WO2018154745A1 - 電子カムパターン生成方法および電子カムパターン生成装置 - Google Patents

電子カムパターン生成方法および電子カムパターン生成装置 Download PDF

Info

Publication number
WO2018154745A1
WO2018154745A1 PCT/JP2017/007326 JP2017007326W WO2018154745A1 WO 2018154745 A1 WO2018154745 A1 WO 2018154745A1 JP 2017007326 W JP2017007326 W JP 2017007326W WO 2018154745 A1 WO2018154745 A1 WO 2018154745A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic cam
section
cam pattern
pattern generation
sections
Prior art date
Application number
PCT/JP2017/007326
Other languages
English (en)
French (fr)
Inventor
昇 西原
学 濱口
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2018506626A priority Critical patent/JP6407478B1/ja
Priority to PCT/JP2017/007326 priority patent/WO2018154745A1/ja
Publication of WO2018154745A1 publication Critical patent/WO2018154745A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback

Definitions

  • the present invention relates to an electronic cam pattern generation method and an electronic cam pattern generation apparatus in a synchronous control system.
  • Industrial machines such as packaging machines are equipped with multiple axes for carrying and processing workpieces, and servo motors corresponding to each axis are controlled so as to cooperate with each other in a desired operation pattern and timing. There are many that perform a series of machining processes. As described above, a system that controls a plurality of servo motors in cooperation with each other is also called a synchronous control system.
  • Some synchronous control systems have an electronic cam function.
  • the electronic cam function instead of using a mechanical cam that rotates around the main shaft, the slave servo motor is controlled in synchronization with the main shaft position, thereby causing the object such as a workpiece or tool to perform a desired operation. It is a function.
  • precise machining is possible by precisely controlling a plurality of servo motors corresponding to a plurality of axes according to a desired operation pattern.
  • a synchronous control system having an electronic cam function generally controls a slave servo motor in accordance with a desired operation pattern composed of a plurality of target positions defined in time series.
  • a desired operation pattern composed of a plurality of target positions defined in time series
  • the electronic cam pattern is a pattern in which values such as the position, speed, and acceleration of the slave servomotor are determined according to the spindle position in order to realize the electronic cam function described above.
  • Patent Document 1 discloses that by setting the position, speed, and acceleration at the boundary points of two sections adjacent in time to the same value and performing spline interpolation of each section, A servo motor control system capable of obtaining an electronic cam pattern with small acceleration fluctuation at a boundary point corresponding to a joint of each section is disclosed.
  • quintic function spline interpolation is used to generate an electronic cam pattern for position control.
  • the jerk fluctuation at the boundary point of the spline interpolation cannot be suppressed.
  • impact and vibration on a mechanical device using an electronic cam function of an industrial machine or the like increases, and the life of a tool or the like constituting the mechanical device may be shortened.
  • the life of the rotary cutter mechanism is shortened if jerk fluctuation occurs.
  • the present invention has been made in view of the above, and an object thereof is to obtain an electronic cam pattern generation method and an electronic cam pattern generation device capable of suppressing impact and vibration on a mechanical device.
  • an electronic cam pattern generation method is an electronic cam pattern generation method in a synchronous control system that controls a slave shaft in synchronization with a main shaft position. And a first step of setting a plurality of sections according to the position.
  • the electronic cam pattern generation device is configured to set a boundary step for a plurality of sections, and a boundary step based on the boundary conditions in at least one section of the plurality of sections.
  • the method of generating an electronic cam pattern according to the present invention has an effect that it is possible to suppress impacts and vibrations on a mechanical device.
  • FIG. FIG. 3 is a diagram illustrating a configuration example of a control circuit according to the first embodiment.
  • the flowchart which shows an example of the process sequence in the electronic cam pattern production
  • the figure which shows the follower speed when the electronic cam pattern of the follower position is determined as shown in FIG.
  • the figure which shows a follower axis acceleration when the follower position electronic cam pattern is determined as shown in FIG.
  • the figure which shows the jerk of a driven shaft when the electronic cam pattern of a driven shaft position is defined as shown in FIG.
  • FIG. A flowchart which shows an example of the process sequence in the electronic cam pattern production
  • FIG. 1 is a diagram illustrating a configuration example of a synchronous control system according to the first embodiment of the present invention.
  • a synchronous control system 100 according to the first embodiment is a synchronous control system that controls a slave shaft in synchronization with a main shaft position, and includes a control device 1, a servo amplifier 2, and a motor 3.
  • the synchronous control system 100 according to the first embodiment is used to realize processes such as processing and conveyance in industrial machines such as packaging machines.
  • one set of the servo amplifier 2 and the motor 3 is shown, but a plurality of sets of the servo amplifier 2 and the motor 3 may be used.
  • the synchronous control system 100 of Embodiment 1 is used for a rotary cutter device in a packaging machine, for example.
  • the rotary cutter device is a device that cuts a sheet conveyed at a constant speed by a conveyor so as to have a desired sheet length by a rotary cutter.
  • the axis of the conveyor is the main axis and the axis of the rotary cutter is the secondary axis.
  • the rotary cutter device is an example of a mechanical device to which the synchronization control system 100 of the first embodiment is applied.
  • the synchronization control system 100 of the first embodiment is not limited to this example, and is a slave shaft in synchronization with the main shaft position.
  • the present invention is applicable to any mechanical device as long as it is a mechanical device that operates this motor.
  • the synchronous control system 100 of the present embodiment is an electronic in which values such as the position, speed, and acceleration of the motor 3 are defined according to the main shaft position. Use a cam pattern.
  • the main shaft position is the rotation angle of the main shaft.
  • the control device 1 generates an electronic cam pattern, generates a command for the servo amplifier 2 based on the input spindle position and the electronic cam pattern, and outputs the command to the servo amplifier 2.
  • the control device 1 is an example of an electronic cam pattern generation device according to the present invention.
  • the servo amplifier 2 controls the motor 3 corresponding to the slave shaft based on the command.
  • the spindle position may be input from a pulse generator (not shown) that detects the position of the spindle, or may be a virtually generated spindle position when the spindle is a virtual axis. Further, when the spindle position is a virtually generated spindle position, the control device 1 may generate the spindle position. In FIG.
  • the servo amplifier and the motor corresponding to the main shaft are not illustrated, but the synchronous control system 100 includes the servo amplifier and the motor corresponding to the main shaft, and the control device 1 issues a command to the servo amplifier corresponding to the main shaft. It may be generated.
  • the control device 1 generates an electronic cam pattern generation unit 10 that generates an electronic cam pattern, and a command generation that generates and outputs a command to the servo amplifier 2 based on the spindle position and the electronic cam pattern.
  • the electronic cam pattern generation unit 10 includes a section setting unit 11, a pattern generation unit 12, a natural waveform generation unit 13, and a connection unit 14.
  • the electronic cam pattern generation unit 10 and the command generation unit 15 are realized by a processing circuit.
  • the processing circuit is a control circuit including a processor, for example.
  • FIG. 2 is a diagram illustrating a configuration example of the control circuit.
  • the control circuit 200 illustrated in FIG. 2 includes a processor 201 and a memory 202.
  • the processor 201 is a CPU (Central Processing Unit), a microprocessor, or the like.
  • the memory 202 corresponds to, for example, a non-volatile or volatile semiconductor memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, or a magnetic disk.
  • RAM Random Access Memory
  • ROM Read Only Memory
  • flash memory or a magnetic disk.
  • the functions of the electronic cam pattern generation unit 10 and the command generation unit 15 are stored in the memory 202.
  • the program for realizing the functions of the electronic cam pattern generation unit 10 and the command generation unit 15 is realized by being executed by the processor 201.
  • the memory 202 is also used as a storage area when a program is executed by the processor 201.
  • the electronic cam pattern generation unit 10 and the command generation unit 15 may be realized by a processing circuit that is dedicated hardware.
  • the processing circuit that is dedicated hardware includes, for example, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination of these.
  • the electronic cam pattern generation unit 10 and the command generation unit 15 may be realized by a processing circuit, a part of which is dedicated hardware, and the remaining part may be realized by the control circuit 200 described above.
  • FIG. 3 is a flowchart showing an example of a processing procedure in the electronic cam pattern generation unit 10 of the present embodiment.
  • the section setting unit 11 sets a section according to the spindle position (step S1).
  • the section may be set in any way. For example, if there is a condition defined regarding the relationship between the main axis and the slave axis, the section setting unit 11 sets the section according to this condition.
  • An example of a condition defined for the relationship between the main axis and the slave axis is one or more positions to pass through.
  • the position to be passed is indicated by a coordinate value in a two-dimensional coordinate system including, for example, a main shaft position and a sub shaft position, that is, a rotation angle of the sub shaft. That is, for example, the position to be passed is indicated by a coordinate value on the xy plane when the principal axis position is x and the slave axis position is y when the reference position is the origin.
  • the section setting unit 11 sets each section so that these four points become the boundaries of the sections.
  • the section setting unit 11 instructs the connecting unit 14 with information indicating the set section.
  • the information indicating the section is, for example, information indicating the correspondence between the spindle position range with the reference position as the origin and the section identification information. For example, when there are three set sections, information indicating the sections includes section # 1 in which the spindle position is from 0 to m1, section # 2 in which the spindle position is from m1 to m2, and the spindle position is This is information indicating the range of each section in which m2 to m3 are section # 3.
  • a section in which a waveform unique to the mechanical device that is, a unique function is defined.
  • the slave shaft position operates so as to be directly proportional to the main shaft position.
  • a section in which a specific waveform is defined will be described. As described above, when there is a section in which a specific waveform is determined, the section setting unit 11 sets a section in which a specific waveform is determined as one section.
  • the section setting unit 11 instructs the specific waveform generation unit 13 to generate a specific waveform together with information indicating a section for generating a specific waveform, and the specific waveform generation unit 13 generates a specific waveform.
  • the characteristic waveform generation unit 13 outputs information indicating the generated characteristic waveform to the connection unit 14 together with identification information indicating the corresponding section (step S2).
  • the information indicating the eigen waveform may be, for example, a calculation formula, or may be the degree of the polynomial and the coefficient of each order when it is determined that the eigen waveform is represented by a polynomial.
  • the information indicating the natural waveform is not limited to these, and any information may be used as long as the connecting unit 14 can generate the natural waveform.
  • the section setting unit 11 sets one of the sections not instructed to generate a pattern as a processing target section, outputs a boundary condition related to the processing target section to the pattern generation unit 12, and outputs a pattern to the pattern generation unit 12.
  • the pattern indicates this function when the slave shaft position is expressed by a function having the spindle position as a variable.
  • this function is a seventh order function.
  • the pattern generation unit 12 calculates the coefficient of the seventh-order function using the boundary condition (step S3). Although details of Step S2 and Step S3 will be described later, the coefficient of the seventh-order function is determined so that the acceleration becomes 0 and the jerk, that is, the jerk, becomes 0 at the boundary of the section.
  • the pattern generation unit 12 determines a pattern, that is, a function using the calculated coefficient (step S4).
  • the pattern generation unit 12 outputs information indicating the determined pattern to the connection unit 14 together with identification information indicating the corresponding section.
  • the information indicating the determined pattern may be, for example, a calculation formula or the coefficient calculated in step S3.
  • the information indicating the determined pattern is not limited to these, and may be information that allows the connecting unit 14 to generate the determined pattern.
  • the section setting unit 11 determines whether the processing of all sections has been completed, that is, for all sections, either a pattern generation instruction to the pattern generation section 12 or a specific waveform generation instruction to the natural waveform generation section 13.
  • step S5 It is determined whether or not (step S5), and when the processing for all the sections is completed (step S5, Yes), the electronic cam pattern generation processing is ended. If there is a section in which processing is not completed (No in step S5), the processing from step S3 is repeated by changing the processing target section and instructing the pattern generation unit 12 to generate a pattern.
  • the linking unit 14 can receive information indicating the pattern of each section and information indicating the specific waveform.
  • the connecting unit 14 generates an electronic cam pattern by sequentially connecting the patterns of the sections, and outputs information indicating the electronic cam pattern to the command generating unit 15.
  • the pattern of each section is an electronic cam pattern of each section.
  • An example of information indicating an electronic cam pattern is a calculation formula for information indicating each section and the electronic cam pattern for each section.
  • the information indicating the electronic cam pattern may be information indicating each section, and the order and coefficient for each section.
  • the electronic cam pattern generated by the connecting unit 14 is output to the command generating unit 15, but information indicating the electronic cam pattern generated by the connecting unit 14 is stored in a storage unit (not shown) to generate the command.
  • the unit 15 may read information indicating the electronic cam pattern from the storage unit.
  • FIG. 4 is a diagram illustrating an example of the section set in the present embodiment and the electronic cam pattern at the driven shaft position.
  • the coordinate values of four points on the xy plane are specified as the positions to pass through, where the above-described main shaft position is x and the slave shaft position is y.
  • coordinate values on the xy plane are expressed as (x coordinate value, y coordinate value).
  • the coordinate values of the four points that are positions to be passed are (0, P0), (m1, P1), (m2, P2), and (m3, P3), respectively.
  • the spindle position from 0 to m1 is set as section # 1
  • the spindle position from m1 to m2 is set as section # 2
  • the spindle position from m2 to m3 is set as section # 3.
  • patterns corresponding to section # 1, section # 2, and section # 3, that is, functions are expressed as F 1 (k) and F using k which is the spindle position with the start position of each section as the origin of the spindle position. 2 (k), and F 3 (k).
  • F 2 (k) is a function indicating a natural waveform.
  • F 2 (k) is generated in step S2 described above.
  • F 1 (k) is defined as a seventh-order function of k as shown in the following equation (1).
  • A0 to A7 are coefficients.
  • F 1 (k) A0 + A1k + A2k 2 + A3k 3 + A4k 4 + A5k 5 + A6k 6 + A7k 7 (1)
  • the section setting unit 11 sets the section length X 1 as the boundary condition of section # 1, the slave shaft position P1 at the start position of the section, the slave shaft position P1 at the end position of the section, and the slave shaft at the start position of the section. Is defined as V0 and the speed of the slave shaft at the end position of the section is defined as V1. Furthermore, the acceleration and jerk of the slave axis are set to 0 at the start position and end position of the section as boundary conditions.
  • the boundary conditions are the position, speed, acceleration, and jerk of the slave shaft at each of the start position and end position of the section.
  • the speed at the start position of the section and the speed at the end position of the section in each section may be input from the outside or may be determined in advance.
  • the speed of the slave shaft is obtained by differentiating equation (1) by k, that is, dF 1 (k) / dk, and is represented by the following equation (2).
  • dF 1 (k) / dk A1 + 2A2k + 3A3k 2 + 4A4k 3 + 5A5k 4 + 6A6k 5 + 7A7k 6 (2)
  • d 2 F 1 (k) / dk 2 of the slave shaft and the jerk d 3 F 1 (k) / dk 3 of the slave shaft are expressed by the following equations (3) and (4), respectively.
  • d 2 F 1 (k) / dk 2 2A2 + 6A3k + 12A4k 2 + 20A5k 3 + 30A6k 4 + 42A7k 5
  • d 3 F 1 (k) / dk 3 6A3 + 24A4k + 60A5k 2 + 120A6k 3 + 210A7k 4 (4)
  • the slave shaft position at the start position of section #n is Pns
  • the slave shaft position at the end position of section #n is Pne
  • the function corresponding to section #n is F n (x)
  • the speed at the start position of section #n is Vns, when the velocity at the end position of the section #n Vne, generalizes the section length of the section #n as X n, equation (1) and (5), the following equation (6) and (7) It becomes.
  • F n (k) A0 + A1k + A2k 2 + A3k 3 + A4k 4 + A5k 5 + A6k 6 + A7k 7 (6)
  • A0 Pn
  • A1 Vn
  • A2 0,
  • A3 0,
  • A4 - (15Vne + 20Vns) / X n 3 + (35Pne-35Pns) / X n 4
  • A5 (39Vne + 45Vns) / X n 4 - (84Pne-84Pns) / X n 5
  • A6 - (34Vne + 36Vns) / X n 5 + (70Pne-70Pns) / X n 6
  • A7 (10Vne + 10Vns) / X n 6 - (20Pne-20Pns) / X n 7 ... (7)
  • step S3 described above the pattern generation unit 12 calculates a coefficient according to the above equation (7) for each section for which no specific waveform is defined, and determines a function as in the equation (6).
  • connection part 14 connects the function of each area, and can obtain an electronic cam pattern as shown in FIG.
  • the control device 1 sets the first step for setting a plurality of sections according to the spindle position and the boundary conditions for the plurality of sections.
  • the above-described step S1 that is the second step to be set is included.
  • the electronic cam pattern generation method in the synchronous control system 100 of the present embodiment uses an electronic cam pattern indicating the position of the slave shaft based on the boundary condition in the seventh order of the main shaft position in at least one of the plurality of sections. Steps S3 and S4, which are third steps generated as a function, are included.
  • FIG. 5 is a diagram showing the follower speed when the follower position electronic cam pattern is determined as shown in FIG.
  • FIG. 6 is a diagram showing the driven shaft acceleration when the driven cam position electronic cam pattern is determined as shown in FIG.
  • FIG. 7 is a diagram showing the jerk of the driven shaft when the electronic cam pattern at the driven shaft position is determined as shown in FIG.
  • the passing position is determined by each mechanical device, and an arbitrary number of sections and section length can be set. Further, even if an arbitrary section is a unique waveform unique to the apparatus, the patterns of the sections before and after the section may be determined according to the boundary condition of the section of the specific waveform. Note that when there is no section having a natural waveform, the control device 1 does not need to include the natural waveform generation unit 13, and the function of all the sections may be determined by the pattern generation unit 12.
  • the control device 1 has a function as an electronic cam pattern device that generates an electronic cam pattern.
  • an electronic cam pattern device that generates an electronic cam pattern is used. You may provide the control apparatus which produces
  • the electronic cam pattern device includes the electronic cam pattern generation unit 10 shown in FIG. 1, and the electronic cam pattern output from the electronic cam pattern generation unit 10 is input to the control device. Based on the cam pattern, a command for the servo amplifier 2 is generated and output to the servo amplifier 2.
  • FIG. FIG. 8 is a diagram illustrating a configuration example of a synchronization control system according to the second exemplary embodiment of the present invention.
  • the synchronous control system 100a of the second embodiment includes a control device 1a, a servo amplifier 2, and a motor 3.
  • the control device 1a is the same as the control device 1 of the first embodiment except that the electronic cam pattern generation unit 10a is provided instead of the electronic cam pattern generation unit 10 of the first embodiment.
  • the electronic cam pattern generation unit 10a adds the error evaluation unit 16 to the electronic cam pattern generation unit 10 of the first embodiment, and includes the pattern generation unit 12a instead of the pattern generation unit 12. It is the same as the device 1.
  • Components having the same functions as those in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and redundant description is omitted.
  • differences from the first embodiment will be mainly described.
  • the electronic cam pattern generation unit 10a of the present embodiment is realized by a processing circuit in the same manner as the electronic cam pattern generation unit 10 of the first embodiment.
  • This processing circuit may be dedicated hardware as in the first embodiment, or may be a control circuit including a processor.
  • FIG. 9 is a flowchart illustrating an example of a processing procedure in the electronic cam pattern generation unit 10a of the present embodiment. As shown in FIG. 9, the processing procedure in the electronic cam pattern generation unit 10a of the present embodiment is performed except that steps S11 to S13 are added between step S3 and step S4 of the processing described in FIG. This is the same as the first embodiment.
  • the pattern generation unit 12a outputs the calculated coefficient to the error evaluation unit 16.
  • the error evaluation unit 16 performs error evaluation using the coefficient acquired from the pattern generation unit 12a (step S11). Specifically, the error evaluation unit 16 calculates an error caused by, for example, a floating point calculation. Depending on the synchronous control system, a calculation error may occur when performing calculation using an electronic cam pattern such that the command generation unit 15 cannot handle double precision real numbers. In particular, there are cases where the accuracy of calculation is limited, for example, an inexpensive device cannot perform calculations using double precision real numbers. In each section, the spindle position is 0 at the start position, but the value of the spindle position increases toward the end position.
  • the calculation error tends to increase as the value of the spindle position increases. For this reason, in the present embodiment, in consideration of such a calculation error, if the calculation error is large, the section is divided as described later. Specifically, the error evaluation unit 16 calculates the maximum value of error that occurs when, for example, a single precision real number is used.
  • the error evaluation unit 16 determines whether or not the error may exceed a threshold value within the section (step S12). If the error does not exceed the threshold value (step S12, No), the error evaluation unit 16 proceeds to the pattern generation unit 12a. Notify that. Thereby, step S4 and subsequent steps are performed. When the error exceeds the threshold value (step S12, Yes), the error evaluation unit 16 instructs the pattern generation unit 12a to divide the section. Thereby, the pattern generation unit 12a performs section division (step S13) and returns to step S3. The pattern generation unit 12a also sets boundary conditions for divided sections in section division. As described above, the control device 1a determines whether to divide the section according to the calculation error when calculating the electronic cam pattern.
  • FIG. 10 is a diagram illustrating an example of an electronic cam pattern in the case where a calculation error occurs in a floating point calculation in the electronic cam pattern.
  • the curve 300 shows the electronic cam pattern shown in FIG. 4 in the first embodiment
  • the curve 301 shows the electronic cam pattern when a calculation error occurs in the floating point calculation.
  • an error occurs due to a calculation error in the floating point calculation near the end point of the section # 3.
  • FIG. 11 is a diagram illustrating an example of an electronic cam pattern after section division is performed.
  • the above-described step S13 is performed for the section # 3.
  • section # 3 is divided into section # 3a and section # 3b. Any division method may be used, but in the example shown in FIG. 11, the original section is equally divided into two.
  • the function calculated for section # 3 is used by the method described in the first embodiment.
  • the function F 3a of the section # 3a (k) is used as the same as F 3 (k), it can be determined half the segment length of the section length of the section # 3, that as X 3/2.
  • the boundary conditions of section # 3a that is, the slave shaft position and speed at the start position and end position can be determined.
  • section # 3b which is the latter half section substitutes X 3 -k instead of k for F 3 (k), and the same boundary condition P2 as section # 3 And P3 are used to obtain the following equations (8) and (9).
  • A0 'to A7' are coefficients.
  • F 3b (X 3 ⁇ k) A0 ′ + A1′k + A2′k 2 + A3′k 3 + A4′k 4 + A5′k 5 + A6′k 6 + A7′k 7 (8)
  • A5 ′ ⁇ (45V3 + 39V2) / X 3 4 + (84P3-84P2) / X 3 5
  • A6 ′ (36V3 + 34V2) / X 3 5 ⁇ (70P3-70P2) / X 3 6
  • A7 ′ ⁇ (10V3 + 10V2) / X 3 6 + (20P3-20P2) / X 3 7 (9)
  • the electronic cam pattern obtained by using this embodiment can reduce the calculation error at the time of floating point calculation as compared with the first embodiment. This is because the floating point arithmetic error may increase near the end position of the section due to the floating point arithmetic when calculated according to the equations (6) and (7) described in the first embodiment. In the latter half of the divided section, using the equations (8) and (9) to calculate the 7th order function from the end position to the start position, the vicinity of the end point is obtained. This is because the floating-point arithmetic error can be suppressed.
  • the step S13 which is the fourth step of setting a divided section by dividing a section, and the electronic cam pattern of the divided section for each divided section is the main shaft position.
  • Step S4 which is a fifth step generated as a seventh-order function of the divided section, and the electronic cam pattern of the divided section including the end position of the section among the divided sections includes the end position of the divided section as a starting point. Calculated toward the starting position.
  • an electronic cam pattern based on a seventh-order function can be calculated with an inexpensive system.
  • the error that is, the portion before the floating point arithmetic error exceeds the threshold value, may be divided into two.
  • control device 1a has a function as an electronic cam pattern device that generates an electronic cam pattern.
  • an electronic cam pattern device that generates an electronic cam pattern and a spindle You may provide the control apparatus which produces
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)

Abstract

従軸を主軸位置に同期させて制御する同期制御システムにおける電子カムパターン生成方法であって、主軸位置に応じた複数の区間を設定する第1のステップと、複数の区間の境界条件を設定する第2のステップと、複数の区間の少なくとも1つの区間において、境界条件に基づいて従軸の位置を示す電子カムパターンを、主軸位置の7次関数として生成する第3のステップと、を含む。

Description

電子カムパターン生成方法および電子カムパターン生成装置
 本発明は、同期制御システムにおける電子カムパターン生成方法および電子カムパターン生成装置に関する。
 包装機をはじめとした産業機械には、ワークの搬送、加工などを行うための複数の軸を備え、各軸に対応するサーボモータが所望の動作パターンおよびタイミングで連携するように制御されることにより一連の加工プロセスを実行するものが数多くある。このように、複数のサーボモータを連携させて制御するシステムは同期制御システムとも呼ばれる。
 同期制御システムには、電子カム機能を備えているものがある。電子カム機能は、主軸周りに回転する機械的なカムを用いる代わりに、従軸のサーボモータを主軸位置に同期させて制御することにより、ワーク、工具などの対象物に所望の動作を行わせる機能である。電子カム機能を備えるサーボモータシステムでは、複数の軸に対応する複数のサーボモータを所望の動作パターンに従って精密に制御することにより、精密な加工が可能である。
 電子カム機能を備える同期制御システムは、一般に、時系列に定められた複数の目標位置から成る所望の動作パターンに従って従軸のサーボモータを制御する。時系列に定められた複数の目標位置から成る所望の動作パターンに従った制御を実現するために、時間的に隣接する2つの目標位置の一方を開始位置、他方を終了位置とした区間ごとに曲線を生成し、これらの曲線をつなぎ合わせて電子カムパターンを生成する方法がある。電子カムパターンとは、上述した電子カム機能を実現するために、従軸のサーボモータの位置、速度、加速度といった値を主軸位置に応じて定めたパターンである。
 このような同期制御システムの一例として、特許文献1には、時間的に隣接する2区間の境界点における位置、速度、加速度を同一値に設定して各々の区間のスプライン補間を行うことで、各区間のつなぎ目にあたる境界点における加速度変動の小さい電子カムパターンを得ることができるサーボモータ制御システムが開示されている。
特開2006-172438号公報
 上記特許文献1に記載の技術では、位置制御のための電子カムパターンの生成に5次関数のスプライン補間を用いている。しかしながら、5次関数のスプライン補間を用いても、スプライン補間の境界点におけるジャークの変動を抑制することができなかった。ジャークの変動が生じると、産業機械などの電子カム機能を用いる機械装置への衝撃および振動が増加し、機械装置を構成する工具等の寿命が短くなることがある。例えば、機械装置が包装機である場合、ジャークの変動が生じると、ロータリーカッター機構の寿命が短くなる。
 本発明は、上記に鑑みてなされたものであって、機械装置への衝撃および振動を抑制することができる電子カムパターン生成方法および電子カムパターン生成装置を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明にかかる電子カムパターン生成方法は、従軸を主軸位置に同期させて制御する同期制御システムにおける電子カムパターン生成方法であって、主軸位置に応じた複数の区間を設定する第1のステップと、を含む。また、本発明にかかる電子カムパターン生成方法は、電子カムパターン生成装置が、複数の区間の境界条件を設定する第2のステップと、複数の区間の少なくとも1つの区間において、前記境界条件に基づいて従軸の位置を示す電子カムパターンを、主軸位置の7次関数として生成する第3のステップと、を含む。
 本発明にかかる電子カムパターン生成方法は、機械装置への衝撃および振動を抑制することができるという効果を奏する。
実施の形態1にかかる同期制御システムの構成例を示す図 実施の形態1の制御回路の構成例を示す図 実施の形態1の電子カムパターン生成部における処理手順の一例を示すフローチャート 実施の形態1において設定された区間と従軸位置の電子カムパターンとの一例を示す図 図4に示したように従軸位置の電子カムパターンを定めた場合の、従軸速度を示す図 図4に示したように従軸位置の電子カムパターンを定めた場合の、従軸加速度を示す図 図4に示したように従軸位置の電子カムパターンを定めた場合の、従軸のジャークを示す図 実施の形態2にかかる同期制御システムの構成例を示す図 実施の形態2の電子カムパターン生成部における処理手順の一例を示すフローチャート 実施の形態2の電子カムパターンに浮動小数点演算における計算誤差が生じた場合の電子カムパターンの一例を示す図 実施の形態2の区間分割が行われた後の電子カムパターンの一例を示す図
 以下に、本発明の実施の形態にかかる電子カムパターン生成方法および電子カムパターン生成装置を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は、本発明の実施の形態1にかかる同期制御システムの構成例を示す図である。図1に示すように、実施の形態1の同期制御システム100は、従軸を主軸位置に同期させて制御する同期制御システムであって、制御装置1、サーボアンプ2およびモータ3を備える。実施の形態1の同期制御システム100は、例えば包装機をはじめとした産業機械において、加工、搬送などのプロセスを実現するために用いられる。なお、図1では、サーボアンプ2およびモータ3を1組図示しているが、サーボアンプ2およびモータ3は複数組であってもよい。
 実施の形態1の同期制御システム100は、例えば包装機におけるロータリーカッター装置に用いられる。ロータリーカッター装置は、コンベアにより一定速度で搬送されるシートを、ロータリーカッターで所望のシート長となるように切断する装置である。同期制御システム100がロータリーカッター装置に用いられる場合、コンベアの軸が主軸となり、ロータリーカッターの軸が従軸となる。従軸に対応するモータ3が主軸位置に同期して制御されることにより、ロータリーカッターで所望のシート長でシートを切断することができる。
 ロータリーカッター装置は実施の形態1の同期制御システム100が適用される機械装置の一例であり、実施の形態1の同期制御システム100は、この例に限定されず、主軸位置に同期して従軸のモータを動作させる機械装置であればどのような機械装置にも適用可能である。
 従軸に対応するモータ3を主軸位置に同期させて制御するために、本実施の形態の同期制御システム100は、モータ3の位置、速度、加速度といった値が主軸位置に応じて定義された電子カムパターンを用いる。主軸位置は、主軸の回転角度である。
 制御装置1は、電子カムパターンを生成し、入力される主軸位置と電子カムパターンとに基づいて、サーボアンプ2に対する指令を生成し、サーボアンプ2へ出力する。制御装置1は、本発明にかかる電子カムパターン生成装置の一例である。サーボアンプ2は、指令に基づいて従軸に対応するモータ3を制御する。主軸位置は、主軸の位置を検出する図示しないパルスジェネレータなどから入力されてもよいし、主軸が仮想的な軸である場合には仮想的に生成された主軸位置であってもよい。また、主軸位置が、仮想的に生成された主軸位置である場合には、制御装置1が主軸位置を生成してもよい。また、図1では、主軸に対応するサーボアンプおよびモータを図示していないが、同期制御システム100が主軸に対応するサーボアンプおよびモータを備え、制御装置1が主軸に対応するサーボアンプに対する指令を生成してもよい。
 図1に示すように、制御装置1は、電子カムパターンを生成する電子カムパターン生成部10と、主軸位置と電子カムパターンとに基づいて、サーボアンプ2に対する指令を生成して出力する指令生成部15とを備える。電子カムパターン生成部10は、区間設定部11、パターン生成部12、固有波形生成部13および連結部14を備える。
 次に、制御装置1のハードウェア構成について説明する。電子カムパターン生成部10および指令生成部15は、処理回路により実現される。処理回路は、例えば、プロセッサを備える制御回路である。
 図2は、制御回路の構成例を示す図である。図2に示した制御回路200は、プロセッサ201およびメモリ202を備える。プロセッサ201は、CPU(Central Processing Unit)、マイクロプロセッサ等である。メモリ202は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリー、等の、不揮発性または揮発性の半導体メモリ、磁気ディスク等が該当する。
 電子カムパターン生成部10および指令生成部15が、図2に示した制御回路200により実現される場合、電子カムパターン生成部10および指令生成部15の各機能は、メモリ202に格納された、電子カムパターン生成部10および指令生成部15の機能が実現されるためのプログラムが、プロセッサ201により実行されることにより実現される。メモリ202は、プロセッサ201によりプログラムが実行される際の記憶領域としても用いられる。
 または、電子カムパターン生成部10および指令生成部15は専用のハードウェアである処理回路により実現されてもよい。専用のハードウェアである処理回路は、例えばASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、またはこれらを組み合わせたものを含む。また、電子カムパターン生成部10および指令生成部15は、一部が専用のハードウェアである処理回路により実現され、残部が上述した制御回路200により実現されてもよい。
 次に、本実施の形態の電子カムパターン生成方法について説明する。図3は、本実施の形態の電子カムパターン生成部10における処理手順の一例を示すフローチャートである。図3に示すように、まず、区間設定部11は、主軸位置に応じた区間を設定する(ステップS1)。ステップS1において、区間はどのように設定されてもよいが、例えば、主軸と従軸との間の関係に関して定められた条件があれば、区間設定部11は、この条件に従って区間を設定する。
 主軸と従軸との間の関係に関して定められた条件の一例は、1つ以上の通過すべき位置である。ここで、通過すべき位置は、例えば、主軸位置と、従軸位置すなわち従軸の回転角度とで構成される2次元座標系における座標値で示される。すなわち、通過すべき位置は、例えば、基準となる位置を原点とした場合に、主軸位置をxとし、従軸位置をyとした場合のxy平面における座標値で示される。ここで、このxy平面において通過すべき位置が4点設定された場合、区間設定部11は、これらの4点が区間の境界となるように、各区間を設定する。
 区間設定部11は、設定された区間を示す情報を連結部14へ指示する。区間を示す情報は、例えば、基準位置を原点とした主軸位置の範囲と区間の識別情報との対応を示す情報である。区間を示す情報は、例えば、設定された区間が3つである場合、主軸位置が0からm1までが区間#1であり、主軸位置がm1からm2までが区間#2であり、主軸位置がm2からm3までが区間#3であるといった各区間の範囲を示す情報である。
 また、機械装置に固有の波形すなわち固有の関数が定められている区間がある場合もある。例えば、従軸位置が主軸位置に正比例するように動作する区間が定められている場合がある。本実施の形態では、固有の波形が定められている区間が存在する例を説明する。このように、固有の波形が定められている区間が存在する場合、区間設定部11は固有の波形が定められている区間を1つの区間に設定する。
 ステップS1の後、区間設定部11は、固有波形を生成する区間を示す情報とともに、固有波形生成部13へ固有波形の生成を指示し、固有波形生成部13は、固有波形を生成する。固有波形生成部13は、生成した固有波形を示す情報を、対応する区間を示す識別情報とともに連結部14へ出力する(ステップS2)。固有波形を示す情報は、例えば、計算式であってもよいし、固有波形が多項式により示されることが定められている場合には、多項式の次数と各次数の係数とであってもよい。固有波形を示す情報は、これらに限定されず、連結部14が、固有波形を生成できるような情報であればよい。
 また、区間設定部11は、パターンの生成を指示していない区間のうちの1つを処理対象区間とし、処理対象区間に関する境界条件をパターン生成部12へ出力するとともにパターン生成部12へパターンの生成を指示する。ここで、パターンとは、従軸位置を、主軸位置を変数とした関数で表した場合の、この関数のことを示す。本実施の形態では、この関数を7次関数とする。パターン生成部12は、パターンの生成の指示を受けると、境界条件を用いて7次関数の係数を算出する(ステップS3)。ステップS2およびステップS3の詳細については後述するが、7次関数の係数は、区間の境界において、加速度が0となり、かつジャークすなわち加加速度が0となるように決定される。
 パターン生成部12は、算出した係数を用いてパターンすなわち関数を決定する(ステップS4)。パターン生成部12は、決定されたパターンを示す情報を、対応する区間を示す識別情報とともに連結部14へ出力する。決定されたパターンを示す情報は、例えば、計算式であってもよいし、ステップS3で算出した係数であってもよい。決定されたパターンを示す情報は、これらに限定されず、連結部14が、決定されたパターンを生成できるような情報であればよい。区間設定部11は、全区間の処理が終了したか、すなわち、全区間について、パターン生成部12へのパターンの生成の指示または固有波形生成部13への固有波形の生成の指示のうちのいずれかを行ったかを判断し(ステップS5)、全区間の処理が終了した場合(ステップS5 Yes)、電子カムパターンの生成処理を終了する。また、処理が終了していない区間がある場合(ステップS5 No)、処理対象の区間を変更して、パターン生成部12へパターンの生成を指示することにより、ステップS3からの処理が繰り返される。
 以上の処理により、連結部14は、各区間のパターンを示す情報および固有波形を示す情報を受け取ることができる。連結部14は、各区間のパターンを順に連結することにより、電子カムパターンを生成し、電子カムパターンを示す情報を指令生成部15へ出力する。換言すると、各区間のパターンは、各区間の電子カムパターンである。電子カムパターンを示す情報の一例は、各区間を示す情報と区間ごとの電子カムパターンの計算式である。または、電子カムパターンを示す情報は、各区間を示す情報と区間ごとの次数と係数とであってもよい。なお、ここでは、連結部14が生成した電子カムパターンを指令生成部15へ出力するようにしたが、連結部14が生成した電子カムパターンを示す情報を図示しない記憶部へ格納し、指令生成部15が記憶部から電子カムパターンを示す情報を読み出すようにしてもよい。
 次に、上述したステップS2およびステップS3について、具体例を挙げて説明する。図4は、本実施の形態において設定された区間と従軸位置の電子カムパターンとの一例を示す図である。図4に示した例では、通過すべき位置として、上述した主軸位置をxとし従軸位置をyとした場合のxy平面における4点の座標値が指定されているとする。以下、xy平面における座標値を(x座標値,y座標値)として表記する。
 図4に示した例では、通過すべき位置である4点の座標値をそれぞれ(0,P0)、(m1,P1)、(m2,P2)、(m3,P3)としている。図4に示した例では、主軸位置が0からm1までが区間#1、主軸位置がm1からm2までが区間#2、主軸位置がm2からm3までが区間#3と設定されている。以下、区間#1、区間#2、区間#3に対応したパターンすなわち関数を、各区間の開始位置を主軸位置の原点とした主軸位置であるkを用いて、それぞれF1(k)、F2(k)、F3(k)とする。図4では、主軸位置はある基準位置を限定としたxで示されている。各区間の開始位置の主軸位置のx座標値をxsとすると、k=x-xsである。図4に示した例では、区間#1では、k=xであり、区間#2では、k=x-m1であり、区間#3では、k=x-m2である。
 区間#2については、固有波形が定められているとする。したがって、F2(k)は固有波形を示す関数となる。ここでは、F2(k)は、傾きが固定値βの一次関数であるとする。すなわち、F2(k)=βk+P1である。F2(k)は、上述したステップS2で生成される。
 区間#1については、F1(k)を、以下の式(1)に示すようにkの7次関数として定義する。A0からA7は、係数である。
 F1(k)=A0+A1k+A2k2+A3k3+A4k4+A5k5+A6k6+A7k7  …(1)
 区間設定部11は、区間#1の境界条件として、区間長X1、区間の開始位置での従軸位置をP0、区間の終了位置での従軸位置P1、区間の開始位置での従軸の速度をV0、区間の終了位置での従軸の速度をV1と定める。また、さらに、境界条件として区間の開始位置および終了位置で、従軸の加速度およびジャークは0とする。このように、境界条件は、区間の開始位置および終了位置のそれぞれにおける従軸の位置、速度、加速度およびジャークである。なお、各区間における、区間の開始位置での速度、区間の終了位置での速度については、外部から入力されてもよいし、あらかじめ定められていてもよい。
 従軸の速度は式(1)をkで微分したものすなわちdF1(k)/dkであり、以下の式(2)で示される。
 dF1(k)/dk=A1+2A2k+3A3k2+4A4k3+5A5k4+6A6k5+7A7k6  …(2)
 また、従軸の加速度d21(k)/dk2、従軸のジャークd31(k)/dk3はそれぞれ以下の式(3)、式(4)となる。
 d21(k)/dk2=2A2+6A3k+12A4k2+20A5k3+30A6k4+42A7k5  …(3)
 d31(k)/dk3=6A3+24A4k+60A5k2+120A6k3+210A7k4  …(4)
 以上の式(1)から式(4)に、区間の開始位置での終了位置における、位置、速度、加速度およびジャークの各境界条件を代入して、連立方程式を解くと、以下の式(5)に示すように係数A0からA7が得られる。
 A0=P0、A1=V0、A2=0、A3=0、
 A4=-(15V1+20V0)/X1 3+(35P1-35P0)/X1 4
 A5= (39V1+45V0)/X1 4-(84P1-84P0)/X1 5
 A6=-(34V1+36V0)/X1 5+(70P1-70P0)/X1 6
 A7= (10V1+10V0)/X1 6-(20P1-20P0)/X1 7 …(5)
 区間#nの開始位置の従軸位置をPns、区間#nの終了位置の従軸位置をPne、区間#nに対応する関数をFn(x)、区間#nの開始位置での速度をVns、区間#nの終了位置での速度をVne、区間#nの区間長をXnとして一般化すると、式(1)および式(5)は、以下の式(6)および式(7)となる。
 Fn(k)=A0+A1k+A2k2+A3k3+A4k4+A5k5+A6k6+A7k7  
…(6)
 A0=Pn、A1=Vn、A2=0、A3=0、
 A4=-(15Vne+20Vns)/Xn 3+(35Pne-35Pns)/Xn 4
 A5= (39Vne+45Vns)/Xn 4-(84Pne-84Pns)/Xn 5
 A6=-(34Vne+36Vns)/Xn 5+(70Pne-70Pns)/Xn 6
 A7= (10Vne+10Vns)/Xn 6-(20Pne-20Pns)/Xn 7
…(7)
 上述したステップS3において、パターン生成部12は、固有波形が定められていない各区間について上記の式(7)に従って係数を算出し、式(6)のように関数を決定する。そして、連結部14が、各区間の関数を連結することで、図4に示したように電子カムパターンを得ることができる。
 以上のように、本実施の形態の同期制御システム100における電子カムパターン生成方法は、制御装置1が、主軸位置に応じた複数の区間を設定する第1のステップと複数の区間の境界条件を設定する第2のステップとである上述したステップS1を含む。また、本実施の形態の同期制御システム100における電子カムパターン生成方法は、複数の区間の少なくとも1つの区間において、境界条件に基づいて従軸の位置を示す電子カムパターンを、主軸位置の7次関数として生成する第3のステップであるステップS3およびステップS4と、を含む。
 図5は、図4に示したように従軸位置の電子カムパターンを定めた場合の、従軸速度を示す図である。図6は、図4に示したように従軸位置の電子カムパターンを定めた場合の、従軸加速度を示す図である。図7は、図4に示したように従軸位置の電子カムパターンを定めた場合の、従軸のジャークを示す図である。本実施の形態の電子カムパターンを用いることにより、各区間の境界における加速度およびジャークが0となる。すなわち、電子カムパターンの生成に5次関数を用いた場合と比べて、サーボモータの動きがより滑らかになり、衝撃および振動による機械装置への負荷が抑制され、機械装置の長寿命化が期待できる。
 また、通過する位置は、各機械装置によって決定されるものであって、任意の区間数および区間長を設定することができる。また、任意の区間が装置特有の固有波形であったとしても、この固有波形の区間の境界条件にしたがって該区間の前後の区間のパターンを決定すればよい。なお、固有波形となる区間が存在しない場合には、制御装置1は固有波形生成部13を備える必要はなく、全区間の関数をパターン生成部12により決定すればよい。
 なお、以上の例では、制御装置1が、電子カムパターンを生成する電子カムパターン装置としての機能を有するようにしたが、制御装置1の代わりに、電子カムパターンを生成する電子カムパターン装置と主軸位置と電子カムパターンとに基づいてサーボアンプ2に対する指令を生成する制御装置とを備えてもよい。この場合、電子カムパターン装置は、図1に示した電子カムパターン生成部10を備え、電子カムパターン生成部10から出力される電子カムパターンが制御装置へ入力され、制御装置は主軸位置と電子カムパターンとに基づいて、サーボアンプ2に対する指令を生成してサーボアンプ2へ出力する。
実施の形態2.
 図8は、本発明の実施の形態2にかかる同期制御システムの構成例を示す図である。図8に示すように、実施の形態2の同期制御システム100aは、制御装置1a、サーボアンプ2およびモータ3を備える。制御装置1aは、実施の形態1の電子カムパターン生成部10の代わりに電子カムパターン生成部10aを備える以外は実施の形態1の制御装置1と同様である。電子カムパターン生成部10aは、実施の形態1の電子カムパターン生成部10に誤差評価部16を追加し、パターン生成部12の代わりにパターン生成部12aを備える以外は、実施の形態1の制御装置1と同様である。実施の形態1と同様の機能を有する構成要素は、実施の形態1と同一の符号を付して重複する説明を省略する。以下、実施の形態1と異なる点を主に説明する。
 本実施の形態の電子カムパターン生成部10aは、実施の形態1の電子カムパターン生成部10と同様に処理回路により実現される。この処理回路は実施の形態1と同様に専用のハードウェアであってもよいし、プロセッサを備える制御回路であってもよい。
 本実施の形態では、電子カムパターンを生成する際の浮動小数点演算における計算誤差を考慮した電子カムパターンの生成方法について説明する。図9は、本実施の形態の電子カムパターン生成部10aにおける処理手順の一例を示すフローチャートである。図9に示すように、本実施の形態の電子カムパターン生成部10aにおける処理手順は、図3で説明した処理のステップS3とステップS4との間にステップS11からステップS13を追加する以外は実施の形態1と同様である。
 ステップS3の後、パターン生成部12aは、算出した係数を、誤差評価部16へ出力する。誤差評価部16は、パターン生成部12aから取得した係数を用いて誤差評価を実施する(ステップS11)。具体的には、誤差評価部16は、例えば、浮動小数点演算によって生じる誤差を算出する。同期制御システムによっては、指令生成部15が倍精度実数を扱えないなどのように、電子カムパターンを用いた演算を行う場合の演算誤差が生じる場合がある。特に、安価な装置では倍精度実数を用いた演算ができないなど演算の精度に制約がある場合がある。また、各区間では、開始位置では主軸位置が0であるが終了位置へ向かい主軸位置の値が大きくなる。本実施の形態では、主軸位置の7次の演算を行うことになるため、主軸位置の値が大きくなると演算誤差が大きくなる傾向がある。このため、本実施の形態では、このような演算誤差を考慮して、演算誤差が大きい場合には、後述するように区間を分割する。具体的には、誤差評価部16は、例えば、単精度実数を用いた場合に生じる誤差の最大値を算出する。
 誤差評価部16は、区間内で誤差がしきい値を超える場合があるか否かを判断し(ステップS12)、誤差がしきい値を超えない場合(ステップS12 No)、パターン生成部12aへその旨を通知する。これにより、ステップS4以降が実施される。誤差がしきい値を超える場合(ステップS12 Yes)、誤差評価部16は、パターン生成部12aへ区間の分割を指示する。これにより、パターン生成部12aは、区間分割を実施し(ステップS13)、ステップS3へ戻る。パターン生成部12aは、区間分割においては、分割区間の境界条件も設定する。以上のように、制御装置1aは、電子カムパターンを演算する際の演算誤差に応じて区間を分割するか否かを決定する。
 図10は、電子カムパターンに浮動小数点演算における計算誤差が生じた場合の電子カムパターンの一例を示す図である。図10に示した例では、曲線300は、実施の形態1において図4で示した電子カムパターンを示し、曲線301は、浮動小数点演算における計算誤差が生じた場合の電子カムパターンを示している。曲線301では、区間#3の終点付近において、浮動小数点演算における計算誤差により誤差が生じている。
 このような場合、本実施の形態では、区間#3を2分割し、分割された区間について、実施の形態1と同様に7次関数を決定する。図11は、区間分割が行われた後の電子カムパターンの一例を示す図である。図11では、図10に示した電子カムパターンが生成された後、区間#3について、上述したステップS13が実施される。これにより、区間#3は、区間#3aと区間#3bに分割される。分割の方法はどのような方法を用いてもよいが、図11に示した例では、元の区間を2つに等分割している。
 区間の開始時には主軸位置の値が小さいため、浮動小数点演算における計算誤差は区間の前半では後半に比べて小さい。したがって、分割した区間のうち前半の区間#3aでは、実施の形態1で述べた方法により、区間#3用に算出された関数を用いる。すなわち、区間#3aの関数F3a(k)はF3(k)と同一のものを用い、区間長を区間#3の区間長の半分すなわちX3/2として決定することができる。これにより、区間#3aの境界条件、すなわち開始位置および終了位置における従軸位置、速度を定めることができる。
 次に、後半の区間である区間#3bの関数F3b(X3-k)は、F3(k)に、kの代わりにX3-kを代入し、区間#3と同じ境界条件P2およびP3を使用することで、以下の式(8)、式(9)により得られる。A0’からA7’は係数である。
 F3b(X3-k)=A0’+A1’k+A2’k2+A3’k3+A4’k4+A5’k5+A6’k6+A7’k7  …(8)
 A0’=P3、A1’=-V3、A2’=0、A3’=0、
 A4’= (20V3+15V2)/X3 3-(35P3-35P2)/X3 4
 A5’=-(45V3+39V2)/X3 4+(84P3-84P2)/X3 5
 A6’= (36V3+34V2)/X3 5-(70P3-70P2)/X3 6
 A7’=-(10V3+10V2)/X3 6+(20P3-20P2)/X3 7 …(9)
 本実施の形態を使用して得られた電子カムパターンは、実施の形態1に比べて浮動小数点演算時の計算誤差を少なくできる。これは、実施の形態1で述べた式(6)、式(7)に従って計算すると、浮動小数点演算によって、区間の終了位置付近で浮動小数点演算誤差が大きくなる恐れがあるのに対し、本実施の形態のように、区間を2分割し、分割した後半の区間では式(8)、式(9)を使用することによって終了位置から開始位置に向かって7次関数を計算すると、終了点付近の浮動小数点演算誤差を抑制することができるためである。換言すると、本実施の形態の電子カムパターン生成方法は、区間を分割して分割区間を設定する第4のステップであるステップS13と、分割区間ごとに該分割区間の前記電子カムパターンが主軸位置の7次関数として生成される第5のステップであるステップS4と、を含み、分割区間のうち区間の終了位置を含む分割区間の電子カムパターンは、分割区間の終了位置を開始点として区間の開始位置へ向かって計算される。これにより、同期制御システムにおいて演算性能が低い場合、例えば倍精度実数を扱えない場合にも、浮動小数点演算誤差を抑制して機械装置への衝撃および振動を抑制することができる。換言すると、本実施の形態では、安価なシステムで7次関数による電子カムパターンを計算することができる。
 また、区間分割を行う際に、区間を均等に2分割する必要はない。たとえば、誤差評価部16により評価した誤差に基づいて、誤差すなわち浮動小数点演算誤差がしきい値を超える前の部分で2分割してもよい。
 なお、以上の例では制御装置1aが、電子カムパターンを生成する電子カムパターン装置としての機能を有するようにしたが、制御装置1aの代わりに、電子カムパターンを生成する電子カムパターン装置と主軸位置と電子カムパターンとに基づいてサーボアンプ2に対する指令を生成する制御装置とを備えてもよい。
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 1,1a 制御装置、2 サーボアンプ、3 モータ、10,10a 電子カムパターン生成部、11 区間設定部、12,12a パターン生成部、13 固有波形生成部、14 連結部、15 指令生成部、16 誤差評価部、100,100a 同期制御システム。

Claims (6)

  1.  従軸を主軸位置に同期させて制御する同期制御システムにおける電子カムパターン生成方法であって、
     前記主軸位置に応じた複数の区間を設定する第1のステップと、
     前記複数の区間の境界条件を設定する第2のステップと、
     前記複数の区間の少なくとも1つの区間において、前記境界条件に基づいて従軸の位置を示す電子カムパターンを、前記主軸位置の7次関数として生成する第3のステップと、
     を含むことを特徴とする電子カムパターン生成方法。
  2.  前記境界条件は、前記区間の開始位置および終了位置のそれぞれにおける従軸の位置、速度、加速度およびジャークであることを特徴とする請求項1に記載の電子カムパターン生成方法。
  3.  前記境界条件における前記加速度および前記ジャークはともに0であることを特徴とする請求項2に記載の電子カムパターン生成方法。
  4.  前記区間を分割して分割区間を設定する第4のステップと、
     前記分割区間ごとに該分割区間の前記電子カムパターンが前記主軸位置の7次関数として生成される第5のステップと、
     を含み、
     前記分割区間のうち前記区間の終了位置を含む前記分割区間の前記電子カムパターンは、前記分割区間の終了位置を開始点として前記区間の開始位置へ向かって計算されることを特徴とする請求項1または2に記載の電子カムパターン生成方法。
  5.  電子カムパターン生成装置は、前記電子カムパターンを演算する際の演算誤差に応じて前記区間を分割するか否かを決定することを特徴とする請求項4に記載の電子カムパターン生成方法。
  6.  従軸を主軸位置に同期させて制御する同期制御システムに用いられる電子カムパターンを生成する電子カムパターン生成装置であって、
     前記主軸位置に応じた複数の区間を設定し、複数の区間の境界条件を設定する区間設定部と、
     前記複数の区間の少なくとも1つの区間において、前記境界条件に基づいて従軸の位置を示す電子カムパターンを、前記主軸位置の7次関数として生成するパターン生成部と、
     を備えることを特徴とする電子カムパターン生成装置。
PCT/JP2017/007326 2017-02-27 2017-02-27 電子カムパターン生成方法および電子カムパターン生成装置 WO2018154745A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018506626A JP6407478B1 (ja) 2017-02-27 2017-02-27 電子カムパターン生成方法および電子カムパターン生成装置
PCT/JP2017/007326 WO2018154745A1 (ja) 2017-02-27 2017-02-27 電子カムパターン生成方法および電子カムパターン生成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/007326 WO2018154745A1 (ja) 2017-02-27 2017-02-27 電子カムパターン生成方法および電子カムパターン生成装置

Publications (1)

Publication Number Publication Date
WO2018154745A1 true WO2018154745A1 (ja) 2018-08-30

Family

ID=63252460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/007326 WO2018154745A1 (ja) 2017-02-27 2017-02-27 電子カムパターン生成方法および電子カムパターン生成装置

Country Status (2)

Country Link
JP (1) JP6407478B1 (ja)
WO (1) WO2018154745A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020161870A1 (ja) * 2019-02-07 2020-08-13 三菱電機株式会社 制御データ作成装置、制御データ作成方法、および制御データ作成プログラム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000040658A (ja) * 1998-07-24 2000-02-08 Nikon Corp ステージ制御方法及び走査型露光装置
JP2006172438A (ja) * 2004-11-17 2006-06-29 Omron Corp 電子カムの制御方法およびサーボモータ制御システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000040658A (ja) * 1998-07-24 2000-02-08 Nikon Corp ステージ制御方法及び走査型露光装置
JP2006172438A (ja) * 2004-11-17 2006-06-29 Omron Corp 電子カムの制御方法およびサーボモータ制御システム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020161870A1 (ja) * 2019-02-07 2020-08-13 三菱電機株式会社 制御データ作成装置、制御データ作成方法、および制御データ作成プログラム
CN113383285A (zh) * 2019-02-07 2021-09-10 三菱电机株式会社 控制数据创建装置、控制数据创建方法及控制数据创建程序
US11385615B2 (en) 2019-02-07 2022-07-12 Mitsubishi Electric Corporation Control data generation device, control data generation method, and storage medium

Also Published As

Publication number Publication date
JPWO2018154745A1 (ja) 2019-02-28
JP6407478B1 (ja) 2018-10-17

Similar Documents

Publication Publication Date Title
CN108693835B (zh) 进行摆动切削的机床的控制装置
Sencer et al. High speed cornering strategy with confined contour error and vibration suppression for CNC machine tools
JP6342935B2 (ja) 揺動切削を行う工作機械のサーボ制御装置、制御方法及びコンピュータプログラム
US9678500B2 (en) Machining program creating device numerical control device, machining system, machining program creating method, numerical control method, and machining program
JP5762625B2 (ja) 軌跡制御装置
US10503140B2 (en) Control device for machine tool performing oscillation cutting
US10471563B2 (en) Control device for machine tool performing oscillation cutting
JP6551199B2 (ja) 制御装置、制御方法、制御プログラム
JP5919346B2 (ja) 軸間干渉を補正するモータ制御装置
US10048675B2 (en) Numerical controller performing 3-dimensional interference check corresponding to feedrate change
CN109954955B (zh) 机器人***
CN111052015A (zh) 数控***及电动机控制装置
US10037021B2 (en) Numerical controller performing speed control with curvature and curvature change amount
JP6407478B1 (ja) 電子カムパターン生成方法および電子カムパターン生成装置
JP7022096B2 (ja) サーボ制御装置
JP2007304714A (ja) 数値制御装置
JP6410971B2 (ja) サーボ制御装置
JP6871215B2 (ja) 数値制御装置
CN107645979B (zh) 用于使机器人手臂的运动同步的机器人***
US20180173190A1 (en) Numerical controller
US11256233B2 (en) Numerical controller
JPH0354610A (ja) インボリュート補間誤差補正方式
WO2018189832A1 (ja) 同期制御システムおよび制御装置
JP5477247B2 (ja) 数値制御装置、移動経路修正方法、移動経路修正プログラム、及び記憶媒体
JP6742943B2 (ja) 工作機械送り系の制御装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018506626

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17898017

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17898017

Country of ref document: EP

Kind code of ref document: A1