WO2018155582A1 - 非水電解質二次電池及び充電方法 - Google Patents

非水電解質二次電池及び充電方法 Download PDF

Info

Publication number
WO2018155582A1
WO2018155582A1 PCT/JP2018/006544 JP2018006544W WO2018155582A1 WO 2018155582 A1 WO2018155582 A1 WO 2018155582A1 JP 2018006544 W JP2018006544 W JP 2018006544W WO 2018155582 A1 WO2018155582 A1 WO 2018155582A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
positive electrode
secondary battery
active material
electrode active
Prior art date
Application number
PCT/JP2018/006544
Other languages
English (en)
French (fr)
Inventor
貴彦 皆川
秀幸 杉山
Original Assignee
エリーパワー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エリーパワー株式会社 filed Critical エリーパワー株式会社
Priority to KR1020197027695A priority Critical patent/KR102642444B1/ko
Priority to US16/487,307 priority patent/US11749840B2/en
Priority to EP18757078.3A priority patent/EP3588658A4/en
Priority to CN201880013723.1A priority patent/CN110383569A/zh
Publication of WO2018155582A1 publication Critical patent/WO2018155582A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M2010/4292Aspects relating to capacity ratio of electrodes/electrolyte or anode/cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery and a charging method.
  • Lithium ion secondary batteries have been put to practical use in various applications such as mobile phones, digital cameras, notebook computers, power sources for electric vehicles, and household storage batteries.
  • charge / discharge characteristics of a lithium ion secondary battery deteriorate when the temperature is low (see, for example, Patent Document 1).
  • the charging temperature range is 0 ° C. or higher.
  • the use of lithium ion secondary batteries is spreading, and the use in winter outdoors is also required. For example, charging and discharging at low temperatures have been required for motorcycle starting applications and industrial applications installed outdoors.
  • the present invention has been made in view of such circumstances, and provides a non-aqueous electrolyte secondary battery that can suppress the deposition of metallic lithium during low-temperature charging and has excellent life characteristics.
  • the present invention includes a positive electrode using an olivine type compound as a positive electrode active material, a negative electrode using amorphous carbon as a negative electrode active material, a separator sandwiched between the positive electrode and the negative electrode, a non-aqueous electrolyte, and the positive electrode And a negative electrode, the separator, and an exterior body containing the nonaqueous electrolyte, wherein the positive electrode, the negative electrode, and the nonaqueous electrolyte have the formula: (Rn / (Rp + Rn) )) ⁇ 0.54 (where Rp is the positive electrode internal resistance value resulting from the positive electrode and positive electrode reaction in the charging of the secondary battery, and Rn is due to the negative electrode and negative electrode reaction in the charging of the secondary battery)
  • the non-aqueous electrolyte secondary battery is provided so as to satisfy (Rp + Rn) is an internal resistance value between terminals of the secondary battery in charging the secondary battery) I will provide a.
  • the secondary battery of the present invention includes a positive electrode having an olivine type compound as a positive electrode active material, a negative electrode having amorphous carbon as a negative electrode active material, a separator sandwiched between the positive electrode and the negative electrode, a non-aqueous electrolyte, An exterior body containing a positive electrode, a negative electrode, a separator, and a nonaqueous electrolyte is provided. For this reason, a secondary battery can be charged by applying a voltage between a positive electrode and a negative electrode. Moreover, it can discharge from the charged secondary battery. By making the positive electrode active material an olivine type compound, the safety of the secondary battery can be improved.
  • the positive electrode internal resistance value Rp is increased, and the ratio of the negative electrode internal resistance value Rn to the inter-terminal internal resistance value (Rp + Rn) of the secondary battery can be reduced.
  • the positive electrode, the negative electrode, and the nonaqueous electrolyte included in the secondary battery of the present invention are provided so as to satisfy the formula: (Rn / (Rp + Rn)) ⁇ 0.54.
  • the secondary battery of the present invention has excellent cycle characteristics at low temperatures. This was verified by experiments conducted by the inventors. Therefore, the secondary battery of the present invention can suppress the precipitation of metallic lithium during low-temperature charging and has excellent life characteristics.
  • FIG. 1 is a schematic perspective view of a nonaqueous electrolyte secondary battery according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of a nonaqueous electrolyte secondary battery taken along broken line XX in FIG. It is a graph which shows the result of charging / discharging measurement. It is a graph which shows the result of a cycle test.
  • the non-aqueous electrolyte secondary battery of the present invention includes a positive electrode using an olivine type compound as a positive electrode active material, a negative electrode using amorphous carbon as a negative electrode active material, a separator sandwiched between the positive electrode and the negative electrode, A non-aqueous electrolyte secondary battery comprising a non-aqueous electrolyte, an outer body containing the positive electrode, the negative electrode, the separator, and the non-aqueous electrolyte, wherein the positive electrode, the negative electrode, and the non-aqueous electrolyte are: Formula: (Rn / (Rp + Rn)) ⁇ 0.54 (where Rp is the positive electrode internal resistance value resulting from the positive electrode and positive electrode reaction in charging the secondary battery, and Rn is in the charging of the secondary battery) A negative electrode internal resistance value resulting from the negative electrode and negative electrode reaction, and (Rp + Rn) is an internal resistance value between terminals of the secondary battery in charging the secondary battery). To do.
  • the positive electrode, the negative electrode, and the non-aqueous electrolyte included in the non-aqueous electrolyte secondary battery of the present invention have a negative electrode open-circuit potential of 0.1 V (vs. Li / Li + ) when the secondary battery is in a charged state (SOC) of 0 to 100%. ) It is preferable to be provided as described above. Thereby, precipitation of metallic lithium during low-temperature charging can be suppressed.
  • the negative electrode included in the nonaqueous electrolyte secondary battery of the present invention is preferably provided so that the utilization capacity of the negative electrode active material is 190 mAh / g or less. Thereby, precipitation of metallic lithium during low-temperature charging can be suppressed.
  • the positive electrode included in the non-aqueous electrolyte secondary battery of the present invention preferably includes a sheet-like positive electrode current collector and a positive electrode active material layer provided on the positive electrode current collector, and the negative electrode has a sheet-like shape. It is preferable to include a negative electrode current collector and a negative electrode active material layer provided on the negative electrode current collector.
  • the negative electrode active material layer included in the negative electrode preferably contains amorphous carbon as the negative electrode active material and has a porosity of 53% or less. Thereby, precipitation of metallic lithium during low-temperature charging can be suppressed.
  • the positive electrode active material is preferably lithium iron phosphate
  • the non-aqueous electrolyte preferably includes a lithium salt and a carbonate compound.
  • the present invention also provides a charging method in which the charging voltage is controlled to 3.75 V or less in the state of charge (SOC) 0 to 100% of the secondary battery of the present invention. According to the charging method of the present invention, it is possible to suppress the deposition of metallic lithium during low-temperature charging.
  • FIG. 1 is a schematic perspective view of a nonaqueous electrolyte secondary battery according to the present embodiment
  • FIG. 2 is a schematic cross-sectional view of the nonaqueous electrolyte secondary battery taken along a broken line XX in FIG.
  • the non-aqueous electrolyte secondary battery 30 of this embodiment is sandwiched between a positive electrode 8 using an olivine type compound as a positive electrode active material, a negative electrode 9 using amorphous carbon as a negative electrode active material, and the positive electrode 8 and the negative electrode 9.
  • a non-aqueous electrolyte secondary battery 30 comprising a separator 10, a non-aqueous electrolyte 25, a positive electrode 8, a negative electrode 9, and an outer package 1 containing the separator 10 and the non-aqueous electrolyte 25, the positive electrode 8, the negative electrode 9 and the non-aqueous electrolyte 25 have the formula: (Rn / (Rp + Rn)) ⁇ 0.54 (where Rp is the positive electrode internal resistance value resulting from the positive electrode 8 and the positive electrode reaction in the charging of the secondary battery 30, and Rn Is the negative electrode internal resistance value resulting from the negative electrode 9 and the negative electrode reaction in the charging of the secondary battery 30, and (Rp + Rn) is the internal resistance value between the terminals of the secondary battery 30 in the charging of the secondary battery 30). It is characterized by being provided in.
  • the nonaqueous electrolyte secondary battery 30 of the present embodiment will be described.
  • the nonaqueous electrolyte secondary battery 30 of the present invention is a secondary battery using a nonaqueous electrolyte as an electrolyte, for example, a lithium ion secondary battery.
  • the exterior body 1 is a battery exterior body that accommodates the positive electrode 8, the negative electrode 9, the separator 10, and the nonaqueous electrolyte 25.
  • the outer package 1 may be formed into a bag shape by welding a laminate film.
  • the nonaqueous electrolyte secondary battery 10 is a pouch battery.
  • the exterior body 1 may be a metal case or a hard resin case.
  • the positive electrode 8 is an electrode using an olivine type compound as a positive electrode active material.
  • the positive electrode active material is a material that directly participates in the transfer of electrons accompanied by charge transfer in the positive electrode.
  • the safety of the nonaqueous electrolyte secondary battery 30 can be improved.
  • the positive electrode internal resistance value Rp increases, and the ratio of the negative electrode internal resistance value Rn to the inter-terminal internal resistance value (Rp + Rn) of the secondary battery can be reduced.
  • Olivine type compound as a positive electrode active material a material having an olivine crystal structure, for example, LiFePO 4, LiMnPO 4, Li x M y PO 4 (where, 0.05 ⁇ x ⁇ 1.2,0 ⁇ y ⁇ 1, and M is at least one of Fe, Mn, Cr, Co, Cu, Ni, V, Mo, Ti, Zn, Al, Ga, Mg, B, and Nb).
  • the positive electrode 8 can include a sheet-like positive electrode current collector 14 and a positive electrode active material layer 12 provided on the positive electrode current collector 14.
  • the positive electrode current collector 14 is a sheet serving as a base material for providing the positive electrode active material layer 12, and is a conductor that electrically connects the electrode connection terminal 20 a and the positive electrode active material layer 12.
  • the positive electrode current collector 14 is, for example, an aluminum foil.
  • the positive electrode active material layer 12 is a layer containing a positive electrode active material.
  • the positive electrode active material layer 12 may be provided on one side of the positive electrode current collector 14 or may be provided on both sides of the positive electrode current collector 14.
  • the positive electrode active material layer 12 can include positive electrode active material fine particles.
  • the positive electrode active material fine particles may have a conductive film on the surface. As a result, the conductivity of the surface of the fine particles where the intercalation reaction proceeds can be improved, and the internal resistance of the positive electrode can be lowered.
  • the conductive film is, for example, a carbon film.
  • the positive electrode active material layer 12 can include a conductive additive. Thereby, the conductivity of the positive electrode active material layer 12 can be improved, and the internal resistance of the positive electrode can be reduced.
  • the conductive auxiliary agent is, for example, acetylene black.
  • the conductive auxiliary agent may be fine particles of coke-based soft carbon that is graphitizable carbon.
  • the positive electrode active material layer 12 can contain a binder.
  • the binder is, for example, polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), styrene-butadiene copolymer (SBR), acrylonitrile rubber, or acrylonitrile rubber-PTFE mixture.
  • a paste is prepared by mixing a powder of a positive electrode active material, a conductive additive, and a binder, and this paste is applied onto the positive electrode current collector 14. Thereafter, the positive electrode active material layer 12 can be formed by drying and pressing the coating layer.
  • the solvent used for preparing the paste include dimethylformamide, N-methylpyrrolidone, isopropanol, toluene and the like.
  • the negative electrode 9 is an electrode using amorphous carbon as a negative electrode active material.
  • the negative electrode active material is a material that directly participates in the transfer of electrons accompanied by charge transfer in the negative electrode.
  • the amorphous carbon serving as the negative electrode active material includes amorphous carbon and microcrystalline carbon.
  • the amorphous carbon is, for example, soft carbon.
  • the negative electrode 9 can include a sheet-like negative electrode current collector 15 and a negative electrode active material layer 13 provided on the negative electrode current collector 15.
  • the negative electrode current collector 15 is a sheet serving as a base material for providing the negative electrode active material layer 13 and is a conductor that electrically connects the electrode connection terminal 20 b and the negative electrode active material layer 13.
  • the negative electrode current collector 13 is, for example, a copper foil.
  • the negative electrode active material layer 13 is a layer containing a negative electrode active material.
  • the negative electrode active material layer 13 may be provided on one surface of the negative electrode current collector 15, or may be provided on both surfaces of the negative electrode current collector 15.
  • the negative electrode active material layer 13 can include, for example, fine particles of a negative electrode active material.
  • the negative electrode active material layer 13 can contain a binder.
  • the binder is, for example, polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), styrene-butadiene copolymer (SBR), acrylonitrile rubber, or acrylonitrile rubber-PTFE mixture.
  • the negative electrode active material layer 13 can contain a thickener.
  • the thickener is, for example, sodium carboxymethyl cellulose (CMC).
  • a negative electrode active material powder, a binder, and a thickener are mixed to prepare a paste, and this paste is applied onto the negative electrode current collector 15. Then, the negative electrode active material layer 13 can be formed by drying the coating layer and performing a press treatment.
  • the solvent used for preparing the paste include dimethylformamide, N-methylpyrrolidone, isopropanol, toluene and the like.
  • the negative electrode 9 can be provided so that the utilization capacity of the negative electrode active material is 190 mAh / g or less. Thereby, it is possible to suppress the deposition of metallic lithium when the nonaqueous electrolyte secondary battery 30 is charged at a low temperature.
  • the utilization capacity of the negative electrode active material can be adjusted by changing the ratio between the amount of the negative electrode active material contained in the negative electrode 9 and the amount of the positive electrode active material contained in the positive electrode 8.
  • the negative electrode active material layer 13 can have a porosity of 53% or less. Thereby, it is possible to suppress the deposition of metallic lithium when the nonaqueous electrolyte secondary battery 30 is charged at a low temperature.
  • the porosity of the negative electrode active material layer 13 can be adjusted, for example, by adjusting the pressing pressure when forming the negative electrode active material layer 13.
  • the separator 10 has a sheet shape and is disposed between the positive electrode 8 and the negative electrode 9. Further, the separator 10 can constitute the electrode laminate 7 as shown in FIG. 2 together with the positive electrode 8 and the negative electrode 9. By providing the separator 10, it is possible to prevent a short-circuit current from flowing between the positive electrode 8 and the negative electrode 9.
  • the separator 10 is not particularly limited as long as it can prevent a short-circuit current from flowing and can transmit ions conducted between the positive electrode and the negative electrode.
  • a polyolefin microporous film, a cellulose sheet, and an aramid sheet may be used. Can do.
  • the nonaqueous electrolyte 25 is accommodated in the outer package 1 and serves as an ion conductive medium between the positive electrode and the negative electrode.
  • the nonaqueous electrolyte 25 includes a nonaqueous solvent and an electrolyte salt dissolved in the nonaqueous solvent.
  • the non-aqueous solvent contained in the non-aqueous electrolyte 25 carbonate compounds (cyclic carbonate compounds, chain carbonate compounds, etc.), lactones, ethers, esters and the like can be used, and two or more of these solvents are mixed. It can also be used. Among these, it is particularly preferable to use a mixture of a cyclic carbonate compound and a chain carbonate compound.
  • Examples of the electrolyte salt contained in the non-aqueous electrolyte 25 include LiCF 3 SO 3 , LiAsF 6 , LiClO 4 , LiBF 4 , LiPF 6 , LiBOB, LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) And the like. Moreover, you may mix
  • the positive electrode 8, the negative electrode 9, and the nonaqueous electrolyte 25 can be provided so as to satisfy the formula: (Rn / (Rp + Rn)) ⁇ 0.54. Thereby, it is possible to suppress the deposition of metallic lithium when the nonaqueous electrolyte secondary battery 30 is charged at a low temperature.
  • Rp is the positive electrode internal resistance value (DC resistance value) resulting from the positive electrode 8 and the positive electrode reaction in the charging of the secondary battery 30
  • Rn is the negative electrode 9 and the negative electrode resulting from the negative electrode reaction in the charging of the secondary battery 30. It is an internal resistance value (DC resistance value)
  • (Rp + Rn) is an inter-terminal internal resistance value (DC resistance) of the secondary battery 30 when the secondary battery 30 is charged.
  • Rn / (Rp + Rn) can be adjusted, for example, by adjusting the porosity of the negative electrode active material layer 13 and the utilization capacity of the negative electrode active material.
  • Rp and Rn should be measured with the same SOC.
  • Rp and Rn are preferably measured at an SOC of 10% to 90%. If it is measured near 0% or 100%, it is easily affected by other factors. This is because a stable internal resistance value can be obtained within the range of 10% or more and 90% or less, and a resistance value that does not change much can be obtained over this range.
  • Rp may be a positive electrode internal resistance value at SOC 20%
  • Rn may be a negative electrode internal resistance value at SOC 20%
  • (Rp + Rn) is an internal resistance value between terminals of the secondary battery 30 at SOC 20%. Also good.
  • (Rn / (Rp + Rn)) can be measured using, for example, the secondary battery 30 with a reference electrode.
  • the battery is charged with 0.2 ItA, 0.5 ItA, and 1 ItA at SOC 20% for 10 seconds, the terminal voltage and the negative electrode potential of the secondary battery 30 with reference electrode are measured, and the internal voltage of the secondary battery 30 is determined from the measured terminal voltage.
  • the resistance value (Rp + Rn) can be calculated, and the negative electrode internal resistance value Rn can be calculated from the measured potential (V vs. Li + / Li) of the negative electrode. From these values, (Rn / (Rp + Rn)) can be calculated.
  • a metal lithium electrode can be used as the reference electrode.
  • a positive electrode reference electrode can be disposed in the vicinity of the positive electrode 8 and a negative electrode reference electrode can be disposed in the vicinity of the negative electrode 9.
  • the positive electrode internal resistance value Rp is a charge transfer resistance at the interface between the positive electrode 8 and the electrolyte 25, a fixed internal diffusion resistance in the positive electrode active material layer 12, a transfer resistance of Li ions in the electrolyte 25 between the positive electrode 8 and the reference electrode, and the like. is there.
  • the negative electrode internal resistance value Rn is the charge transfer resistance at the interface between the negative electrode 9 (strictly, the SEI formed on the surface of the negative electrode 9) and the electrolyte 25, the fixed diffusion resistance in the negative electrode active material layer 13, the negative electrode 9 and the reference For example, the migration resistance of Li ions in the electrolyte 25 between the electrodes.
  • the secondary battery 30 with reference electrode used for the measurement, the positive electrode active material layer 12, the negative electrode active material layer 13, the nonaqueous electrolyte 25, the separator 10, the reference electrode having the same distance between the electrodes, etc. are not inserted.
  • the secondary battery 30 is considered to have substantially the same inter-terminal internal resistance value (Rp + Rn), positive electrode internal resistance value Rp, and negative electrode internal resistance value Rn as the secondary battery 30 including the reference electrode.
  • Rp + Rn inter-terminal internal resistance value
  • Rp positive electrode internal resistance value
  • Rn negative electrode internal resistance value
  • Rn negative electrode internal resistance value
  • the positive electrode 8, the negative electrode 9, and the nonaqueous electrolyte 25 are provided so that the open-circuit potential of the negative electrode 9 is 0.1 V (vs. Li / Li + ) or more when the secondary battery 30 is in a charged state (SOC) of 0 to 100%. be able to. Thereby, it is possible to suppress the deposition of metallic lithium when the nonaqueous electrolyte secondary battery 30 is charged at a low temperature.
  • the porosity of the negative electrode active material layer 13 and the use capacity of the negative electrode active material of the negative electrode 9 the secondary potential is adjusted so that the open-circuit potential of the negative electrode 9 becomes 0.1 V (vs. Li / Li + ) or more.
  • a battery 30 can be formed.
  • the open-circuit potential of the negative electrode 9 can be calculated, for example, by adding the operating potential of the negative electrode 9 during charging and discharging and dividing by two.
  • the non-aqueous electrolyte secondary battery 30 can be charged by controlling the charging voltage to 3.75 V or less when the non-aqueous electrolyte secondary battery 30 is in a charged state (SOC) of 0 to 100%. Thereby, it is possible to suppress the deposition of metallic lithium when the nonaqueous electrolyte secondary battery 30 is charged at a low temperature.
  • SOC charged state
  • This paste is applied to one side of a copper foil as a negative electrode current collector so that the coating mass is 0.47 g / 100 cm 2 , dried and pressed to provide a negative electrode active material layer on one side of the copper foil.
  • a negative electrode was produced.
  • size of copper foil is 54.5 mm x 105.5 mm, The negative electrode active material layer was provided in 53.0 mm x 95.0 mm of them.
  • the porosity of the negative electrode active material layer was 47%.
  • One positive electrode, a separator, and one negative electrode are laminated so that the positive electrode active material layer and the negative electrode active material layer face each other with a separator (thickness: 16 ⁇ m) made of a polyolefin-based material, and the periphery of the positive electrode and the negative electrode is a separator. I covered it with a layer.
  • One reference electrode metal lithium electrode
  • the other reference electrode metal lithium electrode
  • Example 1-1 a test cell of Example 1-1 was produced.
  • This paste was applied to both sides of the copper foil as the negative electrode current collector so that the coating mass on one side was 0.47 g / 100 cm 2 , dried, pressed, and pressed on both sides of the copper foil.
  • a negative electrode provided with a material layer was produced. The porosity of the negative electrode active material layer was 47%. Further, a negative electrode was produced in the same manner as in the test cell of Example 1-1 except that a negative electrode active material layer was provided on both surfaces of the copper foil.
  • the positive electrode and the negative electrode are alternately stacked, and a separator (thickness: 16 ⁇ m) made of a polyolefin-based material is disposed between the positive electrode and the negative electrode adjacent to the positive electrode so that no short-circuit current flows between the positive electrode and the negative electrode.
  • a separator thinness: 16 ⁇ m
  • 30 positive electrodes, a separator, and 31 negative electrodes were laminated. This laminate was placed in an outer package made of a laminate film, and the openings other than the liquid injection port of the outer package were closed.
  • Example 1-2 the same separator, electrolyte solution, and exterior body as those in the test cell of Example 1-1 were used.
  • Rn / (Rp + Rn) of the test cell of Example 1-2 and the open circuit potential of the negative electrode are substantially the same as Rn / (Rp + Rn) of the test cell of Example 1-1 and the open circuit potential of the negative electrode, respectively.
  • a test cell of Example 1-2 was produced.
  • the test cell of Example 1-2 has a larger battery capacity than the test cell of Example 1-1, it is possible to easily confirm the change in the capacity retention rate.
  • Example 2-1 (Preparation of test cell of Example 2-1) The negative electrode active material layer was pressed at a pressure lower than that of Example 1-1 to produce a negative electrode having a negative electrode active material layer with a porosity of 53%. As other manufacturing methods, the test cell of Example 2-1 was manufactured in the same manner as the test cell of Example 1-1.
  • Example 2-2 (Preparation of test cell of Example 2-2) The negative electrode active material layer was pressed at a pressure lower than that of Example 1-2 to prepare a negative electrode having a negative electrode active material layer with a porosity of 53%.
  • the test cell of Example 2-2 was manufactured in the same manner as the test cell of Example 1-2. Further, Rn / (Rp + Rn) and the open circuit potential of the negative electrode of the test cell of Example 2-2 are substantially the same as Rn / (Rp + Rn) and the open circuit potential of the negative electrode of the test cell of Example 2-1, respectively. Then, a test cell of Example 2-2 was produced.
  • a paste was prepared using soft carbon, SBR, and CMC such that the solid content ratio after drying was 94: 5: 1.
  • a negative electrode having a negative electrode active material layer provided on one side of a copper foil, the paste being applied to one side of a copper foil as a negative electrode current collector so that the coating mass is 0.38 g / 100 cm 2 was made.
  • the test cell of Comparative Example 1-1 was produced in the same manner as the test cell of Example 1-1. In the test cell of Comparative Example 1-1, since the amount of soft carbon (negative electrode active material) contained in the negative electrode active material layer is small, the utilization capacity of the negative electrode active material is increased.
  • Rn / (Rp + Rn) and the open circuit potential of the negative electrode of the test cell of Comparative Example 1-2 are substantially the same as Rn / (Rp + Rn) and the open circuit potential of the negative electrode of the test cell of Comparative Example 1-1, respectively. Then, a test cell of Comparative Example 1-2 was produced. In the test cell of Comparative Example 1-2, since the amount of soft carbon (negative electrode active material) contained in the negative electrode active material layer is small, the utilization capacity of the negative electrode active material is increased.
  • test cell of Comparative Example 2-1 (Preparation of test cell of Comparative Example 2-1) The negative electrode active material layer was pressed at a pressure lower than that of Example 1-1 to produce a negative electrode having a negative electrode active material layer with a porosity of 62%.
  • the test cell of Comparative Example 2-1 was produced in the same manner as the test cell of Example 1-1.
  • test cell of Comparative Example 2-2 The negative electrode active material layer was pressed at a pressure lower than that of Example 1-2 to produce a negative electrode having a negative electrode active material layer having a porosity of 62%.
  • the test cell of Comparative Example 2-2 was produced in the same manner as the test cell of Example 1-2.
  • Rn / (Rp + Rn) and the open circuit potential of the negative electrode of the test cell of Comparative Example 2-2 are substantially the same as Rn / (Rp + Rn) and the open circuit potential of the negative electrode of the test cell of Comparative Example 2-1, respectively. Then, a test cell of Comparative Example 2-2 was produced.
  • test cell of Comparative Example 3-1 A paste was applied to one side of the copper foil so that the coating mass was 0.42 g / 100 cm 2 to prepare a negative electrode active material layer. Further, the porosity of the negative electrode active material layer was set to 58% by pressing the negative electrode active material layer at a pressure lower than that of Example 1-1. As other manufacturing methods, the test cell of Comparative Example 3-1 was produced in the same manner as the test cell of Example 1-1.
  • test cell of Comparative Example 3-2 A negative electrode having a negative electrode active material layer provided on both sides of the copper foil by applying the paste to both sides of the copper foil so that the coating mass on one side is 0.42 g / 100 cm 2 , drying and pressing. was made. Further, the negative electrode active material layer was pressed at a pressure lower than that of Example 1-2, thereby setting the porosity of the negative electrode active material layer to 58%.
  • the test cell of Comparative Example 3-2 was produced in the same manner as the test cell of Example 1-2.
  • Rn / (Rp + Rn) and the open circuit potential of the negative electrode of the test cell of Comparative Example 3-2 are substantially the same as Rn / (Rp + Rn) and the open circuit potential of the negative electrode of the test cell of Comparative Example 3-1, respectively. Then, a test cell of Comparative Example 3-2 was produced.
  • the positive electrode internal resistance value Rp is a resistance component (DC resistance) resulting from the positive electrode and the positive electrode reaction (charge transfer resistance at the interface between the positive electrode and the electrolyte, fixed diffusion resistance in the positive electrode active material layer, positive electrode and reference electrode) The movement resistance of Li ions in the electrolyte during the period.
  • the negative electrode internal resistance value Rn is a resistance component (DC resistance) due to the negative electrode and the negative electrode reaction (charge transfer resistance at the interface between the negative electrode (strictly SEI) and the electrolyte, fixed internal diffusion resistance in the negative electrode active material layer, The movement resistance of Li ions in the electrolyte solution between the negative electrode and the reference electrode).
  • Table 1 shows the results of the charge / discharge measurement and the negative electrode internal resistance measurement.
  • the minimum value of the open circuit potential of the negative electrode in Table 1 is the minimum value in the entire range of SOC 0% to 100%.
  • 3A and 3B show changes in the open circuit potential of the negative electrodes of Example 1-1, Comparative Example 1-1, and Comparative Example 2-1 in SOCs of 0% to 100% in charge / discharge measurement.
  • Rn / (Rp + Rn) is 0.54 or less
  • Rn / (Rp + Rn) is It was greater than 0.54.
  • the minimum value of the open-circuit potential of the negative electrode was 0.1 V (vs. Li / Li + ) or more, whereas Comparative Example 1-1 In the sample cell of Example 3-1, the minimum value of the open circuit potential of the negative electrode was smaller than 0.1 V (vs. Li / Li + ).
  • Battery capacity measurement Before and after the cycle test, the batteries were used at 25 ° C. using the sample cells of Examples 1-2, 2-2, 3-2 and Comparative Examples 1-2, 2-2, 3-2, 4-2. Capacitance measurement was performed. The battery capacity was measured by charging the test cell at 5 ItA to 100% SOC and then discharging at 1 ItA until the voltage changed from 100% SOC (3.6 V) to 2.0 V. The battery capacity was calculated from the measured value obtained by this discharge, and the capacity reduction rate was calculated before and after the cycle test.
  • Table 2 shows the results of the cycle test and battery capacity measurement.
  • FIG. 4 shows the relationship between the number of cycles of the test cells of Example 1-2 and Comparative Examples 1-2, 2-2, and 4-2 in the cycle test and the capacity maintenance ratio.
  • Example 1-2 In the sample cell of Example 1-2, as shown in FIGS. 4A to 4C, it was found that the decrease in battery capacity in the cycle experiment was small. Similar results were obtained with the sample cell of Example 2-2. Further, as shown in Table 2, the capacity reduction rate obtained by the battery capacity measurement was 3.8% in the sample cell of Example 1-2. In addition, the capacity reduction rate of the sample cell of Example 2-2 was 4.2%. Therefore, it was found that the sample cells of Examples 1-2 and 2-2 exhibited excellent cycle characteristics even at a low temperature of ⁇ 10 ° C. Therefore, in the sample cells of Examples 1-2 and 2-2, it is considered that the deposition of metallic lithium was suppressed even when charged at ⁇ 10 ° C.
  • the capacity retention rate gradually decreased as the number of cycles increased. Further, the rate of decrease in the capacity of the sample cell of Comparative Example 1-2 was 90.5% as shown in Table 2. Further, the capacity reduction rate of the sample cell of Comparative Example 3-2 was 40.4%. In these test cells, it is considered that metal lithium was deposited during charging and the capacity was reduced. Therefore, it is found that when the negative electrode active material layer is formed so that the minimum value of the open circuit potential of the negative electrode is 0.09 V (vs. Li / Li + ) or less, metallic lithium is deposited and the cycle characteristics of the sample cell are deteriorated. It was.
  • the negative electrode active material layer so that the minimum value of the open-circuit potential of the negative electrode is 0.1 V (vs. Li / Li + ) or more, the sample cells of Examples 1-2 and 2-2 are obtained. It was found that precipitation of metallic lithium can be suppressed and excellent cycle characteristics are exhibited.

Abstract

本発明の非水電解質二次電池は、オリビン型化合物を正極活物質とする正極と、非晶質系炭素を負極活物質とする負極と、前記正極と前記負極とに挟まれたセパレータと、非水電解質と、前記正極と前記負極と前記セパレータと前記非水電解質とを収容する外装体とを備えた非水電解質二次電池であって、前記正極、前記負極及び前記非水電解質は、式:(Rn/(Rp+Rn))≦0.54(ここで、Rpは前記二次電池の充電における前記正極及び正極反応に起因する正極内部抵抗値であり、Rnは前記二次電池の充電における前記負極及び負極反応に起因する負極内部抵抗値であり、(Rp+Rn)は前記二次電池の充電における前記二次電池の端子間内部抵抗値である)を満たすように設けられたことを特徴とする。

Description

非水電解質二次電池及び充電方法
 本発明は、非水電解質二次電池及び充電方法に関する。
 リチウムイオン二次電池は、携帯電話、デジタルカメラ、ノートパソコン、電気自動車の電源や家庭用の蓄電池などさまざまな用途で実用化されている。
 しかし、リチウムイオン二次電池は、低温になると充放電特性が低下することが知られている(例えば、特許文献1参照)。特に、通常のリチウムイオン二次電池では、充電温度範囲が0℃以上とされている。
 しかしながら、リチウムイオン二次電池の用途が広がりつつあり、冬の屋外での使用なども要求されるようになってきている。例えば、自動二輪車の始動用用途や、屋外に設置される産業用用途などでは、低温での充放電が要求されるようになってきた。
特開2016-184521号公報
 低温では負極活物質におけるイオンのインターカレーション反応の反応速度が低下するため、低温においてリチウムイオン二次電池を充電すると金属リチウムが析出しやすくなる。金属リチウムが析出すると二次電池の寿命特性が低下する。
 本発明は、このような事情に鑑みてなされたものであり、低温充電時の金属リチウムの析出を抑制することができ、優れた寿命特性を有する非水電解質二次電池を提供する。
 本発明は、オリビン型化合物を正極活物質とする正極と、非晶質系炭素を負極活物質とする負極と、前記正極と前記負極とに挟まれたセパレータと、非水電解質と、前記正極と前記負極と前記セパレータと前記非水電解質とを収容する外装体とを備えた非水電解質二次電池であって、前記正極、前記負極及び前記非水電解質は、式:(Rn/(Rp+Rn))≦0.54(ここで、Rpは前記二次電池の充電における前記正極及び正極反応に起因する正極内部抵抗値であり、Rnは前記二次電池の充電における前記負極及び負極反応に起因する負極内部抵抗値であり、(Rp+Rn)は前記二次電池の充電における前記二次電池の端子間内部抵抗値である)を満たすように設けられたことを特徴とする非水電解質二次電池を提供する。
 本発明の二次電池は、オリビン型化合物を正極活物質とする正極と、非晶質系炭素を負極活物質とする負極と、正極と負極とに挟まれたセパレータと、非水電解質と、正極と負極とセパレータと非水電解質とを収容する外装体とを備える。このため、正極と負極との間に電圧を印加することにより二次電池を充電することができる。また、充電した二次電池から放電することができる。
 正極活物質をオリビン型化合物とすることにより、二次電池の安全性を向上させることができる。また、正極活物質をオリビン型化合物とすることにより正極内部抵抗値Rpが大きくなり、二次電池の端子間内部抵抗値(Rp+Rn)に占める負極内部抵抗値Rnの割合を低下させることができる。
 本発明の二次電池に含まれる正極、負極及び非水電解質は、式:(Rn/(Rp+Rn))≦0.54を満たすように設けられる。このため、本発明の二次電池は、低温において優れたサイクル特性を有する。このことは、本発明者等が行った実験により実証された。従って、本発明の二次電池では低温充電時の金属リチウムの析出を抑制することができ、優れた寿命特性を有する。
本発明の一実施形態の非水電解質二次電池の概略斜視図である。 図1の破線X-Xにおける非水電解質二次電池の概略断面図である。 充放電測定の結果を示すグラフである。 サイクル試験の結果を示すグラフである。
 本発明の非水電解質二次電池は、オリビン型化合物を正極活物質とする正極と、非晶質系炭素を負極活物質とする負極と、前記正極と前記負極とに挟まれたセパレータと、非水電解質と、前記正極と前記負極と前記セパレータと前記非水電解質とを収容する外装体とを備えた非水電解質二次電池であって、前記正極、前記負極及び前記非水電解質は、式:(Rn/(Rp+Rn))≦0.54(ここで、Rpは前記二次電池の充電における前記正極及び正極反応に起因する正極内部抵抗値であり、Rnは前記二次電池の充電における前記負極及び負極反応に起因する負極内部抵抗値であり、(Rp+Rn)は前記二次電池の充電における前記二次電池の端子間内部抵抗値である)を満たすように設けられたことを特徴とする。
 本発明の非水電解質二次電池に含まれる正極、負極及び非水電解質は、二次電池の充電状態(SOC)0~100%において負極の開放電位が0.1V(vs. Li/Li+)以上となるように設けられることが好ましい。このことにより、低温充電における金属リチウムの析出を抑制することができる。
 本発明の非水電解質二次電池に含まれる負極は、負極活物質の利用容量が190mAh/g以下となるように設けられることが好ましい。このことにより、低温充電における金属リチウムの析出を抑制することができる。
 本発明の非水電解質二次電池に含まれる正極は、シート状の正極集電体と、正極集電体上に設けられた正極活物質層とを備えることが好ましく、負極は、シート状の負極集電体と、負極集電体上に設けられた負極活物質層とを備えることが好ましい。
 前記負極に含まれる負極活物質層は、負極活物質として非晶質系炭素を含み、かつ、53%以下の多孔度を有することが好ましい。このことにより、低温充電における金属リチウムの析出を抑制することができる。
 前記正極活物質は、リン酸鉄リチウムであることが好ましく、前記非水電解質は、リチウム塩およびカーボネート化合物を含むことが好ましい。
 本発明は、本発明の二次電池の充電状態(SOC)0~100%において充電電圧を3.75V以下に制御する充電方法も提供する。本発明の充電方法によれば、低温充電における金属リチウムの析出を抑制することができる。
 以下、図面を用いて本発明の一実施形態を説明する。図面や以下の記述中で示す構成は、例示であって、本発明の範囲は、図面や以下の記述中で示すものに限定されない。
 図1は、本実施形態の非水電解質二次電池の概略斜視図であり、図2は、図1の破線X-Xにおける非水電解質二次電池の概略断面図である。
 本実施形態の非水電解質二次電池30は、オリビン型化合物を正極活物質とする正極8と、非晶質系炭素を負極活物質とする負極9と、正極8と負極9とに挟まれたセパレータ10と、非水電解質25と、正極8と負極9とセパレータ10と非水電解質25とを収容する外装体1とを備えた非水電解質二次電池30であって、正極8、負極9及び非水電解質25は、式:(Rn/(Rp+Rn))≦0.54(ここで、Rpは二次電池30の充電における正極8及び正極反応に起因する正極内部抵抗値であり、Rnは二次電池30の充電における負極9及び負極反応に起因する負極内部抵抗値であり、(Rp+Rn)は二次電池30の充電における二次電池30の端子間内部抵抗値である)を満たすように設けられたことを特徴とする。
 以下、本実施形態の非水電解質二次電池30について説明する。
 本発明の非水電解質二次電池30は、非水電解質を電解質とする二次電池であり、例えば、リチウムイオン二次電池である。
 外装体1は、正極8と負極9とセパレータ10と非水電解質25とを収容する電池外装体である。外装体1は、ラミネートフィルムを溶着することにより袋状にしたものであってもよい。この場合、非水電解質二次電池10は、パウチ電池である。また、外装体1は、金属製のケースであってもよく、硬質樹脂製のケースであってもよい。
 正極8は、オリビン型化合物を正極活物質とする電極である。正極活物質は、正極における電荷移動を伴う電子の受け渡しに直接関与する物質である。正極活物質をオリビン型化合物とすることにより、非水電解質二次電池30の安全性を向上させることができる。また、正極内部抵抗値Rpが大きくなり、二次電池の端子間内部抵抗値(Rp+Rn)に占める負極内部抵抗値Rnの割合を低下させることができる。
 正極活物質となるオリビン型化合物は、オリビン型結晶構造を有する物質であり、例えば、LiFePO4、LiMnPO4、LixyPO4(但し、0.05≦x≦1.2、0≦y≦1であり、MはFe、Mn、Cr、Co、Cu、Ni、V、Mo、Ti、Zn、Al、Ga、Mg、B、Nbのうち少なくとも1種以上である)などが挙げられる。
 正極8は、シート状の正極集電体14と、正極集電体14上に設けられた正極活物質層12とを備えることができる。正極集電体14は、正極活物質層12を設けるための基材となるシートであり、電極接続端子20aと正極活物質層12とを電気的に接続する導電体である。正極集電体14は、例えば、アルミニウム箔である。
 正極活物質層12は、正極活物質を含む層である。正極活物質層12は、正極集電体14の片面上に設けられてもよく、正極集電体14の両面上にそれぞれ設けられてもよい。正極活物質層12は、正極活物質微粒子を含むことができる。また、正極活物質微粒子は、表面に導電皮膜を有してもよい。このことにより、インターカレーション反応が進行する微粒子表面の導電性を向上させることができ、正極の内部抵抗を低くすることができる。導電皮膜は、例えば、炭素皮膜である。
 正極活物質層12は、導電助剤を含むことができる。このことにより、正極活物質層12の導電性を向上させることができ、正極の内部抵抗を低減することができる。導電助剤は、例えば、アセチレンブラックである。また、導電助剤は、易黒鉛化性炭素であるコークス系ソフトカーボンの微粒子であってもよい。
 正極活物質層12は、バインダーを含むことができる。バインダーは、例えばポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、スチレン-ブタジエン共重合体(SBR)、アクリロニトリルゴム、又はアクリロニトリルゴム-PTFE混合体などである。
 例えば、正極活物質の粉末と、導電助剤と、バインダーとを混合してペーストを調製し、このペーストを正極集電体14上に塗布する。その後、塗布層を乾燥させ、プレス処理することにより正極活物質層12を形成することができる。ペーストの調製に用いる溶剤としては、ジメチルホルムアミド、N-メチルピロリドン、イソプロパノール、トルエン等が挙げられる。
 負極9は、非晶質系炭素を負極活物質とする電極である。負極活物質は、負極における電荷移動を伴う電子の受け渡しに直接関与する物質である。
 負極活物質となる非晶質系炭素は、非晶質炭素と微晶質炭素とを含む。非晶質系炭素は、例えば、ソフトカーボンである。
 負極9は、シート状の負極集電体15と、負極集電体15上に設けられた負極活物質層13とを備えることができる。負極集電体15は、負極活物質層13を設けるための基材となるシートであり、電極接続端子20bと負極活物質層13とを電気的に接続する導電体である。負極集電体13は、例えば、銅箔である。
 負極活物質層13は、負極活物質を含む層である。負極活物質層13は、負極集電体15の片面上に設けられてもよく、負極集電体15の両面上にそれぞれ設けられてもよい。負極活物質層13は、例えば、負極活物質の微粒子を含むことができる。
 負極活物質層13は、バインダーを含むことができる。バインダーは、例えばポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、スチレン-ブタジエン共重合体(SBR)、アクリロニトリルゴム、又はアクリロニトリルゴム-PTFE混合体などである。
 負極活物質層13は、増粘剤を含むことができる。増粘剤は、例えば、カルボキシメチルセルロースナトリウム(CMC)である。
 例えば、負極活物質の粉末と、バインダーと、増粘剤とを混合してペーストを調製し、このペーストを負極集電体15上に塗布する。その後、塗布層を乾燥させ、プレス処理することにより負極活物質層13を形成することができる。ペーストの調製に用いる溶剤としては、例えば、ジメチルホルムアミド、N-メチルピロリドン、イソプロパノール、トルエン等である。
 負極9は、負極活物質の利用容量が190mAh/g以下となるように設けることができる。このことにより、非水電解質二次電池30を低温充電した際に金属リチウムが析出することを抑制することができる。負極活物質の利用容量は、負極9に含まれる負極活物質の量と、正極8に含まれる正極活物質の量との比を変えることにより調整することができる。
 負極活物質層13は、53%以下の多孔度を有することができる。このことにより、非水電解質二次電池30を低温充電した際に金属リチウムが析出することを抑制することができる。負極活物質層13の多孔度は、例えば、負極活物質層13を形成する際のプレス圧力を調節することにより調整することができる。
 セパレータ10は、シート状であり、正極8と負極9との間に配置される。また、セパレータ10は、正極8、負極9と共に図2に示したような電極積層体7を構成することができる。セパレータ10を設けることにより、正極8と負極9との間に短絡電流が流れることを防止することができる。
 セパレータ10は、短絡電流が流れることを防止でき、正極-負極間を伝導するイオンが透過可能なものであれば特に限定されないが、例えばポリオレフィンの微多孔性フィルム、セルロースシート、アラミドシートとすることができる。
 非水電解質25は、外装体1内に収容されて正極-負極間のイオン伝導媒体となる。また、非水電解質25は、非水溶媒と、非水溶媒に溶解した電解質塩とを含む。
 非水電解質25に含まれる非水溶媒には、カーボネート化合物(環状カーボネート化合物、鎖状カーボネート化合物など)、ラクトン、エーテル、エステルなどを使用することができ、これら溶媒の2種類以上を混合して用いることもできる。これらの中では特に環状カーボネート化合物と鎖状カーボネート化合物を混合して用いることが好ましい。
 非水電解質25に含まれる電解質塩としては、例えば、LiCF3SO3、LiAsF6、LiClO4、LiBF4、LiPF6、LiBOB、LiN(CF3SO2)2、LiN(C25SO2)等を挙げることができる。
 また、非水電解質25には、必要に応じて難燃化剤等の添加剤を配合してもよい。
 正極8、負極9及び非水電解質25は、式:(Rn/(Rp+Rn))≦0.54を満たすように設けることができる。このことにより、非水電解質二次電池30を低温充電した際に金属リチウムが析出することを抑制することができる。ここで、Rpは二次電池30の充電における正極8及び正極反応に起因する正極内部抵抗値(直流抵抗値)であり、Rnは二次電池30の充電における負極9及び負極反応に起因する負極内部抵抗値(直流抵抗値)であり、(Rp+Rn)は二次電池30の充電における二次電池30の端子間内部抵抗値(直流抵抗)である。
 (Rn/(Rp+Rn))は、例えば、負極活物質層13の多孔度や負極活物質の利用容量を調節することにより調整することができる。
 RpとRnはSOCが同じ状態で測定するのが良い。
 RpとRnはSOCが10%以上90%以下で測定するのが好ましい。0%や100%に近いところで測定すると、その他の要因の影響を受けやすいので、10%以上90%以下の範囲にすることが好ましい。10%以上90%以下の範囲であれば、安定した内部抵抗値を得ることができ、この範囲に亘ってあまり変化のない抵抗値が得られるからである。
 RpはSOC20%における正極内部抵抗値であってもよく、RnはSOC20%における負極内部抵抗値であってもよく、(Rp+Rn)はSOC20%における二次電池30の端子間内部抵抗値であってもよい。
 (Rn/(Rp+Rn))は、たとえば、参照電極を入れた二次電池30を用いて測定することができる。例えば、SOC20%において0.2ItA、0.5ItA、1ItAで10秒間充電し、参照電極入り二次電池30の端子電圧、負極の電位を測定し、測定された端子電圧から二次電池30の内部抵抗値(Rp+Rn)を算出することができ、測定された負極の電位(V vs. Li+/Li)から負極内部抵抗値Rnを算出することができる。これらの値から(Rn/(Rp+Rn))を算出することができる。参照電極には、金属リチウム電極を使用することができる。また、正極8の近傍に正極参照電極を配置し、負極9の近傍に負極参照電極を配置することもできる。
 正極内部抵抗値Rpは、正極8と電解質25の界面における電荷移動抵抗、正極活物質層12中の固定内拡散抵抗、正極8と参照電極の間の電解質25中のLiイオンの移動抵抗等である。
 負極内部抵抗値Rnは、負極9(厳密には負極9の表面に形成されたSEI)と電解質25との界面における電荷移動抵抗、負極活物質層13中の固定内拡散抵抗、負極9と参照電極との間の電解質25中のLiイオンの移動抵抗等である。
 また、測定に用いた参照電極入り二次電池30と、正極活物質層12、負極活物質層13、非水電解質25、セパレータ10、電極間距離などが同じである参照電極を入れていない二次電池30は、参照電極を入れた二次電池30と実質的に同じ端子間内部抵抗値(Rp+Rn)、正極内部抵抗値Rp、負極内部抵抗値Rnを有すると考えられる。また、正極8及び負極9の積層枚数などを変えた二次電池30であっても、正極活物質層12、負極活物質層13、非水電解質25、セパレータ10、電極間距離などが同じであれば、参照電極を入れた二次電池30と実質的に同じ(Rn/(Rp+Rn))を有すると考えられる。
 正極8、負極9及び非水電解質25は、二次電池30の充電状態(SOC)0~100%において負極9の開放電位が0.1V(vs. Li/Li+)以上となるように設けることができる。このことにより、非水電解質二次電池30を低温充電した際に金属リチウムが析出することを抑制することができる。例えば、負極活物質層13の多孔度や負極9の負極活物質の利用容量を調節することにより、負極9の開放電位が0.1V(vs. Li/Li+)以上となるように二次電池30を形成することができる。
 負極9の開放電位は、例えば、充電時と放電時の負極9の作動電位を足し合わせ、2で割ることで負極9の開放電位を算出することができる。
 非水電解質二次電池30の充電状態(SOC)0~100%において充電電圧を3.75V以下に制御して、非水電解質二次電池30を充電することができる。このことにより、非水電解質二次電池30を低温充電した際に金属リチウムが析出することを抑制することができる。
実験
(実施例1-1の試験セルの作製)
 正極活物質であるリン酸鉄リチウム粉末、導電助剤であるアセチレンブラック、バインダーであるポリフッ化ビニリデン(PVdF)を用いて、乾燥後の固形分比がリン酸鉄リチウム:アセチレンブラック:PVdF=91:4:5となるようにペーストを調製した。このペーストを塗工質量が0.75g/100cm2となるように、正極集電体であるアルミニウム箔の片面に塗工し、乾燥させてアルミニウム箔の片面上に正極活物質層が設けられた正極を作製した。アルミニウム箔の大きさは、53.5mm×105.5mmであり、そのうちの53.0mm×93.0mmに正極活物質層を設けた。正極活物質層の多孔度は42.3%であった。
 負極活物質であるソフトカーボン、バインダーであるスチレン-ブタジエン共重合体(SBR)、増粘剤であるカルボキシメチルセルロース(CMC)を用いて、乾燥後の固形分比がソフトカーボン:SBR:CMC=94:5:1となるようにペーストを調製した。このペーストを塗工質量が0.47g/100cm2となるように負極集電体である銅箔の片面に塗工し、乾燥させ、プレスして銅箔の片面上に負極活物質層が設けられた負極を作製した。銅箔の大きさは、54.5mm×105.5mmであり、そのうちの53.0mm×95.0mmに負極活物質層を設けた。負極活物質層の多孔度は47%であった。
 ポリオレフィン系材料からなるセパレータ(厚み:16μm)を挟んで正極活物質層と負極活物質層とが向かい合うように1枚の正極、セパレータ、1枚の負極を積層し、正極及び負極の周囲をセパレータで一重に覆った。正極の外側の面上にセパレータを介して1つの参照電極(金属リチウム電極)を配置し、負極の外側の面上にセパレータを介してもう一方の参照電極(金属リチウム電極)を配置した。
 この積層体をラミネートフィルム製の外装体中に入れ、外装体の注液口以外の開口を塞いだ。その後、注液口から外装体内に電解液(非水溶媒:EC / DEC / EMC = 27.5 / 5 / 67.5(添加剤VC0.7%、FEC0.3%)、リチウム塩:LiPF61.2mol/L)を注入し、積層体に電解液を含浸させた後、外装体内を脱気し注液口を塞いだ。このようにして、実施例1-1の試験セルを作製した。
(実施例1-2の試験セルの作製)
 リン酸鉄リチウム粉末、アセチレンブラック、PVdFを用いて、乾燥後の固形分比がリン酸鉄リチウム:アセチレンブラック:PVdF=91:4:5となるようにペーストを調製した。このペーストを片面の塗工質量が0.75g/100cm2となるように、正極集電体であるアルミニウム箔の両面にそれぞれ塗工し、乾燥させてアルミニウム箔の両面上に正極活物質層が設けられた正極を作製した。正極活物質層の多孔度は42.3%であった。また、アルミニウム箔の両面上に正極活物質層を設けたこと以外は、実施例1-1の試験セルと同様に正極を作製している。
 ソフトカーボン、SBR、CMCを用いて、乾燥後の固形分比がソフトカーボン:SBR:CMC=94:5:1となるようにペーストを調製した。このペーストを片面の塗工質量が0.47g/100cm2となるように負極集電体である銅箔の両面にそれぞれに塗工し、乾燥させ、プレスして銅箔の両面上に負極活物質層が設けられた負極を作製した。負極活物質層の多孔度は47%であった。また、銅箔の両面上に負極活物質層を設けたこと以外は、実施例1-1の試験セルと同様に負極を作製している。
 正極と負極とを交互に重ね、正極と、その正極に隣接する負極との間にポリオレフィン系材料からなるセパレータ(厚み:16μm)を配置し正極と負極との間に短絡電流が流れないように、30枚の正極、セパレータ、31枚の負極を積層した。この積層体をラミネートフィルム製の外装体中に入れ、外装体の注液口以外の開口を塞いだ。その後、注液口から外装体内に電解液(非水溶媒:EC / DEC / EMC = 27.5 / 5 / 67.5(添加剤VC0.7%、FEC0.3%)、リチウム塩:LiPF61.2mol/L)を注入し、積層体に電解液を含浸させた後、外装体内を脱気し注液口を塞いだ。このようにして、実施例1-2の試験セルを作製した。また、セパレータ、電解液、外装体は実施例1-1の試験セルと同じものを用いた。
 実施例1-2の試験セルのRn/(Rp+Rn)及び負極の開放電位が実施例1-1の試験セルのRn/(Rp+Rn)及び負極の開放電位とそれぞれ実質的に同じになるように、実施例1-2の試験セルを作製した。また、実施例1-2の試験セルは、実施例1-1の試験セルに比べ電池容量が大きいため、容量維持率の変化を容易に確認することができる。
(実施例2-1の試験セルの作製)
 実施例1-1よりも低い圧力で負極活物質層をプレスすることにより負極活物質層の多孔度が53%である負極を作製した。その他の製造方法は、実施例1-1の試験セルと同様の方法で実施例2-1の試験セルを作製した。
(実施例2-2の試験セルの作製)
 実施例1-2よりも低い圧力で負極活物質層をプレスすることにより負極活物質層の多孔度が53%である負極を作製した。その他の製造方法は、実施例1-2の試験セルと同様の方法で実施例2-2の試験セルを作製した。また、実施例2-2の試験セルのRn/(Rp+Rn)及び負極の開放電位が実施例2-1の試験セルのRn/(Rp+Rn)及び負極の開放電位とそれぞれ実質的に同じになるように、実施例2-2の試験セルを作製した。
(比較例1-1の試験セルの作製)
 ソフトカーボン、SBR、CMCを用いて、乾燥後の固形分比が94:5:1となるようにペーストを調製した。このペーストを塗工質量が0.38g/100cm2となるように負極集電体である銅箔の片面に塗工し、乾燥させて銅箔の片面上に負極活物質層が設けられた負極を作製した。その他の製造方法は、実施例1-1の試験セルと同様の方法で比較例1-1の試験セルを作製した。比較例1-1の試験セルでは、負極活物質層に含まれるソフトカーボン(負極活物質)の量が少ないため、負極活物質の利用容量が大きくなる。
(比較例1-2の作製)
 ソフトカーボン、SBR、CMCを用いて、乾燥後の固形分比が94:5:1となるようにペーストを調製した。このペーストを片面の塗工質量が0.38g/100cm2となるように負極集電体である銅箔の両面にそれぞれ塗工し、乾燥させて銅箔の両面上に負極活物質層が設けられた負極を作製した。また、銅箔の両面上に負極活物質層を設けたこと以外は、比較例1-1の試験セルと同様の方法で負極を作製している。
 この作製した負極を用いたこと以外は、実施例1-2と同様の方法で比較例1-2の試験セルを作製した。また、比較例1-2の試験セルのRn/(Rp+Rn)及び負極の開放電位が比較例1-1の試験セルのRn/(Rp+Rn)及び負極の開放電位とそれぞれ実質的に同じになるように、比較例1-2の試験セルを作製した。比較例1-2の試験セルでは、負極活物質層に含まれるソフトカーボン(負極活物質)の量が少ないため、負極活物質の利用容量が大きくなる。
(比較例2-1の試験セルの作製)
 実施例1-1よりも低い圧力で負極活物質層をプレスすることにより負極活物質層の多孔度が62%である負極を作製した。その他の製造方法は、実施例1-1の試験セルと同様の方法で比較例2-1の試験セルを作製した。
(比較例2-2の試験セルの作製)
 実施例1-2よりも低い圧力で負極活物質層をプレスすることにより負極活物質層の多孔度が62%である負極を作製した。その他の製造方法は、実施例1-2の試験セルと同様の方法で比較例2-2の試験セルを作製した。また、比較例2-2の試験セルのRn/(Rp+Rn)及び負極の開放電位が比較例2-1の試験セルのRn/(Rp+Rn)及び負極の開放電位とそれぞれ実質的に同じになるように、比較例2-2の試験セルを作製した。
(比較例3-1の試験セルの作製)
 塗工質量が0.42g/100cm2となるように銅箔の片面にペーストを塗工して負極活物質層を作製した。また、実施例1-1よりも低い圧力で負極活物質層をプレスすることにより負極活物質層の多孔度を58%とした。その他の製造方法は、実施例1-1の試験セルと同様の方法で比較例3-1の試験セルを作製した。
(比較例3-2の試験セルの作製)
 ペーストを片面の塗工質量が0.42g/100cm2となるように銅箔の両面にそれぞれに塗工し、乾燥させ、プレスして銅箔の両面上に負極活物質層が設けられた負極を作製した。また、実施例1-2よりも低い圧力で負極活物質層をプレスすることにより負極活物質層の多孔度を58%とした。その他の製造方法は、実施例1-2の試験セルと同様の方法で比較例3-2の試験セルを作製した。また、比較例3-2の試験セルのRn/(Rp+Rn)及び負極の開放電位が比較例3-1の試験セルのRn/(Rp+Rn)及び負極の開放電位とそれぞれ実質的に同じになるように、比較例3-2の試験セルを作製した。
(充放電測定)
 実施例1-1、2-1、比較例1-1、2-1、3-1の参照電極入り試験セルを用いて充放電測定を行った。具体的には、試料セルの充電状態(SOC)と負極の開放電位との関係を測定するために、電流値0.05ItAでSOC0%から100%まで試験セルをCCCV充電し、次に休止を挟んで電流値0.05ItAでSOC100%から0%まで試験セルを放電した。得られた測定値に基づき、充電時と放電時の負極の作動電位を足し合わせ、2で割ることで負極の開放電位を算出した。
(負極内部抵抗測定)
 SOC20%において0.2ItA、0.5ItA、1.0ItAで10秒間充電し、実施例1-1、2-1、比較例1-1、2-1、3-1の参照電極入り試験セルの端子電圧、負極の電位を測定した。測定された端子電圧から試験セルの内部抵抗値(Rp+Rn)を算出し、測定された負極の電位から負極内部抵抗値Rnを算出した。さらに、(Rn/(Rp+Rn))を算出した。ここで、正極内部抵抗値Rpは、正極及び正極反応に起因する抵抗成分(直流抵抗)(正極と電解液の界面における電荷移動抵抗、正極活物質層中の固定内拡散抵抗、正極と参照極の間の電解液中のLiイオンの移動抵抗等)である。負極内部抵抗値Rnは、負極及び負極反応に起因する抵抗成分(直流抵抗)(負極(厳密にはSEI)と電解液との界面における電荷移動抵抗、負極活物質層中の固定内拡散抵抗、負極と参照極との間の電解液中のLiイオンの移動抵抗等)である。
 充放電測定及び負極内部抵抗測定の結果を表1に示す。表1中の負極の開放電位の最低値は、SOC0%~100%の全領域での最低値である。また、充放電測定のおけるSOC0%~100%におけるにおける実施例1-1、比較例1-1、比較例2-1の負極の開放電位の変化を図3(a)(b)に示す。
 実施例1-1、2-1の試料セルでは、Rn/(Rp+Rn)が0.54以下であるのに対し、比較例2-1、3-2の試料セルでは、Rn/(Rp+Rn)が0.54より大きかった。
 また、実施例1-1、2-1の試料セルでは、負極の開放電位の最低値が0.1V(vs. Li/Li+)以上であったのに対し、比較例1-1、比較例3-1の試料セルでは、負極の開放電位の最低値が0.1V(vs. Li/Li+)よりも小さかった。
Figure JPOXMLDOC01-appb-T000001
(サイクル試験)
 実施例1-2、2-2、3-2、比較例1-2、2-2、3-2、4-2の試料セルを用いてサイクル試験を行った。サイクル試験は、始動用鉛蓄電池の規格に準拠して、-10℃の恒温器中に試験セルを設置して行った。セル単体で上限電圧を3.7V、3.75V又は4.0Vとして5ItAでSOC100%までCCCV充電を行い、充電後試料セルを10分間休止し、その後、1ItAで電圧が2.0Vになるまで放電した。放電後試料セルを10分間休止し、再び充電を行った。このような充放電サイクルを20回繰り返した。なお、実施例3-2の試料セルおよび比較例4-2の試料セルは、実施例1-2と同様の方法で作製した試料セルであり、これらの試料セルはそれぞれ上限電圧を3.75V、4.0Vとして充電を行った。
(電池容量測定)
 サイクル試験の前と後において、実施例1-2、2-2、3-2、比較例1-2、2-2、3-2、4-2の試料セルを用いて25℃下において電池容量測定を行った。電池容量測定は、試験セルを5ItAでSOC100%までCCCV充電を行い、その後、1ItAで電圧がSOC100%(3.6V)から2.0Vになるまで放電した。この放電により得られた測定値から電池容量を算出し、サイクル試験前後で容量低下率を算出した。
 サイクル試験及び電池容量測定の結果を表2に示す。また、サイクル試験における実施例1-2、比較例1-2、2-2、4-2の試験セルのサイクル数と容量維持率の関係を図4に示す。
Figure JPOXMLDOC01-appb-T000002
 実施例1-2の試料セルでは、図4(a)~(c)のように、サイクル実験での電池容量の低下は小さいことがわかった。また、実施例2-2の試料セルでも同様の結果が得られた。また、電池容量測定により得られた容量低下率は、実施例1-2の試料セルでは、表2に示したように、3.8%であった。また、実施例2-2の試料セルの容量低下率は4.2%であった。従って、実施例1-2、2-2の試料セルは、-10℃の低温下においても優れたサイクル特性を示すことがわかった。従って、実施例1-2、2-2の試料セルでは、-10℃下で充電しても金属リチウムの析出は抑制されたと考えられる。
 比較例1-2の試験セルでは、図4(a)のように、サイクル数が増えると、容量維持率は徐々に低下した。また、比較例1-2の試料セルの容量低下率は、表2に示したように90.5%であった。また、比較例3-2の試料セルの容量低下率は、40.4%であった。これらの試験セルでは、充電時に金属リチウムが析出して容量が低下したと考えられる。従って、負極の開放電位の最低値が0.09V(vs. Li/Li+)以下となるように負極活物質層を形成すると、金属リチウムが析出し試料セルのサイクル特性が低下することがわかった。従って、負極の開放電位の最低値を0.1V(vs. Li/Li+)以上なるように負極活物質層を形成することにより、実施例1-2、2-2の試料セルのように金属リチウムの析出を抑制することができ、優れたサイクル特性を示すことがわかった。
 比較例2-2の試験セルでは、図4(b)のように、サイクル数が増えると、容量維持率は徐々に低下した。また、比較例2-2の試料セルの容量低下率は、表2に示したように62.5%であった。また、比較例3-2の試料セルの容量低下率は、40.4%であった。これらの試験セルでは、充電時に金属リチウムが析出して容量が低下したと考えられる。従って、Rn/(Rp+Rn)が0.57以上となるように負極活物質層を形成すると、金属リチウムが析出し試料セルのサイクル特性が低下することがわかった。従って、Rn/(Rp+Rn)が0.54以下となるように負極活物質層を形成することにより、実施例1-2、2-2の試料セルのように、金属リチウムの析出を抑制することができ、優れたサイクル特性を示すことがわかった。
 比較例4-2の試験セルでは、図4(c)のように、サイクル数が増えると、容量維持率は徐々に低下した。また、比較例4-2の試料セルの容量低下率は、表2に示したように64.7%であった。この試験セルでは、充電時に金属リチウムが析出して容量が低下したと考えられる。従って、充電電圧の上限を4.0Vとして充電することにより、金属リチウムが析出し試料セルのサイクル特性が低下することがわかった。一方で、実施例3-2の試験セルは表2に示したように試料セルの容量低下率は6.8%であった。従って、充電電圧の上限を3.75V以下で充電することにより、実施例1-2、2-2、3-2の試料セルのように、金属リチウムの析出を抑制することができ優れたサイクル特性を示すことがわかった。
 1:外装体(ラミネートフィルム)  2:溶着部  5:電極積層体収容部  7:電極積層体  8:正極  9:負極  10:セパレータ  12:正極活物質層  13:負極活物質層  14:正極集電体  15:負極集電体  20a、20b:電極接続端子  21a、21b:外部接続部  25:非水電解質  30:非水電解質二次電池

Claims (7)

  1.  オリビン型化合物を正極活物質とする正極と、非晶質系炭素を負極活物質とする負極と、前記正極と前記負極とに挟まれたセパレータと、非水電解質と、前記正極と前記負極と前記セパレータと前記非水電解質とを収容する外装体とを備えた非水電解質二次電池であって、
    前記正極、前記負極及び前記非水電解質は、式:(Rn/(Rp+Rn))≦0.54(ここで、Rpは前記二次電池の充電における前記正極及び正極反応に起因する正極内部抵抗値であり、Rnは前記二次電池の充電における前記負極及び負極反応に起因する負極内部抵抗値であり、(Rp+Rn)は前記二次電池の充電における前記二次電池の端子間内部抵抗値である)を満たすように設けられたことを特徴とする非水電解質二次電池。
  2.  前記正極、前記負極及び前記非水電解質は、前記二次電池の充電状態(SOC)0~100%において前記負極の開放電位が0.1V(vs. Li/Li+)以上となるように設けられた請求項1に記載の二次電池。
  3.  前記負極は、前記負極活物質の利用容量が190mAh/g以下となるように設けられた請求項1又は2に記載の二次電池。
  4.  前記正極は、シート状の正極集電体と、前記正極集電体上に設けられた正極活物質層とを備え、
    前記負極は、シート状の負極集電体と、前記負極集電体上に設けられた負極活物質層とを備える請求項1~3のいずれか1つに記載の二次電池
  5.  前記負極活物質層は、前記負極活物質として非晶質系炭素を含み、かつ、53%以下の多孔度を有する請求項4に記載の二次電池。
  6.  前記正極活物質は、リン酸鉄リチウムであり、
    前記非水電解質は、リチウム塩およびカーボネート化合物を含む請求項1~5のいずれか1つに記載の二次電池。
  7.  請求項1~6のいずれか1つに記載の二次電池の充電状態(SOC)0~100%において充電電圧を3.75V以下に制御する充電方法。
PCT/JP2018/006544 2017-02-24 2018-02-22 非水電解質二次電池及び充電方法 WO2018155582A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020197027695A KR102642444B1 (ko) 2017-02-24 2018-02-22 비수전해질 이차전지 및 충전방법
US16/487,307 US11749840B2 (en) 2017-02-24 2018-02-22 Non-aqueous electrolyte secondary battery and charging method
EP18757078.3A EP3588658A4 (en) 2017-02-24 2018-02-22 NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY AND CHARGING PROCESS
CN201880013723.1A CN110383569A (zh) 2017-02-24 2018-02-22 非水电解质二次电池和充电方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017034137A JP6979186B2 (ja) 2017-02-24 2017-02-24 非水電解質二次電池及び充電方法
JP2017-034137 2017-02-24

Publications (1)

Publication Number Publication Date
WO2018155582A1 true WO2018155582A1 (ja) 2018-08-30

Family

ID=63252719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006544 WO2018155582A1 (ja) 2017-02-24 2018-02-22 非水電解質二次電池及び充電方法

Country Status (6)

Country Link
US (1) US11749840B2 (ja)
EP (1) EP3588658A4 (ja)
JP (1) JP6979186B2 (ja)
KR (1) KR102642444B1 (ja)
CN (1) CN110383569A (ja)
WO (1) WO2018155582A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010218937A (ja) * 2009-03-18 2010-09-30 Toyota Central R&D Labs Inc リチウム二次電池
WO2011052309A1 (ja) * 2009-10-30 2011-05-05 トヨタ自動車株式会社 リチウム二次電池
JP2012089348A (ja) * 2010-10-19 2012-05-10 Toyota Motor Corp リチウムイオン二次電池及びリチウムイオン二次電池の製造方法
JP2014010888A (ja) * 2012-06-27 2014-01-20 Toshiba Corp 非水電解質二次電池
JP2015011930A (ja) * 2013-07-01 2015-01-19 トヨタ自動車株式会社 非水電解質二次電池
JP2015138654A (ja) * 2014-01-22 2015-07-30 株式会社デンソー 非水電解質二次電池及び非水電解質二次電池システム
JP2016184521A (ja) 2015-03-26 2016-10-20 オートモーティブエナジーサプライ株式会社 非水電解質二次電池

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4055642B2 (ja) * 2003-05-01 2008-03-05 日産自動車株式会社 高速充放電用電極および電池
JP2008181850A (ja) * 2006-10-19 2008-08-07 Sanyo Electric Co Ltd 非水電解質二次電池
US9893377B2 (en) * 2009-09-25 2018-02-13 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery, battery pack and vehicle
KR20110092344A (ko) * 2009-12-14 2011-08-17 파나소닉 주식회사 리튬이온 이차 전지의 충전 완료 판정 방법 및 방전 종료 판정 방법, 충전 제어 회로, 방전 제어 회로, 그리고 전원
EP2360772A1 (de) * 2010-02-12 2011-08-24 Fortu Intellectual Property AG Wiederaufladbare elektrochemische Zelle
JP2011215083A (ja) 2010-04-01 2011-10-27 Toyota Motor Corp 二次電池の正負電位関係取得装置、二次電池の制御装置、車両、二次電池の正負電位関係取得方法、及び、二次電池の制御方法
CN103250280A (zh) * 2010-12-17 2013-08-14 艾利电力能源有限公司 非水电解液二次电池用正极及非水电解液二次电池以及电池模块
JP2012133895A (ja) * 2010-12-17 2012-07-12 Eliiy Power Co Ltd 非水電解液二次電池及び電池モジュール
JP2013221790A (ja) 2012-04-13 2013-10-28 Toyota Industries Corp 車両に搭載されるバッテリの内部状態推定装置
JP6187676B2 (ja) * 2014-04-11 2017-08-30 日産自動車株式会社 非水電解質二次電池
JP6233649B2 (ja) * 2014-05-19 2017-11-22 トヨタ自動車株式会社 非水系二次電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010218937A (ja) * 2009-03-18 2010-09-30 Toyota Central R&D Labs Inc リチウム二次電池
WO2011052309A1 (ja) * 2009-10-30 2011-05-05 トヨタ自動車株式会社 リチウム二次電池
JP2012089348A (ja) * 2010-10-19 2012-05-10 Toyota Motor Corp リチウムイオン二次電池及びリチウムイオン二次電池の製造方法
JP2014010888A (ja) * 2012-06-27 2014-01-20 Toshiba Corp 非水電解質二次電池
JP2015011930A (ja) * 2013-07-01 2015-01-19 トヨタ自動車株式会社 非水電解質二次電池
JP2015138654A (ja) * 2014-01-22 2015-07-30 株式会社デンソー 非水電解質二次電池及び非水電解質二次電池システム
JP2016184521A (ja) 2015-03-26 2016-10-20 オートモーティブエナジーサプライ株式会社 非水電解質二次電池

Also Published As

Publication number Publication date
EP3588658A4 (en) 2020-10-28
EP3588658A1 (en) 2020-01-01
JP6979186B2 (ja) 2021-12-08
JP2018142401A (ja) 2018-09-13
US20200176757A1 (en) 2020-06-04
US11749840B2 (en) 2023-09-05
KR20190119633A (ko) 2019-10-22
KR102642444B1 (ko) 2024-02-28
CN110383569A (zh) 2019-10-25

Similar Documents

Publication Publication Date Title
JP7041814B2 (ja) 正極活物質プレ分散体組成物、二次電池用正極、およびそれを含むリチウム二次電池
KR100801637B1 (ko) 양극 활물질 및 그것을 포함하고 있는 리튬 이차전지
US10637097B2 (en) Organic/inorganic composite electrolyte, electrode-electrolyte assembly and lithium secondary battery including the same, and manufacturing method of the electrode-electrolyte assembly
TWI458154B (zh) 鋰二次電池
EP3016197B1 (en) Lithium secondary battery
CN107660316B (zh) 锂电化学发电装置的正电极
KR20200089182A (ko) 에너지 밀도가 우수한 Si계 화합물을 포함하는 리튬 이차전지
US10637048B2 (en) Silicon anode materials
KR100781051B1 (ko) 접착력이 향상된 음극 합제 및 이를 포함하는 리튬이차전지
WO2011070748A1 (ja) 非水電解質二次電池及びその充電方法
JP6484995B2 (ja) リチウムイオン二次電池
CN111933999A (zh) 一种固态电池、电池模组、电池包及其相关的装置
JP2009134970A (ja) 非水電解質電池
JP2005158623A (ja) 非水電解液二次電池
KR20180038764A (ko) 전극 활물질 슬러리 조성물 및 이를 이용한 전극을 포함하는 리튬 이차전지
JP4120439B2 (ja) リチウムイオン2次電池
JP7137757B2 (ja) 非水電解質蓄電素子
JP2003168427A (ja) 非水電解質電池
JP2016085837A (ja) リチウムイオン二次電池
JP2018133284A (ja) 非水電解液およびそれを用いた非水電解液電池
WO2017195332A1 (ja) 非水電解質二次電池用正極及び非水電解質二次電池
JP6222389B1 (ja) 非水電解液およびそれを用いた非水電解液電池
WO2018155582A1 (ja) 非水電解質二次電池及び充電方法
JP2018133335A (ja) 非水電解液電池
WO2019065288A1 (ja) リチウムイオン二次電池用非水電解液およびそれを用いたリチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18757078

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197027695

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018757078

Country of ref document: EP

Effective date: 20190924