and the difference between the pressure in the inlet side pressure adjusting chamber and the pressure in the outlet side pressure adjusting chamber is controlled.
  • Patent Document 2 describes a stretching machine in which a plate-like buffer band facing the front and back surfaces of a film is provided at the entrance or exit of a tenter oven.
  • Patent Document 3 includes a shielding plate that blocks fluid flowing from the inside to the outside of the chamber constituting the tenter oven, and the tip of the shielding plate closer to the film surface is located inside the chamber with respect to the film running direction. Inclination is described.
  • Patent Document 4 describes a method of suppressing sheet flutter by flowing parallel air to a sheet surface from a nozzle having a flat part and an inclined part provided subsequently. Patent Document 4 describes that the gap between the film and the nozzle can be narrowed by the above-described method, and there is an effect of suppressing the heat entering / exiting the entrance / exit of the tenter oven.
  • Patent Document 1 is a pressure adjustment chamber provided at the entrance / exit of a tenter oven, in which the pressure in the outlet side pressure adjustment chamber is set to be larger than the pressure in the inlet side pressure adjustment chamber, and the air flow from the outlet side adjustment chamber toward the inlet side adjustment chamber.
  • the pressure in the outlet side pressure adjustment chamber is set to be larger than the pressure in the inlet side pressure adjustment chamber, and the air flow from the outlet side adjustment chamber toward the inlet side adjustment chamber.
  • Patent Document 2 and Patent Document 3 describe the flow rate of air flowing out of the tenter oven by narrowing the film running opening of the tenter oven and increasing the fluid resistance by using a plate-like buffer band or a shielding plate.
  • a plate-like buffer band or shielding plate in order to generate sufficient fluid resistance, it is necessary to make the opening area sufficiently small, the plate-like buffer band or shielding plate and the film come into contact, and the film surface is damaged. Or tearing of the film may occur, reducing the productivity of the film.
  • Patent Document 4 since air is blown in the film running direction in order to obtain the suction force of the film, the MD flow increases, and the original heating performance of the spray nozzle for heating the film inside the tenter oven cannot be expected.
  • the object of the present invention is to solve the above-mentioned problems of the prior art, and to suppress the blowing from the outside of the tenter oven with an air flow control device, thereby reducing the temperature unevenness of the film, and the characteristics and thickness in the film width direction.
  • This makes it possible to produce a stretched film made of a thermoplastic resin having a uniform thickness and to reduce the energy consumption required to heat and maintain the film at a desired temperature.
  • High-temperature air inside the oven blows to the outside, deteriorating the working environment around the tenter oven, and air with a high degree of dust due to sublimation from the film blows out to the outside of the tenter oven, damaging the surrounding environment and film surface.
  • An object of the present invention is to provide an air flow control device that prevents contamination and deteriorates productivity as a foreign matter defect.
  • the first airflow control device of the present invention that solves the above-described problems is a tenter oven having an inlet for carrying a film and an outlet for carrying out the film, and / or the upstream side in the film running direction of the inlet.
  • a box that is installed on the upper surface side and / or the lower surface side of the film running surface, adjacent to the downstream side in the film running direction of the exit, extends in the film running direction, and has an open surface facing the film running surface
  • the box-shaped body cover includes at least one partition structure that extends in the width direction of the film and divides the inside of the box-shaped body cover into a plurality of chambers. And at least two of the plurality of chambers are provided with an air exhaust mechanism for exhausting indoor air.
  • the first airflow control device of the present invention preferably has any or all of the following configurations.
  • -The partition structure has a mechanism for moving up and down.
  • -The box-shaped body cover and the partition structure have a mechanism that expands and contracts in the width direction of the film.
  • the second airflow control device of the present invention that solves the above-described problems is a tenter oven having an inlet for carrying a film and an outlet for carrying the film, and / or the upstream side in the film running direction of the inlet. Adjacent to the downstream side in the film running direction of the outlet, installed on the upper surface side and / or the lower surface side of the film running surface, aligned with the film running direction, and opening the surface facing the film running surface, the width direction of the film A plurality of chambers extending between the adjacent chambers and the chambers without any gaps when viewed from the film running surface side, wherein at least two of the plurality of chambers An air exhaust mechanism is provided for exhausting air from the inside.
  • the second air flow control device of the present invention preferably has any or all of the following configurations.
  • Each chamber has a mechanism in which a portion facing an adjacent chamber moves up and down.
  • the airflow control device has a mechanism that expands and contracts in the width direction of the film.
  • At least one air exhaust mechanism of the air exhaust mechanisms includes a flow rate adjusting mechanism capable of adjusting an exhaust flow rate independently of other air exhaust mechanisms. Is preferred.
  • the method for producing a stretched film of the present invention that solves the above problems is as follows. Passing the film through each of the tenter oven and the airflow control device according to the above-mentioned invention installed adjacent to the upstream of the tenter oven inlet in the film running direction and / or downstream of the tenter oven outlet in the film running direction, In the airflow control device, air is discharged from the inside of the chamber by the air exhaust mechanism, and the traveling film is stretched while being heated in the tenter oven.
  • the stretched film manufacturing method of the present invention is configured so that the air flow rate of the air exhaust mechanism of the air flow control device is adjusted when the film is passed through the air flow control device with all the air exhaust mechanisms stopped. It is preferable that the exhaust flow rate of the air exhaust mechanism upstream of the air flow is larger than the exhaust flow rate of the downstream air exhaust mechanism with respect to the air flow flowing through the control device.
  • a film made of a polyolefin resin, a polyamide resin, or a polyester resin is preferable.
  • a film made of polyethylene-2,6-naphthalate resin or polyethylene terephthalate resin is preferable.
  • a film made of polyethylene terephthalate resin is inexpensive and can be used in a wide variety of applications, and the application effect of the present invention can be improved. high.
  • These thermoplastic resins may be homo-resins, copolymerized or blended.
  • the thermoplastic resin film may contain various known additives such as an antioxidant, an antistatic agent, a crystal nucleating agent, inorganic particles, a thinning agent, a thermal stabilizer, and a lubricant together with the above-described thermoplastic resin. Good.
  • the airflow control device of the present invention the following effects are brought about. ⁇ By suppressing the blowing of cold air from the outside into the tenter oven, it is possible to reduce the temperature unevenness of the film in the tenter oven and to make a stretched film made of a thermoplastic resin with uniform characteristics and thickness in the film width direction. Can be manufactured. Moreover, the energy consumed for heating the film to a desired temperature and maintaining the temperature can be reduced. -By suppressing the high-temperature air in the tenter oven from blowing out of the tenter oven, it is possible to prevent the working area around the tenter oven from rising in temperature and deteriorating the working environment.
  • FIG. 1 is a schematic cross-sectional view in the film running direction of an airflow control device according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of the airflow control device corresponding to the A1-A1 line of FIG.
  • FIG. 3 is a schematic cross-sectional view of the airflow control device corresponding to the line A2-A2 of FIG.
  • FIG. 4 is a schematic cross-sectional view in the film traveling direction of the airflow control device according to the first modification of the embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view in the film traveling direction of the airflow control device according to the second modification of the embodiment of the present invention.
  • FIG. 6 is a cross-sectional view in the film running direction of the airflow control device used in the example of the present invention.
  • FIG. 1 is a schematic cross-sectional view in the film running direction of an airflow control device according to an embodiment of the present invention, and is a cross-sectional view of the airflow control device having a plane perpendicular to the film running surface as a cut surface.
  • FIG. 2 is a schematic cross-sectional view of the airflow control device corresponding to the line A1-A1 shown in FIG.
  • the tenter oven 10 stretches an unstretched film in a uniaxial direction or in two different directions while heating to a predetermined temperature to produce a stretched film.
  • the unstretched film is gripped by a clip to be described later and placed on the film running surface 11.
  • the unstretched film travels on the film travel surface 11 while being stretched by the clip traveling on the clip rail.
  • thermoplastic resin film is an example of the film used in the tenter oven 10.
  • a thermoplastic resin which forms a thermoplastic resin film there exist the following, for example. That is, polyolefin resins such as polyethylene, polypropylene and polymethylpentene, polyamide resins such as nylon 6 and nylon 66, polyethylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate, polymethylene terephthalate, polyethylene-p-oxybenzoate, Examples of poly-1,4-cyclohexylenedimethylene terephthalate and copolymerization components include diol components such as diethylene glycol, neopentyl glycol, polyalkylene glycol, adipic acid, sebacic acid, phthalic acid, isophthalic acid, 2,6 -Polyester resins such as polyester copolymerized with dicarboxylic acid components such as naphthalenedicarboxylic acid, other polyacetal resins, polyphen
  • a film made of a polyolefin resin, a polyamide resin, or a polyester resin is preferable from the viewpoint of obtaining a high effect.
  • a film made of polyethylene-2,6-naphthalate resin or polyethylene terephthalate resin is preferable.
  • a film made of polyethylene terephthalate resin is inexpensive and can be used in a wide variety of applications, and the application effect of the present invention can be improved. high.
  • These thermoplastic resins may be homo-resins, copolymerized or blended.
  • thermoplastic resin film used in the tenter oven 10 is made of various known additives such as an antioxidant, an antistatic agent, a crystal nucleating agent, inorganic particles, a viscosity reducing agent, and a heat stabilizer, together with the aforementioned thermoplastic resin.
  • An agent and a lubricant may be contained.
  • the airflow control device 1 includes box-shaped body covers 2 a and 2 b that are installed adjacent to each other upstream of the tenter oven 10 in the film traveling direction.
  • the airflow control device 1 is provided with a box-shaped body cover 2 a on the upper side of the film running surface 11, a box-shaped body cover 2 b on the lower side of the film running surface 11, and facing each other with the film running surface 11 therebetween. Yes.
  • Each of the box-shaped body covers 2a and 2b extends in the film traveling direction, and a surface facing the film traveling surface 11 is opened.
  • the inside of the box-shaped body cover 2a is separated from the chamber 4a and the chamber 4b in order from the upstream side in the film running direction by a partition structure 3a extending in the film width direction (hereinafter sometimes simply referred to as “width direction”). It is divided into two rooms.
  • the inside of the box-shaped body cover 2b is divided into two chambers 4c and 4d in order from the upstream side in the film running direction by a partition structure 3b extending in the film width direction.
  • the chambers 4a, 4b, 4c, and 4d are provided with air exhaust mechanisms 5a, 5b, 5c, and 5d that exhaust air from the chamber, respectively.
  • the air exhaust mechanisms 5a, 5b, 5c, and 5d are connected to the openings for exhausting air provided in the respective chambers 4a, 4b, 4c, and 4d, and the air in each chamber through the openings. And at least an exhaust facility such as a blower for sucking air.
  • the opening and the blower may be directly connected or may be connected via a duct.
  • the opening pattern of the opening may be any of a slit, a round hole, a porous hole, a polygonal hole, a deformed hole, a semicircle, and the like.
  • the opening is preferably a perforated plate in which a large number of holes are formed, from the viewpoint of improving air exhaust performance and easy manufacture.
  • the box-shaped body cover 2a installed on the upper side of the film running surface 11 has the effect that the ambient temperature of the tenter oven 10 rises due to natural convection of the blown air 16 from the high-temperature tenter oven 10, and the working environment deteriorates. Used as a countermeasure.
  • the box-shaped body cover 2b installed on the lower side of the film running surface 11 has a lower temperature than the inside of the tenter oven 10 and blown air 15 from outside flows to the lower part of the tenter oven 10 by natural convection, and the heating performance is lower in this lower part. This is used as a countermeasure against a decrease in film temperature unevenness in the tenter oven 10.
  • the box-shaped body cover 2 a is installed on the upper side of the film running surface 11 and the box-shaped body cover 2 b is installed on the lower side.
  • a box-shaped body cover may be installed only on the upper side or the lower side of the film running surface 11.
  • the box-shaped body covers 2 a and 2 b are installed on both the upper side and the lower side of the film running surface 11.
  • the flow of air is not limited to the following description as long as it is possible to suppress blowing from the outside of the tenter oven and blowing out high-temperature air in the tenter oven to the outside.
  • a part of the air blown from the outside 15 is exhausted by the air exhaust mechanisms 5a and 5c of the chambers 4a and 4c adjacent to the external space 14.
  • the remaining air flows between the partition structures 3a and 3b and the film running surface 11 as a horizontal jet 17 into the adjacent chambers 4b and 4d under the action of rectification and acceleration due to a rapid contraction of the flow path.
  • the air (horizontal jet 17) flowing into the chambers 4b and 4d collides with the blown air 16 from the tenter oven 10 to cancel the flow in the film running direction and the direction of the flow away from the film running surface 11 respectively. Instead, the air is exhausted by the air exhaust mechanisms 5b and 5d.
  • blow-in air 15 from the outside and the blow-out air 16 from the tenter oven 10 are exhausted by the air flow control device 1, the blow-in air 15 from the outside blows into the tenter oven 10, It can suppress that the blowing air 16 from 10 blows off around the tenter oven 10.
  • the number of rooms divided by the partition structures 3a and 3b inside the box-shaped body covers 2a and 2b is effective even with two rooms, but the effect is further enhanced with three or more rooms.
  • the upper limit of the number of chambers is not particularly limited, but is preferably 100 or less in consideration of the number of air exhaust mechanisms. Further, the number of chambers divided by the partition structures 3a and 3b inside the box-shaped covers 2a and 2b may be different between the upper side and the lower side of the film running surface 11.
  • the air exhaust mechanism installed in each chamber inside the box-shaped body covers 2a and 2b is provided with an air exhaust mechanism for exhausting the blown air 15 from the outside and the blown air 16 from the tenter oven 10, respectively. It is preferable to install each box-shaped body cover in at least two chambers. At this time, the air exhaust mechanisms are arranged in the film running direction. By installing the air exhaust mechanism in at least two chambers, a large amount of air blown from outside 15 is exhausted in a chamber away from the tenter oven 10, and a large amount of blown air 16 from the tenter oven 10 is exhausted in a chamber close to the tenter oven 10. Therefore, mixing of the blown air 15 and the blown air 16 can be reduced.
  • the box-shaped body cover may include a plurality of air exhaust mechanisms in one chamber in order to adjust the air exhaust flow rate in the width direction and the film running direction.
  • At least one air exhaust mechanism can adjust the exhaust flow rate independently of the other air exhaust mechanisms. It is preferable to provide a flow rate adjusting mechanism. Specifically, as shown in FIG. 1, the air exhaust mechanisms 5a, 5b (5c, 5d) and the blower 7 are connected, and a damper 6 is attached between the branch pipes from the blower 7 to the respective air exhaust mechanisms. To adjust the flow rate. Alternatively, the flow rate may be adjusted by individually connecting each air exhaust mechanism to the blower and adjusting the setting of the blower.
  • the upstream of the film running direction corresponds to the flow rate change between the blown air 15 from the outside and the blown air 16 from the tenter oven. It is possible to adjust the exhaust flow rate of the air exhaust mechanism between the downstream side and the downstream side.
  • the exhaust flow rate 5d is preferably larger than the exhaust flow rates of the downstream air exhaust mechanisms 5a and 5c.
  • the horizontal jet 17 flowing through the air and the blown air 16 from the tenter oven 10 collide with each other to reduce the blown air 16 from the tenter oven 10 and reduce the heating energy loss of the blown air.
  • the exhaust flow rate of the air exhaust mechanisms 5b, 5d on the upstream side of the air flow is made smaller than the exhaust flow rate of the downstream air exhaust mechanisms 5a, 5c, the tenter than the state in which the exhaust of all the air exhaust mechanisms is stopped.
  • the blown air 16 from the oven 10 further increases, and the energy for heating the blown air 16 is lost.
  • the air on the upstream side of the air flow is preferably larger than the exhaust flow rate of the downstream air exhaust mechanisms 5b and 5d.
  • the box-shaped body covers 2a and 2b preferably have a dimension in the film running direction of 100 mm or more and 4000 mm or less in consideration of incidental facilities of the inlet 12 and the outlet 13 of the tenter oven 10.
  • the shape of the partition structures 3a and 3b may be any shape such as a plate shape, a semicircular shape, and a box shape as long as the adjacent chambers are partitioned and partitioned.
  • a rotating body may be attached to the tips of the partition structures 3a and 3b.
  • what is necessary is just to select the dimension of the film running direction of the partition structures 3a and 3b in the range which can be accommodated in the box-shaped body covers 2a and 2b.
  • the partition structures 3a and 3b are moved up and down.
  • the distance between the partition structures 3a and 3b and the film running surface 11 can be adjusted.
  • a lifting method for example, there is a method of attaching a jack to the partition structures 3a and 3b.
  • the distance between the partition structures 3a and 3b and the film running surface 11 is preferably small in order to increase the pressure loss inside the airflow control device 1, while it is necessary to avoid contact due to film fluttering.
  • the horizontal jet 17 and the blown air 16 from the tenter oven are collided to cancel the flow in the respective film running directions and change the direction of the flow away from the film running surface 11. Can be effective.
  • FIG. 3 is a schematic cross-sectional view of the airflow control device corresponding to the line A2-A2 shown in FIG. 2, and is a cross-sectional view of the airflow control device having a plane parallel to the film running surface as a cut surface.
  • FIG. 3 shows a configuration excluding the damper 6 and the blower 7.
  • a clip 24 that holds both ends of the film, and two clip rails 25 that are provided at both ends of the film and run the clip in the film running direction.
  • the two clip rail covers 22 that respectively cover the clip 24 and the clip rail 25 are widened or narrowed in the width direction (double arrows in FIG. 3).
  • the box-shaped body covers 2a and 2b and the partition structures 3a and 3b have a width direction expansion / contraction mechanism.
  • the airflow control device 1 can be expanded and contracted in the width direction according to the distance between the clip rail covers 22, and the gap can be kept constant.
  • the fixing portion 20 is provided at the center in the film width direction shown in FIG.
  • a movable portion 21 that can advance and retreat in the film width direction is provided, and the movable portion 21 moves inside or outside the fixed portion 20.
  • box-shaped body covers 2 a and 2 b include, for example, a rail connection mechanism 23 that connects the movable portion 21 and the clip rail cover 22 so that the movable portion 21 follows the movement of the clip rail cover 22 in the width direction. .
  • the airflow control device 101 includes a box-shaped body cover 2c that is installed adjacent to the upstream side of the tenter oven 10 in the film traveling direction.
  • the box-shaped body cover 2c has two box-shaped members 24 adjacent to each other, and has two chambers 104a and 104b arranged on the upper side of the film running surface from the upstream side to the downstream side in the film running direction.
  • Each of the chambers 104a and 104b extends in the film width direction, and the surface facing the film running direction is open.
  • the chambers 104a and 104b are installed such that there is no gap between them when viewed from the film running surface side.
  • the chambers 104a and 104b are provided with air exhaust mechanisms 105a and 105b for discharging air from the insides of the respective chambers.
  • the airflow control device 101 ⁇ / b> A includes a box-shaped body cover 2 d that is installed next to the tenter oven 10 on the upstream side in the film traveling direction.
  • the chamber 104a and the chamber 104b are arranged without a gap.
  • a gap is provided in a portion facing the adjacent chamber, that is, the chamber 104a and the chamber 104b are arranged with a gap between them, and the adjacent chamber 104a. , 104b are connected by a connecting member 41.
  • the airflow control devices 101 and 101A shown in FIGS. 4 and 5 are configured by the two chambers 104a and 104b. However, the airflow control devices 101 and 101A may be configured by three or more chambers arranged in the film traveling direction. The number of chambers may be different on the lower side.
  • two chambers 104a and 104b are installed on the upper side of the film travel surface 11, but the film travel surface is the same as the first airflow control device.
  • 11 may be installed on both the upper side and the lower side of the film 11, or may be installed only on the upper or lower side of the film running surface 11.
  • the same number of chambers are formed on both the upper and lower sides of the film running surface 11.
  • the inside of one box-like body cover is divided into a plurality of chambers by partitioning with one or a plurality of partition structures, whereas the first modification is modified.
  • the airflow control devices 101 and 101A according to No. 2 only a plurality of independent chambers are arranged so that there is no gap, and the configuration is substantially the same. Therefore, various embodiments in the airflow control device 1 can also be applied to the airflow control devices 101 and 101A.
  • Example 1 First, an effect evaluation method according to the present invention will be described.
  • the numerical analysis model which modeled the chamber which comprises the airflow control apparatus of this invention and a tenter oven main body was created, and this was calculated numerically and airflow control performance was evaluated.
  • FIG. 6 is a cross-sectional view in the film running direction of the airflow control device used in the example of the present invention.
  • FIG. 6 is a cross-sectional view of the airflow control device 1 and the tenter oven 10 described above, and is a cross-sectional view in which a plane orthogonal to the film running surface 11 is a cut surface.
  • the structure of the upper half of the airflow control device 1 and the tenter oven 10 is shown among the upper and lower parts separated by the film running surface 11 as a boundary.
  • the airflow control device 1, the tenter oven 10, and the external space 14 are symmetric in the vertical direction via the film running surface 11.
  • the dimensions of each structure are as follows.
  • the tenter oven 10 had a length D 1 in the film running direction of 1.5 m, a height H 1 of 0.65 m, and four air blowing nozzles 31 installed therein.
  • the air blowing nozzle 31 has a film running direction dimension of 0.2 m, the air blowing nozzles 31 are arranged at equal intervals with a pitch P 1 of 0.3 m, and the distance H 2 from the film running surface 11 is 0.15 m. did.
  • the airflow control device 1 adjacent to the entrance of the tenter oven 10 includes one partition structure 3 that divides the box-shaped body cover 2 into two chambers 4a and 4b. The dimensions of the chamber were 0.25 m in the film running direction and the height was 0.15 m.
  • Airflow control device 1 the film running direction length D 2 was 0.6 m. Chambers 4a, 4b and the partition structures 3 of the airflow control device 1, the distance D 3 between the film running surface 11 and the airflow control device 1 of the inlet 38 was 0.05 m.
  • the external space 14 had a length D 4 in the film running direction of 0.4 m and a height of 0.65 m, which is the same as the height (height H 1 ) of the tenter oven 10.
  • the direction indicated as MD is the film running direction.
  • a nozzle opening 32 having a width of 0.01 m was provided on the surface of the tenter oven 10 facing the film running surface 11 of the air blowing nozzle 31, and boundary conditions for blowing air at a flow rate of 20 m / s were set in the nozzle opening 32.
  • a boundary condition for exhausting the same amount of air blown from the nozzle opening 32 was set in the suction portion 33.
  • the outer boundary 34 of the analysis space and the inner boundary 35 of the tenter oven 10 are set as pressure boundaries, atmospheric pressure (0.1 MPa) is set as the boundary condition of the outer boundary 34, and the boundary condition of the inner boundary 35 of the tenter oven 10 is set. Atmospheric pressure +5 Pa was set.
  • the physical properties of the fluid are assumed to be dry air at a temperature of 100 ° C. and an atmospheric pressure, density 0.93 kg / m 3 , viscosity 2.2 ⁇ 10 ⁇ 5 Pa ⁇ s, specific heat 1012 J / (kg ⁇ K), thermal conductivity It was set to 0.031 W / (m ⁇ K).
  • the analysis was performed using “STAR-CCM” (manufactured by IDAJ), which is a commercially available general-purpose thermal fluid analysis software.
  • the k- ⁇ turbulence model was used for the turbulent flow, and the wall law was used for the turbulent boundary layer near the wall.
  • the above software analyzes the Navier-Stokes equations, which are fluid equations of motion, by the finite volume method.
  • any thermal fluid analysis software may be used as long as the same analysis can be performed.
  • the effect of the airflow control device 1 is the perpendicular of the film running surface 11 at the position of the inlet 36 of the tenter oven 10, the interior 37 of the airflow control device 1, and the inlet 38 of the airflow control device 1 shown in FIG.
  • the average air flow rate of the velocity component was used as an index.
  • Each air flow rate of the air exhaust mechanism 5a adjacent to the external space 14 and the air exhaust mechanism 5b adjacent to the tenter oven 10 was set to 0.40 m / s. However, here, as a two-dimensional approximation method, the air flow rate is indicated using an air flow velocity value.
  • Table 1 shows the effects of the airflow control device, and Table 2 shows the setting conditions. In Table 1, plus (+) is the direction from the inlet 36 of the tenter oven 10 to the inlet 38 of the airflow control device, and minus ( ⁇ ) is the inlet 38 of the airflow control device 1 to the inlet of the tenter oven 10. The direction toward 36.
  • the blown air from the tenter oven 10 to the airflow control device 1 passes through the inlet 36 of the tenter oven 10 at an average flow rate of 3.2 m / s.
  • Part of the air blown out from the tenter oven 10 is exhausted by the air exhaust mechanism 5b provided in the chamber 4b adjacent to the tenter oven 10, and the remaining air that could not be exhausted is an average flow velocity of 1.2 m / s.
  • the interior 37 of the airflow control device 1 between the partition structure 3 and the film running surface 11 is subjected to rectification and acceleration by rapid contraction of the flow path, and is a chamber adjacent to the external space 14 as a horizontal jet. Flows into 4a.
  • Blowing air from the external space 14 is generated by the exhaust of the air exhaust mechanism 5a provided in the chamber 4a adjacent to the external space 14, and passes through the inlet 38 of the airflow control device at an average flow velocity of 0.8 m / s. It collides with the horizontal jet that flows in from the chamber 4b adjacent to. The collided air cancels the flow in the film running direction, the flow direction changes to a direction away from the film running surface 11, and is exhausted by the air exhaust mechanism 5a.
  • Example 2 In Example 2, the same calculation model as in Example 1 was used. In the second embodiment, the air flow rate of the air exhaust mechanism 5a adjacent to the external space 14 is 0.64 m / s, and the air flow rate of the air exhaust mechanism 5b adjacent to the tenter oven 10 is 0.16 m / s. Same as 1.
  • the air blown from the tenter oven 10 to the airflow control device 1 passes through the inlet 36 of the tenter oven 10 at an average flow velocity of 3.3 m / s.
  • Part of the air blown out from the tenter oven 10 is exhausted by the air exhaust mechanism 5b provided in the chamber 4b adjacent to the tenter oven 10, and the remaining air that could not be exhausted is an average flow velocity of 2.5 m / s.
  • the airflow control device 1 inside 37 between the partition structure 3 and the film running surface 11 is subjected to rectification and acceleration by rapid contraction of the flow path to the chamber 4a adjacent to the external space as a horizontal jet. Inflow.
  • Air exhausted from the external space 14 is generated by the exhaust of the air exhaust mechanism 5a provided in the chamber 4a adjacent to the external space 14, and passes through the inlet 38 of the airflow control device 1 at an average flow velocity of 0.7 m / s. 10 collides with a horizontal jet flowing from the chamber 4b adjacent to the chamber 10. The collided air cancels the flow in the film running direction, the flow direction changes to a direction away from the film running surface 11, and is exhausted by the air exhaust mechanism 5a.
  • the air flowing from the external space 14 and the blowing air from the tenter oven 10 are exhausted to the airflow control device 1, and the blowing air from the tenter oven 10 to the external space 14 and from the external space 14 to the tenter oven 10.
  • the blowing air is suppressed.
  • Example 1 Since the air flow rate of the air exhaust mechanism 5b on the upstream side of the air flow in a state where the exhaust of air from all the air exhaust mechanisms is stopped is smaller than the air flow rate of the downstream air exhaust mechanism 5a. Compared with Example 1, the air blown from the inlet 36 of the tenter oven 10 increased by 0.1 m / s, and the heating energy loss for the blown air from the tenter oven 10 increased.
  • Example 3 In Example 3, the same calculation model as in Example 1 was used. In the third embodiment, the air flow rate of the air exhaust mechanism 5a adjacent to the external space 14 is 0.16 m / s, and the air flow rate of the air exhaust mechanism 5b adjacent to the tenter oven 10 is 0.64 m / s. Same as 1.
  • blown air from the tenter oven 10 to the airflow control device 1 passes through the inlet 36 of the tenter oven 10 at an average flow velocity of 3.0 m / s.
  • the horizontal jet flow that flows from the chamber 4a adjacent to the external space 14 to the chamber 4b adjacent to the tenter oven 10 at an average flow velocity of 0.2 m / s and the blowout air of the tenter oven 10 collide with each other to cancel the flow in the film running direction.
  • the direction of the flow changes to a direction away from the film running surface 11, and the air is exhausted by the air exhaust mechanism 5b.
  • the blown air from the external space 14 passes through the inlet 38 of the airflow control device 1 at an average flow velocity of 1.0 m / s, and is partially exhausted by the air exhaust mechanism 5a of the chamber 4a adjacent to the external space 14.
  • Example 1 Since the air flow rate of the air exhaust mechanism 5b on the upstream side of the air flow in a state where the exhaust of air from all the air exhaust mechanisms is stopped is larger than the air flow rate of the air exhaust mechanism 5a on the downstream side.
  • the blown air from the inlet 36 of the tenter oven 10 was reduced by 0.2 m / s, and the heating energy loss of the blown air from the tenter oven 10 was reduced.
  • Comparative Example 1 In Comparative Example 1, the same calculation model as in Example 1 was used. Comparative Example 1 is the same as Example 1 except that the air flow rates of the air exhaust mechanism 5a adjacent to the external space 14 and the air exhaust mechanism 5b adjacent to the tenter oven 10 are 0.0 m / s, respectively. .
  • blown air from the tenter oven 10 to the airflow control device 1 passes through the inlet 36 of the tenter oven 10 at an average air flow rate of 3.0 m / s.
  • the air blown out from the tenter oven 10 is not exhausted by the air exhaust mechanism 5b provided in the chamber 4b adjacent to the tenter oven 10, and the average air flow rate is 3.0 m / s, and the inside of the air flow control device 1 is exhausted.
  • 37 and flows into the chamber 4a adjacent to the external space 14.
  • the air that has flowed into the chamber 4 a passes through the inlet 38 of the airflow control device 1 as it is at an average air flow velocity of 3.0 m / s and blows out to the external space 14.
  • Comparative Example 1 blown air from the tenter oven 10 was blown out to the external space 14.
  • Comparative Example 1 since the air exhaust mechanism of the airflow control device 1 does not function, a horizontal jet that collides with the air flowing into the airflow control device 1 does not occur. As a result, it collides with the flow flowing into the airflow control device 1, cancels out the flow in the film running direction, and does not change the flow direction away from the film running surface 11. Cannot be prevented from being blown out into the external space 14.
  • Comparative Example 2 In Comparative Example 2, the same calculation model as in Example 1 was used. In Comparative Example 2, the air flow rate of the air exhaust mechanism 5a adjacent to the external space 14 is 0.0 m / s, and the air flow rate of the air exhaust mechanism 5b adjacent to the tenter oven 10 is 0.8 m / s. Same as 1.
  • the blown air from the tenter oven 10 to the airflow control device 1 is increased by 2.0 m / s from the comparative example 1, and passes through the inlet 36 of the tenter oven 10 at an average air flow rate of 5.0 m / s. .
  • Comparative Example 2 air is exhausted from the air exhaust mechanism 5b, but no air is exhausted from the air exhaust mechanism 5a, so that a horizontal jet that collides with the air flowing into the airflow control device 1 does not occur. As a result, it collides with the flow flowing into the air flow control device 1, cancels the flow in the film running direction, and does not change the flow direction away from the film running surface 11. Cannot be prevented from being blown out into the external space 14.
  • Comparative Example 3 In Comparative Example 3, the same calculation model as in Example 1 was used. In Comparative Example 3, the air flow rate of the air exhaust mechanism 5a adjacent to the external space 14 is 0.8 m / s, and the air flow rate of the air exhaust mechanism 5b adjacent to the tenter oven 10 is 0.0 m / s. Same as 1.
  • the blown air from the tenter oven 10 to the airflow control device 1 is increased by 1.8 m / s from the comparative example 1 and passes through the inlet 36 of the tenter oven 10 at an average air flow rate of 4.8 m / s. .
  • the air blown out of the tenter oven 10 is not exhausted by the air exhaust mechanism 5b of the chamber 4b adjacent to the tenter oven 10, and the inside airflow control device 1 is passed through the inside 37 of the airflow control device 1 at an average air flow velocity of 4.8 m / s. Pass through and flow into the chamber 4a adjacent to the external space 14.
  • the air that has flowed into the chamber 4 a passes through the inlet 38 of the airflow control device 1 at an average air flow rate of 0.8 m / s and blows out to the external space 14.
  • blown air from the tenter oven 10 was blown out to the external space 14.
  • Comparative Example 3 air is exhausted from the air exhaust mechanism 5a, but air is not exhausted from the air exhaust mechanism 5b, so that a horizontal jet that collides with the air flowing into the airflow control device 1 does not occur. As a result, it collides with the flow flowing into the airflow control device 1, cancels the flow in the film running direction, and does not change the flow direction away from the film running surface 11. Blowing out to the external space 14 cannot be suppressed.
  • the air flow control device and the method for producing a stretched film according to the present invention reduce the temperature unevenness of the film, enable the production of a stretched film made of a thermoplastic resin having uniform characteristics and thickness in the film width direction, and the film Not only enables reduction of energy consumption required to maintain the temperature when heating the glass to a desired temperature, but also high temperature air inside the tenter oven blows out to deteriorate the working environment around the tenter oven It is useful for preventing the reduction of film productivity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Thermal Sciences (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

本発明は、テンターオーブンの入り口の上流側および/または出口の下流側に隣接して気流制御装置を設置する。気流制御装置内には、フィルム走行方向に延在し、フィルム走行面に対向する面が開口している箱状体カバーがあり、箱状体カバーの内部にフィルム幅方向に延在した仕切り構造体を少なくとも1つ有し、仕切り構造体によって箱状体カバーが複数の室に区分けされていて、複数の室の少なくとも2室に備えたエア排気機構で外部へエアを排気する。

Description

気流制御装置および延伸フィルムの製造方法
 本発明は、熱可塑性樹脂からなる延伸フィルムの製造に適したテンターオーブンの入口または出口に設ける気流制御装置、および、この気流制御装置を用いた熱可塑性樹脂からなる延伸フィルムの製造方法に関する。
 熱可塑性樹脂からなる延伸フィルムの製造方法として、一般にテンターオーブンを用いた熱可塑性樹脂からなる未延伸フィルムをその長手方向に延伸することにより、一軸延伸フィルムを得た後、幅方向に延伸する逐次二軸延伸法、あるいは熱可塑性樹脂からなる未延伸フィルムを長手方向およびその幅方向に同時に延伸する同時二軸延伸法が知られている。いずれかの延伸方法で得られる熱可塑性樹脂からなる延伸フィルムは、熱可塑性樹脂からなる未延伸フィルムに比べて、機械的特性、熱的特性、電気的特性等が優れているので、この特性を活かして包装用途をはじめとして、各種工業材料用途などに広く用いられている。
 一般に、テンターオーブンはフィルムを所望の温度まで昇温する予熱工程と、フィルムを所望の幅まで拡幅する延伸工程と、フィルムを所望の温度で熱処理する熱固定工程と、フィルムを所望の温度まで冷却する冷却工程の、少なくとも1つの工程を有しており、各工程のフィルム温度は、予め所望の温度に加熱したエアを、吹き付けノズルを介してフィルムに吹付けることで調整することができる。
 しかし、テンターオーブンの出入口あるいはゾーン間で生じる圧力差や、走行フィルムの随伴気流により、フィルム走行方向にエアが流れる現象があり、このようなエア流れをMachine Direction(以下、単にMDという)流と呼ぶ。MD流が発生すると、テンターオーブンの出入口から異なる温度のエアが流れ込み、テンターオーブン内の吹き付けノズルから吹き出される加熱エアと混ざるため、フィルムの加熱効率ムラが生じ、フィルムの温度ムラが生じることがある。フィルムの温度ムラが生じると、フィルム幅方向の特性および厚みムラが生じ、製品の品質低下を引き起こすばかりでなく、テンターオーブン内のフィルム破れによる生産性低下を引き起こすことがある。
 さらに、テンターオーブンでMD流が生じた際の問題点として、テンターオーブンの外部から冷気が流入することがあり、冷気流入で低温化したエアを再加熱するため、消費エネルギーが増加する。また、テンターオーブン内部の高温エアが、外部へ吹き出すと周囲温度が上昇し、テンターオーブン周囲の作業環境の悪化を引き起こすことがある。加えて、フィルムからの昇華物による塵埃度の高いエアが、テンターオーブンの内部から外部へ吹き出すと、周囲環境やフィルム面を汚染し、異物欠点として、生産性低下を引き起こすことがある。
 上記のテンターオーブンの問題に対して、次のような技術が提案されている。特許文献1には、テンターオーブンの入口と出口にそれぞれ独立した圧力調整室を設け、入口側圧力調整室の圧力と出口側圧力調整室の圧力の差を制御する方法が記載されている。
 特許文献2には、テンターオーブンの入口あるいは出口にフィルム表裏面に対向した板状の緩衝帯を設ける延伸機が記載されている。
 特許文献3には、テンターオーブンを構成する室の内側から外側に流出する流体を遮断する遮蔽板を備え、遮蔽板のフィルム面に近づく側の先端が、フィルム走行方向に対して室の内側に傾斜することが記載されている。
 特許文献4には、平坦部と、それに続いて設けられた傾斜部とを有するノズルから、シート面に平行流のエアを流し、シートのバタツキを抑える方法が記載されている。特許文献4には、上述した方法により、フィルムとノズルとの間のギャップを狭くでき、テンターオーブンの出入口の熱の出入りを抑える効果があることが記載されている。
特開平3-87238号公報 特開2009-269268号公報 特開2011-167923号公報 特開2005-8407号公報
 特許文献1は、テンターオーブンの出入口に設けた圧力調整室で、出口側圧力調整室の圧力を入口側圧力調整室の圧力より大きく設定し、出口側調整室から入口側調整室に向けて気流を形成することで、テンターオーブンの入口側から侵入する冷風を低減でき、出口側から漏出する熱風量を少なくすることができる。しかし、入口側から漏出する熱風に含まれるフィルムからの昇華物による塵埃度の高いエアが、周囲環境やフィルム面を汚染し、異物欠点として、生産性低下を引き起こすことがある。また、出口側から侵入する冷風でフィルムの加熱効率ムラが生じ、フィルムの温度ムラによって、フィルム幅方向の特性および厚みムラが生じることがある。
 特許文献2や特許文献3は、板状の緩衝帯や遮蔽板を用いてテンターオーブンのフィルム走行用の開口を狭くして流体抵抗を大きくすることによって、テンターオーブンから外部に流出するエアの流量を低減させているが、十分に流体抵抗を発生させるためには、開口面積を十分に小さくする必要があり、板状の緩衝帯や遮蔽板とフィルムとが接触し、フィルム面に傷が発生する、あるいはフィルムの破れが発生し、フィルムの生産性を低下させることがある。
 特許文献4は、フィルムの吸引力を得るためにフィルム走行方向にエアを吹き付けるため、MD流が増加し、テンターオーブン内部のフィルム加熱用の吹き付けノズルの本来の加熱性能が見込めなくなる。
 そこで、本発明の目的は、上記従来技術の問題点を解決し、テンターオーブンの外部からの吹き込みを気流制御装置で抑制することで、フィルムの温度ムラを低減し、フィルム幅方向の特性および厚みが均一である熱可塑性樹脂からなる延伸フィルムの製造を可能にするとともに、フィルムを所望の温度まで加熱し、その温度を保持するのに必要な消費エネルギーの削減を可能とするばかりでなく、テンターオーブンの内部の高温エアが外部へ吹き出し、テンターオーブン周囲の作業環境を悪化させることや、フィルムからの昇華物による塵埃度の高いエアが、テンターオーブンの外部に吹き出して、周囲環境やフィルム面を汚染し、異物欠点として、生産性を低下させることを防止する、気流制御装置を提供することにある。
 上記の課題を解決する本発明の第一の気流制御装置は、フィルムが搬入される入口と、フィルムが搬出される出口とを有するテンターオーブンの、前記入口のフィルム走行方向上流側および/または前記出口のフィルム走行方向下流側に隣り合って、フィルム走行面の上面側および/または下面側に設置され、前記フィルム走行方向に延在し、前記フィルム走行面に対向する面が開口している箱状体カバーを備え、前記箱状体カバーは、当該箱状体カバーの内部に、前記フィルムの幅方向に延在し、箱状体カバー内部を複数の室に区分けする仕切り構造体を少なくとも1つ有し、前記複数の室の少なくとも2室に、室内の空気を排出するエア排気機構が設けられている。
 本発明の第一の気流制御装置は、以下の各構成のいずれか、または全てを有することが好ましい。
・前記仕切り構造体が、昇降する機構を有すること。
・前記箱状体カバーと前記仕切り構造体とが、前記フィルムの幅方向に伸縮する機構を有すること。
 上記の課題を解決する本発明の第二の気流制御装置は、フィルムが搬入される入口と、フィルムが搬出される出口とを有するテンターオーブンの、前記入口のフィルム走行方向上流側および/または前記出口のフィルム走行方向下流側に隣り合い、フィルム走行面の上面側および/または下面側に設置され、前記フィルム走行方向に並び、前記フィルム走行面に対向する面が開口し、前記フィルムの幅方向に延在する複数の室を備え、前記複数の室は、前記フィルム走行面側から見たときに、隣り合う室と室とは隙間なく配置され、前記複数の室の少なくとも2室に、室の内部から空気を排出するエア排気機構が設けられている。
 本発明の第二の気流制御装置は、以下の各構成のいずれか、または全てを有することが好ましい。
・各室が、隣り合う室に対向する部分が昇降する機構を有すること。
・気流制御装置が、フィルムの幅方向に伸縮する機構を有すること。
 本発明の第一、第二の気流制御装置は、前記エア排気機構のうちの少なくとも1つのエア排気機構が、他のエア排気機構とは独立して排気流量を調整できる流量調整機構を備えることが好ましい。
 上記課題を解決する本発明の延伸フィルムの製造方法は、
 テンターオーブンと、テンターオーブン入口のフィルム走行方向上流側および/またはテンターオーブン出口のフィルム走行方向下流側に隣り合って設置された上記の発明にかかる気流制御装置とのそれぞれにフィルムを通過させ、前記気流制御装置において、前記エア排気機構により前記室の内部から空気を排出し、前記テンターオーブンにおいて、走行するフィルムを加熱しながら延伸する。
 本発明の延伸フィルムの製造方法は、前記気流制御装置の前記エア排気機構の排気流量を、全てのエア排気機構の排気を止めた状態で前記気流制御装置にフィルムを通過させた際に当該気流制御装置を流れるエア流れに対して、前記エア流れの上流側のエア排気機構の排気流量を下流側のエア排気機構の排気流量よりも大きくすることが好ましい。
 本発明のテンターオーブンに供される熱可塑性樹脂フィルムを形成する熱可塑性樹脂としては、例えば、次のものがある。すなわち、ポリエチレン、ポリプロピレン、ポリメチルペンテンなどのポリオレフィン樹脂、ナイロン6、ナイロン66などのポリアミド樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン-2,6-ナフタレート、ポリメチレンテレフタレート、ポリエチレン-p-オキシベンゾエート、ポリ-1,4-シクロヘキシレンジメチレンテレフタレート、および共重合成分として、例えば、ジエチレングリコール、ネオペンチルグリコール、ポリアルキレングリコールなどのジオール成分や、アジピン酸、セバチン酸、フタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸などのジカルボン酸成分などを共重合したポリエステルなどのポリエステル樹脂、その他、ポリアセタール樹脂、ポリフェニレンスルフィド樹脂がある。
 特に、本発明のより高い効果を得るには、ポリオレフィン樹脂、ポリアミド樹脂、ポリエステル樹脂からなるフィルムが好ましい。中でも、ポリエチレン-2,6-ナフタレート樹脂やポリエチレンテレフタレート樹脂からなるフィルムが好ましく、特に、ポリエチレンテレフタレート樹脂からなるフィルムは、安価であるため、非常に多岐にわたる用途で用いられ、本発明の適用効果が高い。これらの熱可塑性樹脂は、ホモ樹脂であってもよく、共重合またはブレンドであってもよい。
 熱可塑性樹脂フィルムは、前述の熱可塑性樹脂と共に公知の各種添加剤、例えば、酸化防止剤、帯電防止剤、結晶核剤、無機粒子、減粘剤、熱安定剤、滑剤を含有していてもよい。
 本発明の気流制御装置によれば以下のような効果がもたらされる。
・ テンターオーブン内に外部から冷えたエアが吹き込むことを抑制することで、テンターオーブン内のフィルムの温度ムラを低減し、フィルム幅方向の特性および厚みが均一である熱可塑性樹脂からなる延伸フィルムを製造できる。また、フィルムを所望の温度まで加熱して、温度を保持するための消費エネルギーを削減できる。
・ テンターオーブン内の高温エアがテンターオーブンの外部へ吹き出すことを抑制することで、テンターオーブン周囲の作業エリアが温度上昇し、作業環境が悪化することを防止できる。また、フィルムからの昇華物による塵埃度の高いエアが、テンターオーブン内部から外部へ吹き出すことで、周囲環境やフィルム面を汚染し、異物欠点として、生産性低下を引き起こすことを防止できる。
図1は、本発明の一実施の形態にかかる気流制御装置のフィルム走行方向の断面概略図である。 図2は、図1のA1-A1線に対応する気流制御装置の断面概略図である。 図3は、図2のA2-A2線に対応する気流制御装置の断面概略図である。 図4は、本発明の実施の形態の変形例1にかかる気流制御装置のフィルム走行方向の断面概略図である。 図5は、本発明の実施の形態の変形例2にかかる気流制御装置のフィルム走行方向の断面概略図である。 図6は、本発明の実施例に用いた気流制御装置のフィルム走行方向の断面図である。
 以下に本発明の実施の形態を図面に基づいて説明する。なお、本発明はこれに限定されるものではない。
 (実施の形態)
 本発明の一実施の形態にかかる気流制御装置を図1と図2を参照しながら説明する。図1は、本発明の一実施の形態にかかる気流制御装置のフィルム走行方向の断面概略図であって、フィルム走行面と直交する平面を切断面とする気流制御装置の断面図である。図2は、図1に示すA1-A1線に対応する気流制御装置の断面概略図である。テンターオーブン10は、未延伸のフィルムを、所定の温度に加熱しながら、一軸方向、または互いに異なる二つの方向に延伸して、延伸フィルムを生成する。未延伸のフィルムは、後述するクリップに把持され、フィルム走行面11上に配置される。この未延伸のフィルムは、クリップがクリップレール上を走行することによって、延伸されながらフィルム走行面11上を走行する。
 テンターオーブン10に供されるフィルムとして、熱可塑性樹脂フィルムが挙げられる。熱可塑性樹脂フィルムを形成する熱可塑性樹脂としては、例えば、次のものがある。すなわち、ポリエチレン、ポリプロピレン、ポリメチルペンテンなどのポリオレフィン樹脂、ナイロン6、ナイロン66などのポリアミド樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン-2,6-ナフタレート、ポリメチレンテレフタレート、ポリエチレン-p-オキシベンゾエート、ポリ-1,4-シクロヘキシレンジメチレンテレフタレート、および共重合成分として、例えば、ジエチレングリコール、ネオペンチルグリコール、ポリアルキレングリコールなどのジオール成分や、アジピン酸、セバチン酸、フタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸などのジカルボン酸成分などを共重合したポリエステルなどのポリエステル樹脂、その他、ポリアセタール樹脂、ポリフェニレンスルフィド樹脂がある。
 特に、ポリオレフィン樹脂、ポリアミド樹脂、ポリエステル樹脂からなるフィルムは、高い効果を得るという観点で好ましい。中でも、ポリエチレン-2,6-ナフタレート樹脂やポリエチレンテレフタレート樹脂からなるフィルムが好ましく、特に、ポリエチレンテレフタレート樹脂からなるフィルムは、安価であるため、非常に多岐にわたる用途で用いられ、本発明の適用効果が高い。これらの熱可塑性樹脂は、ホモ樹脂であってもよく、共重合またはブレンドであってもよい。
 また、テンターオーブン10に供される熱可塑性樹脂フィルムは、前述の熱可塑性樹脂と共に公知の各種添加剤、例えば、酸化防止剤、帯電防止剤、結晶核剤、無機粒子、減粘剤、熱安定剤、滑剤を含有していてもよい。
 気流制御装置1は、テンターオーブン10のフィルム走行方向上流側に隣り合って設置されている箱状体カバー2a、2bを備える。気流制御装置1では、フィルム走行面11の上側に箱状体カバー2aを、フィルム走行面11の下側に箱状体カバー2bを、お互いがフィルム走行面11を挟んで対向するように備えている。箱状体カバー2a、2bは、それぞれフィルム走行方向に延在し、フィルム走行面11に対向する面が開口している。箱状体カバー2aの内部は、フィルム幅方向(以下、単に「幅方向」ということもある)に延在する仕切り構造体3aによって、フィルム走行方向の上流側から順に室4aと室4bとの2室に区分けされている。同様に、箱状体カバー2bの内部は、フィルム幅方向に延在する仕切り構造体3bによって、フィルム走行方向上流側から順に室4cと室4dとの2室に区分けされている。室4a、4b、4c、4dには、室内から空気を排出するエア排気機構5a、5b、5c、5dがそれぞれ設けられている。エア排気機構5a、5b、5c、5dは、室4a、4b、4c、4dのそれぞれに設けられた空気を排出するための開口部と、この開口部に接続され、開口部を通じて各室の空気を吸引するブロワなどの排気設備とで少なくとも構成されている。開口部とブロワとは直接接続されていてもよく、ダクトを介して接続されていてもよい。開口部の開口パターンはスリット、丸孔、多孔、多角形穴、異形穴、半円などいずれでもよい。エア排気性能を高くする点と、製作が容易である点とから、開口部は多数の穴が開けられた多孔板であることが好ましい。
 フィルム走行面11の上側に設置される箱状体カバー2aは、高温なテンターオーブン10からの吹き出しエア16の自然対流によって、テンターオーブン10の周囲温度が上昇し、作業環境が悪化することへの対策として用いられる。フィルム走行面11の下側に設置される箱状体カバー2bは、テンターオーブン10内よりも低温な外部からの吹き込みエア15が自然対流によってテンターオーブン10の下部に流れ、この下部において加熱性能が低下してテンターオーブン10内のフィルム温度ムラにつながることへの対策として用いられる。
 図1、2に示した気流制御装置1は、フィルム走行面11の上側に箱状体カバー2aが設置され、下側に箱状体カバー2bが設置されているが、テンターオーブン10で生じうる上記の現象に応じて、フィルム走行面11の上側または下側のみに箱状体カバーを設置してもよい。好ましくはフィルム走行面11の上側と下側との両方に箱状体カバー2a、2bを設置する。フィルム走行面11の上側と下側との両方に箱状体カバー2a、2bを設置することで、テンターオーブン10と外部空間14との間のエア流れの変動をより抑制でき、品質が安定し、生産性が向上する。
 ここで、気流制御装置1が所望の動作をしたときのエアの流れ方を説明する。ただし、テンターオーブンの外部からの吹き込みやテンターオーブン内の高温エアが外部へ吹き出すことを抑制できればよく、エア流れは以下の記載に限定されるものではない。
 外部からの吹き込みエア15は、外部空間14と隣接する室4a、4cのエア排気機構5a、5cでエアの一部が排気される。そして、残りのエアは、仕切り構造体3a、3bとフィルム走行面11の間を、流路の急激な縮小による整流と増速の作用を受け、水平噴流17として隣接する室4b、4dに流入する。室4b、4dに流入したエア(水平噴流17)と、テンターオーブン10からの吹き出しエア16とが衝突し、それぞれフィルム走行方向の流れが打ち消され、流れの向きがフィルム走行面11から離間する方向に変わり、エア排気機構5b、5dで排気される。このように、外部からの吹き込みエア15とテンターオーブン10からの吹き出しエア16とが気流制御装置1で排気されるので、外部からの吹き込みエア15が、テンターオーブン10内に吹き込むことや、テンターオーブン10からの吹き出しエア16が、テンターオーブン10の周辺に吹き出すことを抑制できる。
 箱状体カバー2a、2b内部の仕切り構造体3a、3bによって区分けされた室の数は、2室でも効果があるが、3室以上あるとさらに効果が高まる。室の数の上限は特に限定されないが、エア排気機構の数を考慮して100室以下とするのが好ましい。また、箱状カバー2a、2b内部の仕切り構造体3a、3bによって区分けされた室の数はフィルム走行面11の上側と下側とで異なってもよい。
 箱状体カバー2a、2b内部の各室に設置されるエア排気機構は、外部からの吹き込みエア15とテンターオーブン10からの吹き出しエア16とを排気するためのエア排気機構をそれぞれ設けるために、各箱状体カバーを少なくとも2室に設置することが好ましい。この際、エア排気機構は、フィルム走行方向に並んでいる。エア排気機構を少なくとも2室に設置することで、テンターオーブン10から離れた室において外部からの吹き込みエア15を多く排気し、テンターオーブン10に近い室においてテンターオーブン10からの吹き出しエア16を多く排気できるので、吹き込みエア15と吹き出しエア16とが混合するのを低減できる。吹き込みエア15と吹き出しエア16との混合を低減することで、吹き出しエア16に含まれるフィルムからの昇華物が温度低下により析出して、フィルム面を汚染して異物欠点となることを抑制できる。また、吹き込みエア15と吹き出しエア16との混合を低減することで、異なる温度のエアが混合することによりエア温度が不安定になることを抑制できる。外部からの吹き込みエア15とテンターオーブン10からの吹き出しエア16との混合をより低減するために、より多くの室にエア排気機構を設置して、多段で排気することが好ましく、すべての室にエア排気機構を設置することがさらに好ましい。また、箱状体カバーは、幅方向やフィルム走行方向のエア排気流量を調整するために、1室にエア排気機構を複数備えてもよい。
 一つの箱状体カバー2a、2b内の各室のエア排気機構5a、5b、5c、5dのうち、少なくとも一つのエア排気機構が、他のエア排気機構とは独立して排気流量を調整できる流量調整機構を備えることが好ましい。具体的には、図1に示すように、エア排気機構5a、5b(5c、5d)とブロア7とを接続し、ブロア7からそれぞれのエア排気機構への枝分かれ配管の間にダンパ6を取り付けて流量を調整する構成がある。また、個々のエア排気機構を個別にブロアへ接続し、ブロアの設定を調整することで流量を調整する構成でもよい。フィルム走行方向の上流と下流とのエア排気機構の排気流量を独立に調整できれば、外部からの吹き込みエア15と、テンターオーブンからの吹き出しエア16との流量変化に対応して、フィルム走行方向の上流と下流とのエア排気機構の排気流量を調整することができる。
 全てのエア排気機構の排気を止めた状態で、気流制御装置1をフィルム走行方向に通過するエア流れがテンターオーブン10から外部空間14に吹き出す場合には、エア流れの上流側のエア排気機構5b、5dの排気流量を、下流側のエア排気機構5a、5cの排気流量よりも大きくすることが好ましい。エア流れの上流側のエア排気機構5b、5dの排気流量を、下流側のエア排気機構5a、5cの排気流量よりも大きくすることで、仕切り構造体3a、3bとフィルム走行面11との間を流れる水平噴流17と、テンターオーブン10からの吹き出しエア16と、が衝突して、テンターオーブン10からの吹き出しエア16を低減し、吹き出しエアの加熱エネルギーの損失を低減できる。逆に、エア流れの上流側のエア排気機構5b、5dの排気流量を、下流側のエア排気機構5a、5cの排気流量より小さくすると、全てのエア排気機構の排気を止めた状態よりもテンターオーブン10からの吹き出しエア16がさらに増加し、吹き出しエア16を加熱したエネルギーを損失する。
 同様に、全てのエア排気機構の排気を止めた状態で、気流制御装置1をフィルム走行方向に通過するエア流れが外部空間14からテンターオーブン10へ吹き込む場合には、エア流れの上流側のエア排気機構5a、5cの排気流量を、下流側のエア排気機構5b、5dの排気流量よりも大きくすることが好ましい。エア流れの上流側のエア排気機構5a、5cの排気流量を、下流側のエア排気機構5b、5dの排気流量よりも大きくすることで、仕切り構造体3a、3bとフィルム走行面11との間を流れる水平噴流17と、外部からの吹き込みエア15と、が衝突して、外部からの吹き込みエア15を低減し、テンターオーブン10への外部からの吹き込みエア15を抑制でき、テンターオーブン10内のフィルムの温度ムラを低減できる。逆に、エア流れの上流側のエア排気機構5a、5cの排気流量を、下流側のエア排気機構5b、5dの排気流量よりも小さくすると、全てのエア排気機構の排気を止めた状態よりも外部からの吹き込みエア15がさらに増加し、テンターオーブン10内のフィルム加熱性能が低下して、フィルムの温度ムラにつながる。
 箱状体カバー2a、2bは、テンターオーブン10の入口12および出口13の付帯設備を考慮して、フィルム走行方向の寸法を100mm以上4000mm以下とすることが好ましい。また、仕切り構造体3a、3bの形状は、隣り合う室を区分けして仕切れればよく、板状、半円状、箱状等のいずれの形状であってもよい。さらにフィルムとの接触による傷付きを防止するために、仕切り構造体3a、3bの先端には回転体を取り付けてもよい。また、仕切り構造体3a、3bのフィルム走行方向の寸法は、箱状体カバー2a、2bに収まる範囲で選択すればよい。
 品種や生産条件によって、フィルムのたるみや舞い上がりが生じ、仕切り構造体3a、3bと接触することもあるので、フィルム走行面11との距離を維持するために、仕切り構造体3a、3bを昇降させて、仕切り構造体3a、3bとフィルム走行面11との距離を調整できることが好ましい。昇降方法としては、例えば、仕切り構造体3a、3bにジャッキを取り付ける方法がある。仕切り構造体3a、3bとフィルム走行面11との距離は、気流制御装置1の内部の圧力損失を大きくするためには、小さい方が好ましく、一方、フィルムのバタツキによる接触を回避する必要があるため、10mm以上200mm以下の範囲で選択すればよい。仕切り構造体3a、3bとフィルム走行面11との距離が200mm以下であると、上述した仕切り構造体3a、3bとフィルム走行面11との間の流路の急激な縮小による水平噴流17の整流および増速の作用が高まるので、水平噴流17とテンターオーブンからの吹き出しエア16とを衝突させて、それぞれのフィルム走行方向の流れを打ち消し、流れの向きをフィルム走行面11から離間する方向へ変えることが効果的にできる。仕切り構造体3a、3bとフィルム走行面11との距離が10mm以上であると、フィルムのバタツキによる仕切り構造体3a、3bとフィルムとの接触を回避できるため、フィルム破断を防ぎ、生産性を高めることができる。
 図3を参照しながら説明を続ける。図3は、図2に示すA2-A2線に対応する気流制御装置の断面概略図であって、フィルム走行面と平行な平面を切断面とする気流制御装置の断面図である。図3では、ダンパ6およびブロア7を除いた構成を図示している。一般に、生産品種に応じてフィルムの幅を変更するため、テンターオーブン10において、フィルムの両端を把持するクリップ24と、フィルムの両端に設けられ、フィルム走行方向にクリップを走行させる二つのクリップレール25と、クリップ24およびクリップレール25をそれぞれ覆う二つのクリップレールカバー22との間を幅方向(図3の両矢印)に広げたり、狭めたりする。箱状体カバー2a、2bや仕切り構造体3a、3bを、クリップレールカバー22間に入れた状態で、クリップレールカバー22間の距離を広げた場合、クリップレールカバー22と気流制御装置1の隙間が大きくなり、迂回する気流が発生し、気流の制御効果が低減する。従って、箱状体カバー2a、2bや仕切り構造体3a、3bには幅方向の伸縮機構を有することが好ましい。このような幅方向の伸縮機構を設けることで、クリップレールカバー22間の距離に応じて、気流制御装置1を幅方向に伸縮して、隙間を一定に保つことができる。幅方向の伸縮機構として、例えば、箱状体カバー2a、2bや仕切り構造体3a、3bにおいて、図3に示すフィルム幅方向の中央に固定部20を、固定部20のフィルム幅方向の両端部に、該フィルム幅方向に進退可能な可動部21を設けて、固定部20の内側あるいは外側に可動部21が移動する構成が挙げられる。
 また、箱状体カバー2a、2bは、クリップレールカバー22の幅方向の動きに可動部21が追従するように、例えば、可動部21とクリップレールカバー22とを連結するレール接続機構23を備える。
 (変形例1)
 図4を参照しながら、本発明の変形例1にかかる気流制御装置を説明する。気流制御装置101は、テンターオーブン10のフィルム走行方向上流側に隣り合って設置される箱状体カバー2cを備える。箱状体カバー2cは、二つの箱状部材24を隣接させてなり、フィルム走行面の上側に、フィルム走行方向上流側から下流側に向かって並ぶ2つの室104a、104bを有している。室104a、104bはそれぞれフィルム幅方向に延在しており、フィルム走行方向に対向する面が開口している。室104a、104bは、フィルム走行面側から見たときに、お互いの間に隙間がないように設置されている。また、室104a、104bは、それぞれの室の内部から空気を排出するエア排気機構105a、105bを備えている。
 (変形例2)
 図5を参照しながら、本発明の変形例2にかかる気流制御装置を説明する。気流制御装置101Aは、テンターオーブン10のフィルム走行方向上流側に隣り合って設置される箱状体カバー2dを備える。図4に示す箱状体カバー2cでは、室104aと室104bとを隙間なく配置しているが、図5に示す箱状体カバー2dのように、離間した二つの箱状部材24を連結部材41で連結してなり、フィルム走行面側から見たときに、隣り合う室に対向する部分に間隙を設けて、つまり、室104aと室104bとを隙間をあけて配置し、隣り合う室104a、104bを連結部材41で連結している。
 図4、図5に示した気流制御装置101、101Aは、2つの室104a、104bで構成されていたが、フィルム走行方向に並ぶ3室以上で構成してもよく、フィルム走行面11の上側と下側とで室の数が異なってもよい。また、図4に示した第二の気流制御装置は、フィルム走行面11の上側に2つの室104a、104bが設置されているが、上記の第一の気流制御装置と同様に、フィルム走行面11の上側と下側の両方に設置してもよく、フィルム走行面11の上側または下側のみに設置してもよい。好ましくは、フィルム走行面11の上側と下側の両方に、同一数で室を構成する。
 本発明の実施の形態にかかる気流制御装置1では、1つの箱状体カバーの内部を1つまたは複数の仕切り構造体で仕切ることで複数の室に区分けしているのに対し、変形例1、2にかかる気流制御装置101、101Aでは、複数の独立した室を隙間ができないように並べているだけであり、実質的に同様な構成である。そのため、気流制御装置1における様々な実施態様は、気流制御装置101、101Aにも適用できる。
 以下、実施例によって、さらに本発明の詳細を説明する。しかし、本実施例により本発明が限定して解釈されるわけではない。
 [実施例1]
 まず、本発明による効果の評価方法について説明する。本発明の気流制御装置とテンターオーブン本体を構成する室をモデル化した数値解析モデルを作成し、これを数値的に計算して気流制御性能を評価した。
 図6は、本発明の実施例に用いた気流制御装置のフィルム走行方向の断面図である。図6は、上述した気流制御装置1およびテンターオーブン10の断面図であって、フィルム走行面11と直交する平面を切断面とする断面図である。図6では、フィルム走行面11を境界として上下に分けたうち、気流制御装置1およびテンターオーブン10の上半分の構成を示している。気流制御装置1およびテンターオーブン10の内部気流を計算する上で、計算資源を節約するために、気流制御装置1、テンターオーブン10および外部空間14は、フィルム走行面11を介して上下に対称な形状と仮定し、上半分のみを計算する。また、気流制御装置1の気流制御性能を評価するためには、フィルム走行方向の縦断面図におけるエアの流れ方を調べれば十分であり、この面における2Dモデルを作成した。
 各構造の寸法を次の通りとする。テンターオーブン10は、フィルム走行方向の長さD1を1.5m、高さH1を0.65mとし、内部にエア吹き付けノズル31を4本設置した。エア吹き付けノズル31はフィルム走行方向の寸法を0.2mとし、各エア吹き付けノズル31はピッチP1が0.3mの等間隔で配置し、フィルム走行面11との距離H2を0.15mとした。テンターオーブン10の入口に隣接する気流制御装置1は、箱状体カバー2を2つの室4a、4bに分ける1つの仕切り構造体3を備える。室の寸法をフィルム走行方向に0.25m、高さ0.15mとした。気流制御装置1は、フィルム走行方向の長さD2を0.6mとした。気流制御装置1の室4a、4bおよび仕切り構造体3は、フィルム走行面11と気流制御装置1の入口38との距離D3を0.05mとした。そして、外部空間14はフィルム走行方向の長さD4を0.4m、高さをテンターオーブン10の高さ(高さH1)と同じ0.65mとした。また、MDと記す方向はフィルム走行方向である。
 テンターオーブン10のエア吹き付けノズル31のフィルム走行面11に対向する面に、0.01m幅のノズル開口部32を設け、ノズル開口部32に流速20m/sでエアを吹き出す境界条件を設定した。また、吸引部33には、ノズル開口部32から吹き出したエアの風量と同量を排気する境界条件を設定した。解析空間の外部境界34と、テンターオーブン10の内部境界35とを圧力境界とし、外部境界34の境界条件に大気圧(0.1MPa)を設定し、テンターオーブン10の内部境界35の境界条件に大気圧+5Paを設定した。
 流体の物性は、温度100℃で大気圧の乾燥空気を想定し、密度0.93kg/m、粘度2.2×10-5Pa・s、比熱1012J/(kg・K)、熱伝導率0.031W/(m・K)とした。
 解析は、市販の汎用熱流体解析ソフトウェアである「STAR-CCM」(株式会社IDAJ製)を用い、定常計算を行った。乱流の取り扱いにはk-ε乱流モデルを用い、壁近傍の乱流境界層の取り扱いには壁法則を用いた。
 上記のソフトウェアは、流体の運動方程式であるナヴィエ・ストークス方程式を有限体積法により解析するものである。もちろん、同様の解析ができるものであればどのような熱流体解析ソフトウェアを用いてもよい。
 気流制御装置1の効果は、図6に示すテンターオーブン10の入口36、気流制御装置1の内部37、気流制御装置1の入口38の位置における、フィルム走行面11の垂線で、フィルム走行方向の速度成分の平均エア流速を指標とした。
 なお、この条件において、外部空間14に隣接するエア排気機構5aと、テンターオーブン10に隣接するエア排気機構5bとの両方からのエアの排気を止めると、テンターオーブン10から気流制御装置1を通って外部空間14まで平均流速3.0m/sでエアが流れる(比較例1を参照)。
 外部空間14と隣接するエア排気機構5aと、テンターオーブン10と隣接するエア排気機構5bとの各エア流速をそれぞれ0.40m/sとした。ただし、2次元の近似手法として、ここでは、エア流量はエア流速値を用いて示すこととする。気流制御装置の効果を表1、設定条件を表2に示す。なお、表1中のプラス(+)は、テンターオーブン10の入口36から気流制御装置の入口38へ向かう方向であり、マイナス(-)は、気流制御装置1の入口38からテンターオーブン10の入口36へ向かう方向である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 テンターオーブン10から気流制御装置1への吹き出しエアは平均流速3.2m/sでテンターオーブン10の入口36を通過する。テンターオーブン10から吹き出したエアは、テンターオーブン10に隣接する室4bに設けたエア排気機構5bでエアの一部が排気され、排気しきれなかった残りのエアが、平均流速1.2m/sで、仕切り構造体3とフィルム走行面11の間の気流制御装置1の内部37を、流路の急激な縮小による整流と増速の作用を受けて、水平噴流として外部空間14と隣接する室4aに流入する。外部空間14と隣接する室4aに設けたエア排気機構5aの排気により、外部空間14からの吹き込みエアが生じ、平均流速0.8m/sで気流制御装置の入口38を通過し、テンターオーブン10に隣接する室4bから流入する水平噴流と衝突する。衝突したエアは、フィルム走行方向の流れが打ち消され、流れの向きがフィルム走行面11から離間する方向に変わり、エア排気機構5aで排気される。
 結果として、外部空間14から流入するエアと、テンターオーブン10からの吹き出しエアが気流制御装置1に排気され、テンターオーブン10から外部空間14への吹き出しエアと、外部空間14からテンターオーブン10への吹き込みエアとが抑制される。
 [実施例2]
 実施例2では、実施例1と同じ計算モデルを用いた。実施例2は、外部空間14と隣接するエア排気機構5aのエア流速を0.64m/s、テンターオーブン10と隣接するエア排気機構5bのエア流速を0.16m/sとした以外は実施例1と同じである。
 表1の通り、テンターオーブン10から気流制御装置1への吹き出しエアは平均流速3.3m/sでテンターオーブン10の入口36を通過する。テンターオーブン10から吹き出したエアは、テンターオーブン10に隣接する室4bに設けたエア排気機構5bでエアの一部が排気され、排気しきれなかった残りのエアが平均流速2.5m/sで、仕切り構造体3とフィルム走行面11の間の気流制御装置1の内部37を、流路の急激な縮小による整流と増速の作用を受けて、水平噴流として外部空間と隣接する室4aに流入する。外部空間14と隣接する室4aに設けたエア排気機構5aの排気により、外部空間14からの吹き込みエアが生じ、平均流速0.7m/sで気流制御装置1の入口38を通過し、テンターオーブン10に隣接する室4bから流入する水平噴流と衝突する。衝突したエアは、フィルム走行方向の流れが打ち消され、流れの向きがフィルム走行面11から離間する方向に変わり、エア排気機構5aで排気される。
 結果として、外部空間14から流入するエアと、テンターオーブン10からの吹き出しエアとが気流制御装置1に排気され、テンターオーブン10から外部空間14への吹き出しエアと、外部空間14からテンターオーブン10への吹き込みエアとが抑制される。
 ただし、全てのエア排気機構からのエアの排気を止めた状態でのエア流れの上流側となるエア排気機構5bのエア流速が、下流側のエア排気機構5aのエア流速よりも小さいので、実施例1と比べてテンターオーブン10の入口36から吹き出したエアが0.1m/s増加し、テンターオーブン10からの吹き出しエア分の加熱エネルギーの損失は増加した。
 [実施例3]
 実施例3では、実施例1と同じ計算モデルを用いた。実施例3は、外部空間14と隣接するエア排気機構5aのエア流速を0.16m/s、テンターオーブン10と隣接するエア排気機構5bのエア流速を0.64m/sとした以外は実施例1と同じである。
 表1の通り、テンターオーブン10から気流制御装置1への吹き出しエアは平均流速3.0m/sでテンターオーブン10の入口36を通過する。外部空間14と隣接する室4aからテンターオーブン10に隣接する室4bに平均流速0.2m/sで流入する水平噴流と、テンターオーブン10の吹き出しエアが衝突し、フィルム走行方向の流れが打ち消され、流れの向きがフィルム走行面11から離間する方向に変わり、エア排気機構5bで排気される。そして、外部空間14からの吹き込みエアは平均流速1.0m/sで気流制御装置1の入口38を通過し、外部空間14に隣接する室4aのエア排気機構5aで一部排気される。
 結果として、外部空間14から流入するエアと、テンターオーブン10からの吹き出しエアが気流制御装置1に排気され、テンターオーブン10から外部空間14への吹き出しエアと、外部空間14からテンターオーブン10への吹き込みエアとが抑制される。
 さらに、全てのエア排気機構からのエアの排気を止めた状態でのエア流れの上流側となるエア排気機構5bのエア流速が、下流側のエア排気機構5aのエア流速よりも大きいので、実施例1と比べて、テンターオーブン10の入口36からの吹き出しエアが0.2m/s減少し、テンターオーブン10からの吹き出しエアの加熱エネルギー損失は減少した。
 [比較例1]
 比較例1では、実施例1と同じ計算モデルを用いた。比較例1は、外部空間14と隣接するエア排気機構5aと、テンターオーブン10と隣接するエア排気機構5bとの各エア流速をそれぞれ0.0m/sとした以外は実施例1と同じである。
 表1の通り、テンターオーブン10から気流制御装置1への吹き出しエアは、平均エア流速3.0m/sでテンターオーブン10の入口36を通過する。テンターオーブン10から吹き出したエアは、テンターオーブン10に隣接する室4bに設けたエア排気機構5bで、エアを排気されることなく、平均エア流速3.0m/sで、気流制御装置1の内部37を通過し、外部空間14と隣接する室4aに流入する。この室4aに流入したエアは、そのまま気流制御装置1の入口38を平均エア流速3.0m/sで通過し、外部空間14へ吹き出す。比較例1では、テンターオーブン10からの吹き出しエアが外部空間14へ吹き出した。
 比較例1では、気流制御装置1のエア排気機構が機能していないため、気流制御装置1に流入したエアと衝突する水平噴流が生じない。その結果、気流制御装置1に流入する流れに衝突し、フィルム走行方向の流れを打ち消し、流れの向きをフィルム走行面11から離間する方向に変える作用が生じないため、テンターオーブン10からの吹き出しエアを外部空間14へ吹き出すことを抑制することはできない。
 [比較例2]
 比較例2では、実施例1と同じ計算モデルを用いた。比較例2は、外部空間14と隣接するエア排気機構5aのエア流速を0.0m/s、テンターオーブン10と隣接するエア排気機構5bのエア流速を0.8m/sとした以外は実施例1と同じである。
 表1の通り、テンターオーブン10から気流制御装置1への吹き出しエアは、比較例1より2.0m/s増加して、平均エア流速5.0m/sでテンターオーブン10の入口36を通過する。
 テンターオーブン10から吹き出したエアは、テンターオーブン10に隣接する室4bのエア排気機構5bでエアの一部が排気され、平均エア流速1.0m/sで気流制御装置1の内部37を通過し、外部空間14と隣接する室4aに流入する。この室4aに流入したエアは、そのまま気流制御装置1の入口38を平均エア流速1.0m/sで通過し、外部空間14へ吹き出す。比較例2では、テンターオーブン10からの吹き出しエア16が外部空間14へ吹き出した。
 比較例2では、エア排気機構5bからはエアを排気するが、エア排気機構5aからはエアを排気しないので、気流制御装置1に流入したエアと衝突する水平噴流が生じない。その結果、気流制御装置1に流入する流れと衝突し、フィルム走行方向の流れを打ち消し、流れの向きをフィルム走行面11から離間する方向に変える作用が生じないため、テンターオーブン10からの吹き出しエアを外部空間14へ吹き出すことを抑制することはできない。
 [比較例3]
 比較例3では、実施例1と同じ計算モデルを用いた。比較例3は、外部空間14と隣接するエア排気機構5aのエア流速を0.8m/s、テンターオーブン10と隣接するエア排気機構5bのエア流速を0.0m/sとした以外は実施例1と同じである。
 表1の通り、テンターオーブン10から気流制御装置1への吹き出しエアは、比較例1より1.8m/s増加して、平均エア流速4.8m/sでテンターオーブン10の入口36を通過する。テンターオーブン10から吹き出したエアは、テンターオーブン10に隣接する室4bのエア排気機構5bで、エアを排気されることなく、平均エア流速4.8m/sで、気流制御装置1の内部37を通過し、外部空間14と隣接する室4aに流入する。この室4aに流入したエアは、気流制御装置1の入口38を平均エア流速0.8m/sで通過し、外部空間14へ吹き出す。比較例3では、テンターオーブン10からの吹き出しエアが外部空間14へ吹き出した。
 比較例3では、エア排気機構5aからはエアを排気するが、エア排気機構5bからはエアを排気しないので、気流制御装置1に流入したエアと衝突する水平噴流が生じない。その結果、気流制御装置1に流入する流れと衝突し、フィルム走行方向の流れを打ち消し、流れの向きをフィルム走行面11から離間する方向に変える作用が生じないため、テンターオーブンからの吹き出しエアを外部空間14へ吹き出すことを抑制することはできない。
 本発明にかかる気流制御装置および延伸フィルムの製造方法は、フィルムの温度ムラを低減し、フィルム幅方向の特性および厚みが均一である熱可塑性樹脂からなる延伸フィルムの製造を可能にするとともに、フィルムを所望の温度まで加熱する際の温度を保持するのに必要な消費エネルギーの削減を可能とするばかりでなく、テンターオーブンの内部の高温エアが外部へ吹き出し、テンターオーブン周囲の作業環境を悪化させることや、フィルムの生産性を低下させることを防止するのに有用である。
1、101:気流制御装置
2a、2b:箱状体カバー
3、3a、3b:仕切り構造体
4a、4b、4c、4d:室
104a、104b:室
5a、5b、5c、5d:エア排気機構
105a、105b:エア排気機構
205a、205b:エア排気機構
6:ダンパ
7:ブロア
10:テンターオーブン
11:フィルム走行面
12、36、38:入口
13:出口
14:外部空間
15:外部からの吹き込みエア
16:吹き出しエア
17:水平噴流
20:固定部
21:可動部
22:クリップレールカバー
23:レール接続機構
24:クリップ
25:クリップレール
31:エア吹き付けノズル
32:ノズル開口部
33:吸引部
34:解析空間の外部境界
35:内部境界
37:内部
41:連結部材

Claims (9)

  1.  フィルムが搬入される入口と、フィルムが搬出される出口とを有するテンターオーブンの、前記入口のフィルム走行方向上流側および/または前記出口のフィルム走行方向下流側に隣り合って、フィルム走行面の上面側および/または下面側に設置され、前記フィルム走行方向に延在し、前記フィルム走行面に対向する面が開口している箱状体カバーを備え、
     前記箱状体カバーは、
      当該箱状体カバーの内部に、前記フィルムの幅方向に延在し、箱状体カバー内部を複数の室に区分けする仕切り構造体を少なくとも1つ有し、
      前記複数の室の少なくとも2室に、室内の空気を排出するエア排気機構が設けられた、気流制御装置。
  2.  前記仕切り構造体が、昇降する機構を有する、請求項1の気流制御装置。
  3.  前記箱状体カバーと前記仕切り構造体とが、前記フィルムの幅方向に伸縮する機構を有する、請求項1または2の気流制御装置。
  4.  フィルムが搬入される入口と、フィルムが搬出される出口とを有するテンターオーブンの、前記入口のフィルム走行方向上流側および/または前記出口のフィルム走行方向下流側に隣り合い、フィルム走行面の上面側および/または下面側に設置され、前記フィルム走行方向に並び、前記フィルム走行面に対向する面が開口し、前記フィルムの幅方向に延在する複数の室を備え、
     前記複数の室は、
      前記フィルム走行面側から見たときに、隣り合う室と室とは隙間なく配置され、
      前記複数の室の少なくとも2室に、室の内部から空気を排出するエア排気機構が設けられた、気流制御装置。
  5.  各室は、隣り合う室に対向する部分が昇降する機構を有する、請求項4の気流制御装置。
  6.  前記フィルムの幅方向に伸縮する機構を有する、請求項4または5の気流制御装置。
  7.  前記エア排気機構のうちの少なくとも1つのエア排気機構は、他のエア排気機構とは独立して排気流量を調整できる流量調整機構を備えた、請求項1から6のいずれかの気流制御装置。
  8.  テンターオーブンと、テンターオーブン入口のフィルム走行方向上流側および/またはテンターオーブン出口のフィルム走行方向下流側に隣り合って設置された請求項1から7のいずれかに記載の気流制御装置とのそれぞれにフィルムを通過させ、
     前記気流制御装置において、前記エア排気機構により前記室の内部の空気を排出し、
     前記テンターオーブンにおいて、走行するフィルムを加熱しながら延伸する、
    延伸フィルムの製造方法。
  9.  前記気流制御装置の前記エア排気機構の排気流量を、全てのエア排気機構の排気を止めた状態で前記気流制御装置にフィルムを通過させた際に当該気流制御装置を流れるエア流れに対して、前記エア流れの上流側のエア排気機構の排気流量を下流側のエア排気機構の排気流量よりも大きくする、請求項8の延伸フィルムの製造方法。
PCT/JP2018/010340 2017-03-28 2018-03-15 気流制御装置および延伸フィルムの製造方法 WO2018180565A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018515159A JP7020402B2 (ja) 2017-03-28 2018-03-15 気流制御装置および延伸フィルムの製造方法
KR1020197027753A KR102364565B1 (ko) 2017-03-28 2018-03-15 기류 제어 장치 및 연신 필름의 제조 방법
US16/497,158 US11370161B2 (en) 2017-03-28 2018-03-15 Air flow controller and manufacturing method of stretched film
CN201880021292.3A CN110461570B (zh) 2017-03-28 2018-03-15 气流控制装置及拉伸膜的制造方法
EP18775583.0A EP3603936B1 (en) 2017-03-28 2018-03-15 Airflow control device and method for manufacturing stretched film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017062364 2017-03-28
JP2017-062364 2017-03-28

Publications (1)

Publication Number Publication Date
WO2018180565A1 true WO2018180565A1 (ja) 2018-10-04

Family

ID=63675543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010340 WO2018180565A1 (ja) 2017-03-28 2018-03-15 気流制御装置および延伸フィルムの製造方法

Country Status (7)

Country Link
US (1) US11370161B2 (ja)
EP (1) EP3603936B1 (ja)
JP (1) JP7020402B2 (ja)
KR (1) KR102364565B1 (ja)
CN (1) CN110461570B (ja)
HU (1) HUE064050T2 (ja)
WO (1) WO2018180565A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110682484A (zh) * 2019-10-18 2020-01-14 佛山市盟思拉伸机械有限公司 烘箱装置及窜风阻尼结构
WO2023171219A1 (ja) * 2022-03-07 2023-09-14 東レ株式会社 気流制御装置および延伸フィルムの製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019120794A1 (de) * 2019-08-01 2021-02-04 Brückner Maschinenbau GmbH & Co. KG Belüftungsmodul sowie zugehörige Reckanlage
KR102358925B1 (ko) * 2021-09-08 2022-02-08 주식회사 티씨엠에스 분리막 두께 균일화용 td 연신장치

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0387238U (ja) 1989-12-20 1991-09-04
JPH09193240A (ja) * 1996-01-19 1997-07-29 Sekisui Chem Co Ltd 熱可塑性樹脂フィルムもしくはシートの延伸方法
JP2005008407A (ja) 2003-05-28 2005-01-13 Toray Ind Inc シート用走行装置、シートの製造装置および製造方法、シート用走行装置の性能測定方法
JP2008100456A (ja) * 2006-10-20 2008-05-01 Toray Ind Inc シート状物の熱処理装置
JP2009269268A (ja) 2008-05-07 2009-11-19 Hitachi Plant Technologies Ltd 延伸機
JP2011167923A (ja) 2010-02-18 2011-09-01 Japan Steel Works Ltd:The 横延伸装置及び横延伸方法
WO2012133152A1 (ja) * 2011-03-29 2012-10-04 東レ株式会社 テンターオーブンおよび延伸フィルムの製造方法
JP2013256384A (ja) * 2012-06-14 2013-12-26 Japan Steel Works Ltd:The エア噴出ノズル
WO2017115654A1 (ja) * 2015-12-28 2017-07-06 東レ株式会社 気流制御装置および延伸フィルムの製造方法
JP2018047693A (ja) * 2016-09-20 2018-03-29 住友化学株式会社 フィルム延伸装置、およびフィルム製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4104769A (en) * 1976-03-12 1978-08-08 E. I. Du Pont De Nemours And Company Apparatus for stretching film
US4378207A (en) * 1979-11-16 1983-03-29 Smith Thomas M Infra-red treatment
JPS5816177A (ja) 1981-06-30 1983-01-29 トマス・エム・スミス 加熱方法及び装置
GB2175245B (en) 1985-05-14 1989-08-16 Hutschenreuther Device for producing ceramic mouldings
JPH064275B2 (ja) 1985-05-20 1994-01-19 ダイアホイルヘキスト株式会社 フィルムの横延伸方法
JPH0764017B2 (ja) 1989-08-31 1995-07-12 東洋紡績株式会社 プラスチックフィルムの横延伸方法
JP2003039543A (ja) 2001-07-30 2003-02-13 Mitsubishi Heavy Ind Ltd テンタオーブン
JP4217119B2 (ja) * 2003-07-17 2009-01-28 富士フイルム株式会社 溶液製膜設備及び方法
US20080075894A1 (en) * 2004-07-14 2008-03-27 Fujifilm Corporation Thermoplastic Film And Method Of Manufacturing The Same
JP4636263B2 (ja) 2005-05-27 2011-02-23 富士フイルム株式会社 熱可塑性フィルムの製造方法
CN101304866B (zh) * 2005-11-08 2012-03-21 富士胶片株式会社 制备热塑性膜的方法
CN101505937B (zh) * 2006-08-25 2012-02-29 柯尼卡美能达精密光学株式会社 光学薄膜、其制造方法、使用其的偏光板
MY151712A (en) * 2007-03-20 2014-06-30 Toray Industries Air injection nozzle, and tenter oven using the nozzle
JP4876008B2 (ja) 2007-03-27 2012-02-15 富士フイルム株式会社 ポリエステル樹脂フィルムの製造方法
JP2012176344A (ja) 2011-02-25 2012-09-13 Toray Ind Inc 塗布ヘッドとこれを備えた塗布装置
US9314960B2 (en) * 2012-03-22 2016-04-19 Konica Minolta, Inc. Method for producing long stretched film, and device for producing long stretched film

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0387238U (ja) 1989-12-20 1991-09-04
JPH09193240A (ja) * 1996-01-19 1997-07-29 Sekisui Chem Co Ltd 熱可塑性樹脂フィルムもしくはシートの延伸方法
JP2005008407A (ja) 2003-05-28 2005-01-13 Toray Ind Inc シート用走行装置、シートの製造装置および製造方法、シート用走行装置の性能測定方法
JP2008100456A (ja) * 2006-10-20 2008-05-01 Toray Ind Inc シート状物の熱処理装置
JP2009269268A (ja) 2008-05-07 2009-11-19 Hitachi Plant Technologies Ltd 延伸機
JP2011167923A (ja) 2010-02-18 2011-09-01 Japan Steel Works Ltd:The 横延伸装置及び横延伸方法
WO2012133152A1 (ja) * 2011-03-29 2012-10-04 東レ株式会社 テンターオーブンおよび延伸フィルムの製造方法
JP2013256384A (ja) * 2012-06-14 2013-12-26 Japan Steel Works Ltd:The エア噴出ノズル
WO2017115654A1 (ja) * 2015-12-28 2017-07-06 東レ株式会社 気流制御装置および延伸フィルムの製造方法
JP2018047693A (ja) * 2016-09-20 2018-03-29 住友化学株式会社 フィルム延伸装置、およびフィルム製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3603936A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110682484A (zh) * 2019-10-18 2020-01-14 佛山市盟思拉伸机械有限公司 烘箱装置及窜风阻尼结构
WO2023171219A1 (ja) * 2022-03-07 2023-09-14 東レ株式会社 気流制御装置および延伸フィルムの製造方法

Also Published As

Publication number Publication date
US20200108547A1 (en) 2020-04-09
KR102364565B1 (ko) 2022-02-18
JP7020402B2 (ja) 2022-02-16
US11370161B2 (en) 2022-06-28
CN110461570B (zh) 2021-07-09
EP3603936A4 (en) 2021-03-10
JPWO2018180565A1 (ja) 2020-02-06
EP3603936B1 (en) 2023-08-02
HUE064050T2 (hu) 2024-02-28
CN110461570A (zh) 2019-11-15
KR20190127752A (ko) 2019-11-13
EP3603936A1 (en) 2020-02-05

Similar Documents

Publication Publication Date Title
WO2018180565A1 (ja) 気流制御装置および延伸フィルムの製造方法
JP5949548B2 (ja) テンターオーブンおよび延伸フィルムの製造方法
US10792844B2 (en) Airflow control apparatus and method for manufacturing stretched film
JPWO2008114586A1 (ja) エア噴出ノズルおよびそれを用いたテンターオーブン
JP2007320276A (ja) テンターオーブン
WO2021075282A1 (ja) 吹出しノズル
JP5793914B2 (ja) 幅可変ノズルおよびそれを用いたテンターオーブン
JP6394010B2 (ja) テンターオーブン、及びそれを用いた熱可塑性樹脂フィルムの製造方法
JP5261415B2 (ja) 横延伸装置及び横延伸方法
WO2019116534A1 (ja) フィルム製造装置
WO2014156977A1 (ja) テンターオーブンおよび熱可塑性樹脂フィルムの製造方法
KR102647042B1 (ko) 기체 취출 노즐 및 로, 그리고 가공 필름의 제조 방법
JP6295760B2 (ja) テンターオーブンおよび熱可塑性樹脂フィルムの製造方法
WO2023171219A1 (ja) 気流制御装置および延伸フィルムの製造方法
US20220323971A1 (en) Blowoff nozzle
WO2023171214A1 (ja) 吹出しノズル
WO2023171213A1 (ja) 吹出しノズル

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018515159

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18775583

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197027753

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018775583

Country of ref document: EP

Effective date: 20191028