WO2018151100A1 - 半導体レーザモジュール - Google Patents

半導体レーザモジュール Download PDF

Info

Publication number
WO2018151100A1
WO2018151100A1 PCT/JP2018/004897 JP2018004897W WO2018151100A1 WO 2018151100 A1 WO2018151100 A1 WO 2018151100A1 JP 2018004897 W JP2018004897 W JP 2018004897W WO 2018151100 A1 WO2018151100 A1 WO 2018151100A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
semiconductor laser
optical fiber
laser module
module according
Prior art date
Application number
PCT/JP2018/004897
Other languages
English (en)
French (fr)
Inventor
悠太 石毛
麻衣子 有賀
真木 岩間
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to CN201880011950.0A priority Critical patent/CN110337602A/zh
Priority to EP18753897.0A priority patent/EP3584616A4/en
Publication of WO2018151100A1 publication Critical patent/WO2018151100A1/ja
Priority to US16/539,384 priority patent/US11031746B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4207Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms with optical elements reducing the sensitivity to optical feedback
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02251Out-coupling of light using optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4296Coupling light guides with opto-electronic elements coupling with sources of high radiant energy, e.g. high power lasers, high temperature light sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02469Passive cooling, e.g. where heat is removed by the housing as a whole or by a heat pipe without any active cooling element like a TEC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0428Electrical excitation ; Circuits therefor for applying pulses to the laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1078Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region with means to control the spontaneous emission, e.g. reducing or reinjection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4012Beam combining, e.g. by the use of fibres, gratings, polarisers, prisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • H01S5/02326Arrangements for relative positioning of laser diodes and optical components, e.g. grooves in the mount to fix optical fibres or lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02407Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling
    • H01S5/02423Liquid cooling, e.g. a liquid cools a mount of the laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures

Definitions

  • the present invention relates to a semiconductor laser module.
  • JP 2004-96088 A Japanese Patent Laid-Open No. 2004-354771 International Publication No. 2015/037725
  • the present invention has been made in view of the above, and an object thereof is to provide a highly reliable semiconductor laser module.
  • a semiconductor laser module includes a semiconductor laser element that outputs laser light, a core portion, and a cladding portion formed on the outer periphery of the core portion. And an optical fiber that guides the laser light to the outside of the semiconductor laser module, and is disposed on the outer periphery of the optical fiber, and is optically transmissive at the wavelength of the laser light.
  • An optical component for fixing the optical fiber, a first fixing agent for fixing the optical component and the optical fiber, the semiconductor laser element, and one end of the optical fiber on the side on which the laser light is incident A light reflection reducing region that absorbs the laser light and is processed to be a rough surface is formed around the optical component.
  • the light reflection reduction region is disposed on an outer periphery of the optical component, and is formed on an inner surface of a fixing member that fixes the optical component. .
  • the fixing member is a metal member containing Cu, Ni, Al, stainless steel, or Fe, a metal containing Ni, Cr, Ti, or surface plating containing C. member comprising a layer, AlN, BeO, ZrO 2, SiC, or Al ceramic member including 2 O 3 or AlN, BeO, ZrO 2, SiC , or member comprising a ceramic layer covering the surface including the Al 2 O 3,, It is characterized by having at least one.
  • the semiconductor laser module according to one aspect of the present invention is characterized in that the light reflection reduction region is formed on an inner surface of the casing.
  • the light reflection reduction region is subjected to surface treatment by irradiating the inner surface of the casing or the inner surface of the fixing member with pulsed laser light.
  • the semiconductor laser module according to one aspect of the present invention is characterized in that the light reflection reduction region is selectively formed on an inner surface of the casing or an inner surface of the fixing member.
  • the light reflection reduction region is surface-treated by selectively irradiating the inner surface of the housing or the inner surface of the fixing member with pulsed laser light. It is characterized by being.
  • the light reflection reduction region is surface-treated by irradiating the inner surface of the housing or the inner surface of the fixing member with pulsed laser light having different intensity depending on the position. It is characterized by that.
  • the light reflection reduction region has a light absorption rate from the laser light incident end side of the optical fiber toward the laser light emitting end side of the optical fiber. Is formed so as to increase continuously or stepwise.
  • the light reflection reduction region is periodically formed, and the laser light of the optical fiber is incident from the laser light incident end side of the optical fiber. It is formed so that the light absorption rate becomes higher toward the emission end side.
  • the light reflection reduction regions are formed discretely, and the laser light of the optical fiber is incident from the incident end side of the laser light of the optical fiber. It is characterized by being formed so that the interval becomes narrower toward the emission end side.
  • the optical fiber includes a protruding portion protruding from the optical component on the incident end side of the laser beam.
  • the semiconductor laser module according to one aspect of the present invention further includes a first light blocking unit disposed between the laser light incident end of the optical fiber and the optical component, and the first light blocking unit. Is arranged so as to be separated from the optical fiber on the outer periphery of the protruding portion.
  • the first light blocking unit includes a metal member containing Cu, Ni, Al, stainless steel, or Fe, a surface plating layer containing Ni, Cr, or Ti. It is characterized by having at least one of a member provided, or a member provided with a dielectric multilayer film.
  • the semiconductor laser module according to one aspect of the present invention is characterized in that the fixing member is connected to the casing through a good thermal conductor.
  • the semiconductor laser module according to one aspect of the present invention is characterized in that the thermal good conductor has a thermal conductivity of 0.5 W / mK or more.
  • the semiconductor laser module according to one aspect of the present invention further includes a second light blocking unit that is disposed on an emission end side of the laser beam of the optical fiber and suppresses emission of the laser beam from the optical component. It is characterized by providing.
  • the second light blocking unit includes at least one of a metal member including Cu, Ni, Al, stainless steel, or Fe, or a member including a dielectric multilayer film. It is characterized by having one.
  • the surface of the second light blocking unit on the optical component side is inclined so that light incident on the surface is reflected in a direction away from the optical fiber, or It has a curvature.
  • the semiconductor laser module according to one aspect of the present invention is characterized in that the optical component is a tubular glass capillary.
  • a highly reliable semiconductor laser module can be realized.
  • FIG. 1 is a schematic plan view of a semiconductor laser module according to an embodiment of the present invention.
  • FIG. 2 is a schematic partially cutaway view showing a side surface of the semiconductor laser module shown in FIG.
  • FIG. 3 is a schematic cross-sectional view of the optical fiber, glass capillary, and fixing member of the semiconductor laser module shown in FIG.
  • FIG. 4 is a schematic diagram illustrating a fixing member of a semiconductor laser module according to a modification.
  • FIG. 5 is a schematic diagram illustrating a fixing member of a semiconductor laser module according to a modification.
  • FIG. 6 is a diagram illustrating another example of the light absorptance distribution.
  • FIG. 7 is a diagram showing still another example of the distribution of the light absorption rate.
  • FIG. 1 is a schematic plan view of a semiconductor laser module according to an embodiment of the present invention.
  • FIG. 2 is a schematic partially cutaway view showing a side surface of the semiconductor laser module shown in FIG.
  • FIG. 3 is a schematic cross-
  • FIG. 8 is a diagram showing still another example of the distribution of the light absorption rate.
  • FIG. 9 is a diagram illustrating still another example of the distribution of the light absorption rate.
  • FIG. 10 is a schematic diagram for explaining a housing of a semiconductor laser module according to a modification.
  • FIG. 11 is a schematic cross-sectional view of an optical fiber, a glass capillary, and a fixing member of a semiconductor laser module according to a modification.
  • FIG. 1 is a schematic plan view of a semiconductor laser module according to an embodiment of the present invention.
  • FIG. 2 is a schematic partially cutaway view showing a side surface of the semiconductor laser module shown in FIG.
  • the semiconductor laser module 100 according to the present embodiment includes a package 101 that is a housing, an LD height adjustment plate 102 that is sequentially stacked inside the package 101, submounts 103-1 to 6, and six semiconductor lasers. Elements 104-1 to 10-6 are provided.
  • the package 101 includes a lid 101a as shown in FIG. 2, but the lid of the package 101 is not shown in FIG.
  • the semiconductor laser module 100 also includes lead pins 105 for injecting current into the semiconductor laser elements 104-1 to 104-6.
  • the semiconductor laser module 100 includes first lenses 106-1 to 106-6 and second lenses 107-1 which are optical elements arranged in order on the optical path of the laser light output from the semiconductor laser elements 104-1 to 104-1. 6, mirrors 108-1 to 6, a third lens 109, an optical filter 110, and a fourth lens 111.
  • the first lens 106-1 to 6, the second lens 107-1 to 6, the mirror 108-1 to 6, the third lens 109, the optical filter 110, and the fourth lens 111 are respectively fixed inside the package 101.
  • the semiconductor laser module 100 includes an optical fiber 112 disposed to face the fourth lens 111. One end of the optical fiber 112 on the side where the laser beam is incident is housed inside the package 101.
  • the semiconductor laser elements 104-1 to 106-1 to 6-6 are arranged with a level difference inside the package 101 by the LD height adjusting plate. Further, the first lenses 106-1 to 106-6, the second lenses 107-1 to 10-6, and the mirrors 108-1 to 10-6 are disposed at the same height as the corresponding one semiconductor laser element. Also, a loose tube 115 is provided at the insertion portion of the optical fiber 112 into the package 101, and a boot 114 is externally fitted to a part of the package 101 so as to cover a part of the loose tube 115 and the insertion portion. .
  • the optical fiber 112 is inserted into a glass capillary 116 as an optical component.
  • the optical fiber 112 includes a covering portion 112a, but the covering portion 112a is removed from a portion of the optical fiber 112 that is inserted into the glass capillary 116.
  • the optical fiber 112 includes a protruding portion 112b protruding from the glass capillary 116 at a part of the incident side.
  • the outer circumference of the glass capillary 116 is covered with a fixing member 117.
  • the fixing member 117 is fixed to the package 101.
  • a second light blocking unit 118 is disposed on the laser light emission side of the glass capillary 116.
  • the second light blocking unit 118 is fitted with the fixing member 117 on the laser beam emission side of the fixing member 117.
  • the second light blocking unit 118 has a loose tube 115 inserted in a part thereof.
  • FIG. 3 is a schematic cross-sectional view of the optical fiber 112, the glass capillary 116, and the fixing member 117 of the semiconductor laser module 100 shown in FIG.
  • the optical fiber 112 includes a core portion 112c and a cladding portion 112d.
  • the core part 112c and the clad part 112d constitute a glass optical fiber part 112e of the optical fiber 112.
  • the optical fiber 112 is inserted through the glass capillary 116.
  • the optical fiber 112 and the glass capillary 116 are fixed with a first fixing agent 119.
  • the glass capillary 116 is inserted through the fixing member 117.
  • the glass capillary 116 and the fixing member 117 are fixed with the second fixing agent 120.
  • a light reflection reduction region 117 a is formed on the inner surface of the fixing member 117, that is, the surface facing the glass capillary 116.
  • the light reflection reduction region 117a is a region formed by processing the inner surface of the fixing member 117 so as to absorb light and be a rough surface.
  • a first light blocking unit 113 is disposed between the laser light incident end of the optical fiber 112 and the glass capillary 116.
  • the package 101 which is a housing is preferably made of a material having good thermal conductivity, and may be a metal member made of various metals, in order to suppress an internal temperature rise.
  • the package 101 preferably has a bottom surface separated from a surface on which the semiconductor laser module 100 is installed in a region where the glass capillary 116 is disposed. Thereby, when the package 101 is fixed with a screw or the like, the influence of the warp on the bottom surface of the package 101 can be reduced.
  • the LD height adjusting plate 102 is fixed in the package 101, adjusts the height of the semiconductor laser elements 104-1 to 104-6, and outputs the laser light output from the semiconductor laser elements 104-1 to 104-6. So that the optical paths do not interfere with each other. Note that the LD height adjustment plate 102 may be integrated with the package 101.
  • the submounts 103-1 to 103-6 are fixed on the LD height adjusting plate 102, and assist the heat radiation of the mounted semiconductor laser elements 104-1 to 104-6. Therefore, the submounts 103-1 to 103-1 are preferably made of a material having good thermal conductivity, and may be metal members made of various metals.
  • the semiconductor laser elements 104-1 to 10-6 are high-power semiconductor laser elements in which the intensity of the output laser light is 1 W or more, and further 10 W or more. In the present embodiment, the light intensity of the laser light output from semiconductor laser elements 104-1 to 106-1 is, for example, 11W.
  • the semiconductor laser elements 104-1 to 104-6 output laser light having a wavelength of 900 nm to 1000 nm, for example.
  • the semiconductor laser elements 104-1 to 104-6 may be plural as in the semiconductor laser module 100 according to the embodiment, but may be one, and the number is not particularly limited.
  • the lead pin 105 supplies power to the semiconductor laser elements 104-1 to 106-1 through bonding wires (not shown).
  • the supplied power may be a constant voltage, but may be a modulation voltage.
  • the first lenses 106-1 to 106-6 are, for example, cylindrical lenses having a focal length of 0.3 mm.
  • the first lenses 106-1 to 106-1 are arranged at positions where the output light of one corresponding semiconductor laser element is substantially parallel light in the vertical direction.
  • the second lenses 107-1 to 106-1 are cylindrical lenses having a focal length of 5 mm, for example.
  • the second lenses 107-1 to 106-1 are arranged at positions where the output light of the semiconductor laser elements 104-1 to 10-6 is substantially parallel light in the horizontal direction.
  • the mirrors 108-1 to 108-6 may be mirrors provided with various metal films or dielectric films, and it is preferable that the reflectance is higher at the wavelength of the laser beam output from the semiconductor laser elements 104-1 to 104-6. Further, the mirrors 108-1 to 108-6 can finely adjust the reflection direction so that the laser light of one corresponding semiconductor laser element is suitably coupled to the optical fiber 112.
  • the third lens 109 and the fourth lens 111 are, for example, cylindrical lenses having focal lengths of 12 mm and 5 mm, respectively, and the curvatures are orthogonal to each other.
  • the third lens 109 and the fourth lens 111 condense the laser light output from the semiconductor laser elements 104-1 to 104-6. It is preferably coupled to the fiber 112.
  • the positions of the third lens 109 and the fourth lens 111 are adjusted with respect to the optical fiber 112 so that, for example, the coupling efficiency of the laser light output from the semiconductor laser elements 104-1 to 104-6 to the optical fiber 112 is 85% or more. Has been.
  • the optical filter 110 is, for example, a low-pass filter that reflects light having a wavelength of 1060 nm to 1080 nm and transmits light having a wavelength of 900 nm to 1000 nm.
  • the optical filter 110 transmits the laser light output from the semiconductor laser elements 104-1 to 104-6, and prevents light having a wavelength of 1060 nm to 1080 nm from being irradiated on the semiconductor laser elements 104-1 to 104-6 from the outside.
  • the optical filter 110 is arranged so that the output laser light of the semiconductor laser elements 104-1 to 104-6 slightly reflected by the optical filter 110 does not return to the semiconductor laser elements 104-1 to 104-6. Are arranged at an angle.
  • the optical fiber 112 may be a multimode optical fiber having a core diameter of 105 ⁇ m and a cladding diameter of 125 ⁇ m, for example, but may be a single mode optical fiber.
  • the NA of the optical fiber 112 may be, for example, 0.15 to 0.22.
  • the first light blocking portion 113 is a rectangular plate-like member having a notch, and the protruding portion 112b of the optical fiber 112 is inserted into the notch, and the tip of the optical fiber 112 is connected to the first light blocking portion 113. Sticks out.
  • the first light blocking portion 113 is disposed on the outer periphery of the protruding portion 112 b of the optical fiber 112, and the first light blocking portion 113 is separated from the optical fiber 112.
  • the 1st light shielding part 113 spaced apart from the optical fiber 112 in this way, it can suppress that heat is transmitted from the 1st light shielding part 113 to the optical fiber 112, and the 1st fixing agent 119 mentioned later of Temperature rise can be suppressed.
  • the first optical blocking unit 113 By providing the first light blocking unit 113 so that the tip of the optical fiber 112 protrudes from the first light blocking unit 113 to the laser light input side, the first optical blocking unit 113 and the optical fiber 112 It is possible to suppress leakage of uncoupled light from the gap, and it is possible to more reliably block uncoupled light that is not coupled to the optical fiber 112.
  • the boot 114 is inserted through the optical fiber 112 and prevents damage due to bending of the optical fiber 112.
  • the boot 114 may be a metal boot, but the material is not particularly limited, and may be rubber, various resins, plastic, or the like.
  • the loose tube 115 is inserted through the optical fiber 112 and prevents damage due to bending of the optical fiber 112. Further, the loose tube 115 is fixed to the optical fiber 112, and as a result, the position of the optical fiber 112 is prevented from shifting when a pulling force is applied to the optical fiber 112 in the longitudinal direction. Also good.
  • the glass capillary 116 is a circular glass capillary with a through hole.
  • the optical fiber 112 is inserted into the through hole, and the inner wall of the through hole of the glass capillary 116 and the clad portion 112 d of the optical fiber 112 are fixed by the first fixing agent 119.
  • the glass capillary 116 is light transmissive at the wavelength of the laser light output from the semiconductor laser elements 104-1 to 104-6.
  • the glass capillary 116 is preferably made of a material having a transmittance of 90% or more at this wavelength.
  • the refractive index of the glass capillary 116 is preferably equal to or higher than the refractive index of the cladding portion 112d of the optical fiber 112.
  • the refractive index of the glass capillary 116 is a relative refractive index with respect to the cladding portion 112d of the optical fiber 112. The difference is not less than 0.1% and not more than 10%.
  • the glass capillary 116 may include a tapered portion provided on the light emitting side so that the optical fiber 112 can be easily inserted.
  • the fixing member 117 is, for example, a tubular member disposed on the outer periphery of the glass capillary 116, and is fixed to the glass capillary 116 with the second fixing agent 120.
  • a light reflection reduction region 117 a is formed on substantially the entire inner surface of the fixing member 117.
  • the light reflection reduction region 117a has a light absorptivity at the wavelength of the laser light output from the semiconductor laser elements 104-1 to 104-6. For example, at this wavelength, the light absorptance is 30% or more, preferably 70% or more. is there. As a result, the light reflection reduction region 117a absorbs the laser light transmitted through the glass capillary 116.
  • the fixing member 117 converts the energy of the laser beam absorbed by the light reflection reduction region 117a into heat and dissipates it.
  • the fixing member 117 is preferably made of a material having good thermal conductivity for heat dissipation.
  • a metal member containing Cu, Ni, Al, stainless steel, or Fe, a metal containing Ni, Cr, Ti, or C A member including a surface plating layer containing AlN, BeO, ZrO 2 , SiC, or Al 2 O 3 , or a ceramic layer covering a surface containing AlN, BeO, ZrO 2 , SiC, or Al 2 O 3 It is preferable to consist of a member provided with.
  • the fixing member 117 is connected to the package 101 via a heat good conductor (not shown) for heat dissipation.
  • the heat good conductor is preferably made of a material having a thermal conductivity of 0.5 W / mK or more, and is made of, for example, solder or a heat conductive adhesive.
  • the second light blocking unit 118 is connected to the fixing member 117 and is further inserted through the optical fiber 112. As a result, the second light blocking unit 118 transmits the glass capillary 116 and prevents emission of light emitted from the end surface on the emission side of the glass capillary 116 to the outside of the semiconductor laser module 100. For this reason, it is preferable that the second light blocking unit 118 is not damaged by the irradiated light.
  • the second light blocking unit 118 is not damaged by the irradiated light.
  • the surface of the second light blocking unit 118 on the glass capillary 116 side preferably has an inclination or a curvature so that light incident on the surface is reflected in a direction away from the optical fiber 112.
  • the space surrounded by the second light blocking unit 118, the fixing member 117, and the glass capillary 116 may be filled with the first fixing agent 119, the second fixing agent 120, other UV curable resin, silicone, or the like. Good.
  • the first fixing agent 119 and the second fixing agent 120 may be the same material or different materials, and are made of, for example, a UV curable resin such as an epoxy resin or a urethane resin.
  • the refractive index of the first fixing agent 119 is preferably equal to or higher than the refractive index of the cladding portion 112d of the optical fiber 112 at 25 ° C., and the operating temperature range of the semiconductor laser module 100 (for example, 15 ° C. to 100 ° C.) (° C.), the refractive index of the cladding 112d of the optical fiber 112 is more preferably equal to or higher than that.
  • the refractive index of the second fixing agent 120 is preferably equal to or higher than the refractive index of the glass capillary 116 at 25 ° C., and in the operating temperature range of the semiconductor laser module 100 (for example, 15 ° C. to 100 ° C.) More preferably, it is equal to or higher than the refractive index of the glass capillary 116. Further, the refractive index of the first fixing agent 119 and the second fixing agent 120 may be substantially the same as the refractive index of the glass capillary 116 and higher than the refractive index of the cladding 112d of the optical fiber 112.
  • the relative refractive index difference with respect to the glass capillary 116 is 0% or more and 10% or less.
  • the first fixing agent 119 and the second fixing agent 120 preferably have a thickness of 1 ⁇ m or more and 800 ⁇ m or less on a surface orthogonal to the longitudinal direction of the optical fiber 112.
  • a UV curable resin can be made to have a low refractive index by containing, for example, fluorine, and can be made to have a high refractive index by containing sulfur. The refractive index can be adjusted by adjusting the content.
  • Each of the semiconductor laser elements 104-1 to 104-6 arranged with a step is supplied with electric power from the lead pin 105 and outputs laser light.
  • the output laser beams are made substantially parallel beams by the first lenses 106-1 to 106-1 and the second lenses 107-1 to 107-6, respectively.
  • each laser beam is reflected in the direction of the optical fiber 112 by one mirror 108-1 to 10-6 disposed at a corresponding height.
  • Each laser beam is condensed by the third lens 109 and the fourth lens 111 and coupled to the optical fiber 112.
  • the laser light coupled to the optical fiber 112 is guided out of the semiconductor laser module 100 by the optical fiber 112 and output.
  • the semiconductor laser module 100 prevents unnecessary loss in the laser light due to the steps of the semiconductor laser elements 104-1 to 10-6 and the mirrors 108-1 to 108-6.
  • the light intensity of the output light of each of the semiconductor laser elements 104-1 to 10-6 is 11 W and the coupling efficiency is 85%
  • the light intensity of the output light of the semiconductor laser module 100 is as follows. Is 56W.
  • the state of propagation of the laser light condensed by the third lens 109 and the fourth lens 111 will be described in detail with reference to FIG. In FIG. 3, strictly speaking, laser light is refracted at the interface according to the difference in refractive index of each member, but the refraction is not shown for the sake of simplicity.
  • the laser light L condensed by the third lens 109 and the fourth lens 111 becomes uncoupled light L1 that is not coupled to the optical fiber 112, and light L2 that is coupled to the optical fiber 112 and propagates through the optical fiber 112.
  • Most of the light L2 coupled to the optical fiber 112 propagates through the core portion 112c of the optical fiber 112, is guided to the outside of the semiconductor laser module 100, and is partly coupled to the cladding portion 112d.
  • the light L3 propagates through the cladding 112d.
  • a part of the light L2 propagating through the core part 112c may leak from the core part 112c and become the light L3 propagating through the cladding part 112
  • the uncoupled light L ⁇ b> 1 is suppressed from entering the glass capillary 116 by the first light blocking unit 113, and a part thereof is absorbed by the first light blocking unit 113.
  • the heat generated by this light absorption is radiated from the first light blocking unit 113 to the package 101.
  • the first light blocking portion 113 is disposed on the protruding portion 112b of the optical fiber 112 in order to surely prevent the uncoupled light L1 from entering the glass capillary 116.
  • it is preferable that the first light blocking unit 113 is not damaged even when a part of the laser beam is irradiated.
  • the first light blocking unit 113 reliably separates the light from the optical fiber 112 and blocks light that is not sufficiently coupled to the optical fiber 112, so that the first light blocking unit 113 is in a plane orthogonal to the longitudinal direction of the optical fiber 112. It is preferable that a distance (clearance) between the portion 113 and the optical fiber 112 is set.
  • the clearance is preferably 5 ⁇ m or more and 500 ⁇ m or less in the major axis direction of the ellipse.
  • the light L3 propagating in the cladding 112d is generated in the cladding 112d.
  • the light L3 is confined in the clad part 112d of the optical fiber 112 by the difference in refractive index between the clad part 112d and external air at the protruding part 112b, and propagates in the clad part 112d of the optical fiber 112.
  • the light L3 reaches the interface between the clad portion 112d and the first fixing agent 119.
  • the refractive index of the first fixing agent 119 is higher than the refractive index of the cladding portion 112d, the light L3 is likely to pass through this interface. Further, the light L3 is most easily transmitted through this interface when the refractive indexes of the cladding portion 112d and the first fixing agent 119 are equal.
  • the light L3 that has passed through this interface (that is, leaked from the optical fiber 112) propagates through the first fixing agent 119, but the first fixing agent 119 is sufficiently thin with a thickness of 800 ⁇ m or less, and absorbs light. Is sufficiently small to prevent damage.
  • the thickness of the first fixing agent 119 is more preferably 5 ⁇ m or less.
  • the light L3 reaches the interface between the first fixing agent 119 and the glass capillary 116.
  • the refractive index of the glass capillary 116 is higher than the refractive index of the first fixing agent 119, the light L3 easily passes through this interface.
  • the light L3 is most easily transmitted through this interface when the refractive indexes of the first fixing agent 119 and the glass capillary 116 are equal.
  • the light L3 transmitted through this interface propagates in the glass capillary 116, but the light L3 passes through the glass capillary 116 because the transmittance in the glass capillary 116 is sufficiently high, for example, 90% or more.
  • the light L3 reaches the interface between the glass capillary 116 and the second fixing agent 120. Similarly, at this interface, the light L3 is likely to pass through this interface when the refractive index of the second fixing agent 120 is higher than the refractive index of the glass capillary 116. Furthermore, the light L3 is most easily transmitted through this interface when the refractive indices of the glass capillary 116 and the second fixing agent 120 are equal.
  • the light L3 transmitted through this interface propagates in the second fixing agent 120, but the second fixing agent 120 is sufficiently thin with a thickness of 800 ⁇ m or less, and its light absorption is sufficiently small, so that damage is prevented. ing.
  • the thickness of the second fixing agent 120 is more preferably 5 ⁇ m or less.
  • the light L 3 reaches the fixing member 117.
  • the light L3 is absorbed by the light reflection reduction region 117a in the fixing member 117.
  • the heat generated by this light absorption is radiated from the fixing member 117 to the package 101.
  • the angle ⁇ is larger than the predetermined angle ⁇ a. It is within a predetermined range.
  • the glass capillary 116 is preferably long enough so that the light output from the optical fiber 112 at an angle ⁇ reaches the fixing member 117. Further, it is more preferable that the glass capillary 116 has a sufficient length so that light reflected without being absorbed by the fixing member 117 reaches the fixing member 117 again. As such a length, the glass capillary 116 has a length of 3 mm or more in the longitudinal direction of the circular tube.
  • the glass capillary 116 preferably has an inner diameter of the circular tube of 0.13 mm or less in order to make the first fixing agent 119 sufficiently thin. Further, the glass capillary 116 has a certain thickness or more so that heat due to light absorption in the light reflection reducing region 117a of the fixing member 117 does not damage the first fixing agent 119 or the covering portion 112a of the optical fiber 112.
  • the outer diameter of the circular tube is preferably 1.8 mm or more.
  • the light reflection reduction region 117a will be described more specifically.
  • the light reflection reduction region 117a is preferably formed by irradiating the inner surface of the fixing member 117 with a processing laser beam to perform surface treatment.
  • a chemical reaction such as oxidation occurs and the film becomes dark, so that the light absorption coefficient is increased and the surface is roughened.
  • What is necessary is just to set the wavelength and intensity
  • the formation region of the light reflection reduction region 117a can be set arbitrarily and with high accuracy. This is suitable for forming the light reflection reduction region 117a.
  • the coating agent may protrude to an area where coating is not required. For this reason, for example, the coating agent protrudes to the outside of the fixing member, which may adversely affect the fixing member to the package.
  • the light reflection reduction region 117a is obtained by processing the constituent material itself of the fixing member 117, an additional member for reducing light reflection is unnecessary, and an increase in the component cost can be prevented. Further, since the organic resin is not used as a raw material unlike the coating agent, even when the intensity of the light L3 is high, it does not cause damage due to burning or strong oxidation when irradiated.
  • pulsed laser light when used as the processing laser light, heat generated on the irradiated surface due to irradiation of the pulsed laser light is likely to diffuse, preventing the irradiated surface from being heated and causing excessive processing or damage. can do.
  • By adjusting the wavelength, peak power, and duty ratio of the pulsed laser light an excessive temperature rise on the irradiated surface during processing can be suppressed, and suitable processing can be realized.
  • irregularities having a period (about 0.5 ⁇ m to 1.5 ⁇ m) reflecting the wavelength of the laser beam can be formed on the irradiation surface, It is suitable from the viewpoint of roughening.
  • the semiconductor laser module 100 has the following effects. That is, the first light blocking unit 113 suppresses the uncoupled light from entering the glass capillary 116. As a result, in the semiconductor laser module 100, the first fixing agent 119, the second fixing agent 120, the covering portion 112a, and the like are prevented from being damaged by non-coupled light.
  • the refractive index of each member is appropriately selected so that light propagating through the cladding 112d is likely to leak from the optical fiber 112 at each interface between the cladding 112d and the second fixing agent 120. . For this reason, since the leaked light is suppressed from being reflected at each interface, the leaked light is efficiently absorbed by the fixing member 117. Further, since the semiconductor laser module 100 has the glass capillary 116 between the optical fiber 112 and the fixing member 117, the leakage light density before the leakage light from the optical fiber 112 reaches the fixing member 117. Can be reduced. Thereby, the temperature rise of the fixing member 117 can be suppressed.
  • the semiconductor laser module 100 includes the fixing member 117 in which the light reflection reduction region 117a is formed, the reflected light from the fixing member 117 damages the first fixing agent 119, the second fixing agent 120, and the covering portion 112a. It is suppressed.
  • the semiconductor laser module 100 since the first fixing agent 119 and the second fixing agent 120 are sufficiently thin, damage due to light absorption of the first fixing agent 119 and the second fixing agent 120 is suppressed.
  • the semiconductor laser module 100 according to the present embodiment is a highly reliable semiconductor laser module that exhibits the effects as described above.
  • the semiconductor laser module 100 has light incident on the second light blocking unit 118. Is reflected and is prevented from damaging the first fixing agent 119 in the tapered portion of the glass capillary 116, so that the semiconductor laser module is highly reliable.
  • the second light blocking unit 118 is not preferable in terms of safety if the light transmitted through the glass capillary 116 leaks to the outside of the semiconductor laser module 100. Therefore, the light transmitted through the glass capillary 116 is not transmitted to the outside of the semiconductor laser module 100. Emission is prevented. Therefore, the semiconductor laser module 100 is a highly safe semiconductor laser module.
  • the semiconductor laser module 100 is a highly reliable and safe semiconductor laser module.
  • the semiconductor laser module according to the modification can be configured by replacing each component of the semiconductor laser module of the above-described embodiment with a component of the following modification.
  • FIG. 4 is a schematic diagram for explaining a fixing member of a semiconductor laser module according to a modification.
  • the fixing member 117 is replaced with a fixing member 117 ⁇ / b> A with respect to the configuration of FIG. 3.
  • the first light blocking unit 113 is not shown.
  • the fixing member 117 ⁇ / b> A is selectively formed with a light reflection reduction region 117 ⁇ / b> Aa that is a region that absorbs light and is processed to be a rough surface on the inner surface. ing. Specifically, on the incident end side of the laser light L in the optical fiber 112, light reflection reduction regions 117Aa and regions where the light reflection reduction regions 117Aa are not formed alternately exist on the inner surface of the fixing member 117A. . That is, the light reflection reduction regions 117Aa are formed discretely.
  • the light reflection reduction region 117Aa is, for example, annular, but is not particularly limited.
  • the interval between the light reflection reduction regions 117Aa becomes narrower from the incident end side toward the emission end side of the laser light L in the optical fiber 112, and the light reflection reduction region 117Aa is continuously formed on the emission end side. ing. Note that the surface roughness and light absorption rate of the light reflection reduction region 117Aa may be the same as those of the light reflection reduction region 117a in the fixing member 117.
  • the amount of absorption and reflection of light L3 can be adjusted. Specifically, since the light L3 has a certain degree of beam spread, the light L3 that reaches the light reflection reduction region 117Aa within the range of the beam spread of the light L3 is absorbed more strongly, but the light reflection The light L3 that reaches the region where the reduced region 117Aa is not formed is reflected more strongly.
  • the absorption amount and reflection amount of the light L3 at the position P1 are adjusted, and the absorption amount is prevented from becoming excessively large. As a result, it can be prevented that the amount of heat generated by the absorption of the light L3 is locally increased at the position P1 and the second fixing agent 120 is damaged.
  • the light L3 reflected at the position P1 then reaches the fixing member 117A at the position P2.
  • the light reflection reduction region 117Aa is continuously formed.
  • the intensity of the light L3 is low. An increase in the amount of heat generation is prevented. As a result, it is possible to prevent the second fixing agent 120 from being damaged.
  • the period in which the light reflection reduction region 117Aa exists is appropriately designed so that the local heat generation amount is within the allowable range according to the intensity of the assumed light L3 or the intensity of the light L3 confirmed experimentally. That's fine. Further, the light reflection reduction regions 117Aa may be discretely present at the position P2, and the heat generation amount at the position P2 may be suppressed within an allowable range.
  • the light reflection reduction region 117Aa is surface-treated by selectively irradiating the inner surface of the fixing member 117A with a processing laser beam, the light reflection reduction region 117Aa has a high accuracy on the inner surface of the fixing member 117A. It is formed selectively.
  • FIG. 5 is a schematic diagram for explaining a fixing member of a semiconductor laser module according to a modification.
  • the fixing member 117 is replaced with a fixing member 117B with respect to the configuration of FIG.
  • the first light blocking unit 113 is not shown.
  • the light reflection reduction region 117Ba is formed on the inner surface of the fixing member 117B according to the modification with two steps of light absorption rate from the incident end side to the emitting end side of the laser light L in the optical fiber 112. It is formed so as to increase stepwise.
  • the fixing member 117B As in the case of the fixing member 117A shown in FIG. 4, the position P1 at which the light L3 leaks from the optical fiber 112 and first reaches the fixing member 117B, and the position P2 that reaches the fixing member 117B next.
  • the fixing member 117B can increase the reliability of the semiconductor laser module.
  • the surface roughness (for example, arithmetic average roughness) of the light reflection reduction region 117Ba is increased stepwise from the incident end side of the laser light L toward the emitting end side. What is necessary is just to form.
  • the light absorption rate of the metal or ceramic increases as the surface roughness of the light incident surface increases. Accordingly, the light absorptance of the light reflection reduction region 117Ba increases stepwise from the incident end side toward the emission end side.
  • the light reflection reduction region 117Ba may be formed such that the light absorption rate of the constituent material itself of the fixing member 117B increases stepwise from the incident end side of the laser light L toward the emitting end side.
  • a method for forming a distribution in the light absorption rate in this way a method of irradiating pulsed laser light having different intensity depending on the position is suitable. For example, when forming a region having a high light absorption rate in the light reflection reduction region 117Ba, the intensity of the pulse laser beam to be irradiated is increased, and at least one of the light absorption rate and the surface roughness is increased (increased) Good.
  • FIG. 6 is a diagram showing another example of the light absorption rate distribution.
  • the light reflection reduction region 117 ⁇ / b> Ba is formed so that the light absorption rate increases linearly and continuously from the incident end side to the emission end side of the laser light L.
  • the difference in the amount of heat generated by the position of the fixing member 117B can be reduced, so that the reliability of the semiconductor laser module can be further increased. it can.
  • the light absorption rate increases linearly and continuously, but it may be increased nonlinearly and continuously.
  • FIG. 7 is a diagram showing still another example of the distribution of the light absorption rate.
  • the light reflection reduction region 117Ba is formed so that the light absorption rate increases stepwise in three steps from the incident end side to the emitting end side of the laser light L. Even when the light reflection reduction region 117Ba has such a light absorptivity distribution, the difference in the amount of heat generated by the position of the fixing member 117B can be reduced, so that the reliability of the semiconductor laser module can be further increased. it can. In addition, you may make it a light absorption rate increase in steps in four steps or more.
  • FIG. 8 is a diagram showing still another example of the distribution of the light absorption rate.
  • the light reflection reduction regions 117Ba are formed discretely and are formed so that the interval between the light reflection reduction regions 117Ba becomes narrower from the incident end side to the emission end side of the laser light L. Has been.
  • the peak value of the light absorption rate is substantially constant. Even when the light reflection reduction region 117Ba has such a light absorptivity distribution, the difference in the amount of heat generated by the position of the fixing member 117B can be reduced, so that the reliability of the semiconductor laser module can be further increased. it can.
  • FIG. 9 is a diagram showing still another example of the distribution of the light absorption rate.
  • the light reflection reduction region 117Ba is formed periodically and formed so that the peak of the light absorption rate gradually increases from the incident end side to the emitting end side of the laser light L. Has been. Even when the light reflection reduction region 117Ba has such a light absorptivity distribution, the difference in the amount of heat generated by the position of the fixing member 117B can be reduced, so that the reliability of the semiconductor laser module can be further increased. it can.
  • the light absorptance distribution as shown in FIGS. 6 to 9 can be easily realized by a surface treatment method by irradiating pulse laser light having different intensity depending on the position.
  • FIG. 10 is a schematic diagram for explaining a housing of a semiconductor laser module according to a modification.
  • the semiconductor laser module according to the modification light reflection reduction regions 101Aa, 101Ab, and 101Ac that are processed to have a rough surface are formed around the glass capillary 116 on the inner surface of the package 101A. ing.
  • the light reflection reduction regions 101Aa, 101Ab, and 101Ac are selectively formed on the inner surface of the package 101A.
  • the glass capillary 116 is fixed to the package 101 ⁇ / b> A via a pedestal 121 instead of the fixing member 117.
  • the pedestal 121 is preferably made of a material having good thermal conductivity, and may be a metal member made of various metals.
  • the light reflection reduction region may be formed around the glass capillary 116 at a position separated from the outer peripheral surface of the glass capillary 116.
  • the surface roughness and light absorption rate of the light reflection reduction regions 101Aa, 101Ab, and 101Ac may be the same as those of the light reflection reduction region 117a in the fixing member 117.
  • the light reflection reduction regions 101Aa, 101Ab, and 101Ac may be surface-treated by selectively irradiating the inner surface of the package 101A with pulsed laser light, and the inner surface of the package 101A has different intensities depending on positions. The surface treatment may be performed by irradiating the pulse laser beam.
  • the light reflection reduction regions 101Aa, 101Ab, and 101Ac a distribution may be formed in the light absorption rate as shown in FIGS. That is, the light reflection reduction regions 101Aa, 101Ab, and 101Ac may be formed so that the light absorption rate increases continuously or stepwise from the incident end side to the emitting end side of the laser light of the optical fiber.
  • the light absorption rate may be formed periodically and from the incident end side toward the emission end side, or may be formed discretely and emitted from the incident end side. You may form so that a space
  • FIG. 11 is a schematic cross-sectional view of an optical fiber, a glass capillary, and a fixing member of a semiconductor laser module according to a modification.
  • a light blocking unit 118A may be provided.
  • the first light blocking portion 113A and the second light blocking portion 118A are made of a dielectric multilayer film or a highly reflective metal applied to the end face of the glass capillary 116. It is.
  • This dielectric multilayer preferably has a reflectance of 90% or more at the wavelength of the laser beam output from the semiconductor laser elements 104-1 to 104-6.
  • the distance (clearance) between the first light blocking portion 113A and the optical fiber 112 is preferably 5 ⁇ m or more and 500 ⁇ m or less in the major axis direction of the elliptical beam shape of the laser light.
  • 11 is provided from the end face of the glass capillary 116 to the tapered portion of the through hole, but it may not be formed in the tapered portion.
  • the second light blocking portion 118A By providing the second light blocking portion 118A, the light emitted from the end face on the emission side of the glass capillary 116 is prevented from being emitted to the outside of the semiconductor laser module 100, and the light of the fixing member 117 is emitted. It can be absorbed in the reflection reduction region 117a.
  • the fixing member 117 may be replaced with the fixing members 117A and 117B.
  • the first light blocking unit may be a disk having a hole through which the optical fiber 112 is inserted, for example.
  • the shape of the first light blocking unit is not particularly limited as long as uncoupled light can be prevented from entering the glass capillary.
  • the glass capillary which is an optical component, may have a refractive index distribution in a cross section perpendicular to the longitudinal direction of the optical fiber.
  • the glass capillary may have a higher refractive index as it gets away from the center in a cross section perpendicular to the longitudinal direction of the optical fiber. As a result, the glass capillary can efficiently release the incident light to the outside, so that the reliability of the semiconductor laser module can be further increased.
  • the glass capillary as an optical component suppresses the light emitted from the optical fiber to the glass capillary from returning to the optical fiber.
  • the glass capillary has a circular cross section perpendicular to the longitudinal direction of the optical fiber, but the central axis of the through hole through which the optical fiber is inserted may be eccentric from the central axis of the glass capillary.
  • the glass capillary may have a quadrangular cross-sectional shape perpendicular to the longitudinal direction of the optical fiber.
  • the shape of the cross section orthogonal to the longitudinal direction of the optical fiber may be a polygon, a flower, or a star.
  • the glass capillary may be a two-core capillary having two through holes, or may be provided with light scattering means that is a bubble, for example.
  • the semiconductor laser module may have various heat dissipation structures. Thereby, the semiconductor laser module can suppress the fixing member or the package from being heated to a high temperature due to light absorption and damaging the second fixing agent.
  • a heat dissipation structure including fins and air-cooling the fixing member or the package, or a heat dissipation structure including a circulation pump and cooling the fixing member or the package with water or various refrigerants can be selected. .
  • the semiconductor laser module of the present embodiment or modification is a highly reliable semiconductor laser module.
  • the present invention is suitable for application to a high-power semiconductor laser device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Semiconductor Lasers (AREA)

Abstract

半導体レーザモジュールは、レーザ光を出力する半導体レーザ素子と、コア部と、コア部の外周に形成されたクラッド部と、を備え、前記レーザ光が一端から入射され、該レーザ光を当該半導体レーザモジュールの外部に導波する光ファイバと、前記光ファイバの外周に配置され、前記レーザ光の波長において光透過性を有し、前記光ファイバを固定する光学部品と、前記光学部品と前記光ファイバとを固着する第1固定剤と、前記半導体レーザ素子と、前記光ファイバの前記レーザ光を入射する側の一端と、を内部に収容する筐体とを備え、前記光学部品の周囲に、前記レーザ光を吸収し、かつ粗面であるように処理されている光反射低減領域が形成されている。

Description

半導体レーザモジュール
 本発明は、半導体レーザモジュールに関するものである。
 従来、半導体レーザモジュールにおいて、光ファイバからレーザ光を出力する場合に、パッケージ上の所定の位置に固定された半導体レーザ素子から出射されるレーザ光を、レンズなどによって集光し、光ファイバに結合する方法が知られている(たとえば特許文献1参照)。
 このような光結合方法において、半導体レーザ素子が高出力である場合、光ファイバを固定する接着剤や光ファイバの被覆部が光吸収による発熱によって損傷し、信頼性が低下する場合がある。そのため、従来、透明なガラスキャピラリに光ファイバを挿通し、光ファイバを固定する方法が知られている(たとえば特許文献2参照)。しかしながら、半導体レーザモジュールにおいて、ガラスキャピラリを用いても接着剤や被覆部が発熱により損傷する場合がある。これに対して、本発明者は、接着剤や被覆部の損傷を防止した、信頼性の高い半導体モジュールを開示している(特許文献3参照)。
特開2004-96088号公報 特開2004-354771号公報 国際公開第2015/037725号
 半導体レーザ素子から出射されるレーザ光の高強度化に伴って、信頼性の高い半導体レーザモジュールへの要求はますます高まっている。
 本発明は、上記に鑑みてなされたものであって、信頼性の高い半導体レーザモジュールを提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明の一態様に係る半導体レーザモジュールは、レーザ光を出力する半導体レーザ素子と、コア部と、コア部の外周に形成されたクラッド部と、を備え、前記レーザ光が一端から入射され、該レーザ光を当該半導体レーザモジュールの外部に導波する光ファイバと、前記光ファイバの外周に配置され、前記レーザ光の波長において光透過性を有し、前記光ファイバを固定する光学部品と、前記光学部品と前記光ファイバとを固着する第1固定剤と、前記半導体レーザ素子と、前記光ファイバの前記レーザ光を入射する側の一端と、を内部に収容する筐体と、を備え、前記光学部品の周囲に、前記レーザ光を吸収し、かつ粗面であるように処理されている光反射低減領域が形成されていることを特徴とする。
 また、本発明の一態様に係る半導体レーザモジュールは、前記光反射低減領域は、前記光学部品の外周に配置され、該光学部品を固定する固定部材の内面に形成されていることを特徴とする。
 また、本発明の一態様に係る半導体レーザモジュールは、前記固定部材は、Cu、Ni、Al、ステンレス鋼、もしくはFeを含む金属部材、Ni、Cr、Tiを含む金属、もしくはCを含む表面メッキ層を備える部材、AlN、BeO、ZrO、SiC、もしくはAlを含むセラミック部材、またはAlN、BeO、ZrO、SiC、もしくはAlを含む表面を覆うセラミック層を備える部材、のうち少なくとも1つを有することを特徴とする。
 また、本発明の一態様に係る半導体レーザモジュールは、前記光反射低減領域は、前記筐体の内面に形成されていることを特徴とする。
 また、本発明の一態様に係る半導体レーザモジュールは、前記光反射低減領域は、前記筐体の内面または前記固定部材の内面にパルスレーザ光を照射することにより表面処理されたものであることを特徴とする。
 また、本発明の一態様に係る半導体レーザモジュールは、前記光反射低減領域は、前記筐体の内面または前記固定部材の内面に選択的に形成されていることを特徴とする。
 また、本発明の一態様に係る半導体レーザモジュールは、前記光反射低減領域は、前記筐体の内面または前記固定部材の内面にパルスレーザ光を選択的に照射することにより表面処理されたものであることを特徴とする。
 また、本発明の一態様に係る半導体レーザモジュールは、前記光反射低減領域は、前記筐体の内面または前記固定部材の内面に、位置によって異なる強度のパルスレーザ光を照射することにより表面処理されたものであることを特徴とする。
 また、本発明の一態様に係る半導体レーザモジュールは、前記光反射低減領域は、前記光ファイバの前記レーザ光の入射端側から前記光ファイバの前記レーザ光の出射端側に向かって光吸収率が連続的または段階的に高くなるように形成されていることを特徴とする。
 また、本発明の一態様に係る半導体レーザモジュールは、前記光反射低減領域は、周期的に形成されており、かつ前記光ファイバの前記レーザ光の入射端側から前記光ファイバの前記レーザ光の出射端側に向かって光吸収率が高くなるように形成されていることを特徴とする。
 また、本発明の一態様に係る半導体レーザモジュールは、前記光反射低減領域は、離散的に形成されており、かつ前記光ファイバの前記レーザ光の入射端側から前記光ファイバの前記レーザ光の出射端側に向かって間隔が狭くなるように形成されていることを特徴とする。
 また、本発明の一態様に係る半導体レーザモジュールは、前記光ファイバは、前記レーザ光の入射端側に前記光学部品から突出した突出部を備えることを特徴とする。
 また、本発明の一態様に係る半導体レーザモジュールは、前記光ファイバの前記レーザ光の入射端と前記光学部品との間に配置された第1光遮断部をさらに備え、前記第1光遮断部は、前記突出部の外周において、前記光ファイバと離間するように配置されていることを特徴とする。
 また、本発明の一態様に係る半導体レーザモジュールは、前記第1光遮断部は、Cu、Ni、Al、ステンレス鋼、またはFeを含む金属部材、Ni、Cr、またはTiを含む表面メッキ層を備える部材、または誘電体多層膜を備える部材、のうち少なくとも1つを有することを特徴とする。
 また、本発明の一態様に係る半導体レーザモジュールは、前記固定部材は、前記筐体に熱良導体を介して接続されていることを特徴とする。
 また、本発明の一態様に係る半導体レーザモジュールは、前記熱良導体は、熱伝導率が0.5W/mK以上であることを特徴とする。
 また、本発明の一態様に係る半導体レーザモジュールは、前記光ファイバの前記レーザ光の出射端側に配置され、前記レーザ光の前記光学部品からの出射を抑制する第2光遮断部を、さらに備えることを特徴とする。
 また、本発明の一態様に係る半導体レーザモジュールは、前記第2光遮断部は、Cu、Ni、Al、ステンレス鋼、またはFeを含む金属部材、または誘電体多層膜を備える部材、のうち少なくとも1つを有することを特徴とする。
 また、本発明の一態様に係る半導体レーザモジュールは、前記第2光遮断部の前記光学部品側の面は、該面に入射した光が前記光ファイバから離れる方向に反射するように傾斜、または曲率を有することを特徴とする。
 また、本発明の一態様に係る半導体レーザモジュールは、前記光学部品は、円管状のガラスキャピラリであることを特徴とする。
 本発明によれば、信頼性の高い半導体レーザモジュールを実現することができる。
図1は、本発明の実施の形態に係る半導体レーザモジュールの模式的な平面図である。 図2は、図1に示す半導体レーザモジュールの側面を表す模式的な一部切欠図である。 図3は、図1に示す半導体レーザモジュールの光ファイバ、ガラスキャピラリ、固定部材の模式的な断面図である。 図4は、変形例に係る半導体レーザモジュールの固定部材を説明する模式図である。 図5は、変形例に係る半導体レーザモジュールの固定部材を説明する模式図である。 図6は、光吸収率の分布の他の例を示す図である。 図7は、光吸収率の分布のさらに他の例を示す図である。 図8は、光吸収率の分布のさらに他の例を示す図である。 図9は、光吸収率の分布のさらに他の例を示す図である。 図10は、変形例に係る半導体レーザモジュールの筐体を説明する模式図である。 図11は、変形例に係る半導体レーザモジュールの光ファイバ、ガラスキャピラリ、固定部材の模式的な断面図である。
 以下に、図面を参照して本発明の実施の形態を説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、図面の記載において、同一または対応する要素には適宜同一の符号を付している。また、図面は模式的なものであり、各要素の寸法の関係、各要素の比率などは、現実と異なる場合があることに留意する必要がある。図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。
(実施の形態)
 まず、本発明の実施の形態に係る半導体レーザモジュールの構成について説明する。図1は、本発明の実施の形態に係る半導体レーザモジュールの模式的な平面図である。図2は、図1に示す半導体レーザモジュールの側面を表す模式的な一部切欠図である。本実施の形態に係る半導体レーザモジュール100は、筐体であるパッケージ101と、パッケージ101の内部に順に積載されたLD高さ調整板102と、サブマウント103-1~6と、6つの半導体レーザ素子104-1~6とを備える。パッケージ101は、図2に示すように蓋101aを備えるが、図1においては、パッケージ101の蓋は、図示を省略している。また、半導体レーザモジュール100は、半導体レーザ素子104-1~6に電流を注入するリードピン105を備える。そして、半導体レーザモジュール100は、半導体レーザ素子104-1~6が出力するレーザ光の光路上に順に配置された光学素子である、第1レンズ106-1~6と、第2レンズ107-1~6と、ミラー108-1~6と、第3レンズ109と、光フィルタ110と、第4レンズ111とを備える。第1レンズ106-1~6、第2レンズ107-1~6、ミラー108-1~6、第3レンズ109、光フィルタ110、第4レンズ111は、それぞれパッケージ101の内部に固定されている。さらに、半導体レーザモジュール100は、第4レンズ111と対向して配置された光ファイバ112を備える。光ファイバ112のレーザ光を入射する側の一端は、パッケージ101の内部に収容されている。
 図2に示すように、半導体レーザ素子104-1~6は、LD高さ調整板102によって、パッケージ101の内部に、段差をつけて配置されている。さらに、第1レンズ106-1~6、第2レンズ107-1~6、ミラー108-1~6は、それぞれ対応する1つの半導体レーザ素子と同じ高さに配置されている。
 また、光ファイバ112のパッケージ101への挿入部には、ルースチューブ115が設けられ、ルースチューブ115の一部と挿入部を覆うように、パッケージ101の一部にブーツ114が外嵌されている。
 また、図2に示すように、光ファイバ112は、光学部品としてのガラスキャピラリ116に挿通されている。光ファイバ112は、被覆部112aを備えるが、光ファイバ112のガラスキャピラリ116に挿通される部分は、被覆部112aが除去されている。また、光ファイバ112は、入射側の一部にガラスキャピラリ116から突出した突出部112bを備える。ガラスキャピラリ116は、その外周を固定部材117に覆われている。そして、固定部材117は、パッケージ101に固定されている。また、ガラスキャピラリ116のレーザ光出射側には、第2光遮断部118が配置されている。第2光遮断部118は、固定部材117のレーザ光出射側において、固定部材117と嵌合している。第2光遮断部118は、その一部にルースチューブ115を内挿されている。
 つぎに、半導体レーザモジュール100の光ファイバ112近傍の構成について、詳細に説明する。図3は、図1に示す半導体レーザモジュール100の光ファイバ112、ガラスキャピラリ116、固定部材117の模式的な断面図である。図3に示すように、光ファイバ112は、コア部112cと、クラッド部112dとを備える。コア部112cと、クラッド部112dとは、光ファイバ112のガラス光ファイバ部112eを構成する。
 光ファイバ112は、ガラスキャピラリ116に挿通されている。そして、光ファイバ112とガラスキャピラリ116とは、第1固定剤119で固着されている。ガラスキャピラリ116は、固定部材117に挿通されている。そして、ガラスキャピラリ116と固定部材117とは、第2固定剤120で固着されている。
 また、固定部材117の内面、すなわち、ガラスキャピラリ116と対向する面には、光反射低減領域117aが形成されている。光反射低減領域117aは、固定部材117の内面が、光を吸収し、かつ粗面であるように処理されて形成された領域である。
 また、光ファイバ112のレーザ光の入射端とガラスキャピラリ116との間には、第1光遮断部113が配置されている。
 つぎに、図1~3に示した半導体レーザモジュール100の各構成要素についてより詳細に説明する。筐体であるパッケージ101は、内部の温度上昇を抑制するため、熱伝導性のよい材料からなることが好ましく、各種金属からなる金属部材であってよい。また、パッケージ101は、図2に示すように、ガラスキャピラリ116が配置された領域において、底面が当該半導体レーザモジュール100を設置する面と離間していることが好ましい。これにより、パッケージ101をねじ等で固定する際、パッケージ101底面のそりの影響を低減することができる。
 LD高さ調整板102は、上述したように、パッケージ101内に固定されており、半導体レーザ素子104-1~6の高さを調節し、半導体レーザ素子104-1~6が出力するレーザ光の光路が互いに干渉しないようにしている。なお、LD高さ調整板102は、パッケージ101と一体として構成されていてもよい。
 サブマウント103-1~6は、LD高さ調整板102上に固定されており、載置された半導体レーザ素子104-1~6の放熱を補助する。そのため、サブマウント103-1~6は、熱伝導性のよい材料からなることが好ましく、各種金属からなる金属部材であってよい。
 半導体レーザ素子104-1~6は、出力されるレーザ光の光強度が、1W以上、さらには、10W以上の高出力な半導体レーザ素子である。本実施の形態において、半導体レーザ素子104-1~6の出力するレーザ光の光強度は、たとえば11Wである。また、半導体レーザ素子104-1~6は、たとえば、900nm~1000nmの波長のレーザ光を出力する。なお、半導体レーザ素子104-1~6は、実施の形態に係る半導体レーザモジュール100のように複数であってもよいが、1つであってもよく、その数は特に限定されない。
 リードピン105は、不図示のボンディングワイヤを介して半導体レーザ素子104-1~6に電力を供給する。供給する電力は、一定の電圧であってよいが、変調電圧であってもよい。
 第1レンズ106-1~6は、たとえば焦点距離が0.3mmのシリンドリカルレンズである。第1レンズ106-1~6は、対応する1つの半導体レーザ素子の出力光を鉛直方向に略平行光とする位置に配置される。
 第2レンズ107-1~6は、たとえば焦点距離が5mmのシリンドリカルレンズである。第2レンズ107-1~6は、半導体レーザ素子104-1~6の出力光を水平方向に略平行光とする位置に配置される。
 ミラー108-1~6は、各種の金属膜、または誘電体膜を備えるミラーであってよく、半導体レーザ素子104-1~6の出力するレーザ光の波長において、反射率が高いほど好ましい。また、ミラー108-1~6は、対応する1つの半導体レーザ素子のレーザ光を光ファイバ112に好適に結合するように、反射方向を微調整することができる。
 第3レンズ109と第4レンズ111とは、たとえばそれぞれ焦点距離が12mm、5mmの互いに曲率が直交したシリンドリカルレンズであり、半導体レーザ素子104-1~6が出力したレーザ光を集光し、光ファイバ112に好適に結合する。第3レンズ109と第4レンズ111とは、たとえば半導体レーザ素子104-1~6が出力したレーザ光の光ファイバ112への結合効率が85%以上となるように、光ファイバ112に対する位置が調整されている。
 光フィルタ110は、たとえば波長1060nm~1080nmの光を反射し、900nm~1000nmの光を透過するローパスフィルタである。その結果、光フィルタ110は、半導体レーザ素子104-1~6が出力したレーザ光を透過するとともに、波長1060nm~1080nmの光が半導体レーザ素子104-1~6に外部から照射されることを防止する。また、光フィルタ110は、光フィルタ110でわずかに反射された半導体レーザ素子104-1~6の出力レーザ光が半導体レーザ素子104-1~6に戻らないように、レーザ光の光軸に対して角度をつけて配置されている。
 光ファイバ112は、たとえばコア径が105μm、クラッド径が125μmのマルチモード光ファイバであってよいが、シングルモード光ファイバであってもよい。光ファイバ112のNAは、たとえば0.15~0.22であってよい。
 第1光遮断部113は、切欠き部を備えた矩形の板状部材であり、切欠き部に光ファイバ112の突出部112bを挿通され、光ファイバ112の先端は、第1光遮断部113から突き出ている。第1光遮断部113は、光ファイバ112の突出部112bの外周に配置されており、かつ第1光遮断部113は、光ファイバ112と離間している。
 なお、このように第1光遮断部113を光ファイバ112と離間して設けることで、第1光遮断部113から光ファイバ112に熱が伝わることを抑制でき、後述する第1固定剤119の温度上昇を抑制できる。
 また、光ファイバ112の先端が、第1光遮断部113からレーザ光の入力側に突き出ているように第1光遮断部113を設けることで、第1光遮断部113と光ファイバ112との間から非結合光が漏れるのを抑制でき、光ファイバ112に結合されない非結合光をより確実に遮断することができる。
 ブーツ114は、光ファイバ112を挿通されており、光ファイバ112の曲げによる損傷を防止する。ブーツ114は、金属製のブーツであってよいが、材料は特に限定されず、ゴムや各種の樹脂、プラスチックなどであってもよい。
 ルースチューブ115は、光ファイバ112を挿通されており、光ファイバ112の曲げによる損傷を防止する。さらに、ルースチューブ115は、光ファイバ112と固着され、その結果、光ファイバ112に対して長手方向に引っ張る力が加えられた場合に、光ファイバ112の位置がずれることを防止する構成であってもよい。
 ガラスキャピラリ116は、貫通孔を備えた円管状のガラスキャピラリである。そして、ガラスキャピラリ116は、貫通孔には光ファイバ112が挿通されており、ガラスキャピラリ116の貫通孔の内壁と、光ファイバ112のクラッド部112dとが、第1固定剤119で固着される。ガラスキャピラリ116は、半導体レーザ素子104-1~6が出力したレーザ光の波長において、光透過性を有し、たとえばこの波長において、透過率が90%以上の材料からなることが好ましい。ガラスキャピラリ116の屈折率は、光ファイバ112のクラッド部112dの屈折率と等しい、またはそれよりも高いことが好ましく、たとえばガラスキャピラリ116の屈折率は、光ファイバ112のクラッド部112dに対する比屈折率差が0.1%以上10%以下である。なお、ガラスキャピラリ116は、光出射側に光ファイバ112を挿通しやすいよう設けられたテーパ部を備えていてもよい。
 固定部材117は、ガラスキャピラリ116の外周に配置された、たとえば管状の部材であり、ガラスキャピラリ116と第2固定剤120で固着される。そして、固定部材117の内面の略全面には光反射低減領域117aが形成されている。光反射低減領域117aは、半導体レーザ素子104-1~6が出力したレーザ光の波長において、光吸収性を有し、たとえばこの波長において、光吸収率が30%以上、好ましくは70%以上である。その結果、光反射低減領域117aは、ガラスキャピラリ116を透過したレーザ光を吸収する。また、光反射低減領域117aは粗面であるために、平滑面である場合と比較して光吸収率が高くなり、レーザ光の反射が低減される。固定部材117は、光反射低減領域117aが吸収したレーザ光のエネルギーを熱に変換し、放熱する。固定部材117は、放熱のために、熱伝導性のよい材料からなることが好ましく、たとえばCu、Ni、Al、ステンレス鋼、またはFeを含む金属部材、Ni、Cr、Tiを含む金属、もしくはCを含む表面メッキ層を備える部材、AlN、BeO、ZrO、SiC、もしくはAlを含むセラミック部材、またはAlN、BeO、ZrO、SiC、もしくはAlを含む表面を覆うセラミック層を備える部材からなることが好ましい。また、固定部材117は、放熱のために、パッケージ101に不図示の熱良導体を介して接続されていることが好ましい。熱良導体は、熱伝導率が0.5W/mK以上の材料からなることが好ましく、たとえばはんだや熱伝導性接着剤からなる。
 第2光遮断部118は、固定部材117に接続されており、さらに光ファイバ112を挿通される。その結果、第2光遮断部118は、ガラスキャピラリ116を透過し、ガラスキャピラリ116の出射側の端面から放出された光の半導体レーザモジュール100の外部への出射を防止する。このため、第2光遮断部118は、照射された光により、損傷しないことが好ましく、たとえばCu、Ni、Al、ステンレス鋼、またはFeを含む金属部材、Ni、Cr、Tiなどを含む表面メッキ層を備える部材、または誘電体多層膜を備える部材を有することが好ましい。また、第2光遮断部118のガラスキャピラリ116側の面は、その面に入射した光が光ファイバ112から離れる方向に反射するように傾斜、または曲率を有することが好ましい。
 なお、第2光遮断部118と固定部材117とガラスキャピラリ116とに囲まれた空間には、第1固定剤119、第2固定剤120、その他のUV硬化樹脂、シリコーン等を充填してもよい。
 第1固定剤119と第2固定剤120とは、同一の材料であってもよいが、異なる材料であってもよく、たとえばエポキシ樹脂、ウレタン系の樹脂などのUV硬化樹脂からなる。第1固定剤119の屈折率は、25℃において光ファイバ112のクラッド部112dの屈折率と等しい、またはそれよりも高いことが好ましく、半導体レーザモジュール100の使用温度領域(たとえば、15℃~100℃)において、光ファイバ112のクラッド部112dの屈折率と等しい、またはそれよりも高いことがさらに好ましい。第2固定剤120の屈折率は、25℃においてガラスキャピラリ116の屈折率と等しい、またはそれよりも高いことが好ましく、半導体レーザモジュール100の使用温度領域(たとえば、15℃~100℃)において、ガラスキャピラリ116の屈折率と等しい、またはそれよりも高いことがさらに好ましい。また、第1固定剤119および第2固定剤120の屈折率は、ガラスキャピラリ116の屈折率と略等しく、かつ光ファイバ112のクラッド部112dの屈折率よりも高い構成であってもよい。第1固定剤119および第2固定剤120の屈折率は、たとえばガラスキャピラリ116に対する比屈折率差が0%以上10%以下である。また、第1固定剤119と第2固定剤120とは、光ファイバ112の長手方向に直交する面における厚さが1μm以上800μm以下とされていることが好ましい。なお、UV硬化樹脂は、例えば、フッ素を含有させることで低屈折率化でき、イオウを含有させることで高屈折率化できることが知られており、屈折率を高くする材料や、低くする材料の含有量を調整することで、屈折率を調整することができる。
 つぎに、本実施の形態に係る半導体レーザモジュール100の動作を説明する。段差をつけて配置された各半導体レーザ素子104-1~6は、リードピン105から電力を供給されてレーザ光を出力する。出力された各レーザ光は、それぞれ第1レンズ106-1~6および第2レンズ107-1~6によって、略平行光とされる。つぎに、各レーザ光は、対応する高さに配置された1つのミラー108-1~6によって、光ファイバ112の方向に反射される。そして、各レーザ光は、第3レンズ109および第4レンズ111によって集光されて光ファイバ112に結合される。光ファイバ112に結合したレーザ光は、光ファイバ112によって、半導体レーザモジュール100の外部に導波されて出力される。半導体レーザモジュール100は、半導体レーザ素子104-1~6およびミラー108-1~6の段差によって、レーザ光に不要な損失が生じることを防いでいる。なお、本実施の形態において、各半導体レーザ素子104-1~6の出力光の光強度が、それぞれ11Wであり、結合効率が85%であるとすると、半導体レーザモジュール100の出力光の光強度は、56Wとなる。
 ここで、図3を用いて、第3レンズ109および第4レンズ111によって集光されたレーザ光の伝搬の様子について、詳細に説明する。なお、図3において、厳密にはレーザ光は、各部材の屈折率差に応じて界面で屈折するが、説明を簡単にするため、屈折の図示は省略してある。第3レンズ109および第4レンズ111によって集光されたレーザ光Lは、光ファイバ112に結合されない非結合光L1と、光ファイバ112に結合されて光ファイバ112内を伝搬する光L2となる。光ファイバ112に結合された光L2の大部分は、光ファイバ112のコア部112cを伝搬し半導体レーザモジュール100の外部に導波されて出力されるが、一部は、クラッド部112dに結合し、クラッド部112dを伝搬する光L3となる。また、コア部112cを伝搬する光L2の一部がコア部112cから漏れ、クラッド部112dを伝搬する光L3となる場合もある。
 まず、非結合光L1は、第1光遮断部113によって、ガラスキャピラリ116への入射が抑制されており、その一部は、第1光遮断部113に吸収される。この光吸収によって発生した熱は、第1光遮断部113から、パッケージ101へと放熱される。なお、第1光遮断部113は、確実に非結合光L1のガラスキャピラリ116への入射を抑制するため、光ファイバ112の突出部112bに配置されている。この目的のために、第1光遮断部113は、レーザ光の一部が照射されても、損傷しないことが好ましく、たとえばCu、Ni、Al、ステンレス鋼、またはFeを含む金属部材、Ni、Cr、Tiなどを含む表面メッキ層を備える部材、または誘電体多層膜を備える部材を備えることが好ましい。なお、第1光遮断部113は、確実に光ファイバ112と離間し、かつ十分に光ファイバ112に結合しない光を遮断するため、光ファイバ112の長手方向に直交する面において、第1光遮断部113と光ファイバ112との距離(クリアランス)が設定されていることが好ましい。通常、レーザ光のビーム形状は楕円形状となるため、該クリアランスは、楕円の長軸方向において、5μm以上500μm以下とすることが好ましい。
 ここで、上述したように、クラッド部112d内には、クラッド部112d内を伝搬する光L3が生じる。
 光L3は、突出部112bにおいて、クラッド部112dと外部の空気との屈折率差によって光ファイバ112のクラッド部112d内に閉じ込められ、光ファイバ112のクラッド部112d内を伝搬する。
 つぎに、光L3は、クラッド部112dと第1固定剤119との界面に達する。ここで、光L3は、クラッド部112dの屈折率より第1固定剤119の屈折率が高いと、この界面を透過しやすい。さらに光L3は、クラッド部112dと第1固定剤119との屈折率が等しいときにこの界面を最も透過しやすい。この界面を透過した(すなわち光ファイバ112から漏れた)光L3は、第1固定剤119内を伝搬するが、第1固定剤119は、厚さが800μm以下と十分薄くされており、光吸収が十分小さいため、損傷が抑制されている。なお、第1固定剤119の厚さは、さらに好ましくは5μm以下である。
 続いて、光L3は、第1固定剤119とガラスキャピラリ116との界面に達する。この界面でも同様に、光L3は、第1固定剤119の屈折率よりガラスキャピラリ116の屈折率が高いと、この界面を透過しやすい。さらに光L3は、第1固定剤119とガラスキャピラリ116との屈折率が等しいときにこの界面を最も透過しやすい。この界面を透過した光L3は、ガラスキャピラリ116内を伝搬するが、光L3は、ガラスキャピラリ116における透過率が、たとえば90%以上と十分に高いため、ガラスキャピラリ116を透過する。
 つぎに、光L3は、ガラスキャピラリ116と第2固定剤120との界面に達する。この界面でも同様に、光L3は、ガラスキャピラリ116の屈折率より第2固定剤120の屈折率が高いとこの界面を透過しやすい。さらに光L3は、ガラスキャピラリ116と第2固定剤120との屈折率が等しいときにこの界面を最も透過しやすい。この界面を透過した光L3は、第2固定剤120内を伝搬するが、第2固定剤120は、厚さが800μm以下と十分薄くされており、光吸収が十分小さいため、損傷が防止されている。なお、第2固定剤120の厚さは、さらに好ましくは5μm以下である。
 続いて、光L3は、固定部材117に達する。そして、光L3は、固定部材117において、光反射低減領域117aに吸収される。この光吸収によって発生した熱は、固定部材117から、パッケージ101へと放熱される。
 ここで、光ファイバ112のクラッド部112dから漏れる光L3の進行方向の、光ファイバ112の中心軸との成す角を、図3に示すようにθとすると、角度θは所定角度θaよりも大きい所定の範囲内にある。ガラスキャピラリ116は、光ファイバ112から角度θで出力された光が固定部材117に到達するよう十分な長さとされていることが好ましい。さらに、ガラスキャピラリ116は、固定部材117で吸収されずに反射された光が再度固定部材117に到達するよう十分な長さとされていることがより好ましい。このような長さとして、ガラスキャピラリ116は、円管の長手方向の長さが3mm以上とされている。
 なお、ガラスキャピラリ116は、第1固定剤119を十分薄くするため、円管の内径が0.13mm以下であることが好ましい。また、ガラスキャピラリ116は、固定部材117の光反射低減領域117aの光吸収による熱が第1固定剤119や光ファイバ112の被覆部112aに損傷を与えないよう一定以上の厚さであることが好ましく、たとえば円管の外径が1.8mm以上とされていることが好ましい。
 光反射低減領域117aについてより具体的に説明する。光反射低減領域117aの表面粗さについては、たとえばJIS B 0601:2000で定義されている算術平均粗さRaが0.05μm≦Ra≦10μmの範囲であることが好ましい。0.05μm≦Raであれば光吸収率向上および光反射量低減の効果が好適に発揮される。また、算術平均粗さRaが大きすぎると、粗面化された領域内に局所的に平坦面が存在する場合があり、その平坦面で光が反射されるおそれがある。しかし、Ra≦10μmであればそのような平坦面が存在する可能性が十分に低くなる。
 光反射低減領域117aは、固定部材117の内面に、処理用レーザ光を照射して表面処理することにより形成することが好ましい。処理用レーザ光により表面にエネルギーが与えられると、酸化等の化学反応が生じて黒みを帯びるため、光の吸収係数が高まり、かつ粗面化される。処理用レーザ光の波長および強度は、表面処理すべき材料に応じて、所望の吸収係数および表面粗さの状態となるように設定すればよい。
 また、処理用レーザ光を照射して表面処理することにより光反射低減領域117aを形成する場合、光反射低減領域117aの形成領域を任意かつ高精度に設定することができるので、所望の領域に光反射低減領域117aを形成する上で好適である。一方、たとえば迷光の低減のために固定部材の内面にコーティングを施す場合、コーティング剤がコーティング不要の領域にまではみ出してしまう場合がある。このため、たとえばコーティング剤が固定部材の外部にまではみ出てしまい、固定部材をパッケージに固定する際に悪影響を及ぼす場合がある。
 また、光反射低減領域117aは固定部材117の構成材料そのものを処理したものなので、光反射低減のための追加の部材は不要であり、部品コストの向上を防止することができる。さらには、コーティング剤のように有機樹脂を原料とするものではないので、光L3の強度が高い場合でも、照射された場合に焼損や強い酸化を起こして破損するということもない。
 また、処理用レーザ光としてパルスレーザ光を用いると、パルスレーザ光の照射によって照射面に発生する熱が拡散しやすくなるので、照射面が加熱されて過度の処理や破損が発生することを防止することができる。パルスレーザ光の波長やピークパワーやデューティー比を調整することで、処理時の照射面の過度の温度上昇を抑制し、好適な処理を実現することができる。また、本発明者らの検討によれば、処理用レーザ光としてパルスレーザ光を用いると、照射面にレーザ光の波長を反映した周期(0.5μm~1.5μm程度)の凹凸ができ、粗面化の観点から好適である。
 以上説明したように、本実施の形態に係る半導体レーザモジュール100は、以下のような効果を奏する。すなわち、第1光遮断部113により非結合光がガラスキャピラリ116に入射することが抑制されている。その結果、半導体レーザモジュール100は、非結合光により第1固定剤119、第2固定剤120、および被覆部112aなどが損傷することが抑制されている。
 また、半導体レーザモジュール100は、クラッド部112d~第2固定剤120の各界面において、クラッド部112dを伝搬する光が光ファイバ112から漏れやすいように各部材の屈折率が適切に選択されている。このため、当該漏れた光が各界面で反射することが抑制されているので、当該漏れた光が固定部材117に効率的に吸収される。
 また、半導体レーザモジュール100は、光ファイバ112と固定部材117との間にガラスキャピラリ116を有しているため、光ファイバ112からの漏れ光が固定部材117に到達する前に、漏れ光の密度を低下させることができる。これにより固定部材117の温度上昇を抑制できる。
 さらに、半導体レーザモジュール100は、光反射低減領域117aが形成された固定部材117を備えるため、固定部材117における反射光が第1固定剤119、第2固定剤120、および被覆部112aを損傷させることが抑制されている。
 また、半導体レーザモジュール100は、第1固定剤119および第2固定剤120が十分薄いため、第1固定剤119および第2固定剤120の光吸収による損傷が抑制されている。本実施の形態に係る半導体レーザモジュール100は、以上のような効果を奏し、信頼性の高い半導体レーザモジュールである。
 さらに、半導体レーザモジュール100は、第2光遮断部118が、入射した光を光ファイバ112から離れる方向に反射するように傾斜、または曲率を有するため、第2光遮断部118に入射された光が反射し、ガラスキャピラリ116のテーパ部の第1固定剤119を損傷させることが防止されているので、信頼性の高い半導体レーザモジュールである。なお、第2光遮断部118は、ガラスキャピラリ116を透過した光が半導体レーザモジュール100の外部に漏れると安全性上好ましくないため、ガラスキャピラリ116を透過した光の半導体レーザモジュール100の外部への出射を防止している。このため、半導体レーザモジュール100は、安全性の高い半導体レーザモジュールである。
 以上説明したように、本実施の形態に係る半導体レーザモジュール100は、信頼性かつ安全性の高い半導体レーザモジュールである。
(変形例)
 つぎに、上記実施の形態における半導体レーザモジュールの変形例について説明する。変形例に係る半導体レーザモジュールは、上記実施の形態の半導体レーザモジュールの各構成要素を、以下のような変形例の構成要素と置換することにより構成することができる。
 図4は、変形例に係る半導体レーザモジュールの固定部材を説明する模式図である。図4では、図3の構成に対して、固定部材117が固定部材117Aに置き換えられている。なお、図4では第1光遮断部113は図示を省略している。
 図4に示すように、変形例に係る固定部材117Aは、その内面に、光を吸収し、かつ粗面であるように処理された領域である光反射低減領域117Aaが、選択的に形成されている。具体的には、光ファイバ112におけるレーザ光Lの入射端側では、固定部材117Aの内面に、光反射低減領域117Aaと、光反射低減領域117Aaが形成されていない領域とが、交互に存在する。すなわち光反射低減領域117Aaは離散的に形成されている。光反射低減領域117Aaはたとえば環状であるが、特に限定はされない。そして、光反射低減領域117Aa間の間隔は、入射端側から、光ファイバ112におけるレーザ光Lの出射端側に向かって狭くなり、さらに出射端側では光反射低減領域117Aaが連続的に形成されている。なお、光反射低減領域117Aaの表面粗さや光吸収率は、固定部材117における光反射低減領域117aと同様であってよい。
 光L3が光ファイバ112から漏れて最初に固定部材117Aに到達する位置P1において、光反射低減領域117Aaと、光反射低減領域117Aaが形成されていない領域とが交互に存在することで、位置P1における光L3の吸収量と反射量とを調整することができる。具体的には、光L3はある程度のビームの広がりを有しているので、光L3のビームの広がりの範囲内で光反射低減領域117Aaに到達した光L3はより強く吸収されるが、光反射低減領域117Aaが形成されていない領域に到達した光L3はより強く反射される。これにより、位置P1における光L3の吸収量と反射量が調整され、吸収量が過度に大きくなることが防止される。その結果、光L3の吸収による発熱量が位置P1において局所的に大きくなって第2固定剤120が損傷するということを防止できる。
 位置P1において反射された光L3は、つぎに位置P2において固定部材117Aに到達する。位置P2では、光反射低減領域117Aaが連続的に形成されているが、位置P1において光L3の一部が吸収されるために光L3の強度は低くなっているので、位置P2において局所的に発熱量が大きくなることが防止される。その結果、第2固定剤120が損傷することを防止できる。
 以上のように、光L3が最初に固定部材117Aに到達する位置P1では、光反射低減領域117Aaの離散的形成によって、過度の光吸収は抑制される。一方、光L3の強度が低くされた位置P2では、光反射低減領域117Aaの連続的形成によって、光吸収が十分に行われる。これにより、位置P1と位置P2とで、発熱量の差が小さく、好ましくは同程度となり、固定部材117Aの発熱量が局所的に大きくなることが防止される。その結果、固定部材117Aは、第2固定剤120の損傷を防止できるので、半導体レーザモジュールの信頼性をより高くすることができる。
 なお、光反射低減領域117Aaの存在する周期は、想定される光L3の強度または実験的に確認した光L3の強度に応じて、局所的な発熱量が許容範囲内になるように適宜設計すればよい。また、位置P2においても光反射低減領域117Aaが離散的に存在するようにして、位置P2における発熱量を許容範囲内に抑制するようにしてもよい。
 また、光反射低減領域117Aaが、固定部材117Aの内面に処理用レーザ光を選択的に照射することにより表面処理したものであれば、光反射低減領域117Aaは、固定部材117Aの内面に高精度に選択的に形成されたものとなる。
 図5は、変形例に係る半導体レーザモジュールの固定部材を説明する模式図である。図5では、図3の構成に対して、固定部材117が固定部材117Bに置き換えられている。なお、図5では第1光遮断部113は図示を省略している。図5に示すように、変形例に係る固定部材117Bの内面には、光反射低減領域117Baが、光ファイバ112におけるレーザ光Lの入射端側から出射端側に向かって光吸収率が2段階で段階的に高くなるように形成されている。
 固定部材117Bにおいても、図4に示す固定部材117Aの場合と同様に、光L3が光ファイバ112から漏れて最初に固定部材117Bに到達する位置P1と、つぎに固定部材117Bに到達する位置P2とで、発熱量の差が小さく、好ましくは同程度となるようにできるので、局所的に発熱量が大きくなることが防止される。その結果、固定部材117Bは、半導体レーザモジュールの信頼性をより高くすることができる。
 このように光吸収率に分布を形成するには、光反射低減領域117Baを、表面粗さ(たとえば算術平均粗さ)がレーザ光Lの入射端側から出射端側に向かって段階的に大きくなるように形成すればよい。ここで、金属やセラミックスは、光が入射する面の表面粗さが大きいほど光吸収率が高くなる。したがって、光反射低減領域117Baは、入射端側から出射端側に向かって光吸収率が段階的に高くなる。または、光反射低減領域117Baを、固定部材117Bの構成材料そのものの光吸収率がレーザ光Lの入射端側から出射端側に向かって段階的に高くなるように形成してもよいし、構成材料そのものの光吸収率と表面粗さとの両方を段階的に高く(大きく)するように形成してもよい。なお、このように光吸収率に分布を形成する方法としては、位置によって異なる強度のパルスレーザ光を照射する方法が好適である。たとえば、光反射低減領域117Baのうち光吸収率が高い領域を形成する場合には、照射するパルスレーザ光の強度を高くし、光吸収率と表面粗さとの少なくとも一方を高く(大きく)すればよい。
 図6は、光吸収率の分布の他の例を示す図である。図6に示す例では、光反射低減領域117Baは、レーザ光Lの入射端側から出射端側に向かって光吸収率が線形的かつ連続的に高くなるように形成されている。光反射低減領域117Baがこのような光吸収率の分布を有する場合にも、固定部材117Bの位置による発熱量の差が小さくなるようにできるので、半導体レーザモジュールの信頼性をより高くすることができる。なお、図6では、光吸収率が線形的かつ連続的に高くなっているが、非線形的かつ連続的に高くなるようにしてもよい。
 図7は、光吸収率の分布のさらに他の例を示す図である。図7に示す例では、光反射低減領域117Baは、レーザ光Lの入射端側から出射端側に向かって光吸収率が3段階で段階的に高くなるように形成されている。光反射低減領域117Baがこのような光吸収率の分布を有する場合にも、固定部材117Bの位置による発熱量の差が小さくなるようにできるので、半導体レーザモジュールの信頼性をより高くすることができる。なお、光吸収率は、4段階以上で段階的に高くなるようにしてもよい。
 図8は、光吸収率の分布のさらに他の例を示す図である。図8に示す例では、光反射低減領域117Baは、離散的に形成されており、かつレーザ光Lの入射端側から出射端側に向かって光反射低減領域117Baの間隔が狭くなるように形成されている。なお、光吸収率のピーク値は略一定である。光反射低減領域117Baがこのような光吸収率の分布を有する場合にも、固定部材117Bの位置による発熱量の差が小さくなるようにできるので、半導体レーザモジュールの信頼性をより高くすることができる。
 図9は、光吸収率の分布のさらに他の例を示す図である。図9に示す例では、光反射低減領域117Baは、周期的に形成されており、かつレーザ光Lの入射端側から出射端側に向かって光吸収率のピークが徐々に高くなるように形成されている。光反射低減領域117Baがこのような光吸収率の分布を有する場合にも、固定部材117Bの位置による発熱量の差が小さくなるようにできるので、半導体レーザモジュールの信頼性をより高くすることができる。
 なお、図6~図9のような光吸収率の分布は、位置によって異なる強度のパルスレーザ光を照射して表面処理する方法によって容易に実現することができる。
 図10は、変形例に係る半導体レーザモジュールの筐体を説明する模式図である。変形例に係る半導体レーザモジュールでは、パッケージ101Aの内面において、ガラスキャピラリ116の周囲に、光を吸収し、かつ粗面であるように処理されている光反射低減領域101Aa、101Ab、101Acが形成されている。光反射低減領域101Aa、101Ab、101Acはパッケージ101Aの内面に選択的に形成されている。ガラスキャピラリ116は、固定部材117に換えて台座121を介してパッケージ101Aに固定されている。台座121は熱伝導性のよい材料からなることが好ましく、各種金属からなる金属部材であってよい。
 ガラス光ファイバ部112eのクラッド部112dを伝搬し、ガラス光ファイバ部112eと第1固定剤119との界面に達した光(図3の光L3に相当)は、第1固定剤119、ガラスキャピラリ116を順次透過し、光反射低減領域101Aa、101Ab、101Acに到達し、そこで吸収される。この光吸収により発生した熱は、パッケージ101Aを介して放熱される。このように、光反射低減領域は、ガラスキャピラリ116の外周面から離間した位置において、ガラスキャピラリ116の周囲に形成されていてもよい。
 なお、光反射低減領域101Aa、101Ab、101Acの表面粗さや光吸収率は、固定部材117における光反射低減領域117aと同様であってよい。また、光反射低減領域101Aa、101Ab、101Acは、パッケージ101Aの内面にパルスレーザ光を選択的に照射することにより表面処理されたものであってもよく、パッケージ101Aの内面に、位置によって異なる強度のパルスレーザ光を照射することにより表面処理されたものであってもよい。
 また、光反射低減領域101Aa、101Ab、101Acには、図5~図9に示すように光吸収率に分布が形成されていてもよい。すなわち、光反射低減領域101Aa、101Ab、101Acは、光ファイバのレーザ光の入射端側から出射端側に向かって光吸収率が連続的または段階的に高くなるように形成されていてもよいし、周期的に形成されており、かつ入射端側から出射端側に向かって光吸収率が高くなるように形成されていてもよいし、離散的に形成されており、かつ入射端側から出射端側に向かって間隔が狭くなるように形成されていてもよい。
 図11は、変形例に係る半導体レーザモジュールの光ファイバ、ガラスキャピラリ、固定部材の模式的な断面図である。第1光遮断部、第2光遮断部としては、図2、3に示す第1光遮断部113、第2光遮断部118に代えて、図13に示す第1光遮断部113A、第2光遮断部118Aを設けてもよい。この第1光遮断部113A、第2光遮断部118Aは、ガラスキャピラリ116の端面に施された誘電体多層膜または反射率の高い金属などで構成される。である。この誘電体多層は、半導体レーザ素子104-1~6が出力するレーザ光の波長における反射率が90%以上であることが好ましい。なお、第1光遮断部113Aと光ファイバ112との距離(クリアランス)は、レーザ光の楕円のビーム形状の長軸方向において、5μm以上500μm以下とすることが好ましい。また、図11に示す第2光遮断部118Aは、ガラスキャピラリ116の端面から貫通孔のテーパ部にかけて施されているが、テーパ部には形成しなくてもよい。
 第2光遮断部118Aを設けることで、ガラスキャピラリ116を透過し、ガラスキャピラリ116の出射側の端面から放出された光の半導体レーザモジュール100の外部への出射を抑制し、固定部材117の光反射低減領域117aに吸収させることができる。なお、図11において、固定部材117を固定部材117A、117Bなどに置き換えてもよい。
 なお、第1光遮断部は、たとえば光ファイバ112を挿通する孔を備えた円盤であってよい。第1光遮断部は、非結合光がガラスキャピラリへ入射することを抑制することができれば、特に形状は限定されない。
 光学部品であるガラスキャピラリは、光ファイバの長手方向に直交する断面において、屈折率分布を有していてもよい。ガラスキャピラリは、光ファイバの長手方向に直交する断面において、中心から離れるほど屈折率が高くされていてもよい。これにより、このガラスキャピラリは、入射された光を効率的に外部に逃がすことができるので、半導体レーザモジュールの信頼性をより高くすることができる。
 さらに、光学部品であるガラスキャピラリは、光ファイバからガラスキャピラリに放出された光が、光ファイバに戻ることを抑制することが好ましい。たとえば、ガラスキャピラリは、光ファイバの長手方向に直交する断面の形状が、円形であるが、光ファイバを挿通される貫通孔の中心軸がガラスキャピラリの中心軸から偏心していてもよい。また、ガラスキャピラリは、光ファイバの長手方向に直交する断面の形状が、四角形であってよい。同様に、ガラスキャピラリは、光ファイバの長手方向に直交する断面の形状が、多角形、花形、または星形などであってもよい。
 また、ガラスキャピラリは、2つの貫通孔を備える2芯キャピラリであってよいし、たとえば気泡である光散乱手段を備えていてよい。
 半導体レーザモジュールは、各種の放熱構造を備えていてもよい。これにより、半導体レーザモジュールは、固定部材またはパッケージが光吸収により高温となり、第2固定剤を損傷させることを抑制することができる。なお、放熱構造は、フィンを備え、固定部材またはパッケージなどを空冷する放熱構造や、循環ポンプを備え、固定部材またはパッケージなどを水、または各種冷媒で冷却する放熱構造などを選択することができる。
 以上、説明したように、本実施の形態または変形例の半導体レーザモジュールは、信頼性の高い半導体レーザモジュールである。
 なお、上記実施の形態により本発明が限定されるものではない。上述した各構成要素を適宜組み合わせて構成したものも本発明に含まれる。また、さらなる効果や変形例は、当業者によって容易に導き出すことができる。よって、本発明のより広範な態様は、上記の実施の形態に限定されるものではなく、様々な変更が可能である。
 本発明は、高出力の半導体レーザ素子に適用して好適なものである。
 100 半導体レーザモジュール
 101、101A パッケージ
 101a 蓋
 101Aa、101Ab、101Ac、117a、117Aa、117Ba 光反射低減領域
 102 LD高さ調整板
 103-1~6 サブマウント
 104-1~6 半導体レーザ素子
 105 リードピン
 106-1~6 第1レンズ
 107-1~6 第2レンズ
 108-1~6 ミラー
 109 第3レンズ
 110 光フィルタ
 111 第4レンズ
 112 光ファイバ
 112a 被覆部
 112b 突出部
 112c コア部
 112d クラッド部
 112e ガラス光ファイバ部
 113、113A 第1光遮断部
 114 ブーツ
 115 ルースチューブ
 116 ガラスキャピラリ
 117、117A、117B 固定部材
 118、118A 第2光遮断部
 119 第1固定剤
 120 第2固定剤
 121 台座
 L レーザ光
 L1 非結合光
 L2、L3 光

Claims (20)

  1.  レーザ光を出力する半導体レーザ素子と、
     コア部と、コア部の外周に形成されたクラッド部と、を備え、前記レーザ光が一端から入射され、該レーザ光を当該半導体レーザモジュールの外部に導波する光ファイバと、
     前記光ファイバの外周に配置され、前記レーザ光の波長において光透過性を有し、前記光ファイバを固定する光学部品と、
     前記光学部品と前記光ファイバとを固着する第1固定剤と、
     前記半導体レーザ素子と、前記光ファイバの前記レーザ光を入射する側の一端と、を内部に収容する筐体と、
     を備え、前記光学部品の周囲に、前記レーザ光を吸収し、かつ粗面であるように処理されている光反射低減領域が形成されていることを特徴とする半導体レーザモジュール。
  2.  前記光反射低減領域は、前記光学部品の外周に配置され、該光学部品を固定する固定部材の内面に形成されていることを特徴とする請求項1に記載の半導体レーザモジュール。
  3.  前記固定部材は、
     Cu、Ni、Al、ステンレス鋼、もしくはFeを含む金属部材、
     Ni、Cr、Tiを含む金属、もしくはCを含む表面メッキ層を備える部材、
     AlN、BeO、ZrO、SiC、もしくはAlを含むセラミック部材、
     またはAlN、BeO、ZrO、SiC、もしくはAlを含む表面を覆うセラミック層を備える部材、のうち少なくとも1つを有することを特徴とする請求項2に記載の半導体レーザモジュール。
  4.  前記光反射低減領域は、前記筐体の内面に形成されていることを特徴とする請求項1に記載の半導体レーザモジュール。
  5.  前記光反射低減領域は、前記筐体の内面または前記固定部材の内面にパルスレーザ光を照射することにより表面処理されたものであることを特徴とする請求項2~4のいずれか一つに記載の半導体レーザモジュール。
  6.  前記光反射低減領域は、前記筐体の内面または前記固定部材の内面に選択的に形成されていることを特徴とする請求項2~4のいずれか一つに記載の半導体レーザモジュール。
  7.  前記光反射低減領域は、前記筐体の内面または前記固定部材の内面にパルスレーザ光を選択的に照射することにより表面処理されたものであることを特徴とする請求項6に記載の半導体レーザモジュール。
  8.  前記光反射低減領域は、前記筐体の内面または前記固定部材の内面に、位置によって異なる強度のパルスレーザ光を照射することにより表面処理されたものであることを特徴とする請求項2~4のいずれか一つに記載の半導体レーザモジュール。
  9.  前記光反射低減領域は、前記光ファイバの前記レーザ光の入射端側から前記光ファイバの前記レーザ光の出射端側に向かって光吸収率が連続的または段階的に高くなるように形成されていることを特徴とする請求項1~8のいずれか一つに記載の半導体レーザモジュール。
  10.  前記光反射低減領域は、周期的に形成されており、かつ前記光ファイバの前記レーザ光の入射端側から前記光ファイバの前記レーザ光の出射端側に向かって光吸収率が高くなるように形成されていることを特徴とする請求項1~8のいずれか一つに記載の半導体レーザモジュール。
  11.  前記光反射低減領域は、離散的に形成されており、かつ前記光ファイバの前記レーザ光の入射端側から前記光ファイバの前記レーザ光の出射端側に向かって間隔が狭くなるように形成されていることを特徴とする請求項1~8のいずれか一つに記載の半導体レーザモジュール。
  12.  前記光ファイバは、前記レーザ光の入射端側に前記光学部品から突出した突出部を備えることを特徴とする請求項1~11のいずれか一つに記載の半導体レーザモジュール。
  13.  前記光ファイバの前記レーザ光の入射端と前記光学部品との間に配置された第1光遮断部をさらに備え、前記第1光遮断部は、前記突出部の外周において、前記光ファイバと離間するように配置されていることを特徴とする請求項12に記載の半導体レーザモジュール。
  14.  前記第1光遮断部は、Cu、Ni、Al、ステンレス鋼、またはFeを含む金属部材、Ni、Cr、またはTiを含む表面メッキ層を備える部材、または誘電体多層膜を備える部材、のうち少なくとも1つを有することを特徴とする請求項13に記載の半導体レーザモジュール。
  15.  前記固定部材は、前記筐体に熱良導体を介して接続されていることを特徴とする請求項2に記載の半導体レーザモジュール。
  16.  前記熱良導体は、熱伝導率が0.5W/mK以上であることを特徴とする請求項15に記載の半導体レーザモジュール。
  17.  前記光ファイバの前記レーザ光の出射端側に配置され、前記レーザ光の前記光学部品からの出射を抑制する第2光遮断部を、さらに備えることを特徴とする請求項1~16のいずれか一つに記載の半導体レーザモジュール。
  18.  前記第2光遮断部は、Cu、Ni、Al、ステンレス鋼、またはFeを含む金属部材、または誘電体多層膜を備える部材、のうち少なくとも1つを有することを特徴とする請求項17に記載の半導体レーザモジュール。
  19.  前記第2光遮断部の前記光学部品側の面は、該面に入射した光が前記光ファイバから離れる方向に反射するように傾斜、または曲率を有することを特徴とする請求項17または18に記載の半導体レーザモジュール。
  20.  前記光学部品は、円管状のガラスキャピラリであることを特徴とする請求項1~19のいずれか一つに記載の半導体レーザモジュール。
PCT/JP2018/004897 2017-02-14 2018-02-13 半導体レーザモジュール WO2018151100A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880011950.0A CN110337602A (zh) 2017-02-14 2018-02-13 半导体激光模块
EP18753897.0A EP3584616A4 (en) 2017-02-14 2018-02-13 SEMI-CONDUCTOR LASER MODULE
US16/539,384 US11031746B2 (en) 2017-02-14 2019-08-13 Semiconductor laser module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-024645 2017-02-14
JP2017024645A JP2018132573A (ja) 2017-02-14 2017-02-14 半導体レーザモジュール

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/539,384 Continuation US11031746B2 (en) 2017-02-14 2019-08-13 Semiconductor laser module

Publications (1)

Publication Number Publication Date
WO2018151100A1 true WO2018151100A1 (ja) 2018-08-23

Family

ID=63169839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/004897 WO2018151100A1 (ja) 2017-02-14 2018-02-13 半導体レーザモジュール

Country Status (5)

Country Link
US (1) US11031746B2 (ja)
EP (1) EP3584616A4 (ja)
JP (1) JP2018132573A (ja)
CN (1) CN110337602A (ja)
WO (1) WO2018151100A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5127072A (en) * 1990-03-08 1992-06-30 Ortel Corporation Laser module with compliant optical fiber coupling
JPH1174612A (ja) * 1997-08-27 1999-03-16 Kyocera Corp 光半導体素子収納用パッケージ
JP2004096088A (ja) 2002-07-10 2004-03-25 Fuji Photo Film Co Ltd 合波レーザー光源および露光装置
JP2004354771A (ja) 2003-05-29 2004-12-16 Toshiba Corp 半導体レーザー装置
JP2008153639A (ja) * 2006-11-21 2008-07-03 Furukawa Electric Co Ltd:The 光モジュール
US20090245315A1 (en) * 2008-03-28 2009-10-01 Victor Faybishenko Laser diode assemblies
WO2015037725A1 (ja) 2013-09-12 2015-03-19 古河電気工業株式会社 半導体レーザモジュール
JP2016144823A (ja) * 2015-02-09 2016-08-12 オムロン株式会社 接合構造体の製造方法および接合構造体

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3421097A (en) * 1963-03-25 1969-01-07 American Optical Corp Laser amplifier having angularly disposed reflection reducing end surface
US4575181A (en) * 1983-04-26 1986-03-11 Tokyo Shibaura Denki Kabushiki Kaisha Optical fiber assembly with cladding light scattering means
JP3773603B2 (ja) * 1996-09-30 2006-05-10 三洋電機株式会社 半導体レーザ装置の製造方法
JP2004347621A (ja) * 2003-04-24 2004-12-09 Dainippon Printing Co Ltd 透過型スクリーン
WO2009002049A1 (en) * 2007-06-22 2008-12-31 Samsung Fine Chemicals Co., Ltd. Optical sheet with excellent adhesive force, filter comprising the same, and display device including the sheet or the filter
CN202141821U (zh) * 2011-04-26 2012-02-08 韩培刚 一种中高温太阳能选择性吸收涂层
CN105449499B (zh) * 2015-12-11 2019-05-17 中电科天之星激光技术(上海)有限公司 一种利用波导毛细管的光纤包层光滤除方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5127072A (en) * 1990-03-08 1992-06-30 Ortel Corporation Laser module with compliant optical fiber coupling
JPH1174612A (ja) * 1997-08-27 1999-03-16 Kyocera Corp 光半導体素子収納用パッケージ
JP2004096088A (ja) 2002-07-10 2004-03-25 Fuji Photo Film Co Ltd 合波レーザー光源および露光装置
JP2004354771A (ja) 2003-05-29 2004-12-16 Toshiba Corp 半導体レーザー装置
JP2008153639A (ja) * 2006-11-21 2008-07-03 Furukawa Electric Co Ltd:The 光モジュール
US20090245315A1 (en) * 2008-03-28 2009-10-01 Victor Faybishenko Laser diode assemblies
WO2015037725A1 (ja) 2013-09-12 2015-03-19 古河電気工業株式会社 半導体レーザモジュール
JP2016144823A (ja) * 2015-02-09 2016-08-12 オムロン株式会社 接合構造体の製造方法および接合構造体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3584616A4 *

Also Published As

Publication number Publication date
US11031746B2 (en) 2021-06-08
EP3584616A1 (en) 2019-12-25
JP2018132573A (ja) 2018-08-23
CN110337602A (zh) 2019-10-15
US20190363511A1 (en) 2019-11-28
EP3584616A4 (en) 2020-12-02

Similar Documents

Publication Publication Date Title
JP6109321B2 (ja) 半導体レーザモジュール
JP6147341B2 (ja) 半導体レーザモジュール
JP4991001B2 (ja) 照明装置
JP6258984B2 (ja) 照明装置
JP2011209609A (ja) 発光素子モジュール
JP7516351B2 (ja) 光学部品および半導体レーザモジュール
US10061092B2 (en) Semiconductor laser module
WO2018151100A1 (ja) 半導体レーザモジュール
US10495820B1 (en) Method and apparatus for low-profile fiber-coupling to photonic chips
EP3940899A1 (en) Optical component and semiconductor laser module
US10466426B2 (en) Optical fiber drawer structure and optical module
JP2012098556A (ja) 光カップリングユニット及び光源装置
WO2016002374A1 (ja) 光デバイス、及び、光モジュール
JP2020181091A (ja) 半導体レーザモジュール
JP7012414B2 (ja) 端部構造および半導体レーザモジュール
JP7479348B2 (ja) 光ファイバにおける端部構造および半導体レーザモジュール
JP5856016B2 (ja) 光モジュール
JP2022154134A (ja) クラッド伝搬光除去機構
JP2021117314A (ja) レーザダイオードモジュール
CN116745666A (zh) 光波导元件、导光板以及光轴调整方法
JP2009210608A (ja) 光導波体及び光照射体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18753897

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018753897

Country of ref document: EP

Effective date: 20190916