WO2018164259A1 - Resin material, laminated film, and multilayer printed circuit board - Google Patents

Resin material, laminated film, and multilayer printed circuit board Download PDF

Info

Publication number
WO2018164259A1
WO2018164259A1 PCT/JP2018/009161 JP2018009161W WO2018164259A1 WO 2018164259 A1 WO2018164259 A1 WO 2018164259A1 JP 2018009161 W JP2018009161 W JP 2018009161W WO 2018164259 A1 WO2018164259 A1 WO 2018164259A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin material
resin
less
group
film
Prior art date
Application number
PCT/JP2018/009161
Other languages
French (fr)
Japanese (ja)
Inventor
達史 林
奨 馬場
貴至 西村
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to KR1020197017909A priority Critical patent/KR102508097B1/en
Priority to CN201880016256.8A priority patent/CN110382589B/en
Priority to JP2018517447A priority patent/JP6993324B2/en
Publication of WO2018164259A1 publication Critical patent/WO2018164259A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4014Nitrogen containing compounds
    • C08G59/4021Ureas; Thioureas; Guanidines; Dicyandiamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/092Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4014Nitrogen containing compounds
    • C08G59/4028Isocyanates; Thioisocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0326Organic insulating material consisting of one material containing O
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits

Definitions

  • the present invention relates to a resin material containing an epoxy compound, a curing agent, and an inorganic filler. Moreover, this invention relates to the laminated film and multilayer printed wiring board using the said resin material.
  • a resin composition is used in order to form an insulating layer for insulating inner layers or to form an insulating layer located in a surface layer portion.
  • a wiring generally made of metal is laminated on the surface of the insulating layer.
  • the B stage film which made the said resin composition into a film may be used.
  • the resin composition and the B stage film are used as insulating materials for printed wiring boards including build-up films.
  • Patent Document 1 An example of the resin composition is disclosed in Patent Document 1 below.
  • the resin composition described in Patent Document 1 includes (A) an epoxy resin, (B) a cyanate ester resin, (C) an adduct body of an imidazole compound and an epoxy resin, and (D) a metal-based curing catalyst.
  • a conventional resin composition as described in Patent Document 1 or a B-stage film obtained by converting the resin composition into a B-stage may have low storage stability.
  • an insulating layer may be formed on the wiring to obtain a multilayer printed wiring board using a resin composition or a B-stage film stored for a certain period.
  • the resin composition or the B stage film may not be sufficiently embedded in the uneven surface of the wiring. As a result, voids may occur.
  • An object of the present invention is to provide a resin material that can suppress the generation of blisters, and further has excellent storage stability, so that the embedding property to a hole or an uneven surface can be improved even after storage. It is. Moreover, this invention is providing the laminated film and multilayer printed wiring board using the said resin material.
  • the content of the silica is 50% by weight or more in 100% by weight of the component excluding the solvent in the resin material.
  • the ratio of the content of the cyanate ester compound to the content of the carbodiimide compound is 0.2 or more and 4.0 or less by weight.
  • the ratio of the content of the epoxy compound to the content of the curing agent is 1.0 or more and 3.0 or less by weight.
  • the carbodiimide compound has an alicyclic skeleton.
  • the resin material is a resin film.
  • the resin material is used to obtain a cured product to be roughened.
  • a circuit board a plurality of insulating layers disposed on the circuit board, and a metal layer disposed between the plurality of insulating layers, the plurality of insulating layers are provided.
  • a multilayer printed wiring board in which at least one layer is a cured product of the resin material described above is provided.
  • the resin material according to the present invention includes an epoxy compound, a curing agent, and silica, and since the curing agent includes a cyanate ester compound and a carbodiimide compound, generation of blisters can be suppressed, and storage stability is further improved. Since it is excellent in property, the embedding property to the hole or the uneven surface can be improved even after storage.
  • FIG. 1 is a cross-sectional view schematically showing a multilayer printed wiring board using a resin material according to an embodiment of the present invention.
  • the resin material according to the present invention includes an epoxy compound, a curing agent, and silica.
  • the curing agent includes a cyanate ester compound and a carbodiimide compound.
  • the storage stability can be improved. Even after the resin material according to the present invention has been stored for a certain period, the resin material can be satisfactorily embedded in the hole or the uneven surface. For example, in a multilayer printed wiring board, an insulating layer is formed on the wiring. Since there are wirings on the surface where the insulating layer is formed, there are irregularities. By using the resin material according to the present invention, the insulating layer can be satisfactorily embedded on the wiring, and generation of voids can be suppressed.
  • the adhesion between a cured product (such as an insulating layer) and the metal layer can be improved.
  • cured material of a metal layer can be raised.
  • the uniformity of the film can be improved, and when the resin material is cured In addition, the uniformity of the cured product can be improved.
  • the resin material according to the present invention may be a resin composition or a resin film.
  • the resin composition has fluidity.
  • the resin composition may be in the form of a paste.
  • the paste form includes liquid.
  • the resin material according to the present invention is preferably a resin film because it is excellent in handleability. Moreover, in this invention, even if a resin material is a resin film, a resin film can be favorably embedded in a hole or an uneven surface.
  • the resin material according to the present invention is excellent in the above properties, it is suitably used for forming an insulating layer in a multilayer printed wiring board. Since the resin material according to the present invention is excellent in the above properties, it is preferably a resin material for multilayer printed wiring boards, and more preferably an interlayer insulating resin material used for multilayer printed wiring boards.
  • the thickness of the insulating layer (thickness per layer) formed of the resin material is preferably equal to or greater than the thickness of the conductor layer (metal layer) forming the circuit.
  • the thickness of the insulating layer (thickness per layer) is preferably 5 ⁇ m or more, and preferably 200 ⁇ m or less.
  • the resin material according to the present invention is suitably used for obtaining a cured product to be roughened.
  • Epoxy compound The epoxy compound contained in the resin material is not particularly limited. A conventionally well-known epoxy compound can be used as this epoxy compound.
  • the epoxy compound refers to an organic compound having at least one epoxy group. As for the said epoxy compound, only 1 type may be used and 2 or more types may be used together.
  • Examples of the epoxy compound include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, biphenyl type epoxy resin, biphenyl novolac type epoxy resin, biphenol type epoxy resin, and naphthalene type epoxy resin.
  • Examples thereof include an epoxy resin having a skeleton.
  • the molecular weight of the epoxy compound and the molecular weight of the curing agent described later mean the molecular weight that can be calculated from the structural formula when the epoxy compound or the curing agent is not a polymer and when the structural formula of the epoxy compound or the curing agent can be specified. To do. Moreover, when an epoxy compound or a hardening
  • the weight average molecular weights of the epoxy compound and the curing agent (cyanate ester compound and carbodiimide compound) described below indicate the weight average molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC).
  • cyanate ester compounds examples include novolak type cyanate ester resins, bisphenol type cyanate ester resins, and prepolymers in which these are partly trimerized.
  • novolak-type cyanate ester resin a phenol novolak-type cyanate ester resin, an alkylphenol-type cyanate ester resin, etc. are mentioned.
  • the bisphenol type cyanate ester resin include bisphenol A type cyanate ester resin, bisphenol E type cyanate ester resin, and tetramethylbisphenol F type cyanate ester resin.
  • the said cyanate ester compound only 1 type may be used and 2 or more types may be used together.
  • the molecular weight of the cyanate ester compound is preferably 200 or more from the viewpoint of more effectively exerting the effects of improving the storage stability, suppressing the generation of blisters, and improving the adhesion between the cured product and the metal layer. More preferably, it is 300 or more, preferably 4000 or less, more preferably 2000 or less.
  • the carbodiimide compound has a structural unit represented by the following formula (1).
  • the right end and the left end are binding sites with other groups.
  • the said carbodiimide compound only 1 type may be used and 2 or more types may be used together.
  • the number of carbon atoms of the alkylene group is preferably 1 or more, preferably 20 or less, more preferably 10 or less, and even more preferably 6 Hereinafter, it is particularly preferably 4 or less, and most preferably 3 or less.
  • the alkylene group include a methylene group, an ethylene group, a propylene group, and a butylene group.
  • the arylene group is a group obtained by removing two hydrogen atoms on an aromatic ring from an aromatic hydrocarbon.
  • the number of carbon atoms of the arylene group is preferably 6 or more, preferably 24 or less, more preferably 18 or less, still more preferably 14 or less, and particularly preferably 10 or less.
  • Preferable examples of the arylene group include a phenylene group, a naphthylene group, and an anthracenylene group.
  • the number of carbon atoms of the cycloalkyl group and cycloalkyloxy group as a substituent is preferably 3 or more, preferably 20 or less, more preferably 12 or less, and even more preferably 6 or less.
  • the aryl group as a substituent is a group obtained by removing one hydrogen atom on an aromatic ring from an aromatic hydrocarbon.
  • the number of carbon atoms of the aryl group as a substituent is preferably 6 or more, preferably 24 or less, more preferably 18 or less, still more preferably 14 or less, and particularly preferably 10 or less.
  • the number of carbon atoms of the aryloxy group as a substituent is preferably 6 or more, preferably 24 or less, more preferably 18 or less, still more preferably 14 or less, and particularly preferably 10 or less.
  • the acyl group as a substituent is a group represented by the formula: —C ( ⁇ O) —R1, wherein R1 represents an alkyl group or an aryl group.
  • the alkyl group represented by R1 may be linear or branched.
  • the number of carbon atoms of the alkyl group represented by R1 is preferably 1 or more, preferably 20 or less, more preferably 10 or less, still more preferably 6 or less, particularly preferably 4 or less, and most preferably 3 or less. .
  • the terminal structure of the carbodiimide compound is not particularly limited, and examples thereof include an alkyl group, a group in which a substituent is bonded to an alkyl group, a cycloalkyl group, a group in which a substituent is bonded to a cycloalkyl group, an aryl group, and an aryl group. Examples include a group to which a substituent is bonded.
  • a substituent in a group in which a substituent is bonded to an alkyl group as a terminal structure, a group in which a substituent is bonded to a cycloalkyl group, and a group in which a substituent is bonded to an aryl group is referred to as a substituent A.
  • the carbodiimide compound may have an isocyanate group (—N ⁇ C ⁇ O) due to its production method.
  • the content of isocyanate groups in the carbodiimide compound (also referred to as “NCO content”) is preferably. It is 5% by weight or less, more preferably 4% by weight or less, still more preferably 3% by weight or less, still more preferably 2% by weight or less, particularly preferably 1% by weight or less, and most preferably 0.5% by weight or less.
  • the content of isocyanate groups in the carbodiimide compound may be 0% by weight (not contained).
  • the ratio of the content of the cyanate ester compound to the content of the carbodiimide compound is described as a ratio (content of cyanate ester compound / content of carbodiimide compound). From the viewpoint of more effectively exhibiting the effects of improving storage stability, suppressing blistering, and improving the adhesion between the cured product and the metal layer, the above ratio (content of cyanate ester compound / carbodiimide compound) Is preferably 0.2 or more, more preferably 0.3 or more, preferably 4.0 or less, more preferably 3.8 or less.
  • curing agent is content of the content of a cyanate ester compound, content of a carbodiimide compound, and a total content with another hardening
  • the thermoplastic resin is preferably a phenoxy resin from the viewpoint of effectively reducing the dielectric loss tangent and effectively improving the adhesion of the metal wiring.
  • the phenoxy resin By using the phenoxy resin, it is possible to suppress the deterioration of the embedding property of the resin material with respect to the hole or the unevenness of the circuit board and the nonuniformity of the silica. Further, the use of the phenoxy resin makes it possible to adjust the melt viscosity, so that the dispersibility of silica is improved, and the resin material is difficult to wet and spread in unintended areas during the curing process.
  • the phenoxy resin is not particularly limited. A conventionally known phenoxy resin can be used as the phenoxy resin. As for the said phenoxy resin, only 1 type may be used and 2 or more types may be used together.
  • phenoxy resins examples include “YP50”, “YP55” and “YP70” manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., and “1256B40”, “4250”, “4256H40” manufactured by Mitsubishi Chemical Corporation, “ 4275 “,” YX6954BH30 “,” YX8100BH30 “, and the like.
  • the content of the thermoplastic resin is not particularly limited. In 100% by weight of the component excluding silica and solvent in the resin material, the content of the thermoplastic resin (the content of the phenoxy resin when the thermoplastic resin is a phenoxy resin) is preferably 2% by weight or more, More preferably, it is 4% by weight or more, preferably 15% by weight or less, more preferably 10% by weight or less.
  • the content of the thermoplastic resin is not less than the above lower limit and not more than the above upper limit, the embedding property of the resin material in the holes or irregularities of the circuit board becomes good.
  • the content of the thermoplastic resin is equal to or more than the lower limit, the resin composition can be more easily formed into a film, and a better insulating layer can be obtained.
  • the resin material contains silica as an inorganic filler.
  • silica the dimensional change due to heat of the cured product is further reduced. Further, the dielectric loss tangent of the cured product is further reduced. Furthermore, compared with other inorganic fillers, the adhesive strength between the cured product and the metal layer can be further increased.
  • the silica is more preferably fused silica.
  • the shape of silica is preferably spherical.
  • the average particle diameter of the silica is preferably 10 nm or more, more preferably 50 nm or more, further preferably 150 nm or more, preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less, still more preferably 5 ⁇ m or less, particularly preferably 1 ⁇ m or less. is there.
  • the average particle diameter of the silica is not less than the above lower limit and not more than the above upper limit, the size of the holes formed by the roughening treatment or the like becomes fine, and the number of holes increases. As a result, the adhesive strength between the cured product and the metal layer is further increased.
  • the average particle diameter of the silica As the average particle diameter of the silica, a median diameter (d50) value of 50% is adopted.
  • the average particle size can be measured using a laser diffraction / scattering particle size distribution measuring apparatus.
  • the silica is preferably spherical and more preferably spherical silica.
  • the surface roughness of the surface of the cured product is effectively reduced, and the adhesive strength between the cured product and the metal layer is effectively increased.
  • the aspect ratio of the silica is preferably 2 or less, more preferably 1.5 or less.
  • the silica is preferably surface-treated, more preferably a surface-treated product with a coupling agent, and still more preferably a surface-treated product with a silane coupling agent.
  • the surface roughness of the surface of the cured product is further reduced, the adhesive strength between the cured product and the metal layer is further increased, and finer wiring is formed on the surface of the cured product, and even better. Insulation reliability between wires and interlayer insulation reliability can be imparted to the cured product.
  • Examples of the coupling agent include silane coupling agents, titanium coupling agents, and aluminum coupling agents.
  • Examples of the silane coupling agent include methacryl silane, acrylic silane, amino silane, imidazole silane, vinyl silane, and epoxy silane.
  • the content of the silica is preferably 30% by weight or more, more preferably 40% by weight or more, still more preferably 50% by weight or more, particularly preferably 60% by weight or more.
  • the content of the silica is not less than the above lower limit, the dimensional change due to heat of the cured product is further reduced.
  • the adhesive strength between the cured product and the metal layer is further increased, and finer wiring is formed on the surface of the cured product.
  • the resin material preferably contains a curing accelerator.
  • the curing accelerator By using the curing accelerator, the curing rate is further increased. By rapidly curing the resin material, the number of unreacted functional groups is reduced, and as a result, the crosslinking density is increased.
  • the said hardening accelerator is not specifically limited, A conventionally well-known hardening accelerator can be used. As for the said hardening accelerator, only 1 type may be used and 2 or more types may be used together.
  • curing accelerator examples include imidazole compounds, phosphorus compounds, amine compounds, and organometallic compounds.
  • imidazole compound examples include 2-undecylimidazole, 2-heptadecylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl- 2-methylimidazole, 1-benzyl-2-phenylimidazole, 1,2-dimethylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-un Decylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2,4-diamino-6- [2 ' -Mechi Imidazolyl- (1 ′)]-
  • Examples of the phosphorus compound include triphenylphosphine.
  • Examples of the amine compound include diethylamine, triethylamine, diethylenetetramine, triethylenetetramine and 4,4-dimethylaminopyridine.
  • organometallic compound examples include zinc naphthenate, cobalt naphthenate, tin octylate, cobalt octylate, bisacetylacetonate cobalt (II), and trisacetylacetonate cobalt (III).
  • the content of the curing accelerator is not particularly limited. In 100% by weight of the resin material excluding the silica and the solvent, the content of the curing accelerator is preferably 0.01% by weight or more, more preferably 0.9% by weight or more, preferably 5. It is 0 weight% or less, More preferably, it is 3.0 weight% or less.
  • the content of the curing accelerator is not less than the above lower limit and not more than the above upper limit, the resin material is efficiently cured. If content of the said hardening accelerator is a more preferable range, the storage stability of a resin material will become still higher and a much better hardened
  • the resin material does not contain or contains a solvent.
  • the viscosity of the resin material can be controlled within a suitable range, and when the resin material is a resin composition, the coatability of the resin composition can be enhanced.
  • the solvent may be used to obtain a slurry containing the silica. As for the said solvent, only 1 type may be used and 2 or more types may be used together.
  • Examples of the solvent include acetone, methanol, ethanol, butanol, 2-propanol, 2-methoxyethanol, 2-ethoxyethanol, 1-methoxy-2-propanol, 2-acetoxy-1-methoxypropane, toluene, xylene, methyl ethyl ketone, Examples thereof include N, N-dimethylformamide, methyl isobutyl ketone, N-methyl-pyrrolidone, n-hexane, cyclohexane, cyclohexanone and naphtha which is a mixture.
  • the boiling point of the solvent is preferably 200 ° C. or lower, more preferably 180 ° C. or lower.
  • the content of the solvent in the resin material is not particularly limited. When the resin material is a resin composition, the content of the solvent can be appropriately changed in consideration of the coating property of the resin material.
  • the above resin materials include leveling agents, flame retardants, coupling agents, colorants, antioxidants, UV degradation inhibitors, A thermosetting resin other than a foaming agent, a thickener, a thixotropic agent, and an epoxy compound may be added.
  • Examples of the coupling agent include silane coupling agents, titanium coupling agents, and aluminum coupling agents.
  • Examples of the silane coupling agent include vinyl silane, amino silane, imidazole silane, and epoxy silane.
  • thermosetting resins examples include polyphenylene ether resins, divinyl benzyl ether resins, polyarylate resins, diallyl phthalate resins, polyimides, benzoxazine resins, benzoxazole resins, bismaleimide resins, and acrylate resins.
  • the resin material is preferably a resin film.
  • a resin film (B-stage film) is obtained by forming the resin composition into a film.
  • the resin film is preferably a B stage film.
  • the thickness of the resin film is preferably 5 ⁇ m or more, and preferably 200 ⁇ m or less.
  • the resin material is melt-kneaded, extruded, and then extruded into a film with a T die or a circular die
  • examples thereof include a casting method in which a resin material containing a solvent is cast to form a film, and other conventionally known film forming methods.
  • the extrusion molding method or the casting molding method is preferable because it can cope with the reduction in thickness.
  • the film includes a sheet.
  • a resin film which is a B stage film can be obtained by forming the resin composition into a film and drying it by heating, for example, at 50 to 150 ° C. for 1 to 10 minutes so that curing by heat does not proceed excessively. .
  • the film-like resin material that can be obtained by the drying process as described above is called a B-stage film.
  • the B stage film is a film-like resin material in a semi-cured state.
  • the semi-cured product is not completely cured and curing can proceed further.
  • the resin film may not be a prepreg.
  • the resin film is not a prepreg, migration does not occur along a glass cloth or the like. Further, when laminating or precuring the resin film, the surface is not uneven due to the glass cloth.
  • the said resin material can be used suitably with the form of a laminated film provided with a base material and the resin film laminated
  • the resin film in the laminated film is formed from the resin composition.
  • the substrate of the laminated film examples include metal foil, polyester resin films such as polyethylene terephthalate film and polybutylene terephthalate film, olefin resin films such as polyethylene film and polypropylene film, and polyimide film.
  • the surface of the base material may be subjected to a release treatment as necessary.
  • the substrate may be a metal foil or a resin film.
  • the metal foil is preferably a copper foil.
  • the multilayer printed wiring board according to the present invention includes a circuit board, a plurality of insulating layers disposed on the circuit board, and a metal layer disposed between the plurality of insulating layers. At least one of the insulating layers is a cured product of the resin material described above.
  • the insulating layer in contact with the circuit board may be a cured product of the resin material described above.
  • the insulating layer disposed between the two insulating layers may be a cured product of the resin material described above.
  • the insulating layer farthest from the circuit board may be a cured product of the resin material described above.
  • a metal layer may be disposed on the outer surface of the insulating layer farthest from the circuit board among the plurality of insulating layers.
  • the multilayer printed wiring board can be obtained, for example, by heat-pressing the resin film.
  • a metal foil can be laminated on one side or both sides of the resin film.
  • the method for laminating the resin film and the metal foil is not particularly limited, and a known method can be used.
  • the resin film can be laminated on the metal foil using an apparatus such as a parallel plate press or a roll laminator while applying pressure while heating or without heating.
  • the insulating layer of the multilayer printed wiring board may be formed of the resin film of the laminated film using a laminated film.
  • the insulating layer is preferably laminated on the surface of the circuit board on which the circuit is provided. Part of the insulating layer is preferably embedded between the circuits.
  • the surface of the insulating layer opposite to the surface on which the circuit board is laminated is roughened.
  • the roughening treatment method is not particularly limited, and a conventionally known roughening treatment method can be used.
  • the surface of the insulating layer may be subjected to a swelling treatment before the roughening treatment.
  • FIG. 1 is a cross-sectional view schematically showing a multilayer printed wiring board using a resin material according to an embodiment of the present invention.
  • a plurality of insulating layers 13 to 16 are laminated on the upper surface 12 a of the circuit board 12.
  • the insulating layers 13 to 16 are cured product layers.
  • a metal layer 17 is formed in a partial region of the upper surface 12 a of the circuit board 12.
  • the metal layer 17 is formed in a part of the upper surface of the insulating layers 13 to 15 other than the insulating layer 16 located on the outer surface opposite to the circuit board 12 side.
  • the metal layer 17 is a circuit.
  • Metal layers 17 are respectively arranged between the circuit board 12 and the insulating layer 13 and between the stacked insulating layers 13 to 16.
  • the lower metal layer 17 and the upper metal layer 17 are connected to each other by at least one of via hole connection and through hole connection (not shown).
  • the insulating layers 13 to 16 are formed of the resin material.
  • fine holes (not shown) are formed on the surfaces of the insulating layers 13 to 16.
  • the metal layer 17 reaches the inside of the fine hole.
  • the width direction dimension (L) of the metal layer 17 and the width direction dimension (S) of the part in which the metal layer 17 is not formed can be made small.
  • good insulation reliability is imparted between an upper metal layer and a lower metal layer that are not connected by via-hole connection and through-hole connection (not shown).
  • the resin material is preferably used in order to obtain a cured product that is roughened or desmeared.
  • the cured product includes a precured product that can be further cured.
  • the cured product is preferably subjected to a roughening treatment.
  • the cured product Prior to the roughening treatment, the cured product is preferably subjected to a swelling treatment.
  • the cured product is preferably subjected to a swelling treatment after preliminary curing and before the roughening treatment, and is further cured after the roughening treatment.
  • the cured product is not necessarily subjected to the swelling treatment.
  • the swelling treatment method for example, a method of treating a cured product with an aqueous solution or an organic solvent dispersion solution of a compound mainly composed of ethylene glycol or the like is used.
  • the swelling liquid used for the swelling treatment generally contains an alkali as a pH adjuster or the like.
  • the swelling liquid preferably contains sodium hydroxide.
  • the swelling treatment is performed by treating the cured product with a 40 wt% ethylene glycol aqueous solution at a treatment temperature of 30 to 85 ° C. for 1 to 30 minutes.
  • the swelling treatment temperature is preferably in the range of 50 to 85 ° C. If the temperature of the swelling treatment is too low, it takes a long time for the swelling treatment, and the adhesive strength between the insulating layer and the metal layer tends to be low.
  • a chemical oxidant such as a manganese compound, a chromium compound, or a persulfate compound is used.
  • chemical oxidizers are used as an aqueous solution or an organic solvent dispersion after water or an organic solvent is added.
  • the roughening liquid used for the roughening treatment generally contains an alkali as a pH adjuster or the like.
  • the roughening solution preferably contains sodium hydroxide.
  • Examples of the manganese compound include potassium permanganate and sodium permanganate.
  • Examples of the chromium compound include potassium dichromate and anhydrous potassium chromate.
  • Examples of the persulfate compound include sodium persulfate, potassium persulfate, and ammonium persulfate.
  • the method for the roughening treatment is not particularly limited.
  • As the roughening treatment method for example, 30 to 90 g / L permanganic acid or permanganate solution and 30 to 90 g / L sodium hydroxide solution are used, and the treatment temperature is 30 to 85 ° C. and 1 to 30 minutes.
  • a method of treating a cured product under conditions is preferable.
  • the temperature of the roughening treatment is preferably in the range of 50 to 85 ° C.
  • the number of times of the roughening treatment is preferably once or twice.
  • the arithmetic average roughness Ra of the surface of the cured product is preferably 10 nm or more, preferably less than 200 nm, more preferably less than 100 nm, and still more preferably less than 50 nm.
  • the arithmetic average roughness Ra is not less than the above lower limit and less than the above upper limit, the conductor loss of the electric signal can be effectively suppressed, and the transmission loss can be largely suppressed. Furthermore, finer wiring can be formed on the surface of the insulating layer.
  • the arithmetic average roughness Ra is measured according to JIS B0601 (1994).
  • Through holes may be formed in a cured product obtained by precuring the resin material.
  • a via or a through hole is formed as a through hole.
  • the via can be formed by irradiation with a laser such as a CO 2 laser.
  • the diameter of the via is not particularly limited, but is about 60 to 80 ⁇ m. Due to the formation of the through hole, a smear, which is a resin residue derived from the resin component contained in the cured product, is often formed at the bottom of the via.
  • the surface of the cured product is preferably desmeared.
  • the desmear process may also serve as a roughening process.
  • a chemical oxidizing agent such as a manganese compound, a chromium compound, or a persulfate compound is used in the same manner as the roughening treatment.
  • chemical oxidizers are used as an aqueous solution or an organic solvent dispersion after water or an organic solvent is added.
  • the desmear treatment liquid used for the desmear treatment generally contains an alkali.
  • the desmear treatment liquid preferably contains sodium hydroxide.
  • the above desmear treatment method is not particularly limited.
  • the desmear treatment method for example, using a 30 to 90 g / L permanganate or permanganate solution and a 30 to 90 g / L sodium hydroxide solution, a treatment temperature of 30 to 85 ° C. and a condition of 1 to 30 minutes And the method of processing hardened
  • the temperature of the desmear treatment is preferably in the range of 50 to 85 ° C.
  • Carbodiimide resin-containing liquid (Nisshinbo Chemical “V-03”, solid content 50% by weight) Carbodiimide resin (“10M-SP (modified)” manufactured by Nisshinbo Chemical Co., Ltd.) Novolac-type phenolic resin (“H-4” manufactured by Meiwa Kasei Co., Ltd.) Cyanate ester resin-containing liquid (Lonza Japan “BA-3000S”, solid content 75 wt%) Cyanate ester resin (Lonza Japan "PT-30")
  • Imidazole compound (2-phenyl-4-methylimidazole, “2P4MZ” manufactured by Shikoku Kasei Kogyo Co., Ltd.
  • Silica-containing slurry Silica 70 wt%: “SC-2050-HNK” manufactured by Admatechs, average particle size 0.5 ⁇ m, aminosilane treatment, cyclohexanone 30 wt%)
  • Alumina-containing slurry (Alumina 70% by weight: “AC-2050-MOE” manufactured by Admatechs, average particle size 0.6 ⁇ m, aminosilane treatment, methyl ethyl ketone 25% by weight)
  • Phenoxy resin-containing liquid (Mitsubishi Chemical "YX6954BH30", solid content 30 wt%)
  • Examples 1 to 11 and Comparative Examples 1 to 4 The components shown in Tables 1 and 2 below were blended in the blending amounts shown in Tables 1 and 2 below, followed by stirring at 1200 rpm for 4 hours using a stirrer to obtain a resin composition varnish.
  • a resin material obtained on the release treatment surface of a polyethylene terephthalate (PET) film (“XG284” manufactured by Toray Industries Inc., thickness 25 ⁇ m) is applied, and then a gear at 100 ° C. It was dried in an oven for 3 minutes to volatilize the solvent.
  • PET film and a resin film (B stage film) having a thickness of 40 ⁇ m on the PET film and a remaining amount of solvent of 1.0% by weight or more and 3.0% by weight or less.
  • a laminated film having was obtained.
  • the laminated film was heated at 190 ° C. for 90 minutes to produce a cured product in which the resin film was cured.
  • the resin film was cured under curing conditions of 180 ° C. and 30 minutes. Thereafter, the PET film was peeled from the resin film to obtain a cured laminated sample.
  • the cured laminated sample is put in a swelling solution at 60 ° C. (an aqueous solution prepared from “Swelling Dip Securigant P” manufactured by Atotech Japan Co., Ltd.) and “Sodium hydroxide” manufactured by Wako Pure Chemical Industries, Ltd. Rock at 10 ° C. for 10 minutes. Thereafter, it was washed with pure water.
  • a swelling solution at 60 ° C. an aqueous solution prepared from “Swelling Dip Securigant P” manufactured by Atotech Japan Co., Ltd.
  • Sodium hydroxide manufactured by Wako Pure Chemical Industries, Ltd. Rock at 10 ° C. for 10 minutes. Thereafter, it was washed with pure water.
  • the surface of the roughened cured product was treated with an alkali cleaner (“Cleaner Securigant 902” manufactured by Atotech Japan) for 5 minutes and degreased and washed. After washing, the cured product was treated with a 25 ° C. pre-dip solution (“Pre-Dip Neogant B” manufactured by Atotech Japan) for 2 minutes. Thereafter, the cured product was treated with an activator solution at 40 ° C. (“Activator Neo Gantt 834” manufactured by Atotech Japan) for 5 minutes to attach a palladium catalyst. Next, the cured product was treated with a reducing solution at 30 ° C. (“Reducer Neogant WA” manufactured by Atotech Japan) for 5 minutes.
  • the cured product is placed in a chemical copper solution (all manufactured by Atotech Japan “Basic Print Gantt MSK-DK”, “Copper Print Gantt MSK”, “Stabilizer Print Gantt MSK”, “Reducer Cu”).
  • a chemical copper solution all manufactured by Atotech Japan “Basic Print Gantt MSK-DK”, “Copper Print Gantt MSK”, “Stabilizer Print Gantt MSK”, “Reducer Cu”.
  • annealing was performed at a temperature of 120 ° C. for 30 minutes in order to remove the remaining hydrogen gas. All the steps up to the electroless plating step were performed with a treatment liquid of 2 L on a beaker scale and while the cured product was swung.
  • electrolytic plating was performed on the cured product that had been subjected to electroless plating until the plating thickness reached 25 ⁇ m.
  • a copper sulfate solution (“copper sulfate pentahydrate” manufactured by Wako Pure Chemical Industries, Ltd., “sulfuric acid” manufactured by Wako Pure Chemical Industries, Ltd., “basic leveler kaparaside HL” manufactured by Atotech Japan Co., Ltd., “ using the correction agent Cupracid GS "), plating thickness passing a current of 0.6 a / cm 2 was carried out electrolytic plating until approximately 25 [mu] m.
  • the cured product was heated at 190 ° C. for 90 minutes to further cure the cured product.
  • stacked on the upper surface was obtained.
  • Peel strength is 0.5 kgf / cm or more
  • Peel strength is 0.4 kgf / cm or more and less than 0.5 kgf / cm
  • Peel strength is less than 0.4 kgf / cm
  • a copper-clad laminate (a laminate of a 150 ⁇ m thick glass epoxy substrate and a 35 ⁇ m thick copper foil) was prepared.
  • the copper foil was etched to produce 26 copper patterns having an L / S of 50 ⁇ m / 50 ⁇ m and a length of 1 cm to obtain an uneven substrate.
  • the laminated film after storage was set on both sides of the concavo-convex surface of the concavo-convex substrate from the resin film side to obtain a laminate.
  • MVLP-500 vacuum pressurization type laminator manufactured by Meiki Seisakusho Co., Ltd.
  • the laminate was laminated for 2 seconds, and further pressed at a press pressure of 1.0 MPa and a press temperature of 100 ° C. for 40 seconds.
  • stacked on the uneven substrate was obtained.
  • the unevenness value of the upper surface of the resin film in the laminate A was measured using “WYKO” manufactured by Beco. Specifically, the maximum value of the height difference between the concave and convex portions adjacent to the concave and convex portions was adopted as the concave and convex value.
  • corrugated state in the lamination test was evaluated.
  • the storage stability of the resin material was determined according to the following criteria.
  • Resin film is filled in the resin film after 3 days and 5 days, and the unevenness value is 0.5 ⁇ m or less.
  • The resin is filled in the copper pattern in the resin film after 3 days. In the resin film after 5 days, the resin is not filled in the copper pattern, or the unevenness value exceeds 0.5 ⁇ m.
  • X In the resin film after 3 days and after 5 days The copper pattern is not filled with resin, or the unevenness value exceeds 0.5 ⁇ m

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Laminated Bodies (AREA)
  • Epoxy Resins (AREA)

Abstract

Provided is a resin material that is capable of suppressing blister formation, and also exhibits superior storage stability, thereby allowing for good embeddability in holes or raised-and-recessed surfaces even after storage. The resin material according to the present invention contains an epoxy compound, a curing agent, and silica, the curing agent containing a cyanate ester compound and a carbodiimide compound.

Description

樹脂材料、積層フィルム及び多層プリント配線板Resin material, laminated film and multilayer printed wiring board
 本発明は、エポキシ化合物と、硬化剤と、無機充填材とを含む樹脂材料に関する。また、本発明は、上記樹脂材料を用いた積層フィルム及び多層プリント配線板に関する。 The present invention relates to a resin material containing an epoxy compound, a curing agent, and an inorganic filler. Moreover, this invention relates to the laminated film and multilayer printed wiring board using the said resin material.
 従来、積層板及びプリント配線板等の電子部品を得るために、様々な樹脂組成物が用いられている。例えば、多層プリント配線板では、内部の層間を絶縁するための絶縁層を形成したり、表層部分に位置する絶縁層を形成したりするために、樹脂組成物が用いられている。上記絶縁層の表面には、一般に金属である配線が積層される。また、絶縁層を形成するために、上記樹脂組成物をフィルム化したBステージフィルムが用いられることがある。上記樹脂組成物及び上記Bステージフィルムは、ビルドアップフィルムを含むプリント配線板用の絶縁材料として用いられている。 Conventionally, various resin compositions have been used to obtain electronic parts such as laminates and printed wiring boards. For example, in a multilayer printed wiring board, a resin composition is used in order to form an insulating layer for insulating inner layers or to form an insulating layer located in a surface layer portion. On the surface of the insulating layer, a wiring generally made of metal is laminated. Moreover, in order to form an insulating layer, the B stage film which made the said resin composition into a film may be used. The resin composition and the B stage film are used as insulating materials for printed wiring boards including build-up films.
 上記樹脂組成物の一例が、下記の特許文献1に開示されている。特許文献1に記載の樹脂組成物は、(A)エポキシ樹脂、(B)シアネートエステル樹脂、(C)イミダゾール化合物とエポキシ樹脂とのアダクト体、及び、(D)金属系硬化触媒を含む。 An example of the resin composition is disclosed in Patent Document 1 below. The resin composition described in Patent Document 1 includes (A) an epoxy resin, (B) a cyanate ester resin, (C) an adduct body of an imidazole compound and an epoxy resin, and (D) a metal-based curing catalyst.
特開2013-151700号公報JP 2013-151700 A
 特許文献1に記載のような従来の樹脂組成物又は該樹脂組成物がBステージ化されたBステージフィルムでは、保存安定性が低いことがある。例えば、一定期間保管された樹脂組成物又はBステージフィルムを用いて、多層プリント配線板を得るために配線上に絶縁層を形成する場合がある。この場合に、樹脂組成物又はBステージフィルムが、配線における凹凸表面に十分に埋め込まれないことがある。結果として、ボイドが発生することがある。 A conventional resin composition as described in Patent Document 1 or a B-stage film obtained by converting the resin composition into a B-stage may have low storage stability. For example, an insulating layer may be formed on the wiring to obtain a multilayer printed wiring board using a resin composition or a B-stage film stored for a certain period. In this case, the resin composition or the B stage film may not be sufficiently embedded in the uneven surface of the wiring. As a result, voids may occur.
 さらに、従来の樹脂組成物又はBステージフィルムを用いた場合には、吸湿によってブリスターが発生することがある。 Furthermore, when a conventional resin composition or B-stage film is used, blistering may occur due to moisture absorption.
 本発明の目的は、ブリスターの発生を抑えることができ、更に保存安定性に優れているので保存後であっても穴又は凹凸表面に対する埋め込み性を良好にすることができる樹脂材料を提供することである。また、本発明は、上記樹脂材料を用いた積層フィルム及び多層プリント配線板を提供することである。 An object of the present invention is to provide a resin material that can suppress the generation of blisters, and further has excellent storage stability, so that the embedding property to a hole or an uneven surface can be improved even after storage. It is. Moreover, this invention is providing the laminated film and multilayer printed wiring board using the said resin material.
 本発明の広い局面によれば、エポキシ化合物と、硬化剤と、シリカとを含み、前記硬化剤が、シアネートエステル化合物と、カルボジイミド化合物とを含む、樹脂材料が提供される。 According to a wide aspect of the present invention, there is provided a resin material that includes an epoxy compound, a curing agent, and silica, and the curing agent includes a cyanate ester compound and a carbodiimide compound.
 本発明に係る樹脂材料のある特定の局面では、前記樹脂材料中の溶剤を除く成分100重量%中、前記シリカの含有量が50重量%以上である。 In a specific aspect of the resin material according to the present invention, the content of the silica is 50% by weight or more in 100% by weight of the component excluding the solvent in the resin material.
 本発明に係る樹脂材料のある特定の局面では、前記シアネートエステル化合物の含有量の、前記カルボジイミド化合物の含有量に対する比が、重量比で0.2以上、4.0以下である。 In a specific aspect of the resin material according to the present invention, the ratio of the content of the cyanate ester compound to the content of the carbodiimide compound is 0.2 or more and 4.0 or less by weight.
 本発明に係る樹脂材料のある特定の局面では、前記エポキシ化合物の含有量の、前記硬化剤の含有量に対する比が、重量比で1.0以上、3.0以下である。 In a specific aspect of the resin material according to the present invention, the ratio of the content of the epoxy compound to the content of the curing agent is 1.0 or more and 3.0 or less by weight.
 本発明に係る樹脂材料のある特定の局面では、前記カルボジイミド化合物が、脂環式骨格を有する。 In a specific aspect of the resin material according to the present invention, the carbodiimide compound has an alicyclic skeleton.
 本発明に係る樹脂材料のある特定の局面では、前記樹脂材料は、樹脂フィルムである。 In a specific aspect of the resin material according to the present invention, the resin material is a resin film.
 本発明に係る樹脂材料のある特定の局面では、前記樹脂材料は、多層プリント配線板において、絶縁層を形成するために用いられる多層プリント配線板用樹脂材料である。 In a specific aspect of the resin material according to the present invention, the resin material is a resin material for a multilayer printed wiring board used for forming an insulating layer in the multilayer printed wiring board.
 本発明に係る樹脂材料のある特定の局面では、前記樹脂材料は、粗化処理される硬化物を得るために用いられる。 In a specific aspect of the resin material according to the present invention, the resin material is used to obtain a cured product to be roughened.
 本発明の広い局面によれば、基材と、前記基材の表面上に積層された樹脂フィルムとを備え、前記樹脂フィルムが、上述した樹脂材料である、積層フィルムが提供される。 According to a wide aspect of the present invention, there is provided a laminated film comprising a base material and a resin film laminated on the surface of the base material, wherein the resin film is the resin material described above.
 本発明の広い局面によれば、回路基板と、前記回路基板上に配置された複数の絶縁層と、複数の前記絶縁層間に配置された金属層とを備え、複数の前記絶縁層の内の少なくとも1層が、上述した樹脂材料の硬化物である、多層プリント配線板が提供される。 According to a wide aspect of the present invention, a circuit board, a plurality of insulating layers disposed on the circuit board, and a metal layer disposed between the plurality of insulating layers, the plurality of insulating layers are provided. A multilayer printed wiring board in which at least one layer is a cured product of the resin material described above is provided.
 本発明に係る樹脂材料は、エポキシ化合物と、硬化剤と、シリカとを含み、上記硬化剤が、シアネートエステル化合物と、カルボジイミド化合物とを含むので、ブリスターの発生を抑えることができ、更に保存安定性に優れているので、保存後であっても穴又は凹凸表面に対する埋め込み性を良好にすることができる。 The resin material according to the present invention includes an epoxy compound, a curing agent, and silica, and since the curing agent includes a cyanate ester compound and a carbodiimide compound, generation of blisters can be suppressed, and storage stability is further improved. Since it is excellent in property, the embedding property to the hole or the uneven surface can be improved even after storage.
図1は、本発明の一実施形態に係る樹脂材料を用いた多層プリント配線板を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing a multilayer printed wiring board using a resin material according to an embodiment of the present invention.
 以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
 本発明に係る樹脂材料は、エポキシ化合物と、硬化剤と、シリカとを含む。本発明に係る樹脂材料では、上記硬化剤が、シアネートエステル化合物と、カルボジイミド化合物とを含む。 The resin material according to the present invention includes an epoxy compound, a curing agent, and silica. In the resin material according to the present invention, the curing agent includes a cyanate ester compound and a carbodiimide compound.
 本発明では、上記の構成が備えられているので、ブリスターの発生を抑えることができる。例えば、樹脂フィルム(樹脂材料)又は樹脂材料の硬化物が吸湿したとしても、水膨れが発生しにくくなる。 In the present invention, since the above configuration is provided, the occurrence of blisters can be suppressed. For example, even if a resin film (resin material) or a cured product of the resin material absorbs moisture, blistering hardly occurs.
 さらに、本発明では、上記構成が備えられているので、保存安定性を高めることができる。本発明に係る樹脂材料が一定期間保管された後であっても、樹脂材料を穴又は凹凸表面に良好に埋め込ませることができる。例えば、多層プリント配線板においては、配線上に絶縁層が形成される。絶縁層が形成される表面には、配線があるので、凹凸が存在する。本発明に係る樹脂材料を用いることで、配線上に絶縁層を良好に埋め込ませることができ、ボイドの発生を抑えることができる。 Furthermore, in the present invention, since the above configuration is provided, the storage stability can be improved. Even after the resin material according to the present invention has been stored for a certain period, the resin material can be satisfactorily embedded in the hole or the uneven surface. For example, in a multilayer printed wiring board, an insulating layer is formed on the wiring. Since there are wirings on the surface where the insulating layer is formed, there are irregularities. By using the resin material according to the present invention, the insulating layer can be satisfactorily embedded on the wiring, and generation of voids can be suppressed.
 さらに、本発明では、上記の構成が備えられているので、硬化物(絶縁層など)と金属層との密着性を高めることもできる。例えば、金属層の硬化物に対する剥離強度を高めることができる。 Furthermore, in the present invention, since the above-described configuration is provided, the adhesion between a cured product (such as an insulating layer) and the metal layer can be improved. For example, the peeling strength with respect to the hardened | cured material of a metal layer can be raised.
 さらに、本発明では、上記の構成が備えられているので、一定期間保管された後に樹脂組成物をフィルム化したときに、フィルムの均一性を高めることができ、また樹脂材料を硬化させたときに、硬化物の均一性も高めることもできる。 Furthermore, in the present invention, since the above-described configuration is provided, when the resin composition is made into a film after being stored for a certain period of time, the uniformity of the film can be improved, and when the resin material is cured In addition, the uniformity of the cured product can be improved.
 本発明に係る樹脂材料は、樹脂組成物であってもよく、樹脂フィルムであってもよい。上記樹脂組成物は、流動性を有する。上記樹脂組成物は、ペースト状であってもよい。上記ペースト状には液状が含まれる。取扱性に優れることから、本発明に係る樹脂材料は、樹脂フィルムであることが好ましい。また、本発明では、樹脂材料が樹脂フィルムであっても、樹脂フィルムを穴又は凹凸表面に良好に埋め込ませることができる。 The resin material according to the present invention may be a resin composition or a resin film. The resin composition has fluidity. The resin composition may be in the form of a paste. The paste form includes liquid. The resin material according to the present invention is preferably a resin film because it is excellent in handleability. Moreover, in this invention, even if a resin material is a resin film, a resin film can be favorably embedded in a hole or an uneven surface.
 本発明に係る樹脂材料は、上記の性質に優れていることから、多層プリント配線板において、絶縁層を形成するために好適に用いられる。本発明に係る樹脂材料は、上記の性質に優れていることから、多層プリント配線板用樹脂材料であることが好ましく、多層プリント配線板に用いられる層間絶縁用樹脂材料であることがより好ましい。 Since the resin material according to the present invention is excellent in the above properties, it is suitably used for forming an insulating layer in a multilayer printed wiring board. Since the resin material according to the present invention is excellent in the above properties, it is preferably a resin material for multilayer printed wiring boards, and more preferably an interlayer insulating resin material used for multilayer printed wiring boards.
 上記多層プリント配線板において、上記樹脂材料により形成される絶縁層の厚さ(1層当たりの厚さ)は、回路を形成する導体層(金属層)の厚さ以上であることが好ましい。上記絶縁層の厚さ(1層当たりの厚さ)は、好ましくは5μm以上であり、好ましくは200μm以下である。 In the multilayer printed wiring board, the thickness of the insulating layer (thickness per layer) formed of the resin material is preferably equal to or greater than the thickness of the conductor layer (metal layer) forming the circuit. The thickness of the insulating layer (thickness per layer) is preferably 5 μm or more, and preferably 200 μm or less.
 本発明に係る樹脂材料は、粗化処理される硬化物を得るために好適に用いられる。 The resin material according to the present invention is suitably used for obtaining a cured product to be roughened.
 以下、本発明に係る樹脂材料に用いられる各成分の詳細、及び本発明に係る樹脂材料の用途などを説明する。 Hereinafter, details of each component used in the resin material according to the present invention, and uses of the resin material according to the present invention will be described.
 [エポキシ化合物]
 上記樹脂材料に含まれているエポキシ化合物は特に限定されない。該エポキシ化合物として、従来公知のエポキシ化合物を使用可能である。該エポキシ化合物は、少なくとも1個のエポキシ基を有する有機化合物をいう。上記エポキシ化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
[Epoxy compound]
The epoxy compound contained in the resin material is not particularly limited. A conventionally well-known epoxy compound can be used as this epoxy compound. The epoxy compound refers to an organic compound having at least one epoxy group. As for the said epoxy compound, only 1 type may be used and 2 or more types may be used together.
 上記エポキシ化合物としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、ビフェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、フルオレン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、アントラセン型エポキシ樹脂、アダマンタン骨格を有するエポキシ樹脂、トリシクロデカン骨格を有するエポキシ樹脂、及びトリアジン核を骨格に有するエポキシ樹脂等が挙げられる。 Examples of the epoxy compound include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, biphenyl type epoxy resin, biphenyl novolac type epoxy resin, biphenol type epoxy resin, and naphthalene type epoxy resin. Fluorene type epoxy resin, phenol aralkyl type epoxy resin, naphthol aralkyl type epoxy resin, dicyclopentadiene type epoxy resin, anthracene type epoxy resin, epoxy resin having adamantane skeleton, epoxy resin having tricyclodecane skeleton, and triazine nucleus Examples thereof include an epoxy resin having a skeleton.
 保存安定性の向上、ブリスターの発生の抑制、及び硬化物と金属層との密着性の向上の効果をより一層効果的に発揮する観点からは、上記エポキシ化合物は、芳香族骨格を有することが好ましく、ビフェニル骨格を有することが好ましく、ビフェニル型エポキシ化合物であることが好ましい。また、上記エポキシ化合物がビフェニル骨格を有することで、硬化物と金属層との接着強度がより一層高くなる。 From the viewpoint of more effectively exhibiting the effect of improving the storage stability, suppressing the generation of blisters, and improving the adhesion between the cured product and the metal layer, the epoxy compound may have an aromatic skeleton. Preferably, it has a biphenyl skeleton, and is preferably a biphenyl type epoxy compound. Moreover, the adhesive strength of hardened | cured material and a metal layer becomes still higher because the said epoxy compound has biphenyl frame | skeleton.
 上記エポキシ化合物の分子量は1000以下であることがより好ましい。この場合には、樹脂材料中の溶剤を除く成分100重量%中のシリカの含有量が30重量%以上であっても、更にシリカの含有量が60重量%以上であっても、流動性が高い樹脂組成物が得られる。このため、樹脂材料が基板上に配置された場合に、シリカを均一に存在させることができる。 The molecular weight of the epoxy compound is more preferably 1000 or less. In this case, even if the content of silica in 100% by weight of the component excluding the solvent in the resin material is 30% by weight or more, and even if the content of silica is 60% by weight or more, the fluidity is good. A high resin composition is obtained. For this reason, when a resin material is arrange | positioned on a board | substrate, a silica can exist uniformly.
 エポキシ化合物の分子量、及び後述する硬化剤の分子量は、エポキシ化合物又は硬化剤が重合体ではない場合、及びエポキシ化合物又は硬化剤の構造式が特定できる場合は、当該構造式から算出できる分子量を意味する。また、エポキシ化合物又は硬化剤が重合体である場合は、重量平均分子量を意味する。 The molecular weight of the epoxy compound and the molecular weight of the curing agent described later mean the molecular weight that can be calculated from the structural formula when the epoxy compound or the curing agent is not a polymer and when the structural formula of the epoxy compound or the curing agent can be specified. To do. Moreover, when an epoxy compound or a hardening | curing agent is a polymer, a weight average molecular weight is meant.
 上記エポキシ化合物及び後述する硬化剤(シアネートエステル化合物及びカルボジイミド化合物)の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定されたポリスチレン換算での重量平均分子量を示す。 The weight average molecular weights of the epoxy compound and the curing agent (cyanate ester compound and carbodiimide compound) described below indicate the weight average molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC).
 [硬化剤]
 上記樹脂材料は、硬化剤として、シアネートエステル化合物と、カルボジイミド化合物とを含む。
[Curing agent]
The resin material contains a cyanate ester compound and a carbodiimide compound as a curing agent.
 エポキシ化合物を硬化させるための硬化剤として、様々な硬化剤が存在する。エポキシ化合物を硬化させるための硬化剤としては、シアネートエステル化合物(シアネートエステル硬化剤)、フェノール化合物(フェノール硬化剤)、アミン化合物(アミン硬化剤)、チオール化合物(チオール硬化剤)、イミダゾール化合物、ホスフィン化合物、酸無水物、活性エステル化合物、ジシアンジアミド及びカルボジイミド化合物(カルボジイミド硬化剤)等が挙げられる。本発明では、硬化剤として、シアネートエステル化合物と、カルボジイミド化合物との2種が少なくとも用いられる。 Various curing agents exist as curing agents for curing epoxy compounds. Curing agents for curing epoxy compounds include cyanate ester compounds (cyanate ester curing agents), phenol compounds (phenol curing agents), amine compounds (amine curing agents), thiol compounds (thiol curing agents), imidazole compounds, and phosphines. Examples thereof include compounds, acid anhydrides, active ester compounds, dicyandiamide, and carbodiimide compounds (carbodiimide curing agents). In the present invention, at least two kinds of a cyanate ester compound and a carbodiimide compound are used as the curing agent.
 上記シアネートエステル化合物としては、ノボラック型シアネートエステル樹脂、ビスフェノール型シアネートエステル樹脂、並びにこれらが一部三量化されたプレポリマー等が挙げられる。上記ノボラック型シアネートエステル樹脂としては、フェノールノボラック型シアネートエステル樹脂及びアルキルフェノール型シアネートエステル樹脂等が挙げられる。上記ビスフェノール型シアネートエステル樹脂としては、ビスフェノールA型シアネートエステル樹脂、ビスフェノールE型シアネートエステル樹脂及びテトラメチルビスフェノールF型シアネートエステル樹脂等が挙げられる。上記シアネートエステル化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。 Examples of the cyanate ester compounds include novolak type cyanate ester resins, bisphenol type cyanate ester resins, and prepolymers in which these are partly trimerized. As said novolak-type cyanate ester resin, a phenol novolak-type cyanate ester resin, an alkylphenol-type cyanate ester resin, etc. are mentioned. Examples of the bisphenol type cyanate ester resin include bisphenol A type cyanate ester resin, bisphenol E type cyanate ester resin, and tetramethylbisphenol F type cyanate ester resin. As for the said cyanate ester compound, only 1 type may be used and 2 or more types may be used together.
 上記シアネートエステル化合物の市販品としては、フェノールノボラック型シアネートエステル樹脂(ロンザジャパン社製「PT-30」及び「PT-60」)、及びビスフェノール型シアネートエステル樹脂が三量化されたプレポリマー(ロンザジャパン社製「BA-230S」、「BA-3000S」、「BTP-1000S」及び「BTP-6020S」)等が挙げられる。 Commercially available products of the above-mentioned cyanate ester compounds include phenol novolac type cyanate ester resins (Lonza Japan “PT-30” and “PT-60”), and prepolymers (Lonza Japan) in which bisphenol type cyanate ester resins are trimmed. "BA-230S", "BA-3000S", "BTP-1000S" and "BTP-6020S") manufactured by the company.
 保存安定性の向上、ブリスターの発生の抑制、及び硬化物と金属層との密着性の向上の効果をより一層効果的に発揮する観点からは、上記シアネートエステル化合物の分子量は、好ましくは200以上、より好ましくは300以上であり、好ましくは4000以下、より好ましくは2000以下である。 The molecular weight of the cyanate ester compound is preferably 200 or more from the viewpoint of more effectively exerting the effects of improving the storage stability, suppressing the generation of blisters, and improving the adhesion between the cured product and the metal layer. More preferably, it is 300 or more, preferably 4000 or less, more preferably 2000 or less.
 上記カルボジイミド化合物は、下記式(1)で表される構造単位を有する。下記式(1)において、右端部及び左端部は、他の基との結合部位である。上記カルボジイミド化合物は1種のみが用いられてもよく、2種以上が併用されてもよい。 The carbodiimide compound has a structural unit represented by the following formula (1). In the following formula (1), the right end and the left end are binding sites with other groups. As for the said carbodiimide compound, only 1 type may be used and 2 or more types may be used together.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記式(1)中、Xは、アルキレン基、アルキレン基に置換基が結合した基、シクロアルキレン基、シクロアルキレン基に置換基が結合した基、アリーレン基、又はアリーレン基に置換基が結合した基を表し、pは1~5の整数を表す。Xが複数存在する場合、複数のXは同一であってもよく、異なっていてもよい。 In the above formula (1), X is an alkylene group, a group in which a substituent is bonded to an alkylene group, a cycloalkylene group, a group in which a substituent is bonded to a cycloalkylene group, an arylene group, or a substituent bonded to an arylene group. Represents a group, and p represents an integer of 1 to 5. When two or more X exists, several X may be the same and may differ.
 Xがアルキレン基又はアルキレン基に置換基が結合した基である場合に、該アルキレン基の炭素原子数は、好ましくは1以上であり、好ましくは20以下、より好ましくは10以下、更に好ましくは6以下、特に好ましくは4以下、最も好ましくは3以下である。該アルキレン基の好適な例としては、メチレン基、エチレン基、プロピレン基、及びブチレン基が挙げられる。 When X is an alkylene group or a group having a substituent bonded to an alkylene group, the number of carbon atoms of the alkylene group is preferably 1 or more, preferably 20 or less, more preferably 10 or less, and even more preferably 6 Hereinafter, it is particularly preferably 4 or less, and most preferably 3 or less. Preferable examples of the alkylene group include a methylene group, an ethylene group, a propylene group, and a butylene group.
 Xがシクロアルキレン基又はシクロアルキレン基に置換基が結合した基である場合に、該シクロアルキレン基の炭素原子数は、好ましくは3以上であり、好ましくは20以下、より好ましくは12以下、更に好ましくは6以下である。該シクロアルキレン基の好適な例としては、シクロプロピレン基、シクロブチレン基、シクロペンチレン基、及びシクロヘキシレン基が挙げられる。 When X is a cycloalkylene group or a group having a substituent bonded to a cycloalkylene group, the number of carbon atoms of the cycloalkylene group is preferably 3 or more, preferably 20 or less, more preferably 12 or less, Preferably it is 6 or less. Preferable examples of the cycloalkylene group include a cyclopropylene group, a cyclobutylene group, a cyclopentylene group, and a cyclohexylene group.
 Xがアリーレン基又はアリーレン基に置換基が結合した基である場合に、該アリーレン基は、芳香族炭化水素から芳香環上の水素原子を2個除いた基である。該アリーレン基の炭素原子数は、好ましくは6以上であり、好ましくは24以下、より好ましくは18以下、更に好ましくは14以下、特に好ましくは10以下である。該アリーレン基の好適な例としては、フェニレン基、ナフチレン基、及びアントラセニレン基が挙げられる。 When X is an arylene group or a group having a substituent bonded to the arylene group, the arylene group is a group obtained by removing two hydrogen atoms on an aromatic ring from an aromatic hydrocarbon. The number of carbon atoms of the arylene group is preferably 6 or more, preferably 24 or less, more preferably 18 or less, still more preferably 14 or less, and particularly preferably 10 or less. Preferable examples of the arylene group include a phenylene group, a naphthylene group, and an anthracenylene group.
 Xが、アルキレン基に置換基が結合した基、シクロアルキレン基に置換基が結合した基又はアリーレン基に置換基が結合した基である場合がある。この場合に、該置換基としては、特に限定されないが、例えば、ハロゲン原子、アルキル基、アルコキシ基、シクロアルキル基、シクロアルキルオキシ基、アリール基、アリールオキシ基、アシル基及びアシルオキシ基が挙げられる。置換基としてのハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。置換基としてのアルキル基及びアルコキシ基は、直鎖状、分岐状のいずれであってもよい。置換基としてのアルキル基及びアルコキシ基の炭素原子数は、好ましくは1以上であり、好ましくは20以下、より好ましくは10以下、更に好ましくは6以下、特に好ましくは4以下、最も好ましくは3以下である。置換基としてのシクロアルキル基及びシクロアルキルオキシ基の炭素原子数は、好ましくは3以上であり、好ましくは20以下、より好ましくは12以下、更に好ましくは6以下である。置換基としてのアリール基は、芳香族炭化水素から芳香環上の水素原子を1個除いた基である。置換基としてのアリール基の炭素原子数は、好ましくは6以上であり、好ましくは24以下、より好ましくは18以下、更に好ましくは14以下、特に好ましくは10以下である。置換基としてのアリールオキシ基の炭素原子数は、好ましくは6以上であり、好ましくは24以下、より好ましくは18以下、更に好ましくは14以下、特に好ましくは10以下である。置換基としてのアシル基は、式:-C(=O)-R1で表される基であり、該式中、R1はアルキル基又はアリール基を表す。R1で表されるアルキル基は、直鎖状、分岐状のいずれであってもよい。R1で表されるアルキル基の炭素原子数は、好ましくは1以上であり、好ましくは20以下、より好ましくは10以下、更に好ましくは6以下、特に好ましくは4以下、最も好ましくは3以下である。R1で表されるアリール基の炭素原子数は、好ましくは6以上であり、好ましくは24以下、より好ましくは18以下、更に好ましくは14以下、特に好ましくは10以下である。置換基としてのアシルオキシ基は、式:-O-C(=O)-R1で表される基であり、該式中、R1はアシル基のR1と同じ意味を表す。置換基としては、アルキル基、アルコキシ基、又はアシルオキシ基が好ましく、アルキル基がより好ましい。 X may be a group in which a substituent is bonded to an alkylene group, a group in which a substituent is bonded to a cycloalkylene group, or a group in which a substituent is bonded to an arylene group. In this case, the substituent is not particularly limited, and examples thereof include a halogen atom, an alkyl group, an alkoxy group, a cycloalkyl group, a cycloalkyloxy group, an aryl group, an aryloxy group, an acyl group, and an acyloxy group. . As a halogen atom as a substituent, a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom are mentioned, for example. The alkyl group and alkoxy group as a substituent may be either linear or branched. The number of carbon atoms of the alkyl group and alkoxy group as a substituent is preferably 1 or more, preferably 20 or less, more preferably 10 or less, still more preferably 6 or less, particularly preferably 4 or less, and most preferably 3 or less. It is. The number of carbon atoms of the cycloalkyl group and cycloalkyloxy group as a substituent is preferably 3 or more, preferably 20 or less, more preferably 12 or less, and even more preferably 6 or less. The aryl group as a substituent is a group obtained by removing one hydrogen atom on an aromatic ring from an aromatic hydrocarbon. The number of carbon atoms of the aryl group as a substituent is preferably 6 or more, preferably 24 or less, more preferably 18 or less, still more preferably 14 or less, and particularly preferably 10 or less. The number of carbon atoms of the aryloxy group as a substituent is preferably 6 or more, preferably 24 or less, more preferably 18 or less, still more preferably 14 or less, and particularly preferably 10 or less. The acyl group as a substituent is a group represented by the formula: —C (═O) —R1, wherein R1 represents an alkyl group or an aryl group. The alkyl group represented by R1 may be linear or branched. The number of carbon atoms of the alkyl group represented by R1 is preferably 1 or more, preferably 20 or less, more preferably 10 or less, still more preferably 6 or less, particularly preferably 4 or less, and most preferably 3 or less. . The number of carbon atoms of the aryl group represented by R1 is preferably 6 or more, preferably 24 or less, more preferably 18 or less, still more preferably 14 or less, and particularly preferably 10 or less. The acyloxy group as a substituent is a group represented by the formula: —O—C (═O) —R1, wherein R1 has the same meaning as R1 of the acyl group. As the substituent, an alkyl group, an alkoxy group, or an acyloxy group is preferable, and an alkyl group is more preferable.
 好適な一つの形態において、少なくとも1つのXは、アルキレン基、アルキレン基に置換基が結合した基、シクロアルキレン基、又はシクロアルキレン基に置換基が結合した基である。 In one preferred embodiment, at least one X is an alkylene group, a group in which a substituent is bonded to an alkylene group, a cycloalkylene group, or a group in which a substituent is bonded to a cycloalkylene group.
 好適な一つの形態において、カルボジイミド化合物は、カルボジイミド化合物の分子全体の重量を100重量%としたとき、好ましくは50重量%以上、より好ましくは60重量%以上、更に好ましくは70重量%以上、特に好ましくは80重量%以上、最も好ましくは90重量%以上にて、式(1)で表される構造単位を有する。すなわち、カルボジイミド化合物は、式(1)で表される構造単位を、上述した含有量の下限を満足するように含むことが好ましい。カルボジイミド化合物は、末端構造を除く構造が、実質的に式(1)で表される構造単位であってもよい。カルボジイミド化合物の末端構造としては、特に限定されないが、例えば、アルキル基、アルルキル基に置換基が結合した基、シクロアルキル基、シクロアルキル基に置換基が結合した基、アリール基、及びアリール基に置換基が結合した基が挙げられる。末端構造としてのアルキル基に置換基が結合した基、シクロアルキル基に置換基が結合した基、及びアリール基に置換基が結合した基における置換基を、置換基Aとする。該置換基Aとしては、上記式(1)中のXがアルキレン基に置換基が結合した基、シクロアルキレン基に置換基が結合した基又はアリーレン基に置換基が結合した基における置換基として挙げた置換基が挙げられる。また、置換基Aは、上記式(1)中のXがアルキレン基に置換基が結合した基、シクロアルキレン基に置換基が結合した基又はアリーレン基に置換基が結合した基における置換基と、同じであってもよく、異なっていてもよい。 In a preferred embodiment, the carbodiimide compound is preferably 50% by weight or more, more preferably 60% by weight or more, still more preferably 70% by weight or more, particularly when the total weight of the carbodiimide compound is 100% by weight. Preferably, it has a structural unit represented by the formula (1) at 80% by weight or more, most preferably 90% by weight or more. That is, the carbodiimide compound preferably includes the structural unit represented by the formula (1) so as to satisfy the lower limit of the content described above. In the carbodiimide compound, the structure excluding the terminal structure may be a structural unit substantially represented by the formula (1). The terminal structure of the carbodiimide compound is not particularly limited, and examples thereof include an alkyl group, a group in which a substituent is bonded to an alkyl group, a cycloalkyl group, a group in which a substituent is bonded to a cycloalkyl group, an aryl group, and an aryl group. Examples include a group to which a substituent is bonded. A substituent in a group in which a substituent is bonded to an alkyl group as a terminal structure, a group in which a substituent is bonded to a cycloalkyl group, and a group in which a substituent is bonded to an aryl group is referred to as a substituent A. As the substituent A, X in the above formula (1) is a group in which a substituent is bonded to an alkylene group, a group in which a substituent is bonded to a cycloalkylene group, or a group in which a substituent is bonded to an arylene group. The substituents mentioned are mentioned. Substituent A is a group in which X in the above formula (1) is a group in which a substituent is bonded to an alkylene group, a group in which a substituent is bonded to a cycloalkylene group, or a group in which a substituent is bonded to an arylene group. , May be the same or different.
 なお、カルボジイミド化合物は、その製法に由来して、イソシアネート基(-N=C=O)を有する場合がある。樹脂材料の保存安定性をより一層高める観点、より一層良好な特性を示す絶縁層を実現する観点から、カルボジイミド化合物中のイソシアネート基の含有量(「NCO含有量」ともいう。)は、好ましくは5重量%以下、より好ましくは4重量%以下、より一層好ましくは3重量%以下、更に好ましくは2重量%以下、特に好ましくは1重量%以下、最も好ましくは0.5重量%以下である。カルボジイミド化合物中のイソシアネート基の含有量は、0重量%(未含有)であってもよい。 The carbodiimide compound may have an isocyanate group (—N═C═O) due to its production method. From the viewpoint of further improving the storage stability of the resin material, and from the viewpoint of realizing an insulating layer exhibiting better characteristics, the content of isocyanate groups in the carbodiimide compound (also referred to as “NCO content”) is preferably. It is 5% by weight or less, more preferably 4% by weight or less, still more preferably 3% by weight or less, still more preferably 2% by weight or less, particularly preferably 1% by weight or less, and most preferably 0.5% by weight or less. The content of isocyanate groups in the carbodiimide compound may be 0% by weight (not contained).
 保存安定性の向上、ブリスターの発生の抑制、及び硬化物と金属層との密着性の向上の効果をより一層効果的に発揮する観点からは、上記カルボジイミド化合物は、脂環式骨格を有することが好ましい。特に、上記カルボジイミド化合物が脂環式骨格を有することで、保存安定性がより一層高くなる。更に、上記カルボジイミド化合物が芳香族骨格を有さずかつ脂環式骨格を有することで、保存安定性がかなり高くなる。 The carbodiimide compound has an alicyclic skeleton from the viewpoint of more effectively exhibiting the effects of improving storage stability, suppressing blistering, and improving the adhesion between the cured product and the metal layer. Is preferred. In particular, the storage stability is further enhanced when the carbodiimide compound has an alicyclic skeleton. Furthermore, when the carbodiimide compound does not have an aromatic skeleton and has an alicyclic skeleton, the storage stability is considerably increased.
 上記カルボジイミド化合物の市販品としては、日清紡ケミカル社製のカルボジライト(登録商標)V-02B、V-03、V-04K、V-07、V-09、10M-SP、及び10M-SP(改)、並びに、ラインケミー社製のスタバクゾール(登録商標)P、P400、及びハイカジル510が挙げられる。 Commercially available carbodiimide compounds include Carbodilite (registered trademark) V-02B, V-03, V-04K, V-07, V-09, 10M-SP, and 10M-SP (modified) manufactured by Nisshinbo Chemical Co., Ltd. And Stabaxol (registered trademark) P, P400, and Hikazil 510 manufactured by Rhein Chemie.
 保存安定性の向上、ブリスターの発生の抑制、及び硬化物と金属層との密着性の向上の効果をより一層効果的に発揮する観点からは、上記カルボジイミド化合物の分子量は、好ましくは500以上、より好ましくは1000以上であり、好ましくは5000以下、より好ましくは3000以下である。 From the viewpoint of more effectively exhibiting the effect of improving the storage stability, suppressing the generation of blisters, and improving the adhesion between the cured product and the metal layer, the molecular weight of the carbodiimide compound is preferably 500 or more. More preferably, it is 1000 or more, preferably 5000 or less, more preferably 3000 or less.
 上記シアネートエステル化合物の含有量の、上記カルボジイミド化合物の含有量に対する比を、比(シアネートエステル化合物の含有量/カルボジイミド化合物の含有量)と記載する。保存安定性の向上、ブリスターの発生の抑制、及び硬化物と金属層との密着性の向上の効果をより一層効果的に発揮する観点からは、上記比(シアネートエステル化合物の含有量/カルボジイミド化合物の含有量)は、重量比で、好ましくは0.2以上、より好ましくは0.3以上であり、好ましくは4.0以下、より好ましくは3.8以下である。 The ratio of the content of the cyanate ester compound to the content of the carbodiimide compound is described as a ratio (content of cyanate ester compound / content of carbodiimide compound). From the viewpoint of more effectively exhibiting the effects of improving storage stability, suppressing blistering, and improving the adhesion between the cured product and the metal layer, the above ratio (content of cyanate ester compound / carbodiimide compound) Is preferably 0.2 or more, more preferably 0.3 or more, preferably 4.0 or less, more preferably 3.8 or less.
 上記エポキシ化合物の含有量の、上記硬化剤の含有量に対する比を、比(エポキシ化合物の含有量/硬化剤の含有量)と記載する。保存安定性の向上、ブリスターの発生の抑制、及び硬化物と金属層との密着性の向上の効果をより一層効果的に発揮する観点からは、上記比(エポキシ化合物の含有量/硬化剤の含有量)は、重量比で、好ましくは1.0以上、より好ましくは1.2以上であり、好ましくは3.0以下、より好ましくは2.8以下である。上記硬化剤の含有量は、シアネートエステル化合物の含有量と、カルボジイミド化合物の含有量と、他の硬化剤が配合される場合に他の硬化剤との合計の含有量である。 The ratio of the content of the epoxy compound to the content of the curing agent is described as a ratio (content of epoxy compound / content of curing agent). From the viewpoint of more effectively exhibiting the effect of improving the storage stability, suppressing the generation of blisters, and improving the adhesion between the cured product and the metal layer, the above ratio (content of epoxy compound / content of curing agent) Content) is preferably 1.0 or more, more preferably 1.2 or more, and preferably 3.0 or less, more preferably 2.8 or less, by weight. Content of the said hardening | curing agent is content of the content of a cyanate ester compound, content of a carbodiimide compound, and a total content with another hardening | curing agent, when another hardening | curing agent is mix | blended.
 上記樹脂材料中の上記シリカ及び溶剤を除く成分100重量%中、上記エポキシ化合物と上記硬化剤との合計の含有量は、好ましくは65重量%以上、より好ましくは70重量%以上であり、好ましくは99重量%以下、より好ましくは97重量%以下である。上記エポキシ化合物と上記硬化剤との合計の含有量が上記下限以上及び上記上限以下であると、より一層良好な硬化物が得られ、絶縁層の熱による寸法変化をより一層抑制できる。上記エポキシ化合物と上記硬化剤との含有量比は、エポキシ化合物が硬化するように適宜選択される。 In 100% by weight of the resin material excluding the silica and the solvent, the total content of the epoxy compound and the curing agent is preferably 65% by weight or more, more preferably 70% by weight or more, Is 99% by weight or less, more preferably 97% by weight or less. When the total content of the epoxy compound and the curing agent is not less than the above lower limit and not more than the above upper limit, an even better cured product can be obtained, and the dimensional change due to heat of the insulating layer can be further suppressed. The content ratio between the epoxy compound and the curing agent is appropriately selected so that the epoxy compound is cured.
 [熱可塑性樹脂]
 上記樹脂材料は、熱可塑性樹脂を含んでいてもよい。
[Thermoplastic resin]
The resin material may contain a thermoplastic resin.
 上記熱可塑性樹脂としては、ポリイミド樹脂、ポリビニルアセタール樹脂及びフェノキシ樹脂等が挙げられる。上記熱可塑性樹脂は、1種のみが用いられてもよく、2種以上が併用されてもよい。 Examples of the thermoplastic resin include polyimide resin, polyvinyl acetal resin, and phenoxy resin. As for the said thermoplastic resin, only 1 type may be used and 2 or more types may be used together.
 硬化環境によらず、誘電正接を効果的に低くし、かつ、金属配線の密着性を効果的に高める観点からは、上記熱可塑性樹脂は、フェノキシ樹脂であることが好ましい。フェノキシ樹脂の使用により、樹脂材料の回路基板の穴又は凹凸に対する埋め込み性の悪化及びシリカの不均一化が抑えられる。また、フェノキシ樹脂の使用により、溶融粘度を調整可能であるためにシリカの分散性が良好になり、かつ硬化過程で、意図しない領域に樹脂材料が濡れ拡がり難くなる。上記フェノキシ樹脂は特に限定されない。上記フェノキシ樹脂として、従来公知のフェノキシ樹脂を使用可能である。上記フェノキシ樹脂は、1種のみが用いられてもよく、2種以上が併用されてもよい。 Regardless of the curing environment, the thermoplastic resin is preferably a phenoxy resin from the viewpoint of effectively reducing the dielectric loss tangent and effectively improving the adhesion of the metal wiring. By using the phenoxy resin, it is possible to suppress the deterioration of the embedding property of the resin material with respect to the hole or the unevenness of the circuit board and the nonuniformity of the silica. Further, the use of the phenoxy resin makes it possible to adjust the melt viscosity, so that the dispersibility of silica is improved, and the resin material is difficult to wet and spread in unintended areas during the curing process. The phenoxy resin is not particularly limited. A conventionally known phenoxy resin can be used as the phenoxy resin. As for the said phenoxy resin, only 1 type may be used and 2 or more types may be used together.
 上記フェノキシ樹脂としては、例えば、ビスフェノールA型の骨格、ビスフェノールF型の骨格、ビスフェノールS型の骨格、ビフェニル骨格、ノボラック骨格、ナフタレン骨格及びイミド骨格などの骨格を有するフェノキシ樹脂等が挙げられる。 Examples of the phenoxy resin include phenoxy resins having a skeleton such as a bisphenol A skeleton, a bisphenol F skeleton, a bisphenol S skeleton, a biphenyl skeleton, a novolak skeleton, a naphthalene skeleton, and an imide skeleton.
 上記フェノキシ樹脂の市販品としては、例えば、新日鐵住金化学社製の「YP50」、「YP55」及び「YP70」、並びに三菱化学社製の「1256B40」、「4250」、「4256H40」、「4275」、「YX6954BH30」及び「YX8100BH30」等が挙げられる。 Examples of commercially available phenoxy resins include “YP50”, “YP55” and “YP70” manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., and “1256B40”, “4250”, “4256H40” manufactured by Mitsubishi Chemical Corporation, “ 4275 "," YX6954BH30 "," YX8100BH30 ", and the like.
 保存安定性をより一層高める観点からは、上記熱可塑性樹脂の重量平均分子量は、好ましくは5000以上、より好ましくは10000以上であり、好ましくは100000以下、より好ましくは50000以下である。 From the viewpoint of further enhancing the storage stability, the weight average molecular weight of the thermoplastic resin is preferably 5000 or more, more preferably 10,000 or more, preferably 100,000 or less, more preferably 50000 or less.
 上記熱可塑性樹脂の上記重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定されたポリスチレン換算での重量平均分子量を示す。 The weight average molecular weight of the thermoplastic resin indicates a weight average molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC).
 上記熱可塑性樹脂の含有量は特に限定されない。上記樹脂材料中の上記シリカ及び溶剤を除く成分100重量%中、上記熱可塑性樹脂の含有量(熱可塑性樹脂がフェノキシ樹脂である場合にはフェノキシ樹脂の含有量)は好ましくは2重量%以上、より好ましくは4重量%以上であり、好ましくは15重量%以下、より好ましくは10重量%以下である。上記熱可塑性樹脂の含有量が上記下限以上及び上記上限以下であると、樹脂材料の回路基板の穴又は凹凸に対する埋め込み性が良好になる。上記熱可塑性樹脂の含有量が上記下限以上であると、樹脂組成物のフィルム化がより一層容易になり、より一層良好な絶縁層が得られる。上記熱可塑性樹脂の含有量が上記上限以下であると、硬化物の熱膨張率がより一層低くなる。また、絶縁層の表面の表面粗さがより一層小さくなり、絶縁層と金属層との接着強度がより一層高くなる。 The content of the thermoplastic resin is not particularly limited. In 100% by weight of the component excluding silica and solvent in the resin material, the content of the thermoplastic resin (the content of the phenoxy resin when the thermoplastic resin is a phenoxy resin) is preferably 2% by weight or more, More preferably, it is 4% by weight or more, preferably 15% by weight or less, more preferably 10% by weight or less. When the content of the thermoplastic resin is not less than the above lower limit and not more than the above upper limit, the embedding property of the resin material in the holes or irregularities of the circuit board becomes good. When the content of the thermoplastic resin is equal to or more than the lower limit, the resin composition can be more easily formed into a film, and a better insulating layer can be obtained. When the content of the thermoplastic resin is not more than the above upper limit, the thermal expansion coefficient of the cured product is further reduced. Further, the surface roughness of the surface of the insulating layer is further reduced, and the adhesive strength between the insulating layer and the metal layer is further increased.
 [シリカ]
 上記樹脂材料は、無機充填材として、シリカを含む。シリカの使用により、硬化物の熱による寸法変化がより一層小さくなる。また、硬化物の誘電正接がより一層小さくなる。更に、他の無機充填材と比較して、硬化物と金属層との接着強度をより一層高くすることもできる。
[silica]
The resin material contains silica as an inorganic filler. By using silica, the dimensional change due to heat of the cured product is further reduced. Further, the dielectric loss tangent of the cured product is further reduced. Furthermore, compared with other inorganic fillers, the adhesive strength between the cured product and the metal layer can be further increased.
 絶縁層の表面の表面粗さを小さくし、絶縁層と金属層との接着強度をより一層高くし、かつ硬化物の表面により一層微細な配線を形成し、かつ硬化物により良好な絶縁信頼性を付与する観点からは、上記シリカは、溶融シリカであることが更に好ましい。シリカの形状は球状であることが好ましい。 The surface roughness of the insulating layer is reduced, the adhesive strength between the insulating layer and the metal layer is further increased, finer wiring is formed on the surface of the cured product, and better insulation reliability is achieved by the cured product. From the viewpoint of imparting the above, the silica is more preferably fused silica. The shape of silica is preferably spherical.
 上記シリカの平均粒径は、好ましくは10nm以上、より好ましくは50nm以上、更に好ましくは150nm以上であり、好ましくは20μm以下、より好ましくは10μm以下、更に好ましくは5μm以下、特に好ましくは1μm以下である。上記シリカの平均粒径が上記下限以上及び上記上限以下であると、粗化処理などにより形成される孔の大きさが微細になり、孔の数が多くなる。この結果、硬化物と金属層との接着強度がより一層高くなる。 The average particle diameter of the silica is preferably 10 nm or more, more preferably 50 nm or more, further preferably 150 nm or more, preferably 20 μm or less, more preferably 10 μm or less, still more preferably 5 μm or less, particularly preferably 1 μm or less. is there. When the average particle diameter of the silica is not less than the above lower limit and not more than the above upper limit, the size of the holes formed by the roughening treatment or the like becomes fine, and the number of holes increases. As a result, the adhesive strength between the cured product and the metal layer is further increased.
 上記シリカの平均粒径として、50%となるメディアン径(d50)の値が採用される。上記平均粒径は、レーザー回折散乱方式の粒度分布測定装置を用いて測定可能である。 As the average particle diameter of the silica, a median diameter (d50) value of 50% is adopted. The average particle size can be measured using a laser diffraction / scattering particle size distribution measuring apparatus.
 上記シリカは、球状であることが好ましく、球状シリカであることがより好ましい。この場合には、硬化物の表面の表面粗さが効果的に小さくなり、更に硬化物と金属層との接着強度が効果的に高くなる。上記シリカが球状である場合には、上記シリカのアスペクト比は好ましくは2以下、より好ましくは1.5以下である。 The silica is preferably spherical and more preferably spherical silica. In this case, the surface roughness of the surface of the cured product is effectively reduced, and the adhesive strength between the cured product and the metal layer is effectively increased. When the silica is spherical, the aspect ratio of the silica is preferably 2 or less, more preferably 1.5 or less.
 上記シリカは、表面処理されていることが好ましく、カップリング剤による表面処理物であることがより好ましく、シランカップリング剤による表面処理物であることが更に好ましい。これにより、硬化物の表面の表面粗さがより一層小さくなり、硬化物と金属層との接着強度がより一層高くなり、かつ硬化物の表面により一層微細な配線が形成され、かつより一層良好な配線間絶縁信頼性及び層間絶縁信頼性を硬化物に付与することができる。 The silica is preferably surface-treated, more preferably a surface-treated product with a coupling agent, and still more preferably a surface-treated product with a silane coupling agent. Thereby, the surface roughness of the surface of the cured product is further reduced, the adhesive strength between the cured product and the metal layer is further increased, and finer wiring is formed on the surface of the cured product, and even better. Insulation reliability between wires and interlayer insulation reliability can be imparted to the cured product.
 上記カップリング剤としては、シランカップリング剤、チタンカップリング剤及びアルミニウムカップリング剤等が挙げられる。上記シランカップリング剤としては、メタクリルシラン、アクリルシラン、アミノシラン、イミダゾールシラン、ビニルシラン及びエポキシシラン等が挙げられる。 Examples of the coupling agent include silane coupling agents, titanium coupling agents, and aluminum coupling agents. Examples of the silane coupling agent include methacryl silane, acrylic silane, amino silane, imidazole silane, vinyl silane, and epoxy silane.
 上記樹脂材料中の溶剤を除く成分100重量%中、上記シリカの含有量は好ましくは30重量%以上、より好ましくは40重量%以上、更に好ましくは50重量%以上、特に好ましくは60重量%以上であり、好ましくは90重量%以下、より好ましくは85重量%以下、更に好ましくは80重量%以下、特に好ましくは75重量%以下である。上記シリカの含有量が上記下限以上であると、硬化物の熱による寸法変化がより一層小さくなる。また、上記シリカの含有量が上記下限以上及び上記上限以下であると、硬化物と金属層との接着強度がより一層高くなり、かつ硬化物の表面により一層微細な配線が形成される。 In 100% by weight of the component excluding the solvent in the resin material, the content of the silica is preferably 30% by weight or more, more preferably 40% by weight or more, still more preferably 50% by weight or more, particularly preferably 60% by weight or more. Preferably 90% by weight or less, more preferably 85% by weight or less, still more preferably 80% by weight or less, and particularly preferably 75% by weight or less. When the content of the silica is not less than the above lower limit, the dimensional change due to heat of the cured product is further reduced. Moreover, when the content of the silica is not less than the above lower limit and not more than the above upper limit, the adhesive strength between the cured product and the metal layer is further increased, and finer wiring is formed on the surface of the cured product.
 [硬化促進剤]
 上記樹脂材料は、硬化促進剤を含むことが好ましい。上記硬化促進剤の使用により、硬化速度がより一層速くなる。樹脂材料を速やかに硬化させることで、未反応の官能基数が減り、結果的に架橋密度が高くなる。上記硬化促進剤は特に限定されず、従来公知の硬化促進剤を使用可能である。上記硬化促進剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
[Curing accelerator]
The resin material preferably contains a curing accelerator. By using the curing accelerator, the curing rate is further increased. By rapidly curing the resin material, the number of unreacted functional groups is reduced, and as a result, the crosslinking density is increased. The said hardening accelerator is not specifically limited, A conventionally well-known hardening accelerator can be used. As for the said hardening accelerator, only 1 type may be used and 2 or more types may be used together.
 上記硬化促進剤としては、例えば、イミダゾール化合物、リン化合物、アミン化合物及び有機金属化合物等が挙げられる。 Examples of the curing accelerator include imidazole compounds, phosphorus compounds, amine compounds, and organometallic compounds.
 上記イミダゾール化合物としては、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1,2-ジメチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテイト、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-ウンデシルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物、2-フェニルイミダゾールイソシアヌル酸付加物、2-メチルイミダゾールイソシアヌル酸付加物、2-フェニル-4,5-ジヒドロキシメチルイミダゾール及び2-フェニル-4-メチル-5-ジヒドロキシメチルイミダゾール等が挙げられる。 Examples of the imidazole compound include 2-undecylimidazole, 2-heptadecylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl- 2-methylimidazole, 1-benzyl-2-phenylimidazole, 1,2-dimethylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-un Decylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2,4-diamino-6- [2 ' -Mechi Imidazolyl- (1 ′)]-ethyl-s-triazine, 2,4-diamino-6- [2′-undecylimidazolyl- (1 ′)]-ethyl-s-triazine, 2,4-diamino-6- [2′-Ethyl-4′-methylimidazolyl- (1 ′)]-ethyl-s-triazine, 2,4-diamino-6- [2′-methylimidazolyl- (1 ′)]-ethyl-s-triazine Isocyanuric acid adduct, 2-phenylimidazole isocyanuric acid adduct, 2-methylimidazole isocyanuric acid adduct, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-dihydroxymethylimidazole, etc. Can be mentioned.
 上記リン化合物としては、トリフェニルホスフィン等が挙げられる。 Examples of the phosphorus compound include triphenylphosphine.
 上記アミン化合物としては、ジエチルアミン、トリエチルアミン、ジエチレンテトラミン、トリエチレンテトラミン及び4,4-ジメチルアミノピリジン等が挙げられる。 Examples of the amine compound include diethylamine, triethylamine, diethylenetetramine, triethylenetetramine and 4,4-dimethylaminopyridine.
 上記有機金属化合物としては、ナフテン酸亜鉛、ナフテン酸コバルト、オクチル酸スズ、オクチル酸コバルト、ビスアセチルアセトナートコバルト(II)及びトリスアセチルアセトナートコバルト(III)等が挙げられる。 Examples of the organometallic compound include zinc naphthenate, cobalt naphthenate, tin octylate, cobalt octylate, bisacetylacetonate cobalt (II), and trisacetylacetonate cobalt (III).
 上記硬化促進剤の含有量は特に限定されない。上記樹脂材料中の上記シリカ及び溶剤を除く成分100重量%中、上記硬化促進剤の含有量は好ましくは0.01重量%以上、より好ましくは0.9重量%以上であり、好ましくは5.0重量%以下、より好ましくは3.0重量%以下である。上記硬化促進剤の含有量が上記下限以上及び上記上限以下であると、樹脂材料が効率的に硬化する。上記硬化促進剤の含有量がより好ましい範囲であれば、樹脂材料の保存安定性がより一層高くなり、かつより一層良好な硬化物が得られる。 The content of the curing accelerator is not particularly limited. In 100% by weight of the resin material excluding the silica and the solvent, the content of the curing accelerator is preferably 0.01% by weight or more, more preferably 0.9% by weight or more, preferably 5. It is 0 weight% or less, More preferably, it is 3.0 weight% or less. When the content of the curing accelerator is not less than the above lower limit and not more than the above upper limit, the resin material is efficiently cured. If content of the said hardening accelerator is a more preferable range, the storage stability of a resin material will become still higher and a much better hardened | cured material will be obtained.
 [溶剤]
 上記樹脂材料は、溶剤を含まないか又は含む。上記溶剤の使用により、樹脂材料の粘度を好適な範囲に制御でき、樹脂材料が樹脂組成物である場合に樹脂組成物の塗工性を高めることができる。また、上記溶剤は、上記シリカを含むスラリーを得るために用いられてもよい。上記溶剤は1種のみが用いられてもよく、2種以上が併用されてもよい。
[solvent]
The resin material does not contain or contains a solvent. By using the solvent, the viscosity of the resin material can be controlled within a suitable range, and when the resin material is a resin composition, the coatability of the resin composition can be enhanced. The solvent may be used to obtain a slurry containing the silica. As for the said solvent, only 1 type may be used and 2 or more types may be used together.
 上記溶剤としては、アセトン、メタノール、エタノール、ブタノール、2-プロパノール、2-メトキシエタノール、2-エトキシエタノール、1-メトキシ-2-プロパノール、2-アセトキシ-1-メトキシプロパン、トルエン、キシレン、メチルエチルケトン、N,N-ジメチルホルムアミド、メチルイソブチルケトン、N-メチル-ピロリドン、n-ヘキサン、シクロヘキサン、シクロヘキサノン及び混合物であるナフサ等が挙げられる。 Examples of the solvent include acetone, methanol, ethanol, butanol, 2-propanol, 2-methoxyethanol, 2-ethoxyethanol, 1-methoxy-2-propanol, 2-acetoxy-1-methoxypropane, toluene, xylene, methyl ethyl ketone, Examples thereof include N, N-dimethylformamide, methyl isobutyl ketone, N-methyl-pyrrolidone, n-hexane, cyclohexane, cyclohexanone and naphtha which is a mixture.
 樹脂材料が樹脂組成物である場合に、上記溶剤の多くは、上記樹脂組成物をフィルム状に成形するときに、除去されることが好ましい。従って、上記溶剤の沸点は好ましくは200℃以下、より好ましくは180℃以下である。上記樹脂材料における上記溶剤の含有量は特に限定されない。樹脂材料が樹脂組成物である場合に、上記樹脂材料の塗工性などを考慮して、上記溶剤の含有量は適宜変更可能である。 When the resin material is a resin composition, most of the solvent is preferably removed when the resin composition is formed into a film. Therefore, the boiling point of the solvent is preferably 200 ° C. or lower, more preferably 180 ° C. or lower. The content of the solvent in the resin material is not particularly limited. When the resin material is a resin composition, the content of the solvent can be appropriately changed in consideration of the coating property of the resin material.
 [他の成分]
 耐衝撃性、耐熱性、樹脂の相溶性及び作業性等の改善を目的として、上記樹脂材料には、レベリング剤、難燃剤、カップリング剤、着色剤、酸化防止剤、紫外線劣化防止剤、消泡剤、増粘剤、揺変性付与剤及びエポキシ化合物以外の他の熱硬化性樹脂等を添加してもよい。
[Other ingredients]
For the purpose of improving impact resistance, heat resistance, resin compatibility and workability, etc., the above resin materials include leveling agents, flame retardants, coupling agents, colorants, antioxidants, UV degradation inhibitors, A thermosetting resin other than a foaming agent, a thickener, a thixotropic agent, and an epoxy compound may be added.
 上記カップリング剤としては、シランカップリング剤、チタンカップリング剤及びアルミニウムカップリング剤等が挙げられる。上記シランカップリング剤としては、ビニルシラン、アミノシラン、イミダゾールシラン及びエポキシシラン等が挙げられる。 Examples of the coupling agent include silane coupling agents, titanium coupling agents, and aluminum coupling agents. Examples of the silane coupling agent include vinyl silane, amino silane, imidazole silane, and epoxy silane.
 上記他の熱硬化性樹脂としては、ポリフェニレンエーテル樹脂、ジビニルベンジルエーテル樹脂、ポリアリレート樹脂、ジアリルフタレート樹脂、ポリイミド、ベンゾオキサジン樹脂、ベンゾオキサゾール樹脂、ビスマレイミド樹脂及びアクリレート樹脂等が挙げられる。 Examples of the other thermosetting resins include polyphenylene ether resins, divinyl benzyl ether resins, polyarylate resins, diallyl phthalate resins, polyimides, benzoxazine resins, benzoxazole resins, bismaleimide resins, and acrylate resins.
 (樹脂フィルム(Bステージフィルム)及び積層フィルム)
 上記樹脂材料は、樹脂フィルムであることが好ましい。樹脂組成物をフィルム状に成形することにより樹脂フィルム(Bステージフィルム)が得られる。樹脂フィルムは、Bステージフィルムであることが好ましい。
(Resin film (B stage film) and laminated film)
The resin material is preferably a resin film. A resin film (B-stage film) is obtained by forming the resin composition into a film. The resin film is preferably a B stage film.
 樹脂フィルムの硬化度をより一層均一に制御する観点からは、上記樹脂フィルムの厚みは好ましくは5μm以上であり、好ましくは200μm以下である。 From the viewpoint of more uniformly controlling the degree of cure of the resin film, the thickness of the resin film is preferably 5 μm or more, and preferably 200 μm or less.
 上記樹脂組成物をフィルム状に成形する方法としては、例えば、押出機を用いて、樹脂材料を溶融混練し、押出した後、Tダイ又はサーキュラーダイ等により、フィルム状に成形する押出成形法、溶剤を含む樹脂材料をキャスティングしてフィルム状に成形するキャスティング成形法、並びに従来公知のその他のフィルム成形法等が挙げられる。薄型化に対応可能であることから、押出成形法又はキャスティング成形法が好ましい。フィルムにはシートが含まれる。 As a method of forming the resin composition into a film, for example, using an extruder, the resin material is melt-kneaded, extruded, and then extruded into a film with a T die or a circular die, Examples thereof include a casting method in which a resin material containing a solvent is cast to form a film, and other conventionally known film forming methods. The extrusion molding method or the casting molding method is preferable because it can cope with the reduction in thickness. The film includes a sheet.
 上記樹脂組成物をフィルム状に成形し、熱による硬化が進行し過ぎない程度に、例えば50~150℃で1~10分間加熱乾燥させることにより、Bステージフィルムである樹脂フィルムを得ることができる。 A resin film which is a B stage film can be obtained by forming the resin composition into a film and drying it by heating, for example, at 50 to 150 ° C. for 1 to 10 minutes so that curing by heat does not proceed excessively. .
 上述のような乾燥工程により得ることができるフィルム状の樹脂材料をBステージフィルムと称する。上記Bステージフィルムは、半硬化状態にあるフィルム状樹脂材料である。半硬化物は、完全に硬化しておらず、硬化がさらに進行され得る。 The film-like resin material that can be obtained by the drying process as described above is called a B-stage film. The B stage film is a film-like resin material in a semi-cured state. The semi-cured product is not completely cured and curing can proceed further.
 上記樹脂フィルムは、プリプレグでなくてもよい。上記樹脂フィルムがプリプレグではない場合には、ガラスクロスなどに沿ってマイグレーションが生じなくなる。また、樹脂フィルムをラミネート又はプレキュアする際に、表面にガラスクロスに起因する凹凸が生じなくなる。上記樹脂材料は、基材と、該基材の表面上に積層された樹脂フィルムとを備える積層フィルムの形態で好適に用いることができる。上記積層フィルムにおける上記樹脂フィルムが、上記樹脂組成物により形成される。 The resin film may not be a prepreg. When the resin film is not a prepreg, migration does not occur along a glass cloth or the like. Further, when laminating or precuring the resin film, the surface is not uneven due to the glass cloth. The said resin material can be used suitably with the form of a laminated film provided with a base material and the resin film laminated | stacked on the surface of this base material. The resin film in the laminated film is formed from the resin composition.
 上記積層フィルムの上記基材としては、金属箔、ポリエチレンテレフタレートフィルム及びポリブチレンテレフタレートフィルムなどのポリエステル樹脂フィルム、ポリエチレンフィルム及びポリプロピレンフィルムなどのオレフィン樹脂フィルム、及びポリイミドフィルム等が挙げられる。上記基材の表面は、必要に応じて、離型処理されていてもよい。上記基材は、金属箔であってもよく、樹脂フィルムであってもよい。上記金属箔は銅箔であることが好ましい。 Examples of the substrate of the laminated film include metal foil, polyester resin films such as polyethylene terephthalate film and polybutylene terephthalate film, olefin resin films such as polyethylene film and polypropylene film, and polyimide film. The surface of the base material may be subjected to a release treatment as necessary. The substrate may be a metal foil or a resin film. The metal foil is preferably a copper foil.
 (多層プリント配線板)
 本発明に係る多層プリント配線板は、回路基板と、上記回路基板上に配置された複数の絶縁層と、複数の上記絶縁層間に配置された金属層とを備える。上記絶縁層の内の少なくとも1層が、上述した樹脂材料の硬化物である。上記回路基板に接している絶縁層が、上述した樹脂材料の硬化物であってもよい。2つの絶縁層の間に配置された絶縁層が、上述した樹脂材料の硬化物であってもよい。上記回路基板から最も離れた絶縁層が、上述した樹脂材料の硬化物であってもよい。複数の上記絶縁層のうち、上記回路基板から最も離れた絶縁層の外側の表面上に、金属層が配置されていてもよい。
(Multilayer printed wiring board)
The multilayer printed wiring board according to the present invention includes a circuit board, a plurality of insulating layers disposed on the circuit board, and a metal layer disposed between the plurality of insulating layers. At least one of the insulating layers is a cured product of the resin material described above. The insulating layer in contact with the circuit board may be a cured product of the resin material described above. The insulating layer disposed between the two insulating layers may be a cured product of the resin material described above. The insulating layer farthest from the circuit board may be a cured product of the resin material described above. A metal layer may be disposed on the outer surface of the insulating layer farthest from the circuit board among the plurality of insulating layers.
 上記多層プリント配線板は、例えば、上記樹脂フィルムを加熱加圧成形することにより得られる。 The multilayer printed wiring board can be obtained, for example, by heat-pressing the resin film.
 上記樹脂フィルムに対して、片面又は両面に金属箔を積層できる。上記樹脂フィルムと金属箔とを積層する方法は特に限定されず、公知の方法を用いることができる。例えば、平行平板プレス機又はロールラミネーター等の装置を用いて、加熱しながら又は加熱せずに加圧しながら、上記樹脂フィルムを金属箔に積層可能である。 A metal foil can be laminated on one side or both sides of the resin film. The method for laminating the resin film and the metal foil is not particularly limited, and a known method can be used. For example, the resin film can be laminated on the metal foil using an apparatus such as a parallel plate press or a roll laminator while applying pressure while heating or without heating.
 また、多層プリント配線板の絶縁層が、積層フィルムを用いて、上記積層フィルムの上記樹脂フィルムにより形成されていてもよい。上記絶縁層は、回路基板の回路が設けられた表面上に積層されていることが好ましい。上記絶縁層の一部は、上記回路間に埋め込まれていることが好ましい。 Further, the insulating layer of the multilayer printed wiring board may be formed of the resin film of the laminated film using a laminated film. The insulating layer is preferably laminated on the surface of the circuit board on which the circuit is provided. Part of the insulating layer is preferably embedded between the circuits.
 上記多層プリント配線板では、上記絶縁層の上記回路基板が積層された表面とは反対側の表面が粗化処理されていることが好ましい。 In the multilayer printed wiring board, it is preferable that the surface of the insulating layer opposite to the surface on which the circuit board is laminated is roughened.
 粗化処理方法は、従来公知の粗化処理方法を用いることができ特に限定されない。上記絶縁層の表面は、粗化処理の前に膨潤処理されていてもよい。 The roughening treatment method is not particularly limited, and a conventionally known roughening treatment method can be used. The surface of the insulating layer may be subjected to a swelling treatment before the roughening treatment.
 図1は、本発明の一実施形態に係る樹脂材料を用いた多層プリント配線板を模式的に示す断面図である。 FIG. 1 is a cross-sectional view schematically showing a multilayer printed wiring board using a resin material according to an embodiment of the present invention.
 図1に示す多層プリント配線板11では、回路基板12の上面12aに、複数層の絶縁層13~16が積層されている。絶縁層13~16は、硬化物層である。回路基板12の上面12aの一部の領域には、金属層17が形成されている。複数層の絶縁層13~16のうち、回路基板12側とは反対の外側の表面に位置する絶縁層16以外の絶縁層13~15には、上面の一部の領域に金属層17が形成されている。金属層17は回路である。回路基板12と絶縁層13の間、及び積層された絶縁層13~16の各層間に、金属層17がそれぞれ配置されている。下方の金属層17と上方の金属層17とは、図示しないビアホール接続及びスルーホール接続の内の少なくとも一方により互いに接続されている。 In the multilayer printed wiring board 11 shown in FIG. 1, a plurality of insulating layers 13 to 16 are laminated on the upper surface 12 a of the circuit board 12. The insulating layers 13 to 16 are cured product layers. A metal layer 17 is formed in a partial region of the upper surface 12 a of the circuit board 12. Of the plurality of insulating layers 13 to 16, the metal layer 17 is formed in a part of the upper surface of the insulating layers 13 to 15 other than the insulating layer 16 located on the outer surface opposite to the circuit board 12 side. Has been. The metal layer 17 is a circuit. Metal layers 17 are respectively arranged between the circuit board 12 and the insulating layer 13 and between the stacked insulating layers 13 to 16. The lower metal layer 17 and the upper metal layer 17 are connected to each other by at least one of via hole connection and through hole connection (not shown).
 多層プリント配線板11では、絶縁層13~16が、上記樹脂材料により形成されている。本実施形態では、絶縁層13~16の表面が粗化処理されているので、絶縁層13~16の表面に図示しない微細な孔が形成されている。また、微細な孔の内部に金属層17が至っている。また、多層プリント配線板11では、金属層17の幅方向寸法(L)と、金属層17が形成されていない部分の幅方向寸法(S)とを小さくすることができる。また、多層プリント配線板11では、図示しないビアホール接続及びスルーホール接続で接続されていない上方の金属層と下方の金属層との間に、良好な絶縁信頼性が付与されている。 In the multilayer printed wiring board 11, the insulating layers 13 to 16 are formed of the resin material. In this embodiment, since the surfaces of the insulating layers 13 to 16 are roughened, fine holes (not shown) are formed on the surfaces of the insulating layers 13 to 16. Further, the metal layer 17 reaches the inside of the fine hole. Moreover, in the multilayer printed wiring board 11, the width direction dimension (L) of the metal layer 17 and the width direction dimension (S) of the part in which the metal layer 17 is not formed can be made small. In the multilayer printed wiring board 11, good insulation reliability is imparted between an upper metal layer and a lower metal layer that are not connected by via-hole connection and through-hole connection (not shown).
 (粗化処理及び膨潤処理)
 上記樹脂材料は、粗化処理又はデスミア処理される硬化物を得るために用いられることが好ましい。上記硬化物には、更に硬化が可能な予備硬化物も含まれる。
(Roughening treatment and swelling treatment)
The resin material is preferably used in order to obtain a cured product that is roughened or desmeared. The cured product includes a precured product that can be further cured.
 上記樹脂材料を予備硬化させることにより得られた硬化物の表面に微細な凹凸を形成するために、硬化物は粗化処理されることが好ましい。粗化処理の前に、硬化物は膨潤処理されることが好ましい。硬化物は、予備硬化の後、かつ粗化処理される前に、膨潤処理されており、さらに粗化処理の後に硬化されていることが好ましい。ただし、硬化物は、必ずしも膨潤処理されなくてもよい。 In order to form fine irregularities on the surface of the cured product obtained by pre-curing the resin material, the cured product is preferably subjected to a roughening treatment. Prior to the roughening treatment, the cured product is preferably subjected to a swelling treatment. The cured product is preferably subjected to a swelling treatment after preliminary curing and before the roughening treatment, and is further cured after the roughening treatment. However, the cured product is not necessarily subjected to the swelling treatment.
 上記膨潤処理の方法としては、例えば、エチレングリコールなどを主成分とする化合物の水溶液又は有機溶媒分散溶液などにより、硬化物を処理する方法が用いられる。膨潤処理に用いる膨潤液は、一般にpH調整剤などとして、アルカリを含む。膨潤液は、水酸化ナトリウムを含むことが好ましい。具体的には、例えば、上記膨潤処理は、40重量%エチレングリコール水溶液等を用いて、処理温度30~85℃で1~30分間、硬化物を処理することにより行なわれる。上記膨潤処理の温度は50~85℃の範囲内であることが好ましい。上記膨潤処理の温度が低すぎると、膨潤処理に長時間を要し、更に絶縁層と金属層との接着強度が低くなる傾向がある。 As the swelling treatment method, for example, a method of treating a cured product with an aqueous solution or an organic solvent dispersion solution of a compound mainly composed of ethylene glycol or the like is used. The swelling liquid used for the swelling treatment generally contains an alkali as a pH adjuster or the like. The swelling liquid preferably contains sodium hydroxide. Specifically, for example, the swelling treatment is performed by treating the cured product with a 40 wt% ethylene glycol aqueous solution at a treatment temperature of 30 to 85 ° C. for 1 to 30 minutes. The swelling treatment temperature is preferably in the range of 50 to 85 ° C. If the temperature of the swelling treatment is too low, it takes a long time for the swelling treatment, and the adhesive strength between the insulating layer and the metal layer tends to be low.
 上記粗化処理には、例えば、マンガン化合物、クロム化合物又は過硫酸化合物などの化学酸化剤等が用いられる。これらの化学酸化剤は、水又は有機溶剤が添加された後、水溶液又は有機溶媒分散溶液として用いられる。粗化処理に用いられる粗化液は、一般にpH調整剤などとしてアルカリを含む。粗化液は、水酸化ナトリウムを含むことが好ましい。 For the roughening treatment, for example, a chemical oxidant such as a manganese compound, a chromium compound, or a persulfate compound is used. These chemical oxidizers are used as an aqueous solution or an organic solvent dispersion after water or an organic solvent is added. The roughening liquid used for the roughening treatment generally contains an alkali as a pH adjuster or the like. The roughening solution preferably contains sodium hydroxide.
 上記マンガン化合物としては、過マンガン酸カリウム及び過マンガン酸ナトリウム等が挙げられる。上記クロム化合物としては、重クロム酸カリウム及び無水クロム酸カリウム等が挙げられる。上記過硫酸化合物としては、過硫酸ナトリウム、過硫酸カリウム及び過硫酸アンモニウム等が挙げられる。 Examples of the manganese compound include potassium permanganate and sodium permanganate. Examples of the chromium compound include potassium dichromate and anhydrous potassium chromate. Examples of the persulfate compound include sodium persulfate, potassium persulfate, and ammonium persulfate.
 上記粗化処理の方法は特に限定されない。上記粗化処理の方法として、例えば、30~90g/L過マンガン酸又は過マンガン酸塩溶液及び30~90g/L水酸化ナトリウム溶液を用いて、処理温度30~85℃及び1~30分間の条件で、硬化物を処理する方法が好適である。上記粗化処理の温度は50~85℃の範囲内であることが好ましい。上記粗化処理の回数は1回又は2回であることが好ましい。 The method for the roughening treatment is not particularly limited. As the roughening treatment method, for example, 30 to 90 g / L permanganic acid or permanganate solution and 30 to 90 g / L sodium hydroxide solution are used, and the treatment temperature is 30 to 85 ° C. and 1 to 30 minutes. A method of treating a cured product under conditions is preferable. The temperature of the roughening treatment is preferably in the range of 50 to 85 ° C. The number of times of the roughening treatment is preferably once or twice.
 硬化物の表面の算術平均粗さRaは好ましくは10nm以上であり、好ましくは200nm未満、より好ましくは100nm未満、更に好ましくは50nm未満である。算術平均粗さRaが上記下限以上及び上記上限未満であると、電気信号の導体損失を効果的に抑えることができ、伝送損失を大きく抑制することができる。さらに、絶縁層の表面により一層微細な配線を形成することができる。上記算術平均粗さRaは、JIS B0601(1994)に準拠して測定される。 The arithmetic average roughness Ra of the surface of the cured product is preferably 10 nm or more, preferably less than 200 nm, more preferably less than 100 nm, and still more preferably less than 50 nm. When the arithmetic average roughness Ra is not less than the above lower limit and less than the above upper limit, the conductor loss of the electric signal can be effectively suppressed, and the transmission loss can be largely suppressed. Furthermore, finer wiring can be formed on the surface of the insulating layer. The arithmetic average roughness Ra is measured according to JIS B0601 (1994).
 (デスミア処理)
 上記樹脂材料を予備硬化させることにより得られた硬化物に、貫通孔が形成されることがある。上記多層基板などでは、貫通孔として、ビア又はスルーホール等が形成される。例えば、ビアは、COレーザー等のレーザーの照射により形成できる。ビアの直径は特に限定されないが、60~80μm程度である。上記貫通孔の形成により、ビア内の底部には、硬化物に含まれている樹脂成分に由来する樹脂の残渣であるスミアが形成されることが多い。
(Desmear treatment)
Through holes may be formed in a cured product obtained by precuring the resin material. In the multilayer substrate or the like, a via or a through hole is formed as a through hole. For example, the via can be formed by irradiation with a laser such as a CO 2 laser. The diameter of the via is not particularly limited, but is about 60 to 80 μm. Due to the formation of the through hole, a smear, which is a resin residue derived from the resin component contained in the cured product, is often formed at the bottom of the via.
 上記スミアを除去するために、硬化物の表面は、デスミア処理されることが好ましい。デスミア処理が粗化処理を兼ねることもある。 In order to remove the smear, the surface of the cured product is preferably desmeared. The desmear process may also serve as a roughening process.
 上記デスミア処理には、上記粗化処理と同様に、例えば、マンガン化合物、クロム化合物又は過硫酸化合物などの化学酸化剤等が用いられる。これらの化学酸化剤は、水又は有機溶剤が添加された後、水溶液又は有機溶媒分散溶液として用いられる。デスミア処理に用いられるデスミア処理液は、一般にアルカリを含む。デスミア処理液は、水酸化ナトリウムを含むことが好ましい。 In the desmear treatment, for example, a chemical oxidizing agent such as a manganese compound, a chromium compound, or a persulfate compound is used in the same manner as the roughening treatment. These chemical oxidizers are used as an aqueous solution or an organic solvent dispersion after water or an organic solvent is added. The desmear treatment liquid used for the desmear treatment generally contains an alkali. The desmear treatment liquid preferably contains sodium hydroxide.
 上記デスミア処理の方法は特に限定されない。上記デスミア処理の方法として、例えば、30~90g/L過マンガン酸又は過マンガン酸塩溶液及び30~90g/L水酸化ナトリウム溶液を用いて、処理温度30~85℃及び1~30分間の条件で、1回又は2回、硬化物を処理する方法が好適である。上記デスミア処理の温度は50~85℃の範囲内であることが好ましい。 The above desmear treatment method is not particularly limited. As the desmear treatment method, for example, using a 30 to 90 g / L permanganate or permanganate solution and a 30 to 90 g / L sodium hydroxide solution, a treatment temperature of 30 to 85 ° C. and a condition of 1 to 30 minutes And the method of processing hardened | cured material once or twice is suitable. The temperature of the desmear treatment is preferably in the range of 50 to 85 ° C.
 上記樹脂材料の使用により、デスミア処理された絶縁層の表面の表面粗さが十分に小さくなる。 The use of the above resin material sufficiently reduces the surface roughness of the desmeared insulating layer.
 以下、実施例及び比較例を挙げることにより、本発明を具体的に説明する。本発明は、以下の実施例に限定されない。 Hereinafter, the present invention will be specifically described by giving examples and comparative examples. The present invention is not limited to the following examples.
 (エポキシ化合物)
 ビスフェノールA型エポキシ樹脂(DIC社製「850-S」)
 ナフタレン型エポキシ樹脂(DIC社製「HP-4032D」)
 ビフェニルノボラック型エポキシ樹脂(日本化薬社製「NC-3000」)
 ビスフェノールF型エポキシ樹脂(DIC社製「830-S」)
 ビフェニル型エポキシ樹脂(三菱化学社製「YX-4000H」)
 ジシクロペンタジエン型エポキシ樹脂(日本化薬社製「XD-1000」)
(Epoxy compound)
Bisphenol A type epoxy resin (DIC-made "850-S")
Naphthalene type epoxy resin (“HP-4032D” manufactured by DIC)
Biphenyl novolac epoxy resin (“NC-3000” manufactured by Nippon Kayaku Co., Ltd.)
Bisphenol F type epoxy resin (DIC-made "830-S")
Biphenyl type epoxy resin (“YX-4000H” manufactured by Mitsubishi Chemical Corporation)
Dicyclopentadiene type epoxy resin (“XD-1000” manufactured by Nippon Kayaku Co., Ltd.)
 (硬化剤)
 カルボジイミド樹脂含有液(日清紡ケミカル社製「V-03」、固形分50重量%)
 カルボジイミド樹脂(日清紡ケミカル社製「10M-SP(改)」)
 ノボラック型フェノール樹脂(明和化成社製「H-4」)
 シアネートエステル樹脂含有液(ロンザジャパン社製「BA-3000S」、固形分75重量%)
 シアネートエステル樹脂(ロンザジャパン社製「PT-30」)
(Curing agent)
Carbodiimide resin-containing liquid (Nisshinbo Chemical “V-03”, solid content 50% by weight)
Carbodiimide resin (“10M-SP (modified)” manufactured by Nisshinbo Chemical Co., Ltd.)
Novolac-type phenolic resin (“H-4” manufactured by Meiwa Kasei Co., Ltd.)
Cyanate ester resin-containing liquid (Lonza Japan "BA-3000S", solid content 75 wt%)
Cyanate ester resin (Lonza Japan "PT-30")
 (硬化促進剤)
 イミダゾール化合物(2-フェニル-4-メチルイミダゾール、四国化成工業社製「2P4MZ」)
(Curing accelerator)
Imidazole compound (2-phenyl-4-methylimidazole, “2P4MZ” manufactured by Shikoku Kasei Kogyo Co., Ltd.)
 (シリカ)
 シリカ含有スラリー(シリカ70重量%:アドマテックス社製「SC-2050-HNK」、平均粒子径0.5μm、アミノシラン処理、シクロヘキサノン30重量%)
(silica)
Silica-containing slurry (Silica 70 wt%: “SC-2050-HNK” manufactured by Admatechs, average particle size 0.5 μm, aminosilane treatment, cyclohexanone 30 wt%)
 (アルミナ)
 アルミナ含有スラリー(アルミナ70重量%:アドマテックス社製「AC-2050-MOE」、平均粒子径0.6μm、アミノシラン処理、メチルエチルケトン25重量%)
(alumina)
Alumina-containing slurry (Alumina 70% by weight: “AC-2050-MOE” manufactured by Admatechs, average particle size 0.6 μm, aminosilane treatment, methyl ethyl ketone 25% by weight)
 (熱可塑性樹脂)
 フェノキシ樹脂含有液(三菱化学社製「YX6954BH30」、固形分30重量%)
(Thermoplastic resin)
Phenoxy resin-containing liquid (Mitsubishi Chemical "YX6954BH30", solid content 30 wt%)
 (実施例1~11及び比較例1~4)
 下記の表1,2に示す成分を下記の表1,2に示す配合量で配合し、撹拌機を用いて1200rpmで4時間撹拌し、樹脂組成物ワニスを得た。
(Examples 1 to 11 and Comparative Examples 1 to 4)
The components shown in Tables 1 and 2 below were blended in the blending amounts shown in Tables 1 and 2 below, followed by stirring at 1200 rpm for 4 hours using a stirrer to obtain a resin composition varnish.
 アプリケーターを用いて、ポリエチレンテレフタレート(PET)フィルム(東レ社製「XG284」、厚み25μm)の離型処理面上に得られた樹脂材料(樹脂組成物ワニス)を塗工した後、100℃のギアオーブン内で3分間乾燥し、溶剤を揮発させた。このようにして、PETフィルムと、該PETフィルム上に厚さが40μmであり、溶剤の残量が1.0重量%以上、3.0重量%以下である樹脂フィルム(Bステージフィルム)とを有する積層フィルムを得た。 Using an applicator, a resin material (resin composition varnish) obtained on the release treatment surface of a polyethylene terephthalate (PET) film (“XG284” manufactured by Toray Industries Inc., thickness 25 μm) is applied, and then a gear at 100 ° C. It was dried in an oven for 3 minutes to volatilize the solvent. Thus, a PET film and a resin film (B stage film) having a thickness of 40 μm on the PET film and a remaining amount of solvent of 1.0% by weight or more and 3.0% by weight or less. A laminated film having was obtained.
 その後、積層フィルムを、190℃で90分間加熱して、樹脂フィルムが硬化した硬化物を作製した。 Thereafter, the laminated film was heated at 190 ° C. for 90 minutes to produce a cured product in which the resin film was cured.
 (評価)
 (1)ピール強度(90°ピール強度)
 エッチングにより内層回路を形成した100mm角のCCL基板(日立化成工業社製「E679FG」)の両面を銅表面粗化剤(メック社製「メックエッチボンド CZ-8101」)に浸漬して、銅表面を粗化処理した。得られた積層フィルムを、樹脂フィルム側から上記CCL基板の両面にセットして、積層体を得た。この積層体について、真空加圧式ラミネーター機(名機製作所社製「MVLP-500」)を用いて、20秒減圧して気圧を13hPa以下とし、その後ラミネート圧0.4MPa及びラミネート温度100℃で20秒間ラミネートし、更にプレス圧力1.0MPa及びプレス温度100℃で40秒間プレスした。
(Evaluation)
(1) Peel strength (90 ° peel strength)
Immerse both sides of a 100 mm square CCL substrate (“E679FG” manufactured by Hitachi Chemical Co., Ltd.) on which an inner layer circuit has been formed by etching into a copper surface roughening agent (“MEC etch bond CZ-8101” manufactured by MEC) to obtain a copper surface. Was roughened. The obtained laminated film was set on both surfaces of the CCL substrate from the resin film side to obtain a laminated body. About this laminate, using a vacuum pressurization type laminator (“MVLP-500” manufactured by Meiki Seisakusho Co., Ltd.), the pressure was reduced to 20 h or less by reducing the pressure for 20 seconds, and then the laminate pressure was 0.4 MPa and the laminate temperature was 100 ° C. The laminate was laminated for 2 seconds, and further pressed at a press pressure of 1.0 MPa and a press temperature of 100 ° C. for 40 seconds.
 次に、180℃及び30分の硬化条件で樹脂フィルムを硬化させた。その後、樹脂フィルムからPETフィルムを剥離し、硬化積層サンプルを得た。 Next, the resin film was cured under curing conditions of 180 ° C. and 30 minutes. Thereafter, the PET film was peeled from the resin film to obtain a cured laminated sample.
 60℃の膨潤液(アトテックジャパン社製「スウェリングディップセキュリガントP」と和光純薬工業社製「水酸化ナトリウム」とから調製された水溶液)に、上記硬化積層サンプルを入れて、膨潤温度60℃で10分間揺動させた。その後、純水で洗浄した。 The cured laminated sample is put in a swelling solution at 60 ° C. (an aqueous solution prepared from “Swelling Dip Securigant P” manufactured by Atotech Japan Co., Ltd.) and “Sodium hydroxide” manufactured by Wako Pure Chemical Industries, Ltd. Rock at 10 ° C. for 10 minutes. Thereafter, it was washed with pure water.
 80℃の過マンガン酸ナトリウム粗化水溶液(アトテックジャパン社製「コンセントレートコンパクトCP」、和光純薬工業社製「水酸化ナトリウム」)に、膨潤処理された上記硬化積層サンプルを入れて、粗化温度80℃で20分間揺動させた。その後、25℃の洗浄液(アトテックジャパン社製「リダクションセキュリガントP」、和光純薬工業社製「硫酸」)により2分間洗浄した後、純水でさらに洗浄した。このようにして、エッチングにより内層回路を形成したCCL基板上に、粗化処理された硬化物を形成した。 Put the above-mentioned cured laminated sample that has been swollen into 80 ° C sodium permanganate roughening aqueous solution ("Concentrate Compact CP" manufactured by Atotech Japan, "Sodium hydroxide" manufactured by Wako Pure Chemical Industries, Ltd.), and roughen The rocking was performed at a temperature of 80 ° C. for 20 minutes. Then, after washing | cleaning for 2 minutes with a 25 degreeC washing | cleaning liquid ("Reduction securigant P" by the Atotech Japan company, "Sulfuric acid" by Wako Pure Chemical Industries Ltd.), it wash | cleaned further with the pure water. In this way, a roughened cured product was formed on the CCL substrate on which the inner layer circuit was formed by etching.
 上記粗化処理された硬化物の表面を、60℃のアルカリクリーナ(アトテックジャパン社製「クリーナーセキュリガント902」)で5分間処理し、脱脂洗浄した。洗浄後、上記硬化物を25℃のプリディップ液(アトテックジャパン社製「プリディップネオガントB」)で2分間処理した。その後、上記硬化物を40℃のアクチベーター液(アトテックジャパン社製「アクチベーターネオガント834」)で5分間処理し、パラジウム触媒を付けた。次に、30℃の還元液(アトテックジャパン社製「リデューサーネオガントWA」)により、硬化物を5分間処理した。 The surface of the roughened cured product was treated with an alkali cleaner (“Cleaner Securigant 902” manufactured by Atotech Japan) for 5 minutes and degreased and washed. After washing, the cured product was treated with a 25 ° C. pre-dip solution (“Pre-Dip Neogant B” manufactured by Atotech Japan) for 2 minutes. Thereafter, the cured product was treated with an activator solution at 40 ° C. (“Activator Neo Gantt 834” manufactured by Atotech Japan) for 5 minutes to attach a palladium catalyst. Next, the cured product was treated with a reducing solution at 30 ° C. (“Reducer Neogant WA” manufactured by Atotech Japan) for 5 minutes.
 次に、上記硬化物を化学銅液(全てアトテックジャパン社製「ベーシックプリントガントMSK-DK」、「カッパープリントガントMSK」、「スタビライザープリントガントMSK」、「リデューサーCu」)に入れ、無電解めっきをめっき厚さが0.5μm程度になるまで実施した。無電解めっき後に、残留している水素ガスを除去するため、120℃の温度で30分間アニールをかけた。無電解めっきの工程までのすべての工程は、ビーカースケールで処理液を2Lとし、硬化物を揺動させながら実施した。 Next, the cured product is placed in a chemical copper solution (all manufactured by Atotech Japan “Basic Print Gantt MSK-DK”, “Copper Print Gantt MSK”, “Stabilizer Print Gantt MSK”, “Reducer Cu”). Was carried out until the plating thickness reached about 0.5 μm. After the electroless plating, annealing was performed at a temperature of 120 ° C. for 30 minutes in order to remove the remaining hydrogen gas. All the steps up to the electroless plating step were performed with a treatment liquid of 2 L on a beaker scale and while the cured product was swung.
 次に、無電解めっき処理された硬化物に、電解めっきをめっき厚さが25μmとなるまで実施した。電解銅めっきとして硫酸銅溶液(和光純薬工業社製「硫酸銅五水和物」、和光純薬工業社製「硫酸」、アトテックジャパン社製「ベーシックレベラーカパラシド HL」、アトテックジャパン社製「補正剤カパラシド GS」)を用いて、0.6A/cmの電流を流しめっき厚さが25μm程度となるまで電解めっきを実施した。銅めっき処理後、硬化物を190℃で90分間加熱し、硬化物を更に硬化させた。このようにして、銅めっき層が上面に積層された硬化物を得た。 Next, electrolytic plating was performed on the cured product that had been subjected to electroless plating until the plating thickness reached 25 μm. As an electrolytic copper plating, a copper sulfate solution (“copper sulfate pentahydrate” manufactured by Wako Pure Chemical Industries, Ltd., “sulfuric acid” manufactured by Wako Pure Chemical Industries, Ltd., “basic leveler kaparaside HL” manufactured by Atotech Japan Co., Ltd., “ using the correction agent Cupracid GS "), plating thickness passing a current of 0.6 a / cm 2 was carried out electrolytic plating until approximately 25 [mu] m. After the copper plating treatment, the cured product was heated at 190 ° C. for 90 minutes to further cure the cured product. Thus, the hardened | cured material with which the copper plating layer was laminated | stacked on the upper surface was obtained.
 得られた銅めっき層が積層された硬化物において、銅めっき層の表面に、10mm幅に切り欠きを入れた。その後、引張試験機(島津製作所社製「AG-5000B」)を用いて、クロスヘッド速度5mm/分の条件で、硬化物(絶縁層)と金属層(銅めっき層)のピール強度(90°ピール強度)を測定した。 In the cured product obtained by laminating the obtained copper plating layer, a 10 mm wide cutout was made on the surface of the copper plating layer. Then, using a tensile tester (“AG-5000B” manufactured by Shimadzu Corporation), peel strength (90 °) of the cured product (insulating layer) and the metal layer (copper plating layer) at a crosshead speed of 5 mm / min. Peel strength) was measured.
 [ピール強度の判定基準]
 ○:ピール強度が0.5kgf/cm以上
 △:ピール強度が0.4kgf/cm以上、0.5kgf/cm未満
 ×:ピール強度が0.4kgf/cm未満
[Peel strength criteria]
○: Peel strength is 0.5 kgf / cm or more Δ: Peel strength is 0.4 kgf / cm or more and less than 0.5 kgf / cm ×: Peel strength is less than 0.4 kgf / cm
 (2)樹脂材料の保存安定性
 得られた積層フィルムを25℃で3日間及び5日間それぞれ保管した。
(2) Storage stability of resin material The obtained laminated film was stored at 25 ° C. for 3 days and 5 days, respectively.
 銅張り積層板(厚さ150μmのガラスエポキシ基板と厚さ35μmの銅箔との積層体)を用意した。銅箔をエッチング処理し、L/Sが50μm/50μm及び長さが1cmである銅パターンを26本作製し、凹凸基板を得た。保管後の積層フィルムを、樹脂フィルム側から上記凹凸基板の凹凸表面に重ねて両面にセットして、積層体を得た。この積層体について、真空加圧式ラミネーター機(名機製作所社製「MVLP-500」)を用いて、20秒減圧して気圧を13hPa以下とし、その後ラミネート圧0.4MPa及びラミネート温度100℃で20秒間ラミネートし、更にプレス圧力1.0MPa及びプレス温度100℃で40秒間プレスした。このようにして、凹凸基板上に樹脂フィルムが積層されている積層体Aを得た。積層体Aの状態で、ビーコ社製「WYKO」を用いて、積層体Aにおける樹脂フィルムの上面の凹凸の値を測定した。具体的には、凹凸の隣り合う凹部部分と凸部部分との高低差の最大値を、凹凸の値として採用した。このようにして、ラミネート試験での凹凸の状態の有無を評価した。樹脂材料の保存安定性を下記の基準で判定した。 A copper-clad laminate (a laminate of a 150 μm thick glass epoxy substrate and a 35 μm thick copper foil) was prepared. The copper foil was etched to produce 26 copper patterns having an L / S of 50 μm / 50 μm and a length of 1 cm to obtain an uneven substrate. The laminated film after storage was set on both sides of the concavo-convex surface of the concavo-convex substrate from the resin film side to obtain a laminate. About this laminate, using a vacuum pressurization type laminator (“MVLP-500” manufactured by Meiki Seisakusho Co., Ltd.), the pressure was reduced to 20 h or less by reducing the pressure to 13 hPa or less. The laminate was laminated for 2 seconds, and further pressed at a press pressure of 1.0 MPa and a press temperature of 100 ° C. for 40 seconds. Thus, the laminated body A by which the resin film was laminated | stacked on the uneven substrate was obtained. In the state of the laminate A, the unevenness value of the upper surface of the resin film in the laminate A was measured using “WYKO” manufactured by Beco. Specifically, the maximum value of the height difference between the concave and convex portions adjacent to the concave and convex portions was adopted as the concave and convex value. Thus, the presence or absence of the uneven | corrugated state in the lamination test was evaluated. The storage stability of the resin material was determined according to the following criteria.
 [樹脂材料の保存安定性の判定基準]
 ○:3日後及び5日後の樹脂フィルムにおいて銅パターン内に樹脂が充填されており、凹凸の値が0.5μm以下
 △:3日後の樹脂フィルムにおいて銅パターン内に樹脂が充填されており、凹凸の値が0.5μm以下であるが、5日後の樹脂フィルムにおいて、銅パターン内に樹脂が充填されていない、または凹凸の値が0.5μmを超える
 ×:3日後及び5日後の樹脂フィルムにおいて、銅パターン内に樹脂が充填されていない、または凹凸の値が0.5μmを超える
[Criteria for storage stability of resin materials]
○: Resin film is filled in the resin film after 3 days and 5 days, and the unevenness value is 0.5 μm or less. Δ: The resin is filled in the copper pattern in the resin film after 3 days. In the resin film after 5 days, the resin is not filled in the copper pattern, or the unevenness value exceeds 0.5 μm. X: In the resin film after 3 days and after 5 days The copper pattern is not filled with resin, or the unevenness value exceeds 0.5 μm
 (3)ブリスターの抑制性
 銅めっき層が積層された100mm角の硬化物を用いて、JEDECのLEVEL3に準拠して、上記基板の吸湿(温度60℃及び湿度60RH%で40時間)を行った。その後、上記基板の窒素リフロー処理(ピークトップ温度260℃)を行った。なお、リフローは30回繰り返した。リフロー後のブリスターの発生の有無を目視により確認した。
(3) Inhibition of blister Using a 100 mm square cured product on which a copper plating layer was laminated, moisture absorption of the substrate (temperature of 60 ° C. and humidity of 60 RH% for 40 hours) was performed in accordance with LEVEL 3 of JEDEC. . Thereafter, nitrogen reflow treatment (peak top temperature 260 ° C.) of the substrate was performed. The reflow was repeated 30 times. The presence or absence of occurrence of blisters after reflow was confirmed visually.
 [ブリスターの抑制性の判定基準]
 ○:30回のリフローにてブリスター発生無
 △:20回のリフローにてブリスター発生無、21~29回のリフローにてブリスター発生
 ×:20回以下のリフローでブリスター発生
[Judgment criteria for blister suppression]
○: Blister does not occur after 30 reflows △: Blister does not occur after 20 reflows, Blister occurs after 21 to 29 reflows ×: Blister occurs after 20 or less reflows
 (4)平均線膨張係数(CTE)
 得られた硬化物(厚さ40μmの樹脂フィルムを使用)を3mm×25mmの大きさに裁断した。熱機械的分析装置(エスアイアイ・ナノテクノロジー社製「EXSTAR TMA/SS6100」)を用いて、引っ張り荷重33mN及び昇温速度5℃/分の条件で、裁断された硬化物の25℃~150℃までの平均線膨張係数(ppm/℃)を算出した。
(4) Average linear expansion coefficient (CTE)
The obtained cured product (using a 40 μm thick resin film) was cut into a size of 3 mm × 25 mm. Using a thermomechanical analyzer (“EXSTAR TMA / SS6100” manufactured by SII Nanotechnology Inc.), the cured product cut at 25 ° C. to 150 ° C. under conditions of a tensile load of 33 mN and a heating rate of 5 ° C./min. The average linear expansion coefficient (ppm / ° C.) was calculated.
 組成及び結果を下記の表1,2に示す。 Composition and results are shown in Tables 1 and 2 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 11…多層プリント配線板
 12…回路基板
 12a…上面
 13~16…絶縁層
 17…金属層
DESCRIPTION OF SYMBOLS 11 ... Multilayer printed wiring board 12 ... Circuit board 12a ... Upper surface 13-16 ... Insulating layer 17 ... Metal layer

Claims (10)

  1.  エポキシ化合物と、硬化剤と、シリカとを含み、
     前記硬化剤が、シアネートエステル化合物と、カルボジイミド化合物とを含む、樹脂材料。
    Including an epoxy compound, a curing agent, and silica;
    The resin material in which the said hardening | curing agent contains a cyanate ester compound and a carbodiimide compound.
  2.  前記樹脂材料中の溶剤を除く成分100重量%中、前記シリカの含有量が50重量%以上である、請求項1に記載の樹脂材料。 The resin material according to claim 1, wherein the content of the silica is 50% by weight or more in 100% by weight of the component excluding the solvent in the resin material.
  3.  前記シアネートエステル化合物の含有量の、前記カルボジイミド化合物の含有量に対する比が、重量比で0.2以上、4.0以下である、請求項1又は2に記載の樹脂材料。 The resin material according to claim 1 or 2, wherein a ratio of the content of the cyanate ester compound to the content of the carbodiimide compound is 0.2 to 4.0 by weight.
  4.  前記エポキシ化合物の含有量の、前記硬化剤の含有量に対する比が、重量比で1.0以上、3.0以下である、請求項1~3のいずれか1項に記載の樹脂材料。 The resin material according to any one of claims 1 to 3, wherein a ratio of the content of the epoxy compound to the content of the curing agent is 1.0 or more and 3.0 or less by weight.
  5.  前記カルボジイミド化合物が、脂環式骨格を有する、請求項1~4のいずれか1項に記載の樹脂材料。 The resin material according to any one of claims 1 to 4, wherein the carbodiimide compound has an alicyclic skeleton.
  6.  樹脂フィルムである、請求項1~5のいずれか1項に記載の樹脂材料。 The resin material according to any one of claims 1 to 5, which is a resin film.
  7.  多層プリント配線板において、絶縁層を形成するために用いられる多層プリント配線板用樹脂材料である、請求項1~6のいずれか1項に記載の樹脂材料。 The resin material according to any one of claims 1 to 6, which is a resin material for a multilayer printed wiring board used for forming an insulating layer in a multilayer printed wiring board.
  8.  粗化処理される硬化物を得るために用いられる、請求項1~7のいずれか1項に記載の樹脂材料。 The resin material according to any one of claims 1 to 7, which is used for obtaining a cured product to be roughened.
  9.  基材と、
     前記基材の表面上に積層された樹脂フィルムとを備え、
     前記樹脂フィルムが、請求項1~8のいずれか1項に記載の樹脂材料である、積層フィルム。
    A substrate;
    A resin film laminated on the surface of the substrate,
    A laminated film, wherein the resin film is the resin material according to any one of claims 1 to 8.
  10.  回路基板と、
     前記回路基板上に配置された複数の絶縁層と、
     複数の前記絶縁層間に配置された金属層とを備え、
     複数の前記絶縁層の内の少なくとも1層が、請求項1~8のいずれか1項に記載の樹脂材料の硬化物である、多層プリント配線板。
    A circuit board;
    A plurality of insulating layers disposed on the circuit board;
    A metal layer disposed between the plurality of insulating layers,
    A multilayer printed wiring board, wherein at least one of the plurality of insulating layers is a cured product of the resin material according to any one of claims 1 to 8.
PCT/JP2018/009161 2017-03-10 2018-03-09 Resin material, laminated film, and multilayer printed circuit board WO2018164259A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020197017909A KR102508097B1 (en) 2017-03-10 2018-03-09 Resin materials, laminated films and multi-layer printed wiring boards
CN201880016256.8A CN110382589B (en) 2017-03-10 2018-03-09 Resin material, laminated film, and multilayer printed wiring board
JP2018517447A JP6993324B2 (en) 2017-03-10 2018-03-09 Resin material, laminated film and multilayer printed wiring board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017046438 2017-03-10
JP2017-046438 2017-03-10

Publications (1)

Publication Number Publication Date
WO2018164259A1 true WO2018164259A1 (en) 2018-09-13

Family

ID=63447857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009161 WO2018164259A1 (en) 2017-03-10 2018-03-09 Resin material, laminated film, and multilayer printed circuit board

Country Status (4)

Country Link
JP (1) JP6993324B2 (en)
KR (1) KR102508097B1 (en)
CN (1) CN110382589B (en)
WO (1) WO2018164259A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020125380A (en) * 2019-02-01 2020-08-20 積水化学工業株式会社 Resin composition, cured product, and build-up film
JP2020132646A (en) * 2019-02-12 2020-08-31 住友ベークライト株式会社 Resin composition, resin film with carrier using the same, prepreg, laminated plate, printed wiring board, and semiconductor device
US20210002475A1 (en) * 2019-07-02 2021-01-07 Ajinomoto Co., Inc. Resin composition
JP2021050287A (en) * 2019-09-25 2021-04-01 日清紡ケミカル株式会社 Curing agent for epoxy resin, epoxy resin composition and cured product thereof
JP7432331B2 (en) 2019-09-25 2024-02-16 日清紡ケミカル株式会社 Method of curing epoxy resin composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115851197A (en) * 2022-12-30 2023-03-28 广东生益科技股份有限公司 Thermosetting resin composition and insulating adhesive film

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4220757A (en) * 1979-04-12 1980-09-02 Blount David H Process for the production of alkali metal-cellulose-silicates and their reaction products
JP2000290597A (en) * 1999-04-09 2000-10-17 Sumitomo Bakelite Co Ltd Die attach paste
JP2006335834A (en) * 2005-05-31 2006-12-14 Tdk Corp Thermosetting resin composition, resin sheet, laminate, cured body and laminated sheet
JP2010070757A (en) * 2008-08-22 2010-04-02 Toyo Ink Mfg Co Ltd Curable urethane resin, curable resin composition containing the resin, and method for producing curable urethane resin
JP2012140532A (en) * 2010-12-28 2012-07-26 Toyobo Co Ltd Thermoplastic polyester resin composition and foaming-molded article
JP2015229763A (en) * 2014-06-06 2015-12-21 パナソニックIpマネジメント株式会社 Resin composition, prepreg, metal-clad laminate sheet, printed wiring board
JP2016032923A (en) * 2014-07-31 2016-03-10 味の素株式会社 Resin sheet, laminated sheet, laminate and semiconductor device
JP2017149861A (en) * 2016-02-25 2017-08-31 味の素株式会社 Resin sheet with support body

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5664693B2 (en) 2013-04-12 2015-02-04 味の素株式会社 Resin composition
JP6672616B2 (en) * 2014-06-30 2020-03-25 味の素株式会社 Resin composition, adhesive film, printed wiring board, and semiconductor device
JP6844311B2 (en) 2016-03-28 2021-03-17 味の素株式会社 Resin composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4220757A (en) * 1979-04-12 1980-09-02 Blount David H Process for the production of alkali metal-cellulose-silicates and their reaction products
JP2000290597A (en) * 1999-04-09 2000-10-17 Sumitomo Bakelite Co Ltd Die attach paste
JP2006335834A (en) * 2005-05-31 2006-12-14 Tdk Corp Thermosetting resin composition, resin sheet, laminate, cured body and laminated sheet
JP2010070757A (en) * 2008-08-22 2010-04-02 Toyo Ink Mfg Co Ltd Curable urethane resin, curable resin composition containing the resin, and method for producing curable urethane resin
JP2012140532A (en) * 2010-12-28 2012-07-26 Toyobo Co Ltd Thermoplastic polyester resin composition and foaming-molded article
JP2015229763A (en) * 2014-06-06 2015-12-21 パナソニックIpマネジメント株式会社 Resin composition, prepreg, metal-clad laminate sheet, printed wiring board
JP2016032923A (en) * 2014-07-31 2016-03-10 味の素株式会社 Resin sheet, laminated sheet, laminate and semiconductor device
JP2017149861A (en) * 2016-02-25 2017-08-31 味の素株式会社 Resin sheet with support body

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020125380A (en) * 2019-02-01 2020-08-20 積水化学工業株式会社 Resin composition, cured product, and build-up film
JP7249162B2 (en) 2019-02-01 2023-03-30 積水化学工業株式会社 Resin composition, cured product, and build-up film
JP2020132646A (en) * 2019-02-12 2020-08-31 住友ベークライト株式会社 Resin composition, resin film with carrier using the same, prepreg, laminated plate, printed wiring board, and semiconductor device
US20210002475A1 (en) * 2019-07-02 2021-01-07 Ajinomoto Co., Inc. Resin composition
JP2021008583A (en) * 2019-07-02 2021-01-28 味の素株式会社 Resin composition
JP7283274B2 (en) 2019-07-02 2023-05-30 味の素株式会社 resin composition
US11725104B2 (en) * 2019-07-02 2023-08-15 Ajinomoto Co., Inc. Resin composition
JP2021050287A (en) * 2019-09-25 2021-04-01 日清紡ケミカル株式会社 Curing agent for epoxy resin, epoxy resin composition and cured product thereof
JP7432331B2 (en) 2019-09-25 2024-02-16 日清紡ケミカル株式会社 Method of curing epoxy resin composition

Also Published As

Publication number Publication date
TW201842047A (en) 2018-12-01
JPWO2018164259A1 (en) 2020-01-09
CN110382589B (en) 2022-12-27
JP6993324B2 (en) 2022-01-13
CN110382589A (en) 2019-10-25
KR20190122646A (en) 2019-10-30
KR102508097B1 (en) 2023-03-10

Similar Documents

Publication Publication Date Title
JP6391851B2 (en) Interlayer insulating material and multilayer printed wiring board
JP6993324B2 (en) Resin material, laminated film and multilayer printed wiring board
JP5629407B2 (en) Insulating resin material and multilayer substrate
JP2020023714A (en) Resin material and multilayer printed board
JP6931542B2 (en) Cured resin composition, resin composition and multilayer substrate
JP6408847B2 (en) Resin composition
JP2013040298A (en) Epoxy resin material and multilayer board
JP2024009109A (en) Resin material and multilayer printed wiring board
JP5799174B2 (en) Insulating resin film, pre-cured product, laminate and multilayer substrate
JP5752071B2 (en) B-stage film and multilayer substrate
WO2018062405A1 (en) Cured body and multilayered substrate
JP6867131B2 (en) Laminated body and manufacturing method of laminated body
WO2016047682A1 (en) Resin film and laminated film
JP6159627B2 (en) Resin composition, resin film and multilayer substrate
JP2022010136A (en) Method for manufacturing multilayer printed wiring board, resin film and multilayer printed wiring board
JP2014062150A (en) Insulating resin film, production method of insulating resin film, preliminarily cured product, laminate, and multilayer substrate
TWI835723B (en) Resin materials, laminated films and multilayer printed wiring boards
JP7027382B2 (en) Resin film and multi-layer printed wiring board
JP7254528B2 (en) Resin materials and multilayer printed wiring boards
JP7112438B2 (en) Cured body, B stage film and multilayer printed wiring board
JPWO2019117261A1 (en) Combined members for laminated films and printed wiring boards
WO2014156734A1 (en) Laminate, method for producing laminate and multilayer substrate

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018517447

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18764800

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197017909

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18764800

Country of ref document: EP

Kind code of ref document: A1