WO2018173551A1 - 較正装置、較正方法、光学装置、撮影装置および投影装置 - Google Patents

較正装置、較正方法、光学装置、撮影装置および投影装置 Download PDF

Info

Publication number
WO2018173551A1
WO2018173551A1 PCT/JP2018/005008 JP2018005008W WO2018173551A1 WO 2018173551 A1 WO2018173551 A1 WO 2018173551A1 JP 2018005008 W JP2018005008 W JP 2018005008W WO 2018173551 A1 WO2018173551 A1 WO 2018173551A1
Authority
WO
WIPO (PCT)
Prior art keywords
coordinates
dimensional
calibration
camera
camera model
Prior art date
Application number
PCT/JP2018/005008
Other languages
English (en)
French (fr)
Inventor
聡明 松沢
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to CN201880019080.1A priority Critical patent/CN110447220B/zh
Publication of WO2018173551A1 publication Critical patent/WO2018173551A1/ja
Priority to US16/568,814 priority patent/US10798353B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3179Video signal processing therefor
    • H04N9/3185Geometric adjustment, e.g. keystone or convergence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/80Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/246Calibration of cameras
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N17/00Diagnosis, testing or measuring for television systems or their details
    • H04N17/002Diagnosis, testing or measuring for television systems or their details for television cameras
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3191Testing thereof
    • H04N9/3194Testing thereof including sensor feedback
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2200/00Indexing scheme for image data processing or generation, in general
    • G06T2200/04Indexing scheme for image data processing or generation, in general involving 3D image data

Definitions

  • the present invention relates to a calibration device, a calibration method, an optical device, a photographing device, and a projection device.
  • the camera model includes a plurality of unknown parameters (camera parameters), and by obtaining these camera parameters by a calibration device, the principal ray in the real world corresponding to the two-dimensional coordinates (pixel coordinates) of the image Can be obtained mathematically.
  • pixel coordinates corresponding to three-dimensional coordinates in the real world hereinafter referred to as world coordinates
  • the principal ray is also called a backprojection straight line or line of sight corresponding to the pixel coordinates.
  • the conventional camera calibration disclosed in Patent Document 1 and Non-Patent Document 1 will be described.
  • the camera calibration is performed by the following procedure using a mathematical camera model representing a process in which real-world three-dimensional coordinates are captured by a camera and converted into two-dimensional coordinates of an image.
  • Equation 1 is an expression based on the assumption that all principal rays intersect at the optical center of the camera.
  • equation 3 the normalized image plane coordinates (u p, v p) distortion were added to the (u d, v d).
  • (g 1 , g 2 , g 3 , g 4 , k 1 ) is a distortion parameter. Furthermore, the normalized image plane coordinates (u d , v d ) to which distortion is added are converted into pixel coordinates (u, v) in units of pixels using Equation 4.
  • the standard camera model represents the transformation from world coordinates (x, y, z) to pixel coordinates (u, v) by imaging of the camera by the equations 1 to 4.
  • the parameters ( ⁇ u , ⁇ v , u 0 , v 0 , g 1 , g 2 , g 3 , g 4 , k 1 ) of the equations 3 and 4 represent the characteristics of the camera itself, be called.
  • Equation 3 is a model that considers distortion aberrations up to the third order, but a model in which higher order terms such as fifth order, seventh order, etc. are added is also used.
  • a typical distortion model is the Brown model of Non-Patent Document 2 shown in Equation 5.
  • a wide-angle lens having a large angle of view generally has a large distortion aberration, so a high-order term of several 5 is required. This increases the number of parameters of the camera model, making optimization difficult. Furthermore, since the camera model of Formula 1 is based on perspective projection, a wide-angle lens having a half angle of view of 90 ° or more cannot be calibrated in principle.
  • the conventional standard camera model including the camera model of Patent Document 1 is a non-linear model composed of a plurality of mathematical expressions shown in Equations 1 to 4, and finally, in the process of obtaining camera parameters from measurement data, It is necessary to repeatedly optimize all camera parameters. For this reason, the following two problems arise.
  • the present invention has been made in view of the above-described circumstances, and is capable of accurately obtaining camera parameters of a camera with a large angle of view in a short time and capable of obtaining pixel coordinates corresponding to world coordinates in a short time.
  • An apparatus, a calibration method, an optical apparatus, an imaging apparatus, and a projection apparatus are provided.
  • One aspect of the present invention is a calibration of an optical device including a two-dimensional image conversion element having a plurality of pixels, and an optical system that forms an imaging relationship between the image conversion element and a three-dimensional world coordinate space.
  • a calibration data acquisition unit for acquiring calibration data indicating correspondence between the two-dimensional pixel coordinates of the image conversion element and the three-dimensional world coordinates of the world coordinate space; and the calibration data acquisition unit
  • a camera model representing the two coordinate values of the two-dimensional pixel coordinates as a function of the three coordinate values of the three-dimensional world coordinates is applied to the calibration data thus calculated, and parameters of the camera model are calculated.
  • the camera model is obtained by a linear sum of a plurality of two-dimensional vector functions whose elements are functions of two coordinate values of the two-dimensional coordinates (P ( ⁇ ) cos ⁇ , P ( ⁇ ) sin ⁇ ). Two coordinate values of the two-dimensional pixel coordinates may be represented.
  • the function of the two-dimensional coordinates (P ( ⁇ ) cos ⁇ , P ( ⁇ ) sin ⁇ ) may be in the same form as the function representing the imaging relationship between the two-dimensional planes.
  • the camera model may be expressed by an equation in which each coefficient of the linear sum of the plurality of two-dimensional vector functions is replaced by a power polynomial that is the reciprocal of r of the three-dimensional spherical coordinates.
  • the parameter calculation unit may apply the camera model to the calibration data by a linear least square method.
  • the parameter calculation unit converts the three-dimensional world coordinates in the calibration data acquired by the calibration data acquisition unit into one or more rotations of three rotation angles representing rotation of the world coordinates.
  • the camera model may be applied to calibration data converted into world coordinates rotated at an angle, and one or more rotation angles at which the residual of the camera model is minimized may be obtained.
  • the parameter calculation unit converts the three-dimensional world coordinates of the calibration data acquired by the calibration data acquisition unit into one or more of three translation components representing parallel movement of the world coordinates.
  • the camera model may be applied to the calibration data converted into world coordinates translated by the above component to obtain one or more translation components that minimize the residual of the camera model.
  • the optical device includes a plurality of the image conversion elements and an optical system that forms an imaging relationship between the image conversion elements and the three-dimensional world coordinate space
  • the calibration data acquisition unit includes The calibration data of each of the image conversion elements and the optical system may be acquired, and the parameter calculation unit may apply each of the camera models to the calibration data of each of the image conversion elements and the optical system.
  • the optical device may be a photographing device, the image conversion element may be an imaging element, and the optical system may be an imaging optical system.
  • the optical device may be a projection device, the image conversion element may be an image forming element, and the optical system may be a projection optical system.
  • Another aspect of the present invention is an optical apparatus comprising: a two-dimensional image conversion element having a plurality of pixels; and an optical system that converts an imaging relationship between the image conversion element and a three-dimensional world coordinate space.
  • the step of calculating the parameter is a step of acquiring the calibration data.
  • the three-dimensional world coordinates (x, y, z) of the calibration data acquired by the two-dimensional coordinates (P ( ⁇ ) are converted into three-dimensional spherical coordinates (r, ⁇ , ⁇ ) equal to the world coordinates. ) Cos ⁇ , P ( ⁇ ) sin ⁇ ), and the two coordinate values of the two-dimensional pixel coordinates are converted into the two coordinates of the two-dimensional coordinates (P ( ⁇ ) cos ⁇ , P ( ⁇ ) sin ⁇ ).
  • This is a calibration method in which a camera model expressed as a function of a value is applied and the parameters of the camera model are calculated.
  • the camera model is obtained by a linear sum of a plurality of two-dimensional vector functions whose elements are functions of two coordinate values of the two-dimensional coordinates (P ( ⁇ ) cos ⁇ , P ( ⁇ ) sin ⁇ ). Two coordinate values of the two-dimensional pixel coordinates may be represented.
  • the function of the two-dimensional coordinates (P ( ⁇ ) cos ⁇ , P ( ⁇ ) sin ⁇ ) may be in the same form as the function representing the imaging relationship between the two-dimensional planes.
  • the camera model may be expressed by an equation in which each coefficient of the linear sum of the plurality of two-dimensional vector functions is replaced by a power polynomial that is the reciprocal of r of the three-dimensional spherical coordinates.
  • the step of calculating the parameter may apply the camera model to the calibration data by a linear least square method.
  • the step of calculating the parameter includes the three-dimensional world coordinates of the three rotation angles representing the rotation of the world coordinates in the calibration data acquired by the step of acquiring the calibration data.
  • the camera model may be applied to calibration data converted into world coordinates rotated at one or more rotation angles to obtain one or more rotation angles at which the residual of the camera model is minimized.
  • the three-dimensional world coordinates of the calibration data acquired by the step of acquiring the calibration data are converted into three translations representing the translation of the world coordinates.
  • the camera model may be applied to calibration data converted into world coordinates translated by one or more components to obtain one or more translation components that minimize the residual of the camera model.
  • Another aspect of the present invention is an optical device equipped with a camera model in which the parameter calculated by any one of the calibration devices is set.
  • a pixel coordinate calculation unit may be provided that obtains the two coordinate values of the pixel coordinates from the three coordinate values of the three-dimensional world coordinates depending on the camera model.
  • the camera model includes a distortion correction image generation unit that obtains pixel coordinates of an image acquired or formed by the image conversion element corresponding to the world coordinates and generates an image in which distortion is corrected. Also good.
  • Another aspect of the present invention is an optical device including a camera model in which the rotation angle acquired by the calibration device is set as a parameter.
  • the world coordinate rotation part which converts the said world coordinate into the world coordinate after rotation by the said rotation angle may be provided.
  • Another aspect of the present invention is an optical device equipped with a camera model in which the parallel movement component acquired by the calibration device is set as a parameter.
  • a world coordinate translation unit may be provided that converts the world coordinates into world coordinates after translation by the translation component.
  • Another aspect of the present invention is a photographing apparatus including any one of the above optical devices.
  • Another aspect of the present invention is a projection device including any one of the above optical devices.
  • the present invention it is possible to obtain the camera parameters of a camera with a large angle of view with high accuracy in a short time and to obtain the pixel coordinates corresponding to the world coordinates in a short time.
  • FIG. 1 is an overall configuration diagram schematically showing a calibration device according to a first embodiment of the present invention. It is a figure which shows the pattern of the calibration chart of the calibration apparatus of FIG. It is a figure which shows the flowchart explaining the calibration method by the calibration apparatus of FIG. It is explanatory drawing of the camera model used in the calibration apparatus of FIG. 1, and is a figure which shows the cross section of the camera explaining the principal ray of the object side corresponding to the pixel coordinate of a camera. It is explanatory drawing of the camera model used in the calibration apparatus of FIG. 1, and is a figure which shows the direction of the chief ray corresponding to each pixel. It is a figure which shows the flowchart of distortion correction.
  • the calibration device according to the present embodiment is a camera calibration device 1, and a camera (photographing device, optical device) 2 that transfers a captured image as an image file of a predetermined format to the outside is a calibration target.
  • the camera 2 is used as an example of the optical device.
  • the camera calibration device 1 includes a base 3 for fixing a camera 2 to be calibrated, a z-axis movement stage 4 provided on the base 3, and the z-axis movement.
  • a calibration chart 6 fixed to a movable part 5 moved by the stage 4 and a computer (parameter calculation part) 7 connected to the camera 2 and the z-axis movement stage 4 are provided.
  • the three-dimensional coordinate axes of the camera calibration device 1 are defined as shown in FIG.
  • the calibration data acquisition unit 8 includes a base 3 that fixes the camera 2, a calibration chart 6, and a z-axis movement stage 4.
  • the calibration data acquisition unit 8 acquires calibration data indicating the correspondence between two-dimensional pixel coordinates (u, v) of the image sensor 18 described later and three-dimensional world coordinates (x, y, z) in the world coordinate space. To do.
  • the z-axis moving stage 4 is a linear drive mechanism that is driven by the motor 4a and moves the movable part 5 linearly.
  • the moving direction of the movable part 5 is defined as the z axis
  • the horizontal direction and the vertical direction in the plane perpendicular to the z axis are defined as the x axis and the y axis.
  • the position of the coordinate origin is defined near the entrance pupil of the camera lens 9.
  • the camera 2 is installed with the optical axis parallel to the z-axis, the horizontal and vertical directions of the imaging surface are installed parallel to the x-axis and the y-axis, and the coordinate origin coincides with a predetermined position of the camera 2 And attached to the base 3.
  • the calibration chart 6 is the chess board 10 shown in FIG. 2 that is widely used in camera calibration, and is placed in front of the camera 2 fixed to the base 3, that is, arranged in a plane perpendicular to the z-axis. In this state, it is fixed to the movable part 5.
  • the calibration chart 6 may be any chart as long as it is a chart having a plurality of feature points.
  • the calibration chart 6 can be moved to an arbitrary position in the z-axis direction by the z-axis moving stage 4.
  • the computer 7 functions by a method of reading the captured image as an image file of a predetermined format by controlling the imaging of the camera 2.
  • the computer 7 functions by controlling the z-axis moving stage 4 to move the calibration chart 6 to a predetermined position in the z-axis direction.
  • the computer 7 also functions as a parameter calculation unit that calculates camera parameters by applying a camera model to the acquired calibration data.
  • the chess board 10 used as the calibration chart 6 will be described with reference to FIG.
  • the chess board 10 is a flat plate member having a checkered pattern in which black and white squares are arranged in a square lattice on a plane, and the intersection corresponding to the vertex of each square is used as a feature point for camera calibration. (Hereinafter, these feature points are referred to as lattice points 11).
  • the chess board 10 one having a sufficient number of grid points 11 for camera calibration within the imaging range of the camera 2 is used.
  • the range of the chess board 10 to be imaged varies depending on the object distance, it is preferable that at least about 10 ⁇ 10 lattice points 11 are imaged at each object distance.
  • one reference position mark 12 is provided near the center of the calibration chart 6 in order to take correspondence between the pixel coordinates of the captured grid point 11 and the world coordinates of the grid point 11 on the calibration chart 6.
  • the chess board has a lattice point (the center lattice point 13) nearest to the lower right of the reference position mark 12 located on the z-axis, and at the same time the chess board 10 is parallel to the x-axis and y-axis.
  • the board 10 is installed in the camera calibration device 1. Thereby, the world coordinates (x, y, z) of the respective lattice points 11 and 13 are determined as known values from the lattice interval of the square lattice of the chess board 10 and the movement position of the z-axis moving stage 4.
  • a camera calibration method using the camera calibration device 1 according to the present embodiment configured as described above will be described below.
  • the operator first attaches the camera 2 to be calibrated to the camera calibration device 1 according to the definition of the coordinate axis and connects it to the computer 7. Thereafter, a measurement program in the computer 7 is started.
  • the image of the calibration chart 6 having a plurality of object distances is automatically captured by the camera 2 by the measurement program, and the pixel coordinates of the lattice point 11 are acquired from the captured images.
  • the measurement program will be described with reference to the flowchart of FIG.
  • step S1 When measurement is started, first, the z-axis moving stage 4 is moved for the purpose of positioning the calibration chart 6 at the end closer to the camera 2 in the range of the object distance for calibrating the camera 2 (step S1). Next, the calibration chart 6 is imaged by the camera 2, and the captured image file is transferred to the computer 7 (step S2). Then, these steps S1 and S2 are repeated until a predetermined number of times of imaging are performed and a predetermined number of images are acquired (step S3). For example, five or more times are set as the predetermined number.
  • step S1 the movable part 5 is moved by the z-axis moving stage 4 for the purpose of increasing the object distance from the camera 2 to the calibration chart 6 at a predetermined interval for each repetition.
  • the moving amount of the movable part 5 may not be equal, it is preferable to image the calibration chart 6 at at least five different object distances within the range of the object distance for calibrating the camera 2.
  • the process proceeds to the next step S4.
  • a plurality of image files transferred to the computer 7 in step S1 to step S3 are subjected to image processing, whereby the pixel coordinates of each lattice point 11 within the imaging range are calculated, and the center of gravity of the reference position mark 12 of each image file is calculated. Pixel coordinates are calculated (step S4).
  • requiring the pixel coordinate of the lattice point 11 of the chess board 10 by a sub pixel is well-known, description here is abbreviate
  • step S4 the pixel coordinates of each grid point 11 obtained in step S4 are associated with the world coordinates of the grid point 11 on the calibration chart 6 (step S5).
  • each lattice point 13 in the lower right nearest neighborhood of the reference position mark 12 is used as a reference.
  • the pixel coordinates of the grid points 11 and 13 can be associated with the world coordinates.
  • all the associated pixel coordinates and world coordinates are written in the measurement data file, and the measurement ends. Measurement data necessary for optimizing camera parameters is obtained by the above procedure.
  • FIG. 4A is a cross-sectional view of the camera 2 for explaining the principal ray 19 on the object side corresponding to the pixel coordinates of the camera 2.
  • the camera 2 includes an imaging optical system (optical system) 14 and an imaging element (image conversion element) 18.
  • Camera coordinates (x c , y c , z c ) are defined as shown in FIG. 4A.
  • the origin of the camera coordinate is the center 404 of the entrance pupil of the imaging optical system 14, z c-axis coincides with the optical axis 403.
  • the u-axis and the v-axis of pixel coordinates are defined on the imaging surface of the imaging device 18 in parallel with the horizontal direction and the vertical direction of the imaging device 18.
  • u-axis and v-axis pixel coordinates, x c-axis and y c-axis of the camera coordinate are parallel, respectively.
  • the world coordinates and the camera coordinates substantially coincide.
  • 4A illustrates an object-side principal ray 19 that enters the center of each pixel of the image sensor 18 through the imaging optical system 14.
  • the principal ray 19 is a ray that passes through the center of an aperture stop (not shown) of the imaging optical system 14. For this reason, the blurred image on the image sensor 18 corresponding to the object point 22 on the chief ray 19 spreads around the intersection (not shown) of the chief ray 19 and the image sensor 18, so the light intensity of the blurred image point is reduced. If the center of gravity is taken as the image position, the position of the image point does not change. Accordingly, all object points 22 on the principal ray 19 on the object side are imaged at one image point. In other words, the principal ray 19 on the object side is a back projection straight line of the image point.
  • the relationship between the direction of the principal ray 19 and the corresponding image position is expressed by a projection formula.
  • f is the focal length of the projection.
  • the equal solid angle projection stores the solid angle on the object side, that is, the apparent size as the area of the image. Therefore, it is suitable for an application for measuring the ratio of the total cloud amount.
  • the other projection types has its own characteristics.
  • the general imaging optical system 14 for taking a picture does not necessarily depend on the specific projection formula.
  • P ( ⁇ ) is a function of the angle of view ⁇ .
  • P ( ⁇ ) ⁇ for equidistant projection
  • P ( ⁇ ) 2sin ( ⁇ / 2) for equisolid angle projection.
  • an arbitrary projection formula can be specified by coefficients c 3 , c 5 ,.
  • a virtual aperture formed by the aperture stop formed by the optical system closer to the object side than the aperture stop is the entrance pupil.
  • the principal ray group on the object side passes near the center 404 of the entrance pupil, but does not intersect at one point of the center 404 of the entrance pupil, unlike the case of the aperture stop.
  • the camera model of the present invention created for the purpose of adapting to such a situation will be described.
  • the image sensor 18 in which each pixel is arranged in a square lattice will be described as an example. However, the present embodiment is not limited to this.
  • Camera coordinates (r, ⁇ , ⁇ ) represented by spherical coordinates are newly introduced.
  • This polar angle ⁇ is equal to the angle formed by the principal ray 19 and the optical axis 403, that is, the angle of view.
  • the azimuth angle ⁇ is an angle representing the direction around the optical axis 403.
  • Equation 7 The relationship between the orthogonal coordinates and the camera coordinates (x c , y c , z c ) is expressed by Equation 7.
  • the direction of the principal ray 19 corresponding to each pixel on the imaging element 18 is set to the P ( ⁇ ) cos ⁇ P ( ⁇ ) sin ⁇ plane 411.
  • they are arranged in a square lattice 412 similar to the pixel array.
  • the direction of the principal ray 19 is displaced in a direction 413 different from the square lattice 412.
  • the displacement from the square lattice 412 as designed to the actual direction 413 is regarded as a phenomenon similar to the distortion of the image position due to distortion. That is, it is assumed that the directions (P ( ⁇ ) cos ⁇ , P ( ⁇ ) sin ⁇ ) of the principal ray 19 corresponding to the pixel coordinates (u, v) on the image sensor 18 are represented by a distortion model. This model should hold even if the two are interchanged. Therefore, in the present embodiment, the pixel coordinates (u, v) corresponding to the direction of the principal ray 19 (P ( ⁇ ) cos ⁇ , P ( ⁇ ) sin ⁇ ) are expressed by Equation 8 based on the Brown model of Equation 5. Model.
  • FIG. 4A consider a virtual principal ray 19 'that is parallel to the principal ray 19 and passes through the center 404 of the entrance pupil.
  • the object point 22 on the principal ray 19 and the object point 22 'on the virtual principal ray 19' are imaged at the same image point. This is because the spherical surface 405 of the imaging range on the object side corresponding to the effective imaging range on the imaging element 18 also extends infinitely, so that the distance between the principal ray 19 and the virtual principal ray 19 ′ can be ignored compared to this. Because.
  • the constant terms k 00 , k 10 , p 10 , and p 20 of the inverse power polynomial of the object distance r are the object point 22 on the principal ray 19 and the object on the virtual 19 ′ in the limit where the object distance r is infinite.
  • a point 22 ′ represents that an image is formed on the same image point.
  • the reciprocal coefficients k 01 , k 11 , p 11 , and p 21 of the object distance r indicate that the difference between the image points is inversely proportional to the object distance r.
  • Equation 9 (equal to Equation 8) in which only constant terms k 00 , k 10 , p 10 , and p 20 are left can be used.
  • the camera model used in the camera calibration apparatus 1 of the present embodiment shown in Equation 9 is obtained by directly modeling pixel coordinates corresponding to world coordinates.
  • the world coordinates are included in the camera model in the form of coordinates (P ( ⁇ ) cos ⁇ , P ( ⁇ ) sin ⁇ ) converted by the projection formula of Formula 6 and the spherical coordinates of Formula 7.
  • This camera model is built on the basis of a linear model of Formula 5 representing the imaging relationship between two conjugate planes.
  • This camera model is characterized in that each coefficient of the linear model is replaced by a reciprocal polynomial of the distance r.
  • Another feature of the camera model of Equation 9 used in the camera calibration apparatus 1 of the present embodiment is a linearly independent two-dimensional basis function vector composed of variables (P ( ⁇ ) cos ⁇ , P ( ⁇ ) sin ⁇ , r).
  • the pixel coordinate vector (u, v) is represented by a linear sum of (two-dimensional vector functions). Since it is a linear sum of basis function vectors, the coefficients of the models representing the u coordinate and the v coordinate are common. For this reason, the coefficient of each basis function vector can be obtained from all measurement data by the linear least square method.
  • Equation 9 The camera model shown in Equation 9 of the independent variables ( ⁇ ′, ⁇ ′, r) and the dependent variables (u, v) is applied to the measurement data of all the grid points 11 and 13 using the linear least square method. Each coefficient (camera parameter) of the camera model of Equation 9 is obtained. This completes the camera calibration of this embodiment.
  • the camera model in which the camera parameters obtained in the present embodiment are set can be used in the following manner in a photographing apparatus including the camera 2 equipped with the camera model.
  • the imaging apparatus further includes a pixel coordinate calculation unit (not shown) that calculates a two-dimensional pixel coordinate from the three-dimensional world coordinates, and a distortion corrected image generation unit (not shown) that generates an image with corrected distortion. Yes.
  • the pixel coordinates calculation unit calculates the world coordinates (x, y, z) according to Equations 7 and 8. Is converted into ( ⁇ ′, ⁇ ′, r), and the converted pixel values are substituted into the camera model shown in Equation 9, whereby the target pixel coordinates (u, v) can be obtained.
  • distortion of an image captured by the calibrated camera 2 can be corrected by the distortion correction image generation unit.
  • the method will be described below.
  • An object represented by world coordinates is captured by the camera 2 and becomes a distorted image.
  • distortion can be corrected by back projecting the obtained image to world coordinates.
  • pixel coordinates (u, v) may be back-projected onto world coordinates (x, y) on the plane with object distance z.
  • the reference object distance for distortion correction is defined, and then backprojected to the world coordinates (x, y) of the object distance z.
  • Such distortion correction is sufficient if the change in distortion due to object distance is small.
  • the image is enlarged or reduced.
  • the back-projected world coordinates are normalized by the reciprocal of the lateral magnification k 0 ′ of the camera model of Equation 9, that is, the lateral magnification from pixel coordinates to world coordinates. Thereby, it is possible to obtain a distortion-corrected image that is approximately the same size as the original image.
  • the creation of a distortion corrected image is a series of procedures for substituting the pixel value of the original image corresponding to the pixel coordinates (integer) of the image after distortion correction into the pixel value of the pixel coordinates after distortion correction. This procedure will be described with reference to the flowchart of FIG.
  • pixel coordinates (u c , v c ) after the first distortion correction are determined (step S11).
  • the pixel coordinates (u c , v c ) after the first distortion correction are multiplied by the reciprocal of the lateral magnification k 0 ′ of the camera model of Formula 9 at the reference object distance z to obtain world coordinates (x, y). Obtained (step S12). Distortion correction is performed by converting the world coordinates (x, y, z) into ( ⁇ ′, ⁇ ′, r) according to Equations 7 and 8, and then substituting these transformed into the camera model of Equation 9.
  • the previous pixel coordinate (u, v) is obtained (step S13).
  • the pixel coordinates (u, v) before distortion correction are generally non-integer numbers.
  • the pixel value of the pixel coordinate (u, v) is obtained from the pixel values of four pixels close to the pixel coordinate by bilinear interpolation.
  • the obtained pixel value is set as the pixel value of the pixel coordinates (u c , v c ) after distortion correction (step S14). It should be noted that other methods such as bicubic interpolation may be employed for pixel value interpolation.
  • Steps S11 to S14 are repeated a predetermined number of times for all the pixel coordinates (u c , v c ) after distortion correction (step S15), and after repeating the predetermined number of times, the distortion correction is terminated.
  • the pixel coordinates corresponding to the world coordinates are calculated using the camera model of Formula 9 each time.
  • the calculation speed can be increased.
  • camera calibration was performed using measurement data of lattice points 11 and 13 arranged in a square lattice pattern on a flat chess board 10.
  • the feature points on the calibration chart 6 may be patterns other than the grid points 11 and 13.
  • a method of creating measurement data in which the center of gravity position is set to pixel coordinates by imaging dot marks distributed on a plane may be used.
  • the feature points used in the camera calibration of the present invention do not need to be regularly arranged in the world coordinate space. Even if the arrangement of the feature points is random, the camera model of the present invention can be applied to the world coordinates and the pixel coordinates if the correspondence between the world coordinates and the pixel coordinates can be known by measurement or simulation.
  • the only requirement for the camera calibration measurement data of this embodiment is that the correspondence between the world coordinates and the pixel coordinates is clear.
  • Such measurement data can be acquired by the following method, for example. First, a point light source capable of moving in the x, y, and z axis directions is prepared on the world coordinate side. The point light source is moved in the x-, y-, and z-axis directions using a method of positioning the image of the point light source at the pixel coordinates of interest of the image captured by the camera 2 with the prepared point light source. The correspondence between world coordinates and pixel coordinates can also be obtained by repeating such measurement.
  • the calibration chart 6 is installed at a plurality of angles of view so that the entire image of the camera 2 is displayed. Corners may be included. Also at this time, if the correspondence between the world coordinates of the feature points on the calibration chart 6 and the pixel coordinates is clear, the camera calibration method of the present embodiment can be applied.
  • a camera model that takes into account only third-order radial distortion and second-order tangential distortion is employed.
  • a camera model to which a higher-order distortion aberration or rotationally asymmetric distortion term is added can be employed.
  • Unnecessary items can be omitted from the camera model.
  • the rotationally asymmetric distortion component is always small enough to be ignored, it is better to omit the tangential distortion term of the camera model. Accordingly, it is possible to prevent the camera model from being inaccurately deformed due to the measurement error of the lattice point 11 due to meaningless deformation. The same applies to the other terms.
  • the pupil aberration of the imaging optical system 14 can be accurately modeled by the camera model of the present embodiment.
  • Rotationally asymmetric distortion and pupil aberration can also be modeled.
  • the pixel coordinates corresponding to the world coordinates can be accurately expressed, and the accuracy of the camera model can be improved.
  • the camera calibration apparatus 1 and the camera calibration method of the present embodiment use a camera model based on the projection formula of the camera 2 to be calibrated, the maximum order required for the model can be suppressed.
  • the camera 2 having a half angle of view of 90 ° or more can be calibrated.
  • the camera calibration apparatus 1 and the camera calibration method of the present embodiment use a linear camera model, it can be applied to measurement data using a linear least square method. Therefore, unlike the conventional example, there is no optimization failure and the calculation time can be greatly reduced.
  • the feature points used in the camera calibration device 1 and the camera calibration method of the present embodiment do not need to be regularly arranged. Therefore, as long as the correspondence between the world coordinates and the pixel coordinates can be clarified, it is possible to select an acquisition method by any measurement or calculation suitable for the camera 2 to be calibrated.
  • a camera calibration method according to the second embodiment of the present invention will be described below.
  • the camera calibration apparatus 1 a world coordinate rotation unit (not shown) that converts world coordinates into rotated world coordinates according to a rotation angle, and world coordinates are converted by a translation component.
  • a device provided with a world coordinate translation unit (not shown) for converting into world coordinates after translation is used.
  • the entrance pupil of the camera 2 to be calibrated as shown in FIG. 1 substantially coincides with the origin of the world coordinates, and the optical axis is parallel to the z-axis of the camera calibration apparatus 1, and A method of camera calibration when the horizontal and vertical directions are parallel to the x-axis and the y-axis has been described.
  • a method of camera calibration when conditions are not satisfied that is, when world coordinates and camera coordinates do not match will be described.
  • the camera model used in the first embodiment is established by camera coordinates with the origin 404 being the center 404 of the entrance pupil of the imaging optical system 14 of the camera 2 to be calibrated. Therefore, when the world coordinates of the grid points 11 on the calibration chart 6 in the camera calibration apparatus 1 of FIG. 1 are converted into camera coordinates, the above camera model is applied.
  • the transformation from the world coordinates (x, y, z) to the camera coordinates (x c , y c , z c ) is expressed by Expression 10 using the three-axis rotation matrix R and the translation vector T of Expression 2.
  • the second embodiment only the world coordinates of the measured data representing the correspondence between the measured world coordinates (x, y, z) and the pixel coordinates (u, v) of the plurality of grid points 11 are expressed by the following equation.
  • the camera model of the first embodiment is applied after conversion into camera coordinates (x c , y c , z c ).
  • the three components (t x , t y , t z ) of the three rotation axes ⁇ x , ⁇ y , ⁇ z of the rotation matrix R and the translation vector T are optimized.
  • the residual of the camera model is minimized.
  • measurement data representing the correspondence between the world coordinates (x, y, z) and the pixel coordinates (u, v) is acquired (step S22).
  • the rotation angles ⁇ x , ⁇ y , ⁇ z and the translational components t x , t y , tz included in Equation 10 are initialized (step S23).
  • Rotation angle ⁇ x, ⁇ y, ⁇ z and translation component t x, t y, the initial value of t z may be zero.
  • the estimation result may be set as an initial value.
  • the world coordinates (x, y, z) of the measurement data are converted into camera coordinates (x c , y c , z c ) by Equation 10 (step S24).
  • the converted camera coordinates (x c , y c , z c ) are converted into ( ⁇ ′, ⁇ ′, r) by Equation 7 and Equation 8 (step S25).
  • the camera model of Formula 9 is applied to all the pixel coordinates (u, v) of the measurement data and the transformed coordinates ( ⁇ ′, ⁇ ′, r) using the linear least square method (step S26). If the standard deviation of the residual at this time is smaller than a predetermined value, the process ends (step S27).
  • step S28 When the standard deviation of the residuals is equal to or higher than the predetermined value, through the rotation angle ⁇ x, ⁇ y, ⁇ z and translation component t x, t y, updating and t z (step S28), and the process returns to step S24 ( Step S27).
  • This iterative optimization is performed by a general optimization algorithm such as the downhill simplex method.
  • Rotation angle theta x when residual being the evaluation function has converged to a minimum value, a theta y, theta z parallel movement component t x, t y, and translation t z and the optimal rotation angle.
  • the camera calibration is performed. finish.
  • the camera model in which the camera parameters obtained using the camera calibration method according to the present embodiment are set can be used in the same manner as in the first embodiment in the photographing apparatus including the camera 2 equipped with the camera model.
  • the world coordinates are converted into camera coordinates by Equation 10
  • the converted camera coordinates are substituted into the camera model of Equation 9 to obtain pixel coordinates.
  • the three rotation angles ⁇ x , ⁇ y , ⁇ z and the three translational components t x , t y , tz are optimized.
  • a highly accurate camera model can be acquired even when the world coordinates and the camera coordinates do not match. Even when many camera parameters such as distortion are required, the number of iterative optimization parameters is limited to 6 or less components of the rotation angle and translation, so there is no failure in optimization of the camera model, and Calculation time can be greatly reduced.
  • the camera calibration device 32 is applied to the calibration of a multi-view camera.
  • the calibration of the multi-viewpoint cameras 33, 34, and 35 having three cameras will be described as an example, but the present invention can be applied to the calibration of cameras of other numbers.
  • the camera calibration device 32 As shown in FIG. 7, three cameras (optical devices) 33, 34, and 35 to be calibrated are arranged at the same positions as the use conditions of the multi-view camera.
  • the camera fixing base 36 is attached to the camera calibration device 32 in such a manner that each of the cameras 33, 34, and 35 can capture the calibration chart 6.
  • the rest of the configuration, such as the calibration chart 6, the z-axis moving stage 4, and the computer 7, is the same as that in FIG.
  • the operation of the camera calibration device 32 according to the present embodiment configured as described above will be described below.
  • the operation of the camera calibration device 32 according to the present embodiment is the same as that of the camera calibration device 1 according to the first embodiment.
  • images of the calibration chart 6 at a plurality of object distances are automatically captured by the cameras 33, 34, and 35, and the pixel coordinates of the lattice points 11 of the calibration chart 6 are obtained from the captured images. Is done.
  • steps S2, S4, and S5 in the flowchart of FIG. 3 are executed for the three cameras 33, 34, and 35, respectively.
  • each camera model of each camera 33, 34, 35 is obtained from the above measurement data of each camera 33, 34, 35.
  • This procedure is the same as in the first or second embodiment.
  • Each camera model in which the camera parameters obtained in the camera calibration device 32 according to the present embodiment are set is the same as in the first and second embodiments in an imaging device including each camera 33, 34, 35 equipped with each camera model. Can be used.
  • the measurement program of the flowchart of FIG. 3 may be executed individually and sequentially for each camera 33, 34, 35.
  • the camera calibration device 32 determines the installation position of the z-axis moving stage 4 for the purpose of directly facing the calibration chart 6 to each camera 33, 34, 35 to be measured. You may change it above.
  • the camera can be calibrated by arranging the multi-viewpoint cameras 33, 34, and 35 at the same positions as the use conditions.
  • the pixel coordinates of the cameras 33, 34, and 35 corresponding to one common world coordinate can be obtained.
  • the calibration apparatus according to the present embodiment is a projector calibration apparatus 37, and an image forming element (image conversion element: not shown) such as a liquid crystal element and a projection optical system (optical system: not shown) are provided inside the projector calibration apparatus 37. ) And calibrates a projector (projection device) 38 that projects an image to the outside.
  • a projector 38 is used as an example of an optical device.
  • the projector calibration device 37 includes a base 39 for fixing a projector 38 to be calibrated, a z-axis movement stage 4 provided on the base 39, and a calibration chart 6 fixed to the movable part 5 of the z-axis movement stage 4. And a camera 2 which is arranged at a position adjacent to the projector 38 and captures an image of the calibration chart 6.
  • the camera 2 and the projector 38 are installed by setting the optical axes of the camera 2 and the projector 38 in parallel with the z-axis of the projector calibration device 37 and setting the predetermined position of the projector 38 to coincide with the coordinate origin. It can be attached to the calibration device 37.
  • the imaging range of the camera 2 preferably includes the image projection range of the projector 38.
  • Other configurations such as the calibration chart 6, the z-axis moving stage 4, and the computer 7 are the same as those in FIG. 1.
  • the calibration chart 6 used in the present embodiment the chess board 10 of FIG. 2 and a plain screen can be exchanged.
  • the computer 7 also has a function of causing the projector 38 to project a predetermined image by controlling the projector 38.
  • the camera 2 is calibrated with the chess board 10 shown in FIG. This procedure is the same as in the first or second embodiment.
  • the pattern of the chess board 10 in FIG. 2 is projected onto the calibration chart 6 from the projector 38 by passing through the projection optical system.
  • the pixel coordinates of the grid points 11 and 13 of the chess board 10 are known in the pixel coordinates defined on the image forming element (not shown) inside the projector 38.
  • the camera 2 captures an image of the calibration chart 6 in which the pattern of the chess board 10 is automatically projected at a plurality of object distances by the measurement program of the flowchart of FIG.
  • the pixel coordinates of the lattice point 11 of the pattern of the chess board 10 are acquired from the captured image.
  • the camera model of the camera 2 is a format for obtaining pixel coordinates (u, v) from world coordinates (x, y, z). Therefore, it is necessary to repeatedly optimize to obtain the world coordinates (x, y) from the acquired pixel coordinates (u, v) and the object distance z. Since this method is publicly known, a description thereof is omitted here.
  • measurement data representing the correspondence between the pixel coordinates (u, v) of the projector 38 and the world coordinates (x, y, z) is obtained.
  • the method for obtaining the camera parameters of the projector 38 from the obtained measurement data is the same as in the first or second embodiment.
  • the camera model in which the camera parameters of the projector 38 thus obtained are set can be used in the projector 38 equipped with the camera model in the same manner as in the first and second embodiments.
  • image distortion that cancels distortion caused by projection may be added in advance to the image formed by the image forming element of the projector 38.
  • the procedure for obtaining the pixel coordinates of the distortion corrected image is the same as the flowchart of the first embodiment shown in FIG.
  • the pattern projected by the projector 38 is not limited to the chess board 10.
  • a pattern such as a dot mark that can calculate pixel coordinates of feature points from an image captured by the camera 2 is also applicable.
  • a method of lighting each discrete pixel of the projector 38 may be used.
  • the world coordinates (x, y) of the feature points projected by the projector 38 are measured by the camera 2 calibrated in advance.
  • the image sensor 18 is installed instead of the calibration chart 6. It can also be realized by directly imaging the projected pattern. As long as the correspondence between the world coordinates and the pixel coordinates can be clarified, other acquisition methods can be selected.
  • the projector 38 can be calibrated by the camera model.
  • the camera 2, 33, 34, 35 or the projector 38 is not limited to a refractive optical system. Even in the case of a catadioptric optical system, it is obvious that the present invention can be applied in consideration of conversion such as inversion of the coordinate system accompanying reflection.
  • a plurality of camera calibrations corresponding to setting changes such as the focus, zoom, and aperture of the cameras 2, 33, 34, and 35 or the projector 38 may be performed.
  • a camera model corresponding to an arbitrary setting may be obtained by interpolating the camera model.
  • Camera calibration may be performed under multiple wavelengths of the light source. You may decide to use the camera model according to a wavelength with the camera which image
  • the image sensor 18 or the image forming element is used as an example of the image conversion element. However, it may be anything that converts an image and a video signal to each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Studio Devices (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Image Processing (AREA)

Abstract

較正装置(1)は、画像変換素子の2次元の画素座標と、ワールド座標空間の3次元のワールド座標との対応を示す較正データを取得する較正データ取得部(8)と、取得された較正データに、2次元の画素座標の2つの座標値を、3次元のワールド座標の3つの座標値の関数として表したカメラモデルを当てはめて、パラメータを算出するパラメータ算出部(7)とを備え、画角(θ)と像高(y)の射影関係が、射影の焦点距離(f)を用いて、概ね射影式y=fP(θ)によって表されるとき、パラメータ算出部(7)が、取得された較正データの3次元のワールド座標を、それに等しい3次元の球座標によって、2次元の座標に変換してから、2次元の画素座標の2つの座標値を、2次元の座標の2つの座標値の関数として表したカメラモデルを当てはめて、カメラモデルのパラメータを算出する。

Description

較正装置、較正方法、光学装置、撮影装置および投影装置
 本発明は、較正装置、較正方法、光学装置、撮影装置および投影装置に関するものである。
 撮影装置や投影装置のカメラ較正を行う較正装置が知られている(例えば、特許文献1、非特許文献1および非特許文献2参照。)。
 カメラモデルには複数の未知のパラメータ(カメラパラメータ)が含まれており、較正装置によってそれらのカメラパラメータを求めておくことによって、画像の2次元座標(画素座標)に対応する実世界の主光線を数学的に得ることができる。あるいは、実世界の3次元座標(以下、ワールド座標という。)に対応する画素座標を得ることができる。なお、上記の主光線は、画素座標に対応する逆投影直線あるいは視線とも呼ばれる。
 特許文献1および非特許文献1に開示されている従来のカメラ較正について説明する。カメラ較正は、実世界の3次元座標がカメラによって撮像されて画像の2次元座標に変換される過程を表現した数学的なカメラモデルを用いて以下の手順によって行われる。
 初めに、数1を用いてワールド座標(x,y,z)を正規化像面座標(u,v)に投影する。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 ただし、数2の回転行列Rおよび平行移動ベクトルTは、ワールド座標からカメラ座標への3次元の座標変換を表している。これらはワールド座標に対するカメラの位置と姿勢を表す値であり、外部パラメータと呼ばれる。なお、数1は、全ての主光線がカメラの光学中心において交わるという想定に基づいた式である。次に、数3を用いて、正規化像面座標(u,v)に歪曲収差を加えた(u,v)を求める。
Figure JPOXMLDOC01-appb-M000003
 ただし、(g,g,g,g,k)は歪曲パラメータである。さらに、数4を用いて、歪曲収差を加えた正規化像面座標(u,v)をピクセル単位の画素座標(u,v)に変換する。
Figure JPOXMLDOC01-appb-M000004
 このように、カメラの撮像によるワールド座標(x,y,z)から画素座標(u,v)への変換を数1から数4によって表すのが標準的なカメラモデルである。
 なお、数3および数4のパラメータ(α,α,u,v,g,g,g,g,k)は、カメラ自体の性質を表すので、内部パラメータと呼ばれる。
 歪曲パラメータは、用途によって様々に定義される。例えば、数3は、3次までの歪曲収差を考慮したモデルであるが、さらに5次、7次…という高次の項を追加したモデルも用いられる。それらの中において代表的な歪曲モデルが数5に示される非特許文献2のブラウンのモデルである。
Figure JPOXMLDOC01-appb-M000005
 ブラウンのモデルでは、歪曲収差を、回転対称な動径歪曲のパラメータ(k,k,k,…)および回転非対称な接線歪曲のパラメータ(p,p,p,…)によって表している。
 カメラ較正では一般に、ワールド座標(x,y,z)が既知の特徴点を複数備えた較正チャートをカメラによって撮像する。この後、画像処理によって特徴点が撮像された画素座標(u,v)を取得する。このようにして、ワールド座標(x,y,z)と画素座標(u,v)との対応を表す複数の測定データを得て、カメラパラメータを求めている。
特許第3735344号公報
ディジタル画像処理[改訂新版]、(CG-ARTS協会,2015)、p.308-317 D. C. Brown,"Close-range camera calibration",PhotoGramm. Eng. 37, 855-866 (1971)
 従来のカメラモデルによって、ワールド座標に対応する画素座標を求めるとき、以下のような課題がある。
 特許文献1および非特許文献1の較正装置では、全ての主光線がカメラの光学中心で交わるという想定に基づいたカメラモデルを用いている。しかしながら、一般には光学系は瞳収差を伴うために、全ての主光線が入射瞳上の1点では交わらない。特に、画角が大きな広角レンズを用いている場合には、瞳収差が顕著である。このため、このカメラモデルでは、ワールド座標に対応する正確な画素座標を求めることができない。
 画角が大きな広角レンズは一般に歪曲収差が大きいので、数5の高次の項が必要になる。これにより、カメラモデルのパラメータ数が増加するので、最適化が困難になる。さらに、数1のカメラモデルは透視投影に基づいているので、半画角90°以上の広角レンズを原理的に較正することができない。
 特許文献1のカメラモデルを初めとする従来の標準的なカメラモデルは、数1から数4に示される複数の数式からなる非線形モデルであり、測定データからカメラパラメータを求める過程において、最終的に全てのカメラパラメータを繰り返し最適化する必要がある。このため、次の2つの問題が生じる。
 第1に、非線形モデルの最適化の評価関数には複数の極小値が存在する可能性があり、適切な初期値を設定しないと誤った最小値に収束する。第2に、複数のカメラパラメータの最適化演算を繰り返し行う必要があるため、膨大な計算時間が必要となる場合がある。
 本発明は上述した事情に鑑みてなされたものであって、画角が大きなカメラのカメラパラメータを短時間に精度よく求めることができ、かつワールド座標に対応する画素座標を短時間に求められる較正装置、較正方法、光学装置、撮影装置および投影装置を提供する。
 本発明の一態様は、複数の画素を有する2次元の画像変換素子と、該画像変換素子と3次元のワールド座標空間との間において結像関係を形成する光学系とを備える光学装置の較正装置であって、前記画像変換素子の2次元の画素座標と、前記ワールド座標空間の3次元のワールド座標との対応を示す較正データを取得する較正データ取得部と、該較正データ取得部によって取得された前記較正データに、前記2次元の画素座標の2つの座標値を、前記3次元のワールド座標の3つの座標値の関数として表したカメラモデルを当てはめて、該カメラモデルのパラメータを算出するパラメータ算出部とを備え、前記光学系の画角θと像高yのb射影関係が、射影の焦点距離fを用いて、概ね射影式y=fP(θ)によって表されるとき、前記パラメータ算出部が、前記較正データ取得部によって取得された前記較正データの3次元のワールド座標(x,y,z)を、該ワールド座標に等しい3次元の球座標(r,θ,φ)によって、2次元の座標(P(θ)cosφ,P(θ)sinφ)に変換してから、前記2次元の画素座標の2つの座標値を、前記2次元の座標(P(θ)cosφ,P(θ)sinφ)の2つの座標値の関数として表したカメラモデルを当てはめて、該カメラモデルの前記パラメータを算出する較正装置である。
 上記態様においては、前記カメラモデルが、前記2次元の座標(P(θ)cosφ,P(θ)sinφ)の2つの座標値の関数を要素とした複数の2次元ベクトル関数の線形和によって、前記2次元の画素座標の2つの座標値を表してもよい。
 上記態様においては、前記2次元の座標(P(θ)cosφ,P(θ)sinφ)の関数が、2次元の平面間の結像関係を表す関数と同じ形式であってもよい。
 上記態様においては、前記カメラモデルが、前記複数の2次元ベクトル関数の線形和の各係数を、前記3次元の球座標のrの逆数のベキ多項式によって置換した数式で表現されてもよい。
 上記態様においては、前記パラメータ算出部が、前記カメラモデルを線形の最小二乗法で前記較正データに当てはめてもよい。
 上記態様においては、前記パラメータ算出部が、前記較正データ取得部によって取得された前記較正データの内、前記3次元のワールド座標を、該ワールド座標の回転を表す3つの回転角の1以上の回転角で回転したワールド座標に変換した較正データに、前記カメラモデルを当てはめて、該カメラモデルの残差が最小になる1以上の回転角を求めてもよい。
 上記態様においては、前記パラメータ算出部が、前記較正データ取得部によって取得された前記較正データの内、前記3次元のワールド座標を、該ワールド座標の平行移動を表す3つの平行移動成分の1以上の成分で平行移動したワールド座標に変換した較正データに、前記カメラモデルを当てはめて、該カメラモデルの残差が最小になる1以上の平行移動成分を求めてもよい。
 上記態様においては、前記光学装置が、複数の前記画像変換素子および該画像変換素子と前記3次元のワールド座標空間との間で結像関係を形成する光学系を備え、前記較正データ取得部が各前記画像変換素子および前記光学系の較正データを取得し、前記パラメータ算出部が、各前記画像変換素子および前記光学系の前記較正データに、各前記カメラモデルを当てはめてもよい。
 上記態様においては、前記光学装置が撮影装置であり、前記画像変換素子が撮像素子であり、前記光学系が撮像光学系であってもよい。
 上記態様においては、前記光学装置が投影装置であり、前記画像変換素子が画像形成素子であり、前記光学系が投影光学系であってもよい。
 本発明の他の態様は、複数の画素を有する2次元の画像変換素子と、該画像変換素子と3次元のワールド座標空間との間において結像関係を変換する光学系とを備える光学装置の前記画像変換素子の2次元の画素座標と、前記ワールド座標空間の3次元のワールド座標との対応を示す較正データを取得するステップと、取得された前記較正データに、前記2次元の画素座標の2つの座標値を、前記3次元のワールド座標の3つの座標値の関数として表したカメラモデルを当てはめて、該カメラモデルのパラメータを算出するステップとを含み、前記光学系の画角θと像高yの射影関係が、射影の焦点距離fを用いて、概ね射影式y=fP(θ)によって表されるとき、前記パラメータを算出するステップが、前記較正データを取得するステップによって取得された前記較正データの3次元のワールド座標(x,y,z)を、該ワールド座標に等しい3次元の球座標(r,θ,φ)によって、2次元の座標(P(θ)cosφ,P(θ)sinφ)に変換してから、前記2次元の画素座標の2つの座標値を、前記2次元の座標(P(θ)cosφ,P(θ)sinφ)の2つの座標値の関数として表したカメラモデルを当てはめて、該カメラモデルの前記パラメータを算出する較正方法である。
 上記態様においては、前記カメラモデルが、前記2次元の座標(P(θ)cosφ,P(θ)sinφ)の2つの座標値の関数を要素とした複数の2次元ベクトル関数の線形和によって、前記2次元の画素座標の2つの座標値を表してもよい。
 上記態様においては、前記2次元の座標(P(θ)cosφ,P(θ)sinφ)の関数が、2次元の平面間の結像関係を表す関数と同じ形式であってもよい。
 上記態様においては、前記カメラモデルが、前記複数の2次元ベクトル関数の線形和の各係数を、前記3次元の球座標のrの逆数のベキ多項式によって置換した数式で表現されてもよい。
 上記態様においては、前記パラメータを算出するステップが、前記カメラモデルを線形の最小二乗法で前記較正データに当てはめてもよい。
 上記態様においては、前記パラメータを算出するステップが、前記較正データを取得するステップによって取得された前記較正データの内、前記3次元のワールド座標を、該ワールド座標の回転を表す3つの回転角の1以上の回転角で回転したワールド座標に変換した較正データに、前記カメラモデルを当てはめて、該カメラモデルの残差が最小になる1以上の回転角を求めてもよい。
 上記態様においては、前記パラメータを算出するステップが、前記較正データを取得するステップによって取得された前記較正データの内、前記3次元のワールド座標を、該ワールド座標の平行移動を表す3つの平行移動成分の1以上の成分で平行移動したワールド座標に変換した較正データに、前記カメラモデルを当てはめて、該カメラモデルの残差が最小になる1以上の平行移動成分を求めてもよい。
 本発明の他の態様は、上記いずれかの較正装置によって算出された前記パラメータが設定されたカメラモデルを搭載した光学装置である。
 上記態様においては、前記カメラモデルによって、前記画素座標の2つの座標値を、前記3次元のワールド座標の3つの座標値から求める画素座標算出部を備えていてもよい。
 上記態様においては、前記カメラモデルによって、前記ワールド座標に対応する前記画像変換素子によって取得あるいは形成された画像の画素座標を求め、歪みを補正した画像を生成する歪補正画像生成部を備えていてもよい。
 本発明の他の態様は、上記較正装置によって取得された前記回転角がパラメータとして設定されたカメラモデルを搭載した光学装置である。
 上記態様においては、前記回転角によって、前記ワールド座標を回転後のワールド座標に変換するワールド座標回転部を備えていてもよい。
 本発明の他の態様は、上記較正装置によって取得された前記平行移動成分がパラメータとして設定されたカメラモデルを搭載した光学装置である。
 上記態様においては、前記平行移動成分によって、前記ワールド座標を平行移動後のワールド座標に変換するワールド座標平行移動部を備えていてもよい。
 本発明の他の態様は、上記いずれかの光学装置からなる撮影装置である。
 本発明の他の態様は、上記いずれかの光学装置からなる投影装置である。
 本発明によれば、画角が大きなカメラのカメラパラメータを短時間に精度よく求めることができ、かつワールド座標に対応する画素座標を短時間に求めることができるという効果を奏する。
本発明の第1の実施形態に係る較正装置を模式的に示す全体構成図である。 図1の較正装置の較正チャートのパターンを示す図である。 図1の較正装置による較正方法を説明するフローチャートを示す図である。 図1の較正装置において用いられるカメラモデルの説明図であり、カメラの画素座標に対応する物体側の主光線を説明するカメラの断面を示す図である。 図1の較正装置において用いられるカメラモデルの説明図であり、各画素に対応する主光線の方向を示す図である。 歪補正のフローチャートを示す図である。 本発明の第2の実施形態に係る較正装置によってカメラを較正する手順のフローチャートを示す図である。 本発明の第3の実施形態に係る較正装置を模式的に示す平面図である。 本発明の第4の実施形態に係る較正装置を模式的に示す平面図である。
 本発明の第1の実施形態に係る較正装置およびカメラ較正方法について、図面を参照して以下に説明する。
 本実施形態に係る較正装置は、カメラ較正装置1であって、撮像した画像を所定のフォーマットの画像ファイルとして外部に転送するカメラ(撮影装置、光学装置)2を較正対象としている。本実施形態においては、光学装置の一例として、カメラ2を用いている。
 本実施形態に係るカメラ較正装置1は、図1に示されるように、較正対象であるカメラ2を固定するベース3と、該ベース3に設けられたz軸移動ステージ4と、該z軸移動ステージ4によって移動させられる可動部5に固定された較正チャート6と、カメラ2およびz軸移動ステージ4に接続されたコンピュータ(パラメータ算出部)7とを備えている。カメラ較正装置1の3次元の座標軸は図1のように定義されている。較正データ取得部8は、カメラ2を固定するベース3、較正チャート6およびz軸移動ステージ4を備えている。較正データ取得部8は、後述する撮像素子18の2次元の画素座標(u,v)と、ワールド座標空間の3次元のワールド座標(x,y,z)との対応を示す較正データを取得する。
 z軸移動ステージ4は、モータ4aによって駆動され可動部5を直線的に移動させる直線駆動機構である。カメラ較正装置1においては、可動部5の移動方向をz軸とし、z軸に垂直な面内の水平方向および垂直方向をx軸およびy軸と定義している。
 本実施形態において座標原点の位置はカメラレンズ9の入射瞳付近に定義されている。
 カメラ2は、光軸をz軸に平行に設置、かつ、撮像面の水平方向および垂直方向をx軸およびy軸に平行に設置、かつ、座標原点をカメラ2の所定の位置に一致させる目的で、ベース3に取り付けられている。
 較正チャート6は、カメラ較正において広く利用されている図2のチェスボード10であり、ベース3に固定されたカメラ2に正対して設置される、すなわち、z軸に垂直な面内に配置された状態で可動部5に固定されている。較正チャート6は複数の特徴点を備えた図表であればどのようなものでも構わない。
 較正チャート6は、z軸移動ステージ4によってz軸方向の任意の位置に移動可能になっている。z軸移動ステージ4の可動部5の移動範囲は、カメラ較正が必要な物体距離(=カメラ2と撮像対象との距離)の範囲を包含している。
 コンピュータ7は、カメラ2の撮像を制御することによって、撮像された画像を所定のフォーマットの画像ファイルとして読み込む方式によって機能する。コンピュータ7は、z軸移動ステージ4を制御することによって、較正チャート6をz軸方向の所定の位置に移動させる方式によって機能する。コンピュータ7は、取得された較正データにカメラモデルを当てはめてカメラパラメータを算出するパラメータ算出部としても機能する。
 ここで、図2を参照して、較正チャート6として使用されるチェスボード10について説明する。
 チェスボード10は、平面上に黒と白の正方形が正方格子を成す方式によって並んだ市松模様のパターンを有する平板状部材であり、各正方形の頂点に相当する交点をカメラ較正の特徴点として利用している(以下、これらの特徴点を格子点11と呼ぶ。)。
 チェスボード10としては、カメラ較正に十分な数の格子点11がカメラ2の撮像範囲内に入るものが使用される。撮像されるチェスボード10の範囲は物体距離によって変化するが、各物体距離において少なくとも10×10個程度の格子点11が撮像されることが好ましい。また、撮像された格子点11の画素座標と較正チャート6上での格子点11のワールド座標との対応をとるために、較正チャート6の中央付近に1つの基準位置マーク12を設けている。
 この基準位置マーク12の右下最近傍の格子点(中央の格子点13)がz軸上に位置し、同時にチェスボード10の縦横がx軸およびy軸に対して平行になる方式によって、チェスボード10をカメラ較正装置1に設置する。これにより、チェスボード10の正方格子の格子間隔とz軸移動ステージ4の移動位置とから、各格子点11,13のワールド座標(x,y,z)が既知の値として確定する。
 このように構成された本実施形態に係るカメラ較正装置1を用いたカメラ較正方法について以下に説明する。
 本実施形態に係るカメラ較正装置1を用いてカメラ2を較正するには、操作者は、初めに較正対象のカメラ2を座標軸の定義に従ってカメラ較正装置1に取り付け、コンピュータ7に接続する。この後に、コンピュータ7内部の測定プログラムを開始する。
 以下、測定プログラムによって、自動的に複数の物体距離の較正チャート6の画像がカメラ2によって撮像され、撮像された画像から格子点11の画素座標が取得される。測定プログラムについて、図3のフローチャートを参照して説明する。
 測定が開始されると、まず、カメラ2を較正する物体距離の範囲のカメラ2に近い側の端に較正チャート6を位置させる目的で、z軸移動ステージ4が移動される(ステップS1)。次に、カメラ2によって較正チャート6が撮像され、撮像された画像ファイルがコンピュータ7に転送される(ステップS2)。そして、所定回数の撮像が行われ、所定枚数の画像が取得されるまで、これらのステップS1,S2が繰り返される(ステップS3)。所定回数としては、例えば、5回以上の回数が設定されている。
 このとき、ステップS1では1回の繰り返しごとに、カメラ2から較正チャート6までの物体距離が所定の間隔で大きくなるという目的でz軸移動ステージ4によって可動部5を移動させる。可動部5の移動量は等間隔でなくてもよいが、カメラ2を較正する物体距離の範囲内において少なくとも5カ所程度の異なる物体距離において較正チャート6を撮像することが好ましい。そして、所定の撮像枚数に達したら、次のステップS4に進む。
 ステップS1からステップS3においてコンピュータ7に転送された複数の画像ファイルが画像処理されることにより、撮像範囲内の各格子点11の画素座標が算出され、各画像ファイルの基準位置マーク12の重心の画素座標が算出される(ステップS4)。なお、チェスボード10の格子点11の画素座標をサブピクセルによって求める方法は公知なので、ここでの説明は省略する。
 次いで、ステップS4において求めた各格子点11の画素座標が、較正チャート6上の格子点11のワールド座標に対応付けられる(ステップS5)。上述したように基準位置マーク12の右下最近傍の中央の格子点13はワールド座標のz軸上にあるので、基準位置マーク12の右下最近傍の中央の格子点13を基準にして各格子点11,13の画素座標とワールド座標とを対応付けることができる。最後に、対応付けられた全ての画素座標およびワールド座標が測定データファイルに書き出されて、測定が終了する。上記手順によってカメラパラメータの最適化に必要な測定データが得られる。
 本実施形態において用いられるカメラモデルについて図4Aおよび図4Bを参照して説明する。
 図4Aは、カメラ2の画素座標に対応する物体側の主光線19を説明するカメラ2の断面図である。カメラ2は、撮像光学系(光学系)14と、撮像素子(画像変換素子)18とを備えている。
 カメラ座標(x,y,z)を図4Aのように定義する。カメラ座標の原点は撮像光学系14の入射瞳の中心404であり、z軸は光軸403に一致する。撮像素子18の撮像面に、撮像素子18の横方向および縦方向と平行に画素座標のu軸およびv軸を定義する。画素座標のu軸およびv軸と、カメラ座標のx軸とy軸はそれぞれ平行である。本実施形態において、ワールド座標とカメラ座標はほぼ一致している。図4Aには、撮像光学系14を通して撮像素子18の各画素の中央に入射する物体側の主光線19が描かれている。
 主光線19とは、撮像光学系14の開口絞り(図示省略)の中心を通る光線である。このため、主光線19上の物点22に対応する撮像素子18上のボケ像は、主光線19と撮像素子18の交点(図示省略)を中心に広がるので、ボケた像点の光強度の重心を取って像位置とするならば、像点の位置は変わらない。したがって、物体側の主光線19上にある全ての物点22は、1つの像点に結像する。言い換えると、物体側の主光線19は像点の逆投影直線である。
 主光線19の方向とこれに対応する像位置の関係は、射影式によって表される。例えば、撮像光学系14が中心射影によって設計されているとき、物体側の主光線19の画角θとこれに対応する像点の高さyは、y=ftanθの関係にある。ただし、fは、射影の焦点距離である。これ以外の代表的な射影式として、等距離射影y=fθ、等立体角射影y=2fsin(θ/2)、立体射影y=2ftan(θ/2)、正射影y=fsinθなどがある。
 これらの射影式はカメラ2の使用目的によって選択される。例えば、等立体角射影は物体側の立体角、すなわち見かけの大きさが像の面積として保存される。したがって、全天の雲量の割合を計測するような用途に適している。他の射影式にも各々特長がある。
 一方、一般的な写真撮影用の撮像光学系14は必ずしも上記の特定の射影式に依拠していない。上記の特定の射影式を含む、任意の射影式をy=fP(θ)と表すことにする。P(θ)は画角θの関数であり、例えば、等距離射影のときP(θ)=θ、等立体角射影のときP(θ)=2sin(θ/2)である。一般に任意の射影式を数6のベキ多項式の係数c、c、…によって指定することができる。
Figure JPOXMLDOC01-appb-M000006
 次に、瞳収差について説明する。開口絞りを開口絞りよりも物体側の光学系によって結像した仮想的な開口が入射瞳である。図4Aに示されるように、物体側の主光線群は入射瞳の中心404付近を通過するが、開口絞りの場合と異なり、入射瞳の中心404の1点では交わらない。
 開口絞りと入射瞳の結像関係に光学系の収差が介在するからである。これが瞳収差である。したがって、カメラ座標に対応する画素座標を規定するためには、主光線19の方向と瞳収差による主光線19の移動を適切にモデル化する必要がある。
 このような状況に適合する目的で作成した、本発明のカメラモデルを説明する。初めに、画素座標と主光線19の方向の関係を図4Bにおいて説明する。なお、これ以降、各画素が正方格子状に並んだ撮像素子18を例に説明するが、本実施形態はこれに限定されるものではない。
 球座標によって表したカメラ座標(r,θ,φ)を新たに導入する。この極角θは主光線19と光軸403がなす角、すなわち、画角に等しい。方位角φは光軸403回りの方向を表す角度である。直交座標のカメラ座標(x,y,z)との関係は数7によって表される。
Figure JPOXMLDOC01-appb-M000007
 撮像光学系14が射影式y=fP(θ)によって設計されているとき、撮像素子18上の各画素に対応する主光線19の方向をP(θ)cosφ-P(θ)sinφ平面411にプロットすると、画素の配列と相似な正方格子412に並ぶ。しかし、実際の撮像光学系14には製造誤差があるので、主光線19の方向は正方格子412と異なる方向413に変位する。
 本発明は、設計どおりの正方格子412から実際の方向413への変位を、歪曲収差による像位置の歪みと同様の現象と捉える。すなわち、撮像素子18上の画素座標(u,v)に対応する主光線19の方向(P(θ)cosφ,P(θ)sinφ)は、歪曲モデルによって表される、と想定する。このモデルは両者を入れ替えても成立するはずである。従って、本実施形態では、数5のブラウンのモデルを基に、主光線19の方向(P(θ)cosφ,P(θ)sinφ)に対応する画素座標(u,v)を、数8によってモデル化する。
Figure JPOXMLDOC01-appb-M000008
 数5のブラウンのモデルから数8の画素座標のモデルへの変更箇所は次のとおりである。
(1)横倍率に相当する係数kの項を追加した。
(2)3次の動径歪曲kと2次の接線歪曲(p,p)のみを考慮した。
 次に、図4Aにおいて、主光線19と平行であり、入射瞳の中心404を通る仮想の主光線19’を考える。物体距離rが無限遠の極限では、主光線19上の物点22と仮想の主光線19’上の物点22’は同じ像点に結像する。なぜなら、撮像素子18上の有効な撮像範囲に対応する物体側の撮像範囲の球面405も無限大に広がるので、これと比較して、主光線19と仮想の主光線19’の距離は無視できるからである。
 物体距離rが有限になると、主光線19上の物点22と仮想の主光線19’上の物点22’にそれぞれ対応する像点の位置は一致しなくなる。この乖離は画素座標において近似的に、物体距離rに反比例する。なぜなら、主光線19と仮想の主光線19’の距離(物点22と物点22’の距離に等しい)は、物体距離に関わらず一定である。一方、物体側の有効な撮像範囲の球面405上の長さは近似的に、物体距離rに比例することによって増加するからである。
 以上の考察によって、数8の各係数を物体距離rの逆数のベキ多項式によって置き換えて、数9の本実施形態のカメラモデルを得る。
Figure JPOXMLDOC01-appb-M000009
 物体距離rの逆数のベキ多項式の定数項k00,k10,p10,p20は、物体距離rが無限遠の極限では、主光線19上の物点22と仮想の19’上の物点22’は同じ像点に結像することを表す。物体距離rの逆数の係数k01,k11,p11,p21は、両者の像点の乖離が物体距離rに反比例することを表す。
 モデルの精度を向上するために、物体距離rの逆数の2乗以上の項を用いることもできる。逆に、瞳収差を無視できるときは、定数項k00,k10,p10,p20のみを残した数9のカメラモデル(数8に等しい)を用いることもできる。
 このように、数9に示される本実施形態のカメラ較正装置1に用いられるカメラモデルは、ワールド座標に対応する画素座標を直接モデル化したものである。ワールド座標は、数6の射影式と数7の球座標によって変換された座標(P(θ)cosφ,P(θ)sinφ)の形によってカメラモデルに含まれる。
 このカメラモデルは、共役な2つの平面間の結像関係を表す数5の線形モデルを基に構築される。このカメラモデルは、線形モデルの各係数を距離rの逆数の多項式によって置き換えた形になっているという特徴がある。
 本実施形態のカメラ較正装置1に用いられる数9のカメラモデルのもう1つの特徴は、変数(P(θ)cosφ,P(θ)sinφ,r)からなる線形独立な2次元の基底関数ベクトル(2次元ベクトル関数)の線形和によって画素座標ベクトル(u,v)を表すことにある。基底関数ベクトルの線形和なので、u座標とv座標とを表すモデルの係数は共通である。このため、各基底関数ベクトルの係数を全ての測定データから線形の最小二乗法によって求めることができる。
 次に、本実施形態のカメラ較正装置1によってカメラ2を較正する手順を説明する。図3に示される上記測定プログラムにおいて、ワールド座標(x,y,z)と画素座標(u,v)の対応を表す測定データを求める。次に、数7および数8によって、ワールド座標(x,y,z)を(ξ′,η′,r)に変換する。
 独立変数(ξ′,η′,r)と従属変数(u,v)の数9に示されるカメラモデルを、全ての格子点11,13の測定データに線形の最小二乗法を用いて当てはめて、数9のカメラモデルの各係数(カメラパラメータ)を求める。本実施形態のカメラ較正はこれで終了する。
 本実施形態において求めたカメラパラメータが設定されたカメラモデルを、カメラモデルを搭載したカメラ2を含む撮影装置において次のように使うことができる。撮影装置は、3次元のワールド座標から2次元の画素座標を算出する画素座標算出部(図示省略)と、歪みを補正した画像を生成する歪補正画像生成部(図示省略)とをさらに備えている。
 第1に、ワールド座標(x,y,z)に対応する画素座標(u,v)を求めるときは、画素座標算出部において、数7および数8によって、ワールド座標(x,y,z)を(ξ′,η′,r)に変換してから、変換されたこれらを数9に示されるカメラモデルに代入することによって、目的の画素座標(u,v)を求めることができる。
 第2に、較正されたカメラ2によって撮像した画像の歪みを歪補正画像生成部によって補正することができる。以下にその方法を説明する。
 ワールド座標によって表される物体は、カメラ2によって撮像されて歪んだ画像になる。逆に、得られた画像をワールド座標に逆投影すれば、歪みを補正することができる。既知の物体距離zの平面上にある物体を撮像したときは、画素座標(u,v)を物体距離zの平面上のワールド座標(x,y)に逆投影すればよい。
 物体距離zの平面上にない物体を撮像した画像では、歪補正の基準物体距離を定義することによって、物体距離zのワールド座標(x,y)に逆投影する。物体距離による歪曲収差の変化が小さければ、このような歪補正で十分である。ワールド座標に逆投影すると、画像が拡大あるいは縮小してしまう。
 逆投影したワールド座標を数9のカメラモデルの横倍率k’の逆数、即ち画素座標からワールド座標への横倍率によって規格化する。これにより、元の画像とほぼ等倍の歪補正画像を得ることができる。
 歪補正画像の作成は、歪補正後の画像の画素座標(整数)に対応する元の画像の画素値を、歪補正後の画素座標の画素値に代入する一連の手続きである。この手順を図5のフローチャートを参照して説明する。歪補正が開始されると、最初の歪補正後の画素座標(u,v)が決定される(ステップS11)。
 次に、最初の歪補正後の画素座標(u,v)に、基準物体距離zにおける数9のカメラモデルの横倍率k’の逆数を乗じて、ワールド座標(x,y)を求める(ステップS12)。このワールド座標(x,y,z)を数7および数8によって(ξ′,η′,r)に変換してから、変換されたこれらを数9のカメラモデルに代入することによって、歪補正前の画素座標(u,v)を求める(ステップS13)。
 歪補正前の画素座標(u,v)は一般に非整数である。画素座標に近接する4つの画素の画素値からバイリニア補間によって画素座標(u,v)の画素値を求める。求めた画素値を歪補正後の画素座標(u,v)の画素値とする(ステップS14)。
 なお、画素値の補間にはバイキュービック補間などの他の手法を採用してもよい。全ての歪補正後の画素座標(u,v)について、上記ステップS11からステップS14を所定回数繰り返し(ステップS15)、所定回数繰り返した後、歪補正を終了する。
 上記の歪補正では、物体距離zの平面を基準とする一例を説明したが、これ以外のワールド座標空間の平面あるいは曲面を基準として歪補正を実施する方式に変更することもできる。例えば、等距離射影を意図して設計されたカメラ2によって撮像した画像は、カメラ2の製造誤差などによって、必ずしも正確な等距離射影の画像にならないことがある。この場合、等距離射影の射影式y=fθに基づいて、画素座標と基準半径の球面上のワールド座標との対応を規定し、これに基づいて上記と同様の手順を用いて歪補正を実施すれば、意図した等距離射影の画像になる方式に歪補正することができる。他の射影方式でも同様である。
 上述した第1および第2のカメラモデルの利用例では、ワールド座標に対応する画素座標を数9のカメラモデルでその度に計算した。一方、ワールド座標に対応する画素座標を予め計算してからデータ配列として保持しておくことによって、計算の高速化を図ることもできる。
 本実施形態では、平面のチェスボード10上に正方格子状に並んだ格子点11,13の測定データを用いてカメラ較正を実施した。較正チャート6上の特徴点は、格子点11,13以外のパターンでもよい。
 例えば、平面上に分布したドットマークを撮像することによって、重心位置を画素座標とするような測定データの作成方法でもよい。本発明のカメラ較正において用いる特徴点は、ワールド座標空間に規則的に配列されている必要もない。特徴点の配置がランダムであっても、ワールド座標と画素座標との対応を測定あるいはシミュレーション等によって知ることができれば、ワールド座標および画素座標に本発明のカメラモデルを当てはめることができる。
 このように、本実施形態のカメラ較正の測定データに要求される条件は、ワールド座標と画素座標との対応が明らかになっていることのみである。このような測定データは、例えば、次のような方法でも取得可能である。まず、ワールド座標側にx,y,z軸方向に移動可能な点光源を用意する。用意された点光源をカメラ2によって撮像した画像の注目する画素座標に点光源の像を位置させる方式を用いて、点光源をx,y,z軸方向に移動する。このような測定を繰り返すことによってもワールド座標と画素座標との対応を求めることができる。
 あるいは、カメラ2の画角が大きいために、1枚の較正チャート6によって全画角を包含することができないときは、較正チャート6を複数の画角に設置することによって、カメラ2の全画角を包含してもよい。このときも、較正チャート6上の特徴点のワールド座標と画素座標との対応が明らかであれば、本実施形態のカメラ較正方法を適用することができる。
 本実施形態では、3次の動径歪曲と2次の接線歪曲のみを考慮したカメラモデルを採用した。歪曲収差がさらに大きいカメラ2を較正するときは、より高次の歪曲収差または回転非対称の歪曲の項を追加したカメラモデルを採用することができる。
 カメラモデルから不要な項を省略することもできる。例えば、回転非対称な歪曲成分が常に無視できるほど小さいカメラ2を較正するときは、カメラモデルの接線歪曲の項を省略した方がよい。これにより、格子点11の測定誤差によって、カメラモデルが無意味に変形することによって不正確になることを防止できる。他の項についても同様である。
 このように、本実施形態に係るカメラ較正装置1およびカメラ較正方法によれば、本実施形態のカメラモデルによって、撮像光学系14の瞳収差を的確にモデル化することができる。
回転非対称な歪曲収差と瞳収差もモデル化できる。これにより、ワールド座標に対応する画素座標を正確に表現でき、カメラモデルの精度を向上させることができる。
 本実施形態のカメラ較正装置1およびカメラ較正方法は、較正対象のカメラ2の射影式に基づいたカメラモデルを使用するので、モデルに必要な最大次数を抑制することができる。同時に、従来例と異なり、半画角90°以上のカメラ2も較正することができる。
 本実施形態のカメラ較正装置1およびカメラ較正方法は、線形のカメラモデルを使用するので、線形の最小二乗法を用いて測定データに当てはめることができる。したがって、従来例と異なり、最適化の失敗が無く、かつ計算時間を大幅に短縮することができる。
 本実施形態のカメラ較正装置1およびカメラ較正方法に用いる特徴点は規則的に配列している必要がない。したがって、ワールド座標と画素座標との対応さえ明確にできれば、較正されるカメラ2に適した任意の測定あるいは計算による取得方法を選択することが可能になる。
 次に、本発明の第2の実施形態に係るカメラ較正方法について、以下に説明する。
 本実施形態に係るカメラ較正方法には、カメラ較正装置1として、回転角によって、ワールド座標を回転後のワールド座標に変換するワールド座標回転部(図示省略)と、平行移動成分によって、ワールド座標を平行移動後のワールド座標に変換するワールド座標平行移動部(図示省略)とを備えるものが用いられる。
 第1の実施形態においては、図1のように較正されるカメラ2の入射瞳がワールド座標の原点とほぼ一致し、かつ光軸がカメラ較正装置1のz軸と平行であり、撮像面の水平方向と垂直方向がx軸およびy軸と平行であるときのカメラ較正の方法を説明した。本実施形態では、条件を満たさないとき、すなわちワールド座標とカメラ座標が一致しないときのカメラ較正の方法を説明する。
 第1の実施形態で使用したカメラモデルは、較正対象のカメラ2の撮像光学系14の入射瞳の中心404を原点としたカメラ座標によって成立している。したがって、図1のカメラ較正装置1における較正チャート6上の格子点11のワールド座標をカメラ座標に変換すると、上記のカメラモデルが当てはまる。ワールド座標(x,y,z)からカメラ座標(x,y,z)への変換は、数2の3軸の回転行列Rと平行移動ベクトルTにより、数10によって表される。
Figure JPOXMLDOC01-appb-M000010
 そこで、第2の実施形態では、測定した複数の格子点11のワールド座標(x,y,z)と画素座標(u,v)の対応を表す測定データのうち、ワールド座標のみを、数10においてカメラ座標(x,y,z)に変換してから、第1の実施形態のカメラモデルを当てはめる。
 そして、残差が最小になるという目的で、回転行列Rの3軸の回転角θ,θ,θと平行移動ベクトルTの3つの成分(t,t,t)を最適化する。一般に、数10において変換したワールド座標がカメラ座標と一致したとき、カメラモデルの残差が最小になる。
 次に、第2の実施形態に係るカメラ較正方法を用いてカメラ2を較正する手順を、図6を参照して説明する。第1の実施形態と同様にして、ワールド座標(x,y,z)と画素座標(u,v)との対応を表す測定データを取得する(ステップS22)。
 次に、数10に含まれる回転角θ,θ,θと平行移動成分t,t,tとを初期化する(ステップS23)。回転角θ,θ,θおよび平行移動成分t,t,tの初期値はゼロでよい。あるいは、何らかの方法を用いてカメラ2の回転角と平行移動を推定できるときは、推定結果を初期値にしてもよい。
 次に、測定データのワールド座標(x,y,z)を、数10によってカメラ座標(x,y,z)に変換する(ステップS24)。変換されたカメラ座標(x,y,z)を、数7および数8によって、(ξ′,η′,r)に変換する(ステップS25)。測定データのすべての画素座標(u,v)と変換された座標(ξ′,η′,r)に、数9のカメラモデルを線形の最小二乗法を用いて当てはめる(ステップS26)。このときの残差の標準偏差が所定の値よりも小さいときには、終了する(ステップS27)。残差の標準偏差が所定の値以上のときには、回転角θ,θ,θと平行移動成分t,t,tとの更新(ステップS28)を経て、ステップS24に戻る(ステップS27)。
 この繰り返し最適化は、滑降シンプレックス法などの一般的な最適化アルゴリズムによって実行される。評価関数である残差が最小値に収束したときの回転角θ,θ,θと平行移動成分t,t,tとが最適な回転角と平行移動である。以上のように、最適な回転角θ,θ,θ、平行移動成分t,t,tと回転角と平行移動におけるカメラモデルの各係数を取得してから、カメラ較正を終了する。
 本実施形態に係るカメラ較正方法を用いて求めたカメラパラメータが設定されたカメラモデルを、カメラモデルを搭載したカメラ2を含む撮影装置において第1の実施形態と同様に利用することができる。この場合、ワールド座標を数10によってカメラ座標に変換してから、変換されたカメラ座標を数9のカメラモデルに代入して画素座標を求める。
 本実施形態では、3つの回転角θ,θ,θと3つの平行移動の成分t,t,tとを最適化した。最適化された回転角θ,θ,θおよび平行移動の成分t,t,tの中のいくつかが既知のときは、それらを既知の値を用いて固定することによって、最適化パラメータから外してもよい。このときは、残りの未知の1つあるいは複数のパラメータのみを最適化すればよい。このようにすると最適化パラメータの数が減るので、計算時間を短縮することができる。
 なお、3次元座標の3つの回転角の定義には任意性がある。本実施形態ではx,y,z軸回りの回転角という定義を採用して説明した。これ以外の定義であっても本発明を適用できることは言うまでもない。
 このように、本実施形態に係るカメラ較正方法によれば、ワールド座標とカメラ座標とが一致していない場合でも、高精度なカメラモデルを取得することができる。歪曲収差などの多くのカメラパラメータが必要な場合でも、繰り返し最適化のパラメータ数は回転角と平行移動との6つ以下の成分に限定されるので、カメラモデルの最適化の失敗が無く、かつ計算時間を大幅に短縮することができる。
 次に、本発明の第3の実施の形態に係るカメラ較正装置32およびカメラ較正方法について、図面を参照して以下に説明する。本実施形態に係るカメラ較正装置32は、多視点カメラの較正に適用するものである。以下、3台からなる多視点のカメラ33,34,35の較正を例示して説明するが、これ以外の台数のカメラの較正にも適用できる。
 本実施形態に係るカメラ較正装置32においては、図7に示されるように、較正対象の3台のカメラ(光学装置)33,34,35が、多視点カメラの使用条件と同じ位置に配置されてカメラ固定台36に固定される。各々のカメラ33,34,35が較正チャート6を撮像できる方式で、カメラ固定台36がカメラ較正装置32に取り付けられる。較正チャート6とz軸移動ステージ4、コンピュータ7など、これ以外の構成は図1と同様であり、説明を省略する。
 このように構成された本実施形態に係るカメラ較正装置32の作用について、以下に説明する。本実施形態に係るカメラ較正装置32の動作は、第1の実施形態に係るカメラ較正装置1と同様である。図3のフローチャートの測定プログラムによって、自動的に複数の物体距離の較正チャート6の画像がカメラ33,34,35によって撮像され、撮像された画像から較正チャート6の格子点11の画素座標が取得される。ただし、図3のフローチャートのステップS2,S4,S5は3台のカメラ33,34,35に対してそれぞれ実行される。
 続いて、各カメラ33,34,35の上記の測定データから、各カメラ33,34,35のカメラモデルを求める。この手順は、第1あるいは第2の実施形態と同様である。
 本実施形態に係るカメラ較正装置32において求めたカメラパラメータを設定した各カメラモデルを、各カメラモデルを搭載した各カメラ33,34,35を含む撮影装置において第1および第2の実施形態と同様に利用することができる。
 なお、多視点の各カメラ33,34,35の測定データを必ずしも同時に測定する必要は無い。例えば、図3のフローチャートの測定プログラムを各カメラ33,34,35に対して個別に順次、実行してもよい。各カメラ33,34,35の測定データを測定するときに、較正チャート6を測定対象の各カメラ33,34,35に正対させるという目的でz軸移動ステージ4の設置位置をカメラ較正装置32上で変更してもよい。
 z軸移動ステージ4の設置位置の変更量を把握することによって、把握された変更量を較正チャート6の格子点11のワールド座標に反映した測定データを作成する必要がある。このようなカメラ較正方法は、多視点カメラ33,34,35が観察領域を取り囲む方式で配置されているために、1方向に固定された較正チャート6を撮像できないカメラが存在する場合に有効である。
 このように本実施形態に係るカメラ較正装置32およびカメラ較正方法によれば、多視点カメラ33,34,35を使用条件と同じ位置に配置してカメラ較正できる。1つの共通なワールド座標に対応する各カメラ33,34,35の画素座標を求めることができる。
 次に、本発明の第4の実施形態に係る較正装置について、図8を参照して以下に説明する。本実施形態に係る較正装置は、プロジェクタ較正装置37であって、プロジェクタ較正装置37の内部に液晶素子などの画像形成素子(画像変換素子:図示省略)と、投影光学系(光学系:図示省略)とを備えており、画像を外部へ投影するプロジェクタ(投影装置)38を較正するための装置である。本実施形態においては、光学装置の一例として、プロジェクタ38を用いている。
 プロジェクタ較正装置37は、較正対象のプロジェクタ38を固定するベース39と、該ベース39に設けられたz軸移動ステージ4と、該z軸移動ステージ4の可動部5に固定された較正チャート6と、プロジェクタ38と隣接する位置に配置され、較正チャート6の像を撮影するカメラ2とを備えている。カメラ2とプロジェクタ38とは、カメラ2およびプロジェクタ38の光軸をプロジェクタ較正装置37のz軸に平行に設置、かつ、プロジェクタ38の所定の位置を座標原点と一致させて設置することによって、プロジェクタ較正装置37に取り付けられるようになっている。
 なお、カメラ2の撮像範囲はプロジェクタ38の画像投影範囲を包含していることが好ましい。較正チャート6とz軸移動ステージ4、コンピュータ7など、これ以外の構成は図1と同様である。本実施形態において使用される較正チャート6としては、図2のチェスボード10と無地のスクリーンとを交換可能になっている。コンピュータ7は、プロジェクタ38を制御することによって、所定の画像をプロジェクタ38に投影させる機能を併せ持っている。
 このように構成された本実施形態に係るプロジェクタ較正装置37を用いてプロジェクタ38を較正するには、図2のチェスボード10を較正チャート6として設置した状態で、カメラ2を較正する。この手順は第1あるいは第2の実施形態と同様である。
 続いて、較正チャート6を無地のスクリーンに交換する。そして、プロジェクタ38から、投影光学系を通すことによって図2のチェスボード10のパターンを較正チャート6に投影する。このとき、プロジェクタ38内部の画像形成素子(図示省略)上において定義される画素座標において、チェスボード10の各格子点11,13の画素座標は既知である。
 この状態で、第1の実施形態と同様に、図3のフローチャートの測定プログラムによって、自動的に複数の物体距離においてチェスボード10のパターンが投影された較正チャート6の画像がカメラ2によって撮像され、撮像された画像からチェスボード10のパターンの格子点11の画素座標が取得される。
 この後に、取得された画素座標(u,v)と較正チャート6の物体距離zとから、上記の手順によって較正されたカメラ2のカメラモデルによって、較正チャート6上に投影されたチェスボード10のパターンの格子点11のワールド座標(x,y)を求める。なお、本発明の第1あるいは第2の実施形態によるカメラ2のカメラモデルは、ワールド座標(x,y,z)から画素座標(u,v)を求める形式である。従って、取得された画素座標(u,v)と物体距離zからワールド座標(x,y)を求めるには繰り返し最適化が必要である。この方法は公知なので、ここでの説明は省略する。
 以上の手順によって、プロジェクタ38の画素座標(u,v)とワールド座標(x,y,z)との対応を表す測定データが得られる。得られた測定データから、プロジェクタ38のカメラパラメータを求める方法は第1あるいは第2の実施形態と同様である。
 このようにして求められたプロジェクタ38のカメラパラメータを設定したカメラモデルを、カメラモデルを搭載したプロジェクタ38において第1および第2の実施形態と同様に利用することができる。
 特に、歪みが無い画像を投影したいときは、プロジェクタ38の画像形成素子によって形成する画像に、投影によって生じる歪みを相殺するような画像歪みを予め加えておけばよい。歪補正画像の画素座標を求める手順は、図5に示される第1の実施形態のフローチャートと同様である。
 なお、プロジェクタ38によって投影するパターンはチェスボード10に限らない。カメラ2によって撮像した画像から特徴点の画素座標を算出できる、ドットマークなどのパターンも適用可能である。あるいは、プロジェクタ38の離散した各画素を点灯する方法でもよい。
 また、本実施形態では、プロジェクタ38によって投影された特徴点のワールド座標(x,y)を、予め較正したカメラ2によって測定した。測定結果は、較正チャート6の代わりに撮像素子18を設置する。そして、投影されたパターンを直接撮像する、という方法でも実現可能である。ワールド座標と画素座標の対応さえ明確にできれば、これ以外の取得方法も選択可能である。
 このように、本実施形態に係るプロジェクタ較正装置37によれば、プロジェクタ38をカメラモデルによって較正することができる。
 本発明の第1から第4の実施形態において、カメラ2,33,34,35あるいはプロジェクタ38は屈折光学系に限定されない。反射屈折光学系であっても、反射に伴う座標系の反転などの変換を考慮すれば、本発明を適用できることは自明である。
 カメラ2,33,34,35あるいはプロジェクタ38のフォーカス、ズーム、絞りなどの設定変更にそれぞれ対応した、複数のカメラ較正を実施することにしてもよい。カメラモデルを補間することによって、任意の設定に対応したカメラモデルを求めることにしてもよい。
 光源の複数の波長の下において、カメラ較正を実施することにしてもよい。波長別の画像を撮影するカメラによって、波長別のカメラモデルを使用することにしてもよい。
 本発明の第1から第4の実施形態に記載の光学装置2,33,34,35,38において、画像変換素子の一例として、撮像素子18または画像形成素子を用いたが、これに限られるものではなく、画像と映像信号とを相互に変換するものであればよい。
 1,32 カメラ較正装置(較正装置)
 2,33,34,35 カメラ(撮影装置、光学装置)
 7 コンピュータ(パラメータ算出部)
 8 較正データ取得部
 14 撮像光学系(光学系)
 18 撮像素子(画像変換素子)
 37 プロジェクタ較正装置(較正装置)
 38 プロジェクタ(投影装置、光学装置)

Claims (26)

  1.  複数の画素を有する2次元の画像変換素子と、該画像変換素子と3次元のワールド座標空間との間において結像関係を形成する光学系とを備える光学装置の較正装置であって、
     前記画像変換素子の2次元の画素座標と、前記ワールド座標空間の3次元のワールド座標との対応を示す較正データを取得する較正データ取得部と、
     該較正データ取得部によって取得された前記較正データに、前記2次元の画素座標の2つの座標値を、前記3次元のワールド座標の3つの座標値の関数として表したカメラモデルを当てはめて、該カメラモデルのパラメータを算出するパラメータ算出部とを備え、
     前記光学系の画角θと像高yの射影関係が、射影の焦点距離fを用いて、概ね射影式y=fP(θ)によって表されるとき、
     前記パラメータ算出部が、
     前記較正データ取得部によって取得された前記較正データの3次元のワールド座標(x,y,z)を、該ワールド座標に等しい3次元の球座標(r,θ,φ)によって、2次元の座標(P(θ)cosφ,P(θ)sinφ)に変換してから、
     前記2次元の画素座標の2つの座標値を、前記2次元の座標(P(θ)cosφ,P(θ)sinφ)の2つの座標値の関数として表したカメラモデルを当てはめて、該カメラモデルの前記パラメータを算出する較正装置。
  2.  前記カメラモデルが、前記2次元の座標(P(θ)cosφ,P(θ)sinφ)の2つの座標値の関数を要素とした複数の2次元ベクトル関数の線形和によって、前記2次元の画素座標の2つの座標値を表す請求項1に記載の較正装置。
  3.  前記2次元の座標(P(θ)cosφ,P(θ)sinφ)の関数が、2次元の平面間の結像関係を表す関数と同じ形式である請求項2に記載の較正装置。
  4.  前記カメラモデルが、前記複数の2次元ベクトル関数の線形和の各係数を、前記3次元の球座標のrの逆数のベキ多項式によって置換した数式で表現される請求項2に記載の較正装置。
  5.  前記パラメータ算出部が、前記カメラモデルを線形の最小二乗法で前記較正データに当てはめる請求項1から請求項4のいずれかに記載の較正装置。
  6.  前記パラメータ算出部が、前記較正データ取得部によって取得された前記較正データの内、前記3次元のワールド座標を、該ワールド座標の回転を表す3つの回転角の1以上の回転角で回転したワールド座標に変換した較正データに、前記カメラモデルを当てはめて、該カメラモデルの残差が最小になる1以上の回転角を求める請求項1に記載の較正装置。
  7.  前記パラメータ算出部が、前記較正データ取得部によって取得された前記較正データの内、前記3次元のワールド座標を、該ワールド座標の平行移動を表す3つの平行移動成分の1以上の成分で平行移動したワールド座標に変換した較正データに、前記カメラモデルを当てはめて、該カメラモデルの残差が最小になる1以上の平行移動成分を求める請求項1に記載の較正装置。
  8.  前記光学装置が、複数の前記画像変換素子および該画像変換素子と前記3次元のワールド座標空間との間で結像関係を形成する光学系を備え、
     前記較正データ取得部が各前記画像変換素子および前記光学系の較正データを取得し、
     前記パラメータ算出部が、各前記画像変換素子および前記光学系の前記較正データに、各前記カメラモデルを当てはめる請求項1から請求項7のいずれかに記載の較正装置。
  9.  前記光学装置が撮影装置であり、
     前記画像変換素子が撮像素子であり、
     前記光学系が撮像光学系である請求項1から請求項8のいずれかに記載の較正装置。
  10.  前記光学装置が投影装置であり、
     前記画像変換素子が画像形成素子であり、
     前記光学系が投影光学系である請求項1から請求項8のいずれかに記載の較正装置。
  11.  複数の画素を有する2次元の画像変換素子と、該画像変換素子と3次元のワールド座標空間との間において結像関係を変換する光学系とを備える光学装置の前記画像変換素子の2次元の画素座標と、前記ワールド座標空間の3次元のワールド座標との対応を示す較正データを取得するステップと、
     取得された前記較正データに、前記2次元の画素座標の2つの座標値を、前記3次元のワールド座標の3つの座標値の関数として表したカメラモデルを当てはめて、該カメラモデルのパラメータを算出するステップとを含み、
     前記光学系の画角θと像高yの射影関係が、射影の焦点距離fを用いて、概ね射影式y=fP(θ)によって表されるとき、
     前記パラメータを算出するステップが、
     前記較正データを取得するステップによって取得された前記較正データの3次元のワールド座標(x,y,z)を、該ワールド座標に等しい3次元の球座標(r,θ,φ)によって、2次元の座標(P(θ)cosφ,P(θ)sinφ)に変換してから、前記2次元の画素座標の2つの座標値を、前記2次元の座標(P(θ)cosφ,P(θ)sinφ)の2つの座標値の関数として表したカメラモデルを当てはめて、該カメラモデルの前記パラメータを算出する較正方法。
  12.  前記カメラモデルが、前記2次元の座標(P(θ)cosφ,P(θ)sinφ)の2つの座標値の関数を要素とした複数の2次元ベクトル関数の線形和によって、前記2次元の画素座標の2つの座標値を表す請求項11に記載の較正方法。
  13.  前記2次元の座標(P(θ)cosφ,P(θ)sinφ)の関数が、2次元の平面間の結像関係を表す関数と同じ形式である請求項12に記載の較正方法。
  14.  前記カメラモデルが、前記複数の2次元ベクトル関数の線形和の各係数を、前記3次元の球座標のrの逆数のベキ多項式によって置換した数式で表現される請求項12に記載の較正方法。
  15.  前記パラメータを算出するステップが、前記カメラモデルを線形の最小二乗法で前記較正データに当てはめる請求項11から請求項14のいずれかに記載の較正方法。
  16.  前記パラメータを算出するステップが、前記較正データを取得するステップによって取得された前記較正データの内、前記3次元のワールド座標を、該ワールド座標の回転を表す3つの回転角の1以上の回転角で回転したワールド座標に変換した較正データに、前記カメラモデルを当てはめて、該カメラモデルの残差が最小になる1以上の回転角を求める請求項11に記載の較正方法。
  17.  前記パラメータを算出するステップが、前記較正データを取得するステップによって取得された前記較正データの内、前記3次元のワールド座標を、該ワールド座標の平行移動を表す3つの平行移動成分の1以上の成分で平行移動したワールド座標に変換した較正データに、前記カメラモデルを当てはめて、該カメラモデルの残差が最小になる1以上の平行移動成分を求める請求項11または請求項16に記載の較正方法。
  18.  請求項1から請求項10のいずれかに記載の較正装置によって算出された前記パラメータが設定されたカメラモデルを搭載した光学装置。
  19.  前記カメラモデルによって、前記画素座標の2つの座標値を、前記3次元のワールド座標の3つの座標値から求める画素座標算出部を備える請求項18に記載の光学装置。
  20.  前記カメラモデルによって、前記ワールド座標に対応する前記画像変換素子によって取得あるいは形成された画像の画素座標を求め、歪みを補正した画像を生成する歪補正画像生成部を備える請求項18に記載の光学装置。
  21.  請求項6に記載の較正装置によって取得された前記回転角がパラメータとして設定されたカメラモデルを搭載した光学装置。
  22.  前記回転角によって、前記ワールド座標を回転後のワールド座標に変換するワールド座標回転部を備える請求項21に記載の光学装置。
  23.  請求項7に記載の較正装置によって取得された前記平行移動成分がパラメータとして設定されたカメラモデルを搭載した光学装置。
  24.  前記平行移動成分によって、前記ワールド座標を平行移動後のワールド座標に変換するワールド座標平行移動部を備える請求項23記載の光学装置。
  25.  請求項18から請求項24のいずれかに記載の光学装置からなる撮影装置。
  26.  請求項18から請求項24のいずれかに記載の光学装置からなる投影装置。
PCT/JP2018/005008 2017-03-21 2018-02-14 較正装置、較正方法、光学装置、撮影装置および投影装置 WO2018173551A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880019080.1A CN110447220B (zh) 2017-03-21 2018-02-14 校准装置、校准方法、光学装置、摄影装置以及投影装置
US16/568,814 US10798353B2 (en) 2017-03-21 2019-09-12 Calibration apparatus, calibration method, optical apparatus, image capturing apparatus, and projection apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017054559 2017-03-21
JP2017-054559 2017-03-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/568,814 Continuation US10798353B2 (en) 2017-03-21 2019-09-12 Calibration apparatus, calibration method, optical apparatus, image capturing apparatus, and projection apparatus

Publications (1)

Publication Number Publication Date
WO2018173551A1 true WO2018173551A1 (ja) 2018-09-27

Family

ID=63586047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005008 WO2018173551A1 (ja) 2017-03-21 2018-02-14 較正装置、較正方法、光学装置、撮影装置および投影装置

Country Status (3)

Country Link
US (1) US10798353B2 (ja)
CN (1) CN110447220B (ja)
WO (1) WO2018173551A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109816733A (zh) * 2019-01-14 2019-05-28 京东方科技集团股份有限公司 相机参数初始化方法及装置、相机参数标定方法及设备、图像采集***
CN111028296A (zh) * 2019-11-07 2020-04-17 浙江大华技术股份有限公司 球机焦距值估算方法、装置、设备及存储装置
CN113454684A (zh) * 2021-05-24 2021-09-28 华为技术有限公司 一种关键点标定方法和装置

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018167999A1 (ja) * 2017-03-17 2018-09-20 パナソニックIpマネジメント株式会社 プロジェクタ及びプロジェクタシステム
WO2019039997A1 (en) * 2017-08-25 2019-02-28 Maker Trading Pte Ltd GENERAL SYSTEM FOR MONOCULAR ARTIFICIAL VISION AND METHOD FOR IDENTIFYING LOCATIONS OF TARGET ELEMENTS
US10609360B2 (en) * 2018-06-28 2020-03-31 Black Sesame International Holding Limited Dual camera calibration
JP2020150303A (ja) * 2019-03-11 2020-09-17 ソニー株式会社 画像処理装置、画像処理方法、およびプログラム
TWI720447B (zh) * 2019-03-28 2021-03-01 財團法人工業技術研究院 影像定位方法及其系統
CN111935465B (zh) * 2019-05-13 2022-06-17 中强光电股份有限公司 投影***、投影装置以及其显示影像的校正方法
CN111145265B (zh) * 2019-12-16 2024-02-06 奥比中光科技集团股份有限公司 一种确定相机虚拟光轴的方法及***
CN111612852B (zh) * 2020-05-20 2023-06-09 阿波罗智联(北京)科技有限公司 用于验证相机参数的方法和装置
CN111862221B (zh) * 2020-07-31 2022-10-11 广东利元亨智能装备股份有限公司 Uvw平台标定方法、设备、纠偏方法、装置及对位***
CN112199815B (zh) * 2020-08-29 2024-03-12 长春工业大学 一种降低温度对相机内参数影响的方法
CN112149675B (zh) * 2020-09-04 2024-01-12 雅客智慧(北京)科技有限公司 获取图表信息数据的方法、电子设备及可读存储介质
CN112346258B (zh) * 2020-11-06 2022-09-13 上海易维视科技有限公司 基于方波拟合的光栅可视区定标方法及***
US11172193B1 (en) * 2020-12-04 2021-11-09 Argo AI, LLC Method and system to calibrate camera devices of a vehicle vision system using a programmable calibration target device
CN112798811B (zh) * 2020-12-30 2023-07-28 杭州海康威视数字技术股份有限公司 速度测量方法、装置和设备
CN112837377B (zh) * 2021-01-13 2024-07-05 上海力信测量***有限公司 一种相机内外参联合标定***
CN115412719B (zh) * 2021-05-26 2024-03-01 致伸科技股份有限公司 相机镜头与光源的对位方法
CN113298883A (zh) * 2021-06-08 2021-08-24 清德智体(北京)科技有限公司 用于对多个相机进行标定的方法、电子设备和存储介质
CN113379835B (zh) * 2021-06-29 2024-06-04 深圳中科飞测科技股份有限公司 检测设备的校准方法、装置、设备及可读存储介质
CN113592956B (zh) * 2021-07-30 2023-12-19 武汉精测电子集团股份有限公司 一种基于显微检测机台的多镜头联合标定方法和装置
CN113916906B (zh) * 2021-09-03 2024-01-09 江苏理工学院 视觉检测***led光源照度优化方法及所用实验设备
CN114095657B (zh) * 2021-11-22 2024-02-27 成都天翼空间科技有限公司 一种基于新增摄像头的自动校准的方法与***
CN114529616B (zh) * 2022-04-22 2022-07-26 武汉精视遥测科技有限公司 基于内壁刻度的广角镜头参数标定方法、***及计算机
CN114782549B (zh) * 2022-04-22 2023-11-24 南京新远见智能科技有限公司 基于定点标识的相机标定方法及***
CN115063290B (zh) * 2022-08-17 2022-11-22 腾讯科技(深圳)有限公司 图像处理方法、装置、设备、***及存储介质
CN115619981B (zh) * 2022-12-20 2023-04-11 北京百度网讯科技有限公司 三维发型生成方法和模型的训练方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002202122A (ja) * 2001-01-05 2002-07-19 Olympus Optical Co Ltd 2次元距離画像センサのキャリブレーション方法
JP2005260753A (ja) * 2004-03-12 2005-09-22 Ntt Docomo Inc カメラ選択装置、及びカメラ選択方法
JP2016105577A (ja) * 2014-11-25 2016-06-09 日本放送協会 カメラモデルパラメータ推定装置及びそのプログラム

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3949333B2 (ja) * 1999-04-12 2007-07-25 富士通株式会社 画像計測方法、画像計測装置、および画像計測プログラム記憶媒体
JP4147059B2 (ja) * 2002-07-03 2008-09-10 株式会社トプコン キャリブレーション用データ測定装置、測定方法及び測定プログラム、並びにコンピュータ読取可能な記録媒体、画像データ処理装置
JP3735344B2 (ja) 2002-12-27 2006-01-18 オリンパス株式会社 キャリブレーション装置、キャリブレーション方法、及びキャリブレーション用プログラム
JP4681856B2 (ja) * 2004-11-24 2011-05-11 アイシン精機株式会社 カメラの校正方法及びカメラの校正装置
EP1662440A1 (en) * 2004-11-30 2006-05-31 IEE INTERNATIONAL ELECTRONICS & ENGINEERING S.A. Method for determining the position of an object from a digital image
JP4418841B2 (ja) * 2008-01-24 2010-02-24 キヤノン株式会社 作業装置及びその校正方法
US8400505B2 (en) * 2008-05-19 2013-03-19 Panasonic Corporation Calibration method, calibration device, and calibration system including the device
JP2010025759A (ja) * 2008-07-18 2010-02-04 Fuji Xerox Co Ltd 位置計測システム
WO2010109730A1 (ja) * 2009-03-26 2010-09-30 アイシン精機株式会社 カメラ校正装置
US8872897B2 (en) * 2011-05-11 2014-10-28 Intel Corporation Camera calibration using an easily produced 3D calibration pattern
US8743214B2 (en) * 2011-05-11 2014-06-03 Intel Corporation Display screen for camera calibration
CN102496160B (zh) * 2011-12-09 2014-02-26 河海大学常州校区 集控式足球机器人视觉***标定方法
JP5832278B2 (ja) * 2011-12-26 2015-12-16 三菱重工業株式会社 カメラ計測システムのキャリブレーション方法
CN102831626B (zh) * 2012-06-18 2014-11-26 清华大学 极地投影模式下多变量时空数据的可视化方法
US20140085409A1 (en) * 2012-09-25 2014-03-27 GM Global Technology Operations LLC Wide fov camera image calibration and de-warping
CN103021013A (zh) * 2012-11-28 2013-04-03 无锡羿飞科技有限公司 投影机球形显示及旋转输出图像的高效处理方法
US10237528B2 (en) * 2013-03-14 2019-03-19 Qualcomm Incorporated System and method for real time 2D to 3D conversion of a video in a digital camera
JP2015128242A (ja) * 2013-12-27 2015-07-09 ソニー株式会社 画像投影装置及びそのキャリブレーション方法
US9912884B2 (en) * 2014-03-03 2018-03-06 Photoneo, s.r.o. Methods and apparatus for superpixel modulation
JP6121063B1 (ja) * 2014-11-04 2017-04-26 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd カメラ較正方法、デバイス及びシステム
CN107003109B (zh) * 2014-11-13 2019-11-05 奥林巴斯株式会社 校准装置、校准方法、光学装置、摄影装置、投影装置、测量***以及测量方法
EP3144890A1 (en) * 2015-09-17 2017-03-22 Thomson Licensing An apparatus and a method for calibrating an optical acquisition system
US10142544B1 (en) * 2016-01-27 2018-11-27 RAPC Systems, Inc. Real time wide angle video camera system with distortion correction
US9965870B2 (en) * 2016-03-29 2018-05-08 Institut National D'optique Camera calibration method using a calibration target
EP3457682A1 (en) * 2016-05-13 2019-03-20 Olympus Corporation Calibration device, calibration method, optical device, imaging device, projection device, measurement system and measurement method
WO2018029950A1 (ja) * 2016-08-12 2018-02-15 オリンパス株式会社 較正装置、較正方法、光学装置、撮影装置、および投影装置
US10733697B2 (en) * 2016-12-27 2020-08-04 Intel IP Corporation Convolutional neural network for wide-angle camera images

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002202122A (ja) * 2001-01-05 2002-07-19 Olympus Optical Co Ltd 2次元距離画像センサのキャリブレーション方法
JP2005260753A (ja) * 2004-03-12 2005-09-22 Ntt Docomo Inc カメラ選択装置、及びカメラ選択方法
JP2016105577A (ja) * 2014-11-25 2016-06-09 日本放送協会 カメラモデルパラメータ推定装置及びそのプログラム

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109816733A (zh) * 2019-01-14 2019-05-28 京东方科技集团股份有限公司 相机参数初始化方法及装置、相机参数标定方法及设备、图像采集***
CN109816733B (zh) * 2019-01-14 2023-08-18 京东方科技集团股份有限公司 相机参数初始化方法及装置、相机参数标定方法及设备、图像采集***
CN111028296A (zh) * 2019-11-07 2020-04-17 浙江大华技术股份有限公司 球机焦距值估算方法、装置、设备及存储装置
CN111028296B (zh) * 2019-11-07 2023-05-12 浙江大华技术股份有限公司 球机焦距值估算方法、装置、设备及存储装置
CN113454684A (zh) * 2021-05-24 2021-09-28 华为技术有限公司 一种关键点标定方法和装置

Also Published As

Publication number Publication date
CN110447220A (zh) 2019-11-12
US20200007836A1 (en) 2020-01-02
US10798353B2 (en) 2020-10-06
CN110447220B (zh) 2021-03-09

Similar Documents

Publication Publication Date Title
WO2018173551A1 (ja) 較正装置、較正方法、光学装置、撮影装置および投影装置
JP6664000B2 (ja) 較正装置、較正方法、光学装置、撮影装置、および投影装置
JP6675478B2 (ja) 較正装置、較正方法、光学装置、撮影装置、投影装置、計測システムおよび計測方法
JP6576945B2 (ja) 較正装置、較正方法、光学装置、撮影装置、投影装置、計測システムおよび計測方法
Tang et al. A precision analysis of camera distortion models
JP6079333B2 (ja) 校正装置、方法及びプログラム
WO2019205299A1 (zh) 视觉测量***结构参数标定和仿射坐标系构建方法与***
CN105096329B (zh) 一种精确校正超广角摄像头图像畸变的方法
KR20090004428A (ko) 광학 설계 방법 및 시스템과 광학 수차를 갖는 광학 요소를이용한 촬상 소자
CN109242779B (zh) 一种相机成像模型的构建方法、装置及汽车自动驾驶***
JP2016100698A (ja) 校正装置、校正方法、プログラム
JP4960941B2 (ja) 放送用バーチャルスタジオのズームレンズ搭載カメラのカメラキャリブレーション装置、その方法およびそのプログラム
JP2015015587A (ja) 撮像装置およびその制御方法
JP2018179577A (ja) 位置計測装置
CN110298890B (zh) 一种基于普朗克参数化的光场相机标定方法
JP2017194591A (ja) 距離測定装置、撮像装置、および距離測定方法
JP2018017568A (ja) 距離測定装置、撮像装置、および距離測定方法
CN113160393A (zh) 基于大景深的高精度三维重建方法、装置及其相关组件
Richter et al. Development of a geometric model for an all-reflective camera system
Börlin et al. Flexible photogrammetric computations using modular bundle adjustment: The chain rule and the collinearity equations
JP2006330772A (ja) 撮影画像における歪曲収差補正方法
JP6560159B2 (ja) 位置計測装置
JP4196784B2 (ja) カメラ位置測定装置および方法並びにカメラ位置制御方法
KR100483345B1 (ko) 이중파장 영사식 모아레 기반 형상측정장치 및 레지스트레이션을 이용한 멀티헤드 시스템용 자동 캘리브레이션 방법
CN114782545A (zh) 一种消除主镜头畸变的光场相机标定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18771194

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18771194

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP