WO2018177039A1 - 手术机器人用蛇形关节、手术器械及内窥镜 - Google Patents

手术机器人用蛇形关节、手术器械及内窥镜 Download PDF

Info

Publication number
WO2018177039A1
WO2018177039A1 PCT/CN2018/076313 CN2018076313W WO2018177039A1 WO 2018177039 A1 WO2018177039 A1 WO 2018177039A1 CN 2018076313 W CN2018076313 W CN 2018076313W WO 2018177039 A1 WO2018177039 A1 WO 2018177039A1
Authority
WO
WIPO (PCT)
Prior art keywords
joint
serpentine
surgical robot
axial
groove
Prior art date
Application number
PCT/CN2018/076313
Other languages
English (en)
French (fr)
Inventor
何裕源
何超
王常春
李涛
Original Assignee
微创(上海)医疗机器人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 微创(上海)医疗机器人有限公司 filed Critical 微创(上海)医疗机器人有限公司
Publication of WO2018177039A1 publication Critical patent/WO2018177039A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/005Flexible endoscopes
    • A61B1/0051Flexible endoscopes with controlled bending of insertion part
    • A61B1/0055Constructional details of insertion parts, e.g. vertebral elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/005Flexible endoscopes
    • A61B1/0051Flexible endoscopes with controlled bending of insertion part
    • A61B1/0057Constructional details of force transmission elements, e.g. control wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/005Flexible endoscopes
    • A61B1/008Articulations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00238Type of minimally invasive operation

Definitions

  • the present invention relates to the field of medical device technology, and in particular to a serpentine joint, a surgical instrument and an endoscope for a surgical robot.
  • snake-shaped robots for medical operations have also appeared slowly.
  • the surgical instruments of the serpentine joint are often used to realize other organs during the operation. Avoidance. This advantage makes the surgical instruments of the serpentine joints well suited for use in the surgical field.
  • US 2016/0066937 A1 proposes a serpentine joint, the single joint 110 comprising a first joint portion 202 and a second joint portion 232 which are relatively swingable, and a short link mechanism 226 between the two joint portions, 228 connection.
  • the short link mechanism 226 as an example, the first bearing 227 disposed in the bearing hole 254 of the second joint portion 232 and the second bearing 225 disposed in the groove 210 of the first joint portion 202, the first The bearing 227 forms a rotational axis of the second joint portion 232, and the second bearing 225 forms a rotational axis of the second joint portion 202.
  • the serpentine joint can realize the torsional movement of the space by different arrangement manners, but in the process of bending and torsion, there are disadvantages of low motion precision and complicated structure.
  • CN102665592A proposes a wrist joint comprising discs 410 and 420 having four sets of projections 412, 414, 416, 418 and 40 mating with each other. 422, 424, 426, 428, and the four sets of protrusions alternate between having a central epicycloid surface and a central hypocycloid surface.
  • the wrist joint 400 can provide resistance to compressive strain and prevent the disc 410 from sliding laterally relative to the disk 420 in the direction of the tilt axis.
  • the discs 410 and 420 are hinged by the jaws 451 and 452, and the discs 410 and 420 are forced together by preloading the tension on the jaws 451 and 452, so the reliability of this connection is low, and four sets are set.
  • the protrusion also makes the wrist joint 400 complicated in structure and high in manufacturing cost.
  • the present invention provides a serpentine joint for a surgical robot having at least one degree of freedom with a serpentine joint, and comprising: at least one joint joint pair and a flexible structure; wherein
  • Each joint joint pair includes a first joint joint at a lower end and a second joint joint at an upper end;
  • the first joint joint includes a first substrate, and the first surface of the first substrate is provided with a first protrusion and a first groove;
  • the second joint joint includes a second substrate, the second surface of the second substrate is provided with a second protrusion and a second groove; when the first joint joint and the second When the joint is engaged, the first surface and the second surface are oppositely disposed, the first protrusion is located in the second groove, and is rotatable in the second groove, the second a protrusion is located in the first groove and is rotatable within the first groove;
  • the flexible structure is for controlling a swing of the joint joint pair
  • the first line formed by the center line of the first protrusion and the first groove intersects perpendicularly to the axis of the first substrate;
  • the second protrusion and the second groove a second line formed by the center line perpendicularly intersecting an axis of the second substrate; the first wire and the second wire when the first joint joint and the second joint joint are mated Connected to the line;
  • first protrusion and the second protrusion each have an arc-shaped convex surface having a central angle greater than 180° and less than 360°; the first groove and the second groove each have a center An arc-shaped concave surface with an angle greater than 180° and less than 360°.
  • the central angle of the arc-shaped convex surface is larger than the central angle of the circular arc-shaped concave surface.
  • the swing angle of the joint joint pair is greater than 0° and less than or equal to 80°.
  • the first substrate is provided with a plurality of first axial through holes arranged circumferentially, and the flexible structure extends through the first axial through hole
  • the second substrate is provided with a plurality of second axial through holes arranged circumferentially, the flexible structure extending through the second axial through hole, at least 2 of the plurality of first axial through holes
  • the positions of the ones correspond to the positions of at least two of the plurality of second axial through holes.
  • the number of the first axial through holes is the same as the number of the second axial through holes, and the position of the first axial through hole One-to-one correspondence with the position of the second axial through hole.
  • the flexible structure is at least 2n, wherein n is a natural number greater than or equal to 1.
  • the surgical robot with a serpentine joint includes a plurality of the joint joint pairs, and the plurality of joint joint pairs are sequentially adjacent.
  • the first substrate is provided with a third surface opposite to the first surface, and the third surface is provided with a first fastening mechanism;
  • the second substrate is provided with a fourth surface opposite to the second surface, the fourth surface is provided with a second fastening mechanism; the second fastening mechanism and the first through the two adjacent joint joints
  • the snap-fit mechanism is interlocked to secure the second joint joint and the first joint joint of the adjacent two joint joint pairs.
  • the first fastening mechanism includes a plurality of first bosses and a plurality of first recesses, the first bosses and the first recesses
  • the second fastening mechanism includes a plurality of second bosses and a plurality of second recesses, the second bosses and the second recesses are spaced apart; the first bosses The second boss can be received in a second recess of an adjacent joint joint pair, the second boss being receivable in a first recess of an adjacent joint joint pair.
  • the second joint joint and the first joint joint of the adjacent two joint joint pairs are integrally formed.
  • a circumferential relative deflection angle between two adjacent joint joint pairs is greater than or equal to 0° and less than or equal to 180°.
  • the present invention also provides a surgical instrument including an instrument end, a serpentine joint for a surgical robot, a tubular member, a flexible member, and a controller as described above; wherein the instrument end, the surgical robot uses a snake a joint, the tubular and the controller are connected in sequence; the flexible member is connected to the controller at one end, and the other end is connected to the end of the instrument through the tubular; the flexibility of the serpentine joint of the surgical robot a proximal end of the structure is coupled to the controller via the tubular; the controller controls movement of the end of the instrument by the flexible member, and the surgical robot uses a flexible structure of a serpentine joint to control the surgical robot with a serpentine shape The movement of the joints.
  • the present invention also provides an endoscope including an imaging system, a serpentine joint for a surgical robot, a tubular, and a controller as described above; wherein the imaging system, the surgical robot uses a serpentine shape a joint, the tubular, and the controller are sequentially connected; the surgical robot is connected to the controller via the tubular proximal end of the flexible structure of the serpentine joint; the controller is used by the surgical robot
  • the flexible structure of the serpentine joint controls the surgical robot to move with a serpentine joint.
  • the surgical robot has at least one degree of freedom with a serpentine joint, and includes: at least one joint joint pair and a flexible structure; wherein each joint joint pair includes a lower end a first joint joint and a second joint joint at an upper end; the first joint joint includes a first substrate, the first surface of the first substrate is provided with a first protrusion and a first groove; the second The joint joint includes a second substrate, and the second surface of the second substrate is provided with a second protrusion and a second groove; when the first joint joint and the second joint joint are engaged, the first The surface is opposite to the second surface, the first protrusion is located in the second groove and rotates relative to the second groove, and the second protrusion is located in the first groove And rotating relative to the first groove; the flexible structure controls the swing of the pair of joint joints.
  • Planar torsion or spatial torsion is achieved by the oscillation of the joint pair, which reduces the complexity of the structure relative to prior art serpentine joints.
  • the serpentine joint of the surgical robot is included, thereby enabling the end of the instrument or the imaging system to reach a desired position and posture.
  • FIG. 1 is a schematic structural view of a surgical instrument according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural view of a surgical instrument according to an embodiment of the present invention.
  • 3a to 3c are schematic views showing the structure of a joint joint of a serpentine joint for a surgical robot according to an embodiment of the present invention
  • FIGS. 4a to 4c are schematic views showing a state in which two adjacent joint joints in a serpentine joint for a surgical robot are disposed at an angle of 90° according to an embodiment of the present invention
  • 5a to 5c are schematic views showing a state in which two adjacent joint joints in a serpentine joint for a surgical robot are disposed at an angle of 180° according to an embodiment of the present invention
  • 6a to 6c are schematic views showing the arrangement of four joint joints in a serpentine joint for a surgical robot according to an embodiment of the present invention
  • Figure 7 is a schematic view of a serpentine joint in the prior art
  • Figure 8 is a schematic illustration of a wrist joint in the prior art.
  • proximal and distal are relative orientations, relative positions, directions of elements or actions relative to each other from the perspective of a physician using the medical device, although “Proximal” and “distal”, “lower” and “upper” are not limiting, but “near” and “lower” generally refer to the end of the medical device that is near the doctor during normal operation, and “far” “End” and “upper end” generally refer to the end that first enters the patient's body.
  • FIG. 1 , FIG. 2 and FIG. 3 a to FIG. 3 c are schematic structural views of a surgical instrument according to an embodiment of the present invention
  • FIGS. 3 a to 3 c illustrate a serpentine joint for a surgical robot according to an embodiment of the present invention.
  • the surgical robot uses a serpentine joint having at least one degree of freedom, including: at least one joint joint pair 10 and a flexible structure 20; wherein each joint joint pair 10 is located at the lower end (in this a first joint joint 11 in an application embodiment, that is, a proximal end, and a second joint joint 12 at an upper end (in the present embodiment, that is, a distal end);
  • the first joint joint 11 includes a first base plate 110,
  • the first surface of the first substrate 110 is provided with a first protrusion 111 and a first groove 112 disposed opposite to each other;
  • the second joint joint 12 includes a second substrate 120, and the second of the second substrate 120 a second protrusion 121 and a second groove 122 are disposed on the surface; when the first joint joint 11 and the second joint joint 12 are engaged, the first surface and the second surface are opposite
  • the first protrusion 111 is located in the second groove 122 and is rotatable in the second groove 122.
  • the second protrusion 121 is located in the first groove 112, and Rotatable within the first groove 112; the flexible structure 20 controls the joint joint 10 swings.
  • the first joint 11 and the second joint 12 can be realized by the first protrusion 111 being rotatably disposed in the second groove 122 and the second protrusion 121 being rotatably disposed in the first groove 112.
  • the reliable connection and relative oscillation between the two it is no longer necessary to provide other connecting members for the first joint joint 11 and the second joint joint 12, which simplifies the structure of the joint joint pair 10.
  • the first joint joint and the second joint joint of the joint joint pair may be identical structures, thus saving manufacturing costs and assembly costs.
  • the shape of the first substrate 110 or the second substrate 120 is not particularly limited, and may be circular, elliptical, square, rectangular or other shapes.
  • a direction surrounding a contour of the first substrate 110 or the second substrate 120 is defined as a circumferential direction.
  • the first protrusion 111 and the first groove 112 are symmetrically arranged with respect to an axis of the first substrate.
  • a circumferential edge of a substrate 110; the second protrusion 121 and the second groove 122 are symmetrically disposed on a circumferential edge of the second substrate 120 with respect to an axis of the second substrate.
  • a first line formed by the center line of the first protrusion 111 and the first groove 112 intersects perpendicularly with an axis of the first substrate 110; the second protrusion 121 and the a second line formed by the center line of the second groove 122 perpendicularly intersects the axis of the second substrate 120; in a state where the first joint joint 11 and the second joint joint 12 are fitted to each other,
  • the first connection is collinear with the second connection.
  • the first protrusion 111 and the second protrusion 121 each include a circular arc-shaped convex surface having a central angle greater than 180° and less than 360°; the first groove 112 and the second groove 122 each includes an arcuate concave surface having a central angle greater than 180° and less than 360°.
  • the arcuate convex surface of the first protrusion 111 is engaged with the arcuate concave surface of the second groove 122 in a state in which the first joint joint 11 and the second joint joint 12 are fitted to each other.
  • the arc-shaped convex surface of the first protrusion 111 and the arc-shaped concave surface of the second groove 122 are always kept engaged.
  • the arcuate convex surface of the second protrusion 121 is engaged with the arcuate concave surface of the first groove 112 in a state in which the first joint joint 11 and the second joint joint 12 are fitted to each other.
  • the arc-shaped convex surface of the second protrusion 121 and the arc-shaped concave surface of the first groove 112 are also always engaged.
  • the connection reliability and relative swing between the first joint joint 11 and the second joint joint 12 can be improved.
  • the central angle of the arc-shaped convex surface is larger than the central angle of the circular arc-shaped concave surface, so that the connection reliability of the joint joint pair 10 and the reliability during the swing can be further improved.
  • the swing angle of the joint joint pair 10 is greater than 0° and less than or equal to 80°.
  • the maximum angle that can be achieved is 80°.
  • the swing angle of the joint joint pair 10 can be measured by an angle between the first surface of the first substrate 110 and the second surface of the second substrate 120.
  • the first substrate 110 is provided with a first axial through hole 113 disposed in a circumferential direction, and the first axial through hole 113 is provided for the The flexible structure 20 extends through; the second substrate 120 is provided with a circumferentially disposed second axial through hole 123 through which the flexible structure 20 extends.
  • the first axial through hole 113 is at least two
  • the second axial through hole 123 is at least two
  • at least two of the first axial through holes 113 are located at least two.
  • the positions of the second axial through holes 123 correspond to each other.
  • the first axial through hole 113 and the second axial through hole 123 are uniformly arranged in the circumferential direction, respectively. More preferably, the number of the first axial through holes 113 and the number of the second axial through holes 123 are equal, and the position of the first axial through hole 113 and the second axial through hole 123 positions correspond one-to-one. Further, each of the first axial through hole 113 and the second axial through hole 123 may be divided into a plurality of groups uniformly arranged in the circumferential direction, wherein each set of the axial through hole groups includes at least one axial through hole.
  • the first axial through holes in each of the first axial through hole groups are evenly arranged, and the second axial through holes in each of the second axial through hole groups are evenly arranged.
  • the first substrate 110 includes four sets of first axial through hole groups uniformly arranged in a circumferential direction, and each of the first axial through hole groups includes two first axes. To the through hole.
  • the flexible structure is a wire.
  • the chassis shown in FIGS. 3a to 3c ie, the first chassis 110, that is, the second chassis 120
  • the two wires are respectively worn. Passing through different sets of through holes (wherein a set of through holes includes a first axial through hole 113 and a corresponding second axial through hole 123), and the two sets of through holes should be distributed in the first of the jointed pair Connect the sides of the line.
  • control of the swing of an articulating joint pair can also be achieved by four or six wires.
  • the serpentine joint has n (n is a natural number greater than or equal to 1) degrees of freedom, that is, when the swinging direction of the joint joint pair in the serpentine joint is n kinds, the number of the flexible structures is at least 2n (ie n pairs of flexible structures).
  • the serpentine joint can achieve more precise control of the swing of the joint joint by increasing the number of the flexible structures (for example, the joint joint pairs of the same swing direction are controlled by two flexible structures).
  • the fixed position of the flexible joint of the joint joint to the swinging direction may be on the second joint joint of the joint joint pair or the second joint joint of the joint joint pair of the distal end of the joint joint pair (if Have).
  • the distal end of at least 2 flexible structures is secured to the second joint joint of the most distally located joint joint of the pair of articulating joints. More preferably, one end of the flexible structure is fixed to a second joint joint of a pair of joint joints located at the most distal end of the plurality of joint joint pairs.
  • each wire is passed through a corresponding one of the through holes on each of the joint joints and then fixed to the second end face of the second joint joint of the most distal one of the joint joints, thereby stretching by the wire
  • the bending (motion) control of the serpentine joint for the surgical robot is achieved.
  • the number of the first axial through hole 113 and the second axial through hole 123 may be the same or different in a joint joint pair.
  • the number of the first axial through holes between the plurality of joint joints in the serpentine joint may be the same or different, and the number of the second axial through holes is also the same, but the serpentine joint is required to be provided at this time.
  • At least two channels are provided for the flexible structure to extend therethrough.
  • At least two sets of through holes in one joint joint pair that is, two of the first axial through holes 113 correspond to positions of the two second axial through holes 123, so as to facilitate the joint type
  • the flexible structure can extend through, and at least the joint joints of the proximal joints provide a first axial through hole 113 and a second axial through hole 123 at corresponding positions to form a passage for facilitating The flexible structure extends through.
  • the first axial through hole 113 of the joint joint pair also corresponds to the position of the second axial through hole 123 of the proximal joint joint pair, and the proximal adjacent joint joint is centered
  • the second axial through hole 123 corresponds to the position of the first axial through hole 113 of the same joint joint pair, and so on.
  • the joint joint to the distal joint joint pair is provided with a first axial through hole 113 and a second axial through hole 123 at corresponding positions to form a passage for the flexible structure to extend through (ie, finally The flexible structure can be attached to the distal joint joint pair).
  • the number of the joint joint pairs 10 may be plural, for example, any one of two to ten, for example, five, six, eight or ten, etc., multiple joints
  • the connector pair 10 is detachably or fixedly connected in sequence.
  • the circumferential relative deflection angle between two adjacent joint joint pairs 10 is greater than or equal to 0° and less than 180°, that is, the second joint of the adjacent joint joint pairs of the adjacent two joint joint pairs 10
  • the angle between the line and the first line of a joint joint located at the distal end is greater than or equal to 0° and less than 180°.
  • the swinging directions of the adjacent two joint joint pairs 10 may be the same or different, so that the surgical robot has multiple degrees of freedom with the serpentine joint, can swing a larger angle or realize more complicated and more The direction of the space is reversed.
  • the first substrate 110 is provided with a third surface opposite to the first surface, and the first surface is provided with a first fastening mechanism 114.
  • the second substrate 120 is provided with a fourth surface opposite to the second surface, and the fourth surface is provided with a second fastening mechanism 124.
  • the second fastening mechanism 124 of the adjacent two joint joint pairs 10 and the first fastening mechanism 114 are interlocked such that the second joint joint of the adjacent two joint joint pairs 10 12 is connected to the first joint joint 11.
  • first fastening mechanism 114 includes a plurality of first bosses and a plurality of first recesses, the first bosses and the first recesses are spaced apart;
  • second fastening mechanism 124 includes a plurality of second bosses and a plurality of second recesses, the second bosses and the second recesses being spaced apart;
  • first bosses can be received in the pair of adjacent joint joints In the second recess, the second boss can be received in the first recess of the adjacent joint joint pair such that the second joint joint of the two adjacent joint joints and the first joint joint are detachably connected;
  • the second joint joint and the first joint joint of the adjacent two joint joint pairs may also be integrally formed to achieve a tight, firm connection of the adjacent two joint joint pairs.
  • FIG. 4a to FIG. 4c and FIG. 5a to FIG. 5c respectively, the second joint joint adjacent to the two adjacent joint joints in the serpentine joint of the surgical robot according to the embodiment of the present invention and the first Schematic diagram of the state of the joint.
  • the second joint joint 12a of the proximal joint joint pair and the first joint joint 11b of the distal joint joint pair pass the proximal second fastening mechanism 124a
  • the first fastening mechanism 114b at the distal end enables a tight and firm connection.
  • Figures 4a to 4c show a state in which the circumferential relative deflection angle between adjacent pairs of joint joints is 90°; that is, the second connection of the proximal joint joint pairs of the adjacent two joint joint pairs
  • the angle between the first line of the pair of wire and the distal joint joint is 90°; that is, between the second protrusion of the pair of adjacent joint joints and the center line of the second groove An angle of 90°; or an alignment of two adjacent joint joints, the first protrusion of one joint joint and the center line of the first groove and the other joint joint
  • the angle between the center of the two protrusions and the second groove is 90°.
  • 5a to 5c show a state in which the circumferential relative deflection angle between two adjacent joint joint pairs is 180°; that is, the first protrusion and the first of the two adjacent joint joint pairs
  • the angle between the center lines of a groove is 180°; that is, the angle between the center line of the second protrusion and the second groove of the adjacent two joint joint pairs is 180°
  • the angle between the center lines of the second grooves is 180°.
  • the angle between the first protrusion of the pair of adjacent joint joints and the center line of the first groove is greater than or equal to 0° and less than or equal to 180°.
  • FIG. 6 is a schematic diagram showing the arrangement of four joint joint pairs in a serpentine joint for a surgical robot according to an embodiment of the present invention.
  • a first joint joint pair 10a As shown in FIG. 6a to FIG. 6c, here, from bottom to top, a first joint joint pair 10a, a second joint joint pair 10b, a third joint joint pair 10c and a fourth joint joint pair 10d; here, each The maximum swing angle of the joints of the joints is 45°.
  • the circumferential relative deflection angle between the first joint joint pair 10a and the second joint joint pair 10b is 90°
  • the circumferential relative deflection angle between the second joint joint pair 10b and the third joint joint pair 10c is 0°
  • the circumferential relative deflection angle between the third joint joint pair 10c and the fourth joint joint pair 10d is 90°.
  • first joint joint pair 10a and the fourth joint joint pair 10d can swing in the same direction, preferably, the maximum swing angle of each joint joint pair is 45°, thereby Through the first joint joint pair 10a and the fourth joint joint pair 10d, the swing can be cumulatively 90° in the same direction; likewise, the second joint joint pair 10b and the third joint joint pair 10c can swing in the same direction.
  • the maximum swing angle of each joint joint pair is 45°, so that the swing can be cumulatively 90° in the same direction;
  • the swinging direction of the first joint joint pair 10a and the fourth joint joint pair 10d is
  • the second joint joint pair 10b and the third joint joint pair 10c are perpendicular to the swinging direction, that is, the surgical robot has two degrees of freedom with the serpentine joint, and is capable of swinging in two mutually perpendicular directions in the space, preferably in the The maximum swing angles in the two mutually perpendicular directions are both 90°. It can be seen that the surgical robot can realize complex spatial torsion by a simple structure with a serpentine joint.
  • any two joint joint pairs can swing in one direction, and the other two joint joints swing in the other perpendicular direction.
  • the arrangement of the four joint joint pairs shown in Figures 6a to 6c is equivalent.
  • the surgical robot with a serpentine joint may be designed according to degrees of freedom, maximum swing angle, etc., including more joint pairs 10, such as five, six or ten, and the like. Further, the angle between adjacent pairs of joint joints 10 may be 0° to 180°, such as 0°, 30°, 45°, 60°, 90°, 120°, 150° or 180°, etc. Thereby achieving a more abundant space to reverse.
  • the flexible structure is a wire.
  • the serpentine joint requires at least four wires to control the oscillation of the four joint joint pairs.
  • joint joint pairs in the same swing direction can be controlled by sharing two wires.
  • the number of flexible structures can be increased to achieve a more precise control of the swing of the joint pair.
  • eight wires 20 shown in Figure 1 are used, each of which is fixedly connected to a joint pair, in other words, each joint pair is independently controlled by two corresponding wires, without The wire is shared with other joint joints, which allows for more precise control of the angle of oscillation of the serpentine joint.
  • the different configurations of the joint by the joint joint enable the surgical robot to have a degree of freedom of one or more degrees of serpentine joint, thereby realizing plane torsion or spatial torsion.
  • the complexity of the structure is reduced relative to prior art serpentine joints.
  • the present invention also provides a surgical instrument, which can continue to refer to FIGS. 1 and 2, the surgical instrument including an instrument end, the serpentine joint for a surgical robot, a tubular, a flexible member, and a controller;
  • the end of the instrument, the surgical robot with a serpentine joint, the tubular and the controller are sequentially connected;
  • the flexible member is connected to the controller at one end, and the other end is connected to the end of the instrument through the tubular;
  • the proximal end of the flexible structure of the surgical robot with the serpentine joint is connected to the controller via the tubular;
  • the controller controls the movement of the end of the instrument by the flexible member, and the flexibility of the serpentine joint through the surgical robot
  • the structure controls the movement of the surgical robot with a serpentine joint.
  • the end of the instrument mainly includes a surgical tool such as a scissors, a pliers, an electric hook, etc., which is directly operated in a human body;
  • the surgical robot uses a serpentine joint to connect the instrument end and the tubular body respectively, and the tubular body is hollow.
  • a thin-walled tube for supporting the end of the instrument such that the end of the instrument can extend into the body while the front end of the surgical instrument is placed outside the body;
  • the controller is for controlling the movement of the end of the instrument and the movement of the serpentine joint of the surgical robot;
  • the flexible member is coupled to the controller at one end and to the end of the instrument via a tubular end;
  • the surgical robot is coupled to the controller via the tubular proximal end of the flexible structure of the serpentine joint.
  • the surgical instrument controls the posture of the serpentine joint of the surgical robot to bring the end of the instrument to a desired position and posture, and controls the end of the instrument to perform clamping, cutting, and the like at the end of the instrument.
  • the present invention also provides an endoscope including an imaging system, a serpentine joint for a surgical robot, a tube, and a controller; wherein the imaging system and the surgical robot use a serpentine shape a joint, the tubular, and the controller are sequentially connected; the surgical robot is connected to the controller via the tubular proximal end of the flexible structure of the serpentine joint; the controller is used by the surgical robot
  • the flexible structure of the serpentine joint controls the surgical robot to move with a serpentine joint.
  • the imaging system includes an objective lens group of an endoscope for acquiring a picture in an endoscope field of view; the surgical robot uses a serpentine joint for connecting an imaging system and a tubular object to adjust an attitude of the imaging system; a hollow thin-walled tube for supporting the end and the leading end of the endoscope such that the end of the endoscope can be inserted into the human body while the end of the endoscope is placed outside the body; the controller is used to control the operation
  • the robot moves with a serpentine joint; the surgical robot is connected to the controller via a tubular proximal end of the flexible structure of the serpentine joint.
  • the endoscope realizes control of the posture of the serpentine joint of the surgical robot by the controller, so that the endoscopic imaging system can reach a desired posture.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Rehabilitation Therapy (AREA)
  • Manipulator (AREA)

Abstract

一种手术机器人用蛇形关节、手术器械和内窥镜,具有至少一个自由度,包括:至少一个关节接头对(10)和柔性结构(20);每个关节接头对(10)包括两个关节接头(11,12);每个关节接头(11,12)包括基板和设于基板表面的凸起(111,121)和凹槽(112,122)。通过将两个关节接头(11,12)的基板表面相对设置,使每个关节接头(11,12)的凸起(111,121)以可转动方式设于另一关节接头(11,12)的凹槽(112,122)中,可利用柔性结构(20)控制关节接头对(10)的摆动,当相互配合时,两个关节接头(11,12)的凸起(111,121)和凹槽(112,122)的连线共线,且各凸起(111,121)具有圆心角为180°~360°的圆弧型凸面,各凹槽(112,122)具有圆心角为180°~360°的圆弧型凹面。蛇形关节实现了平面扭转或者空间扭转,降低了结构的复杂度。

Description

手术机器人用蛇形关节、手术器械及内窥镜 技术领域
本发明涉及医疗器械技术领域,特别涉及一种手术机器人用蛇形关节、手术器械及内窥镜。
背景技术
随着机器人的快速发展,各种具有特色的机器人不断地涌现,而其中,对于仿生机器人的研究则显得越发突出,蛇形机器人的研究也越来越多。蛇形机器人产生和发展的根本原因在于其可以完成正常机器人所不能完成的动作。其运动与自然界中的蛇类似,可以实现平面扭转和空间扭转,在运动过程中躲避障碍物,用来完成人或其他机器无法完成的任务。
鉴于这一特征,用于医疗手术的蛇形机器人也慢慢地出现了。特别是在微创伤手术过程中,由于创口很小,为达到更佳的治疗效果,减少手术过程中对于其他组织的损害,多采用蛇形关节的手术器械,以实现手术过程中对于其他器官的避让。这一优势使得蛇形关节的手术器械可以很好的应用在外科手术领域。
然而,目前用于外科手术器械的蛇形关节存在结构复杂,零部件多,装配繁琐的缺点。
如图7所示,US2016/0066937A1提出了一种蛇形关节,单个关节110包括可相对摆动的第一关节部分202和第二关节部分232,两个关节部分之间通过短连杆机构226、228连接。以短连杆机构226为例,其包括设置于第二关节部分232的轴承孔254中的第一轴承227以及设置于第一关节部分202的槽210内的第二轴承225,所述第一轴承227形成所述第二关节部分232的转动轴,所述第二轴承225形成所述第二关节部分202的转动轴。该蛇形关节通过不同的排布方式可实现空间的扭转运动,但是在弯曲扭转过程中,存在运动精度低,结构复杂的缺点。
如图8所示,CN102665592A提出了一种腕部关节,该腕部关节400包括圆盘410和420,所述圆盘410和420具有相互配合的四组凸起412、414、 416、418和422、424、426、428,且四组凸起在具有中央外摆线表面和中央内摆线表面之间交替。该腕部关节400可提供对压缩应变的抵抗力,以及防止圆盘410相对于圆盘420沿倾斜轴线的方向侧向地滑动。然而,圆盘410和420通过腱451和452铰接,并且通过对腱451和452预加载张力,迫使圆盘410和420接合到一起,因而这种连接方式的可靠性较低,而且设置四组凸起也使得该腕部关节400结构复杂、制作成本高。
发明内容
本发明的目的在于提供一种手术机器人用蛇形关节,以提高蛇形关节的运动精度或者降低其结构复杂度;本发明的目的还在于提供一种具有蛇形关节的手术器械以及一种具有蛇形关节的内窥镜。
基于上述目的,本发明提供一种手术机器人用蛇形关节,所述手术机器人用蛇形关节具有至少一个自由度,且包括:至少一个关节接头对和柔性结构;其中,
每个关节接头对包括位于下端的第一关节接头和位于上端的第二关节接头;所述第一关节接头包括第一基板,所述第一基板的第一表面上设置有第一凸起和第一凹槽;所述第二关节接头包括第二基板,所述第二基板的第二表面上设置有第二凸起和第二凹槽;当所述第一关节接头和所述第二关节接头配合时,所述第一表面和所述第二表面相对设置,所述第一凸起位于所述第二凹槽中,并可在所述第二凹槽内转动,所述第二凸起位于所述第一凹槽中,并可在所述第一凹槽内转动;
所述柔性结构用于控制所述关节接头对的摆动;
其中,所述第一凸起和所述第一凹槽的中心连线形成的第一连线,与所述第一基板的轴线垂直相交;所述第二凸起和所述第二凹槽的中心连线形成的第二连线,与所述第二基板的轴线垂直相交;当所述第一关节接头和所述第二关节接头配合时,所述第一连线与所述第二连线共线;
其中,所述第一凸起和所述第二凸起均具有一圆心角大于180°且小于360°的圆弧型凸面;所述第一凹槽和所述第二凹槽均具有一圆心角大于180° 且小于360°的圆弧型凹面。
可选的,在所述的手术机器人用蛇形关节中,所述圆弧型凸面的圆心角大于所述圆弧型凹面的圆心角。
可选的,在所述的手术机器人用蛇形关节中,所述关节接头对的摆动角度为大于0°且小于等于80°。
可选的,在所述的手术机器人用蛇形关节中,所述第一基板设有周向布置的多个第一轴向通孔,所述柔性结构延伸通过所述第一轴向通孔;所述第二基板设有周向布置的多个第二轴向通孔,所述柔性结构延伸通过所述第二轴向通孔,所述多个第一轴向通孔中的至少2个的位置与所述多个第二轴向通孔中的至少2个的位置相对应。
可选的,在所述的手术机器人用蛇形关节中,所述第一轴向通孔的数量与所述第二轴向通孔的数量相同,并且所述第一轴向通孔的位置与所述第二轴向通孔的位置一一对应。
可选的,在所述的手术机器人用蛇形关节中,当所述手术机器人用蛇形关节具有n个自由度时,所述柔性结构至少为2n个,其中n为大于等于1的自然数。
可选的,所述的手术机器人用蛇形关节包括多个所述关节接头对,多个所述关节接头对依次邻接。
可选的,在所述的手术机器人用蛇形关节中,所述第一基板设有一与所述第一表面相对的第三表面,所述第三表面上设置有第一扣合机构;所述第二基板设有一与所述第二表面相对的第四表面,所述第四表面上设置有第二扣合机构;通过相邻两个关节接头对中的第二扣合机构和第一扣合机构相扣能够使得相邻两个关节接头对中的第二关节接头和第一关节接头固定。
可选的,在所述的手术机器人用蛇形关节中,所述第一扣合机构包括多个第一凸台和多个第一凹台,所述第一凸台和所述第一凹台间隔排布;所述第二扣合机构包括多个第二凸台和多个第二凹台,所述第二凸台和所述第二凹台间隔排布;所述第一凸台可容纳于相邻关节接头对的第二凹台中,所述第二凸台可容纳于相邻关节接头对的第一凹台中。
可选的,在所述的手术机器人用蛇形关节中,相邻两个关节接头对中的第二关节接头和第一关节接头一体成型。
可选的,在所述的手术机器人用蛇形关节中,相邻两个关节接头对之间的周向相对偏转角度为大于等于0°且小于等于180°。
本发明还提供一种手术器械,所述手术器械包括器械末端、如上所述的手术机器人用蛇形关节、管状物、柔性件以及控制器;其中,所述器械末端、所述手术机器人用蛇形关节、所述管状物和所述控制器依次连接;所述柔性件一端连接所述控制器,另一端经过所述管状物与所述器械末端连接;所述手术机器人用蛇形关节的柔性结构的近端经过所述管状物与控制器连接;所述控制器通过所述柔性件控制所述器械末端运动,通过所述手术机器人用蛇形关节的柔性结构控制所述手术机器人用蛇形关节的运动。
本发明还提供一种内窥镜,所述内窥镜包括成像***、如上所述的手术机器人用蛇形关节、管状物以及控制器;其中,所述成像***、所述手术机器人用蛇形关节、所述管状物和所述控制器依次连接;所述手术机器人用蛇形关节的柔性结构的近端经过所述管状物与所述控制器连接;所述控制器通过所述手术机器人用蛇形关节的柔性结构控制所述手术机器人用蛇形关节运动。
在本发明提供的手术机器人用蛇形关节中,所述手术机器人用蛇形关节具有至少一个自由度,且包括:至少一个关节接头对和柔性结构;其中,每个关节接头对包括位于下端的第一关节接头和位于上端的第二关节接头;所述第一关节接头包括第一基板,所述第一基板的第一表面上设置有第一凸起和第一凹槽;所述第二关节接头包括第二基板,所述第二基板的第二表面上设置有第二凸起和第二凹槽;当所述第一关节接头和所述第二关节接头配合时,所述第一表面和所述第二表面相对设置,所述第一凸起位于所述第二凹槽中,并相对于所述第二凹槽转动,所述第二凸起位于所述第一凹槽中,并相对于所述第一凹槽转动;所述柔性结构控制所述关节接头对的摆动。通过关节接头对的摆动实现了平面扭转或者空间扭转,相对于现有技术的蛇形关节,降低了结构的复杂度。在本发明提供的手术器械和内窥镜中,包括所述 手术机器人用蛇形关节,从而能够使得器械末端或者成像***到达期望的位置和姿态。
附图说明
图1是本发明实施例的手术器械的结构示意图;
图2是本发明实施例的手术器械的结构示意图;
图3a至图3c是本发明实施例的手术机器人用蛇形关节中的一个关节接头对的结构示意图;
图4a至图4c是本发明实施例的手术机器人用蛇形关节中的相邻两个关节接头对以90°夹角配置的状态示意图;
图5a至图5c是本发明实施例的手术机器人用蛇形关节中的相邻两个关节接头对180°夹角配置的状态示意图;
图6a至图6c是本发明实施例的手术机器人用蛇形关节中的四个关节接头对的排布结构示意图;
图7是现有技术中一种蛇形关节的示意图;
图8是现有技术中一种腕部关节的示意图。
具体实施方式
以下结合附图和具体实施例对本发明提出的手术机器人用蛇形关节、手术器械及内窥镜作进一步详细说明。根据下面说明和权利要求书,本发明的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。特别的,各附图需要展示的侧重点不同,往往都采用了不同的比例。
在本申请中,“近端”和“远端”、“下端”和“上端”是从使用该医疗器械的医生角度来看相对于彼此的元件或动作的相对方位、相对位置、方向,尽管“近端”和“远端”、“下端”和“上端”并非是限制性的,但是“近端”、“下端”通常指该医疗设备在正常操作过程中靠近医生的一端,而“远端”、“上端”通常是指首先进入患者体内的一端。
请参考图1、图2及图3a至图3c,其中,图1和图2为本发明实施例的手术器械的结构示意图,图3a至图3c为本发明实施例的手术机器人用蛇形关节中的一个关节接头对的结构示意图。图3a至图3c所示,所述手术机器人用蛇形关节,具有至少一个自由度,包括:至少一个关节接头对10和柔性结构20;其中,每个关节接头对10包括位于下端(在本申请实施例中也即近端)的第一关节接头11和位于上端(在本申请实施例中也即远端)的第二关节接头12;所述第一关节接头11包括第一基板110,所述第一基板110的第一表面上设置有相对配置的第一凸起111和第一凹槽112;所述第二关节接头12包括第二基板120,所述第二基板120的第二表面上设置有相对配置的第二凸起121和第二凹槽122;当所述第一关节接头11和所述第二关节接头12配合时,所述第一表面和所述第二表面相对设置,所述第一凸起111位于所述第二凹槽122中,并可在所述第二凹槽122内转动,所述第二凸起121位于所述第一凹槽112中,并可在所述第一凹槽112内转动;所述柔性结构20控制所述关节接头对10的摆动。通过第一凸起111以可转动方式设于第二凹槽122中以及第二凸起121以可转动方式设于第一凹槽112中,可实现第一关节接头11与第二关节接头12间的可靠连接及相对摆动,无需再为第一关节接头11和第二关节接头12设置其它连接部件,简化了关节接头对10的结构。而且在一个优选的实施例中,所述关节接头对中的第一关节接头和第二关节接头可以是完全一样的结构,如此节约了制造成本和装配成本。本发明对第一基板110或第二基板120的形状没有特别的限制,可以为圆形,椭圆形,方形,矩形或者其他形状。
将围绕所述第一基板110或第二基板120轮廓的方向定义为周向,优选,所述第一凸起111和所述第一凹槽112关于第一基板的轴线对称布置在所述第一基板110的周向边缘;所述第二凸起121和所述第二凹槽122关于第二基板的轴线对称布置在所述第二基板120的周向边缘。
优选,所述第一凸起111和所述第一凹槽112的中心连线形成的第一连线,与所述第一基板110的轴线垂直相交;所述第二凸起121和所述第二凹槽122的中心连线形成的第二连线,与所述第二基板120的轴线垂直相交;在所述 第一关节接头11和所述第二关节接头12相互配合的状态下,所述第一连线与所述第二连线共线。
优选的,所述第一凸起111和所述第二凸起121均包括一圆心角大于180°且小于360°的圆弧型凸面;所述第一凹槽112和所述第二凹槽122均包括一圆心角大于180°且小于360°的圆弧型凹面。在所述第一关节接头11和所述第二关节接头12相互配合的状态下,所述第一凸起111的圆弧型凸面与所述第二凹槽122的圆弧型凹面相接合,且在所述第一凸起111在第二凹槽122内转动的过程中,第一凸起111的圆弧型凸面与第二凹槽122的圆弧型凹面始终保持相接合。在所述第一关节接头11和所述第二关节接头12相互配合的状态下,所述第二凸起121的圆弧型凸面与所述第一凹槽112的圆弧型凹面相接合,且在所述第二凸起121在第一凹槽112内转动的过程中,第二凸起121的圆弧型凸面与第一凹槽112的圆弧型凹面也始终保持相接合。通过将圆弧型凸面和圆弧型凹面的圆心角设置为大于180°且小于360°,可以提高所述第一关节接头11和所述第二关节接头12之间的连接可靠性以及相对摆动时的可靠性。更佳的,所述圆弧型凸面的圆心角大于所述圆弧型凹面的圆心角,从而可以进一步提高所述关节接头对10的连接可靠性及摆动时的可靠性。
在本申请实施例中,所述关节接头对10的摆动角度为大于0°且小于等于80°。以图3a为例,也就是说,假设所述第一关节接头11静止不动,所述第二关节接头12往左侧摆动或者往右侧摆动时,第一表面和第二表面之间所能够达到的最大夹角均为80°。所述关节接头对10的摆动角度可以通过所述第一基板110的第一表面和所述第二基板120的第二表面之间的夹角来计量。
接着,请继续参考图3a至图3c,在本申请实施例中,所述第一基板110设置有周向布置的第一轴向通孔113,所述第一轴向通孔113供所述柔性结构20延伸通过;所述第二基板120设置有周向布置的第二轴向通孔123,所述第二轴向通孔123供所述柔性结构20延伸通过。优选,所述第一轴向通孔113至少为2个,所述第二轴向通孔123至少为2个,且,至少2个所述第一轴向通孔113的位置与至少2个所述第二轴向通孔123的位置相对应。优选,所述第一轴向通孔113、所述第二轴向通孔123分别沿周向均匀布置。更优选 的,所述第一轴向通孔113的数量和所述第二轴向通孔123的数量相等,并且所述第一轴向通孔113的位置和所述第二轴向通孔123的位置一一对应。进一步的,所述第一轴向通孔113、所述第二轴向通孔123各自可以分成沿周向均匀布置的多组,其中每组轴向通孔组包含至少一个轴向通孔。优选各第一轴向通孔组中的第一轴向通孔均匀布置,各第二轴向通孔组中的第二轴向通孔均匀布置。如图3c所示的实施例中,所述第一基板110包括周向均匀布置的四组第一轴向通孔组,每组所述第一轴向通孔组中包括两个第一轴向通孔。
请结合参考图1、图2和图3a至图3c,在本申请实施例中,所述柔性结构为金属丝。对于图3a至图3c所示的底盘(即第一底盘110,也即第二底盘120)结构而言,两个金属丝如要控制一关节接头对的摆动,则这两根金属丝分别穿过不同簇通孔(其中,一簇通孔包括一第一轴向通孔113和对应的一第二轴向通孔123),且这两簇通孔应分布在该关节接头对的第一连线的两侧。采用更多根金属丝来实现对于一个关节接头对的摆动的控制,这样,可以提高所述关节接头对的可靠性,不会出现一根金属丝断裂,导致该关节接头对失效。在本申请的其他实施例中,还可以通过四根、六根金属丝实现对于一个关节接头对的摆动的控制。
进一步的,所述蛇形关节具有n(n大于等于1的自然数)个自由度,即所述蛇形关节中的关节接头对的摆动方向为n种时,所述柔性结构的数量至少为2n个(即n对柔性结构)。在此基础上,所述蛇形关节可以通过增加所述柔性结构的数量(例如,同一摆动方向的关节接头对都由两个柔性结构控制摆动角度)以实现关节接头对的摆动更加精准的控制。
进一步,控制关节接头对摆动方向的柔性结构的固定位置,可以在该关节接头对的第二关节接头上,也可以在该关节接头对的远端的关节接头对的第二关节接头上(如果有)。因此,至少2个柔性结构的远端与关节接头对中位于最远端的一个关节接头对中的第二关节接头固定。更优选的,所述柔性结构的一端均与多个关节接头对中位于最远端的一个关节接头对中的第二关节接头固定。在此为每根金属丝穿过每个关节接头对上的对应一簇通孔后固 定于最远端的一个关节接头对中的第二关节接头的第二端面,从而通过金属丝的拉伸实现对于手术机器人用蛇形关节的弯曲(运动)控制。
进一步,在一关节接头对上所述第一轴向通孔113与所述第二轴向通孔123的数量可以相同,也可以不相同。同样,蛇形关节中多个关节接头对之间的第一轴向通孔数量可以相同,也可以不相同,第二轴向通孔数量亦是如此,但此时要求所述蛇形关节提供至少两个通道供所述柔性结构延伸通过。具体而言,一个关节接头对中至少有两簇通孔即两个所述第一轴向通孔113与两个所述第二轴向通孔123的位置相对应,以便于该关节接头对的柔性结构能够延伸通过,同时至少该关节接头对近端的所有关节接头对在对应位置上都要提供第一轴向通孔113与所述第二轴向通孔123,形成一通道以便于所述柔性结构延伸通过。即该关节接头对的所述第一轴向通孔113还与近端相邻的关节接头对中的第二轴向通孔123的位置相对应,而该近端相邻的关节接头对中的第二轴向通孔123与同一关节接头对中的第一轴向通孔113位置对应,以此类推。优选,该关节接头对远端的关节接头对在对应位置上都要提供第一轴向通孔113与第二轴向通孔123,形成一通道以便于所述柔性结构延伸通过(即最终使柔性结构能够固定在远端的关节接头对上)。
在本申请实施例中,所述关节接头对10的数量可以为多个,例如为两个至十个中任一自然数,例如为五个、六个、八个或者十个等,多个关节接头对10依次可拆卸连接或者固定连接。相邻两个关节接头对10之间的周向相对偏转角度为大于等于0°且小于180°,也即相邻两个关节接头对10中的位于近端的一个关节接头对的第二连线与位于远端的一个关节接头对的第一连线之间的夹角为大于等于0°且小于180°。进一步的,相邻两个关节接头对10的摆动方向可以相同,也可以不相同,从而使所述手术机器人用蛇形关节具有多个自由度,能够摆动更大的角度或者实现更加复杂、多方向的空间扭转。
请继续参考图3a至图3c,在本申请实施例中,所述第一基板110设有一与所述第一表面相对的第三表面,所述第三表面上设置有第一扣合机构114;所述第二基板120设有一与所述第二表面相对的第四表面,所述第四表面上 设置有第二扣合机构124。在多个关节接头对10中,通过相邻两个关节接头对10中的第二扣合机构124和第一扣合机构114相扣使得相邻两个关节接头对10中的第二关节接头12和第一关节接头11连接。
进一步的,所述第一扣合机构114包括多个第一凸台和多个第一凹台,所述第一凸台和所述第一凹台间隔排布;所述第二扣合机构124包括多个第二凸台和多个第二凹台,所述第二凸台和所述第二凹台间隔排布;所述第一凸台可容纳于相邻关节接头对的所述第二凹台中,所述第二凸台可容纳于相邻关节接头对的所述第一凹台中,使得相邻两个关节接头对中的第二关节接头和第一关节接头可拆卸连接;在本申请的其他实施例中,相邻两个关节接头对中的第二关节接头和第一关节接头也可一体化形成从而实现相邻两个关节接头对紧密、牢固的连接。
具体的,参考图4a至图4c及图5a至图5c,其分别为本发明实施例的手术机器人用蛇形关节中的相邻两个关节接头对中相邻的第二关节接头和第一关节接头的状态示意图。如图4a至图4c或者图5a至图5c所示,近端关节接头对中的第二关节接头12a和远端关节接头对中的第一关节接头11b通过近端的第二扣合机构124a和远端的第一扣合机构114b便能够实现紧密、牢固的连接。
进一步,图4a至图4c示出了相邻两个关节接头对之间的周向相对偏转角度为90°的状态;即相邻两个关节接头对中的近端关节接头对的第二连线和远端关节接头对的第一连线的夹角为90°;也即相邻两个关节接头对中的所述第二凸起和所述第二凹槽的中心连线之间的夹角为90°;还是相邻两个关节接头对中,一个关节接头对中的所述第一凸起和所述第一凹槽的中心连线与另一个关节接头对中的所述第二凸起和所述第二凹槽的中心连线的夹角为90°。而图5a至图5c示出了相邻两个关节接头对之间的周向相对偏转角度为180°的状态;即相邻两个关节接头对中的所述第一凸起和所述第一凹槽的中心连线的夹角为180°;也即相邻两个关节接头对中的所述第二凸起和所述第二凹槽的中心连线之间的夹角为180°;还是相邻两个关节接头对中,一个关节接头对中的所述第一凸起和所述第一凹槽的中心连线与另一个关节接头对中的所 述第二凸起和所述第二凹槽的中心连线的夹角为180°。较佳的,相邻两个关节接头对中的所述第一凸起和所述第一凹槽的中心连线之间的夹角为大于等于0°且小于等于180°。
进一步,参考图6a至图6c,其为本发明实施例的手术机器人用蛇形关节中的四个关节接头对的排布结构示意图。如图6a至图6c所示,在此,自下而上分别为第一关节接头对10a、第二关节接头对10b、第三关节接头对10c和第四关节接头对10d;在此,每个关节接头对的最大摆动角度为45°。具体的,第一关节接头对10a与第二关节接头对10b之间的周向相对偏转角度为90°,第二关节接头对10b与第三关节接头对10c之间的周向相对偏转角度为0°,第三关节接头对10c与第四关节接头对10d之间的周向相对偏转角度为90°。
请继续参考图6a至图6c,在此,所述第一关节接头对10a和第四关节接头对10d能够朝同一方向摆动,优选,每个关节接头对的最大摆动角度为45°,由此,通过第一关节接头对10a和第四关节接头对10d,在同一方向上能够累计摆动90°;同样的,所述第二关节接头对10b和第三关节接头对10c能够朝同一方向摆动,优选,每个关节接头对的最大摆动角度为45°,因此在同一方向上能够累计摆动90°;在此,所述第一关节接头对10a和第四关节接头对10d的摆动方向与所述第二关节接头对10b和第三关节接头对10c的摆动方向垂直,即所述手术机器人用蛇形关节具有两个自由度,能够实现空间上两个相互垂直的方向的摆动,优选其在所述两个相互垂直的方向上的最大摆动角度均为90°。可见,所述手术机器人用蛇形关节通过简单的结构能够实现复杂的空间扭转。
类似的,通过调整四个关节接头对的安装方式,使四个关节接头对中只要有任意两个关节接头对在一个方向摆动,另外两个关节接头对在另一个垂直的方向摆动,即可实现与图6a至图6c所示的四个关节接头对的排布方式等效。
在本申请的其他实施例中,所述手术机器人用蛇形关节可以根据自由度、最大摆动角度等设计需求,包括更多个关节接头对10,例如五个、六个或者十个等。进一步的,相邻两个关节接头对10之间的夹角可以为0°~180°, 例如0°、30°、45°、60°、90°、120°、150°或者180°等,从而实现更加丰富的空间扭转。
请结合参考图1和图2,在本申请实施例中,所述柔性结构为金属丝。所述蛇形关节至少需要四根金属丝来控制四个关节接头对的摆动。例如,同一摆动方向的关节接头对可以共用两根金属丝来控制。在此基础上,可以增加所述柔性结构的数量以实现更加精准的控制关节接头对的摆动。例如,采用八根金属丝20(如图1所示),其中每两根与一个关节接头对固定连接,换句话说,每个关节接头对由两根对应的金属丝进行独立控制,而不与其他关节接头对共用金属丝,这样可以更加精准的控制蛇形关节的摆动角度。
综上可见,在本发明实施例提供的手术机器人用蛇形关节中,通过关节接头对不同的配置,使手术机器人用蛇形关节具有大于等于1个自由度,实现了平面扭转或者空间扭转,相对于现有技术的蛇形关节,降低了结构的复杂度。
本发明还提供了一种手术器械,可继续参考图1和图2,所述手术器械包括器械末端、所述的手术机器人用蛇形关节、管状物、柔性件以及控制器;其中,所述器械末端、所述手术机器人用蛇形关节、所述管状物和所述控制器依次连接;所述柔性件一端连接所述控制器,另一端经过所述管状物与所述器械末端连接;所述手术机器人用蛇形关节的柔性结构的近端经过所述管状物与控制器连接;所述控制器通过所述柔性件控制所述器械末端运动,通过所述手术机器人用蛇形关节的柔性结构控制所述手术机器人用蛇形关节的运动。具体而言,所述器械末端主要包括直接在人体内进行手术操作的剪刀、钳子、电钩等手术工具;手术机器人用蛇形关节两端分别连接器械末端和管状物,所述管状物为中空薄壁管,用于支撑器械末端,使器械末端可伸入人体内的同时,而手术器械的前端置于体外;所述控制器用于控制器械末端运动和手术机器人用蛇形关节运动;所述柔性件一端连接控制器,一端经过管状物与器械末端连接;所述手术机器人用蛇形关节的柔性结构的近端经过所述管状物与控制器连接。手术器械通过对所述手术机器人用蛇形关节姿态的控制,使器械末端到达期望的位置和姿态,通过对器械末端的控制,使器械 末端实现夹持,切割等动作。
进一步的,本发明还提供了一种内窥镜,所述内窥镜包括成像***、手术机器人用蛇形关节、管状物以及控制器;其中,所述成像***、所述手术机器人用蛇形关节、所述管状物和所述控制器依次连接;所述手术机器人用蛇形关节的柔性结构的近端经过所述管状物与所述控制器连接;所述控制器通过所述手术机器人用蛇形关节的柔性结构控制所述手术机器人用蛇形关节运动。所述成像***包括内窥镜的物镜组,实现内窥镜视场中画面的采集;所述手术机器人用蛇形关节用于连接成像***和管状物,调整成像***的姿态;所述管状物为中空薄壁管,用于支撑内窥镜的末端和首端,使内窥镜的末端可伸入人体内的同时,内窥镜的首端置于体外;所述的控制器用于控制手术机器人用蛇形关节运动;所述手术机器人用蛇形关节的柔性结构的近端经过管状物与控制器连接。所述内窥镜通过所述控制器实现对手术机器人用蛇形关节的姿态的控制,使内窥镜成像***可以到达期望的位姿。
上述描述仅是对本发明较佳实施例的描述,并非对本发明范围的任何限定,本发明领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于权利要求书的保护范围。

Claims (13)

  1. 一种手术机器人用蛇形关节,其特征在于,所述手术机器人用蛇形关节具有至少一个自由度,且包括:至少一个关节接头对和柔性结构;其中,
    每个关节接头对包括位于下端的第一关节接头和位于上端的第二关节接头;所述第一关节接头包括第一基板,所述第一基板的第一表面上设置有第一凸起和第一凹槽;所述第二关节接头包括第二基板,所述第二基板的第二表面上设置有第二凸起和第二凹槽;当所述第一关节接头和所述第二关节接头配合时,所述第一表面和所述第二表面相对设置,所述第一凸起位于所述第二凹槽中,并可在所述第二凹槽内转动,所述第二凸起位于所述第一凹槽中,并可在所述第一凹槽内转动;
    所述柔性结构用于控制所述关节接头对的摆动;
    其中,所述第一凸起和所述第一凹槽的中心连线形成的第一连线,与所述第一基板的轴线垂直相交;所述第二凸起和所述第二凹槽的中心连线形成的第二连线,与所述第二基板的轴线垂直相交;当所述第一关节接头和所述第二关节接头配合时,所述第一连线与所述第二连线共线;
    其中,所述第一凸起和所述第二凸起均具有一圆心角大于180°且小于360°的圆弧型凸面;所述第一凹槽和所述第二凹槽均具有一圆心角大于180°且小于360°的圆弧型凹面。
  2. 如权利要求1所述的手术机器人用蛇形关节,其特征在于,所述圆弧型凸面的圆心角大于所述圆弧型凹面的圆心角。
  3. 如权利要求1所述的手术机器人用蛇形关节,其特征在于,所述关节接头对的摆动角度为大于0°且小于等于80°。
  4. 如权利要求1至3中任一项所述的手术机器人用蛇形关节,其特征在于,所述第一基板设有周向布置的多个第一轴向通孔,所述柔性结构延伸通过所述第一轴向通孔;所述第二基板设有周向布置的多个第二轴向通孔,所述柔性结构延伸通过所述第二轴向通孔,所述多个第一轴向通孔中的至少2个的位置与所述多个第二轴向通孔中的至少2个的位置相对应。
  5. 如权利要求4所述的手术机器人用蛇形关节,其特征在于,所述第一轴向通孔的数量与所述第二轴向通孔的数量相同,并且所述第一轴向通孔的位置与所述第二轴向通孔的位置一一对应。
  6. 如权利要求1所述的手术机器人用蛇形关节,其特征在于,当所述手术机器人用蛇形关节具有n个自由度时,所述柔性结构至少为2n个,其中n为大于等于1的自然数。
  7. 如权利要求1至3中任一项所述的手术机器人用蛇形关节,其特征在于,所述蛇形关节包括多个所述关节接头对,多个所述关节接头对依次邻接。
  8. 如权利要求7所述的手术机器人用蛇形关节,其特征在于,所述第一基板设有一与所述第一表面相对的第三表面,所述第三表面上设置有第一扣合机构;所述第二基板设有一与所述第二表面相对的第四表面,所述第四表面上设置有第二扣合机构;通过相邻两个关节接头对中的第二扣合机构和第一扣合机构相扣能够使得相邻两个关节接头对中的第二关节接头和第一关节接头固定。
  9. 如权利要求8所述的手术机器人用蛇形关节,其特征在于,所述第一扣合机构包括多个第一凸台和多个第一凹台,所述第一凸台和所述第一凹台间隔排布;所述第二扣合机构包括多个第二凸台和多个第二凹台,所述第二凸台和所述第二凹台间隔排布;所述第一凸台可容纳于相邻关节接头对的第二凹台中,所述第二凸台可容纳于相邻关节接头对的第一凹台中。
  10. 如权利要求7所述的手术机器人用蛇形关节,其特征在于,相邻两个关节接头对中的第二关节接头和第一关节接头一体成型。
  11. 如权利要求7所述的手术机器人用蛇形关节,其特征在于,相邻两个关节接头对之间的周向相对偏转角度为大于等于0°且小于等于180°。
  12. 一种手术器械,其特征在于,所述手术器械包括器械末端、如权利要求1~11中任一项所述的手术机器人用蛇形关节、管状物、柔性件以及控制器;其中,所述器械末端、所述手术机器人用蛇形关节、所述管状物和所述控制器依次连接;所述柔性件一端连接所述控制器,另一端经过所述管状物与所述器械末端连接;所述手术机器人用蛇形关节的柔性结构的近端经过所 述管状物与控制器连接;所述控制器通过所述柔性件控制所述器械末端运动,通过所述手术机器人用蛇形关节的柔性结构控制所述手术机器人用蛇形关节的运动。
  13. 一种内窥镜,其特征在于,所述内窥镜包括成像***、如权利要求1~11中任一项所述的手术机器人用蛇形关节、管状物以及控制器;其中,所述成像***、所述手术机器人用蛇形关节、所述管状物和所述控制器依次连接;所述手术机器人用蛇形关节的柔性结构的近端经过所述管状物与所述控制器连接;所述控制器通过所述手术机器人用蛇形关节的柔性结构控制所述手术机器人用蛇形关节运动。
PCT/CN2018/076313 2017-03-30 2018-03-12 手术机器人用蛇形关节、手术器械及内窥镜 WO2018177039A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710203335.7A CN106923902B (zh) 2017-03-30 2017-03-30 手术机器人用蛇形关节、手术器械及内窥镜
CN201710203335.7 2017-03-30

Publications (1)

Publication Number Publication Date
WO2018177039A1 true WO2018177039A1 (zh) 2018-10-04

Family

ID=59426566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/076313 WO2018177039A1 (zh) 2017-03-30 2018-03-12 手术机器人用蛇形关节、手术器械及内窥镜

Country Status (2)

Country Link
CN (1) CN106923902B (zh)
WO (1) WO2018177039A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106923902B (zh) * 2017-03-30 2019-04-12 微创(上海)医疗机器人有限公司 手术机器人用蛇形关节、手术器械及内窥镜
CN109895073B (zh) * 2017-12-08 2021-09-14 中国科学院沈阳自动化研究所 一种片弹簧驱动的连续体机器人
WO2019170152A1 (zh) * 2018-03-09 2019-09-12 深圳市精锋医疗科技有限公司 连接组件及从操作设备
CN108742852B (zh) * 2018-03-12 2020-04-28 深圳市精锋医疗科技有限公司 手术机器人的从操作设备及手术机器人
CN110269693B (zh) * 2018-03-14 2021-07-09 深圳市精锋医疗科技有限公司 驱动丝驱动的连接组件、操作臂及手术机器人
CN110269695B (zh) * 2018-03-14 2021-07-09 深圳市精锋医疗科技有限公司 连接组件、操作臂及手术机器人
CN110269688B (zh) * 2018-03-14 2021-03-09 深圳市精锋医疗科技有限公司 可平移的连接组件、操作臂及手术机器人
CN108553069B (zh) * 2018-05-17 2020-08-28 黄琴 可控弯曲管结构
CN109172130B (zh) * 2018-08-30 2023-06-13 上海西地众创空间管理有限公司 用于近视手术的医疗机器人
CN109464192B (zh) * 2018-12-29 2023-11-14 黄振宇 一种三维控弯的机械臂
CN110367911B (zh) * 2019-06-18 2021-07-09 珠海视新医用科技有限公司 一种蛇骨及其制作方法
CN110575256A (zh) * 2019-08-28 2019-12-17 哈尔滨理工大学 一种孔腔内窥镜手术机器人
CN112405508B (zh) * 2020-11-23 2022-02-08 长沙理工大学 一种可实现弯曲运动解耦的丝驱动蛇形臂机器人
CN112545584B (zh) * 2020-12-08 2022-02-18 中国人民解放军空军军医大学 一种弯转装置及外科手术器械
CN113171178B (zh) * 2021-04-23 2023-09-22 上海微创医疗机器人(集团)股份有限公司 蛇形关节、手术器械和内窥镜
CN114668503B (zh) * 2022-03-29 2024-06-04 吉林省金博弘智能科技有限责任公司 一种诊疗一体式手术机器人

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1723835A (zh) * 2004-06-08 2006-01-25 亨克-萨斯,沃尔夫有限公司 内窥镜***管的可弯曲部分及其制造方法
CN101106935A (zh) * 2004-11-24 2008-01-16 诺瓦尔外科***公司 包括由缆索连接的成对链节部件且容易组装的铰接机构
US20080132761A1 (en) * 2004-09-23 2008-06-05 Minelu Sonnenschein Articulation Section
CN201318361Y (zh) * 2008-11-10 2009-09-30 毛海良 可调整床活动关节铰链
CN203658658U (zh) * 2013-12-15 2014-06-18 郑州新力光电技术有限公司 一种四向蛇骨
CN205947765U (zh) * 2016-03-03 2017-02-15 申亚琪 可控弯曲装置以及可控弯曲的内窥镜
CN106923902A (zh) * 2017-03-30 2017-07-07 微创(上海)医疗机器人有限公司 手术机器人用蛇形关节、手术器械及内窥镜

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1723835A (zh) * 2004-06-08 2006-01-25 亨克-萨斯,沃尔夫有限公司 内窥镜***管的可弯曲部分及其制造方法
US20080132761A1 (en) * 2004-09-23 2008-06-05 Minelu Sonnenschein Articulation Section
CN101106935A (zh) * 2004-11-24 2008-01-16 诺瓦尔外科***公司 包括由缆索连接的成对链节部件且容易组装的铰接机构
CN201318361Y (zh) * 2008-11-10 2009-09-30 毛海良 可调整床活动关节铰链
CN203658658U (zh) * 2013-12-15 2014-06-18 郑州新力光电技术有限公司 一种四向蛇骨
CN205947765U (zh) * 2016-03-03 2017-02-15 申亚琪 可控弯曲装置以及可控弯曲的内窥镜
CN106923902A (zh) * 2017-03-30 2017-07-07 微创(上海)医疗机器人有限公司 手术机器人用蛇形关节、手术器械及内窥镜

Also Published As

Publication number Publication date
CN106923902B (zh) 2019-04-12
CN106923902A (zh) 2017-07-07

Similar Documents

Publication Publication Date Title
WO2018177039A1 (zh) 手术机器人用蛇形关节、手术器械及内窥镜
WO2018177040A1 (zh) 手术机器人用蛇形关节、手术器械及内窥镜
WO2018177038A1 (zh) 手术机器人用蛇形关节、手术器械及内窥镜
US11638590B2 (en) Articulating mechanisms and link systems with torque transmission in remote manipulation of instruments and tools
JP6680862B2 (ja) 外科用アーム
AU2016201148B2 (en) Adapter assembly with gimbal for interconnecting electromechanical surgical devices and surgical loading units and surgical systems thereof
KR101955296B1 (ko) 컴팩트 손목을 구비한 수술 도구
WO2018177200A1 (zh) 手术机器人用柔性器械、手术器械及内窥镜
JP5153650B2 (ja) 内視鏡カメラのための5棒球面リンク機構を備えるセンターロボットアーム
WO2019105350A1 (zh) 蛇形手术器械
KR101405087B1 (ko) 수술도구용 관절
JP2014530651A (ja) 球状部品を含む関節部を有する最小侵襲手術器具
WO2020024946A1 (zh) 从操作设备组件
CN215914801U (zh) 手术器械
CN218738877U (zh) 一种软式内窥镜及其柔性器械蛇骨
Liu et al. Development of a Flexible Surgical Manipulator with a Variable Curvature Bendable Joint
GB2625760A (en) Surgical instrument with interlocking end effector elements
TWI694905B (zh) 機械手臂
US20210346030A1 (en) End effector positioning mechanism
CN108814718B (zh) 操作臂
CN113693681A (zh) 手术器械
CN116549060A (zh) 一种驱动结构及微创手术钳
BR112019020315B1 (pt) Articulação em forma de cobra para robô cirúrgico, instrumento cirúrgico e endoscópio
CN118177883A (zh) 一种分段独立弯曲连续体手术器械
CN117357262A (zh) 一种用于微创手术的柔性仿生手臂及其使用方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18775929

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18775929

Country of ref document: EP

Kind code of ref document: A1