WO2018167406A1 - Procede de reglage de la richesse dans un moteur a combustion interne a allumage commande - Google Patents

Procede de reglage de la richesse dans un moteur a combustion interne a allumage commande Download PDF

Info

Publication number
WO2018167406A1
WO2018167406A1 PCT/FR2018/050558 FR2018050558W WO2018167406A1 WO 2018167406 A1 WO2018167406 A1 WO 2018167406A1 FR 2018050558 W FR2018050558 W FR 2018050558W WO 2018167406 A1 WO2018167406 A1 WO 2018167406A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
richness
temperature
engine
threshold
Prior art date
Application number
PCT/FR2018/050558
Other languages
English (en)
Inventor
David ISSARTEL
Original Assignee
Renault S.A.S
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault S.A.S filed Critical Renault S.A.S
Priority to KR1020197029096A priority Critical patent/KR20190126362A/ko
Priority to RU2019132476A priority patent/RU2752657C2/ru
Priority to JP2019550691A priority patent/JP2020510160A/ja
Priority to EP18713325.1A priority patent/EP3596326B1/fr
Publication of WO2018167406A1 publication Critical patent/WO2018167406A1/fr
Priority to JP2023153685A priority patent/JP2023182629A/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1473Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
    • F02D41/1475Regulating the air fuel ratio at a value other than stoichiometry
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D2041/0265Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to decrease temperature of the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0802Temperature of the exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1002Output torque

Definitions

  • the invention relates to a method for controlling the richness of the air-fuel mixture in an internal combustion engine of the spark ignition type (operating in particular with gasoline). It finds an advantageous application in the automotive field.
  • the air-fuel mixture is generally enriched, for example at values of richness which may be greater than 1, 20, when it is detected that a value of torque (or load) above a predetermined threshold is required for driving the vehicle.
  • the value of richness to be adjusted to obtain a given maximum exhaust temperature for example a given exhaust manifold temperature value or a temperature value of a given turbocharger turbine (in the case of a supercharged engine ), can be determined by prior tests performed on the engine bench in stabilized mode, that is to say, by maintaining constant speed and torque.
  • the value of the richness is regulated so that the temperature of the exhaust gas itself is equal to a given predetermined value, this value becoming that of the components of the exhaust system of the engine after a certain lapse of time which is related to the inertia of matter.
  • the publication JP-S-6043144 discloses a method of adjusting the fuel injection time, according to the operating conditions of an engine, which is intended to prevent the exhaust system from overheating.
  • a temperature sensor measures the temperature of the exhaust gas, and the richness is increased after a predetermined delay time which is a decreasing function of said gas temperature.
  • the delay is to avoid unnecessary fuel consumption. Indeed, it is not necessary to increase the wealth immediately as soon as a high load is detected, because the parts that make up the exhaust system have a certain heat capacity and are therefore not instantly brought to temperatures below 20 ° C. limits for their reliability by the heat coming from the exhaust gases when the engine is running at high load. This property can thus be used to delay the increase in wealth without jeopardizing the reliability of the engine, which in principle saves fuel.
  • this method is imprecise because the temperature measured by the sensor after the detection of a high load does not correctly represent the temperature of the parts of the engine exhaust circuit at the same time. More specifically, the temperature of the parts depends on the amount of heat that has been supplied to said parts before the high load is detected, and it is all the higher a high amount of heat energy has been supplied to said parts.
  • a high reference load (designated by the acronym PMOTP1), which is used to determine if the exhaust system parts are in high load thermal conditions. If the test is positive, it indicates that the temperature of the parts increases because of the heat coming from the exhaust gases, and that the parts can be brought to overheat in the absence of an increase of the richness.
  • a delay counter (designated by the acronym COTPCY) is regularly incremented, which represents the proportions in which the temperature of the parts of the exhaust circuit has been high, because of the heat of the gases, before the detection of the high load, and comparing the value of said counter with a reference delay threshold (designated by the acronym QAOTP), which is pre-calibrated according to the air flow in the engine.
  • the delay threshold is a decreasing function of the flow rate.
  • the value of the meter is below the threshold, it is considered that the parts of the exhaust circuit will not overheat in the very near future, and no enrichment measurement is implemented.
  • the value of the counter is greater than the threshold, the value of the counter is fixed on the value which it takes at the precise moment when the threshold is exceeded, and one immediately increases the wealth.
  • Such a method requires an important work of pre-calibration of the delay thresholds.
  • only the air flow in the motor is taken into account to fix them.
  • the inaccuracies on the selected thresholds result either in a risk of Exceeding the permissible temperature (if the threshold is too high, leading to an enrichment that is too late), or fuel consumption too high (case of too low a threshold, which leads to an enrichment too early).
  • US-A-4400944 discloses a method of adjusting the wealth which aims to prevent thermal malfunctions of the turbocharger of an engine, particularly at high speed and high load where the engine is adjusted with a feedrate to the engine. ignition very delayed, which promotes high temperatures of the turbocharger.
  • the richness is set in open loop, adding a correction of fuel injection time at the injection time corresponding to a stoichiometric mixture, the correction being a function of the difference between the temperature and the temperature target.
  • the richness is adjusted by subtracting a fuel injection time correction at the corresponding injection time to the stoichiometric mixture.
  • Such a method in which the richness is variable, makes it possible to control the temperature of the exhaust gases on a target value, and does not require any work of choice of a delay time to increase the wealth to a value greater than 1. But it includes phases in which the target is exceeded, which can lead to loss of reliability of the components of the exhaust system, overconsumption of fuel and an increase in pollutant emissions of the engine.
  • the invention proposes to remedy the defects of the known methods of adjusting the richness.
  • the method is characterized in that it comprises, when said torque is greater than said torque threshold:
  • FIG. 1 represents an example of a spark ignition internal combustion engine capable of implementing the method according to the invention.
  • FIG. 2 is a flowchart of the steps of the wealth adjustment method according to one embodiment of the invention.
  • FIG. 1 shows an internal combustion engine of the type shown in FIG. controlled ignition (operating in particular with gasoline), more specifically a section of a cylinder 1 of the engine block.
  • An intake circuit 2 and an exhaust circuit 3 communicate respectively with an intake duct 4 and an exhaust duct 5 of the cylinder 1.
  • the intake circuit 2 comprises, in a nonlimiting manner, from upstream to downstream in the direction of air circulation, the compressor 6 of a turbocharger 7 of the supercharger of the engine, an air flow control valve 8 , or throttle body 8, and an intake manifold 9, or distributor 9.
  • the engine is non-limiting in the form of an indirect injection engine: a fuel injector 10 opens into the intake duct 4 so as to inject gasoline into said duct 4.
  • the engine can be direct injection type.
  • the cylinder 1 is capped by a cylinder head 11 of the engine.
  • the cylinder head 11 houses an intake valve 12 which serves to open and close the intake duct 4 and an exhaust valve 13 which serves to open and close the exhaust duct 5.
  • the cylinder 1 encloses a piston 14 adapted to move within a bore 15 of the cylinder 1 alternatively between a position of bottom dead center (PMB) and top dead center (TDC), and a combustion chamber 16 is formed in the defined space between the piston 14 and the cylinder head 11.
  • a spark plug 17 is mounted on the cylinder head 11, the electrodes of which open into the combustion chamber 16.
  • the exhaust circuit 3 includes, in a non-limiting manner, from upstream to downstream in the direction of circulation of the combustion gases, an exhaust manifold 18, the turbine 19 of the turbocharger 7, which is mounted on a shaft 20 common to the engine. compressor 6 and the turbine, and a device 21 for cleaning the combustion gases of the engine, for example a three-way catalyst 21.
  • a temperature sensor 22 is mounted in the exhaust circuit 3 at the inlet of the turbine 19. It is able to measure the value of the temperature of the exhaust gas upstream of the turbine.
  • a richness sensor 23, or oxygen sensor 23, is mounted in the exhaust circuit 3 of the engine, upstream of the three-way catalyst 21. It is able to measure the value of the oxygen concentration in the combustion gases of the engine. engine.
  • an engine calculator (not shown) comprises means capable of determining at least one load value (or airflow) Qair, a value of injected fuel flow Qcarb and of the flow rate phasing. fuel with respect to the top dead center, as well as a value of ignition advance AA according to a set of parameters representative of the operation of the engine, comprising at least the torque C and the engine speed N.
  • the computer adjusts the Qair load by adjusting the degree of opening of the throttle body 8 and / or the power of the turbine via the degree of opening of a discharge valve to the exhaust of the turbine, also called waste-gate valve (not shown). It regulates the fuel flow Qcarb and the timing of its injection by adjusting the injection time Ti of the injector 10, more precisely the opening start time and the opening end instant, relative to the top dead center. It adjusts the advance ignition AA by sparking a spark across the electrodes of the spark plug 17 at a given angle of the engine cycle relative to the top dead center of the cylinder 1.
  • a wealth control method may comprise the following steps, implemented by the engine computer and performed iteratively at each instant t n + i separated from the previous instant t n by a step of time dt constant:
  • the process begins with a step 100 during which the engine computer determines a value of engine speed N and torque setpoint C required for driving the vehicle.
  • the speed value can come from a sensor (not shown in FIG. 1) mounted at the end of the crankshaft of the engine, and the value of torque can be deduced from the value of the depression of the acceleration pedal of the vehicle by the driver.
  • the motor torque is close to full load or not.
  • the torque C is between a torque threshold Cs which is less than or equal to the maximum torque Cmax that can develop the engine, and the maximum torque Cmax.
  • the torque threshold Cs and the maximum torque Cmax depend on the speed N. They delimit a range of operating points in which, if the richness r of the air-fuel mixture was equal to 1, the temperature ⁇ ech of the combustion gases of the engine in upstream of the turbine (measured by the sensor 22) would be greater than a threshold that corresponds to a reliability limit (typically a temperature of the order of 950 ° C to 980 ° C).
  • step 300 the richness r of the air - fuel mixture is set around the stoichiometric richness (richness 1), then it resumes in step 100.
  • the process points to a step 400 in which the richness r is set to a first richness value r 1 corresponding to a slightly rich mixture, for example a richness of between 1.00 and 1.05.
  • the first value of richness is substantially equal to 1, 01, so as to allow immediate pre-cooling of the engine exhaust without significantly degrading the emissions of nitrogen oxides of the vehicle, and the wealth is set immediately to this first richness value equal to 1.01.
  • the first value of richness may be substantially equal to 1.05, the adjustment of the richness at this first value of richness being carried out progressively, for example in a linear manner as a function of time from the stoichiometric value up to said first richness value substantially equal to 1.05.
  • step 500 in which the temperature of the exhaust gas ⁇ ech is measured, for example by means of the temperature sensor 22.
  • the order of the steps 400 and 500 can be reversed.
  • said temperature ⁇ ech is compared with a first temperature threshold ⁇ 1 , for example a temperature of the order of 900 ° C. If said temperature is lower than said first threshold, the process resumes at step 100. In other words, the richness remains set to the stoichiometric value.
  • a second temperature threshold ⁇ 2 for example of the order of 950 ° C. at 980 ° C, and corresponding to the thermomechanical resistance limit of the exhaust circuit. The method proposes not to exceed this second temperature threshold ⁇ 2.
  • the process is directed to a step 800 in which the wealth is immediately set to a second value of compositer 2 .
  • This second value of shieldr 2 is greater than the first value of richness n. It is determined so as to obtain a given maximum temperature of the parts making up the exhaust circuit, for example a given exhaust manifold temperature value or a temperature value of a given turbocharger turbine (in the case of a supercharged engine).
  • the second value of richness r 2 can be determined by prior tests carried out on the engine bench in stabilized mode, that is to say by keeping the speed and the torque constant.
  • step 900 in which the richness is increased progressively, that is to say by successive iterations to each time step dt each time the temperature of the exhaust gas is between the first and the second threshold 81, 82, from the first value of richness n to the maximum of the second value of richness r 2 .
  • the ratio is increased linearly over time, while being limited by a maximum value equal to the second ratio value r 2, that is to say according to an equation of the type
  • k denotes a positive constant coefficient, which is representative of the rate of increase of the richness.
  • step 800 or step 900 the method then resumes in step 100. It is understood from the foregoing, and more particularly from the succession of steps 600 to 900, that when the motor enters under conditions close to full load, the temperature of the exhaust gas starts to increase continuously towards values which are approaching more and more the second temperature threshold 82. As soon as the temperature reaches the first temperature threshold 81, which can be considered as a warning threshold, we begin to increase the wealth. No delay time is applied, but the resources used are all less than the second wealth value r 2 which corresponds to the limit thermomechanical exhaust system.
  • the method provisionally provides for an immediate increase in the temperature.
  • richness r up to this second value of richness which instantly prevents the temperature of the exhaust gas from increasing even more and does not allow the temperature of the parts making up the exhaust circuit to exceed the second temperature threshold ⁇ 2, which makes it possible to guarantee their reliability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Supercharger (AREA)

Abstract

L'invention propose un procédé de réglage de la richesse (r) dans un moteur à combustion interne à allumage commandé, apte à limiter la température des pièces composant le circuit d'échappement à forte charge. Au voisinage de la pleine charge, la richesse est réglée à une première valeur de richesse (r1) pour pré-refroidir les gaz d'échappement. Quand la température des gaz d'échappement (θech) atteint un premier seuil de température (θ1), qui est inférieur à un second seuil de température (θ2) correspondant à une limite de fiabilité des pièces, la valeur de richesse est progressivement augmentée, par exemple linéairement, depuis la première valeur de richesse (r1) jusqu'à au maximum une seconde valeur de richesse (r2), à laquelle la température des gaz d'échappement est égale au second seuil de température (θ2). Si la température des gaz d'échappement (θech) atteint ledit second seuil (θ2) avant que la richesse ait atteint la seconde valeur de richesse (r2), la richesse est alors immédiatement réglée sur ladite seconde valeur de richesse (r2).

Description

PROCEDE DE REGLAGE DE LA RICHESSE DANS UN MOTEUR A COMBUSTION
INTERNE A ALLUMAGE COMMANDE
DOMAINE TECHNIQUE DE L'INVENTION
L'invention concerne un procédé de réglage de la richesse du mélange air- carburant dans un moteur à combustion interne du type à allumage commandé (fonctionnant notamment à l'essence). Elle trouve une application avantageuse dans le domaine automobile.
ETAT DE LA TECHNIQUE
Dans les moteurs à combustion interne du type à allumage commandé (fonctionnant à l'essence), plus particulièrement ceux des véhicules automobiles, il est connu de déterminer la richesse du mélange air-carburant en fonction d'un ensemble de paramètres de fonctionnement du moteur comprenant au moins le régime du moteur et le couple requis pour l'entraînement du véhicule. La charge, ou quantité d'air admise dans le moteur, est réglée notamment par le degré d'ouverture d'un boîtier- papillon du moteur, et la richesse est réglée en fonction de ladite charge en ajustant le temps d'injection du carburant dans le moteur.
Il est connu en soi de régler la valeur de richesse d'un tel moteur autour de la valeur stoechiométrique, c'est-à-dire autour de la richesse 1 , sur la plupart des points de fonctionnement du moteur, de manière à permettre la dépollution des gaz de combustion du moteur par un catalyseur du type à trois voies monté à l'échappement du moteur. Par exemple en réglant la richesse en boucle fermée grâce à l'utilisation des indications d'au moins une sonde à oxygène montée à l'entrée du catalyseur, on fait fonctionner ledit catalyseur dans sa fenêtre catalytique, dans laquelle il réduit les oxydes d'azote (NOx) produits dans les gaz de combustion du moteur, et il oxyde les hydrocarbures imbrûlés (HC) et le monoxyde de carbone (CO).
Toutefois, il est aussi connu qu'au voisinage de la pleine charge, les pièces qui composent le circuit d'échappement du moteur peuvent atteindre des températures très élevées qui peuvent amoindrir leur résistance mécanique et mettre en péril la fiabilité du véhicule. Pour limiter la température à l'échappement, on enrichit généralement le mélange air-carburant, par exemple à des valeurs de richesse qui peuvent être supérieures à 1 ,20 , lorsque l'on détecte qu'une valeur de couple (ou une charge) supérieure à un seuil prédéterminé est requise pour l'entraînement du véhicule.
La valeur de richesse à régler pour obtenir une température maximale à l'échappement donnée, par exemple une valeur de température de collecteur d'échappement donnée ou une valeur de température d'une turbine de turbocompresseur donnée (dans le cas d'un moteur suralimenté), peut être déterminée par des essais préalables réalisés au banc moteur en mode stabilisé, c'est-à-dire en maintenant constants le régime et le couple. On règle en fait la valeur de la richesse de sorte que la température des gaz d'échappement elle-même soit égale à une valeur prédéterminée donnée, cette valeur devenant celle des composants du circuit d'échappement du moteur après un certain laps de temps qui est lié à l'inertie de la matière.
On connaît de l'état de la technique plusieurs procédés de réglage de la richesse d'un moteur de véhicule automobile dans lesquels la richesse est augmentée à une valeur supérieure à 1 lorsque la charge du moteur atteint une valeur proche de la pleine charge.
Par exemple, la publication JP-S-6043144 divulgue un procédé de réglage du temps d'injection de carburant, selon les conditions de fonctionnement d'un moteur, qui vise à éviter la surchauffe du circuit d'échappement. Lorsqu'une charge supérieure à un seuil est détectée, un capteur de température mesure la température des gaz d'échappement, et la richesse est augmentée après un temps de retard prédéterminé qui est une fonction décroissante de ladite température des gaz.
Le retard vise à éviter une surconsommation inutile de carburant. En effet, il n'est pas nécessaire d'augmenter immédiatement la richesse dès qu'une charge élevée est détectée, car les pièces qui composent le circuit d'échappement ont une certaine capacité calorifique et ne sont donc pas instantanément portées à des températures-limites pour leur fiabilité par la chaleur provenant des gaz d'échappement lorsque le moteur fonctionne à charge élevée. On peut ainsi mettre cette propriété à profit pour retarder l'augmentation de la richesse sans mettre en péril la fiabilité du moteur, ce qui permet en principe d'économiser du carburant.
Toutefois, ce procédé est imprécis car la température mesurée par le capteur après la détection d'une charge élevée ne représente pas correctement la température des pièces du circuit d'échappement du moteur au même instant. Plus précisément, la température des pièces dépend de la quantité de chaleur qui a été fournie auxdites pièces avant que la charge élevée soit détectée, et elle est d'autant plus élevée qu'une quantité élevée d'énergie calorifique a été fournie auxdites pièces.
Ainsi, si le temps de retard est diminué lorsque la température des gaz mesurée est plus élevée, on peut rencontrer une situation dans laquelle la richesse est augmentée presque immédiatement, bien que la température des pièces du circuit d'échappement n'ait pas encore augmenté jusqu'à la valeur de la température mesurée des gaz, et qu'il ne soit donc pas nécessaire de modifier la richesse à ce moment-là. On dégrade donc inutilement la consommation de carburant.
On connaît aussi de la publication US-A-5239965 un procédé de réglage de la richesse dans lequel on retarde l'application d'une valeur augmentée de la richesse pendant un temps de retard qui est une fonction des conditions thermiques des pièces du circuit d'échappement, lesdites conditions étant mesurées par des moyens de mesure dédiés.
Plus précisément, on détecte si la charge du moteur est supérieure à une charge élevée de référence (désignée par l'acronyme PMOTP1 ), qui sert à déterminer si les pièces du circuit d'échappement se trouvent dans des conditions thermiques de charge élevée. Si le test est positif, cela indique que la température des pièces augmente en raison de la chaleur provenant des gaz d'échappement, et que les pièces peuvent être amenées à surchauffer en l'absence d'une augmentation de la richesse.
Dans ces conditions de charge élevée, on incrémente régulièrement la valeur d'un compteur de retard (désigné par l'acronyme COTPCY), qui représente les proportions dans lesquelles la température des pièces du circuit d'échappement a été élevée, du fait de la chaleur des gaz, avant à la détection de la charge élevée, et on compare la valeur dudit compteur avec un seuil de retard de référence (désigné par l'acronyme QAOTP), qui est pré-calibré en fonction du débit d'air dans le moteur. Le seuil de retard est une fonction décroissante du débit.
Tant que la valeur du compteur est inférieure au seuil, on considère que les pièces du circuit d'échappement ne surchaufferont pas à très brève échéance, et on ne met en œuvre aucune mesure d'enrichissement. En revanche, lorsque la valeur du compteur est supérieure au seuil, on fige la valeur du compteur sur la valeur qu'il prend au moment précis où le seuil est dépassé, et on augmente immédiatement la richesse.
Un tel procédé nécessite un travail important de pré-calibration des seuils de retard. En outre, seul le débit d'air dans le moteur est pris en compte pour les fixer. Les imprécisions sur les seuils retenus se traduisent soit par un risque de dépassement de la température admissible (cas d'un seuil trop élevé, qui entraîne un enrichissement trop tardif), soit par une consommation de carburant trop élevée (cas d'un seuil trop faible, qui entraîne un enrichissement trop précoce).
On connaît encore de la publication US-A-4400944 un procédé de réglage de la richesse qui vise à éviter les défaillances thermiques du turbocompresseur d'un moteur, plus particulièrement à haut régime et charge élevée où le moteur est réglé avec une avance à l'allumage très retardée, ce qui favorise des températures élevées du turbocompresseur.
Selon ce document, lorsque la température des gaz d'échappement traversant le turbocompresseur est inférieure à une valeur cible (désignée par T1 ) prédéterminée, et que ladite température augmente dans le temps, la richesse est réglée en boucle ouverte, en ajoutant une correction de temps d'injection de carburant au temps d'injection correspondant à un mélange stœchiométrique, la correction étant une fonction de l'écart entre la température et la cible de température.
D'autre part, lorsque la température est inférieure à la cible, que le mélange est riche, et que la température diminue dans le temps, la richesse est réglée en retranchant une correction de temps d'injection de carburant au temps d'injection correspondant au mélange stœchiométrique.
Un tel procédé, dans lequel la richesse est variable, permet un pilotage de la température des gaz d'échappement sur une valeur cible, et ne nécessite pas de travail de choix d'un temps de retard pour augmenter la richesse à une valeur supérieure à 1. Mais il comprend des phases dans lesquelles la cible est dépassée, ce qui peut entraîner des pertes de fiabilité des pièces composant le circuit d'échappement, une surconsommation de carburant et une augmentation des émissions polluantes du moteur.
RESUME DE L'INVENTION
L'invention propose de remédier aux défauts des procédés connus de réglage de la richesse.
Elle vise plus particulièrement à proposer un procédé de réglage de richesse apte à protéger le circuit d'échappement du moteur contre des températures excessives qui soit simple à mettre en œuvre, et qui limite la surconsommation de carburant du moteur sans dégrader notablement les émissions polluantes.
Elle propose pour cela un procédé de réglage de la richesse d'un moteur à combustion interne à allumage commandé, la valeur de la richesse étant réglée autour de la valeur stœchiométrique lorsque le moteur ne fonctionne pas au voisinage de la pleine charge, et autour d'une valeur plus élevée que la valeur stœchiométrique lorsque le couple du moteur est supérieur à un seuil de couple inférieur ou égal au couple maximal du moteur.
Le procédé est caractérisé en ce qu'il comporte, quand ledit couple est supérieur audit seuil de couple :
- Une étape au cours de laquelle ladite valeur de richesse est réglée à une première valeur de richesse supérieure à la valeur stœchiométrique, lorsqu'une valeur de température des gaz d'échappement du moteur est inférieure à un premier seuil de température ;
- Une étape au cours de laquelle ladite valeur de richesse est immédiatement réglée à une seconde valeur de richesse supérieure à la première valeur de richesse, lorsque ladite valeur de température est supérieure à un second seuil de température, ledit second seuil de température étant supérieur audit premier seuil ; et,
- Une étape au cours de laquelle on augmente progressivement ladite valeur de richesse depuis la première valeur de richesse jusqu'au maximum la seconde valeur de richesse, lorsque ladite valeur de température est comprise entre ledit premier seuil et ledit second seuil.
BREVE DESCRIPTION DES FIGURES
D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture d'un mode de réalisation non limitatif de celle-ci, en se reportant aux dessins annexés sur lesquels :
la figure 1 représente un exemple de moteur à combustion interne à allumage commandé apte à la mise en œuvre du procédé selon l'invention ; et,
- la figure 2 est un organigramme des étapes du procédé de réglage de la richesse selon un mode de réalisation de l'invention.
DESCRIPTION DETAILLEE DES FIGURES Sur la figure 1 , on a représenté un moteur à combustion interne du type à allumage commandé (fonctionnant notamment à l'essence), plus précisément une coupe d'un cylindre 1 du bloc moteur. Un circuit d'admission 2 et un circuit d'échappement 3 communiquent respectivement avec un conduit d'admission 4 et un conduit d'échappement 5 du cylindre 1.
Le circuit d'admission 2 comporte de manière non limitative, d'amont en aval dans le sens de circulation de l'air, le compresseur 6 d'un turbocompresseur 7 de suralimentation du moteur, une vanne de réglage du débit d'air 8, ou boîtier-papillon 8, et un collecteur d'admission 9, ou répartiteur 9.
Ici, le moteur se présente de manière non limitative sous la forme d'un moteur à injection indirecte : un injecteur de carburant 10 débouche dans le conduit d'admission 4 de manière à injecter de l'essence dans ledit conduit 4. En variante non représentée, le moteur peut être du type à injection directe.
Le cylindre 1 est coiffé par une culasse 11 du moteur. La culasse 11 loge une soupape d'admission 12 qui sert à ouvrir et à fermer le conduit d'admission 4 et une soupape d'échappement 13 qui sert à ouvrir et à fermer le conduit d'échappement 5. Le cylindre 1 renferme un piston 14 apte à se déplacer à l'intérieur d'un alésage 15 du cylindre 1 alternativement entre une position de point mort bas (PMB) et de point mort haut (PMH), et une chambre de combustion 16 est formée dans l'espace défini entre le piston 14 et la culasse 11. Une bougie d'allumage 17 est montée sur la culasse 11 , dont les électrodes débouchent dans la chambre de combustion 16.
Le circuit d'échappement 3 comporte de manière non limitative, d'amont en aval dans le sens de circulation des gaz de combustion, un collecteur d'échappement 18, la turbine 19 du turbocompresseur 7, qui est montée sur un arbre 20 commun au compresseur 6 et à la turbine, ainsi qu'un dispositif de dépollution 21 des gaz de combustion du moteur, par exemple un catalyseur trois voies 21.
Un capteur de température 22 est monté dans le circuit d'échappement 3 à l'entrée de la turbine 19. Il est apte à mesurer la valeur de la température des gaz d'échappement en amont de la turbine.
Un capteur de richesse 23, ou sonde à oxygène 23, est monté dans le circuit d'échappement 3 du moteur, en amont du catalyseur trois voies 21. Il est apte à mesure la valeur de la concentration en oxygène dans les gaz de combustion du moteur.
De manière connue en soi, un calculateur du moteur (non représenté), comprend des moyens aptes à déterminer au moins une valeur de charge (ou débit d'air) Qair, une valeur de débit de carburant injecté Qcarb et de phasage du débit de carburant par rapport au point mort haut, ainsi qu'une valeur d'avance à l'allumage AA en fonction d'un ensemble de paramètres représentatifs du fonctionnement du moteur, comprenant au moins le couple C et le régime N du moteur.
De manière classique, le calculateur règle la charge Qair en ajustant le degré d'ouverture du boîtier-papillon 8 et/ou la puissance de la turbine via le degré d'ouverture d'une vanne de décharge à l'échappement de la turbine, dite aussi vanne waste-gate (non représentée). Il règle le débit de carburant Qcarb et le phasage de son injection en réglant le temps d'injection Ti de l'injecteur 10, plus précisément l'instant de début d'ouverture et l'instante de fin d'ouverture, par rapport au point mort haut. Il règle l'avance à l'allumage AA en faisant jaillir une étincelle aux bornes des électrodes de la bougie 17 à un angle donné du cycle du moteur par rapport au point mort haut du cylindre 1.
En référence à la figure 2, un procédé de réglage de la richesse selon l'invention peut comprendre les étapes suivantes, mises en œuvre par le calculateur du moteur et réalisées de manière itérative à chaque instant tn+i séparé du précédent instant tn par un pas de temps dt constant :
Le procédé débute par une étape 100 au cours de laquelle le calculateur du moteur détermine une valeur de régime N du moteur et de consigne de couple C requis pour l'entraînement du véhicule. La valeur de régime peut provenir d'un capteur (non représenté sur la figure 1) monté en bout de vilebrequin du moteur, et la valeur de couple peut être déduite de la valeur de l'enfoncement de la pédale d'accélération du véhicule par le conducteur.
A la première étape de test 200, on vérifie si le couple du moteur est proche de la pleine charge ou non. En d'autres termes, on vérifie si le couple C est compris entre un seuil de couple Cs qui est inférieur ou égal au couple maximal Cmax que peut développer le moteur, et le couple maximal Cmax. Le seuil de couple Cs et le couple maximal Cmax dépendent du régime N. Ils délimitent une plage de points de fonctionnement dans laquelle, si la richesse r du mélange air-carburant était égale à 1 , la température θech des gaz de combustion du moteur en amont de la turbine (mesurée par le capteur 22) serait supérieure à un seuil qui correspond à une limite de fiabilité (typiquement une température de l'ordre de 950°C à 980°C).
Si le test est négatif, c'est-à-dire si le couple n'est pas proche de la pleine charge (en d'autres termes si il est inférieur au seuil de couple Cs), alors le procédé oriente vers l'étape 300 dans laquelle la richesse r du mélange air - carburant est réglée autour de la richesse stœchiométrique (richesse 1), puis il reprend à l'étape 100. Dans le cas contraire, le procédé oriente vers une étape 400 dans laquelle la richesse r est réglée à une première valeur de richesse r1 correspondant à un mélange légèrement riche, par exemple une richesse comprise entre 1 ,00 et 1 ,05.
De préférence, la première valeur de richesse est sensiblement égale à 1 ,01 , de manière à permettre un pré-refroidissement immédiat des gaz d'échappement du moteur sans dégrader significativement les émissions d'oxydes d'azote du véhicule, et la richesse est réglée immédiatement à cette première valeur de richesse égale à 1 ,01. En variante non représentée, la première valeur de richesse peut être sensiblement égale à 1 ,05 , le réglage de la richesse à cette première valeur de richesse étant réalisé progressivement, par exemple de manière linéaire en fonction du temps depuis la valeur stœchiomètrique jusqu'à ladite première valeur de richesse sensiblement égale à 1 ,05.
Le procédé se poursuit par une étape 500 dans laquelle on mesure la température des gaz d'échappement θech , par exemple grâce au capteur de température 22. En variante non représentée, on peut intervertir l'ordre des étapes 400 et 500.
A l'étape de test 600, ladite température θech est comparée à un premier seuil de température θ1 , par exemple une température de l'ordre de 900°C. Si ladite température est inférieure audit premier seuil, le procédé reprend à l'étape 100. En d'autres termes, la richesse reste réglée sur la valeur stœchiomètrique. Dans le cas contraire, i.e. si la température est supérieure au premier seuil, le procédé se poursuit par une nouvelle étape de test 700, dans laquelle la température est comparée à un second seuil de température θ2 , par exemple de l'ordre de 950° à 980°C, et correspondant à la limite de résistance thermomécanique du circuit d'échappement. Le procédé se propose de ne pas dépasser ce second seuil de température θ2 .
Si la température des gaz d'échappement θech est supérieure au second seuil θ2 , le procédé oriente vers une étape 800 dans laquelle la richesse est immédiatement réglée à une seconde valeur de richesser2 . Cette seconde valeur de richesser2 est supérieure à la première valeur de richesse n . Elle est déterminée de manière à obtenir une température maximale donnée des pièces composant le circuit d'échappement, par exemple une valeur de température de collecteur d'échappement donnée ou une valeur de température d'une turbine de turbocompresseur donnée (dans le cas d'un moteur suralimenté). La seconde valeur de richesse r2 peut être déterminée par des essais préalables réalisés au banc moteur en mode stabilisé, c'est-à-dire en maintenant constants le régime et le couple. On règle en fait la valeur de la richesse de sorte que la température des gaz d'échappement elle-même soit égale à une valeur prédéterminée donnée, cette valeur devenant celle des composants du circuit d'échappement du moteur après un certain laps de temps qui est lié à l'inertie de la matière.
Pour chaque valeur de régime N donné, il existe une plage de couple C, proche de la pleine charge, sur laquelle la richesse doit effectivement augmentée pour que la température des gaz d'échappement soit limitée. Il faut donc déterminer la une seconde valeur de richesse r2 en fonction du régime et du couple.
Dans le cas contraire, i.e. si la température des gaz d'échappement θech est inférieure au second seuil 82 , le procédé se poursuit par une étape 900 dans laquelle la richesse est augmentée progressivement, c'est-à-dire par itérations successives à chaque pas de temps dt à chaque fois que la température des gaz d'échappement est comprise entre le premier et le second seuil 81 , 82 , depuis la première valeur de richesse n jusqu'au maximum la seconde valeur de richesse r2 .
De préférence, la richesse est augmentée de manière linéaire en fonction du temps, tout en étant limitée par une valeur maximale égale à la seconde valeur de richesse r2 , c'est-à-dire suivant une équation du type
(Equ.1 ) rn+1 = max ( r2 ; rn + k*(r2 - n)*dt ) , équation dans laquelle :
- rn+1 désigne la valeur de richesse calculée à l'instant tn+1 du procédé ;
- rn désigne la valeur de richesse calculée à l'instant tn du procédé ; et,
- k désigne un coefficient constant positif, qui est représentatif de la vitesse d'augmentation de la richesse.
A l'issue de l'étape 800 ou de l'étape 900, le procédé reprend ensuite à l'étape 100. On comprend de ce qui précède, et plus particulièrement de la succession des étapes 600 à 900, que lorsque le moteur entre dans des conditions voisines de la pleine charge, la température des gaz d'échappement commence à augmenter de manière continue vers des valeurs qui s'approchent de plus en plus du second seuil de température 82 . Dès que la température atteint le premier seuil de température 81 , qui peut être considéré comme un seuil d'alerte, on commence à augmenter la richesse. On n'applique aucun temps de retard, mais les richesses mises en œuvre sont toutes inférieures à la seconde valeur de richesse r2 qui correspond à la limite thermomécanique du circuit d'échappement. On a donc une augmentation ralentie de la température des gaz d'échappement, qui laisse généralement le temps à la température des pièces composant le circuit d'échappement de rattraper la température des gaz, dans la mesure où la vitesse d'augmentation de la richesse (représentée par le coefficient constant positif k) est assez faible. Cette valeur peut être déterminée par des essais préalables pour tenir compte de l'inertie de montée en température des pièces du circuit d'échappement ou empiriquement en fonction des valeurs des capacités calorifiques de leurs matériaux.
Dans le cas où, sur certains cycles de roulage particulièrement sévères, la température des gaz d'échappement atteint néanmoins le second seuil de température θ2 avant que la richesse ait atteint la seconde valeur de richesse le procédé prévoit de manière conservatoire d'augmenter immédiatement la richesse r jusqu'à cette seconde valeur de richesse ce qui empêche instantanément la température des gaz d'échappement d'augmenter encore davantage et ne permet pas à la température des pièces composant le circuit d'échappement de dépasser le second seuil de température θ2 , ce qui permet de garantir leur fiabilité.

Claims

REVENDICATIONS 1. Procédé de réglage de la richesse (r) d'un moteur à combustion interne à allumage commandé, la valeur de la richesse étant réglée autour de la valeur stœchiométrique lorsque le moteur ne fonctionne pas au voisinage de la pleine charge, et autour d'une valeur plus élevée que la valeur stœchiométrique lorsque le couple du moteur (C) est supérieur à un seuil de couple (Cs) inférieur au couple maximal (Cmax) du moteur,
CARACTERISE EN CE QU'il comporte, quand ledit couple (C) est supérieur audit seuil de couple (Cs) :
- Une étape (400) au cours de laquelle ladite valeur de richesse (r) est réglée à une première valeur (n) de richesse supérieure à la valeur stœchiométrique, lorsqu'une valeur de température (θech) des gaz d'échappement du moteur est inférieure à un premier seuil de température (θι) ;
- Une étape (800) au cours de laquelle ladite valeur de richesse (r) est immédiatement réglée à une seconde valeur (Γ2) de richesse supérieure à la première valeur de richesse (n), lorsque ladite valeur de température (6och) est supérieure à un second seuil de température (θ2), ledit second seuil (θ2) étant supérieur audit premier seuil (θ1) ; et,
- Une étape (900) au cours de laquelle on augmente progressivement ladite valeur de richesse depuis la première valeur de richesse (n) jusqu'au maximum la seconde valeur de richesse (r2), lorsque ladite valeur de température (9ech) est comprise entre ledit premier seuil (θ1) et ledit second seuil (θ2).
2. Procédé selon la revendication 1 , dans lequel la première valeur de richesse (n) est comprise entre 1 ,00 et 1 ,05 .
3. Procédé selon la revendication 1 ou 2, dans lequel la première valeur de richesse (n) est sensiblement égale à 1 ,01 .
4. Procédé selon l'une quelconque des revendications précédentes, dans lequel la seconde valeur de richesse (r2) est réglée en fonction du régime (N) et du couple (C) du moteur de sorte que la température (θech) des gaz d'échappement du moteur soit égale au second seuil de température (θ2) lorsque le moteur fonctionne sur un point de fonctionnement stabilisé audit régime (N) et audit couple (C).
5. Procédé selon l'une quelconque des revendications précédentes, dans lequel le second seuil de température (θ2) est compris entre 950°C et 980°C.
6. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'augmentation progressive de la richesse (r) depuis la première valeur de richesse (n) jusqu'au maximum la seconde valeur de richesse (r2) est une augmentation linéaire en fonction du temps.
PCT/FR2018/050558 2017-03-16 2018-03-09 Procede de reglage de la richesse dans un moteur a combustion interne a allumage commande WO2018167406A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020197029096A KR20190126362A (ko) 2017-03-16 2018-03-09 점화 제어식 내연 엔진에서 농후도를 조절하기 위한 방법
RU2019132476A RU2752657C2 (ru) 2017-03-16 2018-03-09 Способ регулирования степени обогащения в двигателе внутреннего сгорания с управляемым зажиганием
JP2019550691A JP2020510160A (ja) 2017-03-16 2018-03-09 点火制御式内燃エンジンにおけるリッチネスを調整する方法
EP18713325.1A EP3596326B1 (fr) 2017-03-16 2018-03-09 Procédé de réglage de la richesse dans un moteur à combustion interne à allumage commandé
JP2023153685A JP2023182629A (ja) 2017-03-16 2023-09-20 点火制御式内燃エンジンにおけるリッチネスを調整する方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1770257A FR3064030B1 (fr) 2017-03-16 2017-03-16 Procede de reglage de la richesse dans un moteur a combustion interne a allumage commande
FR1770257 2017-03-16

Publications (1)

Publication Number Publication Date
WO2018167406A1 true WO2018167406A1 (fr) 2018-09-20

Family

ID=59521141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2018/050558 WO2018167406A1 (fr) 2017-03-16 2018-03-09 Procede de reglage de la richesse dans un moteur a combustion interne a allumage commande

Country Status (6)

Country Link
EP (1) EP3596326B1 (fr)
JP (2) JP2020510160A (fr)
KR (1) KR20190126362A (fr)
FR (1) FR3064030B1 (fr)
RU (1) RU2752657C2 (fr)
WO (1) WO2018167406A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114704402A (zh) * 2022-03-30 2022-07-05 潍柴动力股份有限公司 一种发动机保护方法、装置、车辆及存储介质

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4400944A (en) 1979-12-04 1983-08-30 Nippon Soken, Inc. Air-fuel ratio control method and apparatus for internal combustion engines
JPS58206850A (ja) * 1982-05-27 1983-12-02 Mitsubishi Electric Corp 内燃機関の空燃比制御装置
JPS6073019A (ja) * 1983-09-29 1985-04-25 Daihatsu Motor Co Ltd エンジンの空燃比制御方法
JPS60101241A (ja) * 1983-11-05 1985-06-05 Toyota Motor Corp エンジン制御装置
JPS6043144B2 (ja) 1980-05-27 1985-09-26 ジューキ株式会社 ミシンの模様選択装置
EP0419549A1 (fr) * 1988-06-14 1991-04-03 Nira Automotive Ab Dispositif pour limiter la temperature des gaz d'echappement dans un moteur a combustion interne.
US5239965A (en) 1991-05-30 1993-08-31 Toyota Jidosha Kabushiki Kaisha Fuel injection control apparatus for internal combustion engine
US5884477A (en) * 1997-01-24 1999-03-23 Honda Giken Kogyo Kabushiki Kaisha Fuel supply control system for internal combustion engines
US6272850B1 (en) * 1998-12-08 2001-08-14 Ford Global Technologies, Inc. Catalytic converter temperature control system and method
FR2881476A1 (fr) * 2005-02-03 2006-08-04 Bosch Gmbh Robert Procede et dispositif de regulation de la temperature des gaz d'echappement d'un moteur a combustion interne
DE102016123251A1 (de) * 2016-12-01 2017-03-02 Fev Gmbh Verfahren zum Prüfen eines Motors mittels eines Motorenprüfstandes

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6155340A (ja) * 1984-08-27 1986-03-19 Toyota Motor Corp エンジンの排気過熱防止空燃比制御方法
JP2592342B2 (ja) * 1990-03-22 1997-03-19 日産自動車株式会社 内燃機関の制御装置
DE19609923B4 (de) * 1996-03-14 2007-06-14 Robert Bosch Gmbh Verfahren zur Überwachung einer Überhitzungsschutzmaßnahme im Volllastbetrieb einer Brennkraftmaschine
JP3921732B2 (ja) * 1997-04-28 2007-05-30 マツダ株式会社 筒内噴射型火花点火式エンジン
JPH11101143A (ja) * 1997-09-29 1999-04-13 Mazda Motor Corp 筒内噴射式エンジン
JP2003065111A (ja) * 2001-08-23 2003-03-05 Fuji Heavy Ind Ltd エンジンの燃料噴射制御装置
JP4643493B2 (ja) * 2006-05-29 2011-03-02 愛三工業株式会社 内燃機関の燃料噴射量制御装置
JP2012167562A (ja) * 2011-02-10 2012-09-06 Fuji Heavy Ind Ltd ディーゼルエンジン
US9297320B2 (en) * 2014-07-25 2016-03-29 Ford Global Technologies, Llc Systems and methods for exhaust catalyst temperature control

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4400944A (en) 1979-12-04 1983-08-30 Nippon Soken, Inc. Air-fuel ratio control method and apparatus for internal combustion engines
JPS6043144B2 (ja) 1980-05-27 1985-09-26 ジューキ株式会社 ミシンの模様選択装置
JPS58206850A (ja) * 1982-05-27 1983-12-02 Mitsubishi Electric Corp 内燃機関の空燃比制御装置
JPS6073019A (ja) * 1983-09-29 1985-04-25 Daihatsu Motor Co Ltd エンジンの空燃比制御方法
JPS60101241A (ja) * 1983-11-05 1985-06-05 Toyota Motor Corp エンジン制御装置
EP0419549A1 (fr) * 1988-06-14 1991-04-03 Nira Automotive Ab Dispositif pour limiter la temperature des gaz d'echappement dans un moteur a combustion interne.
US5239965A (en) 1991-05-30 1993-08-31 Toyota Jidosha Kabushiki Kaisha Fuel injection control apparatus for internal combustion engine
US5884477A (en) * 1997-01-24 1999-03-23 Honda Giken Kogyo Kabushiki Kaisha Fuel supply control system for internal combustion engines
US6272850B1 (en) * 1998-12-08 2001-08-14 Ford Global Technologies, Inc. Catalytic converter temperature control system and method
FR2881476A1 (fr) * 2005-02-03 2006-08-04 Bosch Gmbh Robert Procede et dispositif de regulation de la temperature des gaz d'echappement d'un moteur a combustion interne
DE102016123251A1 (de) * 2016-12-01 2017-03-02 Fev Gmbh Verfahren zum Prüfen eines Motors mittels eines Motorenprüfstandes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114704402A (zh) * 2022-03-30 2022-07-05 潍柴动力股份有限公司 一种发动机保护方法、装置、车辆及存储介质

Also Published As

Publication number Publication date
EP3596326A1 (fr) 2020-01-22
EP3596326B1 (fr) 2022-08-17
FR3064030B1 (fr) 2019-06-07
KR20190126362A (ko) 2019-11-11
JP2020510160A (ja) 2020-04-02
RU2019132476A (ru) 2021-04-16
FR3064030A1 (fr) 2018-09-21
RU2019132476A3 (fr) 2021-07-01
JP2023182629A (ja) 2023-12-26
RU2752657C2 (ru) 2021-07-29

Similar Documents

Publication Publication Date Title
FR3064683B1 (fr) Procede de controle d'un moteur a allumage commande suralimente avec recirculation partielle des gaz d'echappement, et dispositif de motorisation associe
US6935312B2 (en) Internal combustion engine and ignition control method
FR3064030B1 (fr) Procede de reglage de la richesse dans un moteur a combustion interne a allumage commande
EP3052781B1 (fr) Procédé de détection de la défaillance d'un refroidisseur d'air suralimenté et dispositif de motorisation associé
WO2015092179A1 (fr) Procede de demarrage a froid d'un moteur thermique et dispositif de motorisation associe
FR2870887A1 (fr) Procede de gestion d'un moteur a combustion interne
FR3045103B1 (fr) Procede de controle d'un dispositif de motorisation et dispositif de motorisation associe
EP4048884A1 (fr) Procédé de régulation d'une pression dans un système d'injection d'eau pour un moteur à combustion interne
EP3475556B1 (fr) Procede de determination de l'avance a l'allumage d'un moteur a combustion interne et procede de controle d'un moteur utilisant un tel procede
EP3816427B1 (fr) Procédé de diagnostic d'une fuite de gaz d'un circuit de recirculation partielle à basse-pression des gaz d'échappement d'un moteur à combustion interne
EP2946098A1 (fr) Système de traitement des gaz d'échappement d'un moteur sur un véhicule automobile et son procédé de commande
FR2916229A1 (fr) Procede de controle des emissions polluantes d'un moteur diesel
FR2981690A3 (fr) Procede de depollution d'un moteur a combustion interne et moteur a combustion interne fonctionnant a richesse 1
EP2299094A1 (fr) Procédé de commande d'un moteur diesel suralimenté à recirculation de gaz d'échappement à basse pression
EP3330521B1 (fr) Procédé de purge d'un piège à oxydes d'azote d'un moteur à combustion interne
EP4303409A1 (fr) Procédé d'optimisation du chauffage d'un catalyseur pour limiter la consommation de carburant
EP1411228A1 (fr) Procédé de régénération d'un filtre à particules et dispositif de mise en oeuvre
FR3029571A3 (fr) Procede de controle d'un dispositif de motorisation et dispositif de motorisation associe
FR3045102A1 (fr) Procede de controle d'un dispositif de motorisation et dispositif de motorisation associe
FR3140910A1 (fr) Procédé de chauffage d’un catalyseur dans un véhicule à motorisation hybride
EP3805544A1 (fr) Controle d'un moteur à allumage commande suralimenté avec recirculation des gaz d'echappement à basse pression
EP3601770A1 (fr) Procede de controle d'un moteur a allumage commande suralimente avec recirculation partielle des gaz d'echappement, et dispositif de motorisation associe
EP1418324A2 (fr) Procédé de régénération d'un filtre à particules et dispositif de mise en oeuvre
FR2924758A1 (fr) Procede et dispositif de commande de l'ecoulement tourbillonnaire helicoidal des gaz dans le cylindre d'un moteur
EP1561932A1 (fr) Système d'aide à la régénération de moyens de dépollution intégré dans une ligne d'échappement d'un moteur thermique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18713325

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019550691

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197029096

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018713325

Country of ref document: EP

Effective date: 20191016