WO2018179875A1 - 撮像装置とフォーカス制御方法およびフォーカス判定方法 - Google Patents

撮像装置とフォーカス制御方法およびフォーカス判定方法 Download PDF

Info

Publication number
WO2018179875A1
WO2018179875A1 PCT/JP2018/004156 JP2018004156W WO2018179875A1 WO 2018179875 A1 WO2018179875 A1 WO 2018179875A1 JP 2018004156 W JP2018004156 W JP 2018004156W WO 2018179875 A1 WO2018179875 A1 WO 2018179875A1
Authority
WO
WIPO (PCT)
Prior art keywords
focus
change
phase difference
information
focus state
Prior art date
Application number
PCT/JP2018/004156
Other languages
English (en)
French (fr)
Inventor
祐基 明壁
南 智之
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to KR1020197027590A priority Critical patent/KR20190129050A/ko
Priority to EP18774938.7A priority patent/EP3605179A4/en
Priority to JP2019508690A priority patent/JP7207296B2/ja
Priority to US16/493,632 priority patent/US10917555B2/en
Priority to CN201880020431.0A priority patent/CN110446962A/zh
Publication of WO2018179875A1 publication Critical patent/WO2018179875A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • H04N23/672Focus control based on electronic image sensor signals based on the phase difference signals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/34Systems for automatic generation of focusing signals using different areas in a pupil plane
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/36Systems for automatic generation of focusing signals using image sharpness techniques, e.g. image processing techniques for generating autofocus signals
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • G03B13/36Autofocus systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B19/00Cameras
    • G03B19/02Still-picture cameras
    • G03B19/04Roll-film cameras
    • G03B19/07Roll-film cameras having more than one objective
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/45Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from two or more image sensors being of different type or operating in different modes, e.g. with a CMOS sensor for moving images in combination with a charge-coupled device [CCD] for still images
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • H04N23/673Focus control based on electronic image sensor signals based on contrast or high frequency components of image signals, e.g. hill climbing method
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • H04N23/675Focus control based on electronic image sensor signals comprising setting of focusing regions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/75Circuitry for compensating brightness variation in the scene by influencing optical camera components

Definitions

  • This technology relates to an imaging device, a focus control method, and a focus determination method, and enables high-speed and high-quality autofocus operation.
  • contrast detection is performed by calculating a contrast evaluation value based on an imaging signal generated by an image sensor while moving a focus lens, and searching for a focus lens position where the contrast evaluation value is maximized.
  • System focus control is performed.
  • the defocus amount is based on the phase shift between two phase difference images obtained by receiving light beams that have passed through different exit pupil regions in the imaging optical system with phase difference detection pixels provided on the imaging surface.
  • the image plane phase difference type focus control is performed in which the focus lens is moved by a movement amount corresponding to the defocus amount.
  • Patent Document 1 discloses that not only image plane phase difference type focus control but also contrast type focus control is performed using an image sensor having a pixel for detecting a phase difference.
  • the focus control based on the image plane phase difference method for example, when an imaging lens having a long focal length is used, if the focus is greatly shifted, the image on the imaging plane is greatly blurred. For this reason, there is little information amount of phase difference information, and it becomes difficult to calculate defocus amount correctly. In such a case, it is possible to focus on a desired subject by switching the control method to the contrast detection method.
  • the contrast detection method the evaluation value is calculated by moving the focus lens, and the in-focus direction and the in-focus position are detected based on the calculated evaluation value. Therefore, if the frequency of switching to the contrast detection method increases, it often takes time to reach the in-focus state, and the quality deteriorates.
  • an object of this technology is to provide an imaging apparatus, a focus control method, and a focus determination method that enable high-speed and high-quality autofocus operation.
  • the first aspect of this technology is An imaging device including an image output pixel and a phase difference detection pixel; Indicates whether the change in the focus state is a monotonous change based on the focus state information obtained while performing the focus control based on the image plane phase difference information obtained using the phase difference detection pixel over a predetermined period. Generate focus state change information, When the focus state change information indicates that the change in the focus state is a monotonous change, the image pickup apparatus includes a control unit that continues image surface phase difference focus control based on the image surface phase difference information.
  • imaging is performed using an imaging device including an image output pixel and a phase difference detection pixel.
  • the control unit performs focus control based on the image plane phase difference information obtained using the phase difference detection pixels over a predetermined period, and outputs focus state change information indicating whether or not the change in the focus state is a monotone change. Generate.
  • the control unit determines whether the change in the focus state is a monotonous change based on, for example, the change amount of the actual lens position of the focus lens or the change amount of the defocus amount indicated by the image plane phase difference information. Is generated. Further, the control unit may generate the focus state change information by making a determination based on the frequency characteristic of the change amount of the actual lens position of the focus lens or the change amount of the defocus amount indicated by the image plane phase difference information. The focus state change information may be generated by determination based on the actual lens position of the lens or the defocus amount indicated by the image plane phase difference information.
  • the control unit continues the focus control based on the image plane phase difference information when the focus state change information indicates that the change in the focus state is a monotone change.
  • the control unit is based on information other than the image plane phase difference information from the focus control based on the image plane phase difference information.
  • Focus control based on information other than image plane phase difference information includes focus control based on image information obtained using image output pixels or distance measurement information obtained by a distance measurement information generation element provided separately from the image sensor. The focus control based on the image information obtained using the image output pixels and the focus control based on information different from the image information may be switched.
  • the control unit performs correlation calculation of two images having parallax obtained from the output of the phase difference detection pixel, determines the reliability of the correlation calculation result, and has the reliability of the correlation calculation result If it is determined that the focus state change information is generated and the correlation calculation result is determined not to be reliable, the focus lens is moved from one end side to the other end side to detect the in-focus position. Perform all search operations.
  • the second aspect of this technology is An image sensor including an image output pixel and an image plane phase difference detection pixel; Whether the change in the focus state is a monotonous change based on the focus state information obtained while performing the image plane phase difference focus control based on the image plane phase difference information obtained using the phase difference detection pixel over a predetermined period. If the focus state change information indicates that the change in the focus state is a monotonous change, it is determined that the focus lens has a large focus position shift, and the focus state change information is generated. When the state change information indicates that the change in the focus state is not a monotonous change, the image pickup apparatus includes a determination unit that determines that the contrast of the subject imaged by the image output pixel is low.
  • imaging is performed using an imaging device including an image output pixel and a phase difference detection pixel.
  • the determination unit performs focus control based on the image plane phase difference information obtained using the phase difference detection pixels over a predetermined period, and displays focus state change information indicating whether or not the change in the focus state is a monotone change.
  • the focus state information is a defocus amount indicated by the actual lens position or image plane phase difference information of the focus lens, and the determination unit determines whether the change in the focus state is a monotonous change or not. Judged by the amount of change in focus.
  • the focus state information is a defocus amount indicated by the actual lens position or image plane phase difference information of the focus lens, and the determination unit determines whether the change in the focus state is a monotonous change or not. It is determined by the frequency characteristic of the amount or the frequency characteristic of the defocus amount variation. Further, the focus state information is a defocus amount indicated by the actual lens position and image plane phase difference information of the focus lens, and the determination unit determines whether the change in the focus state is a monotonous change from the actual lens position of the focus lens. The determination is based on both the focus amounts.
  • the control unit starts generating the focus state change information.
  • the determination unit controls the presentation of the state determination result in the information presentation unit that presents the state determination result to the user.
  • the third aspect of this technology is Focus state obtained while performing image plane phase difference focus control based on image plane phase difference information obtained over a predetermined period using the phase difference detection pixel of the imaging device including an image output pixel and a phase difference detection pixel Generating focus state change information indicating whether the change in focus state is a monotonous change based on the information;
  • the focus control method includes continuing image plane phase difference focus control based on the image plane phase difference information.
  • the fourth aspect of this technology is Obtained while performing image plane phase difference focus control based on image plane phase difference information obtained over a predetermined period using the phase difference detection pixel of the image sensor including an image output pixel and an image plane phase difference detection pixel.
  • the focus state change information indicates that the change in the focus state is a monotonous change, it is determined that the focus lens has a large focal position shift, and the focus state change information indicates that the focus state change is a monotone change.
  • a focus control method including determining that the contrast of the subject imaged by the image output pixel is low.
  • an imaging device including an image output pixel and a phase difference detection pixel
  • the control unit is based on image plane phase difference information obtained using the phase difference detection pixel over a predetermined period.
  • the focus state change information indicating whether or not the change in the focus state is a monotone change is generated.
  • the focus state change information is a monotonous change in the focus state change.
  • the image plane phase difference focus control based on the image plane phase difference information is continued. For this reason, for example, the frequency of performing the contrast-type autofocus operation is reduced, and a high-speed and high-quality autofocus operation is possible. Note that the effects described in the present specification are merely examples and are not limited, and may have additional effects.
  • FIG. 6 is a diagram illustrating a relationship between a subject, a lens position locus, and a defocus amount locus when an image plane phase difference AF operation is performed. It is the flowchart which illustrated the production
  • FIG. 1 illustrates the configuration of the first embodiment.
  • the imaging device 10 includes an imaging lens 20 and a main body 30.
  • the imaging lens 20 includes an imaging optical system 21 and a lens drive processing unit 22.
  • the imaging optical system 21 is configured using a focus lens. Further, the imaging optical system 21 may have a configuration using not only a focus lens but also a zoom lens, a diaphragm mechanism, and the like.
  • the lens drive processing unit 22 moves the lens position of the focus lens in the imaging optical system 21 based on the lens control signal from the main body unit 30.
  • the lens drive processing unit 22 generates information indicating the actual lens position (hereinafter referred to as “lens position”) of the focus lens and outputs the information to the main body unit 30.
  • the main body 30 includes an imaging unit 31, a preprocessing unit 32, an image processing unit 33, a display unit 35, a recording unit 36, a user interface (I / F) unit 39, and a control unit 51.
  • the main body 30 may have a functional block not shown in the drawing, or may have a configuration not including a part of the functional block shown in the drawing.
  • the imaging unit 31 is configured using an imaging element such as a CMOS (Complementary Metal Oxide Semiconductor).
  • an image output pixel and a phase difference detection pixel are provided in the imaging surface.
  • the image output pixel and the phase difference detection pixel are not limited to being provided independently, and the image output pixel and the phase difference detection pixel are provided in the imaging surface by providing the image output pixel with a phase difference detection function. It is good.
  • the subject light from the imaging lens 20 is incident on the imaging surface of the imaging unit 31.
  • the imaging unit 31 performs operations such as start and end of the exposure operation of the imaging device, output selection of each pixel, readout of the pixel signal, and the like based on a control signal from the control unit 51 described later, and is imaged by the image output pixel.
  • Generation of an image signal indicating the subject and a phase difference image generated by the phase difference detection pixel for example, phase difference information indicating a phase difference between two phase difference images (hereinafter referred to as “image plane phase difference information”).
  • the imaging unit 31 outputs the generated image signal to the preprocessing unit 32. Further, the imaging unit 31 outputs the generated image plane phase difference information to the control unit 51.
  • the pre-processing unit 32 performs predetermined signal processing, such as noise removal processing, gain adjustment, and clamping processing, on the image signal output from the imaging unit 31.
  • the pre-processing unit 32 performs analog / digital conversion processing, converts an analog image signal subjected to predetermined signal processing into a digital image signal, and outputs the digital image signal to the image processing unit 33.
  • the image processing unit 33 performs predetermined signal processing on the image signal output from the preprocessing unit 32, for example, black level correction using the black level of the digital image signal as a reference black level, and the white portion of the subject is correctly white Signal processing such as white balance control for correcting the red and blue levels so as to be displayed and recorded, and gamma correction for correcting the tone characteristics of the image signal.
  • the image processing unit 33 outputs the image signal after the signal processing to the display unit 35, the recording unit 36, and the control unit 51.
  • the image processing unit 33 may encode the image signal and output it to the recording unit 36.
  • the image processing unit 33 may perform the decoding process on the encoded signal supplied from the recording unit 36 and display the obtained image signal on the display unit. 35 may be output.
  • the display unit 35 displays a captured image based on the image signal processed by the image processing unit 33. Further, the display unit 35 displays a menu screen or the like based on a control signal from the control unit 51. Further, based on the state determination signal from the control unit 51, the display unit 35 informs the user that the focus lens is misaligned with respect to the focus position, or that the contrast of the captured subject is low. Present.
  • the recording unit 36 records the image signal or the encoded signal signal-processed by the image processing unit 33 on a recording medium.
  • the recording unit 36 may record a RAW image signal before the signal processing is performed by the image processing unit 33 on a recording medium.
  • the recording unit 36 reads the image signal or the encoded signal recorded on the recording medium and outputs it to the image processing unit 33.
  • the user interface unit 39 is configured using operation switches, operation buttons, and the like.
  • the user interface unit 39 generates an operation signal corresponding to the user operation and outputs it to the control unit 51.
  • the user interface unit 39 is not limited to being provided in the main body unit 30 and is provided separately from the main body unit 30, for example, transmission of an operation signal to the control unit 51 from a remote location via a communication path or the like. The structure which can perform is also sufficient.
  • the control unit 51 is configured using a microcomputer in which a storage unit such as a ROM that stores a control program or a flash memory that temporarily stores data is incorporated.
  • the control unit 51 executes a control program and controls the operation of each unit so that the imaging device 10 performs an operation desired by the user based on an operation signal from the user interface unit 39, thereby capturing a moving image or a still image. And record.
  • control unit 51 performs focus control based on the image plane phase difference information obtained using the phase difference detection pixels over a predetermined period, and indicates whether or not the change in the focus state is a monotonous change.
  • the focus control based on the image plane phase difference information is continued.
  • the control unit 51 changes the focus control based on information other than the image plane phase difference information from the focus control based on the image plane phase difference information. Switch.
  • the control unit 51 includes a determination unit 511 and a focus control unit 512 in order to perform an autofocus operation by such focus control.
  • the determination unit 511 performs focus control according to the output of the phase difference detection pixel over a predetermined period, and generates focus state change information indicating whether or not the change in the focus state is a monotone change.
  • the determination unit 511 is generated using the phase difference detection pixel of the imaging unit 31 while performing focus control according to the information indicating the actual lens position of the focus lens acquired from the imaging lens 20 and the output of the phase difference detection pixel.
  • Focus change information is generated based on image plane phase difference information and the like.
  • the imaging lens 20 may be a lens fixed to the imaging device 10 or a detachable interchangeable lens. When the imaging lens 20 is an interchangeable lens, the control unit 51 communicates with the interchangeable lens, acquires the actual lens position of the focus lens from the interchangeable lens, and the determination unit 511 uses the acquired actual lens position as focus state change information. Use.
  • the focus control unit 512 When the focus state change information generated by the determination unit 511 indicates that the change in the focus state is a monotonous change, the focus control unit 512 continues the focus control based on the image plane phase difference information. Further, when the focus state change information generated by the determination unit 511 indicates that the change in the focus state is not a monotonous change, the focus control unit 512 performs the image plane phase difference information from the focus control based on the image plane phase difference information. Focus control based on other information, for example, contrast-type focus control based on an image signal supplied from the image processing unit 33 is performed.
  • image plane phase difference focus control When focus control based on image plane phase difference information (image plane phase difference focus control) is performed, the focus control unit 512 generates a focus control signal according to the defocus amount indicated by the image plane phase difference information, and the imaging lens By outputting to the 20 lens drive processing unit 22, an autofocus operation (hereinafter referred to as “image plane phase difference AF operation”) is performed. Further, when performing focus control (contrast focus control) based on an image signal, the focus control unit 512 generates a focus control signal based on the contrast AF evaluation value calculated using the pixel values of the pixel group in the distance measurement area. Then, an autofocus operation (hereinafter referred to as “contrast AF operation”) is performed by outputting to the lens drive processing unit 22 of the imaging lens 20.
  • image plane phase difference AF operation an autofocus operation
  • FIG. 2 is a flowchart showing the operation of the first embodiment.
  • the imaging apparatus starts the operation of the flowchart when the shutter operation or the shutter operation is performed.
  • the shutter operation is a shutter full-press operation or half-press operation by the user.
  • the shutter operation is automatically performed regardless of the user operation. For example, a timer operation or an auto-shutter operation based on the recognition result of the subject Etc.
  • step ST1 the control unit starts an image plane phase difference AF operation.
  • the control unit 51 starts generating a focus control signal corresponding to the defocus amount indicated by the image plane phase difference information, and outputs the focus control signal to the lens drive processing unit 22 of the imaging lens 20, so that the image plane position is increased.
  • the phase difference AF operation is started and the process proceeds to step ST2.
  • step ST2 the control unit generates focus state change information.
  • the controller 51 performs the image plane phase difference AF operation started in step ST1 for a predetermined time. Further, the control unit 51 generates focus state change information indicating whether or not the change in the focus state when the image plane phase difference AF operation is performed for a predetermined time is a monotonous change.
  • the control unit 51 determines whether the change in the focus state is a monotonous change based on, for example, the frequency characteristic of the change amount, the defocus amount indicated by the image plane phase difference information, the lens position, the defocus amount, and the lens position. Generate focus state change information. Details of the generation of the focus state change information will be described later.
  • the control unit 51 generates focus state change information and proceeds to step ST3.
  • step ST3 the control unit determines whether the change in the focus state is a monotonous change.
  • the control unit 51 proceeds to step ST4 when the focus state change information generated at step ST2 indicates a monotonous change, and proceeds to step ST5 when it indicates that the focus state change information does not indicate a monotonic change.
  • step ST4 the control unit continues the image plane phase difference AF operation. Since the change in the focus state is a monotonous change, the control unit 51 continues the image plane phase difference AF operation on the assumption that the focus state is out of focus (also referred to as “out ⁇ of focus ”,“ Big Defocus ”, or“ largelylargedefocus ”). .
  • step ST5 the control unit switches to the contrast AF operation.
  • the control unit 51 switches the focus control operation from the image plane phase difference AF operation to the contrast AF operation on the assumption that the focus state is not a monotonous change and thus is in a low contrast state.
  • FIG. 3 exemplifies the relationship between the subject, the locus of the lens position, and the locus of the defocus amount when the image plane phase difference AF operation is started from the blurred state.
  • FIGS. 3A and 3B show a case where a high-contrast subject is imaged.
  • FIG. 3A shows the locus of the lens position
  • FIG. 3B shows the locus of the defocus amount.
  • FIGS. 3C and 3D show a case where a low-contrast object is imaged from a blurred state.
  • FIG. 3C shows the locus of the lens position
  • FIG. 3D shows defocus.
  • the trajectory of quantity is illustrated.
  • a solid line indicates the start of the image plane phase difference AF operation
  • a broken line indicates the in-focus state.
  • a subject having a high contrast means a subject having a contrast capable of correctly calculating the phase difference between two images when the phase difference is calculated using the output of the phase difference detection pixel.
  • a low-contrast subject refers to a subject in a contrast state in which the phase difference between two images cannot be calculated correctly due to low contrast when the phase difference is calculated using the output of the phase difference detection pixel.
  • the lens position changes linearly and monotonously as shown by the solid line in FIG. 3A, that is, the lens position is linear and always constant. It converges to the in-focus position by changing in the direction (direction approaching in-focus). Further, the defocus amount is affected by the delay of reflection of the lens movement according to the lens drive amount, and converges to the in-focus position by a non-linear monotonous change as shown by the solid line in FIG.
  • the image plane phase difference AF operation when a low-contrast subject is imaged, if the image plane phase difference AF operation is performed, the image plane phase difference cannot be calculated correctly, so that the defocus amount has a large error, as shown in FIG.
  • the change in value is not in a certain direction.
  • the lens position causes hunting and does not converge to the in-focus position as shown by the solid line in FIG.
  • the change in the lens position is affected by the delay in reflecting the lens movement in accordance with the lens drive amount, and therefore the change frequency is lower than the change in the defocus amount.
  • the change frequency of the lens position is lower than the change of the defocus amount. Therefore, if the focus state change information is generated based on the change in the lens position, the focus state change information can be generated more easily than when the focus state change information is generated based on the defocus amount.
  • the determination unit 511 of the control unit 51 generates focus state change information indicating whether the change in the focus state is a monotonous change using a locus such as a lens position or a defocus amount.
  • FIG. 4 is a flowchart illustrating an operation of generating focus state change information.
  • the determination unit determines whether the locus (change in focus state) indicates a monotonous change.
  • the determination unit 511 acquires state information related to the focus state at predetermined intervals during the image plane phase difference AF operation performed for a predetermined period, and a locus such as a lens position and a defocus amount with respect to the elapsed time based on the acquired state information. Is a monotonic change.
  • the state information may be, for example, a lens position change amount or a defocus amount change amount, or may be a lens position itself or a defocus amount itself.
  • the determination unit 511 proceeds to step ST12 when the locus indicates a monotonous change, and proceeds to step ST13 when the locus does not indicate a monotonous change.
  • the determination unit 511 determines whether the amount of change is a monotonous change, for example.
  • FIG. 5 is a diagram for explaining a monotonous change in the lens position change amount.
  • the amount of change calculated at a predetermined interval during the predetermined period TW is illustrated by a black circle.
  • the determination unit 511 determines that the change is monotonous when the polarity of the change amount in the predetermined period TW has not changed from the start.
  • FIG. 5B the determination unit 511 determines that the change is not monotonous when the polarity of the change amount in the predetermined period TW changes. As shown in FIGS.
  • the amount of change calculated at a predetermined interval during the predetermined period TW is obtained.
  • it is a minus side including 0 it is determined that the change is monotonous.
  • a predetermined interval is set at a predetermined period TW.
  • the change amount calculated in (1) is a positive change amount including zero, it is determined that the change is monotonous.
  • the amount of change is not limited to the amount of change in lens position, and the amount of change in defocus amount indicated by the image plane phase difference information may be used.
  • the determination unit 511 calculates the change slope of the lens position and the defocus amount at predetermined time intervals in the predetermined period TW, and when the average of the calculated cumulative values of the change slopes is equal to or less than a preset threshold value. When it is determined that the change is monotonous and the average of the accumulated values exceeds a preset threshold, it may be determined that the change is not monotonous.
  • the determination unit 511 may use the lens position without being limited to the change amount. Specifically, when the lens position has moved in only one direction from the start, it is determined that the change is monotonous, and when the lens position has moved in the opposite direction, it is determined that the change is not monotonous.
  • the determination unit 511 may determine whether or not the change in the focus state is a monotonous change based on both the defocus amount and the lens position. As described above, the defocus amount is affected by the delay of the reflection of the lens movement according to the lens drive amount. Therefore, whether or not the change in the focus state is a monotonic change is determined only by the defocus amount. May not be determined correctly. Therefore, the determination unit 511 can determine the change in the focus state more correctly by determining whether or not the change in the focus state is a monotonous change based on the defocus amount and the lens position.
  • the determination unit 511 may generate focus state change information by determining whether the change in the focus state is a monotonous change based on the frequency characteristics of the change amount, not limited to the change amount and the lens position. For example, by applying FFT (Fast Fourier Transform) to the lens position itself, the amount of change is converted into a frequency component, and when the frequency component is equal to or greater than a predetermined threshold, it is determined that the change in the focus state is not a monotonous change. When the frequency component of the change frequency is less than the predetermined threshold, it is determined that the change in the focus state is a monotone change.
  • FFT Fast Fourier Transform
  • step ST12 the determination unit sets a monotonous change flag indicating monotonous change.
  • the determination unit 511 sets a monotonous change flag indicating that the change in the focus state is a monotonous change, and ends the process.
  • step ST13 the determination unit sets a monotone change flag indicating that the change is not monotonous.
  • the determination unit 511 sets a monotonous change flag indicating that the change in the focus state is not a monotonous change, and ends the process.
  • FIG. 6 shows an operation example of the first embodiment. 6A and 6B are in a blurred state, FIGS. 6C and 6D are low-contrast states, FIGS. 6A and 6C are time variations in lens positions, and FIG. (B) and (d) respectively show changes in lens position change over time.
  • the image plane phase difference AF operation is performed until time t1 when the autofocus operation is started at time t0 and a predetermined period Tw elapses.
  • Tw a predetermined period
  • the change in the lens position during the predetermined period does not cause a change in polarity, it is determined as a monotonous change, and the image plane phase difference AF operation is continued. Accordingly, as shown in FIG. 6A, the lens position becomes the in-focus position at time t2.
  • FIG. 6D when the lens position change amount during the predetermined period causes a change in polarity, it is determined that the change is not monotonous and the image plane phase difference AF operation is changed to the contrast AF operation. Can be switched. Accordingly, as shown in FIG. 6C, the lens position becomes the in-focus position at time t3.
  • the image plane phase difference AF operation is continued.
  • the focus state change information indicates that the focus state change is not monotonous, that is, when it is determined that the subject has low contrast
  • the image plane phase difference AF operation is switched to the contrast AF operation. Accordingly, since it is possible to switch to the contrast AF operation when the autofocus operation is difficult in the image plane phase difference AF operation, it is possible to perform the autofocus operation with high speed and high quality by reducing the frequency of the contrast AF operation. it can.
  • the imaging apparatus determines the reliability of the image plane phase difference AF operation and determines whether the focus state change is a monotonous change as in the first embodiment when there is reliability.
  • the autofocus operation is switched accordingly.
  • the imaging apparatus performs a search operation to search for the in-focus position by moving the lens position from one end side to the other end side. Move the lens to the in-focus position.
  • the configuration of the second embodiment is the same as that of the first embodiment shown in FIG.
  • the control unit 51 performs the correlation calculation of two images having parallax obtained from the output of the phase difference detection pixel prior to a predetermined period, and the reliability of the correlation calculation result, that is, the image plane phase difference information Is determined by the determination unit 511.
  • the control unit 51 When it is determined that the correlation calculation result is reliable, the control unit 51 generates focus state change information in the determination unit 511 and switches the autofocus operation based on the focus state change information in the focus control unit 512. If the control unit 51 determines that there is no reliability, the focus control unit 512 performs a full search operation to search for a focus position, and performs lens drive control to move the focus lens to the searched focus position. Do.
  • Equation (1) exemplifies an evaluation function for calculating the reliability evaluation value
  • FIG. 7 is a diagram for explaining parameters used for the evaluation function.
  • “n” represents the total number of image plane phase difference AF pixel pairs in the AF line Lf in the AF area Ef shown in FIG. 7A
  • “Xi” represents the AF line Lf.
  • “Yi” represents the pixel output of the image plane phase difference AF pixel pair at this position Xi.
  • the image plane phase difference AF pixel pair is a pair of phase difference detection pixels of the imaging unit 31.
  • FIG. 7B illustrates the configuration of the image plane phase difference AF pixel pair.
  • a pair of phase difference detection pixels having light shielding plates 312a and 312b whose positions of the opening OP for separating the light beam Ta from the right part Qa of the exit pupil and the light beam Tb from the left part Qb are mirror surfaces.
  • Two or more 311a, 311b are arranged along the horizontal direction. More specifically, the first phase difference detection pixel 311a having the light shielding plate 312a in which the slit-like opening OP is biased to the right side with respect to the photoelectric conversion part (photodiode) PD immediately below, and the slit-like opening OP are provided.
  • Second phase difference detection pixels 311b having light-shielding plates 312b that are biased to the left with respect to the photoelectric conversion unit PD immediately below are alternately arranged on the AF line Lf.
  • the light beam Ta from the right part Qa of the exit pupil passes through the microlens ML and the opening OP of the light shielding plate 312a and is received by the photoelectric conversion unit PD of the first phase difference detection pixel 311a, and the left part of the exit pupil.
  • the light beam Tb from Qb passes through the microlens ML and the opening OP of the light shielding plate 312b, and is received by the photoelectric conversion unit PD of the second phase difference detection pixel 311b.
  • the image plane phase difference information is information indicating the phase difference between the image sequence of the first phase difference detection pixel series and the image sequence of the second phase difference detection pixel series.
  • the control unit 51 determines that the reliability is high when the reliability evaluation value J calculated using the equation (1) is larger than a predetermined threshold value Jth, and when the reliability evaluation value J is equal to or less than the threshold value Jth, the reliability is determined. Is determined to be low. In this way, the control unit 51 performs simple reliability evaluation of the image plane phase difference AF operation based on the reliability evaluation value J.
  • FIG. 8 is a flowchart showing the operation of the second embodiment.
  • the control unit calculates a reliability evaluation value.
  • the controller 51 calculates the reliability evaluation value J using the evaluation function as described above, and proceeds to step ST22.
  • step ST22 the control unit determines whether the image plane phase difference AF operation is reliable.
  • the control unit 51 compares the reliability evaluation value J calculated in step ST21 with a predetermined threshold value Jth. The control unit 51 determines that there is reliability when the reliability evaluation value J is greater than the threshold value Jth, and proceeds to step ST23. Further, the control unit 51 determines that the reliability is low when the reliability evaluation value J is equal to or less than the threshold value Jth, and proceeds to step ST28.
  • step ST23 the control unit starts an image plane phase difference AF operation.
  • the control unit 51 starts generating a focus control signal corresponding to the defocus amount indicated by the image plane phase difference information, and outputs the focus control signal to the lens drive processing unit 22 of the imaging lens 20, so that the image plane position is increased.
  • the phase difference AF operation is started and the process proceeds to step ST24.
  • step ST24 the control unit generates focus state change information.
  • the controller 51 performs the image plane phase difference AF operation started in step ST23 for a predetermined time. Further, the control unit 51 generates focus state change information indicating whether or not the change in the focus state when the image plane phase difference AF operation is performed for a predetermined time is a monotonous change. For example, the control unit 51 determines whether the change in the focus state is monotonous based on the defocus amount indicated by the lens position and the image plane phase difference information, the change amount of the lens position and the defocus amount, the frequency characteristics of the change amount, and the like. Then, focus state change information is generated. The control unit 51 generates focus state change information and proceeds to step ST25.
  • step ST25 the control unit determines whether the change in the focus state is a monotone change.
  • the control unit 51 proceeds to step ST26, and indicates that the change in the focus state is not a monotone change. In this case, the process proceeds to step ST27.
  • step ST26 the control unit continues the image plane phase difference AF operation.
  • the control unit 51 continues the image plane phase difference AF operation on the assumption that the focus state is a monotonous change and therefore the state is out of focus.
  • step ST27 the control unit switches to the contrast AF operation. Since the change in the focus state is not a monotonous change, the control unit 51 determines that the state is a low contrast state, and switches the autofocus operation from the image plane phase difference AF operation to the contrast AF operation.
  • control unit 51 performs a full search operation.
  • the control unit 51 performs a search operation for searching for a focus position by moving the lens position from one end side to the other end side, and moves the lens to the searched focus position.
  • the image plane phase difference AF operation when it is determined that the image is out of focus, the image plane phase difference AF operation is continued, and the subject has a low contrast. Is determined, the image plane phase difference AF operation is switched to the contrast AF operation. Accordingly, since it is possible to switch to the contrast AF operation when the autofocus operation is difficult in the image plane phase difference AF operation, it is possible to perform the autofocus operation with high speed and high quality by reducing the frequency of the contrast AF operation. it can. Further, if the reliability of the image plane phase difference AF operation is determined and there is no reliability, the entire search operation is performed, so that the image plane phase difference AF operation is not performed in a low reliability state. Therefore, it is possible to perform a high-speed and high-quality autofocus operation with high accuracy.
  • FIG. 9 illustrates the configuration of the third embodiment of the imaging apparatus.
  • the imaging device 10a includes an imaging lens 20 and a main body 30a.
  • the imaging lens 20 includes an imaging optical system 21 and a lens drive processing unit 22.
  • the imaging optical system 21 is configured using a focus lens. Further, the imaging optical system 21 may have a configuration using not only a focus lens but also a zoom lens, a diaphragm mechanism, and the like.
  • the lens drive processing unit 22 moves the lens position of the focus lens in the imaging optical system 21 based on the lens control signal from the main body 30a. Further, the lens drive processing unit 22 generates information indicating the lens position of the focus lens and outputs the information to the main body unit 30a.
  • the main body 30a includes an imaging unit 31, a preprocessing unit 32, an image processing unit 33, a display unit 35, a recording unit 36, a user interface (I / F) unit 39, a transmission mirror unit 45, a dedicated phase difference detection unit 46, and a control.
  • a portion 51 is provided.
  • the main body 30 may have a functional block not shown in the drawing, or may have a configuration not including a part of the functional block shown in the drawing.
  • the imaging unit 31 is configured using an imaging element such as a CMOS (Complementary Metal Oxide Semiconductor).
  • an image output pixel and a phase difference detection pixel are provided in the imaging surface.
  • Subject light from the imaging lens 20 is incident on the imaging surface of the imaging unit 31 via the transmission mirror unit 45.
  • the imaging unit 31 performs operations such as start and end of the exposure operation of the imaging device, output selection of each pixel, readout of the pixel signal, and the like based on a control signal from the control unit 51 described later, and is imaged by the image output pixel.
  • the image signal indicating the subject and the phase difference image generated by the phase difference detection pixel for example, the image plane phase difference information indicating the phase difference between the two phase difference images are generated.
  • the imaging unit 31 outputs the generated image signal to the preprocessing unit 32. Further, the imaging unit 31 outputs the generated image plane phase difference information to the control unit 51.
  • the pre-processing unit 32 performs predetermined signal processing, such as noise removal processing, gain adjustment, and clamping processing, on the image signal output from the imaging unit 31.
  • the pre-processing unit 32 performs analog / digital conversion processing, converts an analog image signal subjected to predetermined signal processing into a digital image signal, and outputs the digital image signal to the image processing unit 33.
  • the image processing unit 33 performs predetermined signal processing on the image signal output from the preprocessing unit 32, for example, black level correction using the black level of the digital image signal as a reference black level, and the white portion of the subject is correctly white Signal processing such as white balance control for correcting the red and blue levels so as to be displayed and recorded, and gamma correction for correcting the tone characteristics of the image signal.
  • the image processing unit 33 outputs the image signal after the signal processing to the display unit 35, the recording unit 36, and the control unit 51.
  • the image processing unit 33 may encode the image signal and output it to the recording unit 36.
  • the image processing unit 33 may perform the decoding process on the encoded signal supplied from the recording unit 36 and display the obtained image signal on the display unit. 35 may be output.
  • the display unit 35 displays a captured image based on the image signal processed by the image processing unit 33. Further, the display unit 35 displays a menu screen or the like based on a control signal from the control unit 51. Further, based on the state determination signal from the control unit 51, the display unit 35 informs the user that the focus lens is misaligned with respect to the focus position, or that the contrast of the captured subject is low. Present.
  • the recording unit 36 records the image signal or the encoded signal signal-processed by the image processing unit 33 on a recording medium.
  • the recording unit 36 reads an image signal or an encoded signal recorded on the recording medium and outputs it to the image processing unit 33.
  • the user interface unit 39 is configured using operation switches, operation buttons, and the like.
  • the user interface unit 39 generates an operation signal corresponding to the user operation and outputs it to the control unit 51.
  • the transmission mirror unit 45 is provided on the imaging surface side of the imaging unit 31 and makes the subject light from the imaging lens 20 enter the imaging unit 31 and the dedicated phase difference detection unit 46 separately.
  • the dedicated phase difference detection unit 46 is provided with, for example, a secondary imaging lens and a pair of AF sensors.
  • the dedicated phase difference detection unit 46 generates and controls dedicated sensor phase difference information indicating the phase difference between the sensor output signals generated by each of the pair of AF sensors according to the subject light incident through the transmission mirror unit 45. To the unit 51.
  • the control unit 51 is configured using a microcomputer in which a storage unit such as a ROM that stores a control program or a flash memory that temporarily stores data is incorporated.
  • the control unit 51 executes a control program and controls the operation of each unit so that the user can perform an operation desired by the imaging device 10 based on an operation signal from the user interface unit 39. Further, the control unit 51 performs focus control (ranging information focus control) based on the image plane phase difference information supplied from the preprocessing unit 32 or the dedicated sensor phase difference information supplied from the dedicated phase difference detection unit 46. .
  • the AF sensor of the dedicated phase difference detection unit 46 is provided at a position different from the imaging surface of the imaging unit 31. ing. Therefore, an autofocus operation (hereinafter, referred to as “focus control signal”) is generated according to the defocus amount indicated by the dedicated sensor phase difference information from the dedicated phase difference detection unit 46 and is output to the lens drive processing unit 22 of the imaging lens 20.
  • focus control signal an autofocus operation
  • the accuracy may be lower than that of the image plane phase difference AF operation.
  • the AF sensor of the dedicated phase difference detection unit 46 is provided at a position different from the imaging surface of the imaging unit 31, it is set so as to reduce blur compared to the case where the phase difference detection pixels of the imaging unit 31 are used. Therefore, it is possible to set a wide focus lens position range where no blur occurs, that is, a phase difference detection range. Therefore, the dedicated phase difference AF operation enables an autofocus operation even when the blur is larger than the image plane phase difference AF operation.
  • the control unit 51 includes a determination unit 511 and a focus control unit 512 in order to perform an autofocus operation.
  • the determination unit 511 performs a correlation calculation of two images having parallax obtained from the output of the phase difference detection pixel prior to a predetermined period, and determines the reliability of the correlation calculation result, that is, the reliability of the image plane phase difference information. If the determination unit 511 determines that the image plane phase difference information is reliable, the determination unit 511 performs focus control according to the output of the phase difference detection pixel over a predetermined period, and whether or not the change in the focus state is a monotone change. The focus state change information indicating that is generated. The determination unit 511 performs the focus control according to the information indicating the lens position acquired from the imaging lens 20 and the output of the phase difference detection pixel, and the image plane phase difference generated using the phase difference detection pixel of the imaging unit 31. Based on the information or the like, focus change information is generated. If the determination unit 511 determines that the image plane phase difference information is not reliable, the determination unit 511 notifies the focus control unit 512 that there is no reliability.
  • the focus control unit 512 When the focus state change information generated by the determination unit 511 indicates that the change in the focus state is a monotonous change, the focus control unit 512 performs focus control based on the image plane phase difference information generated by the imaging unit 31. continue. Further, when the focus state change information generated by the determination unit 511 indicates that the change in the focus state is not a monotonic change, the focus control unit 512 performs focus control based on the image plane phase difference information generated by the imaging unit 31. To focus control based on dedicated sensor phase difference information generated by the dedicated phase difference detection unit 46. If the focus control unit 511 determines that the image plane phase difference information is not reliable, the focus control unit 511 performs a full search operation to search for a focus position, and moves the focus lens to the searched focus position. Take control.
  • FIG. 10 is a flowchart showing the operation of the third embodiment.
  • the control unit calculates a reliability evaluation value.
  • the control unit 51 calculates the reliability evaluation value J using the evaluation function as described above, and proceeds to step ST32.
  • step ST32 the control unit determines whether the image plane phase difference AF operation is reliable.
  • the control unit 51 compares the reliability evaluation value J calculated in step ST31 with a predetermined threshold value Jth. The control unit 51 determines that there is reliability when the reliability evaluation value J is greater than the threshold value Jth, and proceeds to step ST33. Further, the control unit 51 determines that the reliability is low when the reliability evaluation value J is equal to or less than the threshold value Jth, and proceeds to step ST38.
  • step ST33 the control unit starts an image plane phase difference AF operation.
  • the control unit 51 starts generating a focus control signal corresponding to the defocus amount indicated by the image plane phase difference information, and outputs the focus control signal to the lens drive processing unit 22 of the imaging lens 20, so that the image plane position is increased.
  • the phase difference AF operation is started and the process proceeds to step ST34.
  • step ST34 the control unit generates focus state change information.
  • the controller 51 performs the image plane phase difference AF operation started in step ST33 for a predetermined time. Further, the control unit 51 generates focus state change information indicating whether or not the change in the focus state when the image plane phase difference AF operation is performed for a predetermined time is a monotonous change. For example, the control unit 51 determines whether the change in the focus state is monotonous based on the defocus amount indicated by the lens position and the image plane phase difference information, the change amount of the lens position and the defocus amount, the frequency characteristics of the change amount, and the like. Then, focus state change information is generated. The control unit 51 generates focus state change information and proceeds to step ST35.
  • step ST35 the control unit determines whether the change in the focus state is a monotonous change.
  • the control unit 51 proceeds to step ST36, and indicates that the change in the focus state is not a monotone change. In this case, the process proceeds to step ST37.
  • step ST36 the control unit continues the image plane phase difference AF operation.
  • the control unit 51 continues the image plane phase difference AF operation on the assumption that the focus state is a monotonous change and therefore the state is out of focus.
  • step ST37 the control unit switches to the dedicated phase difference AF operation.
  • the control unit 51 switches the focus control operation from the image plane phase difference AF operation to the dedicated phase difference AF operation having high performance against blur, assuming that the change in the focus state is not a monotonous change and thus is in a low contrast state.
  • control unit 51 performs a full search operation.
  • the control unit 51 performs a search operation for searching for a focus position by moving the lens position from one end side to the other end side, and moves the lens to the searched focus position.
  • the image plane phase difference AF operation is continued when it is determined that the subject is out of focus, and the image plane is determined when it is determined that the subject has low contrast.
  • the phase difference AF operation is switched to the dedicated phase difference AF operation. Therefore, even if it is difficult to perform autofocus operation using focus control based on image plane phase difference information, autofocus operation can be performed using focus control based on dedicated phase difference information. Can be wide.
  • the reliability of the image plane phase difference AF operation is determined. However, as in the first embodiment, the reliability of the image plane phase difference AF operation is determined. There may be no operation.
  • determining the reliability of the image plane phase difference AF operation if it is determined that the image plane phase difference AF operation is not reliable, a full search operation is performed. Therefore, the image plane phase difference AF operation is not performed in a state of low reliability, and an autofocus operation with high speed and good quality can be performed with high accuracy.
  • a configuration using a transmission mirror is illustrated, but a configuration using a reflection mirror may be used.
  • the subject light is detected by the reflection mirror. What is necessary is just to inject into the part 46.
  • the fourth embodiment of the imaging device of the present technology a case where a hybrid AF operation is performed will be described.
  • the focus control of a different method can be switched, and the focus control is performed by any one of the methods. Thereafter, the focus control is performed by switching to another method so that the focus control can be performed with high accuracy.
  • the fourth embodiment exemplifies a case where focus control is performed by switching from the contrast method to the image plane phase difference AF operation.
  • step ST41 the control unit calculates a reliability evaluation value.
  • the control unit 51 calculates the reliability evaluation value J using the evaluation function as described above, and proceeds to step ST42.
  • step ST42 the control unit determines whether the image plane phase difference AF operation is reliable.
  • the control unit 51 compares the reliability evaluation value J calculated in step ST41 with a predetermined threshold value Jth. The control unit 51 determines that there is reliability when the reliability evaluation value J is greater than the threshold value Jth, and proceeds to step ST43. Further, the control unit 51 determines that the reliability is low when the reliability evaluation value J is equal to or less than the threshold value Jth, and proceeds to step ST48.
  • step ST43 the control unit starts an image plane phase difference AF operation.
  • the control unit 51 starts generating a focus control signal corresponding to the defocus amount indicated by the image plane phase difference information, and outputs the focus control signal to the lens drive processing unit 22 of the imaging lens 20, so that the image plane position is increased.
  • the phase difference AF operation is started and the process proceeds to step ST44.
  • step ST44 the control unit generates focus state change information.
  • the controller 51 performs the image plane phase difference AF operation started in step ST43 for a predetermined time. Further, the control unit 51 generates focus state change information indicating whether or not the change in the focus state when the image plane phase difference AF operation is performed for a predetermined time is a monotonous change. For example, the control unit 51 determines whether the change in the focus state is monotonous based on the defocus amount indicated by the lens position and the image plane phase difference information, the change amount of the lens position and the defocus amount, the frequency characteristics of the change amount, and the like. Then, focus state change information is generated. The control unit 51 generates focus state change information and proceeds to step ST45.
  • step ST45 the control unit determines whether the change in the focus state is a monotone change.
  • the control unit 51 proceeds to step ST46 and indicates that the change in the focus state is not a monotone change. In this case, the process proceeds to step ST47.
  • step ST46 the control unit continues the image plane phase difference AF operation.
  • the control unit 51 continues the image plane phase difference AF operation on the assumption that the focus state is a monotonous change and therefore the state is out of focus.
  • step ST47 the control unit switches to the hybrid AF operation.
  • the control unit 51 switches the focus control operation from the image plane phase difference AF operation to the hybrid AF operation on the assumption that the focus state is not monotonous and thus is in a low contrast state.
  • a contrast AF operation having a wider focus controllable range than the image plane phase difference AF operation is performed in a low contrast state.
  • the control unit generates a focus control signal based on the contrast AF evaluation value calculated using the pixel value of the pixel group in the ranging area, and outputs the focus control signal to the lens drive processing unit 22 of the imaging lens 20 to perform the contrast AF operation.
  • the control unit calculates an absolute difference value between adjacent pixels using pixels of a pixel group in the distance measurement area, and uses the total sum of the calculated absolute difference values as a contrast AF evaluation value.
  • the control unit sequentially calculates the contrast AF evaluation value while moving the focus lens in a certain direction, and when the contrast AF evaluation value monotonously increases and exceeds the peak, the image plane has higher accuracy than the contrast method.
  • the focus lens is moved to the in-focus position with higher accuracy by switching to the phase difference AF operation.
  • control unit 51 performs a search operation for searching for a focus position by moving the lens position from one end side to the other end side, and moves the lens to the searched focus position.
  • the image plane phase difference AF operation is continued when it is determined that the subject is out of focus, and the image plane is determined when the subject is determined to have low contrast.
  • the phase difference AF operation is switched to the dedicated phase difference AF operation.
  • the focus control can be performed by the hybrid AF operation, and a high-speed and high-quality autofocus operation can be performed.
  • the reliability of the image plane phase difference AF operation is determined at the start of the autofocus operation.
  • the reliability of the image plane phase difference AF operation is determined. It may be an operation in which sex determination is not performed.
  • the reliability of the image plane phase difference AF operation is determined when switching from the contrast AF operation to the image plane phase difference AF operation. If the autofocus operation is switched when it is determined that there is reliability in this determination, it is possible to prevent a focus shift from occurring due to switching from the contrast AF operation to the image plane phase difference AF operation. .
  • the image plane phase difference AF operation when determining the reliability of the image plane phase difference AF operation at the start of the autofocus operation, if it is determined that the image plane phase difference AF operation is not reliable, a full search operation is performed. Therefore, the image plane phase difference AF operation is not performed in a state of low reliability, and an autofocus operation with high speed and good quality can be performed with high accuracy.
  • the state determination result of the determination unit 511 May be presented to the user from the information presentation unit so that the user can select what focus operation is to be performed using the state determination result presented by the user.
  • the determination unit 511 controls the presentation of the state determination result in the information presentation unit that presents the state determination result to the user. For example, the determination unit 511 outputs an image signal indicating the state determination result to the display unit 35 that is an information presentation unit, and presents the state determination result to the user as an image. Further, the determination unit 511 uses the user interface unit 39 as an information presentation unit and outputs information indicating the state determination result to the outside so that the user interface unit 39 can present the state determination result to the user. Good.
  • the user operates the imaging device based on the state determination result presented using the display unit 35, the user interface unit 39, and the like so that a highly accurate autofocus operation can be performed. For example, if the change in focus state is not monotonous, perform a zoom operation so that a high-contrast subject is included in the distance measurement area, and then perform the reverse operation after fixing the focus lens position at the in-focus position. Do. If the user performs such an operation, it is possible to accurately focus on a low-contrast subject whose focus state does not change monotonously.
  • the technology according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure may be applied to an operating room system.
  • FIG. 12 is a diagram schematically showing an overall configuration of an operating room system 5100 to which the technology according to the present disclosure can be applied.
  • the operating room system 5100 is configured by connecting a group of devices installed in the operating room so as to cooperate with each other via an audiovisual controller 5107 and an operating room control device 5109.
  • FIG. 12 various apparatus groups 5101 for endoscopic surgery, a ceiling camera 5187 provided on the ceiling of the operating room and imaging the operator's hand, and an operating room provided on the operating room ceiling.
  • An operating field camera 5189 that images the entire situation, a plurality of display devices 5103A to 5103D, a recorder 5105, a patient bed 5183, and an illumination 5191 are illustrated.
  • the device group 5101 belongs to an endoscopic surgery system 5113 described later, and includes an endoscope, a display device that displays an image captured by the endoscope, and the like.
  • Each device belonging to the endoscopic surgery system 5113 is also referred to as a medical device.
  • the display devices 5103A to 5103D, the recorder 5105, the patient bed 5183, and the illumination 5191 are devices provided in an operating room, for example, separately from the endoscopic surgery system 5113.
  • These devices that do not belong to the endoscopic surgery system 5113 are also referred to as non-medical devices.
  • the audiovisual controller 5107 and / or the operating room control device 5109 controls the operations of these medical devices and non-medical devices in cooperation with each other.
  • the audiovisual controller 5107 comprehensively controls processing related to image display in medical devices and non-medical devices.
  • the device group 5101, the ceiling camera 5187, and the surgical field camera 5189 have a function of transmitting information to be displayed during surgery (hereinafter also referred to as display information). It may be a device (hereinafter also referred to as a source device).
  • Display devices 5103A to 5103D can be devices that output display information (hereinafter also referred to as output destination devices).
  • the recorder 5105 may be a device that corresponds to both a transmission source device and an output destination device.
  • the audiovisual controller 5107 controls the operation of the transmission source device and the output destination device, acquires display information from the transmission source device, and transmits the display information to the output destination device for display or recording.
  • the display information includes various images captured during the operation, various types of information related to the operation (for example, patient physical information, past examination results, information on a surgical procedure, and the like).
  • the audiovisual controller 5107 can transmit information about the image of the surgical site in the patient's body cavity captured by the endoscope from the device group 5101 as display information.
  • information about the image at hand of the surgeon captured by the ceiling camera 5187 can be transmitted from the ceiling camera 5187 as display information.
  • information about an image showing the entire operating room imaged by the operating field camera 5189 can be transmitted from the operating field camera 5189 as display information.
  • the audiovisual controller 5107 acquires information about an image captured by the other device from the other device as display information. May be.
  • information about these images captured in the past is recorded by the audiovisual controller 5107 in the recorder 5105.
  • the audiovisual controller 5107 can acquire information about the image captured in the past from the recorder 5105 as display information.
  • the recorder 5105 may also record various types of information related to surgery in advance.
  • the audiovisual controller 5107 displays the acquired display information (that is, images taken during the operation and various information related to the operation) on at least one of the display devices 5103A to 5103D that are output destination devices.
  • the display device 5103A is a display device that is suspended from the ceiling of the operating room
  • the display device 5103B is a display device that is installed on the wall surface of the operating room
  • the display device 5103C is installed in the operating room.
  • the display device 5103D is a mobile device (for example, a tablet PC (Personal Computer)) having a display function.
  • the operating room system 5100 may include a device outside the operating room.
  • the device outside the operating room can be, for example, a server connected to a network constructed inside or outside the hospital, a PC used by medical staff, a projector installed in a conference room of the hospital, or the like.
  • the audio-visual controller 5107 can display the display information on a display device of another hospital via a video conference system or the like for telemedicine.
  • the operating room control device 5109 comprehensively controls processing other than processing related to image display in non-medical devices.
  • the operating room control device 5109 controls the driving of the patient bed 5183, the ceiling camera 5187, the operating field camera 5189, and the illumination 5191.
  • the operating room system 5100 is provided with a centralized operation panel 5111, and the user gives an instruction for image display to the audiovisual controller 5107 via the centralized operation panel 5111, or the operating room control apparatus 5109. An instruction about the operation of the non-medical device can be given.
  • the central operation panel 5111 is configured by providing a touch panel on the display surface of the display device.
  • FIG. 13 is a diagram showing a display example of the operation screen on the centralized operation panel 5111.
  • an operation screen corresponding to a case where the operating room system 5100 is provided with two display devices as output destination devices is shown.
  • the operation screen 5193 is provided with a transmission source selection area 5195, a preview area 5197, and a control area 5201.
  • a transmission source device provided in the operating room system 5100 and a thumbnail screen representing display information of the transmission source device are displayed in association with each other. The user can select display information to be displayed on the display device from any of the transmission source devices displayed in the transmission source selection area 5195.
  • the preview area 5197 displays a preview of the screen displayed on the two display devices (Monitor 1 and Monitor 2) that are output destination devices.
  • four images are displayed as PinP on one display device.
  • the four images correspond to display information transmitted from the transmission source device selected in the transmission source selection area 5195. Of the four images, one is displayed as a relatively large main image, and the remaining three are displayed as a relatively small sub image. The user can switch the main image and the sub image by appropriately selecting an area in which four images are displayed.
  • a status display area 5199 is provided below the area where the four images are displayed, and the status relating to the surgery (for example, the elapsed time of the surgery, the patient's physical information, etc.) is appropriately displayed in the area. obtain.
  • a GUI (Graphical User Interface) part for displaying a GUI (Graphical User Interface) part for operating the source apparatus and a GUI part for operating the output destination apparatus are displayed.
  • the transmission source operation area 5203 is provided with GUI parts for performing various operations (panning, tilting, and zooming) on the camera in the transmission source device having an imaging function. The user can operate the operation of the camera in the transmission source device by appropriately selecting these GUI components.
  • the transmission source device selected in the transmission source selection area 5195 is a recorder (that is, in the preview area 5197, images recorded in the past are displayed on the recorder).
  • a GUI component for performing operations such as playback, stop playback, rewind, and fast forward of the image can be provided in the transmission source operation area 5203.
  • GUI parts for performing various operations are provided. Is provided. The user can operate the display on the display device by appropriately selecting these GUI components.
  • the operation screen displayed on the centralized operation panel 5111 is not limited to the example shown in the figure, and the user can use the audiovisual controller 5107 and the operating room control device 5109 provided in the operating room system 5100 via the centralized operation panel 5111. Operation input for each device that can be controlled may be possible.
  • FIG. 14 is a diagram showing an example of a state of surgery to which the operating room system described above is applied.
  • the ceiling camera 5187 and the operating field camera 5189 are provided on the ceiling of the operating room, and can photograph the state of the operator (doctor) 5181 who performs treatment on the affected part of the patient 5185 on the patient bed 5183 and the entire operating room. It is.
  • the ceiling camera 5187 and the surgical field camera 5189 may be provided with a magnification adjustment function, a focal length adjustment function, a photographing direction adjustment function, and the like.
  • the illumination 5191 is provided on the ceiling of the operating room and irradiates at least the hand of the operator 5181.
  • the illumination 5191 may be capable of appropriately adjusting the irradiation light amount, the wavelength (color) of the irradiation light, the light irradiation direction, and the like.
  • Endoscopic surgery system 5113, patient bed 5183, ceiling camera 5187, operating field camera 5189 and illumination 5191 are connected via audiovisual controller 5107 and operating room controller 5109 (not shown in FIG. 14) as shown in FIG. Are connected to each other.
  • a centralized operation panel 5111 is provided in the operating room. As described above, the user can appropriately operate these devices existing in the operating room via the centralized operating panel 5111.
  • an endoscopic surgery system 5113 includes an endoscope 5115, other surgical tools 5131, a support arm device 5141 that supports the endoscope 5115, and various devices for endoscopic surgery. And a cart 5151 on which is mounted.
  • trocars 5139a to 5139d are punctured into the abdominal wall. Then, the lens barrel 5117 of the endoscope 5115 and other surgical tools 5131 are inserted into the body cavity of the patient 5185 from the trocars 5139a to 5139d.
  • an insufflation tube 5133, an energy treatment tool 5135, and forceps 5137 are inserted into the body cavity of the patient 5185.
  • the energy treatment instrument 5135 is a treatment instrument that performs incision and detachment of a tissue, blood vessel sealing, and the like by a high-frequency current and ultrasonic vibration.
  • the illustrated surgical tool 5131 is merely an example, and as the surgical tool 5131, for example, various surgical tools generally used in endoscopic surgery such as a lever and a retractor may be used.
  • An image of the surgical site in the body cavity of the patient 5185 taken by the endoscope 5115 is displayed on the display device 5155.
  • the surgeon 5181 performs a treatment such as excision of the affected part using the energy treatment tool 5135 and the forceps 5137 while viewing the image of the surgical part displayed on the display device 5155 in real time.
  • the pneumoperitoneum tube 5133, the energy treatment tool 5135, and the forceps 5137 are supported by an operator 5181 or an assistant during surgery.
  • the support arm device 5141 includes an arm portion 5145 extending from the base portion 5143.
  • the arm portion 5145 includes joint portions 5147a, 5147b, and 5147c, and links 5149a and 5149b, and is driven by control from the arm control device 5159.
  • the endoscope 5115 is supported by the arm unit 5145, and its position and posture are controlled. Thereby, the stable position fixing of the endoscope 5115 can be realized.
  • the endoscope 5115 includes a lens barrel 5117 in which a region having a predetermined length from the distal end is inserted into the body cavity of the patient 5185, and a camera head 5119 connected to the proximal end of the lens barrel 5117.
  • an endoscope 5115 configured as a so-called rigid mirror having a rigid lens barrel 5117 is illustrated, but the endoscope 5115 is configured as a so-called flexible mirror having a flexible lens barrel 5117. Also good.
  • An opening into which an objective lens is fitted is provided at the tip of the lens barrel 5117.
  • a light source device 5157 is connected to the endoscope 5115, and the light generated by the light source device 5157 is guided to the tip of the lens barrel by a light guide extending inside the lens barrel 5117, and the objective Irradiation is performed toward the observation target in the body cavity of the patient 5185 through the lens.
  • the endoscope 5115 may be a direct endoscope, a perspective mirror, or a side endoscope.
  • An optical system and an image sensor are provided inside the camera head 5119, and reflected light (observation light) from the observation target is condensed on the image sensor by the optical system. Observation light is photoelectrically converted by the imaging element, and an electrical signal corresponding to the observation light, that is, an image signal corresponding to the observation image is generated.
  • the image signal is transmitted to a camera control unit (CCU) 5153 as RAW data.
  • CCU camera control unit
  • the camera head 5119 has a function of adjusting the magnification and the focal length by appropriately driving the optical system.
  • a plurality of image sensors may be provided in the camera head 5119 in order to cope with, for example, stereoscopic viewing (3D display).
  • a plurality of relay optical systems are provided inside the lens barrel 5117 in order to guide observation light to each of the plurality of imaging elements.
  • the CCU 5153 includes a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), and the like, and comprehensively controls the operations of the endoscope 5115 and the display device 5155. Specifically, the CCU 5153 performs various image processing for displaying an image based on the image signal, such as development processing (demosaic processing), for example, on the image signal received from the camera head 5119. The CCU 5153 provides the display device 5155 with the image signal subjected to the image processing. Further, the audiovisual controller 5107 shown in FIG. 12 is connected to the CCU 5153. The CCU 5153 also provides an image signal subjected to image processing to the audiovisual controller 5107.
  • a CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • the CCU 5153 transmits a control signal to the camera head 5119 to control the driving thereof.
  • the control signal can include information regarding imaging conditions such as magnification and focal length. Information regarding the imaging conditions may be input via the input device 5161 or may be input via the above-described centralized operation panel 5111.
  • the display device 5155 displays an image based on an image signal subjected to image processing by the CCU 5153 under the control of the CCU 5153.
  • the endoscope 5115 is compatible with high-resolution imaging such as 4K (horizontal pixel number 3840 ⁇ vertical pixel number 2160) or 8K (horizontal pixel number 7680 ⁇ vertical pixel number 4320), and / or 3D display.
  • high-resolution imaging such as 4K (horizontal pixel number 3840 ⁇ vertical pixel number 2160) or 8K (horizontal pixel number 7680 ⁇ vertical pixel number 4320), and / or 3D display.
  • a display device 5155 capable of high-resolution display and / or 3D display can be used.
  • 4K or 8K high resolution imaging a more immersive feeling can be obtained by using a display device 5155 having a size of 55 inches or more.
  • a plurality of display devices 5155 having different resolutions and sizes may be provided depending on applications.
  • the light source device 5157 is composed of a light source such as an LED (light emitting diode), for example, and supplies the endoscope 5115 with irradiation light when photographing a surgical site.
  • a light source such as an LED (light emitting diode)
  • the arm control device 5159 is configured by a processor such as a CPU, for example, and operates according to a predetermined program to control driving of the arm portion 5145 of the support arm device 5141 according to a predetermined control method.
  • the input device 5161 is an input interface to the endoscopic surgery system 5113.
  • a user can input various information and instructions to the endoscopic surgery system 5113 via the input device 5161.
  • the user inputs various types of information related to the operation, such as the patient's physical information and information about the surgical technique, via the input device 5161.
  • the user instructs to drive the arm unit 5145 via the input device 5161 or an instruction to change the imaging conditions (type of irradiation light, magnification, focal length, etc.) by the endoscope 5115.
  • An instruction to drive the energy treatment instrument 5135 is input.
  • the type of the input device 5161 is not limited, and the input device 5161 may be various known input devices.
  • the input device 5161 for example, a mouse, a keyboard, a touch panel, a switch, a foot switch 5171 and / or a lever can be applied.
  • the touch panel may be provided on the display surface of the display device 5155.
  • the input device 5161 is a device worn by the user, such as a glasses-type wearable device or an HMD (Head Mounted Display), for example, and various inputs according to the user's gesture and line of sight detected by these devices. Is done.
  • the input device 5161 includes a camera capable of detecting a user's movement, and various inputs are performed according to a user's gesture and line of sight detected from an image captured by the camera.
  • the input device 5161 includes a microphone that can pick up the voice of the user, and various inputs are performed by voice through the microphone.
  • the input device 5161 is configured to be able to input various types of information without contact, so that a user belonging to the clean area (for example, an operator 5181) operates a device belonging to the unclean area without contact. Is possible.
  • a user belonging to the clean area for example, an operator 5181
  • the user can operate the device without releasing his / her hand from the surgical tool he / she has, the convenience for the user is improved.
  • the treatment instrument control device 5163 controls driving of the energy treatment instrument 5135 for tissue cauterization, incision, blood vessel sealing, or the like.
  • the pneumoperitoneum device 5165 passes gas into the body cavity via the pneumothorax tube 5133.
  • the recorder 5167 is an apparatus capable of recording various types of information related to surgery.
  • the printer 5169 is a device that can print various types of information related to surgery in various formats such as text, images, or graphs.
  • the support arm device 5141 includes a base portion 5143 which is a base, and an arm portion 5145 extending from the base portion 5143.
  • the arm portion 5145 includes a plurality of joint portions 5147a, 5147b, and 5147c and a plurality of links 5149a and 5149b connected by the joint portion 5147b.
  • FIG. The structure of the arm part 5145 is shown in a simplified manner. Actually, the shape, number and arrangement of the joint portions 5147a to 5147c and the links 5149a and 5149b, the direction of the rotation axis of the joint portions 5147a to 5147c, and the like are appropriately set so that the arm portion 5145 has a desired degree of freedom. obtain.
  • the arm portion 5145 can be preferably configured to have six or more degrees of freedom. Accordingly, the endoscope 5115 can be freely moved within the movable range of the arm unit 5145, and therefore the lens barrel 5117 of the endoscope 5115 can be inserted into the body cavity of the patient 5185 from a desired direction. It becomes possible.
  • the joint portions 5147a to 5147c are provided with actuators, and the joint portions 5147a to 5147c are configured to be rotatable around a predetermined rotation axis by driving the actuators.
  • the drive of the actuator is controlled by the arm control device 5159
  • the rotation angles of the joint portions 5147a to 5147c are controlled, and the drive of the arm portion 5145 is controlled.
  • control of the position and posture of the endoscope 5115 can be realized.
  • the arm control device 5159 can control the driving of the arm unit 5145 by various known control methods such as force control or position control.
  • the arm controller 5159 appropriately controls the driving of the arm unit 5145 according to the operation input.
  • the position and posture of the endoscope 5115 may be controlled. With this control, the endoscope 5115 at the distal end of the arm portion 5145 can be moved from an arbitrary position to an arbitrary position and then fixedly supported at the position after the movement.
  • the arm unit 5145 may be operated by a so-called master slave method. In this case, the arm unit 5145 can be remotely operated by the user via the input device 5161 installed at a location away from the operating room.
  • the arm control device 5159 When force control is applied, the arm control device 5159 receives the external force from the user and moves the actuators of the joint portions 5147a to 5147c so that the arm portion 5145 moves smoothly according to the external force. You may perform what is called power assist control to drive. Accordingly, when the user moves the arm unit 5145 while directly touching the arm unit 5145, the arm unit 5145 can be moved with a relatively light force. Therefore, the endoscope 5115 can be moved more intuitively and with a simpler operation, and the convenience for the user can be improved.
  • an endoscope 5115 is supported by a doctor called a scopist.
  • the position of the endoscope 5115 can be more reliably fixed without relying on human hands, so that an image of the surgical site can be stably obtained. It becomes possible to perform the operation smoothly.
  • the arm control device 5159 is not necessarily provided in the cart 5151. Further, the arm control device 5159 does not necessarily have to be one device. For example, the arm control device 5159 may be provided in each of the joint portions 5147a to 5147c of the arm portion 5145 of the support arm device 5141, and the plurality of arm control devices 5159 cooperate to drive the arm portion 5145. Control may be realized.
  • the light source device 5157 supplies irradiation light for imaging the surgical site to the endoscope 5115.
  • the light source device 5157 is constituted by a white light source constituted by, for example, an LED, a laser light source, or a combination thereof.
  • a white light source is configured by a combination of RGB laser light sources
  • the output intensity and output timing of each color (each wavelength) can be controlled with high accuracy. Adjustments can be made.
  • the laser light from each of the RGB laser light sources is irradiated onto the observation target in a time-sharing manner, and the driving of the image sensor of the camera head 5119 is controlled in synchronization with the irradiation timing, thereby corresponding to each RGB. It is also possible to take the images that have been taken in time division. According to this method, a color image can be obtained without providing a color filter in the image sensor.
  • the driving of the light source device 5157 may be controlled so as to change the intensity of the output light every predetermined time. Synchronously with the timing of changing the intensity of the light, the driving of the image sensor of the camera head 5119 is controlled to acquire an image in a time-sharing manner, and the image is synthesized, so that high dynamic without so-called blackout and overexposure is obtained. A range image can be generated.
  • the light source device 5157 may be configured to be able to supply light of a predetermined wavelength band corresponding to special light observation.
  • special light observation for example, by utilizing the wavelength dependence of light absorption in body tissue, the surface of the mucous membrane is irradiated by irradiating light in a narrow band compared to irradiation light (ie, white light) during normal observation.
  • narrow band imaging is performed in which a predetermined tissue such as a blood vessel is imaged with high contrast.
  • fluorescence observation may be performed in which an image is obtained by fluorescence generated by irradiating excitation light.
  • the body tissue is irradiated with excitation light to observe fluorescence from the body tissue (autofluorescence observation), or a reagent such as indocyanine green (ICG) is locally administered to the body tissue and applied to the body tissue.
  • a reagent such as indocyanine green (ICG) is locally administered to the body tissue and applied to the body tissue.
  • ICG indocyanine green
  • the light source device 5157 can be configured to be able to supply narrowband light and / or excitation light corresponding to such special light observation.
  • FIG. 15 is a block diagram illustrating an example of functional configurations of the camera head 5119 and the CCU 5153 illustrated in FIG.
  • the camera head 5119 has a lens unit 5121, an imaging unit 5123, a drive unit 5125, a communication unit 5127, and a camera head control unit 5129 as its functions.
  • the CCU 5153 includes a communication unit 5173, an image processing unit 5175, and a control unit 5177 as its functions.
  • the camera head 5119 and the CCU 5153 are connected to each other via a transmission cable 5179 so that they can communicate with each other.
  • the lens unit 5121 is an optical system provided at a connection portion with the lens barrel 5117. Observation light taken from the tip of the lens barrel 5117 is guided to the camera head 5119 and enters the lens unit 5121.
  • the lens unit 5121 is configured by combining a plurality of lenses including a zoom lens and a focus lens. The optical characteristics of the lens unit 5121 are adjusted so that the observation light is condensed on the light receiving surface of the image sensor of the imaging unit 5123. Further, the zoom lens and the focus lens are configured such that their positions on the optical axis are movable in order to adjust the magnification and focus of the captured image.
  • the imaging unit 5123 is configured by an imaging element, and is arranged at the rear stage of the lens unit 5121.
  • the observation light that has passed through the lens unit 5121 is collected on the light receiving surface of the imaging element, and an image signal corresponding to the observation image is generated by photoelectric conversion.
  • the image signal generated by the imaging unit 5123 is provided to the communication unit 5127.
  • the image pickup element constituting the image pickup unit 5123 for example, a CMOS (Complementary Metal Oxide Semiconductor) type image sensor that can perform color photographing having a Bayer array is used.
  • the imaging element for example, an element capable of capturing a high-resolution image of 4K or more may be used.
  • the image sensor that constitutes the image capturing unit 5123 is configured to have a pair of image sensors for acquiring right-eye and left-eye image signals corresponding to 3D display. By performing the 3D display, the operator 5181 can more accurately grasp the depth of the living tissue in the surgical site. Note that in the case where the imaging unit 5123 is configured as a multi-plate type, a plurality of lens units 5121 are also provided corresponding to each imaging element.
  • the imaging unit 5123 is not necessarily provided in the camera head 5119.
  • the imaging unit 5123 may be provided inside the lens barrel 5117 immediately after the objective lens.
  • the driving unit 5125 includes an actuator, and moves the zoom lens and the focus lens of the lens unit 5121 by a predetermined distance along the optical axis under the control of the camera head control unit 5129. Thereby, the magnification and focus of the image captured by the imaging unit 5123 can be adjusted as appropriate.
  • the communication unit 5127 includes a communication device for transmitting and receiving various types of information to and from the CCU 5153.
  • the communication unit 5127 transmits the image signal obtained from the imaging unit 5123 to the CCU 5153 via the transmission cable 5179 as RAW data.
  • the image signal is preferably transmitted by optical communication.
  • the surgeon 5181 performs the surgery while observing the state of the affected part with the captured image, so that a moving image of the surgical part is displayed in real time as much as possible for safer and more reliable surgery. Because it is required.
  • the communication unit 5127 is provided with a photoelectric conversion module that converts an electrical signal into an optical signal.
  • the image signal is converted into an optical signal by the photoelectric conversion module, and then transmitted to the CCU 5153 via the transmission cable 5179.
  • the communication unit 5127 receives a control signal for controlling the driving of the camera head 5119 from the CCU 5153.
  • the control signal includes, for example, information for designating the frame rate of the captured image, information for designating the exposure value at the time of imaging, and / or information for designating the magnification and focus of the captured image. Contains information about the condition.
  • the communication unit 5127 provides the received control signal to the camera head control unit 5129.
  • the control signal from the CCU 5153 may also be transmitted by optical communication.
  • the communication unit 5127 is provided with a photoelectric conversion module that converts an optical signal into an electrical signal.
  • the control signal is converted into an electrical signal by the photoelectric conversion module and then provided to the camera head control unit 5129.
  • the imaging conditions such as the frame rate, exposure value, magnification, and focus are automatically set by the control unit 5177 of the CCU 5153 based on the acquired image signal. That is, a so-called AE (Auto Exposure) function, AF (Auto Focus) function, and AWB (Auto White Balance) function are mounted on the endoscope 5115.
  • AE Auto Exposure
  • AF Automatic Focus
  • AWB Automatic White Balance
  • the camera head control unit 5129 controls driving of the camera head 5119 based on a control signal from the CCU 5153 received via the communication unit 5127. For example, the camera head control unit 5129 controls driving of the image sensor of the imaging unit 5123 based on information indicating that the frame rate of the captured image is specified and / or information indicating that the exposure at the time of imaging is specified. For example, the camera head control unit 5129 appropriately moves the zoom lens and the focus lens of the lens unit 5121 via the drive unit 5125 based on information indicating that the magnification and focus of the captured image are designated.
  • the camera head control unit 5129 may further have a function of storing information for identifying the lens barrel 5117 and the camera head 5119.
  • the camera head 5119 can be resistant to autoclave sterilization by arranging the lens unit 5121, the imaging unit 5123, and the like in a sealed structure with high airtightness and waterproofness.
  • the communication unit 5173 is configured by a communication device for transmitting and receiving various types of information to and from the camera head 5119.
  • the communication unit 5173 receives an image signal transmitted from the camera head 5119 via the transmission cable 5179.
  • the image signal can be suitably transmitted by optical communication.
  • the communication unit 5173 is provided with a photoelectric conversion module that converts an optical signal into an electric signal.
  • the communication unit 5173 provides the image processing unit 5175 with the image signal converted into the electrical signal.
  • the communication unit 5173 transmits a control signal for controlling the driving of the camera head 5119 to the camera head 5119.
  • the control signal may also be transmitted by optical communication.
  • the image processing unit 5175 performs various types of image processing on the image signal that is RAW data transmitted from the camera head 5119. Examples of the image processing include development processing, high image quality processing (band enhancement processing, super-resolution processing, NR (Noise reduction) processing and / or camera shake correction processing, etc.), and / or enlargement processing (electronic zoom processing). Various known signal processing is included. Further, the image processing unit 5175 performs detection processing on the image signal for performing AE, AF, and AWB.
  • the image processing unit 5175 is configured by a processor such as a CPU or a GPU, and the above-described image processing and detection processing can be performed by the processor operating according to a predetermined program. Note that when the image processing unit 5175 includes a plurality of GPUs, the image processing unit 5175 appropriately divides information related to the image signal, and performs image processing in parallel with the plurality of GPUs.
  • the control unit 5177 performs various controls relating to imaging of the surgical site by the endoscope 5115 and display of the captured image. For example, the control unit 5177 generates a control signal for controlling driving of the camera head 5119. At this time, when the imaging condition is input by the user, the control unit 5177 generates a control signal based on the input by the user. Alternatively, when the endoscope 5115 is equipped with the AE function, the AF function, and the AWB function, the control unit 5177 determines the optimum exposure value, focal length, and the distance according to the detection processing result by the image processing unit 5175. A white balance is appropriately calculated and a control signal is generated.
  • control unit 5177 causes the display device 5155 to display an image of the surgical site based on the image signal subjected to image processing by the image processing unit 5175.
  • the control unit 5177 recognizes various objects in the surgical unit image using various image recognition techniques. For example, the control unit 5177 detects the shape and color of the edge of the object included in the surgical part image, thereby removing surgical tools such as forceps, specific biological parts, bleeding, mist when using the energy treatment tool 5135, and the like. Can be recognized.
  • the control unit 5177 causes various types of surgery support information to be superimposed and displayed on the image of the surgical site using the recognition result. Surgery support information is displayed in a superimposed manner and presented to the operator 5181, so that the surgery can be performed more safely and reliably.
  • the transmission cable 5179 connecting the camera head 5119 and the CCU 5153 is an electric signal cable corresponding to electric signal communication, an optical fiber corresponding to optical communication, or a composite cable thereof.
  • communication is performed by wire using the transmission cable 5179, but communication between the camera head 5119 and the CCU 5153 may be performed wirelessly.
  • communication between the two is performed wirelessly, there is no need to install the transmission cable 5179 in the operating room, so that the situation where the movement of the medical staff in the operating room is hindered by the transmission cable 5179 can be solved.
  • the operating room system 5100 to which the technology according to the present disclosure can be applied has been described.
  • the medical system to which the operating room system 5100 is applied is the endoscopic operating system 5113 is described here as an example
  • the configuration of the operating room system 5100 is not limited to such an example.
  • the operating room system 5100 may be applied to an examination flexible endoscope system or a microscope operation system instead of the endoscope operation system 5113.
  • the technology according to the present disclosure can be applied to the camera head 5119, the ceiling camera 5187, and the surgical field camera 5189.
  • the imaging lens 20 corresponds to the lens unit 5121
  • the imaging unit 31 corresponds to the imaging unit 5123.
  • the control unit 51 corresponds to the camera head control unit 5129.
  • the present technology when the present technology is applied, when a desired subject is imaged by the camera head 5119, the desired subject can be focused at high speed and with high quality.
  • the series of processes described in the specification can be executed by hardware, software, or a combined configuration of both.
  • a program in which a processing sequence is recorded is installed and executed in a memory in a computer incorporated in dedicated hardware.
  • the program can be installed and executed on a general-purpose computer capable of executing various processes.
  • the program can be recorded in advance on a hard disk, SSD (Solid State Drive), or ROM (Read Only Memory) as a recording medium.
  • the program is a flexible disk, a CD-ROM (Compact Disc Read Only Memory), an MO (Magneto optical disc), a DVD (Digital Versatile Disc), a BD (Blu-Ray Disc (registered trademark)), a magnetic disk, or a semiconductor memory card. It can be stored (recorded) in a removable recording medium such as temporarily or permanently. Such a removable recording medium can be provided as so-called package software.
  • the program may be transferred from the download site to the computer wirelessly or by wire via a network such as a LAN (Local Area Network) or the Internet.
  • the computer can receive the program transferred in this way and install it on a recording medium such as a built-in hard disk.
  • the imaging device of this technique can also take the following structures.
  • an image sensor including an image output pixel and a phase difference detection pixel; Indicates whether the change in the focus state is a monotonous change based on the focus state information obtained while performing the focus control based on the image plane phase difference information obtained using the phase difference detection pixel over a predetermined period.
  • An imaging apparatus comprising: (2) When the focus state change information indicates that the change in the focus state is not a monotonous change, the control unit may be based on information other than the image plane phase difference information from the image plane phase difference focus control.
  • the imaging apparatus according to (1) wherein the focus control is switched to (1).
  • the other focus control is based on contrast focus control based on image information obtained using the image output pixels or distance measurement information obtained by a distance information generation element provided separately from the imaging element.
  • the imaging apparatus according to (2) which is distance measurement information focus control.
  • the other focus control is contrast focus control based on image information obtained by using the image output pixel
  • the said control part is an imaging device as described in (2) which performs the said image surface phase difference focus control after completion
  • the control unit determines the reliability of the correlation calculation result of two images having parallax obtained from the output of the phase difference detection pixel prior to the predetermined period, and the correlation calculation result is reliable.
  • the imaging apparatus according to any one of (1) to (4), wherein when the determination is made, the focus state change information is generated.
  • the focus state information is a defocus amount indicated by a lens actual position of the focus lens or the image plane phase difference information
  • the control unit determines whether the change in the focus state is a monotonous change based on the change amount of the actual lens position or the change amount of the defocus amount, according to any of (1) to (6).
  • Imaging device (8)
  • the focus state information is a defocus amount indicated by a lens actual position of the focus lens or the image plane phase difference information, The control unit determines whether the change in the focus state is a monotonous change based on the frequency characteristic of the change amount of the actual lens position or the frequency characteristic of the change amount of the defocus amount (1) to (6). ).
  • the focus state information is a defocus amount indicated by a lens actual position of the focus lens or the image plane phase difference information
  • the imaging device according to any one of (1) to (6), wherein the control unit determines whether the change in the focus state is a monotonous change based on the actual lens position or the defocus amount.
  • the imaging apparatus according to any one of (7) to (9), wherein the focus state information is a lens actual position of the focus lens in the interchangeable lens acquired by communication with the interchangeable lens.
  • the imaging device of this technique can also take the following structures.
  • an imaging device including an image output pixel and an image plane phase difference detection pixel; Whether the change in the focus state is a monotonous change based on the focus state information obtained while performing the image plane phase difference focus control based on the image plane phase difference information obtained using the phase difference detection pixel over a predetermined period. If the focus state change information indicates that the change in the focus state is a monotonous change, it is determined that the focus lens has a large focus position shift, and the focus state change information is generated.
  • An imaging apparatus comprising: a determination unit that determines that the contrast of the subject imaged by the image output pixel is low when the state change information indicates that the change in the focus state is not a monotonous change.
  • the focus state information is a defocus amount indicated by a lens actual position of the focus lens or the image plane phase difference information
  • the determination apparatus determines whether or not the change in the focus state is a monotonous change based on a change amount of the actual lens position or a change amount of the defocus amount.
  • the focus state information is a defocus amount indicated by a lens actual position of the focus lens or the image plane phase difference information, The determination unit determines whether the change in the focus state is a monotonous change based on the frequency characteristic of the change amount of the actual lens position of the focus lens or the frequency characteristic of the change amount of the defocus amount.
  • the imaging apparatus wherein the focus state information is a lens actual position of a focus lens.
  • the focus state information is a defocus amount indicated by the image plane phase difference information.
  • the focus state information is a defocus amount indicated by a lens actual position of the focus lens and the image plane phase difference information, The imaging apparatus according to (1), wherein the determination unit determines whether the change in the focus state is a monotonous change based on both the actual lens position of the focus lens and the defocus amount.
  • the determination unit determines the reliability of the correlation calculation result of two images having parallax obtained from the output of the image plane phase difference detection pixel prior to the predetermined period, and the reliability of the correlation calculation result is If it is determined that there is The imaging device according to any one of (1) to (6), wherein the control unit starts generating the focus state change information. (18) The imaging device according to any one of (1) to (7), wherein the determination unit controls presentation of a state determination result in an information presentation unit that presents a state determination result to a user.
  • the present technology may be the following program.
  • a program for causing a computer to perform focus control in an imaging apparatus A procedure for obtaining image plane phase difference information obtained by using the phase difference detection pixel of an imaging device including an image output pixel and a phase difference detection pixel; Focus state change indicating whether or not the change in the focus state is a monotonous change based on the focus state information obtained while performing the image plane phase difference focus control based on the image plane phase difference information obtained over a predetermined period.
  • a procedure for generating information When the focus state change information indicates that the change in the focus state is a monotonous change, a program for causing the computer to execute a procedure for continuing image plane phase difference focus control based on the image plane phase difference information.
  • a program for causing a computer to perform focus control in an imaging apparatus Obtaining image plane phase difference information obtained using the phase difference detection pixel from an image sensor including an image output pixel and a phase difference detection pixel; Focus state change indicating whether or not the change in the focus state is a monotonous change based on the focus state information obtained while performing the image plane phase difference focus control based on the image plane phase difference information obtained over a predetermined period.
  • a procedure for generating information When the focus state change information indicates that the change in the focus state is a monotonous change, it is determined that the focus lens has a large focal position shift, and the focus state change information indicates that the focus state change is a monotone change.
  • a program for causing the computer to execute a procedure for determining that the contrast of the subject imaged by the image output pixel is low.
  • an imaging device including an image output pixel and a phase difference detection pixel is used, and the control unit includes the image output pixel and the phase difference detection pixel.
  • the imaging device is used, and the control unit changes the focus state based on the focus state information obtained while performing the focus control based on the image plane phase difference information obtained using the phase difference detection pixels over a predetermined period. If the focus state change information indicates whether the focus state change is a monotone change, the image plane phase difference focus based on the image plane phase difference information is generated. Continue control. For this reason, for example, the frequency of performing the contrast-type autofocus operation is reduced, and a high-speed and high-quality autofocus operation is possible. Therefore, it is suitable for digital cameras, video cameras, endoscopic cameras, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Human Computer Interaction (AREA)
  • Studio Devices (AREA)
  • Automatic Focus Adjustment (AREA)
  • Focusing (AREA)
  • Structure And Mechanism Of Cameras (AREA)

Abstract

撮像部31は、画像出力画素と位相差検出画素とを含む撮像素子を用いて構成する。制御部50は、所定期間に亘って位相差検出画素を用いて得られる像面位相差情報に基づいたフォーカス制御を行い、フォーカス状態の変化が単調変化であるか否かを示すフォーカス状態変化情報を生成して、フォーカス状態変化情報が、フォーカス状態の変化が単調変化であることを示す場合は大ぼけ状態として、像面位相差情報に基づくフォーカス制御を継続する。また、制御部は、フォーカス状態の変化が単調変化でないときは低コントラスト状態であるとして像面位相差オートフォーカス動作から例えばコントラスト方式のオートフォーカス動作を切り替える。高速かつ品位のよいオートフォーカス動作を行えるようになる。

Description

撮像装置とフォーカス制御方法およびフォーカス判定方法
 この技術は、撮像装置とフォーカス制御方法およびフォーカス判定方法に関し、高速かつ品位のよいオートフォーカス動作を行えるようにする。
 従来、撮像装置では、フォーカス制御方法として、フォーカスレンズを移動させながら撮像素子で生成された撮像信号に基づきコントラスト評価値を算出して、コントラスト評価値が最大となるフォーカスレンズ位置を探索するコントラスト検出方式のフォーカス制御が行われている。また、フォーカス制御方法では、撮像光学系における互いに異なる射出瞳領域を通過した光束を撮像面に設けた位相差検出画素で受光して得た2つの位相差画像の位相ズレに基づいてデフォーカス量を算出して、デフォーカス量に相当する移動量だけフォーカスレンズを移動させる像面位相差方式のフォーカス制御が行われている。さらに、特許文献1では、位相差を検出するための画素を有する撮像素子を用いて、像面位相差方式のフォーカス制御だけでなく、コントラスト方式のフォーカス制御を行うことが開示されている。
特開2008-134389号公報
 ところで、像面位相差方式のフォーカス制御では、例えば焦点距離が長い撮像レンズを用いた場合にフォーカスが大きくずれた状態となると、撮像面上の画像も大きくぼけてしまう。このため、位相差情報の情報量が少なくデフォーカス量を正しく算出することが困難となる。このような場合、制御方法をコントラスト検出方式に切り替えることで所望の被写体に焦点を合わせることができる。しかし、コントラスト検出方式では、フォーカスレンズを移動させて評価値の算出を行い、算出した評価値に基づき合焦方向や合焦位置の検出が行われる。したがって、コントラスト検出方式に切り替えられる頻度が高くなると、合焦状態となるまでに時間を要する場合が多くなり、品位も低下する。
 そこで、この技術では、高速かつ品位のよいオートフォーカス動作を可能とする撮像装置とフォーカス制御方法およびフォーカス判定方法を提供することを目的とする。
 この技術の第1の側面は、
 画像出力画素と位相差検出画素とを含む撮像素子と、
 所定期間に亘って前記位相差検出画素を用いて得られる像面位相差情報に基づいたフォーカス制御を行いながら得られるフォーカス状態情報に基づいてフォーカス状態の変化が単調変化であるか否かを示すフォーカス状態変化情報を生成し、
前記フォーカス状態変化情報が、前記フォーカス状態の変化が単調変化であることを示す場合、前記像面位相差情報に基づく像面位相差フォーカス制御を継続する制御部と
を備える撮像装置にある。
 この技術においては、画像出力画素と位相差検出画素とを含む撮像素子を用いて撮像が行われる。制御部では、所定期間に亘って位相差検出画素を用いて得られる像面位相差情報に基づいたフォーカス制御を行い、フォーカス状態の変化が単調変化であるか否かを示すフォーカス状態変化情報を生成する。
 制御部は、フォーカス状態の変化が単調変化か否かを、例えばフォーカスレンズのレンズ実位置の変化量または像面位相差情報が示すデフォーカス量の変化量に基づいて判定してフォーカス状態変化情報を生成する。また、制御部は、フォーカスレンズのレンズ実位置の変化量または像面位相差情報が示すデフォーカス量の変化量の周波数特性に基づいて判定してフォーカス状態変化情報を生成してもよく、フォーカスレンズのレンズ実位置または像面位相差情報が示すデフォーカス量に基づいて判定してフォーカス状態変化情報を生成してもよい。
 制御部は、フォーカス状態変化情報が、フォーカス状態の変化が単調変化であることを示す場合、像面位相差情報に基づくフォーカス制御を継続する。また、制御部は、制御部は、フォーカス状態変化情報が、フォーカス状態の変化が単調変化でないことを示す場合、像面位相差情報に基づくフォーカス制御から、像面位相差情報以外の情報に基づくフォーカス制御、または像面位相差情報と像面位相差情報以外の情報とに基づくフォーカス制御に切り替える。像面位相差情報以外の情報に基づくフォーカス制御としては、画像出力画素を用いて得られる画像情報または撮像素子と別個に設けられた測距情報生成素子で得られた測距情報に基づくフォーカス制御を行ってもよく、画像出力画素を用いて得られる画像情報に基づくフォーカス制御と画像情報と異なる情報に基づくフォーカス制御の切り替えを行ってもよい。
 また、制御部は、所定期間に先だって、位相差検出画素の出力から得られる視差を持つ2像の相関演算を行い、相関演算結果の信頼性を判定して、相関演算結果の信頼性があると判定した場合にフォーカス状態変化情報を生成して、相関演算結果の信頼性がないと判定した場合、フォーカスレンズを一方の端部側から他方の端部側へ移動して合焦位置を検出する全サーチ動作を行う。
 この技術の第2の側面は、
 画像出力画素と像面位相差検出画素とを含む撮像素子と、
 所定期間に亘って前記位相差検出画素を用いて得られる像面位相差情報に基づく像面位相差フォーカス制御を行いながら得られるフォーカス状態情報に基づいて、フォーカス状態の変化が単調変化であるか否かを示すフォーカス状態変化情報を生成し、前記フォーカス状態変化情報が、前記フォーカス状態の変化が単調変化であることを示す場合、フォーカスレンズの焦点位置ズレが大きい状態と判定して、前記フォーカス状態変化情報が、前記フォーカス状態の変化が単調変化でないことを示す場合、前記画像出力画素によって撮像された被写体のコントラストが低い状態と判定する判定部と
を備える撮像装置にある。
 この技術においては、画像出力画素と位相差検出画素とを含む撮像素子を用いて撮像が行われる。判定部では、所定期間に亘って位相差検出画素を用いて得られる像面位相差情報に基づいたフォーカス制御を行い、フォーカス状態の変化が単調変化であるか否かを示すフォーカス状態変化情報を生成する。例えば、フォーカス状態情報は、フォーカスレンズのレンズ実位置または像面位相差情報が示すデフォーカス量であり、判定部は、フォーカス状態の変化が単調変化か否かをレンズ実位置の変化量またはデフォーカス量の変化量で判定する。また、フォーカス状態情報は、フォーカスレンズのレンズ実位置または像面位相差情報が示すデフォーカス量であり、判定部は、フォーカス状態の変化が単調変化か否かをフォーカスレンズのレンズ実位置の変化量の周波数特性またはデフォーカス量の変化量の周波数特性で判定する。また、フォーカス状態情報は、フォーカスレンズのレンズ実位置及び像面位相差情報が示すデフォーカス量であり、判定部は、フォーカス状態の変化が単調変化か否かをフォーカスレンズのレンズ実位置とデフォーカス量の双方に基づいて判定する。
 また、判定部は、所定期間に先だって、像面位相差検出画素の出力から得られる視差を持つ2像の相関演算結果の信頼性を判定し、相関演算結果の信頼性があると判定した場合に、制御部は、フォーカス状態変化情報の生成を開始する。また、判定部は、状態判定結果をユーザに提示する情報提示部での状態判定結果の提示を制御する。
 この技術の第3の側面は、
 画像出力画素と位相差検出画素とを含む撮像素子の前記位相差検出画素を用いて所定期間に亘って得られる像面位相差情報に基づいた像面位相差フォーカス制御を行いながら得られるフォーカス状態情報に基づいて、フォーカス状態の変化が単調変化であるか否かを示すフォーカス状態変化情報を生成することと、
前記フォーカス状態変化情報が、前記フォーカス状態の変化が単調変化であることを示す場合、前記像面位相差情報に基づく像面位相差フォーカス制御を継続することと
を含むフォーカス制御方法にある。
 この技術の第4の側面は、
 画像出力画素と像面位相差検出画素とを含む撮像素子の前記位相差検出画素を用いて所定期間に亘って得られる像面位相差情報に基づいた像面位相差フォーカス制御を行いながら得られるフォーカス状態情報に基づいて、フォーカス状態の変化が単調変化であるか否かを示すフォーカス状態変化情報を生成することと、
前記フォーカス状態変化情報が、前記フォーカス状態の変化が単調変化であることを示す場合、フォーカスレンズの焦点位置ズレが大きい状態と判定し、前記フォーカス状態変化情報が、前記フォーカス状態の変化が単調変化でないことを示す場合、前記画像出力画素によって撮像された被写体のコントラストが低い状態と判定することと
を含むフォーカス制御方法。
 この技術によれば、画像出力画素と位相差検出画素とを含む撮像素子が用いられて、制御部は、所定期間に亘って位相差検出画素を用いて得られる像面位相差情報に基づいたフォーカス制御を行いながら得られるフォーカス状態情報に基づいてフォーカス状態の変化が単調変化であるか否かを示すフォーカス状態変化情報を生成し、フォーカス状態変化情報が、フォーカス状態の変化が単調変化であることを示す場合、像面位相差情報に基づく像面位相差フォーカス制御を継続する。このため、例えばコントラスト方式のオートフォーカス動作を行う頻度が少なくなり、高速かつ品位のよいオートフォーカス動作が可能となる。なお、本明細書に記載された効果はあくまで例示であって限定されるものではなく、また付加的な効果があってもよい。
第1の実施の形態の構成を例示した図である。 第1の実施の形態の動作を示すフローチャートである。 像面位相差AF動作を行った場合における被写体とレンズ位置の軌跡およびデフォーカス量の軌跡の関係を例示した図である。 フォーカス状態変化情報の生成動作を例示したフローチャートである。 レンズ位置変化量の単調変化を説明するための図である。 第1の実施の形態の動作例を示す図である。 評価関数に用いるパラメータを説明するための図である。 第2の実施の形態の動作を示すフローチャートである。 第3の実施の形態の構成を例示した図である。 第3の実施の形態の動作を示すフローチャートである。 第4の実施の形態の動作を示すフローチャートである。 手術室システムの全体構成を概略的に示す図である。 集中操作パネルにおける操作画面の表示例を示す図である。 手術室システムが適用された手術の様子の一例を示す図である。 図14に示すカメラヘッド及びCCUの機能構成の一例を示すブロック図である。
 以下、本技術を実施するための形態について説明する。なお、説明は以下の順序で行う。
 1.第1の実施の形態
 2.第2の実施の形態
 3.第3の実施の形態
 4.第4の実施の形態
 5.他の実施の形態
 6.応用例
 <1.第1の実施の形態>
 次に、本技術の撮像装置の第1の実施の形態について説明する。図1は、第1の実施の形態の構成を例示している。
 撮像装置10は、撮像レンズ20と本体部30で構成されている。撮像レンズ20は、撮像光学系21とレンズ駆動処理部22を有している。撮像光学系21はフォーカスレンズを用いた構成されている。また、撮像光学系21は、フォーカスレンズだけでなくズームレンズや絞り機構等を用いた構成であってもよい。
 レンズ駆動処理部22は、本体部30からのレンズ制御信号に基づき、撮像光学系21におけるフォーカスレンズのレンズ位置を移動させる。また、レンズ駆動処理部22は、フォーカスレンズのレンズ実位置(以下「レンズ位置」という)を示す情報等を生成して本体部30へ出力する。
 本体部30は、撮像部31、前処理部32、画像処理部33、表示部35、記録部36、ユーザインタフェース(I/F)部39、制御部51を備えて構成されている。なお、本体部30は、図に記載されていない機能ブロックを有してもよく、図に記載されている機能ブロックの一部を含まない構成であってもよい。
 撮像部31は、CMOS(Complementary Metal Oxide Semiconductor)等の撮像素子を用いて構成されている。また、撮像素子では、撮像面内に画像出力画素と位相差検出画素が設けられている。画像出力画素と位相差検出画素は、独立して設けられる場合に限らず、画像出力画素に位相差検出の機能を設けることで、撮像面内に画像出力画素と位相差検出画素を設けた構成としてもよい。
 撮像部31の撮像面には、撮像レンズ20からの被写体光が入射される。撮像部31は、後述する制御部51からの制御信号に基づき、撮像素子の露光動作の開始及び終了や、各画素の出力選択、画素信号の読出し等の動作を行い、画像出力画素によって撮像された被写体を示す画像信号の生成と、位相差検出画素で生成された位相差画像例えば2つの位相差画像の位相差を示す位相差情報(以下「像面位相差情報」という)の生成を行う。撮像部31は、生成した画像信号を前処理部32へ出力する。また、撮像部31は、生成した像面位相差情報を制御部51へ出力する。
 前処理部32は、撮像部31から出力される画像信号に対して所定の信号処理、例えばノイズ除去処理や利得調整、クランプ処理等を行う。また、前処理部32は、アナログ/デジタル変換処理を行い、所定の信号処理が行われたアナログの画像信号をデジタルの画像信号に変換して画像処理部33へ出力する。
 画像処理部33は、前処理部32から出力される画像信号に対して所定の信号処理、例えば、デジタル画像信号の黒レベルを基準の黒レベルとする黒レベル補正、被写体の白色部分が正しく白色として表示および記録されるように赤色や青色のレベルを補正するホワイトバランス制御、画像信号の階調特性を補正するガンマ補正等の信号処理を行う。画像処理部33は、信号処理後の画像信号を表示部35や記録部36、制御部51へ出力する。また、画像処理部33は、画像信号の符号化処理を行い記録部36へ出力してもよく、記録部36から供給された符号化信号の復号処理を行い、得られた画像信号を表示部35へ出力してもよい。
 表示部35は、画像処理部33で処理された画像信号に基づき撮像画を表示する。また、表示部35は、制御部51からの制御信号に基づいてメニュー画面等の表示を行う。さらに、表示部35は、制御部51からの状態判定信号に基づいて、フォーカス位置に対するフォーカスレンズの位置ズレが大きい状態であること、または撮像された被写体のコントラストが低い状態であることをユーザに提示する。
 記録部36は、画像処理部33で信号処理された画像信号または符号化信号を記録媒体に記録する。また、記録部36は、画像処理部33で信号処理が行われる前のRAW画像信号を記録媒体に記録してもよい。記録部36は、記録媒体に記録されている画像信号または符号化信号を読み出して画像処理部33へ出力する。
 ユーザインタフェース部39は操作スイッチや操作ボタン等を用いて構成されている。ユーザインタフェース部39は、ユーザ操作に応じた操作信号を生成して制御部51へ出力する。なお、ユーザインタフェース部39は、本体部30に設けられている場合に限らず、本体部30と別個に設けられて例えば離れた位置から通信路等を介して制御部51へ操作信号の送信等を行える構成であってもよい。
 制御部51は、例えば制御プログラムを記憶するROMや一時的にデータを記憶するフラッシュメモリ等の記憶部が内蔵されたマイクロコンピュータを用いて構成されている。制御部51は、制御プログラムを実行して、ユーザインタフェース部39からの操作信号に基づき、ユーザが所望する動作を撮像装置10で行うように各部の動作を制御して、動画や静止画の撮像や記録等を行う。
 また、制御部51は、所定期間に亘って位相差検出画素を用いて得られる像面位相差情報に基づいたフォーカス制御を行い、フォーカス状態の変化が単調変化であるか否かを示すフォーカス状態変化情報を生成して、フォーカス状態変化情報が、フォーカス状態の変化が単調変化であることを示す場合、像面位相差情報に基づくフォーカス制御を継続する。また、制御部51は、フォーカス状態変化情報が、フォーカス状態の変化が単調変化でないことを示す場合、像面位相差情報に基づくフォーカス制御から、像面位相差情報以外の情報に基づくフォーカス制御に切り替える。制御部51は、このようなフォーカス制御によってオートフォーカス動作を行うために、判定部511とフォーカス制御部512を有している。
 判定部511は、所定期間に亘って位相差検出画素の出力に応じたフォーカス制御を行い、フォーカス状態の変化が単調変化であるか否かを示すフォーカス状態変化情報を生成する。判定部511は、撮像レンズ20から取得したフォーカスレンズのレンズ実位置を示す情報や、位相差検出画素の出力に応じたフォーカス制御を行いながら撮像部31の位相差検出画素を用いて生成された像面位相差情報等に基づき、フォーカス変化情報を生成する。撮像レンズ20は、撮像装置10に固定して設けられたレンズであってもよく、着脱可能な交換レンズであってもよい。撮像レンズ20が交換レンズである場合、制御部51は交換レンズと通信を行い、交換レンズからフォーカスレンズのレンズ実位置を取得して、判別部511は取得したレンズ実位置をフォーカス状態変化情報として用いる。
 フォーカス制御部512は、判定部511で生成されたフォーカス状態変化情報が、フォーカス状態の変化が単調変化であることを示す場合、像面位相差情報に基づくフォーカス制御を継続する。また、フォーカス制御部512は、判定部511で生成されたフォーカス状態変化情報が、フォーカス状態の変化が単調変化でないことを示す場合、像面位相差情報に基づくフォーカス制御から、像面位相差情報以外の情報に基づくフォーカス制御例えば画像処理部33から供給された画像信号に基づくコントラスト方式のフォーカス制御を行う。フォーカス制御部512は、像面位相差情報に基づくフォーカス制御(像面位相差フォーカス制御)を行う場合、像面位相差情報によって示されるデフォーカス量に応じてフォーカス制御信号を生成して撮像レンズ20のレンズ駆動処理部22へ出力することでオートフォーカス動作(以下「像面位相差AF動作」という)を行う。また、フォーカス制御部512は、画像信号に基づくフォーカス制御(コントラストフォーカス制御)を行う場合、測距エリア内の画素群の画素値を用いて算出したコントラストAF評価値に基づきフォーカス制御信号を生成して撮像レンズ20のレンズ駆動処理部22へ出力することでオートフォーカス動作(以下「コントラストAF動作」という)を行う。
 次に、本技術の撮像装置の第1の実施の形態の動作について説明する。図2は、第1の実施の形態の動作を示すフローチャートである。撮像装置は、シャッター操作やシャッター動作が行われたときフローチャートの動作を開始する。シャッター操作は、ユーザによるシャッター全押し操作やシャッター半押し操作などである、シャッター動作は、ユーザ操作にかかわらず自動的に行われるシャッター動作で、例えばタイマー動作や被写体の認識結果に基づくオートシャッタ動作などである。
 ステップST1で制御部は像面位相差AF動作を開始する。制御部51は、像面位相差情報によって示されるデフォーカス量に応じたフォーカス制御信号の生成を開始して撮像レンズ20のレンズ駆動処理部22へフォーカス制御信号を出力することで、像面位相差AF動作を開始してステップST2に進む。
 ステップST2で制御部は、フォーカス状態変化情報を生成する。制御部51は、ステップST1で開始した像面位相差AF動作を所定時間行う。また、制御部51は、像面位相差AF動作を所定時間行ったときのフォーカス状態の変化が単調変化か否かを示すフォーカス状態変化情報を生成する。制御部51は、例えば変化量の周波数特性、像面位相差情報が示すデフォーカス量、レンズ位置、デフォーカス量とレンズ位置のいずれかによってフォーカス状態の変化が単調変化か否かを判定してフォーカス状態変化情報を生成する。なお、フォーカス状態変化情報の生成についての詳細は後述する。制御部51は、フォーカス状態変化情報を生成してステップST3に進む。
 ステップST3で制御部は、フォーカス状態の変化が単調変化であるか判定する。制御部51は、ステップST2で生成したフォーカス状態変化情報が単調変化であることを示している場合はステップST4に進み、単調変化でないことを示している場合はステップST5に進む。
 ステップST4で制御部は像面位相差AF動作を継続する。制御部51は、フォーカス状態の変化が単調変化であることから大ぼけ状態(「out of focus」「Big Defocus」または「largely defocus」ともいう)であるとして、像面位相差AF動作を継続する。
 ステップST5で制御部はコントラストAF動作への切り替えを行う。制御部51は、フォーカス状態の変化が単調変化でないことから低コントラスト状態であるとして、フォーカス制御動作を像面位相差AF動作からコントラストAF動作に切り替える。
 次に、フォーカス状態変化情報の生成について説明する。図3は、大ぼけ状態から像面位相差AF動作を開始した場合における被写体とレンズ位置の軌跡およびデフォーカス量の軌跡の関係を例示している。図3の(a)(b)はコントラストが高い被写体を撮像した場合を示しており、図3の(a)はレンズ位置の軌跡、図3の(b)はデフォーカス量の軌跡を例示している。また、図3の(c)(d)は大ぼけ状態から低コントラストの被写体を撮像した場合を示しており、図3の(c)はレンズ位置の軌跡、図3の(d)はデフォーカス量の軌跡を例示している。なお、図3では、像面位相差AF動作の開始時が大ぼけの状態を実線、合焦状態のときを破線で示している。
 コントラストの高い(低くない)被写体とは、位相差検出画素の出力を用いて位相差を算出する場合に、2画像の位相差を正しく算出できるコントラストを有した被写体をいう。低コントラストの被写体とは、位相差検出画素の出力を用いて位相差を算出する場合に、コントラストが低いために2画像の位相差を正しく算出できないコントラストの状態である被写体をいう。
 コントラストの高い被写体を撮像した場合、像面位相差AF動作を行うと、レンズ位置は、図3の(a)の実線で示すようにリニアな単調変化、すなわち、レンズ位置は、リニアで常に一定方向(合焦に近づく方向)への変化で合焦位置に収束する。また、デフォーカス量は、レンズ駆動量に応じたレンズ移動の反映の遅れ分の影響を受けて、図3の(b)の実線で示すように非線形の単調変化で合焦位置に収束する。
 また、低コントラストの被写体を撮像した場合、像面位相差AF動作を行うと、像面位相差を正しく算出できないことから、デフォーカス量は誤差が大きく、図3の(d)で示すように値の変化が一定方向とならない。また、レンズ位置はハンチングを生じて、図3の(c)の実線で示すように合焦位置に収束しない。なお、レンズ位置の変化は、レンズ駆動量に応じたレンズ移動の反映の遅れ分の影響を受けることから、デフォーカス量の変化に比べて変化周波数が低くなる。また、レンズ位置の変化は、デフォーカス量の変化に比べて変化周波数が低くなる。したがって、レンズ位置の変化に基づきフォーカス状態変化情報を生成すれば、デフォーカス量に基づいてフォーカス状態変化情報を生成する場合に比べて容易にフォーカス状態変化情報を生成できる。
 以上のように、コントラストの高い被写体を撮像した場合のレンズ位置およびデフォーカス量の軌跡は合焦位置に向けた単調変化となり、低コントラストの被写体を撮像した場合とは変化が異なる。したがって、制御部51の判定部511は、フォーカス状態の変化が単調変化であるかを示すフォーカス状態変化情報を、レンズ位置やデフォーカス量等の軌跡を利用して生成する。
 図4は、フォーカス状態変化情報の生成動作を例示したフローチャートである。ステップST11で判定部は軌跡(フォーカス状態の変化)が単調変化を示しているか判定する。判定部511は、所定期間行われた像面相差AF動作中にフォーカス状態に関係する状態情報を所定間隔で取得して、取得した状態情報に基づき経過時間に対するレンズ位置やデフォーカス量等の軌跡が単調変化を示しているは判別する。状態情報は、例えばレンズ位置の変化量またはデフォーカス量の変化量であってもよく、レンズ位置そのものやデフォーカス量そのものであってもよい。また、レンズ位置の変化量の周波数特性またはデフォーカス量の変化量の周波数特性であってもよい。判定部511は、軌跡が単調変化を示している場合にステップST12に進み、単調変化を示していない場合にステップST13に進む。
 判定部511は、例えば変化量が単調変化であるか判定する。図5は、レンズ位置変化量の単調変化を説明するための図である。なお、図5では所定期間TWに所定間隔で算出された変化量を黒丸で例示している。判定部511は、図5の(a)に示すように、所定期間TWにおける変化量の極性が開始時から変化していない場合は単調変化であると判定する。また、判定部511は、図5の(b)に示すように、所定期間TWにおける変化量の極性が変化した場合は単調変化でないと判定する。なお、図3や図5に示すように、開始時のレンズ位置やデフォーカス量が合焦位置よりプラス側(例えばテレ側)の場合は、所定期間TWに所定間隔で算出された変化量が0を含むマイナス側であるとき単調変化であると判定しているが、開始時のレンズ位置やデフォーカス量が合焦位置よりマイナス側(例えばワイド側)の場合は、所定期間TWに所定間隔で算出された変化量が0を含むプラス側の変化量であるとき単調変化であると判定する。また、変化量はレンズ位置変化量に限らず像面位相差情報が示すデフォーカス量の変化量を用いてもよい。
 また、判定部511は、所定期間TWにおいて所定時間間隔毎にレンズ位置やデフォーカス量の変化傾きを算出して、算出した変化傾きの累積値の平均が予め設定された閾値以下であるときは単調変化であると判定して、累積値の平均が予め設定された閾値を超えるときは単調変化でないと判定してもよい。
 判定部511は、変化量に限らずレンズ位置を用いてもよい。具体的には、レンズ位置が開始時から一方の方向のみに移動している場合は単調変化であると判定して、レンズ位置が逆方向に移動した場合は単調変化でないと判定する。
 また、判定部511は、デフォーカス量とレンズ位置の双方に基づき、フォーカス状態の変化が単調変化か否かを判定してもよい。デフォーカス量は、上述のように、レンズ駆動量に応じたレンズ移動の反映の遅れ分の影響を受けることから、デフォーカス量のみで判定すると、フォーカス状態の変化が単調変化であるか否かを正しく判定できないおそれがある。そこで、判定部511は、デフォーカス量とレンズ位置に基づいてフォーカス状態の変化が単調変化か否かを判定すれば、より正しくフォーカス状態の変化を判定できるようになる。
 さらに、判定部511は、変化量やレンズ位置に限らず変化量の周波数特性に基づき、フォーカス状態の変化が単調変化か否かを判定してフォーカス状態変化情報を生成してもよい。例えば、レンズ位置自体にFFT(Fast Fourier Transform)をかけることで、変化量を周波数成分に変換して、周波数成分が所定閾値以上である場合は、フォーカス状態の変化が単調変化でないと判定する。変化周波数の周波数成分が所定閾値未満である場合は、フォーカス状態の変化が単調変化であると判定する。
 ステップST12で判定部は、単調変化であることを示す単調変化フラグのセットを行う。判定部511は、フォーカス状態の変化が単調変化であることを示す単調変化フラグの設定を行い、処理を終了する。
 ステップST13で判定部は、単調変化でないことを示す単調変化フラグのセットを行う。判定部511は、フォーカス状態の変化が単調変化でないことを示す単調変化フラグの設定を行い、処理を終了する。
 図6は、第1の実施の形態の動作例を示している。なお、図6の(a)(b)は、大ぼけ状態、図6の(c),(d)は低コントラスト状態、図6の(a)(c)はレンズ位置の時間変化、図6の(b)(d)はレンズ位置変化量の時間変化をそれぞれ示している。
 時点t0でオートフォーカス動作を開始して所定期間Twが経過する時点t1までは、像面位相差AF動作を行う。ここで、図6の(b)に示すように、所定期間中のレンズ位置変化量が極性の変化を生じていない場合は単調変化と判定して、像面位相差AF動作を継続する。したがって、図6の(a)に示すように時点t2でレンズ位置は合焦位置となる。
また、図6の(d)に示すように、所定期間中のレンズ位置変化量が極性の変化を生じている場合は単調変化でないと判定して、像面位相差AF動作からコントラストAF動作に切り替えられる。したがって、図6の(c)に示すように時点t3でレンズ位置は合焦位置となる。
 このように、第1の実施の形態によれば、フォーカス状態変化情報によってフォーカス状態変化が単調変化であることが示された場合、すなわち大ぼけ状態であると判定された場合は像面位相差AF動作が継続される。また、フォーカス状態変化情報によってフォーカス状態変化が単調変化でないことが示された場合、すなわち被写体が低コントラストであると判定された場合は像面位相差AF動作からコントラストAF動作に切り替えられる。したがって、像面位相差AF動作でオートフォーカス動作が困難である場合にコントラストAF動作に切り替えられることから、コントラストAF動作が行われる頻度を低くして高速かつ品位のよいオートフォーカス動作を行うことができる。
 <2.第2の実施の形態>
 次に、本技術の撮像装置の第2の実施の形態について説明する。第2の実施の形態の撮像装置は、像面位相差AF動作の信頼性を判定して、信頼性がある場合に第1の実施の形態と同様にフォーカス状態変化が単調変化であるか否かに応じてオートフォーカス動作の切り替えを行う。また、撮像装置は、像面位相差AF動作の信頼性がない場合、レンズ位置を一方の端部側から他方の端部側へ移動して合焦位置を探索するサーチ動作を行い、探索した合焦位置へのレンズ移動を行う。
 第2の実施の形態の構成は、図1に示す第1の実施の形態と同様な構成とする。第2の実施の形態において、制御部51は、所定期間に先だって、位相差検出画素の出力から得られる視差を持つ2像の相関演算を行い、相関演算結果の信頼性すなわち像面位相差情報の信頼性を判定部511で判定する。制御部51は、相関演算結果の信頼性があると判定した場合、判定部511におけるフォーカス状態変化情報の生成およびフォーカス制御部512におけるフォーカス状態変化情報に基づいたオートフォーカス動作の切り替えを行う。また、制御部51は、信頼性がないと判定した場合、フォーカス制御部512で全サーチ動作を行い合焦位置を探索して、探索された合焦位置へフォーカスレンズを移動させるレンズ駆動制御を行う。
 像面位相差AF動作の信頼性の判定は、視差を持つ2像の相関演算を行い例えば信頼性評価値を算出する。式(1)は信頼性評価値を算出するための評価関数を例示しており、図7は評価関数に用いるパラメータを説明するための図である。式(1)において、「n」は、図7の(a)に示すAFエリアEf内のAFラインLfにおける像面位相差AF画素対の総数を表し、「Xi」は、そのAFラインLfにおける左端からi番目の像面位相差AF画素対の位置を表すとともに、「Yi」は、この位置Xiにおける像面位相差AF画素対の画素出力を表している。なお、像面位相差AF画素対は、撮像部31の位相差検出画素の対である。
Figure JPOXMLDOC01-appb-M000001
 図7の(b)は像面位相差AF画素対の構成を例示している。射出瞳の右側部分Qaからの光束Taと左側部分Qbからの光束Tbとを分離させるための開口部OPの位置が鏡面対象となっている遮光板312a、312bを有した一対の位相差検出画素311a、311bが水平方向に沿って2以上配列されている。より詳細には、スリット状の開口部OPが直下の光電変換部(フォトダイオード)PDに対して右側に偏った遮光板312aを有する第1位相差検出画素311aと、スリット状の開口部OPが直下の光電変換部PDに対して左側に偏った遮光板312bを有する第2位相差検出画素311bとがAFラインLfで交互に配置されている。これにより、射出瞳の右側部分Qaからの光束TaがマイクロレンズMLおよび遮光板312aの開口部OPを通過して第1位相差検出画素311aの光電変換部PDで受光され、射出瞳の左側部分Qbからの光束TbがマイクロレンズMLおよび遮光板312bの開口部OPを通過して第2位相差検出画素311bの光電変換部PDで受光されることとなる。換言すれば、第1位相差検出画素311aと第2位相差検出画素311bとで構成される像面位相差AF画素対では、射出瞳において水平方向に沿って互いに逆向きに偏った右側部分および左側部分(一対の部分領域)Qa、Qbを通過した被写体の光束Ta、Tbそれぞれが受光される。なお、図7に示す構成の場合、像面位相差情報は、第1位相差検出画素系列の像列と第2位相差検出画素系列の像列との位相差を示す情報である。
 制御部51は、式(1)を用いて算出した信頼性評価値Jが、予め定められた閾値Jthより大きい場合には信頼性が高いと判断して、閾値Jth以下の場合には信頼性が低いと判断する。このようにして制御部51は、信頼性評価値Jに基づき、像面位相差AF動作の簡易な信頼性評価を行う。
 次に、本技術の撮像装置の第2の実施の形態の動作について説明する。図8は、第2の実施の形態の動作を示すフローチャートである。ステップST21で制御部は信頼性評価値を算出する。制御部51は、フォーカスレンズを移動する前に、上述のように評価関数を用いて信頼性評価値Jを算出してステップST22へ進む。
 ステップST22で制御部は像面位相差AF動作の信頼性があるか判定する。制御部51は、ステップST21で算出した信頼性評価値Jと予め定められた閾値Jthを比較する。制御部51は、信頼性評価値Jが閾値Jthより大きい場合に信頼性があると判定してステップST23へ進む。また、制御部51は、信頼性評価値Jが閾値Jth以下の場合に信頼性が低いと判断してステップST28へ進む。
 ステップST23で制御部は像面位相差AF動作を開始する。制御部51は、像面位相差情報によって示されるデフォーカス量に応じたフォーカス制御信号の生成を開始して撮像レンズ20のレンズ駆動処理部22へフォーカス制御信号を出力することで、像面位相差AF動作を開始してステップST24に進む。
 ステップST24で制御部は、フォーカス状態変化情報を生成する。制御部51は、ステップST23で開始した像面位相差AF動作を所定時間行う。また、制御部51は、像面位相差AF動作を所定時間行ったときのフォーカス状態の変化が単調変化か否かを示すフォーカス状態変化情報を生成する。制御部51は、例えばレンズ位置や像面位相差情報が示すデフォーカス量、レンズ位置やデフォーカス量の変化量、変化量の周波数特性等に基づきフォーカス状態の変化が単調変化か否かを判定してフォーカス状態変化情報を生成する。制御部51は、フォーカス状態変化情報を生成してステップST25に進む。
 ステップST25で制御部は、フォーカス状態の変化が単調変化であるか判定する。制御部51は、ステップST24で生成したフォーカス状態変化情報が、フォーカス状態の変化が単調変化であることを示している場合はステップST26に進み、フォーカス状態の変化が単調変化でないことを示している場合はステップST27に進む。
 ステップST26で制御部は像面位相差AF動作を継続する。制御部51は、フォーカス状態の変化が単調変化であることから大ぼけ状態であるとして、像面位相差AF動作を継続する。
 ステップST27で制御部はコントラストAF動作への切り替えを行う。制御部51は、フォーカス状態の変化が単調変化でないことから低コントラスト状態であると判定して、オートフォーカス動作を像面位相差AF動作からコントラストAF動作に切り替える。
 ステップST22からステップST28に進むと、制御部は全サーチ動作を行う。制御部51は、レンズ位置を一方の端部側から他方の端部側へ移動して合焦位置を探索するサーチ動作を行い、探索した合焦位置へのレンズ移動を行う。
 このように、第2の実施の形態によれば、第1の実施の形態と同様に、大ぼけ状態であると判定された場合は像面位相差AF動作が継続されて、被写体が低コントラストであると判定された場合は像面位相差AF動作からコントラストAF動作に切り替えられる。したがって、像面位相差AF動作でオートフォーカス動作が困難である場合にコントラストAF動作に切り替えられることから、コントラストAF動作が行われる頻度を低くして高速かつ品位のよいオートフォーカス動作を行うことができる。また、像面位相差AF動作の信頼性が判定されて、信頼性がない場合は、全サーチ動作が行われることから、信頼性の低い状態で像面位相差AF動作が行われることがなく、精度よく高速かつ品位のよいオートフォーカス動作を行うことができる。
 <3.第3の実施の形態>
 次に、本技術の撮像装置の第3の実施の形態について説明する。第3の実施の形態では、上述の撮像部31と別個に設けられた測距情報生成素子、例えば専用位相差検出部を設けた場合を示している。
 図9は、撮像装置の第3の実施の形態の構成を例示している。撮像装置10aは、撮像レンズ20と本体部30aで構成されている。撮像レンズ20は、撮像光学系21とレンズ駆動処理部22を有している。撮像光学系21はフォーカスレンズを用いた構成されている。また、撮像光学系21は、フォーカスレンズだけでなくズームレンズや絞り機構等を用いた構成であってもよい。
 レンズ駆動処理部22は、本体部30aからのレンズ制御信号に基づき、撮像光学系21におけるフォーカスレンズのレンズ位置を移動させる。また、レンズ駆動処理部22は、フォーカスレンズのレンズ位置を示す情報等を生成して本体部30aへ出力する。
 本体部30aは、撮像部31、前処理部32、画像処理部33、表示部35、記録部36、ユーザインタフェース(I/F)部39、透過ミラー部45、専用位相差検出部46、制御部51を備えて構成されている。なお、本体部30は、図に記載されていない機能ブロックを有してもよく、図に記載されている機能ブロックの一部を含まない構成であってもよい。
 撮像部31は、CMOS(Complementary Metal Oxide Semiconductor)等の撮像素子を用いて構成されている。また、撮像素子では、撮像面内に画像出力画素と位相差検出画素が設けられている。撮像部31の撮像面には、撮像レンズ20からの被写体光が透過ミラー部45を介して入射される。撮像部31は、後述する制御部51からの制御信号に基づき、撮像素子の露光動作の開始及び終了や、各画素の出力選択、画素信号の読出し等の動作を行い、画像出力画素によって撮像された被写体を示す画像信号の生成と、位相差検出画素で生成された位相差画像例えば2つの位相差画像の位相差を示す像面位相差情報の生成を行う。撮像部31は、生成した画像信号を前処理部32へ出力する。また、撮像部31は、生成した像面位相差情報を制御部51へ出力する。
 前処理部32は、撮像部31から出力される画像信号に対して所定の信号処理、例えばノイズ除去処理や利得調整、クランプ処理等を行う。また、前処理部32は、アナログ/デジタル変換処理を行い、所定の信号処理が行われたアナログの画像信号をデジタルの画像信号に変換して画像処理部33へ出力する。
 画像処理部33は、前処理部32から出力される画像信号に対して所定の信号処理、例えば、デジタル画像信号の黒レベルを基準の黒レベルとする黒レベル補正、被写体の白色部分が正しく白色として表示および記録されるように赤色や青色のレベルを補正するホワイトバランス制御、画像信号の階調特性を補正するガンマ補正等の信号処理を行う。画像処理部33は、信号処理後の画像信号を表示部35や記録部36、制御部51へ出力する。また、画像処理部33は、画像信号の符号化処理を行い記録部36へ出力してもよく、記録部36から供給された符号化信号の復号処理を行い、得られた画像信号を表示部35へ出力してもよい。
 表示部35は、画像処理部33で処理された画像信号に基づき撮像画を表示する。また、表示部35は、制御部51からの制御信号に基づいてメニュー画面等の表示を行う。さらに、表示部35は、制御部51からの状態判定信号に基づいて、フォーカス位置に対するフォーカスレンズの位置ズレが大きい状態であること、または撮像された被写体のコントラストが低い状態であることをユーザに提示する。
 記録部36は、画像処理部33で信号処理された画像信号または符号化信号を記録媒体に記録する。また、記録部36は、記録媒体に記録されている画像信号または符号化信号を読み出して画像処理部33へ出力する。
 ユーザインタフェース部39は操作スイッチや操作ボタン等を用いて構成されている。ユーザインタフェース部39は、ユーザ操作に応じた操作信号を生成して制御部51へ出力する。
 透過ミラー部45は、撮像部31の撮像面側に設けられており、撮像レンズ20からの被写体光を、撮像部31と専用位相差検出部46に分離して入射させる。
 専用位相差検出部46は、例えば二次結像レンズと一対のAFセンサが設けられている。専用位相差検出部46は、透過ミラー部45を介して入射した被写体光に応じて一対のAFセンサのそれぞれで生成されたセンサ出力信号の位相差を示す専用センサ位相差情報を生成して制御部51へ出力する。
 制御部51は、例えば制御プログラムを記憶するROMや一時的にデータを記憶するフラッシュメモリ等の記憶部が内蔵されたマイクロコンピュータを用いて構成されている。制御部51は、制御プログラムを実行して、ユーザインタフェース部39からの操作信号に基づき、ユーが所望する動作を撮像装置10で行うように各部の動作を制御する。また、制御部51は前処理部32から供給された像面位相差情報、または専用位相差検出部46から供給された専用センサ位相差情報に基づいてフォーカス制御(測距情報フォーカス制御)を行う。
 ここで、専用位相差検出部46から供給された専用センサ位相差情報に基づいてフォーカス制御を行う場合、専用位相差検出部46のAFセンサは、撮像部31の撮像面と異なる位置に設けられている。したがって、専用位相差検出部46からの専用センサ位相差情報によって示されるデフォーカス量に応じてフォーカス制御信号を生成して撮像レンズ20のレンズ駆動処理部22へ出力することでオートフォーカス動作(以下「専用位相差AF動作」という)を行う場合、像面位相差AF動作に比べて精度が低下するおそれがある。また、専用位相差検出部46のAFセンサは、撮像部31の撮像面と異なる位置に設けられることから、撮像部31の位相差検出画素を用いる場合に比べて、ぼけが少なくなるように設定できるので、大ぼけが生じないフォーカスレンズ位置範囲すなわち位相差検出範囲を広く設定することが可能である。したがって、専用位相差AF動作は、像面位相差AF動作に比べて、ぼけが大きい場合でもオートフォーカス動作が可能となる。
 制御部51は、オートフォーカス動作を行うために判定部511とフォーカス制御部512を有している。
 判定部511は、所定期間に先だって、位相差検出画素の出力から得られる視差を持つ2像の相関演算を行い、相関演算結果の信頼性すなわち像面位相差情報の信頼性を判定する。判定部511は、像面位相差情報の信頼性が有ると判別した場合、所定期間に亘って位相差検出画素の出力に応じたフォーカス制御を行い、フォーカス状態の変化が単調変化であるか否かを示すフォーカス状態変化情報を生成する。判定部511は、撮像レンズ20から取得したレンズ位置を示す情報や、位相差検出画素の出力に応じたフォーカス制御を行いながら撮像部31の位相差検出画素を用いて生成された像面位相差情報等に基づき、フォーカス変化情報を生成する。また、判定部511は、像面位相差情報の信頼性がないと判別した場合、信頼性がないことをフォーカス制御部512へ通知する。
 フォーカス制御部512は、判定部511で生成されたフォーカス状態変化情報が、フォーカス状態の変化が単調変化であることを示す場合、撮像部31で生成された像面位相差情報に基づくフォーカス制御を継続する。また、フォーカス制御部512は、判定部511で生成されたフォーカス状態変化情報が、フォーカス状態の変化が単調変化でないことを示す場合、撮像部31で生成された像面位相差情報に基づくフォーカス制御から、専用位相差検出部46で生成された専用センサ位相差情報に基づくフォーカス制御に切り替える。また、フォーカス制御部511は、像面位相差情報の信頼性がないと判定した場合、全サーチ動作を行い合焦位置を探索して、探索された合焦位置へフォーカスレンズを移動させるレンズ駆動制御を行う。
 次に、本技術の撮像装置の第3の実施の形態の動作について説明する。図10は、第3の実施の形態の動作を示すフローチャートである。ステップST31で制御部は信頼性評価値を算出する。制御部51は、上述のように評価関数を用いて信頼性評価値Jを算出してステップST32へ進む。
 ステップST32で制御部は像面位相差AF動作の信頼性があるか判定する。制御部51は、ステップST31で算出した信頼性評価値Jと予め定められた閾値Jthを比較する。制御部51は、信頼性評価値Jが閾値Jthより大きい場合に信頼性があると判定してステップST33へ進む。また、制御部51は、信頼性評価値Jが閾値Jth以下の場合に信頼性が低いと判断してステップST38へ進む。
 ステップST33で制御部は像面位相差AF動作を開始する。制御部51は、像面位相差情報によって示されるデフォーカス量に応じたフォーカス制御信号の生成を開始して撮像レンズ20のレンズ駆動処理部22へフォーカス制御信号を出力することで、像面位相差AF動作を開始してステップST34に進む。
 ステップST34で制御部は、フォーカス状態変化情報を生成する。制御部51は、ステップST33で開始した像面位相差AF動作を所定時間行う。また、制御部51は、像面位相差AF動作を所定時間行ったときのフォーカス状態の変化が単調変化か否かを示すフォーカス状態変化情報を生成する。制御部51は、例えばレンズ位置や像面位相差情報が示すデフォーカス量、レンズ位置やデフォーカス量の変化量、変化量の周波数特性等に基づきフォーカス状態の変化が単調変化か否かを判定してフォーカス状態変化情報を生成する。制御部51は、フォーカス状態変化情報を生成してステップST35に進む。
 ステップST35で制御部は、フォーカス状態の変化が単調変化であるか判定する。制御部51は、ステップST34で生成したフォーカス状態変化情報が、フォーカス状態の変化が単調変化であることを示している場合はステップST36に進み、フォーカス状態の変化が単調変化でないことを示している場合はステップST37に進む。
 ステップST36で制御部は像面位相差AF動作を継続する。制御部51は、フォーカス状態の変化が単調変化であることから大ぼけ状態であるとして、像面位相差AF動作を継続する。
 ステップST37で制御部は専用位相差AF動作への切り替えを行う。制御部51は、フォーカス状態の変化が単調変化でないことから低コントラスト状態であるとして、フォーカス制御動作を像面位相差AF動作からぼけに対する性能が高い専用位相差AF動作に切り替える。
 ステップST32からステップST38に進むと、制御部は全サーチ動作を行う。制御部51は、レンズ位置を一方の端部側から他方の端部側へ移動して合焦位置を探索するサーチ動作を行い、探索した合焦位置へのレンズ移動を行う。
 このように、第3の実施の形態によれば、大ぼけ状態であると判定された場合は像面位相差AF動作が継続されて、被写体が低コントラストであると判定された場合は像面位相差AF動作から専用位相差AF動作に切り替えられる。したがって、像面位相差情報に基づくフォーカス制御ではオートフォーカス動作が困難な場合でも専用位相差情報に基づくフォーカス制御によってオートフォーカス動作が可能となり、高速かつ品位のよいオートフォーカス動作が可能なぼけ範囲を広くできる。
 また、第3の実施の形態では、像面位相差AF動作の信頼性を判定しているが、第1の実施の形態と同様に、像面位相差AF動作の信頼性の判定が行われない動作であってもよい。なお、像面位相差AF動作の信頼性を判定する場合、像面位相差AF動作の信頼性がないと判定されると、全サーチ動作が行われる。このため、信頼性の低い状態で像面位相差AF動作が行われることがなく、精度よく高速かつ品位のよいオートフォーカス動作を行うことができる。
 なお、第3の実施の形態では透過ミラーを用いた構成した場合を例示しているが、反射ミラーを用いた構成としてもよい。この場合、被写体光を撮像部31に入射させて像面位相差AF動作を開始して、専用位相差AF動作への切り替えを行うと判別した場合は、反射ミラーによって被写体光を専用位相差検出部46に入射させればよい。
 <4.第4の実施の形態>
 本技術の撮像装置の第4の実施の形態では、ハイブリッドAF動作を行う場合について説明する。ハイブリッドAF動作では、異なる方式のフォーカス制御を切り替え可能として、何れかの方式でフォーカス制御を行い、その後、高精度でフォーカス制御を行うことができるように他の方式に切り替えてフォーカス制御を行う。例えば、第4の実施の形態では、コントラスト方式から像面位相差AF動作に切り替えてフォーカス制御を行う場合について例示する。
 第4の実施の形態の構成は、図1に示す第1の実施の形態と同様な構成とする。図11は、第4の実施の形態の動作を示すフローチャートである。ステップST41で制御部は信頼性評価値を算出する。制御部51は、上述のように評価関数を用いて信頼性評価値Jを算出してステップST42へ進む。
 ステップST42で制御部は像面位相差AF動作の信頼性があるか判定する。制御部51は、ステップST41で算出した信頼性評価値Jと予め定められた閾値Jthを比較する。制御部51は、信頼性評価値Jが閾値Jthより大きい場合に信頼性があると判定してステップST43へ進む。また、制御部51は、信頼性評価値Jが閾値Jth以下の場合に信頼性が低いと判断してステップST48へ進む。
 ステップST43で制御部は像面位相差AF動作を開始する。制御部51は、像面位相差情報によって示されるデフォーカス量に応じたフォーカス制御信号の生成を開始して撮像レンズ20のレンズ駆動処理部22へフォーカス制御信号を出力することで、像面位相差AF動作を開始してステップST44に進む。
 ステップST44で制御部は、フォーカス状態変化情報を生成する。制御部51は、ステップST43で開始した像面位相差AF動作を所定時間行う。また、制御部51は、像面位相差AF動作を所定時間行ったときのフォーカス状態の変化が単調変化か否かを示すフォーカス状態変化情報を生成する。制御部51は、例えばレンズ位置や像面位相差情報が示すデフォーカス量、レンズ位置やデフォーカス量の変化量、変化量の周波数特性等に基づきフォーカス状態の変化が単調変化か否かを判定してフォーカス状態変化情報を生成する。制御部51は、フォーカス状態変化情報を生成してステップST45に進む。
 ステップST45で制御部は、フォーカス状態の変化が単調変化であるか判定する。制御部51は、ステップST44で生成したフォーカス状態変化情報が、フォーカス状態の変化が単調変化であることを示している場合はステップST46に進み、フォーカス状態の変化が単調変化でないことを示している場合はステップST47に進む。
 ステップST46で制御部は像面位相差AF動作を継続する。制御部51は、フォーカス状態の変化が単調変化であることから大ぼけ状態であるとして、像面位相差AF動作を継続する。
 ステップST47で制御部はハイブリッドAF動作への切り替えを行う。制御部51は、フォーカス状態の変化が単調変化でないことから低コントラスト状態であるとして、フォーカス制御動作を像面位相差AF動作からハイブリッドAF動作に切り替える。
 ハイブリッドAF動作では、低コントラスト状態において像面位相差AF動作よりもフォーカス制御可能範囲が広いコントラストAF動作を行う。制御部は、測距エリア内の画素群の画素値を用いて算出したコントラストAF評価値に基づきフォーカス制御信号を生成して撮像レンズ20のレンズ駆動処理部22へ出力することでコントラストAF動作を行う。制御部は、例えば測距エリア内の画素群の画素を用いて隣接画素間の差分絶対値を算出して、算出した差分絶対値の総和をコントラストAF評価値として用いる。制御部は、フォーカスレンズを一定方向に移動させつつ順次にコントラストAF評価値を算出して、コントラストAF評価値が単調に増加してからピークを超えた場合、コントラスト方式よりも精度の高い像面位相差AF動作に切り替えてフォーカスレンズをさらに高精度に合焦位置へ移動させる。
 ステップST42からステップST48に進むと、制御部は全サーチ動作を行う。制御部51は、レンズ位置を一方の端部側から他方の端部側へ移動して合焦位置を探索するサーチ動作を行い、探索した合焦位置へのレンズ移動を行う。
 このように、第4の実施の形態によれば、大ぼけ状態であると判定された場合は像面位相差AF動作が継続されて、被写体が低コントラストであると判定された場合は像面位相差AF動作から専用位相差AF動作に切り替えられる。
 したがって、像面位相差AF動作ではフォーカス制御が困難な場合でもハイブリッドAF動作によってフォーカス制御が可能となり、高速かつ品位のよいオートフォーカス動作を行うことができる。
 なお、第4の実施の形態では、オートフォーカス動作の開始時に像面位相差AF動作の信頼性を判定しているが、第1の実施の形態と同様に、像面位相差AF動作の信頼性の判定が行われない動作であってもよい。また、この場合、ハイブリッドAF動作において、コントラストAF動作から像面位相差AF動作に切り替えるとき像面位相差AF動作の信頼性を判定する。この判定で信頼性があると判定された場合にオートフォーカス動作の切り替えを行うようにすれば、コントラストAF動作から像面位相差AF動作に切り替えたことによりフォーカスすれが生じてしまうことを防止できる。
 また、オートフォーカス動作の開始時に像面位相差AF動作の信頼性を判定する場合、像面位相差AF動作の信頼性がないと判定されると、全サーチ動作が行われる。このため、信頼性の低い状態で像面位相差AF動作が行われることがなく、精度よく高速かつ品位のよいオートフォーカス動作を行うことができる。
 <5.他の実施の形態>
 また、上述の実施の形態では、像面位相差AF動作と異なる他のオートフォーカス動作として、コントラストAF動作や専用位相差AF動作を行う場合について説明したが、撮像部と別個に設けられる測距情報生成素子として、例えば測距センサ等を用いて測距結果に基づきフォーカスレンズを駆動するオートフォーカス動作等を行ってもよい。
 また、上述の実施の形態では、判定部511の状態判定結果に応じて像面位相差AF動作から他のオートフォーカス動作へと自動的に切り替える場合について声明したが、判定部511の状態判定結果を情報提示部からユーザに提示して、ユーザが提示された状態判定結果を利用してどのようなフォーカス動作を行うか選択できるようにしてもよい。
 撮像装置の構成が図1に示す構成である場合、判定部511は、状態判定結果をユーザに提示する情報提示部での状態判定結果の提示を制御する。例えば、判定部511は、状態判定結果を示す画像信号を情報提示部である表示部35へ出力して、状態判定結果を画像でユーザに提示する。また、判定部511は、ユーザインタフェース部39を情報提示部として用いて、状態判定結果を示す情報を外部へ出力することで、状態判定結果をユーザインタフェース部39でユーザに提示できるようにしてもよい。
 ユーザは表示部35やユーザインタフェース部39等を用いて提示された状態判定結果に基づき撮像装置を操作して、高精度なオートフォーカス動作を行えるようにする。例えば、フォーカス状態の変化が単調変化でない場合、コントラストの高い被写体が測距エリアに含まれるようにズーム操作等を行い、その後、合焦位置でフォーカスレンズの位置を固定したのち逆方向の操作を行う。このような操作をユーザが行えば、フォーカス状態の変化が単調変化でない低コントラストの被写体に精度よくフォーカスを合わせることができる。
 <6.応用例>
 また、本開示に係る技術は、様々な製品へ応用することができる。例えば、本開示に係る技術は、手術室システムに適用されてもよい。
 図12は、本開示に係る技術が適用され得る手術室システム5100の全体構成を概略的に示す図である。図12を参照すると、手術室システム5100は、手術室内に設置される装置群が視聴覚コントローラ(AV Controller)5107及び手術室制御装置5109を介して互いに連携可能に接続されることにより構成される。
 手術室には、様々な装置が設置され得る。図12では、一例として、内視鏡下手術のための各種の装置群5101と、手術室の天井に設けられ術者の手元を撮像するシーリングカメラ5187と、手術室の天井に設けられ手術室全体の様子を撮像する術場カメラ5189と、複数の表示装置5103A~5103Dと、レコーダ5105と、患者ベッド5183と、照明5191と、を図示している。
 ここで、これらの装置のうち、装置群5101は、後述する内視鏡手術システム5113に属するものであり、内視鏡や当該内視鏡によって撮像された画像を表示する表示装置等からなる。内視鏡手術システム5113に属する各装置は医療用機器とも呼称される。一方、表示装置5103A~5103D、レコーダ5105、患者ベッド5183及び照明5191は、内視鏡手術システム5113とは別個に、例えば手術室に備え付けられている装置である。これらの内視鏡手術システム5113に属さない各装置は非医療用機器とも呼称される。視聴覚コントローラ5107及び/又は手術室制御装置5109は、これら医療機器及び非医療機器の動作を互いに連携して制御する。
 視聴覚コントローラ5107は、医療機器及び非医療機器における画像表示に関する処理を、統括的に制御する。具体的には、手術室システム5100が備える装置のうち、装置群5101、シーリングカメラ5187及び術場カメラ5189は、手術中に表示すべき情報(以下、表示情報ともいう)を発信する機能を有する装置(以下、発信元の装置とも呼称する)であり得る。また、表示装置5103A~5103Dは、表示情報が出力される装置(以下、出力先の装置とも呼称する)であり得る。また、レコーダ5105は、発信元の装置及び出力先の装置の双方に該当する装置であり得る。視聴覚コントローラ5107は、発信元の装置及び出力先の装置の動作を制御し、発信元の装置から表示情報を取得するとともに、当該表示情報を出力先の装置に送信し、表示又は記録させる機能を有する。なお、表示情報とは、手術中に撮像された各種の画像や、手術に関する各種の情報(例えば、患者の身体情報や、過去の検査結果、術式についての情報等)等である。
 具体的には、視聴覚コントローラ5107には、装置群5101から、表示情報として、内視鏡によって撮像された患者の体腔内の術部の画像についての情報が送信され得る。また、シーリングカメラ5187から、表示情報として、当該シーリングカメラ5187によって撮像された術者の手元の画像についての情報が送信され得る。また、術場カメラ5189から、表示情報として、当該術場カメラ5189によって撮像された手術室全体の様子を示す画像についての情報が送信され得る。なお、手術室システム5100に撮像機能を有する他の装置が存在する場合には、視聴覚コントローラ5107は、表示情報として、当該他の装置からも当該他の装置によって撮像された画像についての情報を取得してもよい。
 あるいは、例えば、レコーダ5105には、過去に撮像されたこれらの画像についての情報が視聴覚コントローラ5107によって記録されている。視聴覚コントローラ5107は、表示情報として、レコーダ5105から当該過去に撮像された画像についての情報を取得することができる。なお、レコーダ5105には、手術に関する各種の情報も事前に記録されていてもよい。
 視聴覚コントローラ5107は、出力先の装置である表示装置5103A~5103Dの少なくともいずれかに、取得した表示情報(すなわち、手術中に撮影された画像や、手術に関する各種の情報)を表示させる。図示する例では、表示装置5103Aは手術室の天井から吊り下げられて設置される表示装置であり、表示装置5103Bは手術室の壁面に設置される表示装置であり、表示装置5103Cは手術室内の机上に設置される表示装置であり、表示装置5103Dは表示機能を有するモバイル機器(例えば、タブレットPC(Personal Computer))である。
 また、図12では図示を省略しているが、手術室システム5100には、手術室の外部の装置が含まれてもよい。手術室の外部の装置は、例えば、病院内外に構築されたネットワークに接続されるサーバや、医療スタッフが用いるPC、病院の会議室に設置されるプロジェクタ等であり得る。このような外部装置が病院外にある場合には、視聴覚コントローラ5107は、遠隔医療のために、テレビ会議システム等を介して、他の病院の表示装置に表示情報を表示させることもできる。
 手術室制御装置5109は、非医療機器における画像表示に関する処理以外の処理を、統括的に制御する。例えば、手術室制御装置5109は、患者ベッド5183、シーリングカメラ5187、術場カメラ5189及び照明5191の駆動を制御する。
 手術室システム5100には、集中操作パネル5111が設けられており、ユーザは、当該集中操作パネル5111を介して、視聴覚コントローラ5107に対して画像表示についての指示を与えたり、手術室制御装置5109に対して非医療機器の動作についての指示を与えることができる。集中操作パネル5111は、表示装置の表示面上にタッチパネルが設けられて構成される。
 図13は、集中操作パネル5111における操作画面の表示例を示す図である。図13では、一例として、手術室システム5100に、出力先の装置として、2つの表示装置が設けられている場合に対応する操作画面を示している。図13を参照すると、操作画面5193には、発信元選択領域5195と、プレビュー領域5197と、コントロール領域5201と、が設けられる。
 発信元選択領域5195には、手術室システム5100に備えられる発信元装置と、当該発信元装置が有する表示情報を表すサムネイル画面と、が紐付けられて表示される。ユーザは、表示装置に表示させたい表示情報を、発信元選択領域5195に表示されているいずれかの発信元装置から選択することができる。
 プレビュー領域5197には、出力先の装置である2つの表示装置(Monitor1、Monitor2)に表示される画面のプレビューが表示される。図示する例では、1つの表示装置において4つの画像がPinP表示されている。当該4つの画像は、発信元選択領域5195において選択された発信元装置から発信された表示情報に対応するものである。4つの画像のうち、1つはメイン画像として比較的大きく表示され、残りの3つはサブ画像として比較的小さく表示される。ユーザは、4つの画像が表示された領域を適宜選択することにより、メイン画像とサブ画像を入れ替えることができる。また、4つの画像が表示される領域の下部には、ステータス表示領域5199が設けられており、当該領域に手術に関するステータス(例えば、手術の経過時間や、患者の身体情報等)が適宜表示され得る。
 コントロール領域5201には、発信元の装置に対して操作を行うためのGUI(Graphical User Interface)部品が表示される発信元操作領域5203と、出力先の装置に対して操作を行うためのGUI部品が表示される出力先操作領域5205と、が設けられる。図示する例では、発信元操作領域5203には、撮像機能を有する発信元の装置におけるカメラに対して各種の操作(パン、チルト及びズーム)を行うためのGUI部品が設けられている。ユーザは、これらのGUI部品を適宜選択することにより、発信元の装置におけるカメラの動作を操作することができる。なお、図示は省略しているが、発信元選択領域5195において選択されている発信元の装置がレコーダである場合(すなわち、プレビュー領域5197において、レコーダに過去に記録された画像が表示されている場合)には、発信元操作領域5203には、当該画像の再生、再生停止、巻き戻し、早送り等の操作を行うためのGUI部品が設けられ得る。
 また、出力先操作領域5205には、出力先の装置である表示装置における表示に対する各種の操作(スワップ、フリップ、色調整、コントラスト調整、2D表示と3D表示の切り替え)を行うためのGUI部品が設けられている。ユーザは、これらのGUI部品を適宜選択することにより、表示装置における表示を操作することができる。
 なお、集中操作パネル5111に表示される操作画面は図示する例に限定されず、ユーザは、集中操作パネル5111を介して、手術室システム5100に備えられる、視聴覚コントローラ5107及び手術室制御装置5109によって制御され得る各装置に対する操作入力が可能であってよい。
 図14は、以上説明した手術室システムが適用された手術の様子の一例を示す図である。シーリングカメラ5187及び術場カメラ5189は、手術室の天井に設けられ、患者ベッド5183上の患者5185の患部に対して処置を行う術者(医者)5181の手元及び手術室全体の様子を撮影可能である。シーリングカメラ5187及び術場カメラ5189には、倍率調整機能、焦点距離調整機能、撮影方向調整機能等が設けられ得る。照明5191は、手術室の天井に設けられ、少なくとも術者5181の手元を照射する。照明5191は、その照射光量、照射光の波長(色)及び光の照射方向等を適宜調整可能であってよい。
 内視鏡手術システム5113、患者ベッド5183、シーリングカメラ5187、術場カメラ5189及び照明5191は、図12に示すように、視聴覚コントローラ5107及び手術室制御装置5109(図14では図示せず)を介して互いに連携可能に接続されている。手術室内には、集中操作パネル5111が設けられており、上述したように、ユーザは、当該集中操作パネル5111を介して、手術室内に存在するこれらの装置を適宜操作することが可能である。
 以下、内視鏡手術システム5113の構成について詳細に説明する。図示するように、内視鏡手術システム5113は、内視鏡5115と、その他の術具5131と、内視鏡5115を支持する支持アーム装置5141と、内視鏡下手術のための各種の装置が搭載されたカート5151と、から構成される。
 内視鏡手術では、腹壁を切って開腹する代わりに、トロッカ5139a~5139dと呼ばれる筒状の開孔器具が腹壁に複数穿刺される。そして、トロッカ5139a~5139dから、内視鏡5115の鏡筒5117や、その他の術具5131が患者5185の体腔内に挿入される。図示する例では、その他の術具5131として、気腹チューブ5133、エネルギー処置具5135及び鉗子5137が、患者5185の体腔内に挿入されている。また、エネルギー処置具5135は、高周波電流や超音波振動により、組織の切開及び剥離、又は血管の封止等を行う処置具である。ただし、図示する術具5131はあくまで一例であり、術具5131としては、例えば攝子、レトラクタ等、一般的に内視鏡下手術において用いられる各種の術具が用いられてよい。
 内視鏡5115によって撮影された患者5185の体腔内の術部の画像が、表示装置5155に表示される。術者5181は、表示装置5155に表示された術部の画像をリアルタイムで見ながら、エネルギー処置具5135や鉗子5137を用いて、例えば患部を切除する等の処置を行う。なお、図示は省略しているが、気腹チューブ5133、エネルギー処置具5135及び鉗子5137は、手術中に、術者5181又は助手等によって支持される。
 (支持アーム装置)
 支持アーム装置5141は、ベース部5143から延伸するアーム部5145を備える。図示する例では、アーム部5145は、関節部5147a、5147b、5147c、及びリンク5149a、5149bから構成されており、アーム制御装置5159からの制御により駆動される。アーム部5145によって内視鏡5115が支持され、その位置及び姿勢が制御される。これにより、内視鏡5115の安定的な位置の固定が実現され得る。
 (内視鏡)
 内視鏡5115は、先端から所定の長さの領域が患者5185の体腔内に挿入される鏡筒5117と、鏡筒5117の基端に接続されるカメラヘッド5119と、から構成される。図示する例では、硬性の鏡筒5117を有するいわゆる硬性鏡として構成される内視鏡5115を図示しているが、内視鏡5115は、軟性の鏡筒5117を有するいわゆる軟性鏡として構成されてもよい。
 鏡筒5117の先端には、対物レンズが嵌め込まれた開口部が設けられている。内視鏡5115には光源装置5157が接続されており、当該光源装置5157によって生成された光が、鏡筒5117の内部に延設されるライトガイドによって当該鏡筒の先端まで導光され、対物レンズを介して患者5185の体腔内の観察対象に向かって照射される。なお、内視鏡5115は、直視鏡であってもよいし、斜視鏡又は側視鏡であってもよい。
 カメラヘッド5119の内部には光学系及び撮像素子が設けられており、観察対象からの反射光(観察光)は当該光学系によって当該撮像素子に集光される。当該撮像素子によって観察光が光電変換され、観察光に対応する電気信号、すなわち観察像に対応する画像信号が生成される。当該画像信号は、RAWデータとしてカメラコントロールユニット(CCU:Camera Control Unit)5153に送信される。なお、カメラヘッド5119には、その光学系を適宜駆動させることにより、倍率及び焦点距離を調整する機能が搭載される。
 なお、例えば立体視(3D表示)等に対応するために、カメラヘッド5119には撮像素子が複数設けられてもよい。この場合、鏡筒5117の内部には、当該複数の撮像素子のそれぞれに観察光を導光するために、リレー光学系が複数系統設けられる。
 (カートに搭載される各種の装置)
 CCU5153は、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)等によって構成され、内視鏡5115及び表示装置5155の動作を統括的に制御する。具体的には、CCU5153は、カメラヘッド5119から受け取った画像信号に対して、例えば現像処理(デモザイク処理)等の、当該画像信号に基づく画像を表示するための各種の画像処理を施す。CCU5153は、当該画像処理を施した画像信号を表示装置5155に提供する。また、CCU5153には、図12に示す視聴覚コントローラ5107が接続される。CCU5153は、画像処理を施した画像信号を視聴覚コントローラ5107にも提供する。また、CCU5153は、カメラヘッド5119に対して制御信号を送信し、その駆動を制御する。当該制御信号には、倍率や焦点距離等、撮像条件に関する情報が含まれ得る。当該撮像条件に関する情報は、入力装置5161を介して入力されてもよいし、上述した集中操作パネル5111を介して入力されてもよい。
 表示装置5155は、CCU5153からの制御により、当該CCU5153によって画像処理が施された画像信号に基づく画像を表示する。内視鏡5115が例えば4K(水平画素数3840×垂直画素数2160)又は8K(水平画素数7680×垂直画素数4320)等の高解像度の撮影に対応したものである場合、及び/又は3D表示に対応したものである場合には、表示装置5155としては、それぞれに対応して、高解像度の表示が可能なもの、及び/又は3D表示可能なものが用いられ得る。4K又は8K等の高解像度の撮影に対応したものである場合、表示装置5155として55インチ以上のサイズのものを用いることで一層の没入感が得られる。また、用途に応じて、解像度、サイズが異なる複数の表示装置5155が設けられてもよい。
 光源装置5157は、例えばLED(light emitting diode)等の光源から構成され、術部を撮影する際の照射光を内視鏡5115に供給する。
 アーム制御装置5159は、例えばCPU等のプロセッサによって構成され、所定のプログラムに従って動作することにより、所定の制御方式に従って支持アーム装置5141のアーム部5145の駆動を制御する。
 入力装置5161は、内視鏡手術システム5113に対する入力インタフェースである。ユーザは、入力装置5161を介して、内視鏡手術システム5113に対して各種の情報の入力や指示入力を行うことができる。例えば、ユーザは、入力装置5161を介して、患者の身体情報や、手術の術式についての情報等、手術に関する各種の情報を入力する。また、例えば、ユーザは、入力装置5161を介して、アーム部5145を駆動させる旨の指示や、内視鏡5115による撮像条件(照射光の種類、倍率及び焦点距離等)を変更する旨の指示、エネルギー処置具5135を駆動させる旨の指示等を入力する。
 入力装置5161の種類は限定されず、入力装置5161は各種の公知の入力装置であってよい。入力装置5161としては、例えば、マウス、キーボード、タッチパネル、スイッチ、フットスイッチ5171及び/又はレバー等が適用され得る。入力装置5161としてタッチパネルが用いられる場合には、当該タッチパネルは表示装置5155の表示面上に設けられてもよい。
 あるいは、入力装置5161は、例えばメガネ型のウェアラブルデバイスやHMD(Head Mounted Display)等の、ユーザによって装着されるデバイスであり、これらのデバイスによって検出されるユーザのジェスチャや視線に応じて各種の入力が行われる。また、入力装置5161は、ユーザの動きを検出可能なカメラを含み、当該カメラによって撮像された映像から検出されるユーザのジェスチャや視線に応じて各種の入力が行われる。更に、入力装置5161は、ユーザの声を収音可能なマイクロフォンを含み、当該マイクロフォンを介して音声によって各種の入力が行われる。このように、入力装置5161が非接触で各種の情報を入力可能に構成されることにより、特に清潔域に属するユーザ(例えば術者5181)が、不潔域に属する機器を非接触で操作することが可能となる。また、ユーザは、所持している術具から手を離すことなく機器を操作することが可能となるため、ユーザの利便性が向上する。
 処置具制御装置5163は、組織の焼灼、切開又は血管の封止等のためのエネルギー処置具5135の駆動を制御する。気腹装置5165は、内視鏡5115による視野の確保及び術者の作業空間の確保の目的で、患者5185の体腔を膨らめるために、気腹チューブ5133を介して当該体腔内にガスを送り込む。レコーダ5167は、手術に関する各種の情報を記録可能な装置である。プリンタ5169は、手術に関する各種の情報を、テキスト、画像又はグラフ等各種の形式で印刷可能な装置である。
 以下、内視鏡手術システム5113において特に特徴的な構成について、更に詳細に説明する。
 (支持アーム装置)
 支持アーム装置5141は、基台であるベース部5143と、ベース部5143から延伸するアーム部5145と、を備える。図示する例では、アーム部5145は、複数の関節部5147a、5147b、5147cと、関節部5147bによって連結される複数のリンク5149a、5149bと、から構成されているが、図14では、簡単のため、アーム部5145の構成を簡略化して図示している。実際には、アーム部5145が所望の自由度を有するように、関節部5147a~5147c及びリンク5149a、5149bの形状、数及び配置、並びに関節部5147a~5147cの回転軸の方向等が適宜設定され得る。例えば、アーム部5145は、好適に、6自由度以上の自由度を有するように構成され得る。これにより、アーム部5145の可動範囲内において内視鏡5115を自由に移動させることが可能になるため、所望の方向から内視鏡5115の鏡筒5117を患者5185の体腔内に挿入することが可能になる。
 関節部5147a~5147cにはアクチュエータが設けられており、関節部5147a~5147cは当該アクチュエータの駆動により所定の回転軸まわりに回転可能に構成されている。当該アクチュエータの駆動がアーム制御装置5159によって制御されることにより、各関節部5147a~5147cの回転角度が制御され、アーム部5145の駆動が制御される。これにより、内視鏡5115の位置及び姿勢の制御が実現され得る。この際、アーム制御装置5159は、力制御又は位置制御等、各種の公知の制御方式によってアーム部5145の駆動を制御することができる。
 例えば、術者5181が、入力装置5161(フットスイッチ5171を含む)を介して適宜操作入力を行うことにより、当該操作入力に応じてアーム制御装置5159によってアーム部5145の駆動が適宜制御され、内視鏡5115の位置及び姿勢が制御されてよい。当該制御により、アーム部5145の先端の内視鏡5115を任意の位置から任意の位置まで移動させた後、その移動後の位置で固定的に支持することができる。なお、アーム部5145は、いわゆるマスタースレイブ方式で操作されてもよい。この場合、アーム部5145は、手術室から離れた場所に設置される入力装置5161を介してユーザによって遠隔操作され得る。
 また、力制御が適用される場合には、アーム制御装置5159は、ユーザからの外力を受け、その外力にならってスムーズにアーム部5145が移動するように、各関節部5147a~5147cのアクチュエータを駆動させる、いわゆるパワーアシスト制御を行ってもよい。これにより、ユーザが直接アーム部5145に触れながらアーム部5145を移動させる際に、比較的軽い力で当該アーム部5145を移動させることができる。従って、より直感的に、より簡易な操作で内視鏡5115を移動させることが可能となり、ユーザの利便性を向上させることができる。
 ここで、一般的に、内視鏡下手術では、スコピストと呼ばれる医師によって内視鏡5115が支持されていた。これに対して、支持アーム装置5141を用いることにより、人手によらずに内視鏡5115の位置をより確実に固定することが可能になるため、術部の画像を安定的に得ることができ、手術を円滑に行うことが可能になる。
 なお、アーム制御装置5159は必ずしもカート5151に設けられなくてもよい。また、アーム制御装置5159は必ずしも1つの装置でなくてもよい。例えば、アーム制御装置5159は、支持アーム装置5141のアーム部5145の各関節部5147a~5147cにそれぞれ設けられてもよく、複数のアーム制御装置5159が互いに協働することにより、アーム部5145の駆動制御が実現されてもよい。
 (光源装置)
 光源装置5157は、内視鏡5115に術部を撮影する際の照射光を供給する。光源装置5157は、例えばLED、レーザ光源又はこれらの組み合わせによって構成される白色光源から構成される。このとき、RGBレーザ光源の組み合わせにより白色光源が構成される場合には、各色(各波長)の出力強度及び出力タイミングを高精度に制御することができるため、光源装置5157において撮像画像のホワイトバランスの調整を行うことができる。また、この場合には、RGBレーザ光源それぞれからのレーザ光を時分割で観察対象に照射し、その照射タイミングに同期してカメラヘッド5119の撮像素子の駆動を制御することにより、RGBそれぞれに対応した画像を時分割で撮像することも可能である。当該方法によれば、当該撮像素子にカラーフィルタを設けなくても、カラー画像を得ることができる。
 また、光源装置5157は、出力する光の強度を所定の時間ごとに変更するようにその駆動が制御されてもよい。その光の強度の変更のタイミングに同期してカメラヘッド5119の撮像素子の駆動を制御して時分割で画像を取得し、その画像を合成することにより、いわゆる黒つぶれ及び白とびのない高ダイナミックレンジの画像を生成することができる。
 また、光源装置5157は、特殊光観察に対応した所定の波長帯域の光を供給可能に構成されてもよい。特殊光観察では、例えば、体組織における光の吸収の波長依存性を利用して、通常の観察時における照射光(すなわち、白色光)に比べて狭帯域の光を照射することにより、粘膜表層の血管等の所定の組織を高コントラストで撮影する、いわゆる狭帯域光観察(Narrow Band Imaging)が行われる。あるいは、特殊光観察では、励起光を照射することにより発生する蛍光により画像を得る蛍光観察が行われてもよい。蛍光観察では、体組織に励起光を照射し当該体組織からの蛍光を観察するもの(自家蛍光観察)、又はインドシアニングリーン(ICG)等の試薬を体組織に局注するとともに当該体組織にその試薬の蛍光波長に対応した励起光を照射し蛍光像を得るもの等が行われ得る。光源装置5157は、このような特殊光観察に対応した狭帯域光及び/又は励起光を供給可能に構成され得る。
 (カメラヘッド及びCCU)
 図15を参照して、内視鏡5115のカメラヘッド5119及びCCU5153の機能についてより詳細に説明する。図15は、図14に示すカメラヘッド5119及びCCU5153の機能構成の一例を示すブロック図である。
 図15を参照すると、カメラヘッド5119は、その機能として、レンズユニット5121と、撮像部5123と、駆動部5125と、通信部5127と、カメラヘッド制御部5129と、を有する。また、CCU5153は、その機能として、通信部5173と、画像処理部5175と、制御部5177と、を有する。カメラヘッド5119とCCU5153とは、伝送ケーブル5179によって双方向に通信可能に接続されている。
 まず、カメラヘッド5119の機能構成について説明する。レンズユニット5121は、鏡筒5117との接続部に設けられる光学系である。鏡筒5117の先端から取り込まれた観察光は、カメラヘッド5119まで導光され、当該レンズユニット5121に入射する。レンズユニット5121は、ズームレンズ及びフォーカスレンズを含む複数のレンズが組み合わされて構成される。レンズユニット5121は、撮像部5123の撮像素子の受光面上に観察光を集光するように、その光学特性が調整されている。また、ズームレンズ及びフォーカスレンズは、撮像画像の倍率及び焦点の調整のため、その光軸上の位置が移動可能に構成される。
 撮像部5123は撮像素子によって構成され、レンズユニット5121の後段に配置される。レンズユニット5121を通過した観察光は、当該撮像素子の受光面に集光され、光電変換によって、観察像に対応した画像信号が生成される。撮像部5123によって生成された画像信号は、通信部5127に提供される。
 撮像部5123を構成する撮像素子としては、例えばCMOS(Complementary Metal Oxide Semiconductor)タイプのイメージセンサであり、Bayer配列を有するカラー撮影可能なものが用いられる。なお、当該撮像素子としては、例えば4K以上の高解像度の画像の撮影に対応可能なものが用いられてもよい。術部の画像が高解像度で得られることにより、術者5181は、当該術部の様子をより詳細に把握することができ、手術をより円滑に進行することが可能となる。
 また、撮像部5123を構成する撮像素子は、3D表示に対応する右目用及び左目用の画像信号をそれぞれ取得するための1対の撮像素子を有するように構成される。3D表示が行われることにより、術者5181は術部における生体組織の奥行きをより正確に把握することが可能になる。なお、撮像部5123が多板式で構成される場合には、各撮像素子に対応して、レンズユニット5121も複数系統設けられる。
 また、撮像部5123は、必ずしもカメラヘッド5119に設けられなくてもよい。例えば、撮像部5123は、鏡筒5117の内部に、対物レンズの直後に設けられてもよい。
 駆動部5125は、アクチュエータによって構成され、カメラヘッド制御部5129からの制御により、レンズユニット5121のズームレンズ及びフォーカスレンズを光軸に沿って所定の距離だけ移動させる。これにより、撮像部5123による撮像画像の倍率及び焦点が適宜調整され得る。
 通信部5127は、CCU5153との間で各種の情報を送受信するための通信装置によって構成される。通信部5127は、撮像部5123から得た画像信号をRAWデータとして伝送ケーブル5179を介してCCU5153に送信する。この際、術部の撮像画像を低レイテンシで表示するために、当該画像信号は光通信によって送信されることが好ましい。手術の際には、術者5181が撮像画像によって患部の状態を観察しながら手術を行うため、より安全で確実な手術のためには、術部の動画像が可能な限りリアルタイムに表示されることが求められるからである。光通信が行われる場合には、通信部5127には、電気信号を光信号に変換する光電変換モジュールが設けられる。画像信号は当該光電変換モジュールによって光信号に変換された後、伝送ケーブル5179を介してCCU5153に送信される。
 また、通信部5127は、CCU5153から、カメラヘッド5119の駆動を制御するための制御信号を受信する。当該制御信号には、例えば、撮像画像のフレームレートを指定する旨の情報、撮像時の露出値を指定する旨の情報、並びに/又は撮像画像の倍率及び焦点を指定する旨の情報等、撮像条件に関する情報が含まれる。通信部5127は、受信した制御信号をカメラヘッド制御部5129に提供する。なお、CCU5153からの制御信号も、光通信によって伝送されてもよい。この場合、通信部5127には、光信号を電気信号に変換する光電変換モジュールが設けられ、制御信号は当該光電変換モジュールによって電気信号に変換された後、カメラヘッド制御部5129に提供される。
 なお、上記のフレームレートや露出値、倍率、焦点等の撮像条件は、取得された画像信号に基づいてCCU5153の制御部5177によって自動的に設定される。つまり、いわゆるAE(Auto Exposure)機能、AF(Auto Focus)機能及びAWB(Auto White Balance)機能が内視鏡5115に搭載される。
 カメラヘッド制御部5129は、通信部5127を介して受信したCCU5153からの制御信号に基づいて、カメラヘッド5119の駆動を制御する。例えば、カメラヘッド制御部5129は、撮像画像のフレームレートを指定する旨の情報及び/又は撮像時の露光を指定する旨の情報に基づいて、撮像部5123の撮像素子の駆動を制御する。また、例えば、カメラヘッド制御部5129は、撮像画像の倍率及び焦点を指定する旨の情報に基づいて、駆動部5125を介してレンズユニット5121のズームレンズ及びフォーカスレンズを適宜移動させる。カメラヘッド制御部5129は、更に、鏡筒5117やカメラヘッド5119を識別するための情報を記憶する機能を備えてもよい。
 なお、レンズユニット5121や撮像部5123等の構成を、気密性及び防水性が高い密閉構造内に配置することで、カメラヘッド5119について、オートクレーブ滅菌処理に対する耐性を持たせることができる。
 次に、CCU5153の機能構成について説明する。通信部5173は、カメラヘッド5119との間で各種の情報を送受信するための通信装置によって構成される。通信部5173は、カメラヘッド5119から、伝送ケーブル5179を介して送信される画像信号を受信する。この際、上記のように、当該画像信号は好適に光通信によって送信され得る。この場合、光通信に対応して、通信部5173には、光信号を電気信号に変換する光電変換モジュールが設けられる。通信部5173は、電気信号に変換した画像信号を画像処理部5175に提供する。
 また、通信部5173は、カメラヘッド5119に対して、カメラヘッド5119の駆動を制御するための制御信号を送信する。当該制御信号も光通信によって送信されてよい。
 画像処理部5175は、カメラヘッド5119から送信されたRAWデータである画像信号に対して各種の画像処理を施す。当該画像処理としては、例えば現像処理、高画質化処理(帯域強調処理、超解像処理、NR(Noise reduction)処理及び/又は手ブレ補正処理等)、並びに/又は拡大処理(電子ズーム処理)等、各種の公知の信号処理が含まれる。また、画像処理部5175は、AE、AF及びAWBを行うための、画像信号に対する検波処理を行う。
 画像処理部5175は、CPUやGPU等のプロセッサによって構成され、当該プロセッサが所定のプログラムに従って動作することにより、上述した画像処理や検波処理が行われ得る。なお、画像処理部5175が複数のGPUによって構成される場合には、画像処理部5175は、画像信号に係る情報を適宜分割し、これら複数のGPUによって並列的に画像処理を行う。
 制御部5177は、内視鏡5115による術部の撮像、及びその撮像画像の表示に関する各種の制御を行う。例えば、制御部5177は、カメラヘッド5119の駆動を制御するための制御信号を生成する。この際、撮像条件がユーザによって入力されている場合には、制御部5177は、当該ユーザによる入力に基づいて制御信号を生成する。あるいは、内視鏡5115にAE機能、AF機能及びAWB機能が搭載されている場合には、制御部5177は、画像処理部5175による検波処理の結果に応じて、最適な露出値、焦点距離及びホワイトバランスを適宜算出し、制御信号を生成する。
 また、制御部5177は、画像処理部5175によって画像処理が施された画像信号に基づいて、術部の画像を表示装置5155に表示させる。この際、制御部5177は、各種の画像認識技術を用いて術部画像内における各種の物体を認識する。例えば、制御部5177は、術部画像に含まれる物体のエッジの形状や色等を検出することにより、鉗子等の術具、特定の生体部位、出血、エネルギー処置具5135使用時のミスト等を認識することができる。制御部5177は、表示装置5155に術部の画像を表示させる際に、その認識結果を用いて、各種の手術支援情報を当該術部の画像に重畳表示させる。手術支援情報が重畳表示され、術者5181に提示されることにより、より安全かつ確実に手術を進めることが可能になる。
 カメラヘッド5119及びCCU5153を接続する伝送ケーブル5179は、電気信号の通信に対応した電気信号ケーブル、光通信に対応した光ファイバ、又はこれらの複合ケーブルである。
 ここで、図示する例では、伝送ケーブル5179を用いて有線で通信が行われていたが、カメラヘッド5119とCCU5153との間の通信は無線で行われてもよい。両者の間の通信が無線で行われる場合には、伝送ケーブル5179を手術室内に敷設する必要がなくなるため、手術室内における医療スタッフの移動が当該伝送ケーブル5179によって妨げられる事態が解消され得る。
 以上、本開示に係る技術が適用され得る手術室システム5100の一例について説明した。なお、ここでは、一例として手術室システム5100が適用される医療用システムが内視鏡手術システム5113である場合について説明したが、手術室システム5100の構成はかかる例に限定されない。例えば、手術室システム5100は、内視鏡手術システム5113に代えて、検査用軟性内視鏡システムや顕微鏡手術システムに適用されてもよい。
 以上説明した構成のうち、本開示に係る技術は、カメラヘッド5119やシーリングカメラ5187、術場カメラ5189に適用できる。本開示に係る技術を例えばカメラヘッド5119に適用する場合、撮像レンズ20はレンズユニット5121に相当し、撮像部31や前処理部32および画像処理部33は撮像部5123に相当する。また、制御部51はカメラヘッド制御部5129に相当する。このように、本技術を適用すればカメラヘッド5119で所望の被写体を撮像する際に、高速かつ品位よく所望の被写体に焦点を合わせることができる。
 また、明細書中において説明した一連の処理はハードウェア、またはソフトウェア、あるいは両者の複合構成によって実行することが可能である。ソフトウェアによる処理を実行する場合は、処理シーケンスを記録したプログラムを、専用のハードウェアに組み込まれたコンピュータ内のメモリにインストールして実行させる。または、各種処理が実行可能な汎用コンピュータにプログラムをインストールして実行させることが可能である。
 例えば、プログラムは記録媒体としてのハードディスクやSSD(Solid State Drive)、ROM(Read Only Memory)に予め記録しておくことができる。あるいは、プログラムはフレキシブルディスク、CD-ROM(Compact Disc Read Only Memory),MO(Magneto optical)ディスク,DVD(Digital Versatile Disc)、BD(Blu-Ray Disc(登録商標))、磁気ディスク、半導体メモリカード等のリムーバブル記録媒体に、一時的または永続的に格納(記録)しておくことができる。このようなリムーバブル記録媒体は、いわゆるパッケージソフトウェアとして提供することができる。
 また、プログラムは、リムーバブル記録媒体からコンピュータにインストールする他、ダウンロードサイトからLAN(Local Area Network)やインターネット等のネットワークを介して、コンピュータに無線または有線で転送してもよい。コンピュータでは、そのようにして転送されてくるプログラムを受信し、内蔵するハードディスク等の記録媒体にインストールすることができる。
 なお、本明細書に記載した効果はあくまで例示であって限定されるものではなく、記載されていない付加的な効果があってもよい。また、本技術は、上述した技術の実施の形態に限定して解釈されるべきではない。この技術の実施の形態は、例示という形態で本技術を開示しており、本技術の要旨を逸脱しない範囲で当業者が実施の形態の修正や代用をなし得ることは自明である。すなわち、本技術の要旨を判断するためには、請求の範囲を参酌すべきである。
 また、本技術の撮像装置は以下のような構成も取ることができる。
 (1) 画像出力画素と位相差検出画素とを含む撮像素子と、
 所定期間に亘って前記位相差検出画素を用いて得られる像面位相差情報に基づいたフォーカス制御を行いながら得られるフォーカス状態情報に基づいてフォーカス状態の変化が単調変化であるか否かを示すフォーカス状態変化情報を生成し、前記フォーカス状態変化情報が、前記フォーカス状態の変化が単調変化であることを示す場合、前記像面位相差情報に基づく像面位相差フォーカス制御を継続する制御部と
を備える撮像装置。
 (2) 前記制御部は、前記フォーカス状態変化情報が、前記フォーカス状態の変化が単調変化でないことを示す場合、前記像面位相差フォーカス制御から、前記像面位相差情報以外の情報に基づく他のフォーカス制御に切り替える(1)に記載の撮像装置。
 (3) 前記他のフォーカス制御は、前記画像出力画素を用いて得られる画像情報に基づくコントラストフォーカス制御または前記撮像素子と別個に設けられた測距情報生成素子で得られた測距情報に基づく測距情報フォーカス制御である(2)に記載の撮像装置。
 (4) 前記他のフォーカス制御は、前記画像出力画素を用いて得られる画像情報に基づくコントラストフォーカス制御であり、
 前記制御部は、前記コントラストフォーカス制御の終了後に前記像面位相差フォーカス制御を実行する(2)に記載の撮像装置。
 (5) 前記制御部は、前記所定期間に先だって、前記位相差検出画素の出力から得られる視差を持つ2像の相関演算結果の信頼性を判定し、前記相関演算結果の信頼性があると判定した場合に前記フォーカス状態変化情報を生成する(1)乃至(4)のいずれかに記載の撮像装置。
 (6) 前記制御部は、前記相関演算結果の信頼性がないと判定した場合、全サーチ動作を行う(5)に記載の撮像装置。
 (7) 前記フォーカス状態情報は、フォーカスレンズのレンズ実位置または前記像面位相差情報が示すデフォーカス量であり、
 前記制御部は、前記フォーカス状態の変化が単調変化か否かを、前記レンズ実位置の変化量または前記デフォーカス量の変化量に基づいて判定する(1)乃至(6)のいずれかに記載の撮像装置。
 (8) 前記フォーカス状態情報は、フォーカスレンズのレンズ実位置または前記像面位相差情報が示すデフォーカス量であり、
 前記制御部は、前記フォーカス状態の変化が単調変化か否かを、前記レンズ実位置の変化量の周波数特性または前記デフォーカス量の変化量の周波数特性に基づいて判定する(1)乃至(6)のいずれかに記載の撮像装置。
 (9) 前記フォーカス状態情報は、フォーカスレンズのレンズ実位置または前記像面位相差情報が示すデフォーカス量であり、
 前記制御部は、前記フォーカス状態の変化が単調変化か否かを、前記レンズ実位置または前記デフォーカス量に基づいて判定する(1)乃至(6)のいずれかに記載の撮像装置。
 (10) 前記フォーカス状態情報は、交換レンズとの通信によって取得した前記交換レンズにおけるフォーカスレンズのレンズ実位置である(7)乃至(9)のいずれかに記載の撮像装置。
 また、本技術の撮像装置は以下のような構成も取ることができる。
 (1) 画像出力画素と像面位相差検出画素とを含む撮像素子と、
 所定期間に亘って前記位相差検出画素を用いて得られる像面位相差情報に基づく像面位相差フォーカス制御を行いながら得られるフォーカス状態情報に基づいて、フォーカス状態の変化が単調変化であるか否かを示すフォーカス状態変化情報を生成し、前記フォーカス状態変化情報が、前記フォーカス状態の変化が単調変化であることを示す場合、フォーカスレンズの焦点位置ズレが大きい状態と判定して、前記フォーカス状態変化情報が、前記フォーカス状態の変化が単調変化でないことを示す場合、前記画像出力画素によって撮像された被写体のコントラストが低い状態と判定する判定部と
を備える撮像装置。
 (2) 前記フォーカス状態情報は、フォーカスレンズのレンズ実位置または前記像面位相差情報が示すデフォーカス量であり、
前記判定部は、前記フォーカス状態の変化が単調変化か否かを前記レンズ実位置の変化量または前記デフォーカス量の変化量で判定する(1)に記載の撮像装置。
 (3) 前記フォーカス状態情報は、フォーカスレンズのレンズ実位置または前記像面位相差情報が示すデフォーカス量であり、
 前記判定部は、前記フォーカス状態の変化が単調変化か否かを前記フォーカスレンズのレンズ実位置の変化量の周波数特性または前記デフォーカス量の変化量の周波数特性で判定する(1)に記載の撮像装置。
 (4) 前記フォーカス状態情報は、フォーカスレンズのレンズ実位置である(1)に記載の撮像装置。
 (5) 前記フォーカス状態情報は、前記像面位相差情報が示すデフォーカス量である(1)に記載の撮像装置。
 (16) 前記フォーカス状態情報は、フォーカスレンズのレンズ実位置及び前記像面位相差情報が示すデフォーカス量であり、
 前記判定部は、前記フォーカス状態の変化が単調変化か否かを前記フォーカスレンズのレンズ実位置と前記デフォーカス量の双方に基づいて判定する(1)に記載の撮像装置。
 (17) 前記判定部は、前記所定期間に先だって、前記像面位相差検出画素の出力から得られる視差を持つ2像の相関演算結果の信頼性を判定し、前記相関演算結果の信頼性があると判定した場合に、
 前記制御部は、前記フォーカス状態変化情報の生成を開始する(1)乃至(6)のいずれかに記載の撮像装置。
 (18) 前記判定部は、状態判定結果をユーザに提示する情報提示部での状態判定結果の提示を制御する(1)乃至(7)のいずれかに記載の撮像装置。
 また、本技術は以下のようなプログラムであってもよい。
 (1) 撮像装置におけるフォーカス制御をコンピュータで実行させるプログラムであって、
 画像出力画素と位相差検出画素とを含む撮像素子の前記位相差検出画素を用いて得られる像面位相差情報を取得する手順と、
 所定期間に亘って得られる像面位相差情報に基づいた像面位相差フォーカス制御を行いながら得られるフォーカス状態情報に基づいて、フォーカス状態の変化が単調変化であるか否かを示すフォーカス状態変化情報を生成する手順と、
 前記フォーカス状態変化情報が、前記フォーカス状態の変化が単調変化であることを示す場合、前記像面位相差情報に基づく像面位相差フォーカス制御を継続する手順と
を前記コンピュータで実行させるプログラム。
 (2) 撮像装置におけるフォーカス制御をコンピュータで実行させるプログラムであって、
 画像出力画素と位相差検出画素とを含む撮像素子から前記位相差検出画素を用いて得られる像面位相差情報を取得することと、
 所定期間に亘って得られる像面位相差情報に基づいた像面位相差フォーカス制御を行いながら得られるフォーカス状態情報に基づいて、フォーカス状態の変化が単調変化であるか否かを示すフォーカス状態変化情報を生成する手順と、
前記フォーカス状態変化情報が、前記フォーカス状態の変化が単調変化であることを示す場合、フォーカスレンズの焦点位置ズレが大きい状態と判定し、前記フォーカス状態変化情報が、前記フォーカス状態の変化が単調変化でないことを示す場合、前記画像出力画素によって撮像された被写体のコントラストが低い状態と判定する手順と
を前記コンピュータで実行させるプログラム。
 この技術の撮像装置とフォーカス制御方法およびフォーカス判定方法によれば、画像出力画素と位相差検出画素とを含む撮像素子が用いられて、制御部では、画像出力画素と位相差検出画素とを含む撮像素子が用いられて、制御部は、所定期間に亘って位相差検出画素を用いて得られる像面位相差情報に基づいたフォーカス制御を行いながら得られるフォーカス状態情報に基づいてフォーカス状態の変化が単調変化であるか否かを示すフォーカス状態変化情報を生成し、フォーカス状態変化情報が、フォーカス状態の変化が単調変化であることを示す場合、像面位相差情報に基づく像面位相差フォーカス制御を継続する。このため、例えばコントラスト方式のオートフォーカス動作を行う頻度が少なくなり、高速かつ品位のよいオートフォーカス動作が可能となる。したがって、デジタルカメラやビデオカメラ、内視鏡カメラ等に適している。
 10,10a・・・撮像装置
 20・・・撮像レンズ
 21・・・撮像光学系
 22・・・レンズ駆動処理部
 30,30a・・・本体部
 31・・・撮像部
 32・・・前処理部
 33・・・画像処理部
 35・・・表示部
 36・・・記録部
 39・・・ユーザインタフェース(I/F)部
 45・・・透過ミラー部
 46・・・専用位相差検出部
 51・・・制御部
 511・・・判定部
 512・・・フォーカス制御部

Claims (20)

  1.  画像出力画素と位相差検出画素とを含む撮像素子と、
     所定期間に亘って前記位相差検出画素を用いて得られる像面位相差情報に基づいたフォーカス制御を行いながら得られるフォーカス状態情報に基づいてフォーカス状態の変化が単調変化であるか否かを示すフォーカス状態変化情報を生成し、前記フォーカス状態変化情報が、前記フォーカス状態の変化が単調変化であることを示す場合、前記像面位相差情報に基づく像面位相差フォーカス制御を継続する制御部と
    を備える撮像装置。
  2.  前記制御部は、前記フォーカス状態変化情報が、前記フォーカス状態の変化が単調変化でないことを示す場合、前記像面位相差フォーカス制御から、前記像面位相差情報以外の情報に基づく他のフォーカス制御に切り替える
    請求項1に記載の撮像装置。
  3.  前記他のフォーカス制御は、前記画像出力画素を用いて得られる画像情報に基づくコントラストフォーカス制御または前記撮像素子と別個に設けられた測距情報生成素子で得られた測距情報に基づく測距情報フォーカス制御である
    請求項2に記載の撮像装置。
  4.  前記他のフォーカス制御は、前記画像出力画素を用いて得られる画像情報に基づくコントラストフォーカス制御であり、
    前記制御部は、前記コントラストフォーカス制御の終了後に前記像面位相差フォーカス制御を実行する
    請求項2に記載の撮像装置。
  5.  前記制御部は、前記所定期間に先だって、前記位相差検出画素の出力から得られる視差を持つ2像の相関演算結果の信頼性を判定し、前記相関演算結果の信頼性があると判定した場合に前記フォーカス状態変化情報を生成する
    請求項1に記載の撮像装置。
  6.  前記制御部は、前記相関演算結果の信頼性がないと判定した場合、全サーチ動作を行う
    請求項5に記載の撮像装置。
  7.  前記フォーカス状態情報は、フォーカスレンズのレンズ実位置または前記像面位相差情報が示すデフォーカス量であり、
     前記制御部は、前記フォーカス状態の変化が単調変化か否かを、前記レンズ実位置の変化量または前記デフォーカス量の変化量に基づいて判定する
    請求項1に記載の撮像装置。
  8.  前記フォーカス状態情報は、フォーカスレンズのレンズ実位置または前記像面位相差情報が示すデフォーカス量であり、
     前記制御部は、前記フォーカス状態の変化が単調変化か否かを、前記レンズ実位置の変化量の周波数特性または前記デフォーカス量の変化量の周波数特性に基づいて判定する
    請求項1に記載の撮像装置。
  9.  前記フォーカス状態情報は、フォーカスレンズのレンズ実位置または前記像面位相差情報が示すデフォーカス量であり、
     前記制御部は、前記フォーカス状態の変化が単調変化か否かを、前記レンズ実位置または前記デフォーカス量に基づいて判定する
    請求項1に記載の撮像装置。
  10.  前記フォーカス状態情報は、交換レンズとの通信によって取得した前記交換レンズにおけるフォーカスレンズのレンズ実位置である
    請求項1に記載の撮像装置。
  11.  画像出力画素と像面位相差検出画素とを含む撮像素子と、
     所定期間に亘って前記位相差検出画素を用いて得られる像面位相差情報に基づく像面位相差フォーカス制御を行いながら得られるフォーカス状態情報に基づいて、フォーカス状態の変化が単調変化であるか否かを示すフォーカス状態変化情報を生成し、前記フォーカス状態変化情報が、前記フォーカス状態の変化が単調変化であることを示す場合、フォーカスレンズの焦点位置ズレが大きい状態と判定して、前記フォーカス状態変化情報が、前記フォーカス状態の変化が単調変化でないことを示す場合、前記画像出力画素によって撮像された被写体のコントラストが低い状態と判定する判定部と
    を備える撮像装置。
  12.  前記フォーカス状態情報は、フォーカスレンズのレンズ実位置または前記像面位相差情報が示すデフォーカス量であり、
     前記判定部は、前記フォーカス状態の変化が単調変化か否かを前記レンズ実位置の変化量または前記デフォーカス量の変化量で判定する
    請求項11に記載の撮像装置。
  13.  前記フォーカス状態情報は、フォーカスレンズのレンズ実位置または前記像面位相差情報が示すデフォーカス量であり、
     前記判定部は、前記フォーカス状態の変化が単調変化か否かを前記フォーカスレンズのレンズ実位置の変化量の周波数特性または前記デフォーカス量の変化量の周波数特性で判定する
    請求項11に記載の撮像装置。
  14.  前記フォーカス状態情報は、フォーカスレンズのレンズ実位置である
    請求項11に記載の撮像装置。
  15.  前記フォーカス状態情報は、前記像面位相差情報が示すデフォーカス量である
    請求項11に記載の撮像装置。
  16.  前記フォーカス状態情報は、フォーカスレンズのレンズ実位置及び前記像面位相差情報が示すデフォーカス量であり、
    前記判定部は、前記フォーカス状態の変化が単調変化か否かを前記フォーカスレンズのレンズ実位置と前記デフォーカス量の双方に基づいて判定する
    請求項11に記載の撮像装置。
  17.  前記判定部は、前記所定期間に先だって、前記像面位相差検出画素の出力から得られる視差を持つ2像の相関演算結果の信頼性を判定し、前記相関演算結果の信頼性があると判定した場合に、
     前記制御部は、前記フォーカス状態変化情報の生成を開始する
    請求項11に記載の撮像装置。
  18.  前記判定部は、状態判定結果をユーザに提示する情報提示部での状態判定結果の提示を制御する
    請求項11に記載の撮像装置。
  19.  画像出力画素と位相差検出画素とを含む撮像素子の前記位相差検出画素を用いて所定期間に亘って得られる像面位相差情報に基づいた像面位相差フォーカス制御を行いながら得られるフォーカス状態情報に基づいて、フォーカス状態の変化が単調変化であるか否かを示すフォーカス状態変化情報を生成することと、
     前記フォーカス状態変化情報が、前記フォーカス状態の変化が単調変化であることを示す場合、前記像面位相差情報に基づく像面位相差フォーカス制御を継続することと
    を含むフォーカス制御方法。
  20.  画像出力画素と像面位相差検出画素とを含む撮像素子の前記位相差検出画素を用いて所定期間に亘って得られる像面位相差情報に基づいた像面位相差フォーカス制御を行いながら得られるフォーカス状態情報に基づいて、フォーカス状態の変化が単調変化であるか否かを示すフォーカス状態変化情報を生成することと、
     前記フォーカス状態変化情報が、前記フォーカス状態の変化が単調変化であることを示す場合、フォーカスレンズの焦点位置ズレが大きい状態と判定し、前記フォーカス状態変化情報が、前記フォーカス状態の変化が単調変化でないことを示す場合、前記画像出力画素によって撮像された被写体のコントラストが低い状態と判定することと
    を含むフォーカス判定方法。
PCT/JP2018/004156 2017-03-30 2018-02-07 撮像装置とフォーカス制御方法およびフォーカス判定方法 WO2018179875A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020197027590A KR20190129050A (ko) 2017-03-30 2018-02-07 촬상 장치와 포커스 제어 방법 및 포커스 판정 방법
EP18774938.7A EP3605179A4 (en) 2017-03-30 2018-02-07 IMAGE DETECTING DEVICE, FOCUS CONTROL METHOD AND FOCUS DETERMINATION METHOD
JP2019508690A JP7207296B2 (ja) 2017-03-30 2018-02-07 撮像装置とフォーカス制御方法およびフォーカス判定方法
US16/493,632 US10917555B2 (en) 2017-03-30 2018-02-07 Imaging apparatus, focus control method, and focus determination method
CN201880020431.0A CN110446962A (zh) 2017-03-30 2018-02-07 成像设备、聚焦控制方法以及聚焦判定方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017067391 2017-03-30
JP2017-067391 2017-03-30

Publications (1)

Publication Number Publication Date
WO2018179875A1 true WO2018179875A1 (ja) 2018-10-04

Family

ID=63675053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/004156 WO2018179875A1 (ja) 2017-03-30 2018-02-07 撮像装置とフォーカス制御方法およびフォーカス判定方法

Country Status (6)

Country Link
US (1) US10917555B2 (ja)
EP (1) EP3605179A4 (ja)
JP (1) JP7207296B2 (ja)
KR (1) KR20190129050A (ja)
CN (1) CN110446962A (ja)
WO (1) WO2018179875A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022064659A1 (ja) * 2020-09-25 2022-03-31 オリンパス株式会社 オートフォーカスシステム、内視鏡システムおよび制御方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008134389A (ja) 2006-11-28 2008-06-12 Sony Corp 撮像装置
JP2014203049A (ja) * 2013-04-09 2014-10-27 キヤノン株式会社 撮像装置およびその制御方法
JP2016197231A (ja) * 2015-04-03 2016-11-24 キヤノン株式会社 表示制御装置及び方法、及び撮像装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2770316B2 (ja) * 1988-05-13 1998-07-02 ミノルタ株式会社 自動焦点検出装置
JP3675039B2 (ja) * 1996-06-26 2005-07-27 株式会社ニコン 焦点調節装置
JP4659197B2 (ja) * 2000-10-11 2011-03-30 キヤノン株式会社 自動焦点調節装置およびカメラ
JP2004085843A (ja) * 2002-08-26 2004-03-18 Canon Inc カメラ
US6895181B2 (en) * 2002-08-27 2005-05-17 Olympus Corporation Camera and distance measuring method thereof
JP2009069255A (ja) * 2007-09-11 2009-04-02 Sony Corp 撮像装置および合焦制御方法
JP5146295B2 (ja) 2008-12-15 2013-02-20 ソニー株式会社 撮像装置および合焦制御方法
CN105827983B (zh) * 2012-07-12 2018-11-06 奥林巴斯株式会社 摄像装置
JP6172935B2 (ja) * 2012-12-27 2017-08-02 キヤノン株式会社 画像処理装置、画像処理方法及び画像処理プログラム
US9338344B2 (en) * 2013-04-09 2016-05-10 Canon Kabushiki Kaisha Focusing apparatus and method for controlling the same, and image pickup apparatus
US9794467B2 (en) 2013-11-01 2017-10-17 Canon Kabushiki Kaisha Focus adjustment apparatus, method for controlling focus adjustment apparatus, and storage medium
JP6614783B2 (ja) * 2015-03-19 2019-12-04 キヤノン株式会社 自動焦点調節装置およびその制御方法
US20160295122A1 (en) 2015-04-03 2016-10-06 Canon Kabushiki Kaisha Display control apparatus, display control method, and image capturing apparatus
JP6545141B2 (ja) * 2016-11-29 2019-07-17 ミネベアミツミ株式会社 アブソリュートエンコーダ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008134389A (ja) 2006-11-28 2008-06-12 Sony Corp 撮像装置
JP2014203049A (ja) * 2013-04-09 2014-10-27 キヤノン株式会社 撮像装置およびその制御方法
JP2016197231A (ja) * 2015-04-03 2016-11-24 キヤノン株式会社 表示制御装置及び方法、及び撮像装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3605179A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022064659A1 (ja) * 2020-09-25 2022-03-31 オリンパス株式会社 オートフォーカスシステム、内視鏡システムおよび制御方法

Also Published As

Publication number Publication date
EP3605179A4 (en) 2020-04-01
CN110446962A (zh) 2019-11-12
JP7207296B2 (ja) 2023-01-18
KR20190129050A (ko) 2019-11-19
JPWO2018179875A1 (ja) 2020-02-06
US20200077030A1 (en) 2020-03-05
EP3605179A1 (en) 2020-02-05
US10917555B2 (en) 2021-02-09

Similar Documents

Publication Publication Date Title
US11531151B2 (en) Imaging apparatus and image generating method that detects an orientation of an imaging section and generates an image corresponding to a polarization direction corresponding to the orientation the imaging section
JP7363767B2 (ja) 画像処理装置と画像処理方法およびプログラム
US11653824B2 (en) Medical observation system and medical observation device
WO2020179485A1 (ja) 撮像装置、およびスイッチ
US20220311983A1 (en) Video signal processing apparatus, video signal processing method, and image-capturing apparatus
WO2018235608A1 (ja) 手術システムおよび手術用撮像装置
JP7135869B2 (ja) 発光制御装置、発光制御方法、プログラム、発光装置、および撮像装置
WO2018221068A1 (ja) 情報処理装置、情報処理方法および情報処理プログラム
US20220217260A1 (en) Signal processing device, imaging device, and signal processing method
US11523065B2 (en) Imaging device and gain setting method
JP7063321B2 (ja) 撮像装置、映像信号処理装置および映像信号処理方法
JP7092111B2 (ja) 撮像装置、映像信号処理装置および映像信号処理方法
JP7207296B2 (ja) 撮像装置とフォーカス制御方法およびフォーカス判定方法
JP7456385B2 (ja) 画像処理装置、および画像処理方法、並びにプログラム
US11356596B2 (en) Imaging device, imaging device control unit, and imaging method for adjusting parameters of imaging device
JP7230923B2 (ja) 情報処理装置、情報処理方法及びプログラム
WO2020121654A1 (ja) 撮像装置、撮像制御装置、撮像方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18774938

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019508690

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197027590

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018774938

Country of ref document: EP

Effective date: 20191030