WO2018155240A1 - リチウムイオン電池用正極およびリチウムイオン電池 - Google Patents

リチウムイオン電池用正極およびリチウムイオン電池 Download PDF

Info

Publication number
WO2018155240A1
WO2018155240A1 PCT/JP2018/004659 JP2018004659W WO2018155240A1 WO 2018155240 A1 WO2018155240 A1 WO 2018155240A1 JP 2018004659 W JP2018004659 W JP 2018004659W WO 2018155240 A1 WO2018155240 A1 WO 2018155240A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
lithium ion
electrode active
ion battery
Prior art date
Application number
PCT/JP2018/004659
Other languages
English (en)
French (fr)
Inventor
善洋 新居田
Original Assignee
Necエナジーデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necエナジーデバイス株式会社 filed Critical Necエナジーデバイス株式会社
Priority to JP2019501230A priority Critical patent/JP6850975B2/ja
Priority to CN201880011672.9A priority patent/CN110291664B/zh
Priority to US16/482,507 priority patent/US20200014021A1/en
Publication of WO2018155240A1 publication Critical patent/WO2018155240A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode for a lithium ion battery and a lithium ion battery.
  • Lithium ion batteries have high energy density and excellent charge / discharge cycle characteristics, and are therefore widely used as power sources for small mobile devices such as mobile phones and notebook computers.
  • lithium ion batteries are required to have further improved characteristics.
  • a positive electrode used for a lithium ion battery is mainly composed of a positive electrode active material layer and a current collector layer.
  • the positive electrode active material layer can be obtained, for example, by applying a positive electrode slurry containing a positive electrode active material, a binder resin, and a conductive additive to the surface of a current collector layer such as a metal foil and drying.
  • Patent Document 1 Japanese Patent Laid-Open No. 8-17471 discloses a secondary battery having a non-aqueous electrolyte containing a positive electrode, a negative electrode, and lithium ions, and a general formula Li [Mn 2 ⁇ X Li X ] O 4 (where 0 ⁇ x ⁇ 0.1) or Li [Mn 2 -X M X ] O 4 (where M is Co, Ni, Fe, Cr)
  • the positive electrode has a specific surface area (S) of S ⁇ 0.5 m 2 / g.
  • Patent Document 2 Japanese Patent Laid-Open No. 2000-251892 discloses a composition formula LiNi 1-x M1 x O 2 (M1 is at least one element selected from the group consisting of Al, B, alkali metal, alkaline earth metal, and transition metal). Lithium nickel composite oxide represented by the above metal element: 0 ⁇ x ⁇ 0.3) and a composition formula LiMn 2-y M2 y O 4 (M2 is Al, B, alkali metal, alkaline earth metal, A positive electrode active material for a lithium secondary battery is described in which at least one metal element of transition metal elements is mixed with a lithium manganese composite oxide represented by 0 ⁇ y ⁇ 0.3). .
  • Patent Document 3 Japanese Patent Laid-Open No. 2013-20975 discloses a layered lithium / manganese / nickel / cobalt composite oxide containing at least Mn, Ni and Co, and a spinel type lithium / manganese composite oxide, as an active material.
  • the layered lithium / manganese / nickel / cobalt composite oxide has a specific surface area of 0.1 to 0.6 m 2 / g, and the spinel type lithium / manganese The composite oxide has a specific surface area of 0.05 to 0.3 m 2 / g.
  • the layered lithium / manganese / nickel / cobalt composite oxide and the spinel type lithium / manganese composite are mixed.
  • the ratio of the spinel type lithium / manganese composite oxide to the oxide and the total is 30 to 50% by mass, and the molar ratio of Li / Mn is 0.3%. 5 to 0.53, and the density of the positive electrode mixture layer is 3.0 to 3.6 g / cm 3 , and the positive electrode mixture layer has a positive electrode containing at least acetylene black as a conductive auxiliary agent.
  • a non-aqueous electrolyte secondary battery is described.
  • the present invention has been made in view of the above circumstances, and provides a positive electrode for a lithium ion battery capable of realizing a lithium ion battery excellent in cycle characteristics at high temperatures.
  • the present inventors have intensively studied to achieve the above problems.
  • a high-capacity positive electrode active material can be used, the electrode can be densified, Even when the thickness of the active material layer was increased to increase the energy density of the lithium ion battery, the inventors found that deterioration of cycle characteristics at high temperatures could be suppressed and completed the present invention.
  • a positive electrode for a lithium ion battery comprising: The volume resistivity of the positive electrode for a lithium ion battery is 120 ⁇ ⁇ m or more and 350 ⁇ ⁇ m or less, When the specific surface area of the positive electrode active material contained in the positive electrode active material layer is S [m 2 / g], and the content of the conductive additive in the positive electrode active material layer is W [mass%], S / A positive electrode for a lithium ion battery having W of 0.080 or more and 0.140 or less is provided.
  • a lithium ion battery comprising the above positive electrode for a lithium ion battery is provided.
  • a positive electrode for a lithium ion battery capable of realizing a lithium ion battery having excellent cycle characteristics at high temperatures.
  • FIG. 1 is a cross-sectional view showing an example of the structure of a positive electrode 100 for a lithium ion battery according to an embodiment of the present invention.
  • a positive electrode 100 for a lithium ion battery according to this embodiment is provided on both sides of a current collector layer 101 and a current collector layer 101, and a positive electrode active material layer 103 including a positive electrode active material, a binder resin, and a conductive additive. And comprising.
  • the volume resistivity of the positive electrode 100 for a lithium ion battery is 120 ⁇ ⁇ m or more and 350 ⁇ ⁇ m or less, and the specific surface area of the positive electrode active material contained in the positive electrode active material layer 103 is S [m 2 / g], When the content of the conductive assistant in the material layer 103 is W [mass%], S / W is 0.080 or more and 0.140 or less.
  • the volume resistivity of the positive electrode 100 for a lithium ion battery can be measured by a four-terminal method using a four-terminal resistivity meter. More specifically, the normal direction of the thickness of the positive electrode 100 for a lithium ion battery is sandwiched by a terminal probe with a load of 1 kg / cm 2 , and a measurement terminal by a four-terminal method is coupled to the terminal probe for a lithium ion battery. The volume resistivity of the positive electrode 100 can be measured.
  • the present inventor when using a high capacity positive electrode active material, increasing the density of the electrode, or increasing the thickness of the active material layer to increase the energy density of the lithium ion battery, It became clear that the cycle characteristics might deteriorate. Therefore, as a result of intensive studies, the present inventor used a high-capacity positive electrode active material by setting the volume resistivity of the positive electrode and the ratio of the specific surface area of the positive electrode active material to the content of the conductive auxiliary agent within a specific range. It has been found for the first time that even if the density of the electrode is increased or the thickness of the active material layer is increased to increase the energy density of the lithium ion battery, deterioration of cycle characteristics at high temperatures can be suppressed.
  • the upper limit of the volume resistivity of the positive electrode 100 for a lithium ion battery is 350 ⁇ ⁇ m or less, preferably 300 ⁇ ⁇ m or less, more preferably 250 ⁇ ⁇ m or less, further preferably 200 ⁇ ⁇ m or less, particularly preferably 180 ⁇ ⁇ m. It is as follows.
  • the volume resistivity to be equal to or lower than the above upper limit value, the electric resistance of the obtained lithium ion battery can be reduced.
  • An increase in the thickness of the film due to a decomposition reaction or the like can be suppressed, and as a result, battery characteristics such as cycle characteristics can be effectively improved.
  • the lower limit of the volume resistivity of the positive electrode 100 for a lithium ion battery is 120 ⁇ ⁇ m or more, preferably 130 ⁇ ⁇ m or more, more preferably 140 ⁇ ⁇ m or more.
  • the electrode reaction can be appropriately suppressed by setting the volume resistivity to the above lower limit value or more, cracking of the positive electrode active material due to expansion and contraction can be suppressed, or the positive electrode active It can suppress the extreme load on the substance. As a result, battery characteristics such as cycle characteristics can be effectively improved.
  • the volume resistivity of the positive electrode 100 for a lithium ion battery includes (A) a mixing ratio of the positive electrode active material layer 103, (B) a method for preparing a positive electrode slurry for forming the positive electrode active material layer 103, (C It can be realized by highly controlling manufacturing conditions such as a drying method of the positive electrode slurry, (D) a pressing method of the positive electrode, and (E) a manufacturing environment of the positive electrode.
  • the upper limit of the S / W of the positive electrode active material layer 103 is 0.140 or less, preferably 0.130 or less, more preferably 0.120 or less. It is.
  • the electrical resistance of the obtained lithium ion battery can be reduced.
  • An increase in the thickness of the film due to a reaction for example, an electrolytic solution decomposition reaction
  • battery characteristics such as cycle characteristics can be effectively improved.
  • the lower limit of the S / W of the positive electrode active material layer 103 is 0.080 or more, preferably 0.085 or more, and particularly preferably 0.090 or more.
  • the positive electrode active material is cracked due to expansion and contraction. Can be suppressed, and an extreme load can be suppressed on the positive electrode active material. As a result, battery characteristics such as cycle characteristics can be effectively improved.
  • the positive electrode active material layer 103 includes a positive electrode active material, a binder resin, and a conductive additive.
  • the positive electrode active material included in the positive electrode active material layer 103 according to the present embodiment is appropriately selected according to the application.
  • the positive electrode active material is not particularly limited as long as it is a normal positive electrode active material that can be used for the positive electrode of a lithium ion battery.
  • lithium-nickel composite oxide lithium-cobalt composite oxide, lithium-manganese composite oxide, lithium-nickel-manganese composite oxide, lithium-nickel-cobalt composite oxide, lithium-nickel-aluminum composite oxide, Lithium-nickel-cobalt-aluminum composite oxide, lithium-nickel-manganese-cobalt composite oxide, lithium-nickel-manganese-aluminum composite oxide, lithium-nickel-cobalt-manganese-aluminum composite oxide, etc.
  • transition metal sulfides such as TiS 2 , FeS, and MoS 2
  • transition metal oxides such as MnO, V 2 O 5 , V 6 O 13 , and TiO 2
  • olivine type lithium phosphorous oxide etc.
  • the olivine-type lithium phosphorus oxide is, for example, at least one member selected from the group consisting of Mn, Cr, Co, Cu, Ni, V, Mo, Ti, Zn, Al, Ga, Mg, B, Nb, and Fe. It contains elements, lithium, phosphorus, and oxygen. In order to improve the characteristics of these compounds, some elements may be partially substituted with other elements.
  • the average particle diameter of the positive electrode active material is preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more, and even more preferably 5 ⁇ m or more from the viewpoint of suppressing side reactions during charge / discharge and suppressing a decrease in charge / discharge efficiency. From the viewpoint of production (smoothness of the electrode surface, etc.), it is preferably 80 ⁇ m or less, and more preferably 40 ⁇ m or less.
  • the average particle diameter means the particle diameter (median diameter: D 50 ) at an integrated value of 50% in the particle size distribution (volume basis) by the laser diffraction scattering method.
  • the content of the positive electrode active material is preferably 85% by mass or more and 99.4% by mass or less, and 90.5% by mass or more and 98.5% by mass when the entire positive electrode active material layer 103 is 100% by mass. More preferably, it is 90.5 mass% or more and 97.5 mass% or less.
  • the binder resin contained in the positive electrode active material layer 103 according to this embodiment is appropriately selected according to the application.
  • a fluorine-based binder resin that can be dissolved in a solvent can be used.
  • the fluorine-based binder resin is not particularly limited as long as it can be electrode-molded and has sufficient electrochemical stability, and examples thereof include polyvinylidene fluoride-based resins and fluorine rubber. These fluorine-based binder resins may be used alone or in combination of two or more. Among these, a polyvinylidene fluoride resin is preferable.
  • the fluorine-based binder resin can be used after being dissolved in a solvent such as N-methyl-pyrrolidone (NMP).
  • the content of the binder resin is preferably 0.1% by mass or more and 10.0% by mass or less, and preferably 0.5% by mass or more and 5.0% by mass when the entire positive electrode active material layer 103 is 100% by mass. % Or less, more preferably 1.0% by mass or more and 5.0% by mass or less.
  • the content of the binder resin is within the above range, the balance of the coating property of the positive electrode slurry, the binding property of the binder, and the battery characteristics is further improved. Further, it is preferable that the content of the binder resin is not more than the above upper limit value because the ratio of the positive electrode active material is increased and the capacity per mass of the positive electrode is increased. It is preferable for the content of the binder resin to be not less than the above lower limit value because electrode peeling is suppressed.
  • the conductive auxiliary agent included in the positive electrode active material layer 103 according to the present embodiment is not particularly limited as long as it improves the conductivity of the positive electrode.
  • carbon black, ketjen black, acetylene black, natural graphite, artificial graphite examples thereof include graphite and carbon fiber.
  • carbon black, ketjen black, acetylene black, and carbon fiber are preferable.
  • These conductive aids may be used alone or in combination of two or more.
  • Specific surface area by nitrogen adsorption BET method of conductive additive is preferably 10 m 2 / g or more 100 m 2 / g or less, more preferably at most 30 m 2 / g or more 80m 2 / g, 50m 2 / G or more and 70 m 2 / g or less is particularly preferable.
  • the content of the conductive auxiliary agent is preferably 0.5% by mass or more and 5.0% by mass or less, and 1.0% by mass or more and 4.5% by mass or less when the entire positive electrode active material layer 103 is 100% by mass. More preferably, it is more preferably 1.5% by mass or more and 4.5% by mass or less, and particularly preferably 2.0% by mass or more and 4.5% by mass or less.
  • the content of the conductive additive is within the above range, the balance of the coating property of the positive electrode slurry, the binding property of the binder resin, and the battery characteristics is further improved.
  • the content of the conductive assistant is not more than the above upper limit value because the ratio of the positive electrode active material increases and the capacity per mass of the positive electrode increases. It is preferable that the content of the conductive auxiliary is not less than the above lower limit value because the conductivity of the positive electrode becomes better.
  • the content of the positive electrode active material is preferably 85% by mass or more and 99.4% by mass or less, more preferably 100% by mass when the entire positive electrode active material layer 103 is 100% by mass. It is 90.5 mass% or more and 98.5 mass% or less, More preferably, it is 90.5 mass% or more and 97.5 mass% or less. Further, the content of the binder resin is preferably 0.1% by mass or more and 10.0% by mass or less, more preferably 0.5% by mass or more and 5.0% by mass or less, and further preferably 1.0% by mass or more and 5.% by mass or less. 0% by mass or less.
  • the content of the conductive assistant is preferably 0.5% by mass or more and 5.0% by mass or less, more preferably 1.0% by mass or more and 4.5% by mass or less, and further preferably 1.5% by mass or more and 4% by mass or less. 0.5% by mass or less, particularly preferably 2.0% by mass or more and 4.5% by mass or less.
  • the density of the positive electrode active material layer 103 is not particularly limited.
  • the density is preferably 2.0 g / cm 3 or more and 3.6 g / cm 3 or less, and preferably 2.4 g / cm 3 or more and 3.5 g / cm 3 or less. More preferably, it is 2.8 g / cm 3 or more and 3.4 g / cm 3 or less. It is preferable that the density of the positive electrode active material layer 103 be within the above range because discharge capacity at the time of use at a high discharge rate is improved.
  • the higher the density of the positive electrode active material layer the worse the cycle characteristics at a high temperature of the obtained lithium ion battery.
  • the positive electrode 100 for a lithium ion battery according to the present embodiment can suppress the deterioration of the cycle characteristics. Therefore, from the viewpoint of further improving the energy density of the obtained lithium ion battery while improving the cycle characteristics at high temperature, the density of the positive electrode active material layer 103 is preferably 2.8 g / cm 3 or more. Further, from the viewpoint of further suppressing deterioration of cycle characteristics at a high temperature, the density of the positive electrode active material layer 103 is preferably 3.6 g / cm 3 or less, more preferably 3.5 g / cm 3 or less. More preferably, it is 3.4 g / cm 3 or less.
  • the thickness of the positive electrode active material layer 103 (the total thickness of both surfaces) is not particularly limited, and can be appropriately set according to desired characteristics. For example, it can be set thick from the viewpoint of energy density, and can be set thin from the viewpoint of output characteristics.
  • the thickness (total thickness of both surfaces) of the positive electrode active material layer 103 can be appropriately set within a range of 10 ⁇ m to 500 ⁇ m, for example, preferably 50 ⁇ m to 400 ⁇ m, and more preferably 100 ⁇ m to 300 ⁇ m.
  • the thicker the positive electrode active material layer the more likely the cycle characteristics at high temperatures of the obtained lithium ion battery to deteriorate.
  • the positive electrode 100 for a lithium ion battery according to the present embodiment can suppress the deterioration of the cycle characteristics. Therefore, from the viewpoint of further improving the energy density of the obtained lithium ion battery while improving the cycle characteristics at high temperature, the thickness of the positive electrode active material layer 103 (the total thickness of both surfaces) is preferably 100 ⁇ m or more. More preferably, it is 130 ⁇ m or more, more preferably 150 ⁇ m or more. Further, from the viewpoint of further suppressing deterioration of cycle characteristics at high temperature, the thickness of the positive electrode active material layer 103 (total thickness of both surfaces) is preferably 300 ⁇ m or less, more preferably 250 ⁇ m or less, and 200 ⁇ m or less. More preferably.
  • the thickness (thickness of one side) of the positive electrode active material layer 103 is not particularly limited, and can be appropriately set according to desired characteristics. For example, it can be set thick from the viewpoint of energy density, and can be set thin from the viewpoint of output characteristics.
  • the thickness (single-sided thickness) of the positive electrode active material layer 103 can be appropriately set, for example, in the range of 5 ⁇ m to 250 ⁇ m, preferably 25 ⁇ m to 200 ⁇ m, and more preferably 50 ⁇ m to 150 ⁇ m.
  • the thickness (single-sided thickness) of the positive electrode active material layer 103 is preferably 50 ⁇ m or more, and 65 ⁇ m or more. More preferably, it is more preferably 75 ⁇ m or more. Further, from the viewpoint of further suppressing deterioration of cycle characteristics at high temperatures, the thickness (single-sided thickness) of the positive electrode active material layer 103 is preferably 150 ⁇ m or less, more preferably 125 ⁇ m or less, and 100 ⁇ m or less. More preferably.
  • the specific surface area S according to the nitrogen adsorption BET method of the positive electrode active material is, for example, preferably 0.1 m 2 / g or more and 1.0 m 2 / g or less, and 0.2 m 2 / g or more and 0.7 m 2 / g or less. more preferably, it is more preferably not more than 0.2 m 2 / g or more 0.5 m 2 / g.
  • the average value of the specific surface areas of all the positive electrode active materials included in the positive electrode active material layer 103 is calculated as described above. Adopted as specific surface area S.
  • the collector layer 101 which concerns on this embodiment, Aluminum, stainless steel, nickel, titanium, or these alloys etc. can be used, and viewpoints, such as price, availability, and electrochemical stability. Therefore, aluminum is particularly preferable.
  • the shape of the current collector layer 101 is not particularly limited, and examples thereof include a foil shape, a flat plate shape, and a mesh shape.
  • the method for manufacturing the positive electrode 100 for a lithium ion battery according to this embodiment is different from the conventional method for manufacturing an electrode.
  • the blending ratio of the positive electrode active material layer 103 and the positive electrode active material layer 103 are formed. Therefore, it is important to highly control manufacturing conditions such as a positive electrode slurry preparation method, a positive electrode slurry drying method, a positive electrode pressing method, and a positive electrode preparation environment.
  • the positive electrode 100 for a lithium ion battery according to this embodiment can be obtained for the first time by a manufacturing method that highly controls various factors relating to the following five conditions (A) to (E).
  • the positive electrode 100 for a lithium ion battery according to the present embodiment is based on specific control conditions such as kneading time and kneading temperature of the positive electrode slurry, on the premise that various factors related to the above five conditions are highly controlled.
  • Various types can be adopted.
  • the positive electrode 100 for a lithium ion battery according to this embodiment can be manufactured by adopting a known method except for highly controlling various factors related to the above five conditions. .
  • an example of a method for manufacturing the positive electrode 100 for a lithium ion battery according to the present embodiment will be described on the assumption that various factors related to the above five conditions are highly controlled.
  • the manufacturing method of the positive electrode 100 for a lithium ion battery preferably includes the following three steps (1) to (3).
  • each step will be described.
  • a positive electrode slurry is prepared by mixing a positive electrode active material, a binder resin, and a conductive additive. Since the mixing ratio of the positive electrode active material, the binder resin, and the conductive additive is the same as the content ratio of the positive electrode active material, the binder resin, and the conductive additive in the positive electrode active material layer 103, description thereof is omitted here.
  • the positive electrode slurry is obtained by dispersing or dissolving a positive electrode active material, a binder resin, and a conductive additive in a solvent. It is preferable that the mixing procedure of each component prepares a positive electrode slurry by dry-mixing a positive electrode active material and a conductive support agent, and then adding a binder resin and a solvent and performing wet mixing. By doing so, the dispersibility of the conductive auxiliary agent and the binder resin in the positive electrode active material layer 103 is improved, and the amount of the conductive auxiliary agent and the binder resin at the interface between the current collector layer 101 and the positive electrode active material layer 103 is increased. The interface resistance between the current collector layer 101 and the positive electrode active material layer 103 can be further reduced. As a result, the volume resistivity of the positive electrode 100 for a lithium ion battery can be further reduced. At this time, a known mixer such as a ball mill or a planetary mixer can be used as the mixer used, and is not particularly limited.
  • the positive electrode active material layer 103 is formed by applying the obtained positive electrode slurry onto the current collector layer 101 and drying it.
  • the positive electrode slurry obtained in the above step (1) is applied on the current collector layer 101 and dried, and the solvent is removed to form the positive electrode active material layer 103 on the current collector layer 101.
  • a method for applying the positive electrode slurry onto the current collector layer 101 generally known methods can be used. Examples thereof include a reverse roll method, a direct roll method, a doctor blade method, a knife method, an extrusion method, a curtain method, a gravure method, a bar method, a dip method, and a squeeze method.
  • the doctor blade method, the knife method, and the extrusion method are preferable in that a favorable surface state of the coating layer can be obtained in accordance with physical properties such as viscosity of the positive electrode slurry and drying properties.
  • the positive electrode slurry is applied to both sides of the current collector layer 101.
  • both surfaces of the current collector layer 101 it may be applied sequentially one by one or both surfaces simultaneously.
  • the thickness, length and width of the coating layer can be appropriately determined according to the size of the battery.
  • a drying method of the positive electrode slurry applied on the current collector layer 101 a method of drying without applying hot air directly to the undried positive electrode slurry is preferable.
  • the binder resin and the conductive auxiliary agent can be prevented from being unevenly distributed on the surface of the positive electrode active material layer 103. Therefore, the conductive auxiliary agent and the binder at the interface between the current collector layer 101 and the positive electrode active material layer 103 can be suppressed.
  • the amount of the resin can be increased, and the interface resistance between the current collector layer 101 and the positive electrode active material layer 103 can be further reduced. As a result, the volume resistivity of the positive electrode 100 for a lithium ion battery can be further reduced.
  • the press method is preferably a roll press from the viewpoint of increasing the linear pressure and improving the adhesion between the positive electrode active material layer 103 and the current collector layer 101, and the roll press pressure is 10 to 100 MPa. A range is preferable. By doing so, the adhesion between the positive electrode active material layer 103 and the current collector layer 101 is improved, and the interface resistance between the current collector layer 101 and the positive electrode active material layer 103 can be further reduced. As a result, the volume resistivity of the positive electrode 100 for a lithium ion battery can be further reduced.
  • the above three steps (1) to (3) are preferably performed in a dry room (room temperature (eg, 10 ° C. or higher and 30 ° C. or lower) and dew point temperature is ⁇ 20 ° C. or lower, for example). .
  • room temperature eg, 10 ° C. or higher and 30 ° C. or lower
  • dew point temperature is ⁇ 20 ° C. or lower, for example.
  • sucks to each material which comprises a positive electrode, and can make the dispersibility, coating property, etc. of a positive electrode slurry favorable.
  • binder resin and a conductive support agent are unevenly distributed in the surface of the positive electrode active material layer 103, the conductive support agent and binder resin of the interface of the electrical power collector layer 101 and the positive electrode active material layer 103 are suppressed.
  • the amount can be increased, and the interface resistance between the current collector layer 101 and the positive electrode active material layer 103 can be further reduced. As a result, the volume resist
  • FIG. 2 is a cross-sectional view showing an example of the structure of the lithium ion battery 150 according to the embodiment of the present invention.
  • the lithium ion battery 150 according to the present embodiment includes the positive electrode 100 for a lithium ion battery according to the present embodiment.
  • the lithium ion battery 150 according to the present embodiment includes, for example, the positive electrode 100 for a lithium ion battery, the electrolyte layer 110, and the negative electrode 130 according to the present embodiment.
  • the lithium ion battery 150 according to the present embodiment may include a separator in the electrolyte layer 110 as necessary.
  • the lithium ion battery 150 according to this embodiment can be manufactured according to a known method.
  • Examples of the form of the electrode include a laminated body and a wound body.
  • Examples of the exterior body include a metal exterior body and an aluminum laminate exterior body.
  • Examples of the shape of the battery include a coin shape, a button shape, a sheet shape, a cylindrical shape, a square shape, and a flat shape.
  • the negative electrode 130 includes a negative electrode active material layer including a negative electrode active material, and, if necessary, a binder resin and a conductive additive.
  • the negative electrode 130 includes, for example, a negative electrode current collector and a negative electrode active material layer provided on the negative electrode current collector.
  • the negative electrode active material according to the present embodiment is not particularly limited as long as it is a normal negative electrode active material that can be used for the negative electrode of a lithium ion battery.
  • carbon materials are preferable, and graphite materials such as natural graphite and artificial graphite are particularly preferable.
  • a negative electrode active material may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the negative electrode active material When lithium metal is used as the negative electrode active material, a melt cooling method, a liquid quenching method, an atomizing method, a vacuum deposition method, a sputtering method, a plasma CVD method, a photo CVD method, a thermal CVD method, a sol-gel method, etc.
  • the negative electrode can be formed by various methods. In the case of a carbon material, a method in which carbon and a binder resin such as polyvinylidene fluoride (PVDF) are mixed, dispersed and kneaded in a solvent such as NMP, and this is applied to the negative electrode current collector.
  • the negative electrode can be formed by a method such as vapor deposition, CVD, or sputtering.
  • the average particle size of the negative electrode active material is preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more, and even more preferably 5 ⁇ m or more from the viewpoint of suppressing side reactions during charge / discharge and suppressing reduction in charge / discharge efficiency. From the viewpoint of production (smoothness of the electrode surface, etc.), it is preferably 80 ⁇ m or less, and more preferably 40 ⁇ m or less.
  • the average particle diameter means the particle diameter (median diameter: D50) at an integrated value of 50% in the particle size distribution (volume basis) by the laser diffraction scattering method.
  • the negative electrode active material layer may contain a conductive additive or a binder resin as necessary.
  • a conductive additive or a binder resin
  • the same materials as those used for the positive electrode active material layer 103 described above can be used.
  • the binder resin an aqueous binder dispersible in water can be used.
  • the water-based binder can be formed into an electrode and is not particularly limited as long as it has sufficient electrochemical stability.
  • a polytetrafluoroethylene resin a polyacrylic acid resin, a styrene / butadiene rubber
  • examples include polyimide resins.
  • These aqueous binders may be used alone or in combination of two or more. Among these, styrene / butadiene rubber is preferable.
  • the aqueous binder refers to a binder that can be dispersed in water to form an aqueous emulsion solution. When an aqueous binder is used, a thickener can be further used.
  • cellulosic polymers such as carboxymethylcellulose, methylcellulose, hydroxypropylcellulose, and these ammonium salts, and alkali metal salts; Polycarboxylic acid; Polyethylene oxide; Polyvinylpyrrolidone; Sodium polyacrylate etc. And water-soluble polymers such as polyvinyl acrylate, polyvinyl alcohol, and the like.
  • the negative electrode current collector copper, stainless steel, nickel, titanium, or an alloy thereof can be used, and copper is particularly preferable from the viewpoint of price, availability, electrochemical stability, and the like.
  • the shape of the negative electrode current collector is not particularly limited, and examples thereof include a foil shape, a flat plate shape, and a mesh shape.
  • any known lithium salt can be used, and may be selected according to the type of the electrode active material.
  • CF 3 Examples include SO 3 Li, CH 3 SO 3 Li, LiCF 3 SO 3 , LiC 4 F 9 SO 3 , Li (CF 3 SO 2 ) 2 N, and lower fatty acid carboxylate lithium.
  • the solvent used to dissolve the electrolyte used in the electrolyte layer 110 is not particularly limited as long as it is normally used as a liquid component for dissolving the electrolyte.
  • Examples of the separator include a porous separator.
  • Examples of the separator include a membrane, a film, and a nonwoven fabric.
  • a porous separator for example, a polyolefin-based porous separator such as polypropylene or polyethylene; a porous separator formed of polyvinylidene fluoride, polyethylene oxide, polyacrylonitrile, polyvinylidene fluoride hexafluoropropylene copolymer, or the like And the like.
  • Example 1 Preparation of positive electrode>
  • the positive electrode active material 1 and the conductive additive 1 were dry mixed.
  • a positive electrode slurry was prepared by adding a binder resin and N-methyl-pyrrolidone (NMP) to the resulting mixture and performing wet mixing.
  • NMP N-methyl-pyrrolidone
  • This positive electrode slurry was continuously applied to and dried on both surfaces of a 20 ⁇ m thick aluminum foil as a positive electrode current collector to prepare a positive electrode roll having a positive electrode current collector applied portion and an uncoated portion not applied.
  • the positive electrode slurry was dried by heating from the aluminum foil side or the already dried positive electrode active material layer side with a 120 ° C. heating roll, and indirectly heating the positive electrode slurry.
  • NMP in the positive electrode slurry was removed, and a positive electrode active material layer (thickness: 158 ⁇ m (total thickness of both surfaces)) was formed on the aluminum foil.
  • the aluminum foil and the positive electrode active material layer were pressed by a roll press at a press pressure of 20 MPa to obtain a positive electrode.
  • the density of the positive electrode active material layer in the positive electrode obtained was 2.97 g / cm 3 .
  • the above steps were all performed in a dry room (temperature: 23 ° C., dew point temperature: ⁇ 20 ° C. or lower).
  • the content of the conductive auxiliary in the positive electrode active material layer is W [mass%]
  • the mass ratio of the lithium-nickel composite oxide in the positive electrode active material is W 1 [ ⁇ ]
  • the lithium in the positive electrode active material is The mass ratio of the manganese composite oxide was W 2 [ ⁇ ]
  • S / W was calculated by the following formula (1).
  • S / W (S 1 ⁇ W 1 + S 2 ⁇ W 2 ) / W (1)
  • the high-temperature cycle characteristics were evaluated using a lithium ion battery. At a temperature of 45 ° C., CCCV charge and CC discharge were performed at a charge rate of 1.0 C, a discharge rate of 1.0 C, a charge end voltage of 4.15 V, and a discharge end voltage of 2.5 V.
  • the capacity retention rate (%) is a value obtained by dividing the discharge capacity (mAh) after 500 cycles by the discharge capacity (mAh) at the 10th cycle. When the capacity maintenance rate (%) exceeded 85%, ⁇ , when 80% exceeded 85% or less, ⁇ , and when 80% or less, ⁇ .
  • Lithium - manganese composite oxide (LiMn 2 O 4) a except that the specific surface area were changed as from those of 0.26 m 2 / g of 0.43 m 2 / g in the same manner as in Example 1 a positive electrode and a lithium ion battery Were made and each evaluation was performed.
  • Comparative Example 2 A positive electrode and a lithium ion battery were produced and evaluated in the same manner as in Comparative Example 1 except that the density of the positive electrode active material layer was changed from 2.97 g / cm 3 to 3.10 g / cm 3 .
  • Comparative Example 3 Except for changing the density of the positive electrode active material layer from 2.97 g / cm 3 to 2.80 g / cm 3 is prepared positive electrode and lithium-ion batteries in the same manner as in Comparative Example 1 was subjected to each evaluation.
  • Comparative Example 4 A positive electrode and a lithium ion battery were produced and evaluated in the same manner as in Comparative Example 1 except that the blending ratio of the positive electrode active material, the conductive additive and the binder resin was changed to 94/3/3 (mass ratio).
  • the lithium ion batteries of Examples in which the volume resistivity and S / W of the positive electrode are within the scope of the present invention were excellent in high-temperature cycle characteristics.
  • the lithium ion battery of the comparative example in which at least one of the volume resistivity and S / W of the positive electrode is outside the scope of the present invention was inferior in high-temperature cycle characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本発明のリチウムイオン電池用正極(100)は、集電体層(101)と、集電体層(101)の両面に設けられ、かつ、正極活物質、バインダー樹脂および導電助剤を含む正極活物質層(103)と、を備える。そして、リチウムイオン電池用正極(100)の体積抵抗率が120Ω・m以上350Ω・m以下であり、正極活物質層(103)に含まれる上記正極活物質の比表面積をS[m2/g]、正極活物質層(103)中の上記導電助剤の含有量をW[質量%]としたとき、S/Wが0.080以上0.140以下である。

Description

リチウムイオン電池用正極およびリチウムイオン電池
 本発明は、リチウムイオン電池用正極およびリチウムイオン電池に関する。
 リチウムイオン電池はエネルギー密度が高く、充放電サイクル特性に優れるため、携帯電話やノート型パソコン等の小型のモバイル機器用の電源等として広く用いられている。
 また、近年では、環境問題に対する配慮と省エネルギー化に対する意識の高まりから、電気自動車やハイブリッド電気自動車、電力貯蔵分野といった大容量で長寿命が要求される大型電池に対する需要も高まっている。
 高エネルギー密度化および長寿命化を目指して、リチウムイオン電池にはさらなる特性向上が求められている。
 リチウムイオン電池に用いられる正極は、一般的に、正極活物質層と集電体層から主に構成されている。正極活物質層は、例えば、正極活物質、バインダー樹脂、および導電助剤等を含む正極スラリーを金属箔等の集電体層の表面に塗布して乾燥することにより得られる。
 このようなリチウムイオン電池用正極に関する技術としては、例えば、特許文献1~3に記載のものが挙げられる。
 特許文献1(特開平8-17471号公報)には、正極と負極とリチウムイオンを含む非水電解液を有する二次電池であって、上記正極の活物質材料として一般式Li[Mn2-XLi]O(但し、0≦x≦0.1)で示されるリチウムマンガン酸化物もしくは一般式Li[Mn2-X]O(但し、MはCo、Ni、Fe、Cr、Zn、Ta等のMn以外の金属元素)で示されるリチウムマンガン酸化物を使用する非水電解液二次電池において、上記正極は比表面積(S)がS≦0.5m/gである上記リチウムマンガン酸化物を伝導助材と共に金属集電体の上に固めて活物質層を形成した電極であり、且つ上記活物質層の密度(d)が2.85≦d≦3.2g/ccであることを特徴とする非水電解液二次電池が記載されている。
 特許文献2(特開2000-251892号公報)には、組成式LiNi1-xM1(M1は、Al、B、アルカリ金属、アルカリ土類金属、遷移金属の元素のうち少なくとも1種以上の金属元素:0<x<0.3)で表されるリチウムニッケル複合酸化物と、組成式LiMn2-yM2(M2は、Al、B、アルカリ金属、アルカリ土類金属、遷移金属の元素のうち少なくとも1種以上の金属元素:0<y<0.3)で表されるリチウムマンガン複合酸化物とを混合してなるリチウム二次電池用正極活物質が記載されている。
 特許文献3(特開2013-20975号公報)には、少なくともMn、NiおよびCoを含む層状型リチウム・マンガン・ニッケル・コバルト複合酸化物と、スピネル型リチウム・マンガン複合酸化物とを、活物質として含有する正極合剤層を有しており、上記層状型リチウム・マンガン・ニッケル・コバルト複合酸化物は、比表面積が0.1~0.6m/gであり、上記スピネル型リチウム・マンガン複合酸化物は、比表面積が0.05~0.3m/gであり、上記正極合剤層では、上記層状型リチウム・マンガン・ニッケル・コバルト複合酸化物と、上記スピネル型リチウム・マンガン複合酸化物と合計に対し、上記スピネル型リチウム・マンガン複合酸化物の比率が30~50質量%であり、かつLi/Mnのモル比が0.35~0.53であり、上記正極合剤層の密度が、3.0~3.6g/cmであり、上記正極合剤層に、導電助剤として少なくともアセチレンブラックを含有する正極を有することを特徴とする非水電解質二次電池が記載されている。
特開平8-17471号公報 特開2000-251892号公報 特開2013-20975号公報
 リチウムイオン電池の小型化や軽量化の要求に伴い、リチウムイオン電池にはさらなる高エネルギー密度化が求められている。
 本発明者の検討によれば、高容量の正極活物質を用いたり、電極を高密度化したり、活物質層の厚みを厚くしたりしてリチウムイオン電池を高エネルギー密度化すると、高温でのサイクル特性が悪化してしまう場合があることが明らかになった。
 本発明は上記事情に鑑みてなされたものであり、高温でのサイクル特性に優れたリチウムイオン電池を実現できるリチウムイオン電池用正極を提供するものである。
 本発明者らは上記課題を達成すべく鋭意検討を重ねた。その結果、正極の体積抵抗率および導電助剤の含有量に対する正極活物質の比表面積の比を特定の範囲にすることにより、高容量の正極活物質を用いたり、電極を高密度化したり、活物質層の厚みを厚くしたりしてリチウムイオン電池を高エネルギー密度化したとしても、高温でのサイクル特性の悪化を抑制できることを見出して本発明を完成するに至った。
 本発明によれば、
 集電体層と、
 上記集電体層の両面に設けられ、かつ、正極活物質、バインダー樹脂および導電助剤を含む正極活物質層と、
を備えるリチウムイオン電池用正極であって、
 上記リチウムイオン電池用正極の体積抵抗率が120Ω・m以上350Ω・m以下であり、
 上記正極活物質層に含まれる上記正極活物質の比表面積をS[m/g]、上記正極活物質層中の上記導電助剤の含有量をW[質量%]としたとき、S/Wが0.080以上0.140以下であるリチウムイオン電池用正極が提供される。
 また、本発明によれば、
 上記リチウムイオン電池用正極を備える、リチウムイオン電池が提供される。
 本発明によれば、高温でのサイクル特性に優れたリチウムイオン電池を実現できるリチウムイオン電池用正極を提供することができる。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
本発明に係る実施形態のリチウムイオン電池用正極の構造の一例を示す断面図である。 本発明に係る実施形態のリチウムイオン電池の構造の一例を示す断面図である。
 以下に、本発明の実施形態について、図面を用いて説明する。なお、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。また、図において各構成要素は本発明が理解できる程度の形状、大きさおよび配置関係を概略的に示したものであり、実寸とは異なっている。また、本実施形態では数値範囲の「A~B」は特に断りがなければ、A以上B以下を表す。
<リチウムイオン電池用正極>
 はじめに、本実施形態に係るリチウムイオン電池用正極100について説明する。図1は、本発明に係る実施形態のリチウムイオン電池用正極100の構造の一例を示す断面図である。
 本実施形態に係るリチウムイオン電池用正極100は、集電体層101と、集電体層101の両面に設けられ、かつ、正極活物質、バインダー樹脂および導電助剤を含む正極活物質層103と、を備える。そして、リチウムイオン電池用正極100の体積抵抗率が120Ω・m以上350Ω・m以下であり、正極活物質層103に含まれる上記正極活物質の比表面積をS[m/g]、正極活物質層103中の上記導電助剤の含有量をW[質量%]としたとき、S/Wが0.080以上0.140以下である。
 ここで、リチウムイオン電池用正極100の体積抵抗率は四端子抵抗率測定器を用いて四端子法により測定することができる。より具体的には、リチウムイオン電池用正極100の厚みの法線方向を端子プローブで荷重1kg/cmで挟持し、この端子プローブに四端子法による測定端子を結合することによりリチウムイオン電池用正極100の体積抵抗率を測定することができる。
 本発明者の検討によれば、高容量の正極活物質を用いたり、電極を高密度化したり、活物質層の厚みを厚くしたりしてリチウムイオン電池を高エネルギー密度化すると、高温でのサイクル特性が悪化してしまう場合があることが明らかになった。
 そこで、本発明者は鋭意検討した結果、正極の体積抵抗率および導電助剤の含有量に対する正極活物質の比表面積の比を特定の範囲にすることにより、高容量の正極活物質を用いたり、電極を高密度化したり、活物質層の厚みを厚くしたりしてリチウムイオン電池を高エネルギー密度化したとしても、高温でのサイクル特性の悪化を抑制できることを初めて見出した。
 リチウムイオン電池用正極100の体積抵抗率の上限は350Ω・m以下であるが、好ましくは300Ω・m以下、より好ましくは250Ω・m以下、さらに好ましくは200Ω・m以下、特に好ましくは180Ω・m以下である。
 本実施形態に係るリチウムイオン電池用正極100において、体積抵抗率を上記上限値以下とすることにより、得られるリチウムイオン電池の電気抵抗を低減できるため、電極での副反応(例えば、電解液の分解反応等)による被膜の厚みの増大を抑制でき、その結果、サイクル特性等の電池特性を効果的に向上させることができる。
 リチウムイオン電池用正極100の体積抵抗率の下限は120Ω・m以上であるが、好ましくは130Ω・m以上、より好ましくは140Ω・m以上である。
 本実施形態に係るリチウムイオン電池用正極100において、体積抵抗率を上記下限値以上とすることにより、電極反応を適度に抑制できるため、膨張収縮による正極活物質の割れが抑制できたり、正極活物質に極端な負荷がかかるのを抑制できたりする。その結果、サイクル特性等の電池特性を効果的に向上させることができる。
 本実施形態に係るリチウムイオン電池用正極100の体積抵抗率は、(A)正極活物質層103の配合比率、(B)正極活物質層103を形成するための正極スラリーの調製方法、(C)正極スラリーの乾燥方法、(D)正極のプレス方法、(E)正極の作製環境等の製造条件を高度に制御することにより実現することが可能である。
 また、本実施形態に係るリチウムイオン電池用正極100において、正極活物質層103の上記S/Wの上限は0.140以下であるが、好ましくは0.130以下、より好ましくは0.120以下である。
 本実施形態に係るリチウムイオン電池用正極100において、正極活物質層103の上記S/Wを上記上限値以下とすることにより、得られるリチウムイオン電池の電気抵抗を低減できるため、電極での副反応(例えば、電解液の分解反応等)による被膜の厚みの増大を抑制でき、その結果、サイクル特性等の電池特性を効果的に向上させることができる。
 正極活物質層103の上記S/Wの下限は0.080以上であるが、好ましくは0.085以上、特に好ましくは0.090以上である。
 本実施形態に係るリチウムイオン電池用正極100において、正極活物質層103の上記S/Wを上記下限値以上とすることにより、電極反応を適度に抑制できるため、膨張収縮による正極活物質の割れが抑制できたり、正極活物質に極端な負荷がかかるのを抑制できたりする。その結果、サイクル特性等の電池特性を効果的に向上させることができる。
 次に、本実施形態に係る正極活物質層103を構成する各成分について説明する。
 正極活物質層103は、正極活物質、バインダー樹脂、および導電助剤を含んでいる。
 本実施形態に係る正極活物質層103に含まれる正極活物質は用途に応じて適宜選択される。
 正極活物質としてはリチウムイオン電池の正極に使用可能な通常の正極活物質であれば特に限定されない。例えば、リチウム-ニッケル複合酸化物、リチウム-コバルト複合酸化物、リチウム-マンガン複合酸化物、リチウム-ニッケル-マンガン複合酸化物、リチウム-ニッケル-コバルト複合酸化物、リチウム-ニッケル-アルミニウム複合酸化物、リチウム-ニッケル-コバルト-アルミニウム複合酸化物、リチウム-ニッケル-マンガン-コバルト複合酸化物、リチウム-ニッケル-マンガン-アルミニウム複合酸化物、リチウム-ニッケル-コバルト-マンガン-アルミニウム複合酸化物等のリチウムと遷移金属との複合酸化物;TiS、FeS、MoS等の遷移金属硫化物;MnO、V、V13、TiO等の遷移金属酸化物、オリビン型リチウムリン酸化物等が挙げられる。
 オリビン型リチウムリン酸化物は、例えば、Mn、Cr、Co、Cu、Ni、V、Mo、Ti、Zn、Al、Ga、Mg、B、Nb、およびFeよりなる群のうちの少なくとも1種の元素と、リチウムと、リンと、酸素とを含んでいる。これらの化合物はその特性を向上させるために一部の元素を部分的に他の元素に置換したものであってもよい。
 これらの中でも、オリビン型リチウム鉄リン酸化物、リチウム-ニッケル複合酸化物、リチウム-コバルト複合酸化物、リチウム-マンガン複合酸化物、リチウム-ニッケル-マンガン複合酸化物、リチウム-ニッケル-コバルト複合酸化物、リチウム-ニッケル-アルミニウム複合酸化物、リチウム-ニッケル-コバルト-アルミニウム複合酸化物、リチウム-ニッケル-マンガン-コバルト複合酸化物、リチウム-ニッケル-マンガン-アルミニウム複合酸化物、リチウム-ニッケル-コバルト-マンガン-アルミニウム複合酸化物が好ましく、リチウム-ニッケル複合酸化物、リチウム-コバルト複合酸化物、リチウム-マンガン複合酸化物、リチウム-ニッケル-マンガン複合酸化物、リチウム-ニッケル-コバルト複合酸化物、リチウム-ニッケル-アルミニウム複合酸化物、リチウム-ニッケル-コバルト-アルミニウム複合酸化物、リチウム-ニッケル-マンガン-コバルト複合酸化物、リチウム-ニッケル-マンガン-アルミニウム複合酸化物、リチウム-ニッケル-コバルト-マンガン-アルミニウム複合酸化物等のリチウムと遷移金属との複合酸化物がより好ましく、高容量、サイクル特性およびコストのバランスの観点から、リチウム-ニッケル複合酸化物、リチウム-ニッケル-マンガン複合酸化物、リチウム-ニッケル-コバルト複合酸化物、リチウム-ニッケル-アルミニウム複合酸化物、リチウム-ニッケル-コバルト-アルミニウム複合酸化物、リチウム-ニッケル-マンガン-コバルト複合酸化物、リチウム-ニッケル-マンガン-アルミニウム複合酸化物、リチウム-ニッケル-コバルト-マンガン-アルミニウム複合酸化物等のニッケル系の複合酸化物と、リチウム-マンガン複合酸化物と、を併用することがさらに好ましい。
 これらの正極活物質は作用電位が高いことに加えて容量も大きく、大きなエネルギー密度を有する。
 正極活物質は、一種のみを単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 正極活物質の平均粒子径は、充放電時の副反応を抑えて充放電効率の低下を抑える点から、1μm以上が好ましく、2μm以上がより好ましく、5μm以上がさらに好ましく、入出力特性や電極作製上の観点(電極表面の平滑性等)から、80μm以下が好ましく、40μm以下がより好ましい。ここで、平均粒径は、レーザ回折散乱法による粒度分布(体積基準)における積算値50%での粒子径(メジアン径:D50)を意味する。
 正極活物質の含有量は、正極活物質層103の全体を100質量%としたとき、85質量%以上99.4質量%以下であることが好ましく、90.5質量%以上98.5質量%以下であることがより好ましく、90.5質量%以上97.5質量%以下であることがさらに好ましい。
 本実施形態に係る正極活物質層103に含まれるバインダー樹脂は用途に応じて適宜選択される。例えば、溶媒に溶解可能なフッ素系バインダー樹脂を使用することができる
 フッ素系バインダー樹脂としては電極成形が可能であり、十分な電気化学的安定性を有していれば特に限定されないが、例えば、ポリフッ化ビニリデン系樹脂、フッ素ゴム等が挙げられる。これらのフッ素系バインダー樹脂は一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。これらの中でも、ポリフッ化ビニリデン系樹脂が好ましい。フッ素系バインダー樹脂は、例えば、N-メチル-ピロリドン(NMP)等の溶媒に溶解させて使用することができる。
 バインダー樹脂の含有量は、正極活物質層103の全体を100質量%としたとき、0.1質量%以上10.0質量%以下であることが好ましく、0.5質量%以上5.0質量%以下であることがより好ましく、1.0質量%以上5.0質量%以下がさらに好ましい。バインダー樹脂の含有量が上記範囲内であると、正極スラリーの塗工性、バインダーの結着性および電池特性のバランスがより一層優れる。
 また、バインダー樹脂の含有量が上記上限値以下であると、正極活物質質の割合が大きくなり、正極質量当たりの容量が大きくなるため好ましい。バインダー樹脂の含有量が上記下限値以上であると、電極剥離が抑制されるため好ましい。
 本実施形態に係る正極活物質層103に含まれる導電助剤としては正極の導電性を向上させるものであれば特に限定されないが、例えば、カーボンブラック、ケッチェンブラック、アセチレンブラック、天然黒鉛、人工黒鉛、炭素繊維等が挙げられる。これらの中でも、カーボンブラック、ケッチェンブラック、アセチレンブラック、炭素繊維が好ましい。これらの導電助剤は1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 導電助剤の窒素吸着BET法による比表面積は、例えば、10m/g以上100m/g以下であることが好ましく、30m/g以上80m/g以下であることがより好ましく、50m/g以上70m/g以下であることが特に好ましい。
 導電助剤の含有量は、正極活物質層103の全体を100質量%としたとき、0.5質量%以上5.0質量%以下であることが好ましく、1.0質量%以上4.5質量%以下であることがより好ましく、1.5質量%以上4.5質量%以下がさらに好ましく、2.0質量%以上4.5質量%以下が特に好ましい。導電助剤の含有量が上記範囲内であると、正極スラリーの塗工性、バインダー樹脂の結着性および電池特性のバランスがより一層優れる。
 また、導電助剤の含有量が上記上限値以下であると、正極活物質の割合が大きくなり、正極質量当たりの容量が大きくなるため好ましい。導電助剤の含有量が上記下限値以上であると、正極の導電性がより良好になるため好ましい。
 本実施形態に係る正極活物質層103は、正極活物質層103の全体を100質量%としたとき、正極活物質の含有量は好ましくは85質量%以上99.4質量%以下、より好ましくは90.5質量%以上98.5質量%以下、さらに好ましくは90.5質量%以上97.5質量%以下である。また、バインダー樹脂の含有量は好ましくは0.1質量%以上10.0質量%以下、より好ましくは0.5質量%以上5.0質量%以下、さらに好ましくは1.0質量%以上5.0質量%以下である。また、導電助剤の含有量は好ましくは0.5質量%以上5.0質量%以下、より好ましくは1.0質量%以上4.5質量%以下、さらに好ましくは1.5質量%以上4.5質量%以下、特に好ましくは2.0質量%以上4.5質量%以下である。
 正極活物質層103を構成する各成分の含有量が上記範囲内であると、リチウムイオン電池用正極100の取扱い性と、得られるリチウムイオン電池の電池特性のバランスが特に優れる。
 正極活物質層103の密度は特に限定されないが、例えば、2.0g/cm以上3.6g/cm以下とするのが好ましく、2.4g/cm以上3.5g/cm以下とするのがより好ましく、2.8g/cm以上3.4g/cm以下とするのがさらに好ましい。正極活物質層103の密度を上記範囲内とすると、高放電レートでの使用時における放電容量が向上するため好ましい。
 ここで、正極活物質層の密度が高いほど、得られるリチウムイオン電池の高温でのサイクル特性が悪化しやすい。しかし、本実施形態に係るリチウムイオン電池用正極100はこのサイクル特性の悪化を抑制することができる。そのため、高温でのサイクル特性を良好にしつつ、得られるリチウムイオン電池のエネルギー密度をより一層向上させる観点から、正極活物質層103の密度は2.8g/cm以上であることが好ましい。また、高温でのサイクル特性の悪化をより抑制する観点から、正極活物質層103の密度は3.6g/cm以下であることが好ましく3.5g/cm以下であることがより好ましく、3.4g/cm以下であることがさらに好ましい。
 正極活物質層103の厚み(両面の厚みの合計)は特に限定されるものではなく、所望の特性に応じて適宜設定することができる。例えば、エネルギー密度の観点からは厚く設定することができ、また出力特性の観点からは薄く設定することができる。正極活物質層103の厚み(両面の厚みの合計)は、例えば、10μm以上500μm以下の範囲で適宜設定でき、50μm以上400μm以下が好ましく、100μm以上300μm以下がより好ましい。
 ここで、正極活物質層の厚みが厚いほど、得られるリチウムイオン電池の高温でのサイクル特性が悪化しやすい。しかし、本実施形態に係るリチウムイオン電池用正極100はこのサイクル特性の悪化を抑制することができる。そのため、高温でのサイクル特性を良好にしつつ、得られるリチウムイオン電池のエネルギー密度をより一層向上させる観点から、正極活物質層103の厚み(両面の厚みの合計)は100μm以上であることが好ましく、130μm以上であることがより好ましく、150μm以上であることがさらに好ましい。また、高温でのサイクル特性の悪化をより抑制する観点から、正極活物質層103の厚み(両面の厚みの合計)は300μm以下であることが好ましく、250μm以下であることがより好ましく、200μm以下であることがさらに好ましい。
 また、正極活物質層103の厚み(片面の厚み)は特に限定されるものではなく、所望の特性に応じて適宜設定することができる。例えば、エネルギー密度の観点からは厚く設定することができ、また出力特性の観点からは薄く設定することができる。正極活物質層103の厚み(片面の厚み)は、例えば、5μm以上250μm以下の範囲で適宜設定でき、25μm以上200μm以下が好ましく、50μm以上150μm以下がより好ましい。
 高温でのサイクル特性を良好にしつつ、得られるリチウムイオン電池のエネルギー密度をより一層向上させる観点から、正極活物質層103の厚み(片面の厚み)は50μm以上であることが好ましく、65μm以上であることがより好ましく、75μm以上であることがさらに好ましい。また、高温でのサイクル特性の悪化をより抑制する観点から、正極活物質層103の厚み(片面の厚み)は150μm以下であることが好ましく、125μm以下であることがより好ましく、100μm以下であることがさらに好ましい。
 正極活物質の窒素吸着BET法による比表面積Sは、例えば、0.1m/g以上1.0m/g以下であることが好ましく、0.2m/g以上0.7m/g以下であることがより好ましく、0.2m/g以上0.5m/g以下であることがさらに好ましい。
 ここで、本実施形態において、正極活物質層103中に2種類以上の正極活物質が含まれる場合、正極活物質層103中に含まれる、すべての正極活物質の比表面積の平均値を上記比表面積Sとして採用する。
 本実施形態に係る集電体層101としては特に限定されないが、アルミニウム、ステンレス鋼、ニッケル、チタンまたはこれらの合金等を用いることができ、価格や入手容易性、電気化学的安定性等の観点から、アルミニウムが特に好ましい。また、集電体層101の形状についても特に限定されないが、箔状、平板状、メッシュ状等が挙げられる。
<リチウムイオン電池用正極の製造方法>
 次に、本実施形態に係るリチウムイオン電池用正極100の製造方法について説明する。
 本実施形態に係るリチウムイオン電池用正極100の製造方法は、従来の電極の製造方法とは異なるものである。リチウムイオン電池用正極100の体積抵抗率が上記範囲内にある本実施形態に係るリチウムイオン電池用正極100を得るためには、正極活物質層103の配合比率、正極活物質層103を形成するための正極スラリーの調製方法、正極スラリーの乾燥方法、正極のプレス方法、正極の作製環境等の製造条件を高度に制御することが重要である。すなわち、以下の(A)~(E)の5つの条件に係る各種因子を高度に制御する製造方法によって初めて本実施形態に係るリチウムイオン電池用正極100を得ることができる。
(A)正極活物質層103の配合比率
(B)正極活物質層103を形成するための正極スラリーの調製方法
(C)正極スラリーの乾燥方法
(D)正極のプレス方法
(E)正極の作製環境
 ただし、本実施形態に係るリチウムイオン電池用正極100は、上記5つの条件に係る各種因子を高度に制御することを前提に、例えば、正極スラリーの混練時間、混練温度等の具体的な製造条件は種々のものを採用することができる。言い換えれば、本実施形態に係るリチウムイオン電池用正極100は、上記5つの条件に係る各種因子を高度に制御すること以外の点については、公知の方法を採用して作製することが可能である。
 以下、上記5つの条件に係る各種因子を高度に制御していることを前提に、本実施形態に係るリチウムイオン電池用正極100の製造方法の一例について説明する。
 本実施形態に係るリチウムイオン電池用正極100の製造方法は、以下の(1)~(3)の3つの工程を含んでいるのが好ましい。
 (1)正極活物質と、バインダー樹脂と、導電助剤とを混合することにより正極スラリーを調製する工程
 (2)得られた正極スラリーを集電体層101上に塗布して乾燥することにより、正極活物質層103を形成する工程
 (3)集電体層101上に形成した正極活物質層103を集電体層101とともにプレスする工程
 以下、各工程について説明する。
 まず、(1)正極活物質と、バインダー樹脂と、導電助剤とを混合することにより正極スラリーを調製する。正極活物質、バインダー樹脂、および導電助剤の配合比率は正極活物質層103中の正極活物質、バインダー樹脂、および導電助剤の含有比率と同じため、ここでは説明を省略する。
 正極スラリーは、正極活物質と、バインダー樹脂と、導電助剤とを溶媒に分散または溶解させたものである。
 各成分の混合手順は正極活物質と導電助剤とを乾式混合した後に、バインダー樹脂および溶媒を添加して湿式混合することにより正極スラリーを調製することが好ましい。
 こうすることにより、正極活物質層103中の導電助剤およびバインダー樹脂の分散性が向上し、集電体層101と正極活物質層103との界面における導電助剤およびバインダー樹脂の量を増やすことができ、集電体層101と正極活物質層103との間の界面抵抗をより低下させることができる。その結果、リチウムイオン電池用正極100の体積抵抗率をより低下させることができる。
 このとき、用いられる混合機としては、ボールミルやプラネタリーミキサー等の公知のものが使用でき、特に限定されない。
 次いで、(2)得られた正極スラリーを集電体層101上に塗布して乾燥することにより、正極活物質層103を形成する。この工程では、例えば、上記工程(1)により得られた正極スラリーを集電体層101上に塗布して乾燥し、溶媒を除去することにより集電体層101上に正極活物質層103を形成する。
 正極スラリーを集電体層101上に塗布する方法は、一般的に公知の方法を用いることができる。例えば、リバースロール法、ダイレクトロール法、ドクターブレード法、ナイフ法、エクストルージョン法、カーテン法、グラビア法、バー法、ディップ法およびスクイーズ法等を挙げることができる。これらの中でも、正極スラリーの粘性等の物性および乾燥性に合わせて、良好な塗布層の表面状態を得ることが可能となる点で、ドクターブレード法、ナイフ法、エクストルージョン法が好ましい。
 正極スラリーは、集電体層101の両面に塗布する。集電体層101の両面に塗布する際は、片面ずつ逐次でも、両面同時に塗布してもよい。また、集電体層101の表面に連続で、あるいは、間欠で塗布してもよい。塗布層の厚さや長さ、幅は、電池の大きさに応じて、適宜決定することができる。
 集電体層101上に塗布した正極スラリーの乾燥方法としては、未乾燥の正極スラリーに熱風を直接当てずに乾燥させる方法が好ましい。例えば、加熱ロールを用いて集電体層101側または既に乾燥した正極活物質層103側から正極スラリーを間接的に加熱し、正極スラリーを乾燥させる方法;赤外線、遠赤外線・近赤外線のヒーター等の電磁波を用いて正極スラリーを乾燥させる方法;集電体層101側または既に乾燥した正極活物質層103側から熱風を当てて正極スラリーを間接的に加熱し、正極スラリーを乾燥させる方法等の方法が好ましい。
 こうすることで、バインダー樹脂および導電助剤が正極活物質層103の表面に偏在してしまうことを抑制できるため、集電体層101と正極活物質層103との界面における導電助剤およびバインダー樹脂の量を増やすことができ、集電体層101と正極活物質層103との間の界面抵抗をより低下させることができる。その結果、リチウムイオン電池用正極100の体積抵抗率をより低下させることができる。
 次いで、(3)集電体層101上に形成した正極活物質層103を集電体層101とともにプレスする。プレスの方法としては線圧を高くすることができ、正極活物質層103と集電体層101との密着性を向上させることができる観点からロールプレスが好ましく、ロールプレス圧は10~100MPaの範囲であることが好ましい。こうすることにより、正極活物質層103と集電体層101との密着性が向上し、集電体層101と正極活物質層103との間の界面抵抗をより低下させることができる。その結果、リチウムイオン電池用正極100の体積抵抗率をより低下させることができる。
 ここで、上記の(1)~(3)の3つの工程はドライルーム内(室温(例えば、10℃以上30℃以下)で、露点温度が、例えば、-20℃以下)でおこなうことが好ましい。これにより、正極を構成する各材料に水蒸気が吸着するのを抑制することができ、正極スラリーの分散性や塗工性等を良好にすることができる。これにより、バインダー樹脂および導電助剤が正極活物質層103の表面に偏在してしまうことを抑制できるため、集電体層101と正極活物質層103との界面における導電助剤およびバインダー樹脂の量を増やすことができ、集電体層101と正極活物質層103との間の界面抵抗をより低下させることができる。その結果、リチウムイオン電池用正極100の体積抵抗率をより低下させることができる。
<リチウムイオン電池>
 つづいて、本実施形態に係るリチウムイオン電池150について説明する。図2は、本発明に係る実施形態のリチウムイオン電池150の構造の一例を示す断面図である。
 本実施形態に係るリチウムイオン電池150は、本実施形態に係るリチウムイオン電池用正極100を備える。また、本実施形態に係るリチウムイオン電池150は、例えば、本実施形態に係るリチウムイオン電池用正極100と、電解質層110と、負極130とを備える。また、本実施形態に係るリチウムイオン電池150は、必要に応じて電解質層110にセパレータを含んでもよい。
 本実施形態に係るリチウムイオン電池150は公知の方法に準じて作製することができる。
 電極の形態としては、例えば、積層体や捲回体等が挙げられる。外装体としては、例えば、金属外装体やアルミラミネート外装体等が挙げられる。電池の形状としては、コイン型、ボタン型、シート型、円筒型、角型、扁平型等の形状が挙げられる。
 負極130は、負極活物質と、必要に応じて、バインダー樹脂と、導電助剤とを含む負極活物質層を備える。
 また、負極130は、例えば、負極集電体と、この負極集電体上に設けられた負極活物質層とを備える。
 本実施形態に係る負極活物質としては、負極活物質としては、リチウムイオン電池の負極に使用可能な通常の負極活物質であれば特に限定されない。例えば、天然黒鉛、人造黒鉛、樹脂炭、炭素繊維、活性炭、ハードカーボン、ソフトカーボン等の炭素材料;リチウム金属、リチウム合金等のリチウム系金属材料;シリコン、スズ等の金属材料;ポリアセン、ポリアセチレン、ポリピロール等の導電性ポリマー材料等が挙げられる。これらの中でも炭素材料が好ましく、特に天然黒鉛や人造黒鉛等の黒鉛質材料が好ましい。
 負極活物質は1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 負極活物質としてリチウム金属を用いる場合には融液冷却方式、液体急冷方式、アトマイズ方式、真空蒸着方式、スパッタリング方式、プラズマCVD方式、光CVD方式、熱CVD方式、ゾル-ゲル方式、等の適宜な方式により負極を形成することができる。また、炭素材料の場合には、カーボンとポリビニリデンフルオライド(PVDF)等のバインダー樹脂を混合し、NMP等の溶剤中に分散混錬し、これを負極集電体上に塗布する等の方法や、蒸着法、CVD法、スパッタリング法等の方法により負極を形成することができる。
 負極活物質の平均粒子径は、充放電時の副反応を抑えて充放電効率の低下を抑える点から、1μm以上が好ましく、2μm以上がより好ましく、5μm以上がさらに好ましく、入出力特性や電極作製上の観点(電極表面の平滑性等)から、80μm以下が好ましく、40μm以下がより好ましい。ここで、平均粒径は、レーザ回折散乱法による粒度分布(体積基準)における積算値50%での粒子径(メジアン径:D50)を意味する。
 負極活物質層には、必要に応じて導電助剤やバインダー樹脂を含有してもよい。導電助剤やバインダー樹脂としては、前述した正極活物質層103に用いることができるものと同様のものを用いることができる。また、バインダー樹脂としては、水に分散可能な水系バインダー等も使用することができる
 水系バインダーとしては電極成形が可能であり、十分な電気化学的安定性を有していれば特に限定されないが、例えば、ポリテトラフルオロエチレン系樹脂、ポリアクリル酸系樹脂、スチレン・ブタジエン系ゴム、ポリイミド系樹脂等が挙げられる。これらの水系バインダーは一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。これらの中でも、スチレン・ブタジエン系ゴムが好ましい。
 なお、本実施形態において、水系バインダーとは、水に分散し、エマルジョン水溶液を形成できるものをいう。
 水系バインダーを使用する場合は、さらに増粘剤を使用することができる。増粘剤としては特に限定されないが、例えば、カルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルセルロース等のセルロース系ポリマーおよびこれらのアンモニウム塩並びにアルカリ金属塩;ポリカルボン酸;ポリエチレンオキシド;ポリビニルピロリドン;ポリアクリル酸ナトリウム等のポリアクリル酸塩;ポリビニルアルコール;等の水溶性ポリマー等が挙げられる。
 負極集電体としては銅、ステンレス鋼、ニッケル、チタンまたはこれらの合金を用いることができ、価格や入手容易性、電気化学的安定性等の観点から、銅が特に好ましい。また、負極集電体の形状についても特に限定されないが、箔状、平板状、メッシュ状等が挙げられる。
 電解質層110に使用される電解質としては、公知のリチウム塩がいずれも使用でき、電極活物質の種類に応じて選択すればよい。例えば、LiClO、LiBF、LiPF、LiCFSO、LiCFCO、LiAsF、LiSbF、LiB10Cl10、LiAlCl、LiCl、LiBr、LiB(C、CFSOLi、CHSOLi、LiCFSO、LiCSO、Li(CFSON、低級脂肪酸カルボン酸リチウム等が挙げられる。
 電解質層110に使用される電解質を溶解する溶媒としては、電解質を溶解させる液体成分として通常用いられるものであれば特に限定されるものではなく、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、メチルエチルカーボネート(MEC)、ビニレンカーボネート(VC)等のカーボネート類;γ-ブチロラクトン、γ-バレロラクトン等のラクトン類;トリメトキシメタン、1,2-ジメトキシエタン、ジエチルエーテル、2-エトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン等のエーテル類;ジメチルスルホキシド等のスルホキシド類;1,3-ジオキソラン、4-メチル-1,3-ジオキソラン等のオキソラン類;アセトニトリル、ニトロメタン、ホルムアミド、ジメチルホルムアミド等の含窒素類;ギ酸メチル、酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル等の有機酸エステル類;リン酸トリエステルやジグライム類;トリグライム類;スルホラン、メチルスルホラン等のスルホラン類;3-メチル-2-オキサゾリジノン等のオキサゾリジノン類;1,3-プロパンスルトン、1,4-ブタンスルトン、ナフタスルトン等のスルトン類等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 セパレータとしては、例えば、多孔性セパレータが挙げられる。セパレータの形態は、膜、フィルム、不織布等が挙げられる。
 多孔性セパレータとしては、例えば、ポリプロピレン系、ポリエチレン系等のポリオレフィン系多孔性セパレータ;ポリビニリデンフルオリド、ポリエチレンオキシド、ポリアクリロニトリル、ポリビニリデンフルオリドヘキサフルオロプロピレン共重合体等により形成された多孔性セパレータ;等が挙げられる。
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
 また、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
 以下、本発明を実施例および比較例により説明するが、本発明はこれらに限定されるものではない。
(実施例1)
<正極の作製>
 正極活物質1としてリチウム-ニッケル複合酸化物(LiNiO、比表面積0.5m/g)とリチウム-マンガン複合酸化物(LiMn、比表面積0.26m/g)の混合物(リチウム-ニッケル複合酸化物/リチウム-マンガン複合酸化物=20/80(質量比))、導電助剤1としてカーボンブラック(比表面積:62m/g)、バインダー樹脂としてポリフッ化ビニリデンを用いた。
 まず、正極活物質1および導電助剤1を乾式混合した。次いで、得られた混合物にバインダー樹脂およびN-メチル-ピロリドン(NMP)を添加して湿式混合することにより、正極スラリーを調製した。この正極スラリーを、正極集電体である厚さ20μmのアルミニウム箔の両面に連続的に塗布・乾燥し、正極集電体の塗布部と塗布しない未塗布部とを備える正極ロールを作製した。ここで、正極スラリーの乾燥は、120℃の加熱ロールによりアルミニウム箔側または既に乾燥した正極活物質層側から加熱し、正極スラリーを間接的に加熱することによりおこなった。この乾燥により正極スラリー中のNMPを除去し、アルミニウム箔上に正極活物質層(厚み:158μm(両面の厚みの合計))を形成した。
 次いで、ロールプレスにより、プレス圧20MPaでアルミニウム箔および正極活物質層をプレスし、正極を得た。得られた正極における正極活物質層の密度は2.97g/cmであった。
 なお、正極活物質と導電助剤とバインダー樹脂の配合比率は、正極活物質/導電助剤/バインダー樹脂=93/3/4(質量比)である。また、上記の工程はいずれもドライルーム内(温度:23℃、露点温度:-20℃以下)でおこなった。
<負極の作製>
 負極活物質として人造黒鉛、バインダー樹脂としてポリフッ化ビニリデン(PVdF)を用いた。これらをN-メチル-ピロリドン(NMP)に分散させ、負極スラリーを調製した。この負極スラリーを、負極集電体である厚さ15μmの銅箔に連続的に塗布・乾燥し、負極集電体の塗布部と塗布しない未塗布部とを備える負極ロールを作製した。
<リチウムイオン電池の作製>
 得られた正極と負極とをポリオレフィン系多孔性セパレータを介して積層し、これに負極端子や正極端子を設け、積層体を得た。次いで、エチレンカーボネートとジエチルカーボネートからなる溶媒に1MのLiPFを溶かした電解液と、得られた積層体を可撓性フィルムに収容することでリチウムイオン電池を得た。
<評価>
(1)正極の体積抵抗率の測定
 正極の厚みの法線方向を端子プローブで荷重1kg/cmで挟持し、この端子プローブに四端子法による測定端子を結合することにより正極の体積抵抗率を測定した。
(2)S/Wの測定
 窒素吸着BET法により、リチウム-ニッケル複合酸化物の比表面積S[m/g]およびリチウム-マンガン複合酸化物の比表面積S[m/g]をそれぞれ測定した。次いで、正極活物質層中の導電助剤の含有量をW[質量%]とし、正極活物質中のリチウム-ニッケル複合酸化物の質量比をW[-]とし、正極活物質中のリチウム-マンガン複合酸化物の質量比をW[-]とし、下記式(1)によりS/Wを算出した。
 S/W=(S×W+S×W)/W    (1)
(3)高温サイクル特性
 リチウムイオン電池を用いて、高温サイクル特性を評価した。温度45℃において、充電レート1.0C、放電レート1.0C、充電終止電圧4.15V、放電終止電圧2.5Vとし、CCCV充電およびCC放電をおこなった。容量維持率(%)は500サイクル後の放電容量(mAh)を、10サイクル目の放電容量(mAh)で割った値である。容量維持率(%)が85%超過のものを◎、80%超過85%以下のものを〇、80%以下のものを×とした。
(実施例2)
 正極活物質をリチウム-ニッケル複合酸化物(LiNiO、比表面積0.5m/g)とリチウム-マンガン複合酸化物(LiMn、比表面積0.43m/g)の混合物(リチウム-ニッケル複合酸化物/リチウム-マンガン複合酸化物=22/78(質量比))とし、さらに正極活物質と導電助剤とバインダー樹脂の配合比率を92/4/4(質量比)に変更した以外は実施例1と同様にして正極およびリチウムイオン電池を作製し、各評価をおこなった。
(比較例1)
 リチウム-マンガン複合酸化物(LiMn)を比表面積が0.26m/gのものから0.43m/gのものに変更した以外は実施例1と同様にして正極およびリチウムイオン電池を作製し、各評価をおこなった。
(比較例2)
 正極活物質層の密度を2.97g/cmから3.10g/cmに変更した以外は比較例1と同様にして正極およびリチウムイオン電池を作製し、各評価をおこなった。
(比較例3)
 正極活物質層の密度を2.97g/cmから2.80g/cmに変更した以外は比較例1と同様にして正極およびリチウムイオン電池を作製し、各評価をおこなった。
(比較例4)
 正極活物質と導電助剤とバインダー樹脂の配合比率を94/3/3(質量比)に変更した以外は比較例1と同様にして正極およびリチウムイオン電池を作製し、各評価をおこなった。
(比較例5)
 リチウム-マンガン複合酸化物(LiMn)を比表面積が0.43m/gのものから0.26m/gのものに変更した以外は実施例2と同様にして正極およびリチウムイオン電池を作製し、各評価をおこなった。
(比較例6)
 リチウム-マンガン複合酸化物(LiMn)を比表面積が0.43m/gのものから0.30m/gのものに変更した以外は実施例2と同様にして正極およびリチウムイオン電池を作製し、各評価をおこなった。
 以上の評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から、正極の体積抵抗率およびS/Wが本願発明の範囲内である実施例のリチウムイオン電池は高温サイクル特性に優れていた。これに対し、正極の体積抵抗率およびS/Wの少なくとも一方が本願発明の範囲外である比較例のリチウムイオン電池は高温サイクル特性に劣っていた。
 この出願は、2017年2月23日に出願された日本出願特願2017-031840号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (8)

  1.  集電体層と、
     前記集電体層の両面に設けられ、かつ、正極活物質、バインダー樹脂および導電助剤を含む正極活物質層と、
    を備えるリチウムイオン電池用正極であって、
     前記リチウムイオン電池用正極の体積抵抗率が120Ω・m以上350Ω・m以下であり、
     前記正極活物質層に含まれる前記正極活物質の比表面積をS[m/g]、前記正極活物質層中の前記導電助剤の含有量をW[質量%]としたとき、S/Wが0.080以上0.140以下であるリチウムイオン電池用正極。
  2.  請求項1に記載のリチウムイオン電池用正極において、
     前記正極活物質層の密度が2.8g/cm以上3.6g/cm以下あるリチウムイオン電池用正極。
  3.  請求項1または2に記載のリチウムイオン電池用正極において、
     前記正極活物質がリチウムと遷移金属との複合酸化物を含むリチウムイオン電池用正極。
  4.  請求項1乃至3のいずれか一項に記載のリチウムイオン電池用正極において、
     前記バインダー樹脂はフッ素系バインダー樹脂を含むリチウムイオン電池用正極。
  5.  請求項1乃至4のいずれか一項に記載のリチウムイオン電池用正極において、
     前記正極活物質層の全体を100質量%としたとき、
     前記バインダー樹脂の含有量が0.1質量%以上10.0質量%以下であるリチウムイオン電池用正極。
  6.  請求項1乃至5のいずれか一項に記載のリチウムイオン電池用正極において、
     前記正極活物質層の全体を100質量%としたとき、
     前記導電助剤の含有量が0.5質量%以上5.0質量%以下であるリチウムイオン電池用正極。
  7.  請求項1乃至6のいずれか一項に記載のリチウムイオン電池用正極において、
     前記正極活物質層の厚みが100μm以上300μm以下あるリチウムイオン電池用正極。
  8.  請求項1乃至7のいずれか一項に記載のリチウムイオン電池用正極を備える、リチウムイオン電池。
PCT/JP2018/004659 2017-02-23 2018-02-09 リチウムイオン電池用正極およびリチウムイオン電池 WO2018155240A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019501230A JP6850975B2 (ja) 2017-02-23 2018-02-09 リチウムイオン電池用正極およびリチウムイオン電池
CN201880011672.9A CN110291664B (zh) 2017-02-23 2018-02-09 锂离子电池用正极和锂离子电池
US16/482,507 US20200014021A1 (en) 2017-02-23 2018-02-09 Positive electrode for lithium ion battery and lithium ion battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-031840 2017-02-23
JP2017031840 2017-02-23

Publications (1)

Publication Number Publication Date
WO2018155240A1 true WO2018155240A1 (ja) 2018-08-30

Family

ID=63254423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/004659 WO2018155240A1 (ja) 2017-02-23 2018-02-09 リチウムイオン電池用正極およびリチウムイオン電池

Country Status (4)

Country Link
US (1) US20200014021A1 (ja)
JP (1) JP6850975B2 (ja)
CN (1) CN110291664B (ja)
WO (1) WO2018155240A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110875491B (zh) * 2018-08-31 2021-03-30 宁德时代新能源科技股份有限公司 锂离子二次电池
CN112067664B (zh) * 2020-09-07 2022-11-11 湖北亿纬动力有限公司 一种评估锂离子电池极片中材料分散性的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004355996A (ja) * 2003-05-30 2004-12-16 Hitachi Maxell Ltd 非水二次電池用正極の製造方法
WO2011070748A1 (ja) * 2009-12-11 2011-06-16 パナソニック株式会社 非水電解質二次電池及びその充電方法
JP2016192331A (ja) * 2015-03-31 2016-11-10 オートモーティブエナジーサプライ株式会社 リチウムイオン二次電池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1186874A (ja) * 1997-09-09 1999-03-30 Nippon Zeon Co Ltd 非水電解液二次電池または非水電解液コンデンサー用電極
EP2405524B1 (en) * 2009-03-05 2015-10-07 Nissan Motor Co., Ltd. Bipolar secondary cell and method for producing the same
WO2012008532A1 (ja) * 2010-07-16 2012-01-19 三菱化学株式会社 リチウム二次電池用正極およびそれを用いたリチウム二次電池
CN105514349B (zh) * 2014-09-24 2018-04-20 比亚迪股份有限公司 锂离子电池正极片及制备方法和锂离子电池
CN104779413A (zh) * 2015-04-09 2015-07-15 深圳市美拜电子有限公司 一种锂离子电池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004355996A (ja) * 2003-05-30 2004-12-16 Hitachi Maxell Ltd 非水二次電池用正極の製造方法
WO2011070748A1 (ja) * 2009-12-11 2011-06-16 パナソニック株式会社 非水電解質二次電池及びその充電方法
JP2016192331A (ja) * 2015-03-31 2016-11-10 オートモーティブエナジーサプライ株式会社 リチウムイオン二次電池

Also Published As

Publication number Publication date
JPWO2018155240A1 (ja) 2019-12-19
CN110291664B (zh) 2023-06-09
CN110291664A (zh) 2019-09-27
JP6850975B2 (ja) 2021-03-31
US20200014021A1 (en) 2020-01-09

Similar Documents

Publication Publication Date Title
JP5150966B2 (ja) 非水電解液二次電池用正極およびそれを用いた非水電解液二次電池
WO2015152113A1 (ja) 黒鉛系負極活物質材料、負極及びリチウムイオン二次電池
JP6258641B2 (ja) 非水電解液二次電池
JP5949555B2 (ja) 二次電池用正極活物質の製造方法、二次電池用正極の製造方法、及び二次電池の製造方法
JP5582587B2 (ja) リチウムイオン二次電池
JP7028164B2 (ja) リチウムイオン二次電池
JP6304774B2 (ja) 負極製造用ペーストの製造方法、リチウムイオン二次電池用負極の製造方法、リチウムイオン二次電池用負極およびリチウムイオン二次電池
JP6188158B2 (ja) リチウムイオン二次電池用負極、リチウムイオン二次電池用負極スラリー、およびリチウムイオン二次電池
WO2017057123A1 (ja) リチウムイオン二次電池用負極及びリチウムイオン二次電池
WO2013094465A1 (ja) リチウム二次電池
JP5359490B2 (ja) リチウムイオン二次電池
EP3425702A1 (en) Positive electrode for lithium ion secondary batteries, and lithium ion secondary battery
WO2017217407A1 (ja) リチウムイオン二次電池
EP3490037B1 (en) Electrode for lithium ion batteries, and lithium ion battery
CN102097623B (zh) 锂电池用正极活性材料及其制造方法、正极和锂电池
CN116964786A (zh) 导电性底涂剂
KR102227102B1 (ko) 리튬이차전지 전극 코팅 방법, 및 이에 따라 제조한 전극을 포함하는 리튬이차전지
WO2018155240A1 (ja) リチウムイオン電池用正極およびリチウムイオン電池
WO2013084840A1 (ja) 非水電解質二次電池及びそれを用いた組電池
KR101115390B1 (ko) 리튬 이차전지용 혼합 음극재 및 이를 포함하는 고출력 리튬 이차전지
KR20150055890A (ko) 표면개질된 음극 활물질 및 이의 제조방법
JP2016143577A (ja) リチウムイオン二次電池
JP2019192540A (ja) リチウムイオン二次電池用電極製造用ペーストの製造方法、リチウムイオン二次電池用電極の製造方法、リチウムイオン二次電池用電極およびリチウムイオン二次電池
WO2012124097A1 (ja) 非水二次電池
WO2013080763A1 (ja) リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極部材、及びリチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18757227

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019501230

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18757227

Country of ref document: EP

Kind code of ref document: A1