WO2018174330A1 - 전력 케이블 - Google Patents

전력 케이블 Download PDF

Info

Publication number
WO2018174330A1
WO2018174330A1 PCT/KR2017/003519 KR2017003519W WO2018174330A1 WO 2018174330 A1 WO2018174330 A1 WO 2018174330A1 KR 2017003519 W KR2017003519 W KR 2017003519W WO 2018174330 A1 WO2018174330 A1 WO 2018174330A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
thickness
insulating layer
insulating
cable
Prior art date
Application number
PCT/KR2017/003519
Other languages
English (en)
French (fr)
Inventor
김지성
김원배
고경로
이수길
이준근
손순일
차금환
곽재철
김태현
Original Assignee
엘에스전선 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘에스전선 주식회사 filed Critical 엘에스전선 주식회사
Priority to US16/495,261 priority Critical patent/US10672539B2/en
Priority to EP17901682.9A priority patent/EP3605560B1/en
Publication of WO2018174330A1 publication Critical patent/WO2018174330A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B9/00Power cables
    • H01B9/02Power cables with screens or conductive layers, e.g. for avoiding large potential gradients
    • H01B9/027Power cables with screens or conductive layers, e.g. for avoiding large potential gradients composed of semi-conducting layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B9/00Power cables
    • H01B9/02Power cables with screens or conductive layers, e.g. for avoiding large potential gradients
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/20Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances liquids, e.g. oils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • H01B7/0208Cables with several layers of insulating material
    • H01B7/0225Three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/14Submarine cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/18Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/18Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
    • H01B7/20Metal tubes, e.g. lead sheaths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B9/00Power cables
    • H01B9/02Power cables with screens or conductive layers, e.g. for avoiding large potential gradients
    • H01B9/023Power cables with screens or conductive layers, e.g. for avoiding large potential gradients composed of helicoidally wound tape-conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B9/00Power cables
    • H01B9/06Gas-pressure cables; Oil-pressure cables; Cables for use in conduits under fluid pressure
    • H01B9/0688Features relating to the dielectric of oil-pressure cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B9/00Power cables
    • H01B9/06Gas-pressure cables; Oil-pressure cables; Cables for use in conduits under fluid pressure
    • H01B9/0694Features relating to the enclosing sheath of oil-pressure cables

Definitions

  • the present invention relates to power cables, in particular ultra high voltage underground or submarine cables for long distance direct current transmission.
  • the present invention has a high insulation strength of the insulating layer itself, the electric field applied to the insulating layer is effectively alleviated, especially large voids when left at low temperature for a long time until installation and energization under low temperature environment
  • the present invention relates to a power cable capable of suppressing occurrence of an insulating layer and effectively preventing partial discharge, insulation breakdown and the like caused by an electric field concentrated in the voids.
  • a power cable using a polymer insulator such as crosslinked polyethylene (XLPE) is used.
  • XLPE crosslinked polyethylene
  • an ultra-high voltage DC power transmission cable is impregnated with insulating oil in a cross winding insulating paper so as to surround a conductor.
  • Paper-insulated cables having an insulating layer are used.
  • the geo-insulated cable includes an OF (Oil Filled) cable for circulating low-viscosity insulating oil, a Mass Impregnated Non Draining (MIND) cable impregnated with high-viscosity or medium viscosity insulating oil, and the OF cable transmits hydraulic pressure for circulation of the insulating oil.
  • OF Oil Filled
  • MIND Mass Impregnated Non Draining
  • MIND cable is commonly used for long distance direct current transmission or subsea high voltage cable.
  • the MIND cable is formed by wrapping the insulating paper in a plurality of layers when forming the insulating layer, for example, using a kraft paper (Kraft paper) or a semi-synthesized laminated thermoplastic resin, such as kraft paper and polypropylene resin (Polypropylene) resin Can be used.
  • a kraft paper Kerat paper
  • a semi-synthesized laminated thermoplastic resin such as kraft paper and polypropylene resin (Polypropylene) resin Can be used.
  • the inner side of the insulation layer on the inner semiconducting layer side is radially inward due to the heat generated by the loss of current due to the current flowing through the cable conductor during the operation of the cable (when energizing).
  • the temperature difference occurs toward the side direction, that is, toward the outer semiconducting layer outside the insulating layer.
  • the viscosity of the insulating oil in the insulating layer portion of the inner semiconducting layer which is higher in temperature, becomes lower and thermally expands to move to the insulating layer of the outer semiconducting layer, but when the temperature decreases, the viscosity of the transferred insulating oil becomes high and does not return to its original state.
  • a deoiling void due to heat shrinkage of the insulating oil may be formed in the radially inner side, that is, the portion of the insulating layer toward the inner semiconducting layer.
  • the insulation oil impregnated by the heat generated by the loss of current due to the current flowing through the cable conductor during cable operation is installed at a relatively low part of the cable part installed at a relatively high part due to low viscosity and thermal expansion.
  • the viscosity of the moved insulating oil becomes high and does not return to its original state, thereby forming a deoiled void due to heat shrinkage of the insulating oil.
  • the electric field is concentrated, and thus, partial discharge, insulation breakdown, and the like, may shorten the life of the cable.
  • the insulating layer is formed of semi-synthetic paper
  • the flow of the insulating oil can be suppressed by thermal expansion of a thermoplastic resin such as a polypropylene resin that is not impregnated with oil during the operation of the cable, and the polypropylene resin has a kraft paper with an insulation resistance. Because of the larger size, even if deoiled pores are produced, the voltage sharing can be alleviated.
  • the insulating oil does not move in the polypropylene resin, it is possible not only to prevent the insulating oil from flowing in the radial direction of the cable due to gravity, but also to prevent the polypropylene resin depending on the impregnation temperature at the time of cable manufacture or the operating temperature at the time of cable operation. Since thermal expansion expands the surface pressure on the kraft paper, the flow of insulating oil can be further suppressed.
  • the insulating oil impregnated with the insulating layer, the semiconductive layer, etc. contracts.
  • a large number of deoiling voids may be generated inside the insulating layer, and in particular, the insulating oil is forced in the direction of gravity and moves toward the lower side of the cable until the electricity is supplied after the cable is laid.
  • the insulation strength of the insulation layer is high, and the electric field applied to the insulation layer is effectively alleviated, and large voids are generated in the insulation layer when it is left at a low temperature for a long period of time after installation in a low temperature environment until electricity is supplied.
  • a power cable capable of suppressing the discharge and effectively preventing partial discharge, insulation breakdown, etc. due to the electric field concentrated in the gap.
  • An object of the present invention is to provide a power cable having a high insulation strength of an insulation layer, and an electric field applied to the insulation layer can be effectively alleviated to extend its life.
  • the present invention suppresses the occurrence of large voids in the insulating layer when left at a low temperature for a long period of time after installation in a low temperature environment until the current is energized to effectively prevent partial discharge, insulation breakdown, etc. due to the electric field concentrated in the voids.
  • An object of the present invention is to provide a DC power cable.
  • the thickness of the outer semiconducting layer characterized in that 2 to 4 mm, provides a power cable.
  • the insulating oil provides a power cable, characterized in that the medium viscosity insulating oil having a kinematic viscosity of 60 °C 5 to 500 centistokes (cSt).
  • the insulating oil provides a power cable, characterized in that the high viscosity insulating oil having a kinematic viscosity of 60 °C more than 500 centistokes (Cst).
  • the outer semiconducting layer provides a power cable, characterized in that it comprises a lower layer formed by the transverse winding of the semiconducting battery and an upper layer formed by the air winding of the semiconducting battery and the metallization paper.
  • the outer semiconducting layer further provides a power cable, characterized in that it further comprises a top layer made of copper wire direct fabric.
  • the insulating layer is formed by sequentially stacking an inner insulating layer, an intermediate insulating layer, and an outer insulating layer, and the inner insulating layer and the outer insulating layer are each formed of kraft paper impregnated with insulating oil.
  • the insulating layer is formed of a semi-synthetic paper impregnated with an insulating oil, the semi-synthetic paper includes a plastic film and kraft paper laminated on at least one side of the plastic film, based on the total thickness of the insulating layer, the thickness of the inner insulating layer is 1 To 10%, the thickness of the intermediate insulating layer is 75% or more, the thickness of the outer insulating layer is 5 to 15%, the resistivity of the inner insulating layer and the outer insulating layer is less than the resistivity of the intermediate insulating layer It is characterized by providing a power cable.
  • the thickness of the outer insulating layer is greater than the thickness of the inner insulating layer, provides a power cable.
  • the thickness of the outer insulating layer is characterized in that the power cable, characterized in that 1 to 30 times the thickness of the inner insulating layer.
  • the thickness of the inner insulation layer is 0.1 to 2.0 mm
  • the thickness of the outer insulation layer is 0.1 to 3.0 mm
  • the thickness of the intermediate insulation layer is 15 to 25 mm. .
  • the thickness of the kraft paper of the inner insulating layer and the outer insulating layer provides a power cable, characterized in that less than the thickness of the kraft paper of the semi-synthetic paper.
  • the maximum impulse electric field value of the inner insulating layer is smaller than the maximum impulse electric field value of the intermediate insulating layer.
  • the maximum impulse electric field value of the intermediate insulating layer is 100 kV / mm or less.
  • the thickness of the plastic film is characterized in that 40 to 70% of the total thickness of the semi-synthetic paper, provides a power cable.
  • the thickness of the semi-synthetic paper is 70 to 200 ⁇ m
  • the thickness of the kraft paper of the inner insulating layer and the outer insulating layer is 50 to 150 ⁇ m, it provides a power cable.
  • the conductor is made of interlocking wire or aluminum, and is a circular compression conductor compressed on a flat conductor or circular center line consisting of a multi-layered flat element wire on a circular center line in a multi-layer on the circular center line, and then compressed.
  • a circular compression conductor compressed on a flat conductor or circular center line consisting of a multi-layered flat element wire on a circular center line in a multi-layer on the circular center line, and then compressed.
  • the plastic film is provided with a polypropylene homopolymer resin, it provides a power cable.
  • the power cable of the present invention exhibits an excellent effect of improving the insulation strength by the insulating layer and the semiconducting layer having a specific structure, and at the same time, effectively reducing the electric field applied to the insulating layer, thereby extending the life of the cable.
  • the electric power cable of the present invention precisely controls the thickness of the outer semiconducting layer included therein, so that even when the impregnated insulating oil shrinks, a large amount of deoiled air gap is not formed in the insulating layer, so that the portion by the electric field concentrated in the large deoiled air gap. Excellent effect that can effectively prevent discharge, breakdown, etc.
  • Figure 1 schematically shows the cross-sectional structure of one embodiment of a power cable according to the present invention.
  • FIG. 2 schematically illustrates a longitudinal cross-sectional structure of the power cable shown in FIG. 1.
  • Figure 3 shows a graph schematically showing the process of relaxation of the electric field in the insulating layer of the power cable according to the present invention.
  • FIG. 4 schematically illustrates a cross-sectional structure of a semisynthetic paper forming an intermediate insulation layer of the power cable shown in FIG. 1.
  • FIG. 5 schematically illustrates a process in which a large void is formed under a metal sheath layer when laid in a low temperature environment after producing a power cable according to the present invention.
  • Figure 6 is a reference diagram for the thickness design of the outer semiconducting layer in the power cable according to the present invention.
  • Figure 7 schematically shows an embodiment of the appearance of the outer semiconducting layer is deformed in the power cable according to the present invention.
  • FIG. 1 and 2 schematically show cross-sectional and longitudinal cross-sectional structures of one embodiment of a power cable according to the invention, respectively.
  • the power cable according to the present invention includes a conductor 100, an inner semiconducting layer 200 surrounding the conductor 100, and an insulating layer surrounding the inner semiconducting layer 200 ( 300, an outer semiconducting layer 400 surrounding the insulating layer 300, a metal sheath layer 500 surrounding the outer semiconducting layer 400, and a cable protection layer surrounding the metal sheath layer 500 ( 600) and the like.
  • the conductor 100 is a movement path for electric current for transmission, and has high electrical conductivity to minimize power loss, and has high purity copper (Cu), aluminum (Al), etc. having appropriate strength and flexibility required for use as a conductor of a cable.
  • it may be made of a linkage line having a high elongation and a high conductivity.
  • the cross-sectional area of the conductor 100 may be different depending on the amount of power transmission, the use of the cable.
  • the conductor 100 may be composed of a circular compression conductor compressed by placing a flat element wire in multiple layers on a flat conductor or a circular center line composed of multiple flat angle wires on a circular center line. Since the conductor 100 made of a flat conductor formed by a so-called keystone method has a high conductor area ratio, it is possible to reduce the outer diameter of the cable and to form a large cross-sectional area of each element wire. It is economical to reduce. Moreover, since there are few voids in the conductor 100 and the weight of the insulating oil contained in the conductor 100 can be made small, it is effective.
  • the inner semiconducting layer 200 suppresses electric field distortion and electric field concentration due to surface unevenness of the conductor 100, thereby interfacing the inner semiconducting layer 200 and the insulating layer 300 or inside the insulating layer 300. It functions to suppress partial discharge and insulation breakdown caused by electric field concentrated on.
  • the inner semiconducting layer 200 may be formed of a semi-conductive paper such as a film formed from a polymer composite material in which conductive material such as carbon black or carbon black coated with a conductive material such as carbon black is coated on insulating paper. It may be formed by a transverse winding, the thickness of the inner semiconducting layer 200 may be about 0.2 to 3.0 mm.
  • the insulating layer 300 is formed by wrapping the insulating paper in a plurality of layers, and the insulating paper is, for example, using a kraft paper or a semi-synthetic paper in which a thermoplastic resin such as kraft paper and a polypropylene resin is laminated. Can be used.
  • the insulating layer 300 includes an inner insulating layer 310, an intermediate insulating layer 320 and an outer insulating layer 330, the inner insulating layer 310 and the outer
  • the insulating layer 330 is made of a material having a lower resistivity than the intermediate insulating layer 320, whereby the inner insulating layer 310 and the outer insulating layer 330 are each connected to the conductor 100 when the cable is operated.
  • Figure 3 shows a graph schematically showing the process of relaxation of the electric field in the insulating layer of the power cable according to the present invention.
  • a direct current (DC) electric field is relaxed in the inner insulation layer 310 and the outer insulation layer 330 having a relatively low resistivity, so that they are directly above the conductor 100 and directly below the metal sheath layer 500.
  • an internal insulation layer is controlled while controlling the maximum impulse electric field applied to the intermediate insulation layer 320 to 100 kV / mm or less.
  • the impulse electric field means an electric field applied to the cable when an impulse voltage is applied to the cable.
  • the maximum impulse electric field value of the internal insulation layer 310 is designed to be smaller than the maximum impulse electric field value of the intermediate insulation layer 320 so that the high electric field does not act directly on or under the sheath.
  • the maximum impulse electric field applied to the intermediate insulating layer 320 is an inner electric field of the intermediate insulating layer 320, and the inner electric field is the maximum impulse electric field of the intermediate insulating layer 320, for example, 100 kV / mm.
  • the high electric field is suppressed from being applied to the inner insulation layer 310 and the outer insulation layer 330, particularly, a cable connection member vulnerable to an electric field, and further, the performance of the intermediate insulation layer 320 is maximized.
  • the entire insulation layer 300 can be made compact, the deterioration can be suppressed, and the insulation strength and other physical properties of the insulation layer 300 can be suppressed from being lowered.
  • the impulse withstand voltage is higher than that of the cable. Not only can it be done with a cable, but it can also suppress the shortening of the cable life.
  • the inner insulating layer 310 and the outer insulating layer 330 may be formed by transversely kraft paper made of kraft pulp and impregnated with an insulating oil, respectively.
  • the insulating layer 310 and the outer insulating layer 330 may have a lower resistivity and a higher dielectric constant than the intermediate insulating layer 320.
  • the kraft paper can be prepared by washing the kraft pulp with deionized water in order to remove the organic electrolyte in the kraft pulp to obtain good dielectric loss tangent and permittivity.
  • the intermediate insulating layer 320 may be formed by transversely winding a semi-synthetic paper having kraft paper laminated on the surface, the back surface, or both of the plastic film and impregnating insulating oil.
  • the intermediate insulating layer 320 formed as described above has a higher resistivity, lower dielectric constant, higher DC dielectric strength, and impulse breakdown voltage than the inner insulating layer 310 and the outer insulating layer 330 because it includes a plastic film. Due to the high resistivity of the intermediate insulating layer 320, a direct current field is concentrated on the intermediate insulating layer 320 resistant to the DC electric field strength, and an impulse electric field is applied to the intermediate insulating layer 320 resistant to the impulse electric field at a low dielectric constant. By concentrating, the insulating layer 300 as a whole can be made compact, and as a result, the outer diameter of the cable can be reduced.
  • the plastic film is expanded by heat generation during operation of the cable to increase the oil resistance
  • the insulating oil impregnated in the insulating layer 300 is the outer semiconducting layer 400 It is possible to suppress the movement toward the side) to suppress the production of deoiled voids due to the movement of the insulating oil, and consequently to suppress electric field concentration and dielectric breakdown caused by the deoiled voids.
  • the plastic film may be made of a polyolefin resin such as polyethylene, polypropylene, polybutylene, fluorine resin such as tetrafluoroethylene-hexafluoro polypropylene copolymer, ethylene-tetrafluoroethylene copolymer, Preferably it may be made of a polypropylene homopolymer resin excellent in heat resistance.
  • a polyolefin resin such as polyethylene, polypropylene, polybutylene
  • fluorine resin such as tetrafluoroethylene-hexafluoro polypropylene copolymer, ethylene-tetrafluoroethylene copolymer
  • ethylene-tetrafluoroethylene copolymer ethylene-tetrafluoroethylene copolymer
  • the semi-synthetic paper may be 40 to 70% of the total thickness of the plastic film.
  • the resistivity of the intermediate insulating layer 320 may be insufficient, so that the outer diameter of the cable may be increased. Difficulties can be made difficult due to lack of distribution of insulating oil, which can be expensive.
  • the inner insulating layer 310 may have a thickness of 1 to 10% of the total thickness of the insulating layer 300, and the outer insulating layer 330 may have a thickness of 1 to 15% of the total thickness of the insulating layer 300.
  • the intermediate insulating layer 320 may have a thickness of 75% or more of the total thickness of the insulating layer 300.
  • the maximum impulse electric field value of the inner insulation layer 310 may be lower than the maximum impulse electric field value of the intermediate insulation layer 320. If the thickness of the inner insulation layer is increased more than necessary, the maximum impulse electric field value of the intermediate insulation layer 320 becomes larger than the allowable maximum impulse electric field value, and in order to alleviate this problem, the cable outer diameter increases. Done.
  • the outer insulating layer 330 preferably has a sufficient thickness than the inner insulating layer, which will be described later.
  • the internal insulation layer 310 and the external insulation layer 330 having a small resistivity are provided to prevent the direct current high electric field from being applied directly above the conductor 100 and directly below the metal sheath layer 500.
  • the thickness of the intermediate insulating layer 320 having a high resistivity of 75% or more it is possible to reduce the cable outer diameter while maintaining a sufficient dielectric strength.
  • the inner insulation layer 310, the intermediate insulation layer 320, and the outer insulation layer 330 constituting the insulation layer 300 each have the precisely controlled thickness, so that the insulation layer ( 300 may have a desired dielectric strength while minimizing the outer diameter of the cable.
  • the direct current and the impulse electric field applied to the insulating layer 300 can be most effectively designed on the electric field, and the high electric field of the direct current and the impulse is directly above the conductor 100 and directly below the metal sheath layer 500. It is possible to apply design means that can raise the dielectric strength of the cable connection member, which is particularly susceptible to electric fields, to a sufficient height.
  • the thickness of the outer insulating layer 330 is greater than the thickness of the inner insulating layer 310, for example, in a cable of 500 kV DC, the thickness of the inner insulating layer 310 is 0.1 to 2.0 mm.
  • the thickness of the outer insulating layer 330 may be 0.1 to 3.0 mm, and the thickness of the intermediate insulating layer 320 may be 15 to 25 mm.
  • the heat generated during soft connection for the cable connection according to the present invention is applied to the insulating layer 300 to melt the plastic film of the semi-synthetic paper forming the intermediate insulating layer 320, the plastic from the heat
  • the thickness of the internal insulating layer 310 is preferably 1 to 30 times.
  • the thickness of the sheet of semi-synthetic paper forming the intermediate insulating layer 320 is 70 to 200 ⁇ m
  • the thickness of the kraft paper forming the inner and outer insulating layers 310, 320 may be 50 to 150 ⁇ m.
  • the thickness of the kraft paper forming the inner and outer insulating layers 310 and 320 may be smaller than the thickness of the kraft paper constituting the semisynthetic paper.
  • the thickness of the kraft paper forming the inner and outer insulating layers (310,320) is too thin, the strength is insufficient, can cause mechanical damage when the paper rolls, and the number of side windings for forming the insulating layer of the desired thickness is increased
  • Productivity of the kraft paper may be reduced, and the total volume of the gap between the kraft papers forming the main passage of the insulating oil when the kraft paper is transversely reduced may take a long time when the insulating oil is impregnated, and the content of the insulating oil impregnated is lowered, thereby reducing the desired dielectric strength. It may be difficult to implement.
  • the insulating oil impregnated in the insulating layer 300 is fixed without being circulated in the cable length direction like a low viscosity insulating oil used in a conventional OF cable, an insulating oil having a relatively high viscosity is used.
  • the insulating oil may perform a lubrication role to facilitate the movement of the insulating paper when the cable is bent, as well as the function of implementing the desired dielectric strength of the insulating layer 300.
  • the insulating oil is not particularly limited but may be a medium viscosity insulating oil having a kinematic viscosity of 5 to 500 centistokes (cSt) at 60 ° C., or a high viscosity insulating oil having a kinematic viscosity of 60 ° C. or more at 500 centistokes (cSt) or more.
  • a medium viscosity insulating oil having a kinematic viscosity of 5 to 500 centistokes (cSt) at 60 ° C. or a high viscosity insulating oil having a kinematic viscosity of 60 ° C. or more at 500 centistokes (cSt) or more.
  • one or more insulating oils selected from the group consisting of naphthenic insulating oils, polystyrene insulating oils, mineral oils, alkyl benzene or polybutene synthetic oils, heavy alkylates, and the like can be synthe
  • the kraft paper constituting the inner insulating layer 310, the intermediate insulating layer 320 and the outer insulating layer 330 are formed to a desired thickness, respectively
  • each of the semi-synthetic paper is rolled up a plurality of times, and vacuum dried to remove residual moisture of the insulating layer 300, and then the insulating oil is heated to a high temperature impregnation temperature, for example, 100 to 120 ° C. under a high pressure environment.
  • a high temperature impregnation temperature for example, 100 to 120 ° C. under a high pressure environment.
  • the outer semiconducting layer 400 suppresses non-uniform electric field distribution between the insulating layer 300 and the metal sheath layer 500, mitigates electric field distribution, and removes the insulating layer from the various types of metal sheath layer 500. 300) to physically protect.
  • the outer semiconducting layer 400 may be formed by a transverse winding of a semi-conductive paper, such as, for example, carbon paper treated with conductive carbon black on insulating paper, and preferably formed by the transverse winding of the semiconducting battery.
  • the lower layer and the semiconductor cell and the metallization paper may include an upper layer formed to be transversely wound in a gap winding or an empty winding.
  • the metallization paper and the semiconductor cell may be alternately rolled so as to overlap a portion, for example, about 40 to 60%.
  • the metallized paper may have a structure in which a metal foil such as aluminum tape and aluminum foil is laminated on a base paper such as kraft paper or carbon paper, and the insulating oil easily penetrates into a semiconductor cell, an insulating paper, a semi-synthetic paper, and the like below the metal foil.
  • a plurality of perforations may exist so that the semiconductor cell of the lower layer is in smooth electrical contact with the metal foil of the metallized paper through the semiconductor cell of the upper layer, and as a result, the external semiconducting layer 400 and the As the metal sheath layer 500 is in smooth electrical contact, a uniform electric field distribution may be formed between the insulating layer 300 and the metal sheath layer 500.
  • the outer semiconducting layer 400 may further include a copper wire direct fabric (not shown) between the metal sheath layer 500.
  • the copper wire direct fabric has a structure in which 2 to 8 strands of copper wire are directly inserted into a nonwoven fabric and performs a function of smoothly and electrically contacting the outer semiconducting layer 400 and the metal sheath layer 500 by the copper wire.
  • the wound semi-conductor cell, metallized paper, etc. may perform a function of tightly binding them so as to maintain the above-described structure without being released. As the metal sheath layer 500 moves during bending, damage to the metallized paper or the like may be prevented.
  • FIG. 5 schematically illustrates a process in which a large void is formed under a metal sheath layer when laid in a low temperature environment after producing a power cable according to the present invention.
  • the inner semiconducting layer 200, the insulating layer 300, and the outer semiconducting layer 400 are impregnated with insulating oil.
  • the insulating oil impregnated by the ambient temperature decreases, thereby contracting the inner semiconducting layer 200, the insulating layer 300, and the outer semiconducting layer 400.
  • a large number of small voids in which no insulating oil is present are formed.
  • the inventors precisely control the thickness of the outer semiconducting layer 400, even if the large voids are formed, without reaching the insulating layer 300, but the outer semiconducting layer (above the insulating layer 300).
  • the present invention has been completed by focusing on being able to form up to 400) and effectively suppressing partial discharge, insulation breakdown, and the like.
  • the insulating oil impregnated in the pores of the conductor 100, the semiconducting layers 200, 400, the insulating layer 300, and the like shrinks at a low temperature to form a plurality of fine pores, and the insulating oil is moved down by gravity as time passes.
  • the large voids are formed on the cable by moving, the large voids are included only in the outer semiconducting layer 400 and the insulation by designing the thickness of the outer semiconducting layer relatively thicker than the thickness of the outer semiconducting layer of the conventional power cable. It can be adjusted so as not to reach the layer 300.
  • the reference for designing the thickness of the outer semiconducting layer 400 is based on the porosity of each of the conductor 100, the inner semiconducting layer 200, the insulating layer 300, and the outer semiconducting layer 400 constituting the cable. porosity).
  • the porosity is a ratio of the total cross-sectional area or volume occupied by the voids to the total cross-sectional area or volume of each layer, and the gap between these papers when the material constituting each layer is transversely wound in kraft paper, semiconductor cells, etc. It is a value including the porosity by (gap).
  • the total weight (W1) of the insulating oil that the cable holds per unit length of 1m can be expressed by the following equation (1).
  • is the insulation oil density at room temperature (kg / m3)
  • a is the porosity (%) of the conductor 100
  • b is the porosity (%) of the inner semiconducting layer 200 and the outer semiconducting layer 400
  • c is the inside formed by the transverse winding of kraft paper in the insulating layer 300.
  • d is the porosity (%) of the intermediate insulating layer 320 formed by the transverse winding of the semi-synthetic paper of the insulating layer 300,
  • A is the cross-sectional area of the conductor 100 (m 2)
  • B is the cross-sectional area of the inner semiconducting layer (m 2)
  • C is the cross-sectional area of the inner insulating layer 310 (m 2)
  • D is the cross-sectional area of the intermediate insulating layer 320.
  • M 2 E is the cross-sectional area (m 2) of the outer insulating layer 330
  • F is the cross-sectional area (m 2) of the outer semiconducting layer 400.
  • the total content of the insulating oil impregnated per 1 m of the ultra-high voltage DC MIND cable of 400 kV or more is generally 1.0 to 2.5 kg / m, and if the impregnated insulating oil contracts when the cable is installed in a low temperature environment after production, the cable
  • A1 (mm2) ⁇ ⁇ ⁇ T ⁇ S
  • is the insulation oil expansion rate (%)
  • ⁇ T is the difference (° C.) between the temperature at the time of production of the cable and the ambient environmental temperature after installation.
  • Figure 6 is a reference diagram for the thickness design of the outer semiconducting layer in the power cable according to the present invention.
  • Equation 3 The required area A2 in the outer semiconducting layer 400 so that the formed large void does not extend to the insulating layer 300 but is included only in the outer semiconducting layer 400 is defined by Equation 3 below. Can be.
  • A2 (mm2) ⁇ ⁇ ⁇ T ⁇ S / b
  • R1 is the outer diameter (m) from the center of the conductor 100 to the outer semiconducting layer 400,
  • t is the thickness m of the required area A2
  • is an angle (°) between the center of the required area A2 and one end.
  • Equation 1 to 3 Based on Equations 1 to 3, the required area A2 and the thickness t of the required area A2 in the outer semiconducting layer 400 in the 500 kV ultra high voltage cable having the specifications shown in Table 1 will be described later. It is as follows.
  • the thickness t of the required area A2 is calculated, the thickness is about 1.1 mm.
  • the thickness t is about 4.4% of 25 mm, which is ⁇ 108 (the outer diameter of the outer semiconducting layer) -58 (the diameter of the conductor) ⁇ / 2, which is the thickness from the inner semiconducting layer 200 to the outer semiconducting layer 400. do.
  • the temperature is 25 to 45 ° C.
  • the ambient temperature is about 5 ° C for the seabed and -10 ° C for the land.
  • the thickness t of the required area A2 in the outer semiconducting layer is 7.5 to 15% of the thickness from the inner semiconducting layer 200 to the outer semiconducting layer 400, and the thickness t is For example, it may be 2 to 4 mm.
  • the thickness (t) is less than 7.5% of the thickness from the inner semiconducting layer 200 to the outer semiconducting layer 400, the large void extends to the insulating layer 300, and thus partial discharge and insulation breakdown are started.
  • the thickness is greater than 15%, the thickness of the outer semiconducting layer 400 is unnecessarily thick, which may cause a problem of increasing the outer diameter of the cable.
  • the thickness of the external semiconducting layer 400 precisely controlled as described above, when the cable is left in the low temperature environment and left for a long time until over-current, the large voids formed on the cable do not reach the insulating layer 300 without the By being included only in the outer semiconducting layer 400, partial discharge and insulation breakdown of the insulating layer 300 can be effectively suppressed.
  • Figure 7 schematically shows an embodiment of the appearance of the outer semiconducting layer is deformed in the power cable according to the present invention.
  • the cable has a thickness of the outer semiconducting layer 400 even when the outer semiconducting layer 400 is locally deformed (A) or depressed (B) due to an external impact or pressure.
  • the thicker design may prevent deformation of the insulating layer 300 to further prevent insulation breakdown due to electric field distortion.
  • the metal sheath layer 500 prevents the insulating oil from leaking to the outside of the cable, and fixes the voltage applied to the cable during direct current transmission between the conductor 100 and the metal sheath layer 500 so as to ground at one end of the cable. It acts as a return of fault current in the event of a ground fault or short circuit of the cable to protect safety, protect the cable from shocks, pressures, etc. outside the cable, and improve cable order and flame retardancy.
  • the metal sheath layer 500 may be formed by, for example, a soft sheath made of pure lead or lead alloy.
  • the soft sheath has a relatively low electric resistance, which serves as a large current collector, and can further improve cable ordering, mechanical strength, and fatigue characteristics when formed as a seamless type. have.
  • the soft psi is a surface of the anti-corrosion compound, for example, in order to further improve the corrosion resistance, water resistance of the cable and the adhesion between the metal sheath layer 500 and the cable protection layer 600, Blown asphalt, or the like.
  • the cable protection layer 600 includes, for example, a metal reinforcement layer 630 and an outer sheath 650, and further includes an inner sheath 610 and bedding layers 620 and 640 disposed above and below the metal reinforcement layer 630. It can be included as.
  • the inner sheath 610 improves the corrosion resistance, the degree of ordering of the cable, and performs a function of protecting the cable from mechanical trauma, heat, fire, ultraviolet rays, insects or animals.
  • the inner sheath 610 is not particularly limited, but may be made of polyethylene having excellent cold resistance, oil resistance, chemical resistance, and the like, or polyvinyl chloride having excellent chemical resistance, flame resistance, and the like.
  • the metal reinforcement layer 630 may be formed of a galvanized steel tape, a stainless steel tape, etc. to perform a function of protecting a cable from mechanical shock and to prevent corrosion, and the galvanized steel tape may have an anti-corrosion compound on its surface. Can be applied.
  • the bedding layers 620 and 640 disposed above and below the metal reinforcing layer 630 may perform a function of alleviating impact, pressure, and the like from the outside, and may be formed by, for example, a nonwoven tape.
  • the metal reinforcement layer 630 may be provided directly on the metal sheath layer 500 or through the bedding layers 620 and 640.
  • the expansion deformation of the metal sheath layer 500 by the high temperature expansion of the insulating oil in the metal reinforcing layer 630 is suppressed to improve the mechanical reliability of the cable and at the same time, the insulating layer 300 and the metal sheath layer 500.
  • the portion of the semiconducting layers 200 and 400 is intrinsically pressured to improve the dielectric strength.
  • the outer sheath 650 has substantially the same functions and characteristics as the inner sheath 610, and fires in submarine tunnels, land tunnel sections, etc. are used in the region because they are dangerous factors that greatly affect the safety of personnel or facilities.
  • the outer sheath of the cable is applied to polyvinyl chloride excellent in flame retardant properties, the cable outer sheath of the pipe section can be applied to polyethylene with excellent mechanical strength and cold resistance.
  • the metal sheath 500 may be provided with a metal reinforcing layer 630 immediately omitted, and a bedding layer may be provided inside and outside the metal reinforcing layer 630 as necessary. have. That is, the metal sheath layer may be formed to be provided with a bedding layer, a metal reinforcing layer, a bedding layer and an outer sheath sequentially.
  • the metal reinforcement layer 630 allows deformation of the metal sheath 500, but suppresses the change in the outer circumference, it is preferable in view of the fatigue characteristics of the metal sheath 500, and the cable insulation layer in the metal sheath 500 during cable energization.
  • the cable protection layer 600 may further include, for example, an outer serving layer 670 made of an iron sheath 660 and polypropylene yarn.
  • the outer wire sheath 660, the outer serving layer 670 may perform a function of additionally protecting the cable from the sea current, reefs and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Insulated Conductors (AREA)

Abstract

본 발명은 전력 케이블, 특히 장거리 직류송전용 초고압 지중 또는 해저 케이블에 관한 것이다. 구체적으로, 본 발명은 절연층의 자체적인 절연내력이 높고, 상기 절연층에 인가되는 전계가 효과적으로 완화되며, 특히 저온 환경하에 포설 후 통전시까지 장기간 동안 저온에서 방치시 절연층에 거대 공극(large void)이 발생하는 것을 억제하여 상기 공극에 집중된 전계에 의한 부분방전, 절연파괴 등을 효과적으로 방지할 수 있는 전력 케이블에 관한 것이다.

Description

전력 케이블
본 발명은 전력 케이블, 특히 장거리 직류송전용 초고압 지중 또는 해저 케이블에 관한 것이다. 구체적으로, 본 발명은 절연층의 자체적인 절연내력이 높고, 상기 절연층에 인가되는 전계가 효과적으로 완화되며, 특히 저온 환경하에 포설 후 통전시까지 장기간 동안 저온에서 방치시 거대 공극(large void)이 절연층에 발생하는 것을 억제하여 상기 공극에 집중된 전계에 의한 부분방전, 절연파괴 등을 효과적으로 방지할 수 있는 전력 케이블에 관한 것이다.
절연층으로서 가교 폴리에틸렌(XLPE) 등의 고분자 절연체를 이용한 전력 케이블이 사용되고 있지만, 직류 고전계에서 공간 전하가 형성되는 문제 때문에, 초고압 직류 송전 케이블은 도체 등을 감싸도록 횡권한 절연지에 절연유를 함침시켜 절연층을 형성한 지절연 케이블(Paper-insulated Cable)이 사용되고 있다.
상기 지절연 케이블에는 저점도 절연유를 순환시키는 OF(Oil Filled) 케이블, 고점도 또는 중점도 절연유가 함침된 MIND(Mass Impregnated Non Draining) 케이블 등이 있고, 상기 OF 케이블은 절연유의 순환을 위한 유압의 전달길이에 한계가 있어 장거리 송전용 케이블에는 부적합하고, 특히 해저에는 절연유 순환 설비를 설치하기 곤란한 문제가 있어 해저 케이블에도 부적합하다.
따라서, 장거리 직류 송전용 또는 해저용 초고압 케이블은 MIND 케이블이 흔히 사용되고 있다.
이러한 MIND 케이블은 절연층 형성시 절연지를 복수의 층으로 감싸서 형성되며, 절연지로는 예를 들어 크래프트지(Kraft paper)를 사용하거나 크래프트지와 폴리프로필렌(Polypropylene) 수지 등과 같은 열가소성 수지가 적층된 반합성지를 사용할 수 있다.
크래프트지만을 권취하여 절연유를 함침시킨 케이블의 경우에는 케이블 작동 시(통전시) 케이블 도체에 흐르는 전류에 의한 줄손실에 따른 발열에 의하여 반경방향으로 안쪽, 즉 내부 반도전층측의 절연층 부분에서 바깥쪽 방향을 향해, 즉 절연층 외측의 외부 반도전층 방향을 향해 온도차가 발생하게 된다.
따라서, 보다 고온인 내부 반도전층 쪽의 절연층 부분의 절연유의 점도가 낮아지고 열팽창을 하여 외부 반도전층 쪽의 절연층으로 이동하지만, 온도 하강 시에는 이동한 절연유의 점도가 높아지고 원래대로 되돌아가지 않게 되어 반경방향으로 안쪽, 즉 내부 반도전층 쪽의 절연층 부분에서 절연유의 열수축에 의한 탈유 공극(void)이 형성될 수 있다.
또한, 케이블 작동시(통전시) 케이블 도체에 흐르는 전류에 의한 줄손실에 따른 발열에 의하여 함침된 절연유는 점도가 낮아지고 열팽창을 하여 상대적으로 높은 부분에 포설된 케이블 부분에서 상대적으로 낮은 부분에 포설된 케이블 부분으로 이동하게 되고 온도 하강시에는 이동한 절연유의 점도가 높아지고 원래대로 되돌아가지 않게 되어 절연유의 열수축에 의한 탈유 공극(void)이 형성될 수 있다.
이러한 탈유 공극에 절연유가 부재하여 전계가 집중됨으로써 이를 기점으로 부분방전, 절연파괴 등이 일어나 케이블의 수명이 단축될 수 있다.
하지만, 반합성지로 절연층을 형성하는 경우, 케이블 작동 시 기름에 함침되지 않는 폴리프로필렌(Polypropylene) 수지 등과 같은 열가소성 수지가 열팽창함으로써 절연유의 유동을 억제할 수 있으며, 폴리프로필렌 수지는 절연 저항이 크래프트지보다 크기 때문에 탈유 공극이 생성되더라도 이에 분담되는 전압을 완화할 수 있다.
또한, 폴리프로필렌 수지 안에는 절연유가 이동하지 않기 때문에 중력에 의하여 절연유가 케이블 직경 방향으로 유동하는 것을 억제할 수 있을 뿐만 아니라, 케이블 제조시의 함침 온도 또는 케이블 작동시의 작동 온도에 따라 폴리프로필렌 수지가 열팽창하여 크래프트지에 면압을 가하게 되므로 절연유의 유동을 더욱 억제할 수 있다.
그러나, 상기와 같이 절연유의 유동에 의한 탈유 공극 발생을 억제한다고 하더라도, MIND 케이블이 극한 지방의 지중 케이블 또는 해저 케이블로 사용되어 저온 환경하에 포설되는 경우, 절연층, 반도전층 등에 함침된 절연유가 수축하게 되어 절연층 등의 내부에 다수의 탈유 공극이 생성될 수 있고, 특히 케이블의 포설 후 통전이 되기까지 장시간 동안 절연유는 중력방향으로 힘을 받게 되어 케이블 하부쪽으로 이동하게 됨으로써 케이블 상부쪽에는 거대 공극(large void)이 발생할 가능성이 높으며, 케이블의 운용시 도체의 발열에 의해 절연층 등의 온도가 올라가 수축된 절연유가 다시 팽창한다고 하더라도 거대 공극이 제거될 때까지는 상기 거대 공극에 집중된 전계에 의해 부분방전, 절연파괴 등의 문제가 유발될 수 있다.
따라서, 절연층의 자체적인 절연내력이 높고, 상기 절연층에 인가되는 전계가 효과적으로 완화되며, 특히 저온 환경하에 포설 후 통전시까지 장기간 동안 저온에서 방치시 절연층에 거대 공극(large void)이 발생하는 것을 억제하여 상기 공극에 집중된 전계에 의한 부분방전, 절연파괴 등을 효과적으로 방지할 수 있는 전력 케이블이 절실히 요구되고 있는 실정이다.
본 발명은 절연층의 자체적인 절연내력이 높고, 상기 절연층에 인가되는 전계가 효과적으로 완화되어 수명이 연장될 수 있는 전력 케이블을 제공하는 것을 목적으로 한다.
또한, 본 발명은 저온 환경하에 포설 후 통전시까지 장기간 동안 저온에서 방치시 거대 공극(large void)이 절연층에 발생하는 것을 억제하여 상기 공극에 집중된 전계에 의한 부분방전, 절연파괴 등을 효과적으로 방지할 수 있는 직류 전력 케이블을 제공하는 것을 목적으로 한다.
상기 과제를 해결하기 위해, 본 발명은,
도체; 상기 도체를 둘러싸는 내부 반도전층; 상기 내부 반도전층을 둘러싸고 절연유가 함침된 절연층; 상기 절연층을 둘러싸는 외부 반도전층; 상기 외부 반도전층을 둘러싸는 금속시스층; 및 상기 금속시스층을 둘러싸는 케이블보호층을 포함하고, 상기 절연층은 절연지가 횡권되고 절연유가 함침되어 형성되고, 상기 내부 반도전층 및 상기 외부 반도전층은 반도전지(semi-conductive paper)가 횡권되고 절연유가 함침되어 형성되고, 상기 외부 반도전층의 두께는 상기 내부 반도전층, 상기 절연층 및 상기 외부 반도전의 총 두께의 7.5 내지 15%인, 전력 케이블을 제공한다.
여기서, 상기 외부 반도전층의 두께는 2 내지 4 mm인 것을 특징으로 하는, 전력 케이블을 제공한다.
또한, 상기 절연유는 60℃의 동점도가 5 내지 500 센티스토크스(cSt)인 중점도 절연유인 것을 특징으로 하는, 전력 케이블을 제공한다.
나아가, 상기 절연유는 60℃의 동점도가 500 센티스토크스(Cst) 이상인 고점도 절연유인 것을 특징으로 하는, 전력 케이블을 제공한다.
또한, 상기 외부 반도전층은 반도전지의 횡권에 의해 형성되는 하부층 및 반도전지와 금속화지의 공권에 의해 형성되는 상부층을 포함하는 것을 특징으로 하는, 전력 케이블을 제공한다.
여기서, 상기 외부 반도전층은 동선직입포로 이루어지는 최상층을 추가로 포함하는 것을 특징으로 하는, 전력 케이블을 제공한다.
한편, 상기 절연층은 내부 절연층, 중간 절연층 및 외부 절연층이 순차적으로 적층되어 형성되고, 상기 내부 절연층 및 상기 외부 절연층은 각각 절연유가 함침된 크라프트(kraft)지로 형성되고, 상기 중간 절연층은 절연유가 함침된 반합성지로 형성되며, 상기 반합성지는 플라스틱 필름 및 상기 플라스틱 필름의 적어도 한면에 적층된 크라프트지를 포함하고, 상기 절연층의 전체 두께를 기준으로, 상기 내부 절연층의 두께는 1 내지 10%이고, 상기 중간 절연층의 두께는 75% 이상이며, 상기 외부 절연층의 두께는 5 내지 15%이고, 상기 내부 절연층 및 상기 외부 절연층의 저항율이 상기 중간 절연층의 저항율보다 작은 것을 특징으로 하는, 전력 케이블을 제공한다.
여기서, 상기 외부 절연층의 두께가 상기 내부 절연층의 두께보다 큰 것을 특징으로 하는, 전력 케이블을 제공한다.
또한, 상기 외부 절연층의 두께는 상기 내부 절연층의 두께의 1 내지 30배인 것을 특징으로 하는, 전력 케이블을 제공한다.
그리고, 상기 내부 절연층의 두께는 0.1 내지 2.0 mm이고, 상기 외부 절연층의 두께는 0.1 내지 3.0 mm이며, 상기 중간 절연층의 두께는 15 내지 25 mm인 것을 특징으로 하는, 전력 케이블을 제공한다.
여기서, 상기 내부 절연층 및 상기 외부 절연층의 크라프트지의 두께는 상기 반합성지의 크라프트지의 두께보다 작은 것을 특징으로 하는, 전력 케이블을 제공한다.
또한, 상기 내부 절연층의 최대 임펄스 전계 값이 상기 중간 절연층의 최대 임펄스 전계 값보다 작은 것을 특징으로 하는, 전력 케이블을 제공한다.
그리고, 상기 중간 절연층의 최대 임펄스 전계 값이 100 kV/mm 이하인 것을 특징으로 하는, 전력 케이블을 제공한다.
나아가, 상기 플라스틱 필름의 두께는 상기 반합성지의 전체 두께의 40 내지 70%인 것을 특징으로 하는, 전력 케이블을 제공한다.
여기서, 상기 반합성지의 두께는 70 내지 200 ㎛이고, 상기 내부 절연층 및 상기 외부 절연층의 크라프트지의 두께는 50 내지 150 ㎛인 것을 특징으로 하는, 전력 케이블을 제공한다.
또한, 상기 도체는 연동선 또는 알루미늄으로 이루어지고, 원형 중심선 위에 평각 소선을 다층으로 얹어 구성시킨 평각도체 또는 원형 중심선 위에 원형 소선을 다층으로 얹은 후 압축한 원형압축도체인 것으로 특징으로 하는, 전력 케이블을 제공한다.
그리고, 상기 플라스틱 필름은 폴리프로필렌 단독중합체 수지로 형성된 것을 특징으로 하는, 전력 케이블을 제공한다.
본 발명의 전력 케이블은 특정 구조의 절연층 및 반도전층에 의해 절연내력이 향상되는 동시에 절연층에 인가되는 전계가 효과적으로 완화되어 케이블의 수명이 연장되는 우수한 효과를 나타낸다.
또한, 본 발명의 전력 케이블은 이에 포함되는 외부 반도전층의 두께를 정밀하게 조절함으로써 함침된 절연유가 수축되는 경우에도 절연층에 거대한 탈유 공극이 형성되지 않도록 함으로써 상기 거대한 탈유 공극에 집중된 전계에 의한 부분방전, 절연파괴 등을 효과적으로 방지할 수 있는 우수한 효과를 나타낸다.
도 1은 본 발명에 따른 전력 케이블의 일실시예의 횡단면 구조를 개략적으로 도시한 것이다.
도 2는 도 1에 도시된 전력 케이블의 종단면 구조를 개략적으로 도시한 것이다.
도 3은 본 발명에 따른 전력 케이블의 절연층 내부에서 전계가 완화되는 과정을 개략적으로 나타내는 그래프를 도시한 것이다.
도 4는 도 1에 도시된 전력 케이블 중 중간 절연층을 형성하는 반합성지의 단면 구조를 개략적으로 도시한 것이다.
도 5는 본 발명에 따른 전력 케이블을 생산한 후 저온 환경하에서 포설시 금속시스층 아래에서 거대 공극이 생성되는 과정을 개략적으로 도시한 것이다.
도 6은 본 발명에 따른 전력 케이블에서 외부 반도전층의 두께 설계에 관한 참고도이다.
도 7은 본 발명에 따른 전력 케이블에서 외부 반도전층이 변형된 모습에 관한 실시예를 개략적으로 도시한 것이다.
이하, 본 발명의 바람직한 실시예들을 상세히 설명하기로 한다. 그러나, 본 발명은 여기서 설명된 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 오히려, 여기서 소개되는 실시예들은 개시된 내용이 철저하고 완전해질 수 있도록, 그리고 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되어지는 것이다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.
도 1 및 2는 본 발명에 따른 전력 케이블의 일실시예의 횡단면 및 종단면 구조를 개략적으로 각각 도시한 것이다.
도 1 및 2에 도시된 바와 같이, 본 발명에 따른 전력 케이블은 도체(100), 상기 도체(100)를 둘러싸는 내부 반도전층(200), 상기 내부 반도전층(200)을 둘러싸는 절연층(300), 상기 절연층(300)을 둘러싸는 외부 반도전층(400), 상기 외부 반도전층(400)을 둘러싸는 금속시스층(500), 상기 금속시스층(500)을 둘러싸는 케이블보호층(600) 등을 포함할 수 있다.
상기 도체(100)는 송전을 위한 전류의 이동 통로로서 전력 손실이 최소화되도록 도전율이 우수하고 케이블의 도체로 사용하기 위해 요구되는 적절한 강도와 유연성을 갖는 고순도의 구리(Cu), 알루미늄(Al) 등, 특히 신장율이 크고 도전율이 높은 연동선으로 이루어질 수 있다. 또한, 상기 도체(100)의 단면적은 케이블의 송전량, 용도 등에 따라 상이할 수 있다.
바람직하게는, 상기 도체(100)는 원형 중심선 위에 평각 소선을 다층으로 얹어 구성시킨 평각도체 또는 원형 중심선 위에 원형 소선을 다층으로 얹은 후 압축한 원형압축도체로 이루어질 수 있다. 소위 키스톤(keystone) 방식에 의해 형성된 평각도체로 이루어진 상기 도체(100)는 도체의 점적율이 높아 케이블의 외경을 축소할 수 있는 동시에 각 소선의 단면적을 크게 성형하는 것이 가능하므로 전체 소선의 수를 줄일 수 있어 경제적이다. 또한, 도체(100) 내부에 공극이 적고, 도체(100) 내부에 포함되는 절연유의 중량을 작게할 수 있기 때문에 효과적이다.
상기 내부 반도전층(200)은 상기 도체(100)의 표면 불균일에 의한 전계왜곡 및 전계집중을 억제함으로써 상기 내부 반도전층(200)과 상기 절연층(300)의 계면 또는 상기 절연층(300) 내부에 집중된 전계에 의한 부분방전, 절연파괴 등을 억제하는 기능을 수행한다.
상기 내부 반도전층(200)은 예를 들어 절연지에 카본 블랙 등의 도전성 물질이 도포된 카본지, 카본 블랙 등의 도전성 물질이 분산된 고분자 복합소재로부터 형성된 필름 등의 반도전지(semi-conductive paper)의 횡권에 의해 형성될 수 있고, 상기 내부 반도전층(200)의 두께는 약 0.2 내지 3.0 mm일 수 있다.
상기 절연층(300)은 절연지를 복수의 층으로 감싸서 형성되며, 절연지로는 예를 들어 크래프트지(Kraft paper)를 사용하거나 크래프트지와 폴리프로필렌(Polypropylene) 수지 등과 같은 열가소성 수지가 적층된 반합성지를 사용할 수 있다.
본 발명의 바람직한 실시예에 따르면, 상기 절연층(300)은 내부 절연층(310), 중간 절연층(320) 및 외부 절연층(330)을 포함하고, 상기 내부 절연층(310) 및 상기 외부 절연층(330)은 상기 중간 절연층(320)에 비해 저항율이 낮은 소재로 이루어지며, 이로써 상기 내부 절연층(310) 및 상기 외부 절연층(330)은 각각 상기 케이블의 운용시 상기 도체(100)에 인가되어 형성되는 높은 전계가 상기 도체(100) 직상 또는 상기 금속시스층(500) 직하에 인가되는 것을 억제하는 전계 완화 작용을 하고, 나아가, 상기 중간 절연층(320)의 열화를 억제하기 위한 작용을 한다.
도 3은 본 발명에 따른 전력 케이블의 절연층 내부에서 전계가 완화되는 과정을 개략적으로 나타내는 그래프를 도시한 것이다. 도 3에 나타난 바와 같이, 상대적으로 저항율이 낮은 내부 절연층(310) 및 외부 절연층(330)에서 직류(DC) 전계가 완화됨으로써 상기 도체(100) 직상 및 상기 금속 시스층(500) 직하에 통상 직류 케이블에서 발생하는 높은 전계가 인가되는 것을 효과적으로 억제할 수 있을 뿐만 아니라, 임펄스인 경우에도 상기 중간 절연층(320)에 인가되는 최대 임펄스 전계를 100 kV/mm 이하로 제어하면서 내부 절연층에 걸리는 높은 임펄스 전계를 낮추어 내부절연층(310)의 열화를 억제하기 때문에, 함께 상기 중간 절연층(320)의 열화도 억제할 수 있다. 여기서, 상기 임펄스 전계란 케이블에 임펄스 전압이 인가되었을 때 케이블에 걸리는 전계를 의미한다.
따라서, 도 3에 도시된 바와 같이, 내부 절연층(310)의 최대 임펄스 전계값이 중간 절연층(320)의 최대 임펄스 전계값보다 작도록 설계함으로써 고전계가 도체 직상, 시스 직하에 작용하지 않도록 하며, 상기 중간 절연층(320)에 인가되는 최대 임펄스 전계는 상기 중간 절연층(320)의 내측 전계이고, 상기 내측 전계가 중간절연층(320)의 최대 임펄스 전계, 예를 들면, 100 kV/mm 이하로 제어됨으로써 상기 중간 절연층(320)의 열화를 억제할 수 있다.
따라서, 상기 내부 절연층(310) 및 상기 외부 절연층(330), 특히 전계에 취약한 케이블 접속부재 등에 고전계가 인가되는 것을 억제하고, 나아가 상기 중간 절연층(320)이 가진 성능을 최대한으로 이끌어 내는 것으로 절연층(300) 전체를 컴팩트화 할 수 있으며, 그 열화를 억제하여, 상기 절연층(300)의 절연 내력, 기타 물성이 저하되는 것을 억제할 수 있고, 결과적으로 케이블보다 높은 임펄스 내압의 컴팩트 케이블로 할 수 있을 뿐만 아니라 케이블의 수명 단축을 억제할 수 있다.
본 발명의 실시예에 따르면, 상기 내부 절연층(310) 및 상기 외부 절연층(330)은 각각 크라프트 펄프를 원료로 하는 크라프트(kraft)지를 횡권하고 절연유를 함침시킴으로써 형성할 수 있고, 이로써 상기 내부 절연층(310) 및 상기 외부 절연층(330)은 중간 절연층(320)에 비해 낮은 저항율 및 높은 유전율을 가질 수 있다. 상기 크라프트지는 크라프트 펄프 중의 유기 전해질을 제거하여 우수한 유전정접 및 유전율을 얻기 위해 크라프트 펄프를 탈 이온수로 수세처리함으로써 제조될 수 있다.
상기 중간 절연층(320)은 플라스틱 필름의 표면, 이면, 또는 이들 모두에 크라프트지가 적층된 반합성지를 횡권하고 절연유를 함침시킴으로써 형성할 수 있다. 이렇게 형성된 중간 절연층(320)은 플라스틱 필름을 포함하고 있으므로 상기 내부 절연층(310) 및 상기 외부 절연층(330)에 비해 높은 저항율, 낮은 유전율, 높은 직류절연내력 및 임펄스 파괴내압을 지니고 있으며, 상기 중간 절연층(320)의 높은 저항율에 의해 직류전계를 직류 내전계 강도에 강한 상기 중간 절연층(320)에 집중시키고, 또한 낮은 유전율로 임펄스 전계에 강한 중간 절연층(320)에 임펄스 전계를 집중시키는 것으로 전체로써의 절연층(300)을 컴팩트하게 하여, 그 결과, 상기 케이블의 외경을 축소하는 것이 가능해진다.
상기 중간 절연층(320)을 형성하는 반합성지에서 상기 플라스틱 필름은 상기 케이블의 운용시 발열에 의해 팽창하여 유류저항을 증가시키는 것으로 상기 절연층(300)에 함침된 절연유가 상기 외부 반도전층(400) 쪽으로 이동하는 것을 억제하여 상기 절연유의 이동에 의한 탈유 보이드의 생성을 억제하고, 결과적으로 상기 탈유 보이드에 의한 전계 집중 및 절연 파괴를 억제할 수 있다. 여기서, 상기 플라스틱 필름은 폴리에틸렌, 폴리프로필렌, 폴리부틸렌 등의 폴리올레핀계 수지나 테트라플루오로에틸렌-헥사플루오로 폴리프로필렌 공중합체, 에틸렌-테트라플루오로에틸렌 공중합체 등의 불소 수지로 이루어질 수 있고, 바람직하게는 내열성이 우수한 폴리프로필렌 단독중합체 수지로 이루어질 수 있다.
또한, 상기 반합성지는 상기 플라스틱 필름의 두께가 전체 두께의 40 내지 70%일 수 있다. 상기 플라스틱 필름의 두께가 상기 반합성지 전체 두께의 40% 미만인 경우 상기 중간 절연층(320)의 저항율이 불충분하여 케이블의 외경이 증가할 수 있는 반면, 70% 초과인 경우 반합성지의 가공, 즉 제조가 어려워지며 절연유의 유통로 부족으로 함침이 어려워질 수 있고, 고가가 될 가능성이 있다.
상기 내부 절연층(310)은 상기 절연층(300) 전체 두께의 1 내지 10%의 두께를 가질 수 있고, 상기 외부 절연층(330)은 상기 절연층(300) 전체 두께의 1 내지 15%의 두께를 가질 수 있고, 상기 중간 절연층(320)은 상기 절연층(300) 전체 두께의 75% 이상의 두께를 가질 수 있다. 이로써, 상기 내부 절연층(310)의 최대 임펄스 전계 값이 상기 중간 절연층(320)의 최대 임펄스 전계 값보다 낮을 수 있다. 만약 내부 절연층의 두께가 필요 이상으로 증가될 경우, 중간 절연층(320)의 최대 임펄스 전계 값이 허용 최대 임펄스 전계 값보다 커지게 되며, 이를 완화하기 위해선 역으로 케이블 외경이 증가되는 문제점이 발생하게 된다. 그리고, 외부 절연층(330)은 내부 절연층보다 두께를 충분히 확보하는 것이 바람직한데, 이에 대해서는 후술한다.
그리고, 본 발명에서는 저항율이 작은 내부 절연층(310)과 외부 절연층(330)을 구비함으로써, 직류 고전계가 상기 도체(100)의 직상 및 상기 금속시스층(500)의 직하에 인가되는 것을 억제하면서도, 저항율이 높은 중간 절연층(320)의 두께를 75% 이상으로 설계함으로써, 충분한 절연 내력을 유지하면서 케이블 외경을 축소하는 것이 가능해진다.
이와 같이, 상기 절연층(300)을 구성하는 상기 내부 절연층(310), 상기 중간 절연층(320) 및 상기 외부 절연층(330)이 각각 정밀하게 제어된 상기 두께를 가짐으로써 상기 절연층(300)이 목적한 절연 내력을 가질 수 있는 동시에 케이블의 외경이 최소화될 수 있다. 또한, 상기 절연층(300)에 인가되는 직류 및 임펄스전계를 내전계상 가장 가장 유효하게 설계할 수 있으며, 직류와 임펄스의 고전계가 상기 도체(100)의 직상 및 상기 금속시스층(500)의 직하에 인가되는 것을 억제하여, 특히 전계에 취약한 케이블 접속부재의 절연 내력을 충분한 높이까지 상승시킬 수 있는 설계 수단을 적용할 수 있게 한다.
바람직하게는, 상기 외부 절연층(330)의 두께가 상기 내부 절연층(310)의 두께보다 크고, 예를 들어, 직류 500 kV의 케이블에선 상기 내부 절연층(310)의 두께는 0.1 내지 2.0 mm이고, 상기 외부 절연층(330)의 두께는 0.1 내지 3.0 mm이며, 상기 중간 절연층(320)의 두께는 15 내지 25 mm일 수 있다.
본 발명에 따른 케이블의 접속을 위한 연공 접속시 발생하는 열이 상기 절연층(300)에 인가되어 상기 중간 절연층(320)을 형성하는 반합성지의 플라스틱 필름이 녹을 수 있기 때문에, 상기 열로부터 상기 플라스틱 필름을 보호하기 위해 상기 외부 절연층(330)의 두께를 충분히 확보하는 것이 필요하고, 상기 내부 절연층(310)의 두께에 비해 두껍게 형성되는 것이 바람직하며, 상기 외부 절연층(330)의 두께는 상기 내부 절연층(310) 두께의 1 내지 30배로 하는 것이 바람직하다.
또한, 상기 중간 절연층(320)을 형성하는 반합성지의 시트의 두께는 70 내지 200 ㎛이고, 상기 내부 및 외부 절연층(310,320)을 형성하는 크라프트지의 두께는 50 내지 150 ㎛일 수 있다. 그리고, 상기 내부 및 외부 절연층(310,320)을 형성하는 크라프트지의 두께는 상기 반합성지를 구성하는 크라프트지의 두께보다 작도록 형성할 수 있다.
상기 내부 및 외부 절연층(310,320)을 형성하는 크라프트지의 두께가 과도하게 얇은 경우 강도가 불충분하여 지권시 기계적 손상을 줄 수 있고 목적한 두께의 절연층을 형성하기 위한 횡권의 횟수가 증가하게 되어 케이블의 생산성이 저하될 수 있으며, 상기 크라프트지의 횡권시 절연유의 주된 통로를 이루는 크라프트지 사이의 간극의 전체 체적이 감소하여 절연유 함침시 장시간이 소요될 수 있고 함침되는 절연유의 함량이 저하되어 목적한 절연 내력을 구현하기 곤란할 수 있다.
상기 절연층(300)에 함침되는 절연유는 종래 OF 케이블에 사용되는 저점도 절연유와 같이 케이블 길이 방향으로 순환되지 않고 고정되므로 상대적으로 높은 점도를 갖는 절연유를 사용한다. 상기 절연유는 상기 절연층(300)의 목적한 절연 내력을 구현하는 작용 뿐만 아니라 케이블의 굴곡시 절연지의 운동이 용이하도록 윤활 역할을 함께 수행할 수 있다.
상기 절연유는 특별히 제한되지 않지만 60℃의 동점도가 5 내지 500 센티스토크스(cSt)인 중점도 절연유를 사용하거나, 60℃의 동점도가 500 센티스토크스(cSt) 이상인 고점도 절연유를 사용하는 것도 가능하다. 예를 들어 나프텐계 절연유, 폴리스틸렌계 절연유, 광유, 알킬 벤젠이나 폴리부텐계 합성유, 중질 알킬레이트 등으로 이루어진 그룹으로부터 선택된 1종 이상의 절연유를 합성하여 사용할 수 있다.
상기 절연층(300)에 절연유를 함침시키는 공정은 상기 내부 절연층(310), 상기 중간 절연층(320) 및 상기 외부 절연층(330)이 각각 목적한 두께로 형성되도록 이들을 구성하는 상기 크라프트지 및 상기 반합성지를 각각 복수회 횡권하고, 진공 건조되어 상기 절연층(300)의 잔존 수분을 제거하고, 그 후, 절연유를 고압 환경 하에서 고온함침온도를 예를 들어, 100~120℃로 가열된 상기 절연유를 탱크에 주입하여 그 조건으로 일정 시간 동안 절연유를 절연층(300)에 함침시킨 후, 서서히 냉각됨으로써 수행될 수 있다.
상기 외부 반도전층(400)은 상기 절연층(300)과 상기 금속시스층(500) 사이의 불균일한 전계 분포를 억제하고 전계분포를 완화시키며 다양한 형태의 금속시스층(500)으로부터 상기 절연층(300)을 물리적으로 보호하는 기능을 수행한다.
상기 외부 반도전층(400)은 예를 들어 절연지에 도전성 카본 블랙을 처리한 카본지 등 반도전지(semi-conductive paper)의 횡권에 의해 형성될 수 있고, 바람직하게는 상기 반도전지의 횡권에 의해 형성되는 하부층 및 상기 반도전지와 금속화지가 갭권 또는 공권으로 횡권되어 형성되는 상부층을 포함할 수 있다. 여기서, 상기 상부층에서 상기 반도전지와 상기 금속화지가 공권되는 경우 상기 금속화지와 상기 반도전지가 일정 부분 예를 들어 약 40 내지 60% 오버랩(overlap)되도록 교대로 횡권될 수 있다.
여기서, 상기 금속화지는 크라프트지, 카본지 등의 베이스 종이 위에 알루미늄 테이프, 알루미늄박 같은 금속박이 적층된 구조를 가질 수 있고, 상기 금속박에는 그 하부의 반도전지, 절연지, 반합성지 등에 절연유가 용이하게 침투할 수 있도록 복수개의 천공이 존재할 수 있으며, 이로써 상기 하부층의 반도전지가 상기 상부층의 반도전지를 통해 상기 금속화지의 금속박까지 원활하게 전기적으로 접촉하게 되고, 결과적으로 상기 외부 반도전층(400)과 상기 금속시스층(500)이 원활하게 전기적으로 접촉하게 됨으로써 상기 절연층(300)과 상기 금속시스층(500) 사이에 균일한 전계 분포가 형성될 수 있다.
또한, 상기 외부 반도전층(400)은 상기 금속시스층(500)과의 사이에 동선직입포(미도시)를 추가로 포함할 수 있다. 상기 동선직입포는 부직포에 구리 와이어 2 내지 8 가닥이 직입된 구조로 상기 동선에 의해 상기 외부 반도전층(400)과 상기 금속시스층(500)을 원활하게 전기적으로 접촉시키는 기능을 수행하고, 추가로 상기 외부 반도전층(400)을 형성하기 위해 권취된 반도전지, 금속화지 등이 풀어지지 않고 앞서 기술한 구조를 유지할 수 있도록 이들을 견고하게 묶어주는 기능을 수행할 수 있으며, 열신축에 의한 케이블의 굴곡시 금속시스층(500)의 움직임에 따라 상기 금속화지 등이 찢어지는 등의 손상을 방지할 수 있다.
도 5는 본 발명에 따른 전력 케이블을 생산한 후 저온 환경하에서 포설시 금속시스층 아래에서 거대 공극이 생성되는 과정을 개략적으로 도시한 것이다.
도 5a에 도시된 바와 같이, 케이블의 생산 직후에는 내부 반도전층(200), 절연층(300) 및 외부 반도전층(400)에는 빈틈 없이 절연유가 함침되어 있다. 그러나, 도 5b에 도시된 바와 같이, 상기 케이블이 저온 환경하에 포설되는 경우 주위 온도 하강에 의해 함침된 절연유가 수축되고 이로써 상기 내부 반도전층(200), 절연층(300) 및 외부 반도전층(400)에는 절연유가 존재하지 않는 미세 공극(small void)이 다수 형성되게 된다. 또한, 도 5c에 도시된 바와 같이, 포설된 케이블이 통전시까지 장기간 동안 저온에서 방치되는 경우 함침된 절연유는 중력방향으로 힘을 받아 상기 케이블의 하부로 이동하게 되고 이로써 상기 미세 공극들은 케이블 상부로 모여 거대 공극(large void)이 형성될 수 있다. 이러한 문제점은 절연유의 점도가 낮을수록 중력에 의해 이동이 쉽기 때문에 더욱 문제될 수 있으며, 따라서 고점도 절연유보다 중점도 절연유를 사용하는 경우에 더욱 문제될 수 있다.
나아가, 도 5c에 도시된 바와 같이, 이렇게 생성된 거대 공극이 상기 절연층(300)에까지 미친다면 상기 절연층(300)에 포함된 거대 공극에 전계가 집중됨으로써 이를 기점으로 부분방전, 절연파괴 등이 일어나 케이블의 수명이 단축될 수 있다.
이러한 상황에서, 본 발명자들은 상기 외부 반도전층(400)의 두께를 정밀하게 제어함으로써 상기 거대 공극이 형성된다 하더라도 상기 절연층(300)에까지는 미치지 않고 상기 절연층(300) 상부의 외부 반도전층(400)까지만 형성될 수 있도록 하여 상기 부분방전, 절연파괴 등을 효과적으로 억제할 수 있음을 착안하여 본 발명을 완성하였다.
즉, 도체(100), 반도전층(200,400), 절연층(300) 등의 공극에 함침된 절연유가 저온에서 수축되어 다수의 미세 공극이 형성되고, 시간이 지남에 따라 절연유가 중력에 의해 아래로 이동하게 됨으로써 케이블 상부에 거대 공극이 형성될 때, 종래 전력 케이블의 외부 반도전층 두께에 비해 상대적으로 두껍게 외부 반도전층의 두께를 설계함으로써 상기 거대 공극이 상기 외부 반도전층(400)에만 포함되고 상기 절연층(300)까지는 미치지 않도록 조절할 수 있다.
구체적으로, 상기 외부 반도전층(400)의 두께를 설계하는 기준은 상기 케이블을 구성하는 도체(100), 내부 반도전층(200), 절연층(300) 및 외부 반도전층(400) 각각의 공극율(porosity)와 밀접한 관계가 있다. 여기서, 상기 공극율은 각 층의 전체 단면적 또는 부피 대비 공극이 차지하는 총 단면적 또는 부피의 비율로서, 각 층을 구성하는 재료가 갖는 자체 공극율과 크라프트지, 반도전지 등이 횡권되는 경우 이들 종이 사이의 간극(gap)에 의한 공극율을 포함하는 값이다. 여기서, 상기 케이블이 단위길이 1m당 보유하는 절연유의 총 중량(W1)은 아래 수학식 1로 표현될 수 있다.
[수학식 1]
W1(kg/m)=ρ×S
상기 수학식 1에서,
ρ는 상온에서의 절연유 밀도(kg/㎥)이고,
S는 {aA+bB+cC+dD+cE+bF}이며,
a는 도체(100)의 공극율(%)이고, b는 내부 반도전층(200) 및 외부 반도전층(400)의 공극율(%)이고, c는 절연층(300) 중 크라프트지의 횡권에 의해 형성된 내부 절연층(310) 및 외부 절연층(330)의 공극율(%)이고, d는 절연층(300) 중 반합성지의 횡권에 의해 형성된 중간 절연층(320)의 공극율(%)이고,
A는 도체(100)의 단면적(㎡)이고, B는 내부 반도전층의 단면적(㎡)이고, C는 내부 절연층(310)의 단면적(㎡)이고, D는 중간 절연층(320)의 단면적(㎡)이고, E는 외부 절연층(330)의 단면적(㎡)이고, F는 외부 반도전층(400)의 단면적(㎡)이다.
한편, 400kV 이상의 초고압 직류 MIND 케이블 1m당 함침되는 절연유의 총 함량은 일반적으로 1.0 내지 2.5 kg/m 수준이고, 상기 케이블이 생산 후 저온 환경하에 포설되는 경우 함침된 절연유가 수축을 하게 된다면, 상기 케이블 내부에 절연유가 존재하지 않는 미세한 탈유 공극이 증가하게 되고, 상기 케이블의 포설시 주위 환경 온도와 상기 탈유 공극 전체 단면적(A1)의 관계는 아래 수학식 2로 정의될 수 있다.
[수학식 2]
A1(㎟)=α×△T×S
상기 수학식 2에서,
α는 절연유 팽창률(%)이고,
△T는 상기 케이블의 생산시점의 온도와 포설 후 주위 환경 온도의 차이값(℃)이다.
도 6은 본 발명에 따른 전력 케이블에서 외부 반도전층의 두께 설계에 관한 참고도이다.
도 6에 도시된 바와 같이, 전력 케이블을 저온 환경하에서 포설 후 함침된 절연유가 수축하여 다수의 미세 공극(small void)이 형성되고, 상기 절연유가 중력방향으로 하강함으로써 상기 미세 공극이 케이블 상부로 모여 형성된 거대 공극(large void)이 상기 절연층(300)까지는 미치지 않고 상기 외부 반도전층(400)에만 포함되도록 하기 위한 상기 외부 반도전층(400) 내의 필요 면적(A2)은 아래 수학식 3에 의해 정의될 수 있다.
[수학식 3]
A2(㎟)=α×△T×S/b
=2{(π×R12×θ/360)-(R1-t)×R1×sinθ/2}
=2{(π×R12×cos-1{(R1-t)/R1}/360)-(R1-t)×R1×sin[cos-1{(R1-
t)/R1}]/2}
상기 수학식 3에서,
R1은 도체(100) 중심부터 외부 반도전층(400)까지의 외경(m)이고,
t는 필요 면적(A2)의 두께(m)이고,
θ는 필요 면적(A2)의 중심과 일말단 사이의 각도(°)이다.
상기 수학식 1 내지 3에 기초하여, 아래 표 1의 사양을 갖는 500 kV 초고압 케이블에서 외부 반도전층(400) 내의 필요 면적(A2) 및 상기 필요 면적(A2)의 두께(t)를 계산하면 후술하는 바와 같다.
구분 외경(mm) 단면적(㎟) 공극율(%)
도체 58 2,642 5
내부 반도전층 59 92 40
내부 절연층 62 285 40
중간 절연층 102 5,152 25
외부 절연층 105 488 40
외부 반도전층 108 502 40
구체적으로, 수학식 1에 따라 상기 케이블의 단위길이 1m당 보유하는 절연유의 총 중량(W1)을 계산하면, 926×{(0.05×2,642)+(0.4×92)+(0.4×285)+(0.25×5,152)+(0.4×488)+(0.4×166)+(0.4×167)+(0.4×169)}/(1E+6)=1.82kg/m이고, 여기서 상온에서의 절연유 밀도는 926 kg/㎥로 전제한 것이다.
또한, 수학식 2에 따라 저온 환경하에서 케이블 포설 후 상기 케이블의 외부 반도전층까지 형성된 탈유 공극 전체 단면적(A1)을 계산하면, 0.00007×5×{(0.05×2,642)+(0.4×92)+(0.25×5,152)+(0.4×488)+(0.4×166)+(0.4×167)+(0.4×169)}=6.88㎟이고, 여기서 절연유 팽창률은 0.0007%로 하고, △T는 5℃로 전제한 것이다.
그리고, 수학식 3에 따라 외부 반도전층에서 필요 면적(A2)을 계산하면, 6.88/0.4=17.2㎟이고, 이에 따른 필요 면적(A2)의 두께(t)를 산정하면 약 1.1 mm 수준이고, 상기 두께(t)는 내부 반도전층(200)부터 외부 반도전층(400)까지의 두께인 {108(외부 반도전층의 외경)-58(도체의 직경)}/2인 25 mm의 약 4.4% 수준이 된다.
이러한 과정을 통해 다양한 케이블 구조에 대해 평가를 실시했다. 일반적으로 케이블 제작시 온도가 25 내지 45 ℃이고, 케이블 포설시 주위 환경 온도는 해저의 경우 5℃, 육상의 경우 -10℃ 수준이기 때문에 생산시점과 포설시점의 온도차는 약 20 내지 50℃ 수준이고, 이에 기초하여 상기 외부 반도전층에서 필요 면적(A2)의 두께(t)는 내부 반도전층(200)부터 외부 반도전층(400)까지의 두께의 7.5 내지 15%이고, 상기 두께(t)는 예를 들어 2 내지 4 mm일 수 있다.
여기서, 상기 두께(t)가 내부 반도전층(200)부터 외부 반도전층(400)까지의 두께의 7.5% 미만인 경우 상기 거대 공극이 상기 절연층(300)에까지 미치게 되어 이를 기점으로 부분방전, 절연파괴 등이 발생할 수 있는 반면, 15% 초과인 경우 상기 외부 반도전층(400)의 두께가 불필요하게 두꺼워 케이블의 외경을 증가시키는 문제가 발생할 수 있다.
상기와 같이 정밀하게 제어된 외부 반도전층(400)의 두께에 의해 상기 케이블의 저온 환경하에서의 포설 후 과통전시까지 장시간 동안 방치시 상기 케이블 상부에 형성된 거대 공극이 상기 절연층(300)까지는 미치지 않고 상기 외부 반도전층(400)에만 포함됨으로써 상기 절연층(300)의 부분방전, 절연파괴를 효과적으로 억제할 수 있다.
도 7은 본 발명에 따른 전력 케이블에서 외부 반도전층이 변형된 모습에 관한 실시예를 개략적으로 도시한 것이다.
도 7에 도시된 바와 같이, 상기 케이블은 외부 충격이나 압력에 의해 상기 외부 반도전층(400)이 국소적으로 돌출(A)되거나 함몰(B)되는 등 변형되더라도 상기 외부 반도전층(400)의 두께가 두껍게 설계됨으로써 상기 절연층(300)의 변형을 방지하여 전계왜곡 등에 의한 절연파괴를 추가로 방지할 수 있다.
상기 금속시스층(500)은 케이블 내부에서 절연유가 외부로 새지 않게 하고, 직류 송전시의 케이블에 걸리는 전압을 도체(100)와 상기 금속시스층(500) 사이에 고정하여 케이블 일말단에서의 접지를 통해 케이블의 지락 또는 단락 사고 발생시 고장전류의 귀로로서 작용하여 안전을 도모하고, 케이블 외부의 충격, 압력 등으로부터 케이블을 보호하고, 케이블의 차수성, 난연성 등을 향상시키는 작용을 한다.
상기 금속시스층(500)은 예를 들어 순연 내지 합금연(lead alloy)으로 이루어진 연피시스에 의해 형성될 수 있다. 상기 금속시스층(500)으로서 상기 연피시스는 전기저항이 비교적 낮아 대전류통전체 기능을 겸하고, 심리스 타입(seamless type)으로 형성시 케이블의 차수성, 기계적 강도, 피로특성 등을 추가로 향상시킬 수 있다.
또한, 상기 연피시스는 케이블의 내식성, 차수성 등을 추가로 향상시키고 상기 금속시스층(500)과 상기 케이블보호층(600) 사이의 접착력을 향상시키기 위해 표면이 부식 방지 컴파운드, 예를 들어, 블로운 아스팔트 등으로 도포될 수 있다.
상기 케이블보호층(600)은 예를 들어 금속보강층(630) 및 외부시스(650)를 포함하고, 내부시스(610), 상기 금속보강층(630) 상하에 배치된 베딩층(620,640) 등을 추가로 포함할 수 있다. 여기서, 상기 내부시스(610)는 케이블의 내식성, 차수성 등을 향상시키고, 기계적 외상, 열, 화재, 자외선, 곤충이나 동물로부터 케이블을 보호하는 기능을 수행한다. 상기 내부시스(610)는 특별히 제한되지 않지만 내한성, 내유성, 내약품성 등이 우수한 폴리에틸렌이나, 내약품성, 난연성 등이 우수한 폴리염화비닐 등으로 이루어질 수 있다.
상기 금속보강층(630)은 기계적 충격으로부터 케이블을 보호하는 기능을 수행하고, 부식을 방지하기 위해 아연 도금 강철 테이프, 스테인레스강 테이프 등으로 형성될 수 있고, 상기 아연 도금 강철 테이프는 표면에 부식 방지 컴파운드가 도포될 수 있다. 또한, 상기 금속보강층(630) 상하에 배치된 베딩층(620,640)은 외부로부터의 충격, 압력 등을 완화하는 기능을 수행하고, 예를 들어, 부직포 테이프에 의해 형성될 수 있다.
또한, 상기 금속보강층(630)은 상기 금속시스층(500)의 직상에 직접 또는 베딩층(620,640)을 통해 설치하는 것도 가능하다. 이러한 경우 상기 금속보강층(630) 내의 절연유의 고온 팽창에 의한 상기 금속시스층(500)의 팽창 변형을 억제하여 케이블의 기계적 신뢰성을 향상시킴과 동시에 금속시스층(500) 내의 절연층(300)과 반도전층(200,400)의 부분을 고유압화하여 절연내력을 향상시키는 효과가 있다.
상기 외부시스(650)는 상기 내부시스(610)와 실질적으로 동일한 기능 및 특성을 갖고, 해저터널, 육상터널구간 등에서의 화재는 인력 또는 설비 안전에 큰 영향을 주는 위험요소이므로 해당 지역에서 사용되는 케이블의 외부시스는 난연 특성이 우수한 폴리염화비닐을 적용하고, 관로구간의 케이블 외부시스는 기계적 강도, 내한성이 우수한 폴리에틸렌을 적용할 수 있다.
또한, 여기에선 도시하지 않았지만 금속시스(500)의 위에 내부시스(610)를 생략하고 바로 금속보강층(630)을 설치할 수 있으며, 금속보강층(630) 내측과 외측에는 필요에 따라 베딩층을 설치할 수 있다. 즉, 상기 금속시스층에서 외측을 향해 순차적으로 베딩층, 금속보강층, 베딩층 및 외부시스가 구비되도록 형성할 수 있다. 이 경우는 금속보강층(630)이 금속시스(500)의 변형은 허용해도 외주의 변화는 억제하기 때문에, 금속시스(500)의 피로특성상 바람직하며 케이블 통전시의 금속시스(500) 내의 케이블 절연층(300)의 유압을 높히고, 반대로 케이블 통전을 off했을 시의 온도 하강에 의한 절연유의 수축에 따른 유압의 하강을 보상하며, 유압이 높은 부분에서 내부반도전층(200)에서와 같이 급격하게 유압이 내려가는 부분에 유압차로 기름을 이동시켜 보충하는 효과가 발생하여 바람직하다.
또한, 상기 케이블이 해저케이블인 경우 상기 케이블보호층(600)은 예를 들어 철선외장(660)과 폴리프로필렌 얀 등으로 이루어진 외부 써빙층(670) 등을 추가로 포함할 수 있다. 상기 철선외장(660), 외부 써빙층(670) 등은 해저의 해류, 암초 등으로부터 케이블을 추가적으로 보호하는 기능을 수행할 수 있다.
본 명세서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술분야의 당업자는 이하에서 서술하는 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경 실시할 수 있을 것이다. 그러므로 변형된 실시가 기본적으로 본 발명의 특허청구범위의 구성요소를 포함한다면 모두 본 발명의 기술적 범주에 포함된다고 보아야 한다.

Claims (17)

  1. 도체;
    상기 도체를 둘러싸는 내부 반도전층;
    상기 내부 반도전층을 둘러싸고 절연유가 함침된 절연층;
    상기 절연층을 둘러싸는 외부 반도전층;
    상기 외부 반도전층을 둘러싸는 금속시스층; 및
    상기 금속시스층을 둘러싸는 케이블보호층을 포함하고,
    상기 절연층은 절연지가 횡권되고 절연유가 함침되어 형성되고,
    상기 내부 반도전층 및 상기 외부 반도전층은 반도전지(semi-conductive paper)가 횡권되고 절연유가 함침되어 형성되고,
    상기 외부 반도전층의 두께는 상기 내부 반도전층, 상기 절연층 및 상기 외부 반도전층의 총 두께의 7.5 내지 15%인, 전력 케이블.
  2. 제1항에 있어서,
    상기 외부 반도전층의 두께는 2 내지 4 mm인 것을 특징으로 하는, 전력 케이블.
  3. 제1항에 있어서,
    상기 절연유는 60℃의 동점도가 5 내지 500 센티스토크스(cSt)인 중점도 절연유인 것을 특징으로 하는, 전력 케이블.
  4. 제1항에 있어서,
    상기 절연유는 60℃의 동점도가 500 센티스토크스(Cst) 이상인 고점도 절연유인 것을 특징으로 하는, 전력 케이블.
  5. 제1항에 있어서,
    상기 외부 반도전층은 반도전지의 횡권에 의해 형성되는 하부층 및 반도전지와 금속화지의 공권에 의해 형성되는 상부층을 포함하는 것을 특징으로 하는, 전력 케이블.
  6. 제5항에 있어서,
    상기 외부 반도전층은 동선직입포로 이루어지는 최상층을 추가로 포함하는 것을 특징으로 하는, 전력 케이블.
  7. 제1항 내지 제4항 중 어느 한 항에 있어서,
    상기 절연층은 내부 절연층, 중간 절연층 및 외부 절연층이 순차적으로 적층되어 형성되고,
    크라프트지(kraft paper) 또는 플라스틱 필름 및 상기 플라스틱 필름의 적어도 한면에 적층된 크라프트지를 포함하는 반합성지가 횡권되고,
    상기 반합성지는 플라스틱 필름 및 상기 플라스틱 필름의 적어도 한면에 적층된 크라프트지를 포함하고,
    상기 절연층의 전체 두께를 기준으로, 상기 내부 절연층의 두께는 1 내지 10%이고, 상기 중간 절연층의 두께는 75% 이상이며, 상기 외부 절연층의 두께는 5 내지 15%이고,
    상기 내부 절연층 및 상기 외부 절연층의 저항율이 상기 중간 절연층의 저항율보다 작은 것을 특징으로 하는, 전력 케이블.
  8. 제7항에 있어서,
    상기 외부 절연층의 두께가 상기 내부 절연층의 두께보다 큰 것을 특징으로 하는, 전력 케이블.
  9. 제7항에 있어서,
    상기 외부 절연층의 두께는 상기 내부 절연층의 두께의 1 내지 30배인 것을 특징으로 하는, 전력 케이블.
  10. 제7항에 있어서,
    상기 내부 절연층의 두께는 0.1 내지 2.0 mm이고, 상기 외부 절연층의 두께는 0.1 내지 3.0 mm이며, 상기 중간 절연층의 두께는 15 내지 25 mm인 것을 특징으로 하는, 전력 케이블.
  11. 제7항에 있어서,
    상기 내부 절연층 및 상기 외부 절연층의 크라프트지의 두께는 상기 반합성지의 크라프트지의 두께보다 작은 것을 특징으로 하는, 전력 케이블.
  12. 제7항에 있어서,
    상기 내부 절연층의 최대 임펄스 전계 값이 상기 중간 절연층의 최대 임펄스 전계 값보다 작은 것을 특징으로 하는, 전력 케이블.
  13. 제7항에 있어서,
    상기 중간 절연층의 최대 임펄스 전계 값이 100 kV/mm 이하인 것을 특징으로 하는, 전력 케이블.
  14. 제7항에 있어서,
    상기 플라스틱 필름의 두께는 상기 반합성지의 전체 두께의 40 내지 70%인 것을 특징으로 하는, 전력 케이블.
  15. 제14항에 있어서,
    상기 반합성지의 두께는 70 내지 200 ㎛이고, 상기 내부 절연층 및 상기 외부 절연층의 크라프트지의 두께는 50 내지 150 ㎛인 것을 특징으로 하는, 전력 케이블.
  16. 제1항 내지 제4항 중 어느 한 항에 있어서,
    상기 도체는 연동선 또는 알루미늄으로 이루어지고, 원형 중심선 위에 평각 소선을 다층으로 얹어 구성시킨 평각도체 또는 원형 중심선 위에 원형 소선을 다층으로 얹은 후 압축한 원형압축도체인 것으로 특징으로 하는, 전력 케이블.
  17. 제1항 내지 제4항 중 어느 한 항에 있어서,
    상기 플라스틱 필름은 폴리프로필렌 단독중합체 수지로 형성된 것을 특징으로 하는, 전력 케이블.
PCT/KR2017/003519 2017-03-24 2017-03-30 전력 케이블 WO2018174330A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/495,261 US10672539B2 (en) 2017-03-24 2017-03-30 Power cable
EP17901682.9A EP3605560B1 (en) 2017-03-24 2017-03-30 Power cable

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20170037449 2017-03-24
KR10-2017-0037449 2017-03-24

Publications (1)

Publication Number Publication Date
WO2018174330A1 true WO2018174330A1 (ko) 2018-09-27

Family

ID=63585572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/003519 WO2018174330A1 (ko) 2017-03-24 2017-03-30 전력 케이블

Country Status (4)

Country Link
US (1) US10672539B2 (ko)
EP (1) EP3605560B1 (ko)
KR (1) KR101998944B1 (ko)
WO (1) WO2018174330A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018151371A1 (ko) * 2017-02-16 2018-08-23 엘에스전선 주식회사 전력 케이블
KR101998944B1 (ko) * 2017-03-24 2019-07-11 엘에스전선 주식회사 전력 케이블
IT201900002609A1 (it) * 2019-02-22 2020-08-22 Prysmian Spa Metodo per estrarre sottoprodotti di reticolazione da un sistema isolante elettrico reticolato di un cavo energia e relativo cavo energia.
CN111584147B (zh) * 2020-04-22 2022-03-11 国网山东省电力公司电力科学研究院 抑制直流输电线路电晕放电和积污的方法及电介质覆膜极导线

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005346981A (ja) * 2004-05-31 2005-12-15 Toshiba Corp 電力ケーブルの性能劣化防止方法およびこの性能劣化防止方法を実施する電力ケーブル
JP2015118840A (ja) * 2013-12-19 2015-06-25 株式会社ビスキャス 遮水テープ、遮水ケーブル
KR20150126736A (ko) * 2013-04-05 2015-11-12 에이비비 테크놀로지 리미티드 전송 시스템용 혼합 고체 절연 재료
KR20160101643A (ko) * 2015-02-17 2016-08-25 엘에스전선 주식회사 전력 케이블
KR20160121873A (ko) * 2015-04-13 2016-10-21 엘에스전선 주식회사 전력 케이블

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2709197A (en) * 1949-10-13 1955-05-24 Glover & Co Ltd W T Electric cables
US2914429A (en) * 1951-03-21 1959-11-24 British Insulated Callenders Manufacture of micro-crystalline wax impregnated electric cables
US3651244A (en) * 1969-10-15 1972-03-21 Gen Cable Corp Power cable with corrugated or smooth longitudinally folded metallic shielding tape
GB2002684B (en) * 1977-08-06 1982-02-17 Showa Electric Wire & Cable Co Laminated insulating paper and oil-filled cable insulated thereby
JPS561414A (en) * 1979-06-19 1981-01-09 Nippon Petrochemicals Co Ltd Oillfilled power cable
IT1135021B (it) * 1981-01-14 1986-08-20 Pirelli Cavi Spa Cavo elettrico perfezionato
IT1173045B (it) * 1984-01-17 1987-06-18 Pirelli Cavi Spa Cavo elettrico ad olio fluido perfezionato
IT1186188B (it) * 1985-11-08 1987-11-18 Pirelli Cavi Spa Nastro composito per l'isolamento di cavi elettrici e cavo elettrico che utilizza tale nastro per il suo isolamento
JPH04101310A (ja) * 1990-08-17 1992-04-02 Fujikura Ltd 電力ケーブル
EP0875907B2 (en) * 1997-04-29 2009-09-02 Sumitomo Electric Industries, Ltd. Solid DC cable
SE511215C2 (sv) * 1997-12-22 1999-08-23 Asea Brown Boveri Dielektrisk gelande komposition, användning därav, isolerad elektrisk DC-kabel omfattande sådan komposition och förfarande för framställning därav
JP3024627B2 (ja) * 1998-02-03 2000-03-21 住友電気工業株式会社 海底ソリッドケーブル
KR100591103B1 (ko) * 2004-12-21 2006-06-19 (주)로이포스 케이블용 차수테이프 및 그 제조방법
JP2007287388A (ja) * 2006-04-13 2007-11-01 Sumitomo Electric Ind Ltd 超電導ケーブルコアおよび超電導ケーブル
EP1998340A1 (en) * 2007-05-29 2008-12-03 ABB Technology AG An electric power cable
JP5369507B2 (ja) * 2007-08-27 2013-12-18 住友電気工業株式会社 海底ソリッドケーブルの製造方法及び海底ソリッドケーブル
DK2512803T3 (da) * 2009-12-16 2013-12-09 Prysmian Spa Højspændingsjævnstrømskabel med en imprægneret stratificeret isolering
NO20101359A1 (no) * 2010-09-30 2012-04-02 Nexans Kraftkabel med laminert vannbarriere
KR102238971B1 (ko) * 2014-02-21 2021-04-12 엘에스전선 주식회사 Dc용 케이블의 종단접속함
KR102183193B1 (ko) * 2014-02-25 2020-11-26 엘에스전선 주식회사 종단접속부를 구비한 전력케이블
KR101626209B1 (ko) * 2014-09-01 2016-05-31 김현준 고압전선용 반도전 테이프, 그 제조방법 및 이를 포함하는 고압전선
AU2014405270B2 (en) * 2014-09-05 2020-07-16 Prysmian S.P.A. Submarine electrical cable and submarine cable operation method
WO2016133332A1 (ko) * 2015-02-17 2016-08-25 엘에스전선 주식회사 전력 케이블
EP3297001B1 (en) * 2015-05-11 2021-04-14 LS Cable & System Ltd. Power cable
KR102388542B1 (ko) * 2015-06-30 2022-04-20 엘에스전선 주식회사 초전도 선재
EP3358574A4 (en) * 2015-09-30 2019-08-21 LS Cable & System Ltd. UNDERWATER CABLE WITH HETEROGENIC TANK
KR101998944B1 (ko) * 2017-03-24 2019-07-11 엘에스전선 주식회사 전력 케이블

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005346981A (ja) * 2004-05-31 2005-12-15 Toshiba Corp 電力ケーブルの性能劣化防止方法およびこの性能劣化防止方法を実施する電力ケーブル
KR20150126736A (ko) * 2013-04-05 2015-11-12 에이비비 테크놀로지 리미티드 전송 시스템용 혼합 고체 절연 재료
JP2015118840A (ja) * 2013-12-19 2015-06-25 株式会社ビスキャス 遮水テープ、遮水ケーブル
KR20160101643A (ko) * 2015-02-17 2016-08-25 엘에스전선 주식회사 전력 케이블
KR20160121873A (ko) * 2015-04-13 2016-10-21 엘에스전선 주식회사 전력 케이블

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3605560A4 *

Also Published As

Publication number Publication date
EP3605560B1 (en) 2024-02-28
US10672539B2 (en) 2020-06-02
US20200013526A1 (en) 2020-01-09
EP3605560A4 (en) 2020-12-09
KR20180108356A (ko) 2018-10-04
EP3605560A1 (en) 2020-02-05
KR101998944B1 (ko) 2019-07-11

Similar Documents

Publication Publication Date Title
WO2018174330A1 (ko) 전력 케이블
KR101819289B1 (ko) 전력 케이블
WO2014081096A1 (en) Fire resistant cable for medium or high voltage
EP3314615B1 (en) Electric power cable and a process for the production of the power cable
WO2018151371A1 (ko) 전력 케이블
KR20140095155A (ko) 내화 케이블
CN103959400A (zh) 包括厚度受控的层压绝缘层的直流(dc)传输***以及制造方法
WO2016133332A1 (ko) 전력 케이블
WO2018034404A1 (ko) 전력 케이블
KR102638868B1 (ko) 중간접속함 압력 보상 장치, 이를 이용한 중간접속함 압력 보상 시스템, 및 중간접속함 압력 보상 방법
WO2018135700A1 (ko) 전력 케이블
WO2020096243A1 (ko) 전력케이블 중간접속 시스템
WO2020096242A1 (ko) 전력케이블 중간접속구조
WO2020096241A1 (ko) 전력케이블의 중간접속 시스템
WO2018182070A1 (ko) 전력 케이블
WO2018182073A1 (ko) 전력 케이블
WO2018182071A1 (ko) 전력 케이블
WO2018182075A1 (ko) 전력 케이블
WO2018182080A1 (ko) 직류 전력케이블 중간접속 시스템
KR101818879B1 (ko) 전력 케이블
WO2018182078A1 (ko) 직류 전력케이블 중간접속 시스템
WO2018182076A1 (ko) 전력 케이블용 중간접속함을 이용한 직류 전력케이블 중간접속 시스템 및 직류 전력케이블 접속 방법
WO2018182121A1 (ko) 직류 전력케이블 중간접속 시스템
WO2018221804A1 (ko) 초고압 직류 전력케이블의 중간접속시스템
WO2018182122A1 (ko) 직류 전력케이블 중간접속 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17901682

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017901682

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017901682

Country of ref document: EP

Effective date: 20191024