EP4303409A1 - Procédé d'optimisation du chauffage d'un catalyseur pour limiter la consommation de carburant - Google Patents

Procédé d'optimisation du chauffage d'un catalyseur pour limiter la consommation de carburant Download PDF

Info

Publication number
EP4303409A1
EP4303409A1 EP23184055.4A EP23184055A EP4303409A1 EP 4303409 A1 EP4303409 A1 EP 4303409A1 EP 23184055 A EP23184055 A EP 23184055A EP 4303409 A1 EP4303409 A1 EP 4303409A1
Authority
EP
European Patent Office
Prior art keywords
catalyst
concentration
nitrogen oxides
engine
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP23184055.4A
Other languages
German (de)
English (en)
Inventor
Bertrand Fasolo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New H Powertrain Holding SLU
Original Assignee
New H Powertrain Holding SLU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New H Powertrain Holding SLU filed Critical New H Powertrain Holding SLU
Publication of EP4303409A1 publication Critical patent/EP4303409A1/fr
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/101Three-way catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2013Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/22Control of additional air supply only, e.g. using by-passes or variable air pump drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/005Electrical control of exhaust gas treating apparatus using models instead of sensors to determine operating characteristics of exhaust systems, e.g. calculating catalyst temperature instead of measuring it directly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/16Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an electric heater, i.e. a resistance heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/08Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by modifying ignition or injection timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/14Exhaust systems with means for detecting or measuring exhaust gas components or characteristics having more than one sensor of one kind
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0416Methods of control or diagnosing using the state of a sensor, e.g. of an exhaust gas sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1402Exhaust gas composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1411Exhaust gas flow rate, e.g. mass flow rate or volumetric flow rate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1621Catalyst conversion efficiency

Definitions

  • the present invention relates to a method for optimizing the heating of a catalyst for depolluting the exhaust gases of an internal combustion engine, to limit the fuel consumption of the engine.
  • a method according to the invention relates in particular to vehicles equipped with spark-ignition engines (running on gasoline) which must comply with future polluting emissions standards in Europe.
  • the catalytic post-treatment system of a motor vehicle internal combustion engine must be able to post-treat as quickly as possible. polluting emissions leaving the engine after a cold start of the engine.
  • the main lever used is to significantly reduce the ignition advance, typically with 35° less crankshaft angle.
  • EP-B1-0639708 discloses a process for heating a catalyst, in which the air flow rate is increased, the mass of fuel injected is adapted and the ignition advance is shifted as far as possible in the direction of the delay.
  • a disadvantage of such a process is that it causes a significant increase of approximately 30% in fuel consumption throughout the catalyst heating phase.
  • an additional nitrogen oxide concentration sensor also known as an “NOx probe” will be fitted to vehicle engines, downstream of the engine exhaust gas post-treatment system. , to make it possible to monitor exhaust NOx emissions in real time, and thus report a fault if the system exceeds a threshold defined by regulations.
  • the publication FR-A1-3075260 discloses a method for controlling the temperature of a catalyst in the case of a hybrid vehicle. Heating of the catalyst is triggered and maintained for a predetermined duration when the exhaust temperature reaches a threshold Ts greater than the initiation temperature Ta of the catalyst, while keeping it active, and, when the instantaneous temperature, whose subsequent evolution depends on the operation of the hybrid powertrain (respective operating points of the thermal engine and the electric machine) is lower than the threshold Ts, then the heating is controlled until reaching the temperature threshold Ts.
  • the publication FR-A1-3081918 discloses an improved method for managing the priming of a catalyst in which the enthalpy of the exhaust gases is calculated making it possible to determine the quantity of heat supplied to the catalyst.
  • a threshold enthalpy is determined which characterizes the initiation, and heating is stopped when the calculated value of the enthalpy reaches the threshold.
  • the threshold is a function of the value of the water temperature at start-up and the aging of the catalyst. For example, it is the product of a first factor which is a decreasing function of the water temperature, and a second factor between 0 and 1 which corresponds to aging, 0 corresponding to a new catalyst and 1 to a aged catalyst.
  • the aging is determined from the damping of a richness signal downstream of the catalyst relative to a richness signal upstream of the catalyst.
  • the process described in this document does provide for an adaptation of the heating duration of the catalyst, but the link with the real capacity of the catalyst to clean up NOx is very indirect, and as a result, this method lacks precision. It is not easy to establish the correct values of the first and second factors.
  • a method according to the invention makes it possible to adapt the heating of a catalyst as necessary after a cold start of a vehicle, in particular by preventing said catalyst from continuing to be heated when it has already reached its temperature. priming.
  • the subject of the invention is a method for optimizing the heating of a catalyst for depolluting the exhaust gases of an internal combustion engine after a cold start of a vehicle comprising said engine, said vehicle comprising a line d exhaust equipped with said catalyst and a nitrogen oxide concentration sensor at the outlet of said catalyst.
  • a method according to the invention has the particularity of relying on an element already present in the vehicle, namely the nitrogen oxide concentration sensor at the catalyst outlet, to adjust the heating of said catalyst following a cold start of the vehicle, so that said catalyst is no longer heated once it has reached its priming temperature.
  • an element already present in the vehicle namely the nitrogen oxide concentration sensor at the catalyst outlet
  • This sensor makes it possible to determine with certainty and reliability the moment when the catalyst has actually reached its initiation temperature, by means of the determination of a parameter which is representative of the quantity of nitrogen oxide particles remaining at the outlet of the catalyst.
  • a method according to the invention is controlled by an on-board computer having software whose input data The main one is the nitrogen oxide concentration measured by the nitrogen oxide concentration sensor at the catalyst outlet. From this concentration of nitrogen oxides measured by the sensor, the software calculates a specific parameter, representative of the quantity of nitrogen oxide particles remaining at the outlet of the catalyst, which is compared to a predetermined threshold value.
  • the threshold value being a function of the specific parameter considered.
  • the computer orders an immediate stop of heating of the catalyst.
  • the catalyst can, for example in the case of a spark ignition engine, be a three-way catalyst.
  • a particle filter is added to the catalyst to further limit the emission into the atmosphere of fine particles produced by the vehicle engine.
  • the specific parameter is a concentration of nitrogen oxides directly determined by the sensor.
  • the specific parameter is a mass flow rate of nitrogen oxides at the outlet of the catalyst corresponding to the product of the concentration of nitrogen oxides and the flow rate of the exhaust gases at the outlet of the catalyst.
  • the specific parameter is a level of post-treatment efficiency of the nitrogen oxides by the catalyst, calculated as the ratio between the concentration of nitrogen oxides at the catalyst outlet and the concentration of nitrogen oxides at the catalyst inlet. In other words, this is the proportion of nitrogen oxides emitted by the engine which are not treated by the catalyst.
  • the concentration of nitrogen oxides at the inlet of the catalyst is measured by an upstream sensor for the concentration of nitrogen oxides, said upstream sensor being placed on the exhaust line between the engine and the catalyst.
  • the concentration of nitrogen oxides at the inlet of the catalyst corresponding to the concentration of nitrogen oxides at the outlet of the engine is determined from a model giving this concentration as a function of the operating point of the engine, said model being calibrated in advance by means of bench tests.
  • the operating point of the engine depends on a set of parameters comprising at least the engine speed, the engine torque, and the water temperature (i.e. coolant).
  • the heating of the catalyst is carried out using a technique to be chosen from a degradation of the combustion efficiency with modification of the value of the ignition advance, and an electric heating which can be coupled with air injection at the exhaust.
  • These heating techniques are similar to those already existing.
  • the catalyst is a three-way catalyst.
  • An optimization method makes it possible to heat a depollution catalyst as accurately as possible after a cold start of a vehicle, by relying on an element already present in said vehicle, namely the concentration sensor. nitrogen oxide at the outlet of the catalyst. It therefore does not require the insertion of added equipment, which is a source of cost, bulk and additional weight. It also has the advantage of offering a realistic and reliable method making it possible to know from what precise moment the catalyst has reached its initiation temperature, to avoid continuing to unnecessarily heat said catalyst.
  • a method for optimizing the heating of a catalyst according to the invention is particularly suitable for a vehicle equipped with a spark ignition engine.
  • an example of a powertrain 1 of such a vehicle schematically comprises an internal combustion engine, for example a gasoline engine 2, an air intake line 3 intended to supply air to said engine 2, and an exhaust line 4 intended to evacuate exhaust gases coming from this engine 2.
  • the air intake line 3 is materialized by a conduit 5 comprising an air inlet 6, followed by a filter air 7 and opening into a turbocharger compressor 8.
  • the conduit 5 extends to connect said compressor 8 to an intake manifold 9 passing through a throttle body 10, said intake manifold 9 distributing air into combustion chambers 11 of said engine 2.
  • An exhaust manifold 12 makes it possible to evacuate the exhaust gases coming from the combustion chambers 11 of the engine 2, towards the exhaust line 4.
  • the exhaust manifold 12 opens into a turbine 13 of the turbocharger which is coupled to the compressor 8 by a common shaft, and the exhaust line 4 extends beyond said turbine 13 to an outlet 14, passing through a depollution device 15 comprising a three-way catalyst 16 followed by a particle filter 17.
  • the three-way catalyst 16 is inserted between the turbine 13 and the particle filter 17.
  • a nitrogen oxide concentration sensor 18 is placed downstream of the particle filter 17 and upstream of the outlet 14 of the exhaust line 4. The sensor 18 makes it possible to measure the concentration of nitrogen oxides NOx at the outlet of the pollution control device 15 after the catalyst 16 has.
  • the catalyst 16 is effective when it is at its starting temperature, which it reaches several tens of seconds after a cold start. Indeed, following a cold start of the engine corresponding to time Os on the diagrams, for approximately the following 50 seconds, the quantity of nitrogen oxides emitted by engine 2 and materialized by curve 19, is equivalent to the quantity of nitrogen oxides determined at the outlet of catalyst 16 and materialized by curve 20.
  • quantitative we mean in the example of the figure 2a a mass flow.
  • An optimization method according to the invention makes it possible to know precisely the moment when a catalyst 16 in the heating phase after a cold start of the vehicle has reached its priming temperature, meaning that this heating must be interrupted instantly.
  • the catalyst heating step 16 begins just after a cold start of the vehicle. This step is carried out using a technique to be chosen from a degradation of the combustion efficiency with modification of the value of the ignition advance, and an electric heating which can be coupled with air injection at the exhaust. These heating techniques are similar to those already existing.
  • the step of measuring the concentration of nitrogen oxides by the sensor 18 at the outlet of the catalyst 16 as soon as said vehicle is started, is carried out without making the slightest adjustment to said sensor 18 and said catalyst 16.
  • a method according to invention relies on the presence of the nitrogen oxide concentration sensor 18 already present in the vehicle, to know the priming state of the catalyst 16.
  • a threshold value is predetermined, from which it can be estimated that the catalyst 16 has been initiated. As soon as said specific parameter has reached this threshold value, the heating of the catalyst stops instantly so as to no longer unnecessarily heat said catalyst 16.
  • a method according to the invention is managed by an on-board computer having software whose input data is the concentration of nitrogen oxides measured by the sensor 18. From this concentration of nitrogen oxides measured by the sensor 18, the software calculates the specific parameter considered, which is compared to a predetermined threshold value which has been previously entered into said software, and which corresponds to the specific parameter considered. As soon as this threshold value is reached, the computer orders an immediate stopping of the heating of the catalyst 16.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

L'invention concerne un procédé d'optimisation du chauffage d'un catalyseur (16) après un démarrage à froid d'un véhicule comprenant un moteur (2) à combustion interne, ledit véhicule comportant une ligne d'échappement (4) doté d'un catalyseur (16) et d'un capteur (18) de concentration d'oxydes d'azote à la sortie dudit catalyseur (16).Selon l'invention, ledit procédé comprend les étapes suivantes :-une étape de chauffage du catalyseur (16),-une étape de mesure de la concentration d'oxydes d'azote par le capteur (18) à la sortie du catalyseur (16) dès le démarrage dudit véhicule,-une étape de détermination d'un paramètre spécifique qui est fonction de la mesure du capteur (18),-une étape d'arrêt du chauffage du catalyseur (16) dès que ledit paramètre a atteint une valeur seuil prédéterminée.

Description

  • La présente invention concerne un procédé d'optimisation du chauffage d'un catalyseur de dépollution des gaz d'échappement d'un moteur à combustion interne, pour limiter la consommation de carburant du moteur.
  • Un procédé selon l'invention, concerne notamment les véhicules équipés de moteurs à allumage commandé (fonctionnant à l'essence) devant respecter les futures normes d'émissions polluantes en Europe.
  • Les seuils d'émissions règlementaires étant de plus en plus faibles, en particulier sur les oxydes d'azote NOx, il faut que le système de post-traitement catalytique d'un moteur à combustion interne de véhicule automobile puisse post-traiter au plus vite les émissions polluantes en sortie de moteur après un démarrage à froid du moteur.
  • Actuellement, pour parvenir à un tel résultat, on peut procéder à une phase de chauffage du catalyseur en dégradant le rendement du moteur, afin d'avoir des gaz très chauds à la sortie de la culasse dudit moteur. Le principal levier utilisé est de fortement réduire l'avance à l'allumage, typiquement avec 35° d'angle de vilebrequin en moins.
  • La publication EP-B1-0639708 divulgue un procédé de chauffage d'un catalyseur, dans lequel on augmente le débit d'air, on adapte la masse de carburant injectée et on décale l'avance à l'allumage le plus possible dans le sens du retard. Un inconvénient d'un tel procédé est qu'il provoque une augmentation significative d'environ 30%, de la consommation de carburant pendant toute la phase de chauffage du catalyseur.
  • Il existe d'autres types de chauffage du catalyseur, notamment par chauffage électrique, et/ou par injection d'air à l'échappement. Or, de tels moyens vont également entraîner de manière indirecte une surconsommation de carburant pour pouvoir produire l'énergie électrique puisée dans la batterie du véhicule et consommée par les moyens de chauffage électrique et/ou par les moyens d'injection d'air comme une pompe électrique.
  • Les émissions de dioxyde de carbone CO2 étant elles aussi de plus en plus contraintes, il faut pouvoir chauffer le catalyseur « au juste nécessaire », donc optimiser la durée de chauffage dudit catalyseur. Or, la durée de chauffage optimale du catalyseur dépend de nombreux paramètres tels que :
    • La température de l'échappement lors du démarrage à froid du moteur : plus la température ambiante est faible, et plus il faudra du temps pour amener le catalyseur à la bonne température. Sur un arrêt du véhicule qui s'accompagne d'un arrêt du moteur pendant la phase de chauffage du catalyseur, il est aussi difficile d'estimer la baisse de température,
    • Le profil du roulage : si après un démarrage à froid, le client roule à des faibles vitesses / charges, il faudra plus de temps pour chauffer le catalyseur car il y a moins de débit à l'échappement,
    • L'état de vieillissement du catalyseur : plus le catalyseur a vieilli, moins il est efficace, et il faut donc augmenter sa durée de chauffage.
  • Tous ces paramètres ne sont pas appréhendables précisément par le système de contrôle-moteur, afin d'optimiser la durée de chauffage du catalyseur. On pourrait utiliser un critère de température du catalyseur au-delà de laquelle on peut considérer qu'il est complètement amorcé, c'est-à-dire qu'il présente un taux d'efficacité de post-traitement des émissions de 100%, mais l'estimation de cette température reste difficile du fait des réactions exothermiques internes. Pour traiter cette variabilité, on calibre en général la durée de chauffage du catalyseur sur le pire cas, qui de ce fait n'est plus optimal en consommation sur les cas moins sévères.
  • Avec les nouvelles normes en matière de dépollution, un capteur de concentration d'oxydes d'azote (dit aussi « sonde NOx ») supplémentaire va équiper les moteurs de véhicule, en aval du système de post-traitement des gaz d'échappement du moteur, pour permettre de suivre en temps réel les émissions de NOx à l'échappement, et de remonter ainsi un défaut si le système dépasse un seuil défini par la réglementation.
  • La publication FR-A1-3075260 divulgue un procédé de pilotage de la température d'un catalyseur dans le cas d'un véhicule hybride. Le chauffage du catalyseur est déclenché et maintenu pendant une durée prédéterminée lorsque la température à l'échappement atteint un seuil Ts supérieur à la température d'amorçage Ta du catalyseur, tout en le maintenant actif, et, lorsque la température instantanée, dont l'évolution ultérieure dépend du fonctionnement du groupe motopropulseur hybride (points de fonctionnement respectifs du moteur thermique et de la machine électrique) est inférieure au seuil Ts, alors le chauffage est commandé jusqu'à atteindre le seuil de température Ts.
  • Ce document ne permet pas d'optimiser la durée de chauffage du catalyseur.
  • La publication FR-A1-3081918 (RENAULT/NISSAN) divulgue un procédé perfectionné de la gestion de l'amorçage d'un catalyseur dans lequel on calcule l'enthalpie des gaz d'échappement permettant de déterminer la quantité de chaleur fournie au catalyseur. On détermine une enthalpie seuil qui caractérise l'amorçage, et on arrête le chauffage lorsque la valeur calculée de l'enthalpie atteint le seuil. Selon cette publication, le seuil est une fonction de la valeur de la température d'eau au démarrage et du vieillissement du catalyseur. Par exemple, il est le produit d'un premier facteur qui est une fonction décroissante de la température d'eau, et d'un deuxième facteur compris entre 0 et 1 qui correspond au vieillissement, 0 correspondant à un catalyseur neuf et 1 à un catalyseur vieilli. Dans un mode de réalisation, le vieillissement est déterminé à partir de l'amortissement d'un signal de richesse en aval du catalyseur par rapport à un signal de richesse en amont du catalyseur. Le procédé décrit dans ce document prévoit bien une adaptation de la durée de de chauffage du catalyseur, mais le lien avec la capacité réelle du catalyseur à dépolluer les NOx est très indirect, et de ce fait, cette méthode manque de précision. Il n'est pas facile d'établir les bonnes valeurs des premier et deuxième facteurs.
  • Un procédé selon l'invention permet d'adapter au juste nécessaire le chauffage d'un catalyseur après un démarrage à froid d'un véhicule, en empêchant notamment que ledit catalyseur continue d'être chauffé alors qu'il a déjà atteint sa température d'amorçage.
  • L'invention a pour objet un procédé d'optimisation du chauffage d'un catalyseur de dépollution des gaz d'échappement d'un moteur à combustion interne après un démarrage à froid d'un véhicule comprenant ledit moteur, ledit véhicule comportant une ligne d'échappement doté dudit catalyseur et d'un capteur de concentration d'oxydes d'azote à la sortie dudit catalyseur.
  • Selon l'invention, ledit procédé comprend les étapes suivantes :
    • une étape de chauffage du catalyseur,
    • une étape de mesure de la concentration d'oxydes d'azote par le capteur à la sortie du catalyseur dès le démarrage dudit véhicule,
    • une étape de détermination d'un paramètre spécifique représentatif de la quantité de particules d'oxydes d'azote à la sortie du catalyseur, qui est fonction de la mesure du capteur,
    • une étape d'arrêt du chauffage du catalyseur dès que ledit paramètre spécifique a atteint une valeur seuil prédéterminée.
  • Un procédé selon l'invention présente la particularité de s'appuyer sur un élément déjà présent dans le véhicule, à savoir le capteur de concentration d'oxydes d'azote en sortie de catalyseur, pour ajuster le chauffage dudit catalyseur à la suite d'un démarrage à froid du véhicule, de sorte que ledit catalyseur ne soit plus chauffé une fois qu'il a atteint sa température d'amorçage. En effet, dans la plupart des procédé actuels, il n'existe aucune information tangible signalant que le catalyseur a atteint sa température d'amorçage et qu'il n'est donc plus utile de le chauffer. Ce capteur permet de déterminer avec certitude et fiabilité, le moment où le catalyseur a réellement atteint sa température d'amorçage, par le biais de la détermination d'un paramètre qui est représentatif de la quantité de particules d'oxyde d'azote subsistant à la sortie du catalyseur. En effet, dès que ce paramètre, qui évolue dans le sens de la diminution à partir du démarrage du moteur, diminue suffisamment jusqu'à atteindre une valeur seuil prédéterminée, on peut alors conclure que le catalyseur vient d'être amorcé. La sonde, bien que servant d'élément de base à un procédé selon l'invention dont le but est de chauffer au plus juste le catalyseur afin qu'il soit opérationnel, conserve toutefois sa fonction originale de mesure du niveau de pollution engendré par le véhicule. Un procédé selon l'invention est piloté par un ordinateur embarqué possédant un logiciel dont la donnée d'entrée principale est la concentration d'oxyde d'azote mesurée par le capteur de concentration d'oxydes d'azote à la sortie du catalyseur. A partir de cette concentration d'oxydes d'azote mesurée par le capteur, le logiciel calcule un paramètre spécifique, représentatif de la quantité de particules d'oxydes d'azote subsistant à la sortie du catalyseur, qui est comparé à une valeur seuil prédéterminée qui a été préalablement entrée dans ledit logiciel, ladite valeur seuil étant fonction du paramètre spécifique considéré. Dès que cette valeur seuil est atteinte, l'ordinateur ordonne un arrêt immédiat du chauffage du catalyseur. Le catalyseur peut, par exemple dans le cas d'un moteur à allumage commandé, être un catalyseur trois voies. Préférentiellement, un filtre à particules est adjoint au catalyseur pour limiter encore plus l'émission dans l'atmosphère de particules fines produites par le moteur du véhicule.
  • Selon une caractéristique possible de l'invention, en variante, le paramètre spécifique est une concentration d'oxydes d'azote directement déterminée par le capteur.
  • Selon une caractéristique possible de l'invention, le paramètre spécifique est un débit massique d'oxydes d'azote à la sortie du catalyseur correspondant au produit de la concentration d'oxydes d'azote et du débit des gaz d'échappement à la sortie du catalyseur.
  • Selon une caractéristique possible de l'invention, dans une autre variante, le paramètre spécifique est un niveau d'efficacité de post-traitement des oxydes d'azote par le catalyseur, calculé comme le rapport entre la concentration d'oxydes d'azote à la sortie du catalyseur et la concentration d'oxydes d'azote à l'entrée du catalyseur. Il s'agit ici en d'autres termes de la proportion des oxydes d'azote émis par le moteur qui ne sont pas traités par le catalyseur.
  • Selon une caractéristique possible de l'invention, la concentration d'oxydes d'azote à l'entrée du catalyseur est mesurée par un capteur amont de concentration d'oxydes d'azote, ledit capteur amont étant placé sur la ligne d'échappement entre le moteur et le catalyseur.
  • Selon une caractéristique possible de l'invention, en variante, la concentration d'oxydes d'azote à l'entrée du catalyseur correspondant à la concentration d'oxydes d'azote à la sortie du moteur est déterminée à partir d'un modèle donnant cette concentration en fonction du point de fonctionnement du moteur, ledit modèle étant calibré à l'avance au moyen d'essais au banc.
  • Selon une caractéristique possible de l'invention, le point de fonctionnement du moteur dépend d'un ensemble de paramètres comprenant au moins le régime du moteur, le couple du moteur, et la température d'eau (i.e. liquide de refroidissement).
  • Selon une caractéristique possible de l'invention, le chauffage du catalyseur est réalisé à partir d'une technique à choisir parmi une dégradation du rendement de combustion avec modification de la valeur de l'avance à l'allumage, et un chauffage électrique qui peut être couplé avec de l'injection d'air à l'échappement. Ces techniques de chauffage sont analogues à celles déjà existantes.
  • Selon une caractéristique possible de l'invention, le catalyseur est un catalyseur trois voies.
  • Un procédé d'optimisation selon l'invention permet de chauffer au plus juste un catalyseur de dépollution après un démarrage à froid d'un véhicule, en s'appuyant sur un élément déjà présent dans ledit véhicule, à savoir le capteur de concentration d'oxyde d'azote à la sortie du catalyseur. Il ne nécessite donc pas l'insertion d'un matériel rapporté, qui est une source de coût, d'encombrement et de poids supplémentaires. Il a de plus l'avantage de proposer une méthode réaliste et fiable permettant de savoir à partir de quel instant précis le catalyseur a atteint sa température d'amorçage, pour éviter de continuer de chauffer inutilement ledit catalyseur.
  • On donne ci-après une description détaillée d'un mode de réalisation préféré d'un procédé d'optimisation selon l'invention, en se référant aux figures suivantes :
    • [Fig. 1] La figure 1 est une vue schématique d'un groupe motopropulseur d'un véhicule dans lequel est apte à se dérouler un procédé d'optimisation selon l'invention.
    • [Fig. 2a] La figure 2a est un diagramme montrant un exemple de variation de la quantité de particules d'oxyde d'azote en fonction du temps après un démarrage à froid, avant et après l'amorçage du catalyseur,
    • [Fig. 2b] La figure 2b est un diagramme montrant un exemple de variation de la vitesse du véhicule en fonction du temps permettant d'obtenir le diagramme de la figure 2a.
  • Un procédé d'optimisation du chauffage d'un catalyseur selon l'invention est particulièrement adapté à un véhicule équipé d'un moteur à allumage commandé.
  • En se référant à la figure 1, un exemple d'un groupe motopropulseur 1 d'un tel véhicule, comprend schématiquement un moteur à combustion interne, par exemple un moteur à essence 2, une ligne 3 d'admission 3 d'air destinée à alimenter en air ledit moteur 2, et une ligne d'échappement 4 destinée à évacuer des gaz d'échappement en provenance de ce moteur 2. La ligne d'admission 3 d'air est matérialisé par un conduit 5 comprenant une entrée d'air 6, suivi d'un filtre à air 7 et débouchant dans un compresseur 8 de turbocompresseur. Le conduit 5 se prolonge pour relier ledit compresseur 8 à un collecteur d'admission 9 en passant par un boitier papillon 10, ledit collecteur d'admission 9 distribuant l'air dans des chambres 11 de combustion dudit moteur 2. Un collecteur d'échappement 12 permet d'évacuer les gaz d'échappement en provenance des chambres 11 de combustion du moteur 2, vers la ligne d'échappement 4. Le collecteur d'échappement 12 débouche dans une turbine 13 du turbocompresseur qui est couplée au compresseur 8 par un arbre commun, et la ligne d'échappement 4 se prolonge au-delà de ladite turbine 13 jusqu'à une sortie 14, en passant par un dispositif de dépollution 15 comprenant un catalyseur 16 trois voies suivi d'un filtre à particules 17. Le catalyseur 16 trois voies est inséré entre la turbine 13 et le filtre à particules 17. Un capteur 18 de concentration d'oxydes d'azote est placée en aval du filtre à particules 17 et en amont de la sortie 14 de la ligne d'échappement 4. Le capteur 18 permet de mesurer la concentration d'oxydes d'azote NOx à la sortie du dispositif de dépollution 15 après que le catalyseur 16 a .
  • En se référant aux figures 2a et 2b, le catalyseur 16 est efficace lorsqu'il est à sa température d'amorçage, qu'il atteint plusieurs dizaines de secondes après un démarrage à froid. En effet, à la suite d'un démarrage à froid du moteur correspondant au temps Os sur les diagrammes, durant environ les 50 secondes suivantes, la quantité d'oxydes d'azote émise par le moteur 2 et matérialisée par la courbe 19, est équivalente à la quantité d'oxydes d'azote déterminée à la sortie du catalyseur 16 et matérialisée par la courbe 20. Par « quantité », on entend sur l'exemple de la figure 2a un débit massique. Ces résultats tendent à prouver que sur les 50 premières secondes de cette première phase, le catalyseur 16 n'a pas atteint sa température d'amorçage, car il ne traite quasiment pas les oxydes d'azote provenant du moteur. En revanche, dans une deuxième phase prolongeant cette première phase, la quantité d'oxydes d'azote à la sortie du catalyseur 16 tend vers 0 comme l'illustre la courbe 20 correspondante, alors que la courbe 19 matérialisant la quantité d'oxydes d'azote à la sortie de moteur 2 et en amont du catalyseur 16, montre des pics réguliers correspondant à des émissions élevées de particules d'oxyde d'azote quand la vitesse du véhicule augmente (cf figure 2b). Durant cette deuxième phase, le catalyseur 16 se montre efficace vis-à-vis des particules d'oxyde d'azote puisqu'il n'en laisse passer quasiment aucune, laissant supposer qu'il a atteint sa température d'amorçage au début de cette deuxième phase.
  • Actuellement, Il arrive bien souvent que l'instant à partir duquel le catalyseur 16 a été amorcé ne soit pas connu avec précision, et que le catalyseur 16 continue d'être chauffé alors qu'il a déjà atteint sa température d'amorçage. Or, une telle situation peut engendrer certains inconvénients tels que par exemple une usure prématurée du catalyseur 16 qui risque de ne plus pouvoir assurer efficacement son rôle de traitement des oxydes d'azote.
  • Un procédé d'optimisation selon l'invention permet de connaître avec précision le moment où un catalyseur 16 en phase de chauffage après un démarrage à froid du véhicule, a atteint sa température d'amorçage, signifiant qu'il faut interrompre ce chauffage instantanément.
  • Un procédé selon l'invention, permettant d'optimiser le chauffage du catalyseur 16 après un démarrage à froid du véhicule comprend les étapes suivantes :
    • une étape de chauffage du catalyseur 16,
    • une étape de mesure de la concentration d'oxydes d'azote par le capteur 18 à la sortie du catalyseur 16 dès le démarrage dudit véhicule,
    • une étape de détermination d'un paramètre spécifique représentatif de la quantité de particules d'oxydes d'azote à la sortie du catalyseur, qui est fonction de la mesure du capteur 18,
    • une étape d'arrêt du chauffage du catalyseur 16 dès que ledit paramètre a atteint une valeur seuil prédéterminée.
  • L'étape de chauffage du catalyseur 16 débute juste après un démarrage à froid du véhicule. Cette étape est réalisée à partir d'une technique à choisir parmi une dégradation du rendement de combustion avec modification de la valeur de l'avance à l'allumage, et un chauffage électrique qui peut être couplé avec de l'injection d'air à l'échappement. Ces techniques de chauffage sont analogues à celles déjà existantes.
  • L'étape de mesure de la concentration d'oxydes d'azote par le capteur 18 à la sortie du catalyseur 16 dès le démarrage dudit véhicule, est réalisée sans apporter le moindre aménagement audit capteur 18 et audit catalyseur 16. Un procédé selon l'invention s'appuie sur la présence du capteur 18 de concentration d'oxydes d'azote déjà présent dans le véhicule, pour connaitre l'état d'amorçage du catalyseur 16.
  • Le paramètre spécifique peut revêtir différentes formes, et peut par exemple correspondre :
    • à un niveau absolu d'émission de particules d'oxyde d'azote en sortie de catalyseur 16, c'est-à-dire, à un débit massique (exprimé par exemple en mg/s), qui est égal au produit du débit des gaz d'échappement et de la concentration d'oxydes d'azote mesurée par le capteur 18.
    • à la concentration (mesurée en ppm) d'oxydes d'azote directement déterminée par le capteur 18.
    • un niveau d'efficacité de post-traitement des oxydes d'azote correspondant au calcul du rapport entre la concentration d'oxydes d'azote à la sortie du catalyseur 16, divisée par la concentration d'oxydes d'azote à l'entrée du catalyseur 16. Selon une variante de réalisation de l'invention, la concentration d'oxydes d'azote à l'entrée du catalyseur 16 correspond à la concentration d'oxydes d'azote à la sortie du moteur 2, et elle est mesurée par un capteur de concentration d'oxydes d'azote amont, ledit capteur amont étant placé sur la ligne d'échappement entre le moteur 2 et le catalyseur 16. Selon une autre variante de réalisation de l'invention, la concentration d'oxydes d'azote à l'entrée du catalyseur, correspondant à la concentration d'oxydes d'azote à la sortie du moteur 2 est déterminée à partir d'un modèle donnant cette concentration en fonction du point de fonctionnement du moteur 2, ledit modèle étant calibré à l'avance au moyen d'essais au banc. Le point de fonctionnement du moteur 2 dépend d'un ensemble de paramètres comprenant au moins le régime du moteur, le couple du moteur et la température d'eau.
  • En fonction du paramètre spécifique considéré, une valeur seuil est prédéterminée, à partir de laquelle il peut être estimé que le catalyseur 16 a été amorcé. Dès que ledit paramètre spécifique a atteint cette valeur seuil, le chauffage du catalyseur cesse instantanément pour ne plus chauffer inutilement ledit catalyseur 16.
  • Un procédé selon l'invention est géré par un ordinateur embarqué possédant un logiciel dont la donnée d'entrée est la concentration d'oxydes d'azote mesurée par le capteur 18. A partir de cette concentration d'oxydes d'azote mesurée par le capteur 18, le logiciel calcule le paramètre spécifique considéré, qui est comparé à une valeur seuil prédéterminée qui a été préalablement entrée dans ledit logiciel, et qui correspond au paramètre spécifique considéré. Dès que cette valeur seuil est atteinte, l'ordinateur ordonne un arrêt immédiat du chauffage du catalyseur 16.

Claims (9)

  1. Procédé d'optimisation du chauffage d'un catalyseur (16) de dépollution des gaz d'échappement d'un moteur à combustion interne (2) après un démarrage à froid d'un véhicule comprenant ledit moteur (2), ledit véhicule comportant une ligne d'échappement (4) doté dudit catalyseur (16) et d'un capteur (18) de concentration d'oxydes d'azote à la sortie dudit catalyseur (16), caractérisé en ce que ledit procédé comprend les étapes suivantes :
    - une étape de chauffage du catalyseur (16),
    - une étape de mesure de la concentration d'oxydes d'azote par le capteur (18) à la sortie du catalyseur (16) dès le démarrage dudit véhicule,
    - une étape de détermination d'un paramètre spécifique représentatif de la quantité de particules d'oxydes d'azote à la sortie du catalyseur, qui est fonction de la mesure du capteur (18),
    - une étape d'arrêt du chauffage du catalyseur (16) dès que ledit paramètre spécifique a atteint une valeur seuil prédéterminée.
  2. Procédé d'optimisation selon la revendication 1, caractérisé en ce que le paramètre spécifique est une concentration d'oxydes d'azote directement déterminée par le capteur (18).
  3. Procédé d'optimisation selon la revendication 1, caractérisé en ce que le paramètre spécifique est un débit massique d'oxydes d'azote à la sortie du catalyseur (16), correspondant au produit de la concentration d'oxydes d'azote et du débit des gaz d'échappement à la sortie du catalyseur (16).
  4. Procédé d'optimisation selon la revendication 1, caractérisé en ce que le paramètre spécifique est un niveau d'efficacité de post-traitement des oxydes d'azote par le catalyseur (16), calculé comme le rapport entre la concentration d'oxydes d'azote à la sortie du catalyseur et la concentration d'oxydes d'azote à l'entrée du catalyseur.
  5. Procédé d'optimisation selon la revendication 4, caractérisé en ce que la concentration d'oxydes d'azote à l'entrée du catalyseur (16) est mesurée par un capteur amont de concentration d'oxydes d'azote, ledit capteur amont étant placé sur la ligne d'échappement (4) entre le moteur (2) et le catalyseur (16).
  6. Procédé d'optimisation selon la revendication 4, caractérisé en ce que la concentration d'oxydes d'azote à l'entrée du catalyseur (16), correspondant à la concentration d'oxydes d'azote à la sortie de moteur (2) est déterminée à partir d'un modèle donnant cette concentration en fonction du point de fonctionnement du moteur (2), ledit modèle étant calibré à l'avance au moyen d'essais au banc.
  7. Procédé d'optimisation selon la revendication 6, caractérisé en ce que le point de fonctionnement du moteur (2) dépend d'un ensemble de paramètres comprenant au moins le régime du moteur, le couple du moteur, et la température d'eau.
  8. Procédé d'optimisation selon l'une quelconque des revendications 1 à 7, caractérisé en ce que le chauffage du catalyseur (16) est réalisé à partir d'une technique à choisir parmi une dégradation du rendement de combustion avec modification de la valeur de l'avance à l'allumage, et un chauffage électrique qui peut être couplé avec de l'injection d'air à l'échappement.
  9. Procédé d'optimisation selon l'une quelconque des revendications 1 à 8, caractérisé en ce que le catalyseur (16) est un catalyseur trois voies.
EP23184055.4A 2022-07-08 2023-07-07 Procédé d'optimisation du chauffage d'un catalyseur pour limiter la consommation de carburant Pending EP4303409A1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR2207021A FR3137718A1 (fr) 2022-07-08 2022-07-08 procédé d’optimisation du chauffage d’un catalyseur pour limiter la consommation de carburant

Publications (1)

Publication Number Publication Date
EP4303409A1 true EP4303409A1 (fr) 2024-01-10

Family

ID=83439111

Family Applications (1)

Application Number Title Priority Date Filing Date
EP23184055.4A Pending EP4303409A1 (fr) 2022-07-08 2023-07-07 Procédé d'optimisation du chauffage d'un catalyseur pour limiter la consommation de carburant

Country Status (2)

Country Link
EP (1) EP4303409A1 (fr)
FR (1) FR3137718A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0639708B1 (fr) 1993-08-19 1998-03-25 Ekkardt Czub Procédé pour actionner un moteur à combustion interne véhiculaire
CN108590827A (zh) * 2018-07-03 2018-09-28 广西玉柴机器股份有限公司 根据obd监测效率控制三元催化器入口温度的装置及方法
FR3075260A1 (fr) 2017-12-14 2019-06-21 Psa Automobiles Sa Systeme et procede de pilotage de la temperature d’un catalyseur d’une ligne d’echappement de vehicule, et vehicule automobile les incorporant
FR3081918A1 (fr) 2018-05-29 2019-12-06 Renault S.A.S Procede de gestion de l’amorcage d’un catalyseur de depollution

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0639708B1 (fr) 1993-08-19 1998-03-25 Ekkardt Czub Procédé pour actionner un moteur à combustion interne véhiculaire
FR3075260A1 (fr) 2017-12-14 2019-06-21 Psa Automobiles Sa Systeme et procede de pilotage de la temperature d’un catalyseur d’une ligne d’echappement de vehicule, et vehicule automobile les incorporant
FR3081918A1 (fr) 2018-05-29 2019-12-06 Renault S.A.S Procede de gestion de l’amorcage d’un catalyseur de depollution
CN108590827A (zh) * 2018-07-03 2018-09-28 广西玉柴机器股份有限公司 根据obd监测效率控制三元催化器入口温度的装置及方法

Also Published As

Publication number Publication date
FR3137718A1 (fr) 2024-01-12

Similar Documents

Publication Publication Date Title
FR2860034A1 (fr) Procede de restriction de l'elevation excessive de la temperature du filtre dans un moteur a combustion interne
EP1323905B1 (fr) Procédé et dispositif de contrôle de l'état de fonctionnement d'un convertisseur catalytique d'une ligne d'échappement d'un moteur à combustion interne
EP3574194B1 (fr) Procede de controle des emissions d'oxydes d'azote a l'echappement d'un moteur a combustion interne
WO2006048572A1 (fr) Dispositif de controle de l'etat de fonctionnement d'un convertisseur catalytique d'une ligne d'echappement d'un moteur a combustion interne et moteur comprenant un tel dispositif
WO2019229027A1 (fr) Procede de gestion de l'amorcage d'un catalyseur de depollution
EP1834074B1 (fr) Protection d'un catalyseur d'oxydation place en amont de filtre à particules pour moteur diesel par limitation de carburant injecte
EP2545261B1 (fr) Procede de regulation de la temperature de regeneration d'un filtre a particules
EP4303409A1 (fr) Procédé d'optimisation du chauffage d'un catalyseur pour limiter la consommation de carburant
EP2992193B1 (fr) Dispositif et procédé de contrôle de l'état de fonctionnement d'un organe de traitement d'effluents gazeux d'une ligne d'échappement d'un moteur à combustion interne
EP2299094A1 (fr) Procédé de commande d'un moteur diesel suralimenté à recirculation de gaz d'échappement à basse pression
EP2078840B1 (fr) Strategie de mise en oeuvre d'un processus de chauffage rapide d'un catalyseur
FR2916229A1 (fr) Procede de controle des emissions polluantes d'un moteur diesel
EP3995685B1 (fr) Procédé de diagnostic d'un débitmètre d'air pour moteur à combustion interne
EP4041998B1 (fr) Procédé de diagnostic d'un système de post-traitement d'un moteur à allumage commandé
FR2981690A3 (fr) Procede de depollution d'un moteur a combustion interne et moteur a combustion interne fonctionnant a richesse 1
FR2943095A1 (fr) Procede de regeneration d'un filtre a particules
FR3118647A1 (fr) Procédé de détection d’une fuite de gaz dans un circuit d’admission d’un dispositif de motorisation
FR3028558A1 (fr) Procede de controle d'un dispositif de motorisation et dispositif de motorisation associe
FR3104210A1 (fr) Procede pour limiter la quantite de polluants rejetes par un moteur thermique de vehicule hybride
EP4088012A1 (fr) Procede de regeneration d'un filtre a particules de moteur a combustion interne a allumage commande, et dispositif associe
EP3974636A1 (fr) Procédé de commande d'un système d'alimentation à bicarburation pour véhicule automobile et unité de traitement associée
EP3816416A1 (fr) Procédé de régénération d'un piège à oxydes d'azote de moteur à combustion interne équipé d'un catalyseur de réduction sélective des oxydes d'azote
FR3120921A1 (fr) Procédé de diagnostic d’un fonctionnement erroné d’un moteur de véhicule
FR3045102A1 (fr) Procede de controle d'un dispositif de motorisation et dispositif de motorisation associe
WO2009115759A2 (fr) Procede de gestion du fonctionnement d'au moins un convertisseur catalytique pour moteur a combustion interne

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR