WO2018168345A1 - ロータリー式圧縮機 - Google Patents

ロータリー式圧縮機 Download PDF

Info

Publication number
WO2018168345A1
WO2018168345A1 PCT/JP2018/005745 JP2018005745W WO2018168345A1 WO 2018168345 A1 WO2018168345 A1 WO 2018168345A1 JP 2018005745 W JP2018005745 W JP 2018005745W WO 2018168345 A1 WO2018168345 A1 WO 2018168345A1
Authority
WO
WIPO (PCT)
Prior art keywords
shell
discharge pipe
rotary compressor
compression mechanism
pipe
Prior art date
Application number
PCT/JP2018/005745
Other languages
English (en)
French (fr)
Inventor
秀幸 堀畑
古谷 志保
啓 椎崎
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201880010583.2A priority Critical patent/CN110268166B/zh
Publication of WO2018168345A1 publication Critical patent/WO2018168345A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet

Definitions

  • the present invention relates to a rotary compressor used in an outdoor unit or refrigerator of an air conditioner.
  • a rotary compressor used in an outdoor unit or a refrigerator of an air conditioner includes an electric motor part and a compression mechanism part in a sealed container, and the electric motor part and the compression mechanism part are connected by a shaft, and the shaft is eccentric. The piston attached to the part is revolved by the rotation of the shaft.
  • positions a shaft to a perpendicular direction what does not arrange
  • Patent Document 1 and Patent Document 2 a terminal is arranged on the shell for the purpose of reducing the overall height of the rotary compressor.
  • Patent Documents 3 to 7 a rotary compressor of the type in which the electric mechanism portion and the compression mechanism portion are arranged in the vertical direction and the shaft is arranged in the vertical direction has been proposed in which the discharge pipe is arranged at a position other than the central portion of the upper shell.
  • Patent Documents 3 to 6 are not clearly described, since the discharge pipe and the terminal are arranged on the upper shell, the discharge pipe is arranged at a position other than the central portion in relation to the terminal. is doing.
  • Patent Document 7 there is no description of the terminal, but the discharge pipe is arranged at a position other than the central portion.
  • the discharge pipe is placed at the center of the upper shell unless there is any restriction such as terminal placement.
  • the center of gravity of the rotary compressor is not the central portion of the upper shell due to the accumulator, if the discharge pipe is arranged at the central portion of the upper shell, the vibration of the discharge pipe increases.
  • the vibration of the discharge pipe increases, the vibration is transmitted to the pipe connected to the discharge pipe, the stress applied to the pipe also increases, and the pipe may be damaged.
  • an object of the present invention is to provide a rotary compressor that can reduce vibration transmitted to a pipe connected to the discharge pipe by reducing vibration of the discharge pipe.
  • a rotary compressor includes an electric motor section and a compression mechanism section in a sealed container, and the sealed container is formed as a cylindrical shell extending in a vertical direction, The upper shell for closing the upper opening of the shell shell, and the lower shell for closing the lower opening of the shell shell, the suction shell for introducing the suction refrigerant into the compression mechanism portion, the motor shell portion
  • a rotary compressor having an accumulator provided upstream of the suction pipe, connected to a terminal for feeding power, connected to the upper shell, and a discharge pipe for leading the discharge refrigerant compressed by the compression mechanism.
  • a rotary compressor according to a second aspect of the present invention is the rotary compressor according to the first aspect, wherein the discharge pipe is arranged at the gravity center position G.
  • the vibration of the discharge pipe can be reduced, and the vibration transmitted to the pipe connected to the discharge pipe can be reduced.
  • FIG. 1 is a cross-sectional view of a rotary compressor according to an embodiment of the present invention.
  • Top view conceptual diagram showing the position of the discharge pipe of the rotary compressor
  • the discharge pipe when the diameter of the trunk shell is D and the center of gravity position of the upper shell that is on the vertical line of the center of gravity including the accumulator is the center of gravity position G, the discharge pipe has a radius D / 10 around G. It is arranged within the range. According to the first aspect, the vibration of the discharge pipe can be reduced, the vibration transmitted to the pipe connected to the discharge pipe can be reduced, and the pipe stress can be reduced.
  • the discharge pipe is arranged at the gravity center position G. According to the second aspect, the vibration of the discharge pipe can be reduced most.
  • FIG. 1 is a sectional view of a rotary compressor according to this embodiment.
  • the rotary compressor according to this embodiment includes an electric motor unit 20 and a compression mechanism unit 30 in the hermetic container 10.
  • the electric motor unit 20 and the compression mechanism unit 30 are connected by a shaft 40.
  • the sealed container 10 includes a cylindrical shell 10a that extends in the vertical direction, an upper shell 10b that closes an upper opening of the shell 10a, and a lower shell 10c that closes a lower opening of the shell 10a.
  • the electric motor unit 20 includes a stator 21 that is fixed to the inner surface of the sealed container 10 and a rotor 22 that rotates within the stator 21.
  • the rotary compressor according to the present embodiment includes a first compression mechanism unit 30 ⁇ / b> A and a second compression mechanism unit 30 ⁇ / b> B as the compression mechanism unit 30.
  • the first compression mechanism 30A includes a first cylinder 31A, a first piston 32A disposed in the first cylinder 31A, and a vane (not shown) that partitions the first cylinder 31A.
  • 32A revolves in the first cylinder 31A, and sucks and compresses the low-pressure refrigerant gas.
  • the second compression mechanism 30B includes a second cylinder 31B, a second piston 32B disposed in the second cylinder 31B, and a vane that partitions the second cylinder 31B (not shown). 2), and the second piston 32B revolves in the second cylinder 31B to suck in and compress the low-pressure refrigerant gas.
  • a main bearing 51 is disposed on one surface of the first cylinder 31A, and an intermediate plate 52 is disposed on the other surface of the first cylinder 31A.
  • An intermediate plate 52 is disposed on one surface of the second cylinder 31B, and a sub-bearing 53 is disposed on the other surface of the second cylinder 31B. That is, the intermediate plate 52 partitions the first cylinder 31A and the second cylinder 31B.
  • the middle plate 52 has an opening larger than the diameter of the shaft 40.
  • the shaft 40 includes a main shaft portion 41 to which the rotor 22 is attached and supported by the main bearing 51, a first eccentric portion 42 to which the first piston 32A is attached, a second eccentric portion 43 to which the second piston 32B is attached, and a sub-bearing. And a countershaft portion 44 supported by 53.
  • the first eccentric part 42 and the second eccentric part 43 are formed with a phase difference of 180 degrees, and a connecting shaft part 45 is formed between the first eccentric part 42 and the second eccentric part 43. .
  • the first compression chamber 34A is formed between the main bearing 51 and the intermediate plate 52 between the inner peripheral surface of the first cylinder 31A and the outer peripheral surface of the first piston 32A.
  • the second compression chamber 34B is formed between the inner peripheral surface of the second cylinder 31B and the outer peripheral surface of the second piston 32B between the intermediate plate 52 and the auxiliary bearing 53.
  • the first compression chamber 34A and the second compression chamber 34B have the same volume. That is, the inner diameter of the first cylinder 31A and the inner diameter of the second cylinder 31B are the same, and the outer diameter of the first piston 32A and the outer diameter of the second piston 32B are the same.
  • the inner circumferential height of the first cylinder 31A and the inner circumferential height of the second cylinder 31B are the same, and the first piston 32A height and the second piston 32B height are the same.
  • An oil sump 11 is formed at the bottom of the sealed container 10, and an oil pickup 12 is provided at the lower end of the shaft 40.
  • an oil supply passage is formed in the shaft 40 in the axial direction, and a communication passage for supplying oil to the sliding surface of the compression mechanism unit 30 is formed in the oil supply passage.
  • first suction pipe 13A and a second suction pipe 13B Connected to the shell 10a are a first suction pipe 13A and a second suction pipe 13B for introducing the suction refrigerant into the compression mechanism section 30, and a terminal 50 for supplying power to the motor section 20.
  • a discharge pipe 14 is connected to the upper shell 10b.
  • the terminal 50 is disposed above the electric motor unit 20.
  • the first suction pipe 13A is connected to the first compression chamber 34A
  • the second suction pipe 13B is connected to the second compression chamber 34B.
  • An accumulator 15 is provided on the upstream side of the first suction pipe 13A and the second suction pipe 13B. The accumulator 15 separates the refrigerant returned from the refrigeration cycle into a liquid refrigerant and a gas refrigerant.
  • Gas refrigerant flows through the first suction pipe 13A and the second suction pipe 13B.
  • the accumulator 15 and the terminal 50 are disposed at symmetrical positions with respect to the center of the shell 10a. Due to the rotation of the shaft 40, the first piston 32A and the second piston 32B revolve in the first compression chamber 34A and the second compression chamber 34B. The gas refrigerant sucked into the first compression chamber 34A and the second compression chamber 34B from the first suction pipe 13A and the second suction pipe 13B by the revolving motion of the first piston 32A and the second piston 32B is converted into the first compression chamber 34A.
  • FIG. 2 is a top conceptual view showing the position of the discharge pipe of the rotary compressor according to this embodiment.
  • the discharge pipe 14 when the diameter of the trunk shell 10a is D and the center of gravity position of the upper shell 10b on the vertical line of the center of gravity including the accumulator 15 is G, the discharge pipe 14 has a radius D / It arrange
  • the vibration of the discharge pipe 14 can be reduced, and the vibration transmitted to the pipe connected to the discharge pipe 14 can be reduced. Pipe stress can be reduced. Further, by arranging the discharge pipe 14 at the center of gravity position G, the vibration of the discharge pipe 14 can be reduced most.
  • the present invention can also be applied to a single cylinder rotary compressor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

密閉容器10は、上下方向に沿って延びる円筒状に形成された胴シェル10aと、胴シェル10aの上部開口を塞ぐ上シェル10bと、胴シェル10aの下部開口を塞ぐ下シェル10cとで構成され、胴シェル10aには、圧縮機構部30に吸入冷媒を導入する吸入管13A、13Bと、電動機部20に給電するターミナル50とが接続され、上シェル10bには、圧縮機構部30で圧縮された吐出冷媒を導出する吐出管14が接続され、吸入管13A、13Bの上流側にはアキュムレータ15を設け、胴シェル10aの直径をD、アキュムレータ15を含む重心の鉛直線上となる上シェル10bでの重心位置をGとした時、吐出管14を、Gを中心として半径D/10の範囲内に配置したことで、吐出管14の振動を低減して、吐出管14に接続される配管に伝達する振動を低減できるロータリー式圧縮機を提供する。

Description

ロータリー式圧縮機
 本発明は空気調和機の室外機や冷凍機に用いられるロータリー式圧縮機に関するものである。
 一般に、空気調和機の室外機や冷凍機に用いられるロータリー式圧縮機は、密閉容器内に電動機部と圧縮機構部とを備え、電動機部と圧縮機構部とをシャフトによって連結し、シャフトの偏心部に取り付けたピストンを、シャフトの回転によって公転運動させる。
 そして、電動機構部と圧縮機構部とを上下方向に配置し、シャフトを鉛直方向に配置するタイプのロータリー式圧縮機において、ターミナルを上シェル上部に配置しないものが提案されている(特許文献1、特許文献2)。
 特許文献1及び特許文献2は、ロータリー式圧縮機の全高を低減する目的でターミナルを胴シェルに配置している。
 また、電動機構部と圧縮機構部とを上下方向に配置し、シャフトを鉛直方向に配置するタイプのロータリー式圧縮機において、吐出管を上シェルの中央部でない位置に配置するものが提案されている(特許文献3~特許文献7)。
 特許文献3~特許文献6は、明らかに記載されていないものもあるが、上シェルに吐出管とターミナルとを配置しているために、ターミナルとの関係で吐出管を中央部でない位置に配置している。
 特許文献7は、ターミナルの記載はないが、吐出管を中央部でない位置に配置している。
実願昭58-3519号(実開昭59-109245号)のマイクロフィルム 実願昭57-188763号(実開昭59-91484号)のマイクロフィルム 特開平4-259684号公報 特開平11-22679号公報 特開2005-48683号公報 特開2005-61348号公報 特開2006-177224号公報
 特許文献1及び特許文献2では、ロータリー式圧縮機の全高を低減する目的でターミナルを胴シェルに配置しているため、吐出管についても上シェルに配置していない。
 特許文献2~特許文献7では、吐出管を中央部でない位置に配置しているが、吐出管の振動を課題としておらず、従って、中央部からどの方向にずらすかについては何ら記載されていない。
 ロータリー式圧縮機では、特許文献3、特許文献5、特許文献6、及び特許文献7に記載の通り、吐出管を上シェルの中央部からずらすと、吐出冷媒にオイルが多く混入してしまうという技術常識により、ターミナルの配置などの制約が無い限り吐出管を上シェルの中央部に配置する。
 しかし、ロータリー式圧縮機の重心は、アキュムレータによって上シェルの中央部ではないため、吐出管を上シェルの中央部に配置すると、吐出管の振動が大きくなる。
 吐出管の振動が大きくなると、吐出管に接続される配管に振動が伝達し、配管にかかる応力も大きくなり、配管が破損する可能性が生じてしまう。
 そこで本発明は、吐出管の振動を低減することで、吐出管に接続される配管に伝達する振動を低減できるロータリー式圧縮機を提供することを目的とする。
 請求項1記載の本発明のロータリー式圧縮機は、密閉容器内に電動機部と圧縮機構部とを備え、前記密閉容器は、上下方向に沿って延びる円筒状に形成された胴シェルと、前記胴シェルの上部開口を塞ぐ上シェルと、前記胴シェルの下部開口を塞ぐ下シェルとで構成され、前記胴シェルには、前記圧縮機構部に吸入冷媒を導入する吸入管と、前記電動機部に給電するターミナルとが接続され、前記上シェルには、前記圧縮機構部で圧縮された吐出冷媒を導出する吐出管が接続され、前記吸入管の上流側にはアキュムレータを設けたロータリー式圧縮機であって、前記胴シェルの直径をD、前記アキュムレータを含む重心の鉛直線上となる前記上シェルでの重心位置をGとした時、前記吐出管を、前記重心位置Gを中心として半径D/10の範囲内に配置したことを特徴とする。
 請求項2記載の本発明のロータリー式圧縮機は、請求項1に記載のロータリー式圧縮機において、前記吐出管を、前記重心位置Gに配置したことを特徴とする。
 本発明によれば、吐出管の振動を低減でき、吐出管に接続される配管に伝達する振動を低減できる。
本発明の一実施例によるロータリー式圧縮機の断面図 同ロータリー式圧縮機の吐出管の位置を示す上面概念図
 本発明の第1態様は、胴シェルの直径をD、アキュムレータを含む重心の鉛直線上となる上シェルでの重心位置を重心位置Gとした時、吐出管を、Gを中心として半径D/10の範囲内に配置したものである。第1態様によれば、吐出管の振動を低減でき、吐出管に接続される配管に伝達する振動を低減し、配管応力の低減を図ることができる。
 本発明の第2態様は、第1態様に加え、吐出管を、重心位置Gに配置したものである。第2態様によれば、吐出管の振動を最も低減できる。
 以下、本発明の一実施例について図面を参照しながら説明する。
 図1は、本実施例によるロータリー式圧縮機の断面図である。
 本実施例によるロータリー式圧縮機は、密閉容器10内に電動機部20と圧縮機構部30とを備えている。電動機部20と圧縮機構部30とはシャフト40によって連結されている。
 密閉容器10は、上下方向に沿って延びる円筒状に形成された胴シェル10aと、胴シェル10aの上部開口を塞ぐ上シェル10bと、胴シェル10aの下部開口を塞ぐ下シェル10cとで構成されている。
 電動機部20は、密閉容器10内面に固定される固定子21と、固定子21内で回転する回転子22とから構成される。
 本実施例によるロータリー式圧縮機は、圧縮機構部30として、第1圧縮機構部30Aと第2圧縮機構部30Bとを有している。
 第1圧縮機構部30Aは、第1シリンダ31Aと、第1シリンダ31A内に配置される第1ピストン32Aと、第1シリンダ31A内を仕切るベーン(図示せず)とを有し、第1ピストン32Aが第1シリンダ31A内で公転運動することで、低圧の冷媒ガスを吸入して圧縮する。
 第1圧縮機構部30Aと同様に、第2圧縮機構部30Bは、第2シリンダ31Bと、第2シリンダ31B内に配置される第2ピストン32Bと、第2シリンダ31B内を仕切るベーン(図示せず)とを有し、第2ピストン32Bが第2シリンダ31B内で公転運動することで、低圧の冷媒ガスを吸入して圧縮する。
 第1シリンダ31Aの一方の面には主軸受51を配置し、第1シリンダ31Aの他方の面には中板52を配置している。
 また、第2シリンダ31Bの一方の面には中板52を配置し、第2シリンダ31Bの他方の面には副軸受53を配置している。
 すなわち、中板52は第1シリンダ31Aと第2シリンダ31Bとを仕切る。中板52は、シャフト40の径よりも大きな開口部を有する。
 シャフト40は、回転子22を取り付けて主軸受51で支持される主軸部41と、第1ピストン32Aを取り付ける第1偏心部42と、第2ピストン32Bを取り付ける第2偏心部43と、副軸受53で支持される副軸部44とで構成される。
 第1偏心部42と第2偏心部43とは180度の位相差を持って形成され、第1偏心部42と第2偏心部43との間には、連結軸部45を形成している。
 第1圧縮室34Aは、主軸受51と中板52との間で、第1シリンダ31A内周面と第1ピストン32A外周面との間に形成される。また、第2圧縮室34Bは、中板52と副軸受53との間で、第2シリンダ31B内周面と第2ピストン32B外周面との間に形成される。
 第1圧縮室34Aと第2圧縮室34Bとの容積は同一である。すなわち、第1シリンダ31A内径と、第2シリンダ31B内径とは同一であり、第1ピストン32A外径と第2ピストン32B外径とは同一である。また、第1シリンダ31A内周高さと、第2シリンダ31B内周高さとは同一であり、第1ピストン32A高さと第2ピストン32B高さとは同一である。
 密閉容器10内の底部にはオイル溜め11が形成され、シャフト40の下端部にはオイルピックアップ12を設けている。
 また、図示はしないが、シャフト40の内部には軸方向に給油路が形成され、給油路には、圧縮機構部30の摺動面にオイルを供給するための連通路が形成されている。
 胴シェル10aには、圧縮機構部30に吸入冷媒を導入する第1吸入管13A及び第2吸入管13Bと、電動機部20に給電するターミナル50とが接続されている。上シェル10bには吐出管14が接続されている。ターミナル50は、電動機部20よりも上方位置に配置している。
 第1吸入管13Aは第1圧縮室34Aに、第2吸入管13Bは第2圧縮室34Bに、それぞれ接続されている。第1吸入管13A及び第2吸入管13Bの上流側には、アキュムレータ15を設けている。アキュムレータ15は、冷凍サイクルから戻ってきた冷媒を、液冷媒とガス冷媒に分離する。第1吸入管13A及び第2吸入管13Bにはガス冷媒が流れる。アキュムレータ15とターミナル50とは、胴シェル10aの中心に対して対称の位置に配置している。
 シャフト40の回転によって、第1ピストン32A及び第2ピストン32Bは、第1圧縮室34A及び第2圧縮室34B内で公転運動を行う。
 第1ピストン32A及び第2ピストン32Bの公転運動によって、第1吸入管13A及び第2吸入管13Bから第1圧縮室34A及び第2圧縮室34Bに吸入されたガス冷媒は、第1圧縮室34A及び第2圧縮室34Bで圧縮された後に密閉容器10内に吐出され、電動機部20を通過して上昇する間にオイルを分離し、吐出管14から密閉容器10外に吐出される。
 また、シャフト40の回転によって、オイル溜め11から吸い上げたオイルは、連通路から圧縮機構部30に供給され、圧縮機構部30の摺動面の潤滑を行う。
 図2は、本実施例によるロータリー式圧縮機の吐出管の位置を示す上面概念図である。
 本実施例は、胴シェル10aの直径をD、アキュムレータ15を含む重心の鉛直線上となる上シェル10bでの重心位置をGとした時、吐出管14を、重心位置Gを中心として半径D/10の範囲内に配置する。
 吐出管14を、重心位置Gを中心とした半径D/10の範囲内に配置することで、吐出管14の振動を低減でき、吐出管14に接続される配管に伝達する振動を低減し、配管応力の低減を図ることができる。
 また、吐出管14を、重心位置Gに配置することで、吐出管14の振動を最も低減できる。
 本発明は、1シリンダのロータリー式圧縮機でも適用可能である。
 10 密閉容器
 10a 胴シェル
 10b 上シェル
 10c 下シェル
 20 電動機部
 21 固定子
 22 回転子
 30 圧縮機構部
 31 シリンダ
 32A 第1ピストン
 32B 第2ピストン
 40 シャフト
 41 主軸部
 42 第1偏心部
 43 第2偏心部
 44 副軸部
 50 ターミナル

Claims (2)

  1.  密閉容器内に電動機部と圧縮機構部とを備え、
    前記密閉容器は、上下方向に沿って延びる円筒状に形成された胴シェルと、前記胴シェルの上部開口を塞ぐ上シェルと、前記胴シェルの下部開口を塞ぐ下シェルとで構成され、
    前記胴シェルには、前記圧縮機構部に吸入冷媒を導入する吸入管と、前記電動機部に給電するターミナルとが接続され、
    前記上シェルには、前記圧縮機構部で圧縮された吐出冷媒を導出する吐出管が接続され、
    前記吸入管の上流側にはアキュムレータを設けたロータリー式圧縮機であって、
    前記胴シェルの直径をD、前記アキュムレータを含む重心の鉛直線上となる前記上シェルでの重心位置をGとした時、
    前記吐出管を、前記重心位置Gを中心として半径D/10の範囲内に配置した
    ことを特徴とするロータリー式圧縮機。
  2.  前記吐出管を、前記重心位置Gに配置した
    ことを特徴とする請求項1に記載のロータリー式圧縮機。
PCT/JP2018/005745 2017-03-17 2018-02-19 ロータリー式圧縮機 WO2018168345A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880010583.2A CN110268166B (zh) 2017-03-17 2018-02-19 旋转式压缩机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017052416A JP6671052B2 (ja) 2017-03-17 2017-03-17 ロータリー式圧縮機
JP2017-052416 2017-03-17

Publications (1)

Publication Number Publication Date
WO2018168345A1 true WO2018168345A1 (ja) 2018-09-20

Family

ID=63522029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005745 WO2018168345A1 (ja) 2017-03-17 2018-02-19 ロータリー式圧縮機

Country Status (3)

Country Link
JP (1) JP6671052B2 (ja)
CN (1) CN110268166B (ja)
WO (1) WO2018168345A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7227530B1 (ja) 2021-09-30 2023-02-22 ダイキン工業株式会社 圧縮機ユニット及び冷凍装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113931843B (zh) * 2021-10-13 2023-05-09 安徽美芝精密制造有限公司 压缩机及制冷设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5991484U (ja) * 1982-12-13 1984-06-21 三洋電機株式会社 密閉型回転圧縮機
JPH04187887A (ja) * 1990-11-21 1992-07-06 Matsushita Electric Ind Co Ltd ロータリ式多段気体圧縮機
JPH0666258A (ja) * 1992-08-14 1994-03-08 Mitsubishi Heavy Ind Ltd 冷凍装置
US6372993B1 (en) * 1995-06-13 2002-04-16 Copeland Corporation Sealed terminal assembly for hermetic compressor
JP2005061348A (ja) * 2003-08-18 2005-03-10 Matsushita Electric Ind Co Ltd 密閉型圧縮機
JP2006177226A (ja) * 2004-12-22 2006-07-06 Hitachi Home & Life Solutions Inc ロータリ圧縮機及びそれを用いる空気調和機
JP2008248717A (ja) * 2007-03-29 2008-10-16 Mitsubishi Electric Corp 冷媒圧縮装置
US20100278675A1 (en) * 2007-11-08 2010-11-04 Jeong-Min Han 2 stage rotary compressor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5991484A (ja) * 1982-11-17 1984-05-26 三菱電機株式会社 工業用計算機システムにおけるデイスプレイ装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5991484U (ja) * 1982-12-13 1984-06-21 三洋電機株式会社 密閉型回転圧縮機
JPH04187887A (ja) * 1990-11-21 1992-07-06 Matsushita Electric Ind Co Ltd ロータリ式多段気体圧縮機
JPH0666258A (ja) * 1992-08-14 1994-03-08 Mitsubishi Heavy Ind Ltd 冷凍装置
US6372993B1 (en) * 1995-06-13 2002-04-16 Copeland Corporation Sealed terminal assembly for hermetic compressor
JP2005061348A (ja) * 2003-08-18 2005-03-10 Matsushita Electric Ind Co Ltd 密閉型圧縮機
JP2006177226A (ja) * 2004-12-22 2006-07-06 Hitachi Home & Life Solutions Inc ロータリ圧縮機及びそれを用いる空気調和機
JP2008248717A (ja) * 2007-03-29 2008-10-16 Mitsubishi Electric Corp 冷媒圧縮装置
US20100278675A1 (en) * 2007-11-08 2010-11-04 Jeong-Min Han 2 stage rotary compressor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7227530B1 (ja) 2021-09-30 2023-02-22 ダイキン工業株式会社 圧縮機ユニット及び冷凍装置
WO2023053672A1 (ja) * 2021-09-30 2023-04-06 ダイキン工業株式会社 圧縮機ユニット及び冷凍装置
JP2023051659A (ja) * 2021-09-30 2023-04-11 ダイキン工業株式会社 圧縮機ユニット及び冷凍装置

Also Published As

Publication number Publication date
CN110268166A (zh) 2019-09-20
JP2018155169A (ja) 2018-10-04
CN110268166B (zh) 2021-08-03
JP6671052B2 (ja) 2020-03-25

Similar Documents

Publication Publication Date Title
KR100947419B1 (ko) 2 실린더 로터리 압축기
US10851782B2 (en) Rotary-type compressor
US10233928B2 (en) Two-cylinder hermetic compressor
CN102261334A (zh) 封闭式压缩机
US10001122B2 (en) Scroll compressor
US20170248139A1 (en) Two-cylinder hermetic compressor
CN103195710B (zh) 具有双偏心部的旋转式压缩机
WO2018168345A1 (ja) ロータリー式圧縮機
JP6719676B2 (ja) スクロール圧縮機
WO2020217385A1 (ja) ロータリ圧縮機
KR101380987B1 (ko) 로터리식 압축기
JP2014234785A (ja) スクロール圧縮機
WO2019187272A1 (ja) ロータリコンプレッサ
JP6643712B2 (ja) 2シリンダ型密閉圧縮機
EP3217014B1 (en) Compressor
WO2018168344A1 (ja) ロータリー式圧縮機
JP2019100285A (ja) 密閉型圧縮機
JP2013181516A (ja) スクロール圧縮機
JP2017101634A (ja) スクロール圧縮機
JP2002188588A (ja) ロータリ圧縮機
JP2016205153A (ja) スクロール圧縮機及びスクロール圧縮機用オルダム継手
KR20110123143A (ko) 밀폐형 압축기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18767248

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18767248

Country of ref document: EP

Kind code of ref document: A1