WO2022225361A1 - Multilayer ceramic electronic component manufacturing method, and multilayer ceramic electronic component implemented through same - Google Patents

Multilayer ceramic electronic component manufacturing method, and multilayer ceramic electronic component implemented through same Download PDF

Info

Publication number
WO2022225361A1
WO2022225361A1 PCT/KR2022/005768 KR2022005768W WO2022225361A1 WO 2022225361 A1 WO2022225361 A1 WO 2022225361A1 KR 2022005768 W KR2022005768 W KR 2022005768W WO 2022225361 A1 WO2022225361 A1 WO 2022225361A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
electronic component
particle diameter
photosensitive
conductive metal
Prior art date
Application number
PCT/KR2022/005768
Other languages
French (fr)
Korean (ko)
Inventor
단성백
이승철
박규환
Original Assignee
주식회사 아모텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아모텍 filed Critical 주식회사 아모텍
Publication of WO2022225361A1 publication Critical patent/WO2022225361A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G13/00Apparatus specially adapted for manufacturing capacitors; Processes specially adapted for manufacturing capacitors not provided for in groups H01G4/00 - H01G11/00
    • H01G13/006Apparatus or processes for applying terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G13/00Apparatus specially adapted for manufacturing capacitors; Processes specially adapted for manufacturing capacitors not provided for in groups H01G4/00 - H01G11/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G13/00Apparatus specially adapted for manufacturing capacitors; Processes specially adapted for manufacturing capacitors not provided for in groups H01G4/00 - H01G11/00
    • H01G13/04Drying; Impregnating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/012Form of non-self-supporting electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors

Definitions

  • the present invention relates to a method for manufacturing a multilayer ceramic electronic component and to a multilayer ceramic electronic component implemented through the method.
  • elements such as capacitors, capacitors, varistors, suppressors, and MLCCs laminate several to hundreds of green sheets printed with electrode patterns, and then simultaneously sinter the electrodes and green sheets to form a single unit. It corresponds to a co-sintering type multilayer ceramic electronic component that implements a device, and many researches are being made so that these devices can also be miniaturized and high-capacity in line with the recent miniaturization and high performance of electronic devices.
  • the conventional method of printing the electrode pattern on the green sheet has used a screen printing method or a gravure printing method
  • the screen printing method or the gravure printing method has an advantage of low cost.
  • these methods can implement only the electrode line width and the inter-electrode spacing of 40 ⁇ 80 ⁇ m level, it is difficult to form a smaller and more sophisticated fine pattern with these methods.
  • the internal electrodes of highly laminated and miniaturized co-sintered multilayer ceramic electronic components can be fabricated using conventional screen printing or gravure methods. There is a problem in that it is difficult to form by the printing method.
  • the viscosity of the printing electrode composition must be greatly reduced, which causes problems in printing blur and lowering of print resolution.
  • the present invention has been devised in consideration of the above points, and a method for manufacturing a multilayer ceramic electronic component that can more easily and reliably realize ultra-thin and micro-patterning of the internal electrode required for realizing a large-capacity multilayer ceramic electronic component. And an object of the present invention is to provide a multilayer ceramic electronic component implemented through this.
  • the present invention is a multilayer ceramic electronic component manufacturing method that is implemented to have excellent thickness uniformity of an ultra-thin electrode and at the same time prevents shape deformation of a sintered body or separation between layers due to a difference in shrinkage characteristics between an internal electrode and a ceramic green sheet after sintering; Another object is to provide a multilayer ceramic electronic component implemented through this.
  • the present invention provides a step of (1) preparing a ceramic green sheet, (2) forming a positive or negative type photosensitive electrode material layer by electrospraying a photosensitive electrode composition on the entire upper surface of the ceramic green sheet. , (3) disposing a mask pattern layer on the positive or negative type photosensitive electrode material layer and exposing it, (4) treating the developer solution to remove the exposed or unexposed photosensitive electrode material layer portion to form the electrode pattern layer.
  • a method for manufacturing a multilayer ceramic electronic component comprising the steps of implementing, (5) laminating a plurality of ceramic green sheets provided with an electrode pattern layer and then press-sintering.
  • the ceramic green sheet may have an average thickness of 5.0 ⁇ m or less.
  • the manufactured multilayer ceramic electronic component is MLCC, and the number of stacked ceramic green sheets in step (5) may be 100 or more.
  • the photosensitive electrode composition includes a binder resin including a conductive metal powder, ceramic powder, and photosensitive resin having an average particle diameter of 150 nm or less, a monomer, a photoinitiator and a solvent to realize a photosensitive electrode material layer having an average thickness of 1.0 ⁇ m or less when dried.
  • a binder resin including a conductive metal powder, ceramic powder, and photosensitive resin having an average particle diameter of 150 nm or less, a monomer, a photoinitiator and a solvent to realize a photosensitive electrode material layer having an average thickness of 1.0 ⁇ m or less when dried.
  • the conductive metal powder may have an average particle diameter of 80 nm or less.
  • the number of particles having a particle diameter of 2 times or more of the average particle diameter is 20% or less of the total number of conductive metal powders, and the number of particles having a particle diameter of 0.5 times or less of the average particle diameter is 20 of the total number of conductive metal powders % or less.
  • the conductive metal powder may include at least one metal selected from the group consisting of Ni, Mn, Cr, Al, Ag, Cu, Pd, W, Mo and Co, an alloy including at least one of them, and at least one of them. It may include any one or more of mixed metals including two types.
  • the ceramic powder may include at least one ceramic powder selected from the group consisting of titania, alumina, silica, cordierite, mullite, spinel, barium titanate, calcium zirconia, and zirconia.
  • the conductive metal powder may be provided in an amount of 10 to 30% by weight based on the total weight.
  • the ceramic powder may have an average particle diameter of 0.1 to 0.5 times the average particle diameter of the conductive metal powder.
  • the ceramic powder may be included in an amount of 4 to 10 parts by weight based on 100 parts by weight of the conductive metal powder.
  • the total weight of the binder resin and the monomer may be included in an amount of 2 to 13 parts by weight based on 100 parts by weight of the conductive metal powder.
  • the ceramic powder may have an average particle diameter of 45 nm or less.
  • the photosensitive electrode composition is a negative type
  • the photosensitive resin is glycidyl methacrylate (GMA), methyl methacrylate (MMA), isobornyl methacrylate (IBOMA), benzyl methacrylate, methacrylic acid It may include an acrylate-based copolymer in which at least two monomers of (MMA), acrylic acid (AA), and styrene monomers are copolymerized.
  • 10 to 100 parts by weight of the monomer and 1 to 50 parts by weight of the photoinitiator may be included with respect to 100 parts by weight of the photosensitive resin.
  • the photosensitive resin is a copolymer of methacrylic acid, methyl methacrylate and isobornyl methacrylate, and contains 15.5 to 19.5 mol% of methacrylic acid, and an acrylate-based copolymer having a weight average molecular weight of 8000 to 15000. may include.
  • the monomer may be a polyfunctional monomer.
  • the binder resin may further include a polyvinyl butyral resin.
  • the photosensitive electrode composition may have a viscosity of 50 to 150 cps at 25°C.
  • the present invention provides a multilayer ceramic electronic component including a ceramic body and a plurality of internal electrodes disposed inside the body, wherein an average thickness of the internal electrode is 0.7 ⁇ m or less, and the thickness direction of the ceramic body among the plurality of internal electrodes is Provided is a multilayer ceramic electronic component having a minimum vertical distance between adjacent internal electrodes spaced apart from each other by 2.0 ⁇ m or less.
  • the method for manufacturing a multilayer ceramic electronic component according to the present invention can more easily and reliably realize the ultra-thin and micro-patterning of the internal electrode, which are required for realizing a large-capacity multilayer ceramic electronic component.
  • the provided internal electrode is made ultra-thin, it can be implemented to have excellent thickness uniformity, and after sintering, shape deformation of the sintered body or separation between layers due to a difference in shrinkage characteristics between the internal electrode and the ceramic green sheet can be prevented.
  • FIG. 1 is a process schematic diagram showing a method of manufacturing a multilayer ceramic electronic component according to an embodiment of the present invention
  • FIG. 2 is a SEM photograph of nickel powder having an average particle diameter of 75 nm as a conductive metal powder included in the photosensitive electrode composition for electrospray used in an embodiment of the present invention
  • FIG. 3 is an SEM photograph before the nickel powder according to FIG. 2 is wet classified
  • FIGS. 5 and 6 are photographs of an electrode composition for electrospray containing nickel powder according to FIGS. 2 and 3, respectively, and FIG. 5 is a photograph uniformly dispersed with ceramic powder without precipitation of nickel powder, FIG. 6 is nickel powder A photograph of ceramic powder and phase separation due to sedimentation, and
  • FIG. 7 and 8 are optical micrographs of an electrode pattern dried after the photosensitive electrode composition for electrospray used in an embodiment of the present invention is electrosprayed in a predetermined pattern
  • FIG. 7 is an electrode in the electrode pattern. It is a photograph of an electrode pattern having excellent formability of a continuous electrode surface without a formed portion
  • FIG. 8 is a photograph of an electrode pattern in which a continuous electrode surface is not partially formed due to the partial presence of a drop-out electrode in which an electrode is not formed in the electrode pattern.
  • a method of manufacturing a multilayer ceramic electronic component includes (1) preparing a ceramic green sheet 11 ((a) of FIG. 1), (2) ceramic green Forming a photosensitive electrode material layer 12a of a positive or negative type by electrospraying (2) the photosensitive electrode composition on the entire upper surface of the sheet 11 (FIG. 1 (b)), (3) Mask pattern layer 3 ) is disposed on the photosensitive electrode material layer 12a and exposed to light (FIG. 1 (c)), (4) treated with a developer to remove the exposed or unexposed photosensitive electrode material layer portion 12a to remove the electrode Implementing the pattern layer 12 ((d) of FIG. 1), (5) laminating a plurality of ceramic green sheets 10 provided with the electrode pattern layer 12, followed by pressure sintering (see FIG. 1) (e), (f)) is carried out.
  • the step of preparing the ceramic green sheet 11 (FIG. 1 (a)) is performed.
  • the ceramic green sheet 11 may be used without limitation in the case of a known ceramic green sheet used in manufacturing a multilayer ceramic electronic component or a ceramic green sheet in which a composition of a known ceramic green sheet is appropriately changed.
  • the ceramic green sheet 11 may be formed of a ceramic material suitable for realizing physical properties required for a desired use of a multilayer ceramic electronic component.
  • the ceramic green sheet may include a dielectric material commonly referred to as class I and/or class II.
  • MLCC high-capacity MLCC
  • it may be included as a main component of a dielectric material commonly referred to as class II, and for example, BaTiO 3 , (Ba,Ca)(Ti,Zr)O 3 , CaTiO 3 , SrTiO 3 , CaZrO 3 , etc. of ferroelectrics can be used.
  • a glassy component, a binder component for bonding the dielectric material, and a solvent may be further included as sub-components, and in addition, components other than the above-mentioned components included in manufacturing a conventional ceramic green sheet may be further included. and the present invention is not particularly limited thereto.
  • the glassy component is to increase the density of the body to ensure the mechanical strength of the body
  • Al, B, Si, Ca and Mg may include at least one metal or non-metal oxide selected from the group consisting of. .
  • the thickness of the ceramic green sheet 11 in order to realize a highly laminated high-capacity multilayer ceramic electronic component. It is preferable to use a dielectric material or a glassy component finely divided into 1 ⁇ m or less, more preferably 800 nm or less.
  • the ceramic green sheet 11 may be implemented by wet-mixing a dielectric material, a glassy component, a binder component, a solvent, etc. to prepare a ceramic slurry, then coating it to a predetermined thickness on the carrier film 1 and drying it.
  • the coating method of the ceramic slurry may use known methods and apparatuses according to known methods and methods, such as a die coater, a gravure coater, and a micro gravure coater, for example, a detailed description thereof will be omitted in the present invention.
  • the carrier film 1 may be a known film used in manufacturing a green sheet, for example, a PET film, and a release layer may be further included on one surface of the PET film.
  • the ceramic slurry coated on the carrier film 1 may be subjected to a drying process, and the drying process may be performed using known conditions in consideration of the type and content of the solvent, the thickness of the applied ceramic slurry, and the like. .
  • the manufactured ceramic green sheet 11 may have an average thickness of, for example, 0.1 to 5.0 ⁇ m, and preferably an average thickness of 0.1 to 0.5 ⁇ m in consideration of thinning for high lamination, but is not limited thereto.
  • the photosensitive electrode composition is electrically sprayed (2) on the upper entire surface of the ceramic green sheet 11 to form a positive or negative type photosensitive electrode material.
  • a step of forming the layer 12a is performed.
  • the coating thickness of the photosensitive electrode composition In order to realize an internal electrode having an ultra-thin thickness, it is important to control the coating thickness of the photosensitive electrode composition to be very thin. In the case of conventionally used screen printing or gravure printing, the thickness of the electrode after printing is typically 5 ⁇ m or more, which is due to the difficulty in forming a thin and uniform coating thickness of the electrode composition itself, such as an electrode paste.
  • the photosensitive electrode composition used in an embodiment of the present invention can realize a thinner and more uniform internal electrode by forming an electrode surface through electrospray.
  • the average thickness of the applied photosensitive electrode composition may be 1.5 ⁇ m or less, and through this, it is advantageous to satisfy the average thickness of the printed photosensitive electrode material layer 12a in a dried state is 1.0 ⁇ m or less, and a thinner thickness during sintering As it can be implemented as an electrode of , it may be advantageous to eventually realize a highly laminated multilayer ceramic electronic component.
  • the photosensitive electrode composition is electrosprayed, it is difficult to use a paste for manufacturing a conventional photosensitive internal electrode as it is.
  • the high electrical conductivity and viscosity of the electrode paste may inhibit electrospray, and it may not be possible to apply the electrode composition to a uniform and thin thickness.
  • the particle size or distribution of the metal powder contained in the conventional electrode paste is also large and wide, so it may be difficult to implement an ultra-thin film, specifically, the photosensitive electrode material layer 12a having an average thickness of 1.5 ⁇ m or less after application and 1.0 ⁇ m or less after drying.
  • the photosensitive electrode composition is suitable for the electrospray method and has an average particle diameter of 150 nm or less so as to realize an ultra-thin photosensitive electrode material layer 12a having an average thickness of 1.0 ⁇ m, preferably 0.6 ⁇ m or less when dried.
  • Powders, ceramic powders, binder resins including photosensitive resins, monomers, photoinitiators, and solvents may be used.
  • it since it is possible to implement an ultra-thin electrode suitable for forming an electrode on a green sheet, it may be particularly suitable for implementing an internal electrode of a multilayer ceramic component such as MLCC requiring high lamination.
  • the conductive metal powder imparts conductivity after sintering and forms the body of the electrode, and the conductive metal powder commonly used for manufacturing electrodes for electronic components can be used without limitation.
  • the conductive metal powder may include one metal selected from the group consisting of nickel, manganese, chromium, aluminum, silver, copper, palladium, molybdenum, tungsten and cobalt, an alloy containing at least one of these, and at least one of these It may include any one or more of mixed metals including two types.
  • At least one selected from the group consisting of palladium, silver-palladium alloy, silver, nickel and copper may be included, and more preferably in consideration of heat resistance, conductivity and material cost may include nickel.
  • the conductive metal powder may have an average particle diameter of 150 nm or less, preferably 100 nm or less, and more preferably 80 nm or less. Even when the average thickness of the photosensitive electrode material layer exceeds 1.0 ⁇ m, it is difficult for the implemented photosensitive electrode material layer to form a continuous electrode surface, or when the photosensitive electrode material layer with an average thickness of 1.0 ⁇ m or less is implemented, the thickness uniformity is very non-uniform. This can make it difficult to implement high-quality, highly laminated, laminated ceramic parts.
  • the conductive metal powder may have an average particle diameter of 5 nm or more, more preferably 10 nm or more, and even more preferably 20 nm or more. , the material cost may increase.
  • the metal powder is finely divided, it is required to ensure dispersibility, but degreasing may not be easy due to organic compounds such as dispersants added to ensure dispersibility. Separation may occur.
  • dispersibility is reduced when the average particle diameter of the conductive metal powder is too small, and when agglomerated to form coarse secondary particles, the dried photosensitive electrode material layer is difficult to form a continuous electrode surface or , which is undesirable because there is a risk that the thickness non-uniformity may be aggravated.
  • the number of particles having a particle diameter of at least twice the average particle diameter is 20% or less of the total number of conductive metal powders, more preferably 15% or less, even more preferably 10% or less, more preferably is 5% or less, and the number of particles having a particle diameter of 0.5 times or less of the average particle diameter may have a particle size distribution of 20% or less, more preferably 10% or less, of the total number of conductive metal powders, through which it is supplied for electrospray It is suitable to minimize the formation of secondary particles by agglomeration of the conductive metal powder in the photosensitive electrode composition, and to minimize or prevent sedimentation of the conductive metal powder in the injection solution chamber in the electrospray device, through which the photosensitive electrode material layer It is advantageous to prevent the discontinuous electrode surface where the electrode does not exist partially due to the non-spray of the internal electrode composition, and it prevents the deterioration of the external electrode appearance quality such as non-uniformity of electrical characteristics such as resistance by position of the implemented
  • the shape of the conductive metal powder may have a variety of known shapes, but preferably a spherical or spherical polyhedron may be suitable.
  • the conductive metal powder may be included in an amount of 30% by weight or less, more preferably 10 to 30% by weight, and still more preferably 20 to 30% by weight based on the total weight of the photosensitive electrode composition. If the conductive metal powder is included in excess of 30 wt%, sedimentation or precipitation of the conductive metal powder in the photosensitive electrode composition supplied for electrospray may occur, and thus the conductive powder may be non-uniformly sprayed during electrospray. In addition, it may be difficult to control the thickness of the electrode implemented by electrospray. Furthermore, since exposure of the lower side of the photosensitive electrode material layer 12a is inhibited due to the high content of the conductive metal powder, an undercut phenomenon may occur after development.
  • the dried photosensitive electrode material layer or the sintered internal electrode may form an island such as a water droplet, thereby reducing the continuous formability of the electrode surface or non-uniform electrode thickness. It may be difficult to implement a desired electrode, such as disconnection.
  • the photosensitive electrode composition has high electrical conductivity, and electric spraying may be difficult due to the high electrical conductivity.
  • the photosensitive electrode composition may include ceramic powder, and through this, the photosensitive electrode composition may be adjusted to have an electrical conductivity suitable for electrospray.
  • the difference in sintering temperature between the electrode pattern layer 12 and the ceramic green sheet 11 generated when the electrode pattern layer 12 and the ceramic green sheet 11 are simultaneously sintered in step (5), which will be described later, and the shrinkage due to this It is possible to prevent shape deformation such as crushing of the sintered body due to the difference in characteristics.
  • the ceramic component derived from the ceramic powder moves toward the surface of the sintered electrode and can be separated from the conductive component derived from the sintered conductive metal powder, thereby increasing the dielectric constant, thereby contributing to the improvement of properties of multilayer ceramic electronic components. have.
  • the ceramic powder may have an average particle diameter of 100 nm or less, in another example 70 nm or less, 45 nm or less, or 1 to 30 nm.
  • ceramic powder having an appropriate average particle diameter in consideration of the average particle diameter of the conductive metal powder may be used.
  • the ceramic powder having a smaller average particle diameter of 0.5 times or less, more preferably 0.3 times or less of the average particle diameter of the conductive metal powder It can be used, and through this, it is advantageous to delay the shrinkage of the electrode faster than that of the ceramic green sheet during sintering.
  • the average particle diameter of the ceramic powder may be 20 nm or less.
  • the average particle diameter of the ceramic powder is smaller than 0.1 times the average particle diameter of the conductive metal powder, the amount of resin added may be increased due to the increase in the surface area of the particles, and the thickness unevenness of the dried and/or sintered electrode may be reduced. There is a risk of causing the problem, and the shrinkage rate of the electrode may be excessively increased during sintering. In addition, since the exposure of the lower side of the dry electrode is inhibited due to the ceramic powder having a small particle size during exposure, there is a risk that an undercut phenomenon may occur after development.
  • the ceramic powder may also be advantageous to maintain a uniform dispersed phase as the proportion of coarse particles having a particle diameter of two times or more compared to the average particle diameter is small. Accordingly, in the ceramic powder, the number of particles having a particle diameter of at least twice the average particle diameter may be 20% or less, more preferably 10% or less, and still more preferably 5% or less of the total number of ceramic powder particles.
  • the ceramic powder may be used without limitation in the case of known ceramic powders, but for example, at least one selected from the group consisting of titania, alumina, silica, cordierite, mullite, spinel, barium titanate, calcium zirconia and zirconia.
  • the above ceramic powder may be included.
  • the ceramic powder when used for forming an internal electrode by electrospraying the photosensitive electrode composition on the green sheet, it may be selected as a common component with the dielectric component of the green sheet, and through this, the ceramic green sheet and the electrode during co-sintering It may be easier to control the shrinkage characteristics between the pattern layers, and it may be advantageous to improve bonding and adhesion characteristics between the electrode pattern layer and the ceramic green sheet.
  • the ceramic powder may be included in an amount of 4 to 10 parts by weight, more preferably 4 to 7 parts by weight, based on 100 parts by weight of the conductive metal powder. If the amount of the ceramic powder is less than 4 parts by weight, the thickness of the electrode implemented Control can be difficult. In addition, it is difficult to control the shrinkage characteristics during simultaneous sintering with the ceramic green sheet, and cracks and peeling of the electrode realized after sintering may occur frequently. In addition, if the ceramic powder is contained in excess of 10 parts by weight, the electrical conductivity of the implemented electrode is lowered, and there is a fear that the degree of contraction of the electrode during sintering may be excessive.
  • the particle diameter of the conductive metal powder and ceramic powder included in the photosensitive electrode composition used in the present invention is a value based on particle size measurement by a dynamic light scattering method, and is a volume-based particle diameter, and the average particle diameter is D50 in the cumulative volume-based particle size distribution. means the corresponding particle size.
  • the measuring device may be a known measuring device capable of counting nano-sized powder particle size, for example, a measuring device such as a Zetasizer series or APS-100.
  • the conductive metal powder having an average particle diameter of 150 nm or less can be implemented using a dry plasma powder synthesis method such as PVD or CVD, which can be advantageous for producing a powder with a clean particle surface.
  • a dry plasma powder synthesis method such as PVD or CVD
  • the continuous centrifuge can control the average particle size by controlling the rotational speed and the input amount per minute of the centrifuge, and cause rapid sedimentation of the conductive metal powder in the electrode composition to inhibit uniform dispersion of coarse particles, for example, of the average particle diameter. It is possible to control so that the number ratio of the conductive metal powder having a particle diameter of twice or more is small. If the rotation speed of the centrifuge is too high, the production yield is greatly reduced, and if it is too low, the removal rate of coarse particles that hinders uniform dispersion is reduced. In addition, if the input amount is too large, the time for receiving centrifugal force in the centrifuge chamber is shortened, so it is not easy to remove large particles.
  • FIG. 2 is an SEM photograph of the conductive metal powder used in Example 4, and the particle size of the conductive metal powder as shown in FIG. 3 is adjusted so that the coarse particle ratio is low through wet classification through centrifugation. As shown in, it can be confirmed that the photosensitive electrode composition has a good dispersion state. On the other hand, when there are many coarse particles of the conductive metal powder, as shown in FIG. 6 , it can be confirmed that the conductive metal powder has a lot of sedimentation and phase separation from the ceramic powder has occurred.
  • the ceramic powder can be prepared by appropriately utilizing a known powder technology and a particle control technology to have a desired particle size distribution using a commercially available ceramic powder, and as a specific means, various known grinding and classification methods, related devices and the same It can be manufactured by adjusting factors such as the grinding conditions used and the grinding time.
  • a pulverizer use either a mechanical pulverizer employing a blade mill or a super rotor, or an airflow pulverizer that pulverizes particles by colliding each other against a wall using a high-speed airflow of high-pressure air.
  • the grinding level can be adjusted by putting it back into another grinder and grinding it.
  • a classifier for classifying the pulverized material such as a centrifugal wind power disperser, a disperser using a physical dispersing force such as a high-speed air flow to prevent agglomeration of fine particles, or a wet classification method to have a desired particle size distribution through a centrifugal separation method.
  • a classifier for classifying the pulverized material such as a centrifugal wind power disperser, a disperser using a physical dispersing force such as a high-speed air flow to prevent agglomeration of fine particles, or a wet classification method to have a desired particle size distribution through a centrifugal separation method.
  • the photosensitive electrode composition includes a binder resin including a photosensitive resin, a photosensitive composition including a monomer, and a photoinitiator together with the above-described conductive metal powder and ceramic powder.
  • the photosensitive composition may be of a positive type or a negative type.
  • the binder resin includes a photosensitive resin, and the photosensitive resin serves as a binder of components in the photosensitive electrode composition to maintain bonding strength of the dried electrode and to impart solubility to a developer.
  • the photosensitive resin may be cured by intermolecular crosslinking under the action of active energy such as ultraviolet rays or electron beams to form a cured coating film, or may be dissolved in a developer by breaking intermolecular crosslinking.
  • the photosensitive resin may be used without limitation if it is a photosensitive resin commonly used in the field of photosensitive electrode paste. In addition, it may be a positive type or negative type photosensitive resin.
  • a photosensitive binder resin used in the photosensitive resin composition such as acrylate-based, cellulose-based, novolac acrylic-based, water-soluble polymer, polyimide, or a precursor thereof may be used.
  • the photosensitive resin may preferably be an acrylate-based photosensitive binder.
  • the acrylate-based photosensitive binder examples include a resin having an ethylenically unsaturated bond such as a vinyl group, an allyl group, an acryloyl group, or a methacryloyl group, or a photosensitive functional group such as a propargyl group, for example, an ethylenically unsaturated group in the side chain.
  • a resin having an ethylenically unsaturated bond such as a vinyl group, an allyl group, an acryloyl group, or a methacryloyl group
  • a photosensitive functional group such as a propargyl group
  • Various conventionally well-known photosensitive resins (photosensitive prepolymer) such as the acrylic copolymer which has, the unsaturated carboxylic acid-modified epoxy resin, or the resin which added polybasic acid anhydride further to it, can be used.
  • the photosensitive resin is glycidyl methacrylate (GMA), methyl methacrylate (MMA), isobornyl methacrylate (IBOMA), benzyl methacrylate, methacrylic acid (MMA), acrylic acid (AA) and It may include an acrylate-based copolymer in which at least two monomers of the styrene monomo are copolymerized.
  • the photosensitive resin may include glycidyl methacrylate-methyl methacrylic acid copolymer, glycidyl methacrylate-methyl methacrylic acid- methyl methacrylate-isobornyl methacrylate copolymer, and methyl methacrylic acid. It may be a late-benzyl methacrylate-methacrylic acid copolymer.
  • the photosensitive resin according to an embodiment of the present invention is a copolymer of methacrylic acid, methyl methacrylate and isobornyl methacrylate, and contains 15.5 to 19.5 mol% of methacrylic acid, and a weight average molecular weight of 8000 to It may include an acrylate-based copolymer of 15000, more preferably 25 to 40 mol% of methyl methacrylate, and may be a copolymer containing isobornyl methacrylate as a residual amount, through which better quality and resolution , it may be advantageous to implement an electrode pattern in which residues are prevented with photosensitivity.
  • the acrylate-based copolymer may be introduced by reacting a compound having an epoxy or isocyanate functional group to a carboxy functional group in the acrylate-based copolymer to control the acid value.
  • the compound having the epoxy group may include, for example, at least one of a methylene functional group, a vinyl functional group, and an allyl functional group at the terminal, and specifically may be allyl glycidyl ether.
  • the compound having the isocyanate functional group may be, for example, 2-acryloyloxyethyl isocyanate.
  • the acrylate-based copolymer with the acid value controlled may have an acid value of 25 to 100 mgKOH/g, thereby exhibiting excellent photosensitivity and developability.
  • the glass transition temperature of the photosensitive resin as the acrylate-based copolymer may be 20 ⁇ 150 °C.
  • polyimide or a precursor thereof may be included in addition to the acrylate-based photosensitive resin.
  • the polyimide or its precursor content may be included in an amount of 10 to 60 parts by weight based on 100 parts by weight of the acrylate-based resin, which may be more advantageous in achieving the object of the present invention.
  • the binder resin may further include polyvinyl butyral resin.
  • the binder resin made of only the photosensitive resin may have poor adhesion to the ceramic green sheet, which is the surface to be electrosprayed. Accordingly, polyvinyl butyral resin may be further included, and improved adhesion and adhesion to the ceramic green sheet may be achieved.
  • the polyvinyl butyral resin may be contained in 10 to 50% by weight of the binder resin, and if it is included in an amount exceeding 50% by weight, there is a risk that defects such as residues during development after exposure may increase, and the content is less than 10% by weight. When contained, the effect of improving adhesion to the surface of the ceramic green sheet may be insignificant.
  • the monomer contains a carbon double bond, and the double bond is converted into a single bond by radicals excited by active energy such as ultraviolet rays or electron beams to polymerize to form a cured structure in the photosensitive electrode composition.
  • the monomer is not particularly limited as long as it is a monomer commonly used in the field of photosensitive paste.
  • the monomer may be, for example, a polyfunctional monomer such as bifunctional, trifunctional, or tetrafunctional.
  • an acrylic ester system selected from trimethylolpropane triacrylate, trimethylolpropane ethoxylated triacrylate, pentaerythritol tri-acrylate or pentaerythritol tetra-acrylate may be used.
  • an acrylic ester system selected from trimethylolpropane triacrylate, trimethylolpropane ethoxylated triacrylate, pentaerythritol tri-acrylate or pentaerythritol tetra-acrylate may be used.
  • the present invention is not limited thereto.
  • the monomer may be included in an amount of 10 to 100 parts by weight based on 100 parts by weight of the photosensitive resin. If the content of the monomer is less than 10 parts by weight, the curing density of the exposure pattern may become weak, and if it exceeds 100 parts by weight, the pattern characteristics may be deteriorated, and resistance may increase due to residual organic matter after curing, or the laminated green There is a fear that separation between the sheet layers may occur.
  • an oligomer may be further included as a component for forming a cured structure by radicals.
  • the oligomer may be an oligomer commonly used in the photosensitive electrode composition without limitation, and may be, for example, an acrylate having a molecular weight of 1000 or less.
  • the oligomer may be contained in an amount of 10 to 100 parts by weight based on 100 parts by weight of the photosensitive resin, but is not limited thereto.
  • the photoinitiator is a compound that causes a chemical reaction by generating radicals upon irradiation with active energy such as ultraviolet rays or electron beams, and is not particularly limited as long as it is a photopolymerization initiator commonly used in the field of photosensitive electrode compositions.
  • active energy such as ultraviolet rays or electron beams
  • acetophenone compounds, benzophenone compounds, thioxanthone compounds, benzoin compounds, triazine compounds including monophenyl, oxime compounds, carbazole compounds, diketone compounds, sulfonium borate compounds , a diazo-based compound, a biimidazole-based compound, and the like can be used as the photoinitiator.
  • the photoinitiator is benzophenone, o-benzoylbenzoate methyl, 4,4'-bis(dimethylamino)benzophenone, 4,4'-bis(diethylamino)benzophenone, 4,4'-dichlorobenzophenone, 4-benzoyl-4'-methyldiphenyl ketone, dibenzyl ketone, fluorenone, 2,2'-diethoxyacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2-hydroxy-2 -methyl Propiophenone, p-t-butyldichloroacetophenone, thioxanthone, 2-methylthioxanthone, 2-chlorothioxanthone, 2-isopropylthioxanthone, diethylthioxanthone, 4-azidobenzalacetophenone , 2,6-bis(p-azidobenzylidene)cyclohexanone, 6-bis(
  • the photoinitiator may include 1 to 50 parts by weight based on 100 parts by weight of the binder resin. If the content of the photoinitiator is less than 1 part by weight, there is a fear that the cured density of the exposed portion may decrease, and the cured coating film may be affected in the developing process. In addition, if the content of the photoinitiator exceeds 50 parts by weight, it may be difficult to form a desired pattern due to excessive light absorption in the upper part of the dry coating film.
  • an azide-based photocrosslinker compound more specifically, a compound in which an azide group, which is a photocrosslinkable functional group, is substituted at both ends of a linear alkylene group having 4 to 20 carbon atoms.
  • the same compound can be crosslinked without a photoinitiator, thereby reducing the content of the photoinitiator.
  • Specific types thereof include 1,4-diadobutane, 1,5-diadopentane, 1,6-diadohexane, 1,7-diadoheptane, 1,8-diadooctane, and 1,10-diazidotane. decane, 1,12-diazododecane, or mixtures thereof.
  • the total weight of the binder resin and the monomer including the photosensitive resin described above may be included in an amount of 13 parts by weight or less, more preferably 10 parts by weight or less, more preferably 2 to 10 parts by weight based on 100 parts by weight of the conductive metal powder. . If the total weight of the binder resin and monomer exceeds 13 parts by weight, there is a risk that cracks may occur in the electrode pattern layer during sintering in step (5) or separation between the laminated green sheet layers may occur. In addition, when the total weight of the binder resin and the monomer is less than 2 parts by weight, there is a risk of sedimentation of the metal powder or ceramic powder in the photosensitive electrode composition or the dispersibility is impaired. There is a possibility that this peels off.
  • the specific types of binder resin, monomer, and photoinitiator including the above-described photosensitive resin and their contents are determined by the manufacturing method through electrospray, the use of the internal electrode of the laminated ceramic part, the thickness, line width, and width of the internal electrode to be implemented. It should be noted that it can be determined by comprehensively considering the distance, the material and particle size of the metal powder and ceramic powder.
  • the photosensitive electrode composition includes a solvent, and the solvent can be employed in the spray solution during electrospray and has no effect such as infringing on the ceramic green sheet, which is the surface to be electrosprayed, and the conductive metal powder and ceramic powder described above.
  • the solvent used in the known photosensitive electrode composition capable of dissolving the binder resin may be selected without limitation.
  • dihydroterpineol dihydroterpineol acetate, terpineol, octanol, n-paraffin, decanol, tridecanol, dibutylphthalate, butyl acetate, butylcarbitol, butylcarbitol acetate, di Propylene glycol methyl ether, isobornyl acetate, isobornyl propionate, isobornyl butyrate, isobornyl isobutylate, ethylene glycol monobutyl ether acetate, dipropylene glycol methyl ether acetate, ethyl acetate, butyl acetate, hexyl acetate, etc.
  • One or more organic solvents may be used, preferably a mixed solvent of dihydroterpineol and dihydroterpineol acetate or a mixed solvent of dihydroterpineol acetate and ethyl acetate.
  • the photosensitive electrode composition may further include additives such as a dispersant, a plasticizer, a leveling agent, a thixotropic agent, a slip agent, and a curing accelerator in addition to the above-described components, and the additive is limited in the case of additives contained in known electrode compositions. Since it can be used without it, the present invention is not specifically limited thereto.
  • additives such as a dispersant, a plasticizer, a leveling agent, a thixotropic agent, a slip agent, and a curing accelerator in addition to the above-described components, and the additive is limited in the case of additives contained in known electrode compositions. Since it can be used without it, the present invention is not specifically limited thereto.
  • the dispersing agent is included to provide dispersion stability of the metal powder and the ceramic powder, and is not particularly limited as long as it is a dispersant commonly used in the photosensitive electrode composition.
  • the dispersant is preferably oleic acid, polyethylene glycol fatty acid ester, glycerin ester, sorbitan ester, propylene glycol ester, sugar ester, fatty acid alkanolamide, polyoxyethylene fatty acid amide, polyoxyethylene alkylamine, amine oxide and poly 12 - At least one selected from the group consisting of hydroxystearic acid may be used.
  • the additive including the dispersant may be included in an amount of 10 to 50 parts by weight based on 100 parts by weight of the photosensitive resin. If the additive is included in less than 10 parts by weight, it may be difficult to achieve a desired effect through the additive. In addition, when it exceeds 50 parts by weight, there is a fear that physical properties such as developability, printability, and conductivity of the photosensitive electrode composition may be deteriorated.
  • the photosensitive electrode composition containing the above-described components may have a viscosity of 50 to 150 cps, more preferably 70 to 100 cps at 25° C., and is suitable for electrospraying, and after electrospraying, an ultra-thin photosensitive electrode material layer And it is advantageous to implement a sintered internal electrode. If the viscosity is less than 50 cps, precipitation of the dispersed conductive metal powder and ceramic powder may occur rapidly, and there is a risk that the dispersibility may be deteriorated. In addition, if the viscosity exceeds 150cps, it may be difficult to precisely control the thickness through electrospray, and it may be difficult to manufacture a thin electrode. On the other hand, the viscosity here is the result of measurement with a Brookfield rotational viscometer LV based on ISO 554 under the conditions of a temperature of 25° C. and a relative humidity of 65% and 10 rpm.
  • the photosensitive electrode composition described above may be implemented by mixing the conductive metal powder, ceramic powder, binder resin and solvent, and then dispersing the conductive metal powder and ceramic powder. At this time, since a lot of heat is generated due to the fine powder during mixing and dispersing, it may be more advantageous to mix and disperse using a high-pressure dispersing device or a bead mill.
  • the electrospray (2) may be performed by injecting the photosensitive electrode composition as an injection solution into a known electrospray device.
  • the conditions at the time of electrospray may be performed by appropriately changing known electrospray conditions.
  • the stirring device may be a known stirring device such as an impeller, so the present invention is not particularly limited thereto.
  • step (3) as shown in (c) of FIG. 1 , the mask pattern layer 3 is disposed on the photosensitive electrode material layer 12a and then exposed to light.
  • the mask pattern layer 3 may have a pattern corresponding to the electrode pattern layer 12 to be implemented or a pattern inverse of the corresponding pattern. That is, when a positive type photoresist is used, a mask pattern layer corresponding to the pattern of the desired electrode pattern layer 12 can be used, and when a negative type photoresist is used, the pattern of the desired electrode pattern layer 12 is reversed. A mask pattern layer corresponding to may be used.
  • the exposure can use a known method for the photosensitive electrode composition, it can be carried out through irradiation of actinic ray or radiation, specifically, infrared light, visible light, ultraviolet light, far ultraviolet light, X-ray, electron beam, etc. , an ultrahigh pressure mercury lamp, a KrF excimer laser, an ArF excimer laser, an F2 excimer laser, an X-ray, an electron beam, etc. may be used as an example for this.
  • the type of light during exposure is UV
  • the exposure amount may be 100 mJ to 700 mJ, but is not limited thereto, and may be appropriately changed in consideration of the types of components contained in the photosensitive electrode composition, the thickness of the photosensitive electrode material layer, and the like.
  • step (4) as shown in (d) of FIG. 1, by treating the developer to remove the exposed or unexposed photosensitive electrode material layer portion to implement the electrode pattern layer 12 carry out
  • the developer may be used without limitation in the case of a known developer in the photolithography process, and an alkaline developer may be used, for example.
  • the alkali developer include inorganic alkalis such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, and aqueous ammonia; primary amines such as ethylamine and n-propylamine; secondary amines such as diethylamine and di-n-butylamine; tertiary amines such as triethylamine and methyldiethylamine; alcohol amines such as dimethylethanolamine and triethanolamine; quaternary ammonium salts such as tetramethylammonium hydroxide and tetraethylammonium hydroxide; cyclic amines such as pyrrole and piperidine; Alkaline aqueous solution, such as these can be used.
  • the alkali developer may be used.
  • the concentration of the alkali developer may be 0.1 to 5% by weight.
  • the developing time may be 20 to 100 seconds, but is not limited thereto, and may be changed in consideration of the specific type of the developer, the area to be removed, the thickness, and the like.
  • the portion removed through the developer varies depending on the type of the photosensitive electrode composition used.
  • the exposed portion is removed.
  • the unexposed portion may be removed, and in the case of FIG. 1(d), the electrode pattern layer 12 formed by removing the unexposed portion using the negative-type photosensitive electrode composition.
  • step (5) of the present invention a plurality of ceramic green sheets 10 , 20 , 30 provided with an electrode pattern layer 12 are stacked and then pressure sintered is performed.
  • the number of laminated ceramic green sheets 10 , 20 , and 30 may be determined in consideration of the type of multilayer ceramic electronic component to be implemented and the size of the electronic component.
  • the number of layers may be 100 or more, and more preferably, 150 or more, which may be advantageous for realizing a large-capacity MLCC.
  • the laminated ceramic green sheets 10, 20, and 30 are sintered while being pressurized.
  • the pressure can be appropriately adjusted in consideration of the thickness and the number of laminated ceramic green sheets, so the present invention is not particularly limited thereto.
  • the sintering condition may be appropriately adjusted in consideration of the thermal characteristics of the electrode pattern layer and the ceramic green sheet in the ceramic green sheets 10 , 20 , and 30 provided with the electrode pattern layer 12 .
  • the multilayer ceramic electronic component 100 implemented through the manufacturing method according to an embodiment of the present invention described above is disposed inside the ceramic body 110 and the body as shown in FIG. 1(f), and the electrode pattern layer It includes a plurality of internal electrodes having an average thickness of 0.7 ⁇ m or less, preferably 0.5 ⁇ m or less.
  • an external electrode (not shown) formed on the outer surface of the ceramic body 110 and electrically connected to the internal electrode may be further provided.
  • Some of the plurality of internal electrodes may be spaced apart from each other by a predetermined interval in the thickness direction when the stacking direction of the ceramic green sheet is based on the thickness direction of the ceramic body 110, and some of the internal electrodes have the thickness. It may be disposed to be spaced apart from each other at a predetermined distance in a plane direction perpendicular to the direction.
  • the ceramic green sheet in the limited volume of the ceramic body 110 has at least 100 layers, preferably 150 layers or more, in another example 200 layers or more, 300 layers or more, 400 layers or more, 500 layers or more, 600 layers or more. , 700 or more or 1000 or more layers may be laminated.
  • the average thickness of the internal electrodes is 0.7 ⁇ m or less, preferably 0.5 ⁇ m or less, and the minimum value of the vertical distance between adjacent internal electrodes spaced apart in the thickness direction of the ceramic body 110 is 2.0 ⁇ m or less. satisfied, and such a multilayer ceramic electronic component may be, for example, an MLCC.
  • a ceramic green sheet and a photosensitive electrode composition for electrospray were prepared, respectively.
  • the ceramic green sheet contains 10 parts by weight of a polyvinylbutylal binder resin in 100 parts by weight of a ceramic component, which is barium titanate, and a ceramic slurry having a viscosity of 300 cps prepared by mixing butyl carbitol acetate as a solvent.
  • a plurality of ceramic green sheets were prepared by drying after treatment so as to have a thickness of 5 ⁇ m manufactured using a conventional method.
  • nickel powder having an average particle diameter of 438 nm was specifically prepared through dry plasma. Afterwards, the prepared nickel powder was subjected to wet classification through centrifugal separation, with an average particle diameter of 75.0 nm, and particles having a particle diameter more than twice the average particle diameter were 9% of the total nickel powder, and particles having a particle diameter less than 0.5 times the average particle diameter were A conductive metal powder having a particle size distribution of 7% of the total nickel powder was prepared.
  • the average particle diameter is 21.8 nm through wet classification through centrifugation, and particles having a particle diameter twice or more of the average particle diameter
  • a ceramic powder having a particle size distribution in which 8.8% of the total ceramic powder and particles having a particle diameter of 0.5 times or less of the average particle diameter were 7.6% of the total ceramic powder was prepared.
  • dihydroterpineol and dihydroterpineol acetate are mixed in a mixed solvent in a weight ratio of 1:1, and the above-mentioned particle size is controlled nickel as conductive metal powder, ceramic powder, and photosensitive resin with a weight average molecular weight of about Polyvinyl butyral resin having a weight average molecular weight of about 70,000 and 75% by weight of an acrylate-based copolymer copolymerized with 10,000, 19.5 mol% of methacrylic acid, 38.5 mol% of methyl methacrylate and 42 mol% of isobornyl methacrylate A binder resin containing 25% by weight, 13 parts by weight of pentaerythritol tri-acrylate as a polyfunctional monomer, and azobisisobutyronitrile as a photoinitiator with respect to 100 parts by weight of the photosensitive resin were mixed, specifically Mix so that the total weight of the ceramic powder is 6.8 parts by weight, the binder
  • the viscosity of the prepared electrode composition for electrospray is the result of measurement with a Brookfield rotary viscometer LV according to ISO 554 under the conditions of a temperature of 25° C. and a relative humidity of 65% and a rotation speed of 10 rpm.
  • the photosensitive electrode composition for electrospray was applied on the prepared ceramic green sheet using an electrospray device under the condition of 18°C and 30% relative humidity. Under the conditions of 24 cm and applied voltage of 70 kV, electrospray was performed so that the thickness was within 1.0 ⁇ m when dried, dried at 65° C. for minutes, and then a dried photosensitive electrode material layer was implemented.
  • a mask pattern layer is placed on the photosensitive electrode material layer to have a predetermined electrode line pattern, and then exposed to UV at an intensity of 550 mJ, and development is performed for 30 seconds through a developer, which is a 3 wt% Na 2 CO 3 solution.
  • a pattern layer was implemented. After laminating 115 ceramic green sheets with electrode pattern layers, pressurized, heated in an atmospheric atmosphere, degreased, sintered at 1200 ° C. for 2 hours in a reducing atmosphere, and then reoxidized at 1100 ° C. in N 2 atmosphere for 2 hours. A multilayer ceramic part was manufactured.
  • the manufactured multilayer ceramic part had a good appearance without any external abnormalities such as deformation or cracking so that any part of the exterior was dented. No electrode damage such as short circuit of the inner electrode or electrode peeling such as a spaced gap between the inner electrode and the sintered body was observed. In addition, as a result of examining the thickness of single internal electrodes when observed under an optical microscope, the thickness was uniform.
  • the electrospray photosensitivity is as follows. The characteristics of the photosensitive electrode material layer and the sintered electrode pattern layer in a dried state realized by changing the composition of the electrode composition were examined.
  • the nickel powder which is a conductive metal powder
  • the nickel powder had an average particle diameter of 147.1 nm through wet classification through centrifugation, and a particle diameter that was more than twice the average particle diameter.
  • the average particle diameter is 65.8 nm, and particles having a particle diameter of more than twice the average particle diameter are 10% of the total ceramic powder, and particles having a particle diameter less than 0.5 times the average particle diameter are 9% of the total ceramic powder.
  • the preparation was carried out in the same manner as in Example 1, but the content, average particle diameter, particle size distribution, content of ceramic powder, average particle diameter, and/or the viscosity of the electrode composition of the prepared electrospray photosensitive electrode composition are shown in the table below.
  • a ceramic sheet provided with a sintered electrode pattern layer as shown in Table 1 or Table 2 was prepared by changing as shown in Table 1 or Table 2.
  • the ceramic powder used has a particle size distribution such that particles having a particle diameter of 2 times or more of the average particle diameter are within 10% of the total ceramic powder, and particles having a particle diameter of 0.5 times or less of the average particle diameter are within 10% of the total ceramic powder.
  • Ceramic powder whose particle size was controlled through wet classification was used.
  • the photosensitive electrode composition for electrospray used in Example 4 was the same as that used in Preparation Example 1.
  • the photosensitive electrode composition is electrosprayed and dried after the photosensitive electrode material layer (hereinafter also referred to as 'dry electrode') or after exposure, development and sintering
  • 'dry electrode' the photosensitive electrode material layer
  • 'sintered electrode' The following physical properties were measured for the electrode pattern layer (hereinafter also referred to as 'sintered electrode'), and the results are shown in Table 1 or Table 2 below.
  • the average thickness was measured using an alpha-step (Dektak 150, Bruker), which is a stylus-type surface step measuring instrument.
  • the average thickness of each of the 5 regions is measured.
  • the standard deviation was calculated to calculate the thickness uniformity according to Equation 1 below.
  • Thickness uniformity (%) [Standard deviation for the average thickness of 5 regions (nm) / Average value for the average thickness of 5 regions (nm)] ⁇ 100
  • the photosensitive electrode material layer was observed with an optical microscope, counting the number of parts where no electrode was formed, and measuring the area, and evaluated as 0 to 5 points according to the following criteria.
  • the number of parts where electrodes are not formed is 1 to 2 and the area of parts where electrodes are not formed is within 2% of the total area of the observed electrode: 4 points
  • the number of parts where electrodes are not formed is more than 2 and less than 5, and the non-electrode area is less than 5% of the total area of the observed electrode: 3 points
  • the number of non-electrode areas exceeds 20 and the non-electrode area exceeds 15% of the observed total area of the electrode: 0 points
  • the shrinkage ratio of the sintered electrode pattern layer was measured, and the shrinkage degree of the other examples was expressed as a relative percentage based on the shrinkage ratio value of Example 4 as 100.
  • the shrinkage ratio was calculated by measuring the average thickness of the electrode pattern layer before sintering and the average thickness of the electrode pattern layer after sintering, and the value calculated by Equation 2 below was used as the shrinkage ratio.
  • Shrinkage (%) (Average thickness of electrode pattern layer after sintering (nm)/Average thickness of electrode pattern layer before sintering (nm)) ⁇ 100
  • thickness uniformity is obtained by dividing the electrode surface into 5 non-overlapping areas for the electrode surface on which the thickness is measured, then measuring the average thickness for each of the 5 areas, and then measuring the average thickness of the 5 electrode areas and The standard deviation was calculated and the thickness uniformity was calculated according to Equation 1 above.
  • 'Ratio A' and 'Ratio B' are the ratio of particles having a particle diameter of at least twice the average particle diameter of the conductive metal powder and 0.5 times or less of the average particle diameter of the total number of conductive metal powders, respectively. It means the proportion of particles.
  • the 'ratio C' means a value obtained by dividing the average particle diameter of the ceramic powder by the average particle diameter of the conductive metal powder.
  • the content of the conductive metal powder is a content ratio based on the total weight of the electrode composition for electrospray, and the content of the ceramic powder is the content based on 100 parts by weight of the conductive metal powder.
  • Example 15 Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7 conductive metal powder type/ Content (wt%) 25 25 25 25 25 25 25 25 25 average particle diameter (nm) 160.3 147.1 142.2 98.0 75.0 75.0 75.0 Ratio A (%) 10 15 26 12 9 9 9 9 Ratio B (%) 8 18 23 9 7 7 7 7 Ceramic powder (type/content) Type/content (parts by weight) 6.8 6.8 6.8 6.8 6.8 6.8 6.8 average particle diameter (nm) 75 65.8 65.8 42.2 21.8 31.1 6.5 39.8 Ratio C 0.47 0.45 0.46 0.43 0.29 0.41 0.087 0.53 Viscosity (cps) 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80
  • Example 8 Example 9 Example 10 Example 11 Example 12 Example 13 Example 14 conductive metal powder type/ Content (wt%) 35 10 8 25 25 25 25 Average particle diameter (nm) 75.0 75.0 75.0 75.0 75.0 75.0 75.0 Ratio A (%) 9 9 9 9 9 9 9 9 9 9 Ratio B (%) 7 7 7 7 7 7 7 ceramic powder type/ Content (parts by weight) 4.2 6.8 6.8 9.7 11.5 4 2.5 Average particle diameter (nm) 21.8 21.8 21.8 21.8 21.8 21.8 21.8 21.8 Ratio C 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 Viscosity (cps) 94 72 71 84 85 79 79 Dry electrode average thickness (nm) 440 446 408 450 441 442 428 Dry electrode thickness uniformity (%) 16.9 10.3 25.1 9.4 9.8 9.5 19.2 in dry electrode Maximum thickness ( ⁇ m) within 1.0 within 1.0 within 1.0 within 1.0 within 1.0 within 1.0 within 1.0 within
  • Example 15 using the photosensitive electrode composition containing the conductive metal powder having an average particle diameter of more than 150 nm, the average thickness of the dry electrode satisfies within 1.0 ⁇ m, but the thickness uniformity is very poor at 30.15%. It can be seen that it is difficult to implement a thin internal electrode even if the thickness exceeds 1.0 ⁇ m and is sintered.
  • the maximum thickness of the dry electrode formed after electrospraying was 1.0 ⁇ m or less, but in Example In case of 2, particles with a particle size more than twice the average particle diameter amount to 26% of the conductive metal powder, resulting in a large number of coarse particles.
  • the continuous electrode surface formability is significantly lowered compared to Example 1.
  • the quality of the implemented electrode is deteriorated because the undercut is deepened because exposure to the lower side of the electrode is not performed properly.
  • Example 3 in the case of Examples 3 and 4 using the photosensitive electrode composition having the average particle diameter of the conductive metal powder to be 100 nm or less, the average thickness of the dry electrode realized when electrospraying under the same conditions was higher than in Example 1. It can be seen that the thickness uniformity of the dry electrode and the formability of the continuous electrode surface are increased while being implemented thin.
  • the proportion of particles that are more than twice the average particle diameter of the conductive metal powder is further reduced, so that the conductive metal powder sprayed during electric spraying.
  • the thickness uniformity of the dry electrode, the continuous electrode surface formation, and the shrinkage and thickness uniformity of the sintered electrode are improved. It can be seen that it is implemented very well.
  • Example 6 using a photosensitive electrode composition in which a ceramic powder having an average particle diameter of less than 0.1 times the average particle diameter of the conductive metal powder was mixed, the thickness uniformity of the dry electrode was lowered compared to that of Example 4, and the sintered electrode was It can be seen that the shrinkage characteristics and thickness uniformity are lowered.
  • Example 7 using the photosensitive electrode composition mixed with ceramic powder having an average particle diameter exceeding 0.5 times the average particle diameter of the conductive metal powder, it can be seen that the shrinkage characteristic of the sintered electrode was greatly reduced.
  • Example 8 using the photosensitive electrode composition in which the content of the conductive metal powder exceeds 30% by weight, the increased electrical conductivity of the photosensitive electrode composition affects the electrospray, and the continuous electrode surface formability is lowered compared to Example 4. , it can be seen that the thickness uniformity of the dry electrode is also lowered. In addition, it can be seen that the undercut is deepened because exposure of the lower side of the electrode is not performed properly.
  • Example 10 using the photosensitive electrode composition containing less than 10% by weight of the conductive metal powder, the continuous electrode surface formability and uniformity of dry thickness were lowered compared to Example 9.
  • Example 12 using the photosensitive electrode composition containing more than the preferred range with respect to the content of the ceramic powder, the shrinkage of the sintered electrode was significantly increased compared to that of Example 4, and the photosensitive electrode containing the ceramic powder below the preferred range It can be seen that the thickness uniformity of the dry electrode implemented in Example 14 using the composition was insignificant compared to that of Example 13.

Abstract

A multilayer ceramic electronic component manufacturing method is provided. The multilayer ceramic electronic component manufacturing method according to one embodiment of the present invention: more easily and reliably enables an inner electrode to be implemented as an ultra-thin film and a micropattern, which is required for large-capacity; enables the provided inner electrode to have excellent thickness uniformity even when same is formed as an ultra-thin film; and can prevent the deformation or interfacial delamination of a sintered body due to the difference between the shrinkage properties of the internal electrode and a ceramic green sheet after sintering.

Description

적층세라믹 전자부품 제조방법 및 이를 통해 구현된 적층세라믹 전자부품Multilayer ceramic electronic component manufacturing method and multilayer ceramic electronic component realized through it
본 발명은 적층세라믹 전자부품 제조방법 및 이를 통해 구현된 적층세라믹 전자부품에 관한 것이다.The present invention relates to a method for manufacturing a multilayer ceramic electronic component and to a multilayer ceramic electronic component implemented through the method.
전자기기에 많이 사용되는 전자부품들 중 콘덴서, 커패시터, 바리스터, 서프레서, MLCC 등의 소자들은 전극패턴이 인쇄된 그린시트를 수 개에서 수백 개 적층시킨 뒤 전극과 그린시트를 동시소결하여 단일의 소자를 구현하는 동시소결형 적층세라믹 전자부품에 해당하는데, 최근 전자기기의 소형화, 고성능화에 맞춰서 이들 소자들도 소형화 및 고용량화 되도록 많은 연구가 이루어지고 있다. Among the electronic components widely used in electronic devices, elements such as capacitors, capacitors, varistors, suppressors, and MLCCs laminate several to hundreds of green sheets printed with electrode patterns, and then simultaneously sinter the electrodes and green sheets to form a single unit. It corresponds to a co-sintering type multilayer ceramic electronic component that implements a device, and many researches are being made so that these devices can also be miniaturized and high-capacity in line with the recent miniaturization and high performance of electronic devices.
이와 같은 동시소결형 적층세라믹 전자부품의 경우 고용량화를 위해서 그린시트를 구성하는 유전체 및 전극의 재질을 개량시키는 것 이외에도 더 많은 개수의 그린시트를 적층시키는 고적층화를 위한 시도가 계속되고 있다. 동시소결형 적층세라믹 전자부품의 고적층화를 위해서는 유전체에 해당하는 그린시트와 전극패턴의 두께 감소가 요구되며, 소형화를 위해서는 전극패턴의 전극 선폭, 전극 간 간격의 미세화가 필수적으로 요구된다.In the case of such a co-sintered multilayer ceramic electronic component, in addition to improving the materials of the dielectric and electrode constituting the green sheet for high capacity, attempts for high lamination by laminating a larger number of green sheets are continuing. In order to achieve high lamination of co-sintered multilayer ceramic electronic components, it is necessary to reduce the thickness of the green sheet and electrode pattern corresponding to the dielectric.
한편, 종래에 그린시트 상에 전극패턴을 인쇄하는 방법은 스크린 인쇄법이나 그라비아 인쇄법을 이용해왔는데, 스크린 인쇄법이나 그라비아 인쇄법은 비용이 저렴한 이점이 있다. 그러나 이들 방법들은 전극 선폭과 전극 간 간격이 40 ~ 80㎛ 수준으로 밖에 구현할 수 없어서 이 방법들로는 더 작고 정교한 미세한 패턴을 형성하기 곤란하다. 또한, 인쇄 후 전극 두께가 5 ~ 100㎛ 수준으로 1㎛ 이하의 초박막의 전극패턴을 형성하기 어려움에 따라서 고적층화 및 소형화된 동시소결형 적층세라믹 전자부품의 내부 전극을 종래의 스크린 인쇄법이나 그라비아 인쇄법으로는 형성시키기 어려운 문제가 있다. 또한, 초박막의 전극 인쇄를 위해서는 인쇄용 전극 조성물의 점도를 크게 낮춰야 하는데, 이로 인해 인쇄번짐, 인쇄 해상도 저하의 문제가 있다. On the other hand, the conventional method of printing the electrode pattern on the green sheet has used a screen printing method or a gravure printing method, the screen printing method or the gravure printing method has an advantage of low cost. However, since these methods can implement only the electrode line width and the inter-electrode spacing of 40 ~ 80㎛ level, it is difficult to form a smaller and more sophisticated fine pattern with these methods. In addition, since it is difficult to form an ultra-thin electrode pattern of 1 μm or less with an electrode thickness of 5 to 100 μm after printing, the internal electrodes of highly laminated and miniaturized co-sintered multilayer ceramic electronic components can be fabricated using conventional screen printing or gravure methods. There is a problem in that it is difficult to form by the printing method. In addition, in order to print an ultra-thin electrode, the viscosity of the printing electrode composition must be greatly reduced, which causes problems in printing blur and lowering of print resolution.
이에 최근에는 미세 패턴화된 전극을 잉크젯 프린팅 방법으로 구현하는 시도가 계속되고 있는데, 잉크젯 프린팅을 이용해 전극을 형성시킬 경우 두께 1㎛ 이하의 초박막 전극패턴의 구현은 가능하나 생산성이 좋지 않고, 전극 제조용 잉크의 비용이 비싸며, 대면적의 그린시트 상에 전극패턴을 인쇄하기 용이하지 않은 문제가 있다. In recent years, attempts have been made to implement a micropatterned electrode by an inkjet printing method. When an electrode is formed using inkjet printing, it is possible to implement an ultra-thin electrode pattern with a thickness of 1 μm or less, but productivity is not good, and it is used for electrode manufacturing. Ink is expensive, and there is a problem in that it is not easy to print an electrode pattern on a green sheet of a large area.
이에 따라서 대면적의 그린시트 상에 초박막의 전극패턴을 쉽고, 저렴한 비용으로 형성시켜서 고적층화된 적층세라믹 전자부품을 제조할 수 있는 방법에 대한 개발이 시급한 실정이다.Accordingly, there is an urgent need to develop a method for manufacturing a highly laminated multilayer ceramic electronic component by easily and inexpensively forming an ultra-thin electrode pattern on a large-area green sheet.
본 발명은 상기와 같은 점을 감안하여 안출한 것으로, 적층세라믹 전자부품의 대용량화의 구현을 위하여 요구되는 내부전극의 초박막화 및 미세패턴화를 보다 용이하고 신뢰성 있게 구현할 수 있는 적층세라믹 전자부품 제조방법 및 이를 통해 구현된 적층세라믹 전자부품을 제공하는데 목적이 있다. The present invention has been devised in consideration of the above points, and a method for manufacturing a multilayer ceramic electronic component that can more easily and reliably realize ultra-thin and micro-patterning of the internal electrode required for realizing a large-capacity multilayer ceramic electronic component. And an object of the present invention is to provide a multilayer ceramic electronic component implemented through this.
또한, 본 발명은 초박막화된 전극의 우수한 두께 균일도를 가지도록 구현하는 동시에 소결 후 내부전극과 세라믹 그린시트 간의 수축특성 차이로 인한 소결체의 형상 변형이나 층간 분리가 방지되는 적층세라믹 전자부품 제조방법 및 이를 통해 구현된 적층세라믹 전자부품을 제공하는데 다른 목적이 있다.In addition, the present invention is a multilayer ceramic electronic component manufacturing method that is implemented to have excellent thickness uniformity of an ultra-thin electrode and at the same time prevents shape deformation of a sintered body or separation between layers due to a difference in shrinkage characteristics between an internal electrode and a ceramic green sheet after sintering; Another object is to provide a multilayer ceramic electronic component implemented through this.
상술한 과제를 해결하기 위하여 본 발명은 (1) 세라믹 그린시트를 준비하는 단계, (2) 세라믹 그린시트 상부 전면에 감광성 전극 조성물을 전기 분사시켜서 포지티브 또는 네거티브 타입의 감광성 전극물질층을 형성시키는 단계, (3) 마스크 패턴층을 상기 포지티브 또는 네거티브 타입의 감광성 전극물질층 상에 배치시킨 뒤 노광시키는 단계, (4) 현상액을 처리해 노광 또는 비노광된 감광성 전극물질층 부분을 제거시켜서 전극 패턴층을 구현하는 단계, (5) 전극 패턴층이 구비된 세라믹 그린시트를 다수 장 적층시킨 뒤 가압 소결시키는 단계를 포함하는 적층세라믹 전자부품 제조방법을 제공한다.In order to solve the above problems, the present invention provides a step of (1) preparing a ceramic green sheet, (2) forming a positive or negative type photosensitive electrode material layer by electrospraying a photosensitive electrode composition on the entire upper surface of the ceramic green sheet. , (3) disposing a mask pattern layer on the positive or negative type photosensitive electrode material layer and exposing it, (4) treating the developer solution to remove the exposed or unexposed photosensitive electrode material layer portion to form the electrode pattern layer There is provided a method for manufacturing a multilayer ceramic electronic component comprising the steps of implementing, (5) laminating a plurality of ceramic green sheets provided with an electrode pattern layer and then press-sintering.
본 발명의 일 실시예에 의하면, 상기 세라믹 그린시트는 평균두께가 5.0㎛ 이하일 수 있다. According to an embodiment of the present invention, the ceramic green sheet may have an average thickness of 5.0 μm or less.
또한, 제조된 적층세라믹 전자부품은 MLCC이며, (5) 단계에서 세라믹 그린시트의 적층수는 100개 이상일 수 있다. In addition, the manufactured multilayer ceramic electronic component is MLCC, and the number of stacked ceramic green sheets in step (5) may be 100 or more.
또한, 상기 감광성 전극 조성물은 건조 시 평균두께가 1.0㎛ 이하인 감광성 전극물질층을 구현하기 위하여 평균입경이 150㎚ 이하인 도전성 금속분말, 세라믹 분말, 감광성 수지를 포함하는 바인더 수지, 모노머, 광개시제 및 용제를 포함할 수 있다. In addition, the photosensitive electrode composition includes a binder resin including a conductive metal powder, ceramic powder, and photosensitive resin having an average particle diameter of 150 nm or less, a monomer, a photoinitiator and a solvent to realize a photosensitive electrode material layer having an average thickness of 1.0 μm or less when dried. may include
또한, 상기 도전성 금속분말은 평균입경이 80㎚ 이하일 수 있다. In addition, the conductive metal powder may have an average particle diameter of 80 nm or less.
또한, 상기 도전성 금속분말은 평균입경의 2배 이상의 입경을 가지는 입자의 수가 전체 도전성 금속분말 개수의 20% 이하이며, 평균입경의 0.5배 이하의 입경을 가지는 입자의 수가 전체 도전성 금속분말 개수의 20% 이하일 수 있다.In addition, in the conductive metal powder, the number of particles having a particle diameter of 2 times or more of the average particle diameter is 20% or less of the total number of conductive metal powders, and the number of particles having a particle diameter of 0.5 times or less of the average particle diameter is 20 of the total number of conductive metal powders % or less.
또한, 상기 도전성 금속분말은 Ni, Mn, Cr, Al, Ag, Cu, Pd, W, Mo 및 Co로 이루어진 군에서 선택된 1종의 금속, 이들 중 적어도 1종을 포함하는 합금, 및 이들 중 적어도 2종을 포함하는 혼합금속 중 어느 하나 이상을 포함할 수 있다. In addition, the conductive metal powder may include at least one metal selected from the group consisting of Ni, Mn, Cr, Al, Ag, Cu, Pd, W, Mo and Co, an alloy including at least one of them, and at least one of them. It may include any one or more of mixed metals including two types.
또한, 상기 세라믹 분말은 티타니아, 알루미나, 실리카, 코디에라이트, 뮬라이트, 스피넬, 티탄산 바륨, 칼슘지르코니아 및 지르코니아로 이루어지는 군으로부터 선택되는 적어도 1종 이상의 세라믹 분말을 포함할 수 있다.In addition, the ceramic powder may include at least one ceramic powder selected from the group consisting of titania, alumina, silica, cordierite, mullite, spinel, barium titanate, calcium zirconia, and zirconia.
또한, 상기 도전성 금속분말은 전체 중량 기준 10 ~ 30중량%로 구비될 수 있다. In addition, the conductive metal powder may be provided in an amount of 10 to 30% by weight based on the total weight.
또한, 상기 세라믹 분말은 도전성 금속분말 평균입경의 0.1 ~ 0.5배의 평균입경을 가질 수 있다. In addition, the ceramic powder may have an average particle diameter of 0.1 to 0.5 times the average particle diameter of the conductive metal powder.
또한, 상기 세라믹 분말은 도전성 금속분말 100 중량부에 대해서 4 ~ 10 중량부로 포함될 수 있다. In addition, the ceramic powder may be included in an amount of 4 to 10 parts by weight based on 100 parts by weight of the conductive metal powder.
또한, 상기 바인더 수지 및 모노머의 중량 총합은 도전성 금속분말 100 중량부에 대해서 2 ~ 13중량부로 포함될 수 있다.In addition, the total weight of the binder resin and the monomer may be included in an amount of 2 to 13 parts by weight based on 100 parts by weight of the conductive metal powder.
또한, 상기 세라믹 분말은 평균입경이 45㎚ 이하일 수 있다. In addition, the ceramic powder may have an average particle diameter of 45 nm or less.
또한, 상기 감광성 전극 조성물은 네거티브 타입이며, 상기 감광성 수지는 글리시딜메타크릴레이트(GMA), 메틸메타크릴레이트(MMA), 이소보닐 메타크릴레이트(IBOMA), 벤질메타크릴레이트, 메타크릴산(MMA), 아크릴산(AA) 및 스티렌 모노머 중 적어도 2개의 단량체가 공중합된 아크릴레이트계 공중합체를 포함할 수 있다. In addition, the photosensitive electrode composition is a negative type, and the photosensitive resin is glycidyl methacrylate (GMA), methyl methacrylate (MMA), isobornyl methacrylate (IBOMA), benzyl methacrylate, methacrylic acid It may include an acrylate-based copolymer in which at least two monomers of (MMA), acrylic acid (AA), and styrene monomers are copolymerized.
또한, 감광성 수지 100 중량부에 대하여 모노머 10 ~ 100 중량부 및 광개시제 1 ~ 50 중량부를 포함할 수 있다. In addition, 10 to 100 parts by weight of the monomer and 1 to 50 parts by weight of the photoinitiator may be included with respect to 100 parts by weight of the photosensitive resin.
또한, 상기 감광성 수지는 메타크릴산, 메틸메타크릴레이트 및 이소보닐 메타크릴레이트가 공중합된 것으로서, 메타크릴산이 15.5 내지 19.5몰%로 함유되고, 중량평균분자량이 8000 내지 15000인 아크릴레이트계 공중합체를 포함할 수 있다.In addition, the photosensitive resin is a copolymer of methacrylic acid, methyl methacrylate and isobornyl methacrylate, and contains 15.5 to 19.5 mol% of methacrylic acid, and an acrylate-based copolymer having a weight average molecular weight of 8000 to 15000. may include.
또한, 상기 모노머는 다관능성 모노머일 수 있다. In addition, the monomer may be a polyfunctional monomer.
또한, 상기 바인더 수지는 폴리비닐부티랄 수지를 더 포함할 수 있다. In addition, the binder resin may further include a polyvinyl butyral resin.
또한, 상기 감광성 전극 조성물은 25℃에서 점도가 50 ~ 150cps일 수 있다. In addition, the photosensitive electrode composition may have a viscosity of 50 to 150 cps at 25°C.
또한, 본 발명은 세라믹 몸체 및 상기 몸체 내부에 배치된 다수 개의 내부전극을 포함하는 적층세라믹 전자부품에 있어서, 상기 내부전극의 평균두께가 0.7㎛ 이하이며, 다수 개의 내부전극 중 세라믹 몸체의 두께방향으로 이격하여 인접한 내부전극 간 수직거리의 최소값이 2.0㎛ 이하인 적층세라믹 전자부품을 제공한다.In addition, the present invention provides a multilayer ceramic electronic component including a ceramic body and a plurality of internal electrodes disposed inside the body, wherein an average thickness of the internal electrode is 0.7 μm or less, and the thickness direction of the ceramic body among the plurality of internal electrodes is Provided is a multilayer ceramic electronic component having a minimum vertical distance between adjacent internal electrodes spaced apart from each other by 2.0 μm or less.
본 발명에 의한 적층세라믹 전자부품 제조방법은 적층세라믹 전자부품의 대용량화의 구현을 위하여 요구되는 내부전극의 초박막화 및 미세패턴화를 보다 용이하고 신뢰성 있게 구현시킬 수 있다. 또한, 구비된 내부전극을 초박막화 함에도 우수한 두께 균일도를 가지도록 구현할 수 있고, 소결 후 내부전극과 세라믹 그린시트 간의 수축특성 차이로 인한 소결체의 형상 변형이나 층간 분리가 방지될 수 있다. 나아가 초박막화된 전극을 구현 시 소결 전 세라믹 그린시트의 열등한 내화학성에 따라 받을 수 있는 침해를 방지해 초도에 설계한 용량 및 내구성이 온전히 구현된 적층세라믹 전자부품을 제조할 수 있다.The method for manufacturing a multilayer ceramic electronic component according to the present invention can more easily and reliably realize the ultra-thin and micro-patterning of the internal electrode, which are required for realizing a large-capacity multilayer ceramic electronic component. In addition, even when the provided internal electrode is made ultra-thin, it can be implemented to have excellent thickness uniformity, and after sintering, shape deformation of the sintered body or separation between layers due to a difference in shrinkage characteristics between the internal electrode and the ceramic green sheet can be prevented. Furthermore, when realizing ultra-thin electrodes, it is possible to manufacture multilayer ceramic electronic components that fully realize the capacity and durability designed in the beginning by preventing the damage that can be caused by the poor chemical resistance of the ceramic green sheet before sintering.
도 1은 본 발명의 일 실시예에 따른 적층세라믹 전자부품의 제조방법을 도시한 공정모식도,1 is a process schematic diagram showing a method of manufacturing a multilayer ceramic electronic component according to an embodiment of the present invention;
도 2는 본 발명의 일 실시예에 사용되는 전기분사용 감광성 전극조성물에 포함되는 도전성 금속분말로써 평균입경이 75㎚인 니켈 분말의 SEM 사진, 2 is a SEM photograph of nickel powder having an average particle diameter of 75 nm as a conductive metal powder included in the photosensitive electrode composition for electrospray used in an embodiment of the present invention;
도 3은 도 2에 따른 니켈 분말이 습식분급 되기 전 SEM 사진,3 is an SEM photograph before the nickel powder according to FIG. 2 is wet classified;
도 4는 본 발명의 일 실시예에 사용되는 전기분사용 감광성 전극조성물에 포함되는 세라믹 분말로써 티탄산바륨 분말의 SEM 사진,4 is a SEM photograph of barium titanate powder as a ceramic powder included in the photosensitive electrode composition for electrospray used in an embodiment of the present invention;
도 5 및 도 6은 각각 도 2 및 도 3에 따른 니켈 분말을 함유한 전기분사용 전극조성물의 사진으로서, 도 5는 니켈 분말의 침강 없이 세라믹 분말과 균일분산된 사진이고, 도 6은 니켈 분말의 침강에 따라서 세라믹 분말과 상분리가 발생한 사진, 그리고 5 and 6 are photographs of an electrode composition for electrospray containing nickel powder according to FIGS. 2 and 3, respectively, and FIG. 5 is a photograph uniformly dispersed with ceramic powder without precipitation of nickel powder, FIG. 6 is nickel powder A photograph of ceramic powder and phase separation due to sedimentation, and
도 7 및 도 8은 본 발명의 일 실시예에 사용되는 전기분사용 감광성 전극조성물이 소정의 패턴으로 전기분사된 후 건조된 전극패턴에 대한 광학현미경 사진으로서, 도 7은 전극패턴 내 전극이 미형성된 부분이 없는 연속 전극면 형성성이 우수한 전극패턴의 사진이며, 도 8은 전극패턴 내 전극이 미형성된 탈락전극이 부분적으로 존재해 연속 전극면이 부분적으로 형성되지 못한 전극패턴의 사진이다.7 and 8 are optical micrographs of an electrode pattern dried after the photosensitive electrode composition for electrospray used in an embodiment of the present invention is electrosprayed in a predetermined pattern, and FIG. 7 is an electrode in the electrode pattern. It is a photograph of an electrode pattern having excellent formability of a continuous electrode surface without a formed portion, and FIG. 8 is a photograph of an electrode pattern in which a continuous electrode surface is not partially formed due to the partial presence of a drop-out electrode in which an electrode is not formed in the electrode pattern.
이하, 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. Hereinafter, embodiments of the present invention will be described in detail so that those of ordinary skill in the art can easily implement them. The present invention may be embodied in many different forms and is not limited to the embodiments described herein.
도 1을 참조하여 설명하면, 본 발명의 일 실시예 따른 적층세라믹 전자부품의 제조방법은 (1) 세라믹 그린시트(11)를 준비하는 단계(도 1의 (a)), (2) 세라믹 그린시트(11) 상부 전면에 감광성 전극 조성물을 전기 분사(2) 시켜서 포지티브 또는 네거티브 타입의 감광성 전극물질층(12a)을 형성시키는 단계(도 1의 (b)), (3) 마스크 패턴층(3)을 상기 감광성 전극물질층(12a) 상에 배치시킨 뒤 노광시키는 단계(도 1의 (c)), (4) 현상액을 처리해 노광 또는 비노광된 감광성 전극물질층 부분(12a)을 제거시켜서 전극 패턴층(12)을 구현하는 단계(도 1의 (d)), (5) 전극 패턴층(12)이 구비된 세라믹 그린시트(10)를 다수 장 적층시킨 뒤 가압 소결시키는 단계(도 1의 (e), (f))를 포함하여 수행된다. Referring to FIG. 1 , a method of manufacturing a multilayer ceramic electronic component according to an embodiment of the present invention includes (1) preparing a ceramic green sheet 11 ((a) of FIG. 1), (2) ceramic green Forming a photosensitive electrode material layer 12a of a positive or negative type by electrospraying (2) the photosensitive electrode composition on the entire upper surface of the sheet 11 (FIG. 1 (b)), (3) Mask pattern layer 3 ) is disposed on the photosensitive electrode material layer 12a and exposed to light (FIG. 1 (c)), (4) treated with a developer to remove the exposed or unexposed photosensitive electrode material layer portion 12a to remove the electrode Implementing the pattern layer 12 ((d) of FIG. 1), (5) laminating a plurality of ceramic green sheets 10 provided with the electrode pattern layer 12, followed by pressure sintering (see FIG. 1) (e), (f)) is carried out.
먼저, 본 발명의 (1) 단계로써, 세라믹 그린시트(11)를 준비하는 단계(도 1의 (a))를 수행한다. First, as the step (1) of the present invention, the step of preparing the ceramic green sheet 11 (FIG. 1 (a)) is performed.
세라믹 그린시트(11)는 적층세라믹 전자부품을 제조 시 사용되는 공지의 세라믹 그린시트 또는 공지의 세라믹 그린시트의 조성 등을 적절히 변경한 세라믹 그린시트의 경우 제한 없이 사용될 수 있다. 상기 세라믹 그린시트(11)는 목적하는 적층세라믹 전자부품의 용도에서 요구되는 물성 구현에 적합한 세라믹 재료가 사용될 수 있다. 이를 MLCC를 예시로 설명하면, 세라믹 그린시트는 class Ⅰ 및/또는 class Ⅱ로 통칭되는 유전체 재료를 포함할 수 있다. 다만, 고용량의 MLCC 구현 측면에서 class Ⅱ로 통칭되는 유전체 재료 주성분으로 포함할 수 있으며, 일 예로, BaTiO3, (Ba,Ca)(Ti,Zr)O3, CaTiO3, SrTiO3, CaZrO3 등의 강유전체를 사용할 수 있다.The ceramic green sheet 11 may be used without limitation in the case of a known ceramic green sheet used in manufacturing a multilayer ceramic electronic component or a ceramic green sheet in which a composition of a known ceramic green sheet is appropriately changed. The ceramic green sheet 11 may be formed of a ceramic material suitable for realizing physical properties required for a desired use of a multilayer ceramic electronic component. When MLCC is described as an example, the ceramic green sheet may include a dielectric material commonly referred to as class I and/or class II. However, in terms of implementing high-capacity MLCC, it may be included as a main component of a dielectric material commonly referred to as class II, and for example, BaTiO 3 , (Ba,Ca)(Ti,Zr)O 3 , CaTiO 3 , SrTiO 3 , CaZrO 3 , etc. of ferroelectrics can be used.
또한, 상술한 유전체 재료 이외에 부성분으로 유리질 성분, 유전체 재료를 결합시키기 위한 바인더 성분 및 용제를 더 포함할 수 있고, 이외에 통상적인 세라믹 그린시트를 제조 시 포함되는 상술한 성분 이외의 성분을 더 포함할 수 있으며, 본 발명은 이에 대해 특별히 한정하지 않는다. 한편, 상기 유리질 성분은 소체의 밀도를 증가시켜 소체의 기계적강도를 담보하기 위한 것으로써, Al, B, Si, Ca 및 Mg로 이루어진 군에서 선택된 1 종 이상의 금속 또는 비금속의 산화물을 포함할 수 있다. In addition, in addition to the above-described dielectric material, a glassy component, a binder component for bonding the dielectric material, and a solvent may be further included as sub-components, and in addition, components other than the above-mentioned components included in manufacturing a conventional ceramic green sheet may be further included. and the present invention is not particularly limited thereto. On the other hand, the glassy component is to increase the density of the body to ensure the mechanical strength of the body, Al, B, Si, Ca and Mg may include at least one metal or non-metal oxide selected from the group consisting of. .
한편, 고적층화된 대용량의 적층세라믹 전자부품을 구현하기 위해서는 세라믹 그린시트(11)의 두께 역시 얇아지는 것이 유리한데, 이를 위해서는 상술한 유전체 재료나 유리질 성분 역시 미립자화 되는 것이 바람직하며, 일 예로, 1㎛ 이하, 보다 바람직하게는 800㎚ 이하로 미립자화된 유전체 재료나 유리질 성분을 사용함이 좋다. On the other hand, it is advantageous to also reduce the thickness of the ceramic green sheet 11 in order to realize a highly laminated high-capacity multilayer ceramic electronic component. It is preferable to use a dielectric material or a glassy component finely divided into 1 μm or less, more preferably 800 nm or less.
상기 세라믹 그린시트(11)는 유전체 재료, 유리질 성분, 바인더 성분, 용제 등을 습식 혼합하여 세라믹 슬러리를 제조한 뒤 이를 캐리어 필름(1) 상에 소정의 두께로 도포하고 건조시켜서 구현될 수 있다. 이때, 세라믹 슬러리의 도포방법은 일 예로 다이 코터, 그라비아 코터, 마이크로 그라비어 코터 등의 공지된 방법, 방법에 따른 공지된 조건 및 장치를 적절히 이용할 수 있으므로 본 발명은 이에 대해 구체적인 설명을 생략한다. 또한, 상기 캐리어 필름(1)은 그린시트 제조 시 사용되는 공지의 필름일 수 있으며, 일 예로 PET 필름일 수 있으며, 상기 PET 필름의 일면에는 이형층이 더 포함될 수 있다. 또한, 캐리어 필름(1) 상에 도포된 세라믹 슬러리는 건조공정을 거칠 수 있는데, 상기 건조공정은 용제의 종류 및 함량, 도포된 세라믹 슬러리의 두께 등을 고려해 공지된 조건을 이용하여 수행될 수 있다.The ceramic green sheet 11 may be implemented by wet-mixing a dielectric material, a glassy component, a binder component, a solvent, etc. to prepare a ceramic slurry, then coating it to a predetermined thickness on the carrier film 1 and drying it. In this case, since the coating method of the ceramic slurry may use known methods and apparatuses according to known methods and methods, such as a die coater, a gravure coater, and a micro gravure coater, for example, a detailed description thereof will be omitted in the present invention. In addition, the carrier film 1 may be a known film used in manufacturing a green sheet, for example, a PET film, and a release layer may be further included on one surface of the PET film. In addition, the ceramic slurry coated on the carrier film 1 may be subjected to a drying process, and the drying process may be performed using known conditions in consideration of the type and content of the solvent, the thickness of the applied ceramic slurry, and the like. .
또한, 제조된 세라믹 그린시트(11)는 평균두께가 일예로 0.1 ~ 5.0㎛일 수 있으며, 고적층화를 위해서 박형화 됨을 고려해 바람직하게는 평균두께가 0.1 ~ 0.5㎛일 수 있으나 이에 제한되는 것은 아니다. In addition, the manufactured ceramic green sheet 11 may have an average thickness of, for example, 0.1 to 5.0 μm, and preferably an average thickness of 0.1 to 0.5 μm in consideration of thinning for high lamination, but is not limited thereto.
다음으로 본 발명에 따른 (2) 단계로, 도 1의 (b)에 도시된 것과 같이 세라믹 그린시트(11) 상부 전면에 감광성 전극 조성물을 전기 분사(2)시켜서 포지티브 또는 네거티브 타입의 감광성 전극물질층(12a)을 형성시키는 단계를 수행한다. 초박막 두께를 가지는 내부전극을 구현하기 위해서는 결국 감광성 전극 조성물의 도포 두께를 매우 얇게 조절하는 것이 중요하다. 종래에 사용되던 스크린 인쇄나 그라비아 인쇄의 경우 인쇄 후 전극의 두께가 통상적으로 5㎛ 이상인데, 이는 전극 페이스트와 같은 전극 조성물 자체가 도포 두께를 얇고 균일하게 형성하기 어려운 것에 기인한다. 그러나 본 발명의 일 실시예에서 사용되는 감광성 전극 조성물은 전기분사를 통해서 전극면을 형성함에 따라서 보다 얇고 균일한 두께의 내부전극을 구현시킬 수 있다. 한편, 도포되는 감광성 전극 조성물의 평균두께는 1.5㎛ 이하일 수 있고, 이를 통해서 건조된 상태의 인쇄된 감광성 전극물질층(12a)의 평균두께가 1.0㎛ 이하를 만족하기 유리하고, 소결 시 더 얇은 두께의 전극으로 구현될 수 있음에 따라서 결국 고적층화된 적층세라믹 전자부품을 구현하기 유리할 수 있다. Next, in the step (2) according to the present invention, as shown in (b) of FIG. 1 , the photosensitive electrode composition is electrically sprayed (2) on the upper entire surface of the ceramic green sheet 11 to form a positive or negative type photosensitive electrode material. A step of forming the layer 12a is performed. In order to realize an internal electrode having an ultra-thin thickness, it is important to control the coating thickness of the photosensitive electrode composition to be very thin. In the case of conventionally used screen printing or gravure printing, the thickness of the electrode after printing is typically 5 μm or more, which is due to the difficulty in forming a thin and uniform coating thickness of the electrode composition itself, such as an electrode paste. However, the photosensitive electrode composition used in an embodiment of the present invention can realize a thinner and more uniform internal electrode by forming an electrode surface through electrospray. On the other hand, the average thickness of the applied photosensitive electrode composition may be 1.5 μm or less, and through this, it is advantageous to satisfy the average thickness of the printed photosensitive electrode material layer 12a in a dried state is 1.0 μm or less, and a thinner thickness during sintering As it can be implemented as an electrode of , it may be advantageous to eventually realize a highly laminated multilayer ceramic electronic component.
상기 감광성 전극 조성물은 전기분사됨을 고려 시 통상적인 감광성 내부전극을 제조하기 위한 페이스트를 그대로 사용하기는 어렵다. 특히 전극 페이스트의 높은 전기전도도 및 점도는 전기분사를 저해하고, 균일하고 얇은 두께로 전극 조성물을 도포시키지 못할 수 있다. 또한, 종래 전극 페이스트 내 함유된 금속분말의 입경이나 분포 역시 크고 넓어 초박막, 구체적으로 도포 후 1.5㎛이하, 건조 후 1.0㎛ 이하 평균두께의 감광성 전극물질층(12a) 을 구현하기 어려울 수 있다. 이에 바람직하게는 상기 감광성 전극 조성물은 전기분사 방법에 적합하면서도 건조 시 평균두께가 1.0㎛, 바람직하게는 0.6㎛ 이하인 초박막의 감광성 전극물질층(12a)을 구현할 수 있도록 평균입경이 150㎚ 이하인 도전성 금속분말, 세라믹 분말, 감광성 수지를 포함하는 바인더 수지, 모노머, 광개시제 및 용제를 포함하는 것을 사용할 수 있다. 이 경우 그린시트 상에 전극을 형성하기에 적합하면서 초박막의 전극을 구현할 수 있으므로 고적층화가 필요한 MLCC 등의 적층세라믹 부품의 내부전극을 구현하는데 특히 적합할 수 있다. Considering that the photosensitive electrode composition is electrosprayed, it is difficult to use a paste for manufacturing a conventional photosensitive internal electrode as it is. In particular, the high electrical conductivity and viscosity of the electrode paste may inhibit electrospray, and it may not be possible to apply the electrode composition to a uniform and thin thickness. In addition, the particle size or distribution of the metal powder contained in the conventional electrode paste is also large and wide, so it may be difficult to implement an ultra-thin film, specifically, the photosensitive electrode material layer 12a having an average thickness of 1.5 μm or less after application and 1.0 μm or less after drying. Accordingly, preferably, the photosensitive electrode composition is suitable for the electrospray method and has an average particle diameter of 150 nm or less so as to realize an ultra-thin photosensitive electrode material layer 12a having an average thickness of 1.0 μm, preferably 0.6 μm or less when dried. Powders, ceramic powders, binder resins including photosensitive resins, monomers, photoinitiators, and solvents may be used. In this case, since it is possible to implement an ultra-thin electrode suitable for forming an electrode on a green sheet, it may be particularly suitable for implementing an internal electrode of a multilayer ceramic component such as MLCC requiring high lamination.
상기 도전성 금속분말은 소결 후 도전성을 부여하고, 전극의 몸체를 형성하는 것으로써, 통상적으로 전자부품용 전극을 제조하는데 사용되는 도전성 금속분말의 경우 제한 없이 사용할 수 있다. 일 예로 상기 도전성 금속분말은 니켈, 망간, 크롬, 알루미늄, 은, 구리, 팔라듐, 몰리브덴, 텅스텐 및 코발트로 이루어진 군에서 선택된 1종의 금속, 이들 중 적어도 1종을 포함하는 합금, 및 이들 중 적어도 2종을 포함하는 혼합금속 중 어느 하나 이상을 포함할 수 있다. 다만, 세라믹 그린시트와 함께 동시소결 시 소결온도를 고려해 팔라듐, 은-팔라듐 합금, 은, 니켈 및 구리로 이루어진 군에서 선택된 1종을 이상의 포함할 수 있고, 내열성, 도전성 및 재료비를 고려해 보다 바람직하게는 니켈을 포함할 수 있다. The conductive metal powder imparts conductivity after sintering and forms the body of the electrode, and the conductive metal powder commonly used for manufacturing electrodes for electronic components can be used without limitation. For example, the conductive metal powder may include one metal selected from the group consisting of nickel, manganese, chromium, aluminum, silver, copper, palladium, molybdenum, tungsten and cobalt, an alloy containing at least one of these, and at least one of these It may include any one or more of mixed metals including two types. However, in consideration of the sintering temperature when co-sintering with the ceramic green sheet, at least one selected from the group consisting of palladium, silver-palladium alloy, silver, nickel and copper may be included, and more preferably in consideration of heat resistance, conductivity and material cost may include nickel.
또한, 상기 도전성 금속분말은 평균입경이 150㎚ 이하, 바람직하게는 100㎚ 이하, 보다 더 바람직하게는 80㎚ 이하일 수 있고, 만일 도전성 금속분말의 평균입경이 150㎚를 초과 시 전기분사 후 건조된 감광성 전극물질층의 평균두께가 1.0㎛를 초과하거나, 구현된 감광성 전극물질층이 연속전극면을 형성하기 어렵거나, 평균두께가 1.0㎛ 이하인 감광성 전극물질층을 구현하는 경우에도 두께 균일도가 매우 불균일 할 수 있고, 이로 인해 양품의 고적층화된 적층세라믹 부품을 구현하기 어려울 수 있다. 한편, 도전성 금속분말은 평균입경이 5㎚ 이상, 보다 바람직하게는 10㎚ 이상, 보다 더 바람직하게는 20㎚ 이상일 수 있는데, 만일 평균입경이 5㎚ 미만일 경우 도전성 금속분말 자체의 구현이 용이하지 않으며, 재료비가 상승할 수 있다. 또한, 금속분말이 미립자화되어 분산성 확보가 요구되는데, 분산성 확보를 위해 추가되는 분산제와 같은 유기화합물로 인해서 탈지가 용이하지 않을 수 있고, 이로 인해서 적층세라믹 부품이 소결 시에 그린시트 층 간 분리가 발생할 수 있다. 또한, 별도의 분산제를 포함하지 않은 경우 도전성 금속분말의 평균입경이 과소 시 분산성이 저하되고, 응집되어 조대한 2차 입자를 형성 시 건조된 감광성 전극물질층이 연속전극면을 형성하기 어렵거나, 두께불균일이 심화될 우려가 있어서 바람직하지 못하다.In addition, the conductive metal powder may have an average particle diameter of 150 nm or less, preferably 100 nm or less, and more preferably 80 nm or less. Even when the average thickness of the photosensitive electrode material layer exceeds 1.0 μm, it is difficult for the implemented photosensitive electrode material layer to form a continuous electrode surface, or when the photosensitive electrode material layer with an average thickness of 1.0 μm or less is implemented, the thickness uniformity is very non-uniform. This can make it difficult to implement high-quality, highly laminated, laminated ceramic parts. On the other hand, the conductive metal powder may have an average particle diameter of 5 nm or more, more preferably 10 nm or more, and even more preferably 20 nm or more. , the material cost may increase. In addition, since the metal powder is finely divided, it is required to ensure dispersibility, but degreasing may not be easy due to organic compounds such as dispersants added to ensure dispersibility. Separation may occur. In addition, when a separate dispersing agent is not included, dispersibility is reduced when the average particle diameter of the conductive metal powder is too small, and when agglomerated to form coarse secondary particles, the dried photosensitive electrode material layer is difficult to form a continuous electrode surface or , which is undesirable because there is a risk that the thickness non-uniformity may be aggravated.
또한, 상기 도전성 금속분말은 평균입경의 2배 이상의 입경을 가지는 입자의 수가 전체 도전성 금속분말 개수의 20% 이하, 보다 바람직하게는 15%이하, 보다 더 바람직하게는 10% 이하이며, 더 바람직하게는 5% 이하이며, 평균입경의 0.5배 이하의 입경을 가지는 입자의 수가 전체 도전성 금속분말 개수의 20% 이하, 보다 바람직하게는 10% 이하인 입도분포를 가질 수 있으며, 이를 통해 전기분사를 위해 공급되는 감광성 전극조성물 내 도전성 금속분말이 응집해 2차 입자를 형성시키는 것을 최소화하고, 전기분사 장치 내 분사용액 챔버 내에서 도전성 금속분말의 침강을 최소화 또는 방지하기에 적합하며, 이를 통해서 감광성 전극물질층 내 전극조성물이 미분사되어 부분적으로 전극이 존재하지 않는 불연속 전극면을 예방하기에 유리하고, 구현된 내부전극의 위치별 저항 등의 전기적 특성 불균일이나, 두께 불균일 등 내부전극 외관품질의 저하를 방지하기에 유리할 수 있다. 또한, 도전성 금속분말 간 응집이 발생할 경우 노광 공정 중 빛의 통로가 막혀서 전기분사 후 건조된 감광성 전극물질층의 하부까지 노광이 원활히 이루어지기 어렵고, 이로 인해 패턴이 탈락되거나 전극 하부의 언더컷 현상이 발생할 우려가 있는데, 도전성 금속분말 간 응집을 방지 또는 최소화 함에 따라서 이러한 현상의 발생 우려를 해소할 수 있다. In addition, in the conductive metal powder, the number of particles having a particle diameter of at least twice the average particle diameter is 20% or less of the total number of conductive metal powders, more preferably 15% or less, even more preferably 10% or less, more preferably is 5% or less, and the number of particles having a particle diameter of 0.5 times or less of the average particle diameter may have a particle size distribution of 20% or less, more preferably 10% or less, of the total number of conductive metal powders, through which it is supplied for electrospray It is suitable to minimize the formation of secondary particles by agglomeration of the conductive metal powder in the photosensitive electrode composition, and to minimize or prevent sedimentation of the conductive metal powder in the injection solution chamber in the electrospray device, through which the photosensitive electrode material layer It is advantageous to prevent the discontinuous electrode surface where the electrode does not exist partially due to the non-spray of the internal electrode composition, and it prevents the deterioration of the external electrode appearance quality such as non-uniformity of electrical characteristics such as resistance by position of the implemented internal electrode, and non-uniform thickness It may be advantageous to: In addition, when aggregation between the conductive metal powders occurs, the light passage is blocked during the exposure process, so it is difficult to smoothly expose to the lower part of the photosensitive electrode material layer dried after electrospraying. There is a concern, and by preventing or minimizing agglomeration between the conductive metal powders, the concern about the occurrence of such a phenomenon can be eliminated.
또한, 상기 도전성 금속분말의 형상은 공지된 다양한 형상을 가질 수 있으나 바람직하게는 구형이나 구형에 가까운 다면체가 적합할 수 있다. In addition, the shape of the conductive metal powder may have a variety of known shapes, but preferably a spherical or spherical polyhedron may be suitable.
또한, 상기 도전성 금속분말은 감광성 전극조성물 전체 중량을 기준으로 30중량% 이하, 보다 바람직하게는 10 ~ 30중량%, 보다 더 바람직하게는 20 ~ 30중량%로 구비될 수 있다. 만일 도전성 금속분말이 30중량%를 초과해 포함될 경우 전기분사를 위해 공급되는 감광성 전극조성물 내 도전성 금속분말의 침강 또는 침전이 발생할 수 있고, 이로 인해서 전기분사 시 도전성 분말이 불균일하게 분사될 수 있다. 또한, 전기분사로 구현되는 전극의 두께를 조절하기 어려울 수 있다. 나아가 높은 도전성 금속분말의 함량으로 인해서 감광성 전극물질층(12a) 하부 측의 노광이 저해됨에 따라서 현상 후 언더컷 현상이 발생할 우려가 있다. 또한, 도전성 금속분말이 10 중량% 미만으로 구비 시 건조된 감광성 전극물질층이나 소결된 내부전극이 물방울과 같은 아일랜드를 형성할 수 있고, 이로 인해 전극면의 연속 형성성이 저하되거나 전극 두께가 불균일해지는 등 목적하는 전극을 구현하기 어려울 수 있다.In addition, the conductive metal powder may be included in an amount of 30% by weight or less, more preferably 10 to 30% by weight, and still more preferably 20 to 30% by weight based on the total weight of the photosensitive electrode composition. If the conductive metal powder is included in excess of 30 wt%, sedimentation or precipitation of the conductive metal powder in the photosensitive electrode composition supplied for electrospray may occur, and thus the conductive powder may be non-uniformly sprayed during electrospray. In addition, it may be difficult to control the thickness of the electrode implemented by electrospray. Furthermore, since exposure of the lower side of the photosensitive electrode material layer 12a is inhibited due to the high content of the conductive metal powder, an undercut phenomenon may occur after development. In addition, when the conductive metal powder is provided in an amount of less than 10% by weight, the dried photosensitive electrode material layer or the sintered internal electrode may form an island such as a water droplet, thereby reducing the continuous formability of the electrode surface or non-uniform electrode thickness. It may be difficult to implement a desired electrode, such as disconnection.
한편, 상술한 도전성 금속분말로 인해 감광성 전극조성물은 높은 전기전도도를 띠게 되는데, 높은 전기전도도로 인해서 전기분사가 어려워질 수 있다. 이에 따라서 감광성 전극조성물은 세라믹 분말을 포함할 수 있고, 이를 통해 감광성 전극조성물이 전기분사에 적합한 전기전도도로 조절될 수 있다. 또한, 후술하는 (5) 단계에서 전극 패턴층(12)과 세라믹 그린시트(11)가 동시소결될 때 발생하는 전극 패턴층(12)과 세라믹 그린시트(11) 간의 소결온도 차이 및 이로 인한 수축특성의 차이로 인해서 소결체가 찌그러지는 등의 형상 변형을 방지할 수 있다. 나아가 소결 후 세라믹 분말 유래 세라믹 성분은 소결된 전극의 표면쪽으로 이동하여 소결된 도전성 금속분말 유래 도전성 성분과 층분리될 수 있고 이를 통해 유전율을 높일 수 있어서 구현되는 적층세라믹 전자부품의 특성 향상에 기여할 수 있다. On the other hand, due to the above-described conductive metal powder, the photosensitive electrode composition has high electrical conductivity, and electric spraying may be difficult due to the high electrical conductivity. Accordingly, the photosensitive electrode composition may include ceramic powder, and through this, the photosensitive electrode composition may be adjusted to have an electrical conductivity suitable for electrospray. In addition, the difference in sintering temperature between the electrode pattern layer 12 and the ceramic green sheet 11 generated when the electrode pattern layer 12 and the ceramic green sheet 11 are simultaneously sintered in step (5), which will be described later, and the shrinkage due to this It is possible to prevent shape deformation such as crushing of the sintered body due to the difference in characteristics. Furthermore, after sintering, the ceramic component derived from the ceramic powder moves toward the surface of the sintered electrode and can be separated from the conductive component derived from the sintered conductive metal powder, thereby increasing the dielectric constant, thereby contributing to the improvement of properties of multilayer ceramic electronic components. have.
또한, 상기 세라믹 분말은 평균입경이 100㎚ 이하, 다른 일예로 70㎚이하, 45㎚ 이하, 또는 1 ~ 30㎚일 수 있다. 또한, 세라믹 분말은 도전성 금속분말의 평균입경을 고려해 적절한 평균입경을 갖는 것을 사용할 수 있는데, 구체적으로 도전성 금속분말 평균입경의 0.5배 이하, 보다 바람직하게는 0.3배 이하로 더 작은 평균입경을 가지는 것을 사용할 수 있고, 이를 통해서 소결 시 전극이 세라믹 그린시트 보다 더 빠르게 수축되는 것을 지연시키기에 유리하다. 일예로, 평균입경이 80㎚인 도전성 금속분말을 사용 시 세라믹 분말의 평균입경은 20㎚ 이하일 수 있다. 다만, 도전성 금속분말의 평균입경 대비 세라믹 분말의 평균입경이 0.1배 미만으로 더 작아질 경우 입자의 표면적 증가로 인한 수지의 첨가량이 많아져야 할 수 있고, 건조 및/또는 소결된 전극의 두께불균일을 야기할 우려가 있으며, 소결 시 전극의 수축율이 과도하게 커질 수 있다. 또한, 노광 시 입도가 작은 세라믹 분말로 인해 건조전극 하부측의 노광이 저해됨에 따라서 현상 후 언더컷 현상이 발생할 우려가 있다. In addition, the ceramic powder may have an average particle diameter of 100 nm or less, in another example 70 nm or less, 45 nm or less, or 1 to 30 nm. In addition, ceramic powder having an appropriate average particle diameter in consideration of the average particle diameter of the conductive metal powder may be used. Specifically, the ceramic powder having a smaller average particle diameter of 0.5 times or less, more preferably 0.3 times or less of the average particle diameter of the conductive metal powder. It can be used, and through this, it is advantageous to delay the shrinkage of the electrode faster than that of the ceramic green sheet during sintering. For example, when a conductive metal powder having an average particle diameter of 80 nm is used, the average particle diameter of the ceramic powder may be 20 nm or less. However, if the average particle diameter of the ceramic powder is smaller than 0.1 times the average particle diameter of the conductive metal powder, the amount of resin added may be increased due to the increase in the surface area of the particles, and the thickness unevenness of the dried and/or sintered electrode may be reduced. There is a risk of causing the problem, and the shrinkage rate of the electrode may be excessively increased during sintering. In addition, since the exposure of the lower side of the dry electrode is inhibited due to the ceramic powder having a small particle size during exposure, there is a risk that an undercut phenomenon may occur after development.
한편, 세라믹 분말 역시 평균입경 대비 2배 이상의 입경을 가지는 조대입자의 비율이 적을수록 균일한 분산상을 유지하기 유리할 수 있다. 이에 따라 상기 세라믹 분말은 평균입경의 2배 이상의 입경을 갖는 입자의 수가 전체 세라믹 분말 입자 수의 20% 이하, 보다 바람직하게는 10%이하, 더욱 바람직하게는 5% 이하일 수 있다On the other hand, the ceramic powder may also be advantageous to maintain a uniform dispersed phase as the proportion of coarse particles having a particle diameter of two times or more compared to the average particle diameter is small. Accordingly, in the ceramic powder, the number of particles having a particle diameter of at least twice the average particle diameter may be 20% or less, more preferably 10% or less, and still more preferably 5% or less of the total number of ceramic powder particles.
또한, 상기 세라믹 분말은 공지된 세라믹 분말의 경우 제한 없이 사용될 수 있으나, 일 예로 티타니아, 알루미나, 실리카, 코디에라이트, 뮬라이트, 스피넬, 티탄산 바륨, 칼슘지르코니아 및 지르코니아로 이루어지는 군으로부터 선택되는 적어도 1종 이상의 세라믹 분말을 포함할 수 있다. 이때, 상기 세라믹 분말이 감광성 전극 조성물이 그린시트 상에 전기분사되어 내부전극을 형성하는 용도인 경우 그린시트의 유전체 성분과 공통인 성분으로 선택될 수 있고, 이를 통해서 동시소결 시 세라믹 그린시트와 전극 패턴층 간 수축특성 제어가 보다 용이할 수 있으며, 전극 패턴층과 세라믹 그린시트 간의 접합 및 밀착특성을 개선하기에 유리할 수 있다. 한편, 세라믹 분말이 티탄산 바륨인 경우 Ca, Zr이 일부 고용된 (Ba1-xCax)TiO3, Ba(Ti1-yCay)O3, (Ba1-xCax)(Ti1-yZry)O3 또는 Ba(Ti1-yZry)O3 등도 티탄산 바륨의 범주 내 속함을 밝혀둔다.In addition, the ceramic powder may be used without limitation in the case of known ceramic powders, but for example, at least one selected from the group consisting of titania, alumina, silica, cordierite, mullite, spinel, barium titanate, calcium zirconia and zirconia. The above ceramic powder may be included. At this time, when the ceramic powder is used for forming an internal electrode by electrospraying the photosensitive electrode composition on the green sheet, it may be selected as a common component with the dielectric component of the green sheet, and through this, the ceramic green sheet and the electrode during co-sintering It may be easier to control the shrinkage characteristics between the pattern layers, and it may be advantageous to improve bonding and adhesion characteristics between the electrode pattern layer and the ceramic green sheet. On the other hand, when the ceramic powder is barium titanate, Ca and Zr are partially dissolved (Ba 1-x Ca x )TiO 3 , Ba(Ti 1-y Ca y )O 3 , (Ba 1-x Ca x )(Ti 1 ) -y Zr y )O 3 or Ba(Ti 1-y Zry)O 3 and the like also fall within the category of barium titanate.
또한, 상기 세라믹 분말은 도전성 금속분말 100 중량부에 대해서 4 ~ 10 중량부, 보다 바람직하게는 4 ~ 7 중량부로 포함될 수 있는데, 만일 세라믹 분말을 4중량부 미만으로 구비할 경우 구현되는 전극의 두께조절이 어려울 수 있다. 또한, 세라믹 그린시트와 동시소결 시 수축특성의 제어가 어렵고, 소결 후 구현된 전극의 크랙, 박리가 빈번할 수 있다. 또한, 만일 세라믹 분말을 10중량부 초과하여 함유 시 구현되는 전극의 전기전도도가 저하되고, 소결 시 전극의 수축 정도가 과대해질 우려가 있다. In addition, the ceramic powder may be included in an amount of 4 to 10 parts by weight, more preferably 4 to 7 parts by weight, based on 100 parts by weight of the conductive metal powder. If the amount of the ceramic powder is less than 4 parts by weight, the thickness of the electrode implemented Control can be difficult. In addition, it is difficult to control the shrinkage characteristics during simultaneous sintering with the ceramic green sheet, and cracks and peeling of the electrode realized after sintering may occur frequently. In addition, if the ceramic powder is contained in excess of 10 parts by weight, the electrical conductivity of the implemented electrode is lowered, and there is a fear that the degree of contraction of the electrode during sintering may be excessive.
한편, 본 발명에서 사용되는 감광성 전극조성물에 포함되는 도전성 금속분말 및 세라믹 분말의 입경은 동적광산란법에 의한 입도측정에 기초하는 값으로서 체적 기준의 입경이며, 평균입경은 누적체적기준 입도분포에서 D50에 해당하는 입경을 의미한다. 또한, 상기 측정장치는 나노크기의 분말 입경, 계수가 가능한 공지의 측정장치에 의할 수 있고, 일 예로 Zetasizer 시리즈, APS-100 등의 측정장치에 의할 수 있다. On the other hand, the particle diameter of the conductive metal powder and ceramic powder included in the photosensitive electrode composition used in the present invention is a value based on particle size measurement by a dynamic light scattering method, and is a volume-based particle diameter, and the average particle diameter is D50 in the cumulative volume-based particle size distribution. means the corresponding particle size. In addition, the measuring device may be a known measuring device capable of counting nano-sized powder particle size, for example, a measuring device such as a Zetasizer series or APS-100.
또한, 평균입경이 150㎚ 이하인 도전성 금속분말은 PVD, CVD 등의 건식 플라즈마 분말 합성법을 이용해 구현할 수 있는데, 이를 통해 입자의 표면이 깨끗한 분말을 제조하기에 유리할 수 있다. 또한, 건식 플라즈마 분말 합성법을 이용해 수득된 도전성 금속분말을 공지된 자연낙하법 또는 원심분리 등을 이용한 습식 분급공정을 수행하는 것이 목적하는 입경 및 분포를 가지는 도전성 금속분말을 수득하기에 유리할 수 있다. 이때, 원심분리에 의한 강제 분급을 사용하는 것이 바람직하며 생산의 효율성을 위해 연속식 원심분리기의 사용이 좋다. 상기 연속식 원심분리기는 원심분리기의 회전속도 및 분당 투입량을 조절하여 입경 평균을 조절할 수 있고, 전극조성물 내 도전성 금속분말의 빠른 침강을 유발해 균일 분산을 저해하는 조대입자, 예를 들어 평균입경의 2배 이상의 입경을 가지는 도전성 금속분말의 개수 비율이 적도록 제어할 수 있다. 원심분리기의 회전속도가 너무 높으면 생산 수율이 많이 저하 되며 너무 낮으면 균일분산을 저해하는 조대입자 제거율이 떨어진다. 또한 투입량이 너무 많으면 원심분리기 챔버(chamber)에서 원심력을 받는 시간이 짧아지므로 거대 입자 제거가 용이하지 않으며 너무 적으면 효율은 좋아지지만 생산시간이 길어지므로 바람직하지 않을 수 있다. 또한, 도전성 금속분말의 입경분포를 목적하는 수준으로 세밀하게 제어하기 위한 여과공정을 더 수행할 수 있으며, 이때 여과공정은 공지된 필터여재를 이용해 조대입자를 제거하는 통상적인 공정을 통해서 수행할 수 있으므로 본 발명은 이에 대해 특별히 한정하지 않는다. 구체적으로 도 2는 실시예 4에서 사용된 도전성 금속분말의 SEM 사진으로 도 3에 도시된 것과 같은 도전성 금속분말을 원심분리법을 통한 습식분급을 통해 조대입자 비율이 낮도록 입도가 조절됨에 따라서 도 5에 도시된 것과 같이 감광성 전극조성물이 양호한 분산상태를 갖는다는 것을 확인할 수 있다. 이에 반해 도전성 금속분말의 조대입자가 많을 경우 도 6에 도시된 것과 같이 도전성 금속분말의 침강이 많이 이루어져 세라믹 분말과 상분리가 된 것을 확인할 수 있다.In addition, the conductive metal powder having an average particle diameter of 150 nm or less can be implemented using a dry plasma powder synthesis method such as PVD or CVD, which can be advantageous for producing a powder with a clean particle surface. In addition, it may be advantageous to obtain a conductive metal powder having a desired particle size and distribution by performing a wet classification process using a known natural fall method or centrifugal separation on the conductive metal powder obtained using the dry plasma powder synthesis method. At this time, it is preferable to use forced classification by centrifugation, and the use of a continuous centrifuge is preferable for production efficiency. The continuous centrifuge can control the average particle size by controlling the rotational speed and the input amount per minute of the centrifuge, and cause rapid sedimentation of the conductive metal powder in the electrode composition to inhibit uniform dispersion of coarse particles, for example, of the average particle diameter. It is possible to control so that the number ratio of the conductive metal powder having a particle diameter of twice or more is small. If the rotation speed of the centrifuge is too high, the production yield is greatly reduced, and if it is too low, the removal rate of coarse particles that hinders uniform dispersion is reduced. In addition, if the input amount is too large, the time for receiving centrifugal force in the centrifuge chamber is shortened, so it is not easy to remove large particles. In addition, a filtration process for finely controlling the particle size distribution of the conductive metal powder to a desired level may be further performed, and in this case, the filtration process may be performed through a conventional process of removing coarse particles using a known filter medium. Therefore, the present invention is not particularly limited thereto. Specifically, FIG. 2 is an SEM photograph of the conductive metal powder used in Example 4, and the particle size of the conductive metal powder as shown in FIG. 3 is adjusted so that the coarse particle ratio is low through wet classification through centrifugation. As shown in, it can be confirmed that the photosensitive electrode composition has a good dispersion state. On the other hand, when there are many coarse particles of the conductive metal powder, as shown in FIG. 6 , it can be confirmed that the conductive metal powder has a lot of sedimentation and phase separation from the ceramic powder has occurred.
또한, 상기 세라믹 분말은 상용화된 세라믹 분말을 이용해 목적하는 입도분포를 가지도록 공지의 분체기술 및 미립자 제어기술을 적절히 활용하여 제조할 수 있으며, 구체적인 수단으로서 공지된 여러 분쇄분급법, 관련 장치 및 이를 이용한 분쇄조건, 분쇄시간 등의 인자 조절을 통해서 제조할 수 있다. 일예로 분쇄기의 경우 브레이드 밀 또는 수퍼로터를 채용한 기계식 분쇄기나 고압공기의 고속기류를 이용해서 입자끼리 벽면에 충돌시켜서 분쇄시키는 기류식 분쇄기 중 어느 하나를 사용하거나 어느 하나를 사용해 분쇄한 분쇄물을 다시 다른 분쇄기에 투입해 분쇄하는 방식으로 분쇄수준을 조절할 수 있다. 또한, 원심풍력분산기 등의 분쇄물을 분급시키는 분급기, 미립자의 응집을 방지하기 위해 고속기류 등의 물리적 분산력을 이용한 분산기, 또는 습식분급법으로 원심분리법을 통해 목적하는 입도분포를 가지도록 세라믹 분말을 분급할 수 있으며, 본 발명은 이에 대한 구체적인 설명은 생략한다.In addition, the ceramic powder can be prepared by appropriately utilizing a known powder technology and a particle control technology to have a desired particle size distribution using a commercially available ceramic powder, and as a specific means, various known grinding and classification methods, related devices and the same It can be manufactured by adjusting factors such as the grinding conditions used and the grinding time. For example, in the case of a pulverizer, use either a mechanical pulverizer employing a blade mill or a super rotor, or an airflow pulverizer that pulverizes particles by colliding each other against a wall using a high-speed airflow of high-pressure air. The grinding level can be adjusted by putting it back into another grinder and grinding it. In addition, a classifier for classifying the pulverized material such as a centrifugal wind power disperser, a disperser using a physical dispersing force such as a high-speed air flow to prevent agglomeration of fine particles, or a wet classification method to have a desired particle size distribution through a centrifugal separation method. can be classified, and detailed description thereof will be omitted in the present invention.
또한, 감광성 전극조성물은 상술한 도전성 금속분말 및 세라믹 분말과 함께 감광성 수지를 포함하는 바인더 수지, 모노머 및 광개시제를 포함하는 감광성 조성물을 구비한다. 상기 감광성 조성물은 포지티브 타입이거나 또는 네거티브 타입일 수 있다. In addition, the photosensitive electrode composition includes a binder resin including a photosensitive resin, a photosensitive composition including a monomer, and a photoinitiator together with the above-described conductive metal powder and ceramic powder. The photosensitive composition may be of a positive type or a negative type.
상기 바인더 수지는 감광성 수지를 포함하는데, 감광성 수지는 감광성 전극 조성물 내 성분들의 바인더 역할을 담당해 건조된 전극의 결합력을 유지시키는 기능 및 현상액에 대한 용해성을 부여하는 기능을 수행한다. 상기 감광성 수지는 자외선, 전자선 등의 활성에너지의 작용을 받아 분자간 가교에 의해 경화되어 경화도막을 형성하거나 분자 간 가교가 끊어져 현상액에 용해될 수 있다. The binder resin includes a photosensitive resin, and the photosensitive resin serves as a binder of components in the photosensitive electrode composition to maintain bonding strength of the dried electrode and to impart solubility to a developer. The photosensitive resin may be cured by intermolecular crosslinking under the action of active energy such as ultraviolet rays or electron beams to form a cured coating film, or may be dissolved in a developer by breaking intermolecular crosslinking.
상기 감광성 수지는 감광성 전극 페이스트 분야에서 통상적으로 사용되는 감광성 수지인 경우 제한 없이 사용할 수 있다. 또한, 포지티브 타입, 또는 네거티브 타입의 감광성 수지일 수 있다. 일 예로 상기 감광성 수지는 아크릴레이트계, 셀룰로오스계, 노볼락 아크릴계, 수용성 폴리머, 폴리이미드 또는 이의 전구체 등의 감광성 수지 조성물에 사용되는 감광성 바인더 수지를 사용할 수 있다. 다만, 상기 감광성 수지는 바람직하게는 아크릴레이트계 감광성 바인더일 수 있다. 상기 아크릴레이트계 감광성 바인더로는, 비닐기, 알릴기, 아크릴로일기, 메타크릴로일기 등의 에틸렌성 불포화 결합이나 프로파르길기 등의 감광성 작용기를 갖는 수지, 예를 들면 측쇄에 에틸렌성 불포화기를 갖는 아크릴계 공중합체, 불포화 카르복실산 변성 에폭시 수지 또는 그것에 추가로 다염기산 무수물을 부가한 수지 등, 종래 공지된 각종 감광성 수지(감광성 예비 중합체)를 사용할 수 있다. 구체적으로 상기 감광성 수지는 글리시딜메타크릴레이트(GMA), 메틸메타크릴레이트(MMA), 이소보닐 메타크릴레이트(IBOMA), 벤질메타크릴레이트, 메타크릴산(MMA), 아크릴산(AA) 및 스티렌 모노모 중 적어도 2개의 단량체가 공중합된 아크릴레이트계 공중합체를 포함할 수 있다. 더 구체적인 일예로 상기 감광성 수지는 글리시딜메타크릴레이트- 메틸메타크릴산 공중합체, 글리시딜메타크릴레이트-메틸메타크릴산- 메틸메타크릴레이트-이소보닐 메타크릴레이트 공중합체, 메틸메타크릴레이트-벤질메타크릴레이트-메타크릴산 공중합체 일 수 있다. The photosensitive resin may be used without limitation if it is a photosensitive resin commonly used in the field of photosensitive electrode paste. In addition, it may be a positive type or negative type photosensitive resin. For example, as the photosensitive resin, a photosensitive binder resin used in the photosensitive resin composition such as acrylate-based, cellulose-based, novolac acrylic-based, water-soluble polymer, polyimide, or a precursor thereof may be used. However, the photosensitive resin may preferably be an acrylate-based photosensitive binder. Examples of the acrylate-based photosensitive binder include a resin having an ethylenically unsaturated bond such as a vinyl group, an allyl group, an acryloyl group, or a methacryloyl group, or a photosensitive functional group such as a propargyl group, for example, an ethylenically unsaturated group in the side chain. Various conventionally well-known photosensitive resins (photosensitive prepolymer), such as the acrylic copolymer which has, the unsaturated carboxylic acid-modified epoxy resin, or the resin which added polybasic acid anhydride further to it, can be used. Specifically, the photosensitive resin is glycidyl methacrylate (GMA), methyl methacrylate (MMA), isobornyl methacrylate (IBOMA), benzyl methacrylate, methacrylic acid (MMA), acrylic acid (AA) and It may include an acrylate-based copolymer in which at least two monomers of the styrene monomo are copolymerized. In a more specific example, the photosensitive resin may include glycidyl methacrylate-methyl methacrylic acid copolymer, glycidyl methacrylate-methyl methacrylic acid- methyl methacrylate-isobornyl methacrylate copolymer, and methyl methacrylic acid. It may be a late-benzyl methacrylate-methacrylic acid copolymer.
또한, 본 발명의 일 실시예에 따른 감광성 수지는 메타크릴산, 메틸메타크릴레이트 및 이소보닐 메타크릴레이트가 공중합된 것으로서, 메타크릴산이 15.5 내지 19.5몰%로 함유되고, 중량평균분자량이 8000 내지 15000인 아크릴레이트계 공중합체를 포함할 수 있으며, 보다 바람직하게는 메틸메타크릴레이트 25 ~ 40몰%, 이소보닐 메타크릴레이트가 잔량으로 함유된 공중합체일 수 있고, 이를 통해서 보다 우수한 품질, 해상력, 감광성을 가지고 잔사가 방지된 전극패턴을 구현하기 유리할 수 있다.In addition, the photosensitive resin according to an embodiment of the present invention is a copolymer of methacrylic acid, methyl methacrylate and isobornyl methacrylate, and contains 15.5 to 19.5 mol% of methacrylic acid, and a weight average molecular weight of 8000 to It may include an acrylate-based copolymer of 15000, more preferably 25 to 40 mol% of methyl methacrylate, and may be a copolymer containing isobornyl methacrylate as a residual amount, through which better quality and resolution , it may be advantageous to implement an electrode pattern in which residues are prevented with photosensitivity.
또한, 상기 아크릴레이트계 공중합체는 산가의 조절을 위해서 아크릴레이트계 공중합체 내 카르복시 관능기에 에폭시 또는 이소시아네이트 관능기를 가지는 화합물이 반응하여 도입된 것일 수 있다. 이때 상기 에폭시기를 가지는 화합물은 일예로 말단에 메틸렌 관능기, 비닐 관능기 및 알릴 관능기 중 적어도 하나의 관능기를 포함하는 것일 수 있고, 구체적으로 알릴 글리시딜 에테르일 수 있다. 또한, 상기 이소시아네이트 관능기를 갖는 화합물은 일 예로 2-아크릴로일옥시에틸이소시아네이트일 수 있다. In addition, the acrylate-based copolymer may be introduced by reacting a compound having an epoxy or isocyanate functional group to a carboxy functional group in the acrylate-based copolymer to control the acid value. In this case, the compound having the epoxy group may include, for example, at least one of a methylene functional group, a vinyl functional group, and an allyl functional group at the terminal, and specifically may be allyl glycidyl ether. In addition, the compound having the isocyanate functional group may be, for example, 2-acryloyloxyethyl isocyanate.
또한, 상기 산가가 조절된 아크릴레이트계 공중합체는 산가가 25 내지 100 mgKOH/g일 수 있고, 이를 통해서 우수한 감광성 및 현상성을 발현할 수 있다. In addition, the acrylate-based copolymer with the acid value controlled may have an acid value of 25 to 100 mgKOH/g, thereby exhibiting excellent photosensitivity and developability.
또한, 상기 아크릴레이트계 공중합체인 감광성 수지의 유리전이온도는 20 ~ 150℃일 수 있다.In addition, the glass transition temperature of the photosensitive resin as the acrylate-based copolymer may be 20 ~ 150 ℃.
또한, 본 발명의 일 실시예에 의하면, 상기 감광성 수지로써 아크릴레이트계 감광성 수지 이외에 폴리이미드 또는 이의 전구체가 포함될 수 있다. 이때, 폴리이미드 또는 이의 전구체 함량은 아크릴레이트계 수지 100 중량부에 대해서 10 ~ 60 중량부 포함될 수 있으며, 이를 통해서 본 발명의 목적을 달성하는데 보다 유리할 수 있다. In addition, according to an embodiment of the present invention, as the photosensitive resin, polyimide or a precursor thereof may be included in addition to the acrylate-based photosensitive resin. In this case, the polyimide or its precursor content may be included in an amount of 10 to 60 parts by weight based on 100 parts by weight of the acrylate-based resin, which may be more advantageous in achieving the object of the present invention.
한편, 상기 바인더 수지는 폴리비닐부티랄 수지를 더 포함할 수 있다. 감광성 수지로만 이루어진 바인더 수지는 전기분사되는 표면인 세라믹 그린시트와의 부착력이 좋지 않을 수 있다. 이에 폴리비닐부티랄 수지를 더 포함할 수 있고, 세라믹 그린시트와 보다 개선된 밀착력 및 부착성을 달성할 수 있다. 상기 폴리비닐부티랄 수지는 바인더 수지 중 10 ~ 50중량%로 함유될 수 있고, 만일 50중량%를 초과하여 포함 시 노광 후 현상 시 잔사 등이 불량이 증가할 우려가 있고, 10중량% 미만으로 함유 시 세라믹 그린시트 표면과의 부착력 개선 효과가 미미할 수 있다. Meanwhile, the binder resin may further include polyvinyl butyral resin. The binder resin made of only the photosensitive resin may have poor adhesion to the ceramic green sheet, which is the surface to be electrosprayed. Accordingly, polyvinyl butyral resin may be further included, and improved adhesion and adhesion to the ceramic green sheet may be achieved. The polyvinyl butyral resin may be contained in 10 to 50% by weight of the binder resin, and if it is included in an amount exceeding 50% by weight, there is a risk that defects such as residues during development after exposure may increase, and the content is less than 10% by weight. When contained, the effect of improving adhesion to the surface of the ceramic green sheet may be insignificant.
또한, 상기 모노머는 탄소 이중 결합을 함유하는 것으로써, 자외선이나 전자선 등의 활성에너지에 의해 여기된 라디칼에 의해 이중 결합이 단일 결합으로 바뀌면서 중합반응을 하여 감광성 전극 조성물 내의 경화 구조를 형성하는 역할을 담당한다. 상기 모노머는 감광성 페이스트 분야에서 통상적으로 사용되는 모노머라면 특별히 제한되지 않는다. 상기 모노머는 일 예로 2 관능성, 3 관능성, 4 관능성과 같은 다관능성 모노머일 수 있다. 더 구체적으로 상기 다관능성 모노머는 트리메틸롤프로판 트리아크릴레이트, 트리메틸롤프로판 에톡실레이티드 트리아크릴레이트, 펜타에리쓰리톨 트리-아크릴레이트 또는 펜타에리쓰리톨 테트라-아크릴레이트 중 선택된 아크릴 에스테르계가 사용될 수 있으나 이에 제한되는 것은 아니다.In addition, the monomer contains a carbon double bond, and the double bond is converted into a single bond by radicals excited by active energy such as ultraviolet rays or electron beams to polymerize to form a cured structure in the photosensitive electrode composition. in charge The monomer is not particularly limited as long as it is a monomer commonly used in the field of photosensitive paste. The monomer may be, for example, a polyfunctional monomer such as bifunctional, trifunctional, or tetrafunctional. More specifically, as the polyfunctional monomer, an acrylic ester system selected from trimethylolpropane triacrylate, trimethylolpropane ethoxylated triacrylate, pentaerythritol tri-acrylate or pentaerythritol tetra-acrylate may be used. However, the present invention is not limited thereto.
또한, 상기 모노머는 감광성 수지 100 중량부에 대하여 10 ~ 100 중량부로 포함될 수 있다. 상기 모노머의 함량이 10중량부 미만일 경우 노광 패턴의 경화 밀도가 취약하게 될 수 있고, 만일 100중량부를 초과할 경우 패턴 특성이 저하될 수 있으며, 경화 후 유기물 잔류로 인한 저항의 상승이나 적층된 그린시트 층 간의 분리가 발생할 우려가 있다.In addition, the monomer may be included in an amount of 10 to 100 parts by weight based on 100 parts by weight of the photosensitive resin. If the content of the monomer is less than 10 parts by weight, the curing density of the exposure pattern may become weak, and if it exceeds 100 parts by weight, the pattern characteristics may be deteriorated, and resistance may increase due to residual organic matter after curing, or the laminated green There is a fear that separation between the sheet layers may occur.
본 발명의 일 실시예에 의하면, 상술한 모노머와 유사하게 라디칼에 의해 경화구조를 형성하는 성분으로 올리고머를 더 포함할 수 있다. 상기 올리고머는 감광성 전극 조성물에 통상적으로 사용되는 올리고머는 제한 없이 사용될 수 있으며, 일 예로 분자량이 1000 이하인 아크릴레이트 일 수 있다. 상기 올리고머는 상술한 감광성 수지 100 중량부에 대해서 10 ~ 100 중량부로 함유될 수 있는데, 이에 제한되는 것은 아니다. According to an embodiment of the present invention, similar to the above-described monomer, an oligomer may be further included as a component for forming a cured structure by radicals. The oligomer may be an oligomer commonly used in the photosensitive electrode composition without limitation, and may be, for example, an acrylate having a molecular weight of 1000 or less. The oligomer may be contained in an amount of 10 to 100 parts by weight based on 100 parts by weight of the photosensitive resin, but is not limited thereto.
또한, 상기 광개시제는 자외선이나 전자선 등 활성에너지 조사 시 라디칼을 발생시켜 화학 반응을 일으키는 화합물로서, 감광성 전극 조성물 분야에서 통상적으로 사용되는 광중합 개시제라면 특별히 제한되지 않는다. 예를 들어, 아세토페논계 화합물, 벤조페논계 화합물, 티오크산톤계 화합물, 벤조인계 화합물, 모노페닐을 포함하는 트리아진계 화합물, 옥심계 화합물, 카바졸계 화합물, 디케톤류 화합물, 술포늄 보레이트계 화합물, 디아조계, 비이미다졸계 화합물 등을 광개시제로서 사용할 수 있다. 구체적으로 상기 광개시제는 벤조페논, o-벤조일벤조산 메틸, 4,4'-비스(디메틸아미노)벤조페논, 4,4'-비스(디에틸아미노)벤조페논, 4,4'-디클로로벤조페논, 4-벤조일-4'-메틸디페닐케톤, 디벤질케톤, 플루오레논, 2,2'-디에톡시아세토페논, 2,2-디메톡시-2-페닐아세토페논, 2-히드록시-2 -메틸프로피오페논, p-t-부틸디클로로아세토페논, 티옥산톤, 2-메틸티옥산톤, 2-클로로티옥산톤, 2-이소프로필티옥산톤, 디에틸티옥산톤, 4-아지도벤잘아세토 페논, 2,6-비스(p-아지도벤질리덴)시클로헥사논, 6-비스(p-아지도벤질리덴)-4-메틸시클로헥사논, 1-페닐-1,2-부탄디온-2-(o-메톡시카르보닐)옥심, 1-페닐-프로판디온-2-(o-에톡시카르보닐)옥심, 1-페닐-프로판디온-2-(o-벤조일)옥심, 1,3-디페닐-프로판트리온-2-(o-에톡시카르보닐)옥심, 1-페닐-3-에톡시-프로판트리온-2-(o-벤조일)옥심, 1,2-옥탄디온, 1-[4-(페닐티오)-2-(O-벤조일옥심)], 2,4,6-트리메틸벤조일-디페닐-포스핀옥사이드, 비스(2,4,6-트리메틸벤조일)-페닐포스핀옥사이드, 미힐러케톤, 2-메틸-[4-(메틸티오)페닐]-2-모르폴리노-1-프로판온, 나프탈렌술포닐클로라이드, 퀴놀린술포닐클로라이드, N-페닐티오아크리돈, 4,4'-아조비스이소부티로니트릴, 디페닐디술피드, 벤조티아졸디술피드, 트리페닐포스핀, 과산화벤조인 및 에오신, 메틸렌블루 등의 광 환원성 색소와 아스코르브산, 및 트리에탄올아민으로 이루어진 군에서 선택된 1종 이상이 사용될 수 있다.In addition, the photoinitiator is a compound that causes a chemical reaction by generating radicals upon irradiation with active energy such as ultraviolet rays or electron beams, and is not particularly limited as long as it is a photopolymerization initiator commonly used in the field of photosensitive electrode compositions. For example, acetophenone compounds, benzophenone compounds, thioxanthone compounds, benzoin compounds, triazine compounds including monophenyl, oxime compounds, carbazole compounds, diketone compounds, sulfonium borate compounds , a diazo-based compound, a biimidazole-based compound, and the like can be used as the photoinitiator. Specifically, the photoinitiator is benzophenone, o-benzoylbenzoate methyl, 4,4'-bis(dimethylamino)benzophenone, 4,4'-bis(diethylamino)benzophenone, 4,4'-dichlorobenzophenone, 4-benzoyl-4'-methyldiphenyl ketone, dibenzyl ketone, fluorenone, 2,2'-diethoxyacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2-hydroxy-2 -methyl Propiophenone, p-t-butyldichloroacetophenone, thioxanthone, 2-methylthioxanthone, 2-chlorothioxanthone, 2-isopropylthioxanthone, diethylthioxanthone, 4-azidobenzalacetophenone , 2,6-bis(p-azidobenzylidene)cyclohexanone, 6-bis(p-azidobenzylidene)-4-methylcyclohexanone, 1-phenyl-1,2-butanedione-2- (o-methoxycarbonyl)oxime, 1-phenyl-propanedione-2-(o-ethoxycarbonyl)oxime, 1-phenyl-propanedione-2-(o-benzoyl)oxime, 1,3-di Phenyl-propanetrione-2-(o-ethoxycarbonyl)oxime, 1-phenyl-3-ethoxy-propanetrione-2-(o-benzoyl)oxime, 1,2-octanedione, 1-[ 4-(phenylthio)-2-(O-benzoyloxime)], 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide; Michler ketone, 2-methyl-[4-(methylthio)phenyl]-2-morpholino-1-propanone, naphthalenesulfonylchloride, quinolinesulfonylchloride, N-phenylthioacridone, 4,4 '-Azobisisobutyronitrile, diphenyldisulfide, benzothiazoledisulfide, triphenylphosphine, benzoin peroxide and photoreducing pigments such as eosin, methylene blue, ascorbic acid, and triethanolamine selected from the group consisting of One or more types may be used.
상기 광개시제는 바인더 수지 100 중량부에 대해서 1 ~ 50 중량부를 포함할 수 있다. 만일 광개시제의 함량이 1중량부 미만일 경우에는 노광부의 경화 밀도가 감소할 우려가 있고, 현상 공정에서 경화도막이 영향을 받을 수 있다. 또한, 만일 광개시제의 함량이 50중량부를 초과할 경우에는 건조 도막의 상부에서 광흡수가 과잉되어 목적하는 패턴을 형성하기 어려울 수 있다. The photoinitiator may include 1 to 50 parts by weight based on 100 parts by weight of the binder resin. If the content of the photoinitiator is less than 1 part by weight, there is a fear that the cured density of the exposed portion may decrease, and the cured coating film may be affected in the developing process. In addition, if the content of the photoinitiator exceeds 50 parts by weight, it may be difficult to form a desired pattern due to excessive light absorption in the upper part of the dry coating film.
한편, 광개시제와 함께 또는 광개시제에 대체하여 아지드 기반의 광가교제 화합물, 더 구체적으로 탄소수 4 내지 20인 선형의 알킬렌기 양말단에 광가교성 작용기인 아지드기가 치환된 화합물을 포함할 수 있으며, 이와 같은 화합물은 광개시제 없이도 가교가 가능해 광개시제의 함량을 줄일 수 있는 이점이 있다. 이의 구체적인 종류로써 1,4-디아지도부탄, 1,5-디아지도펜탄, 1,6-디아지도헥산, 1,7-디아지도헵탄, 1,8-디아지도옥탄, 1,10-디아지도데칸, 1,12-디아지도도데칸, 또는 이들의 혼합물일 수 있다.On the other hand, together with the photoinitiator or in place of the photoinitiator, an azide-based photocrosslinker compound, more specifically, a compound in which an azide group, which is a photocrosslinkable functional group, is substituted at both ends of a linear alkylene group having 4 to 20 carbon atoms. The same compound can be crosslinked without a photoinitiator, thereby reducing the content of the photoinitiator. Specific types thereof include 1,4-diadobutane, 1,5-diadopentane, 1,6-diadohexane, 1,7-diadoheptane, 1,8-diadooctane, and 1,10-diazidotane. decane, 1,12-diazododecane, or mixtures thereof.
또한, 상술한 감광성 수지를 포함하는 바인더 수지 및 모노머 중량 총합은 도전성 금속분말 100 중량부에 대해서 13중량부 이하, 보다 바람직하게는 10중량부 이하, 더 바람직하게는 2 ~ 10중량부로 포함될 수 있다. 만일 바인더 수지 및 모노머 중량 총합이 13중량부를 초과할 경우 (5) 단계에서 소결 시 전극 패턴층에 크랙이 발생하거나, 적층된 그린시트 층 간의 분리를 초래할 우려가 있다. 또한, 바인더 수지 및 모노머 중량 총합이 2중량부 미만일 경우 감광성 전극조성물 내 금속분말이나 세라믹 분말의 침강이 발생하거나 분산성이 저해될 우려가 있고, 분사 후 건조 및 소결 이전에 세라믹 그린시트 표면에서 전극이 박리될 우려가 있다.In addition, the total weight of the binder resin and the monomer including the photosensitive resin described above may be included in an amount of 13 parts by weight or less, more preferably 10 parts by weight or less, more preferably 2 to 10 parts by weight based on 100 parts by weight of the conductive metal powder. . If the total weight of the binder resin and monomer exceeds 13 parts by weight, there is a risk that cracks may occur in the electrode pattern layer during sintering in step (5) or separation between the laminated green sheet layers may occur. In addition, when the total weight of the binder resin and the monomer is less than 2 parts by weight, there is a risk of sedimentation of the metal powder or ceramic powder in the photosensitive electrode composition or the dispersibility is impaired. There is a possibility that this peels off.
한편, 상술한 감광성 수지를 포함하는 바인더 수지, 모노머 및 광개시제의 구체적인 종류와 이들의 함량은 전기분사를 통한 제조방법, 적층세라믹 부품의 내부전극의 용도, 구현하고자 하는 내부전극의 두께, 선폭, 폭간 거리, 금속분말과 세라믹 분말의 재질과 입경 등을 종합적으로 고려하여 결정될 수 있음을 밝혀둔다. On the other hand, the specific types of binder resin, monomer, and photoinitiator including the above-described photosensitive resin and their contents are determined by the manufacturing method through electrospray, the use of the internal electrode of the laminated ceramic part, the thickness, line width, and width of the internal electrode to be implemented. It should be noted that it can be determined by comprehensively considering the distance, the material and particle size of the metal powder and ceramic powder.
또한, 상기 감광성 전극조성물은 용제를 포함하며, 상기 용제는 전기분사 시 분사용액에 채용 가능하면서 전기분사되는 표면인 세라믹 그린시트와, 상술한 도전성 금속분말과 세라믹 분말을 침해하는 등의 영향이 없으면서 바인더 수지를 용해시킬 수 있는, 공지된 감광성 전극조성물에 사용되는 용제의 경우 제한 없이 선택할 수 있다. 일 예로 디하이드로테르피네올, 디하이드로테르피네올 아세테이트, 테르피네올, 옥탄올, n-파라핀, 데카놀, 트리데카놀, 디부틸프탈레이트, 초산 부틸, 부틸카비톨, 부틸카비톨 아세테이트, 디프로필렌글리콜 메틸 에테르, 이소보닐아세테이트, 이소보닐프로피오네이트, 이소보닐부틸레이트, 이소보닐이소부틸레이트, 에틸렌글리콜모노 부틸에테르아세테이트, 디프로필렌 글리콜 메틸에테르아세테이트, 에틸아세테이트, 부틸아세테이트, 헥틸아세테이트 등의 유기용매를 1종 이상 사용할 수 있으며, 바람직하게는 디하이드로테르피네올 및 디하이드로테르피네올 아세테이트의 혼합용제나 디하이드로테르피네올 아세테이트 및 에틸아세테이트의 혼합용제를 사용할 수 있다. In addition, the photosensitive electrode composition includes a solvent, and the solvent can be employed in the spray solution during electrospray and has no effect such as infringing on the ceramic green sheet, which is the surface to be electrosprayed, and the conductive metal powder and ceramic powder described above. The solvent used in the known photosensitive electrode composition capable of dissolving the binder resin may be selected without limitation. For example, dihydroterpineol, dihydroterpineol acetate, terpineol, octanol, n-paraffin, decanol, tridecanol, dibutylphthalate, butyl acetate, butylcarbitol, butylcarbitol acetate, di Propylene glycol methyl ether, isobornyl acetate, isobornyl propionate, isobornyl butyrate, isobornyl isobutylate, ethylene glycol monobutyl ether acetate, dipropylene glycol methyl ether acetate, ethyl acetate, butyl acetate, hexyl acetate, etc. One or more organic solvents may be used, preferably a mixed solvent of dihydroterpineol and dihydroterpineol acetate or a mixed solvent of dihydroterpineol acetate and ethyl acetate.
또한, 감광성 전극 조성물은 상술한 성분들 이외에도 분산제, 가소제, 레벨링제, 요변성제, 슬립제, 경화촉진제 등의 첨가제를 더 포함할 수 있고, 상기 첨가제는 공지된 전극 조성물에 함유되는 첨가제의 경우 제한 없이 사용할 수 있으므로 본 발명은 이에 대해 구체적으로 한정하지 않는다. In addition, the photosensitive electrode composition may further include additives such as a dispersant, a plasticizer, a leveling agent, a thixotropic agent, a slip agent, and a curing accelerator in addition to the above-described components, and the additive is limited in the case of additives contained in known electrode compositions. Since it can be used without it, the present invention is not specifically limited thereto.
일 예로 상기 분산제는 금속분말과 세라믹 분말의 분산안정성을 부여하기 위해 포함되는 것으로, 감광성 전극 조성물에 통상적으로 사용되는 분산제라면 특별히 제한되지 않는다. 상기 분산제는 바람직하게는, 올레산, 폴리에틸렌글리콜 지방산에스테르, 글리세린에스테르, 솔비탄에스테르, 프로필렌글리콜에스테르, 슈가에스테르, 지방산알카놀아미드, 폴리옥시에틸렌지방산아미드, 폴리옥시에틸렌알킬아민, 아민옥사이드 및 폴리 12-히드록시스테아린산으로 이루어진 군에서 선택된 1종 이상이 사용될 수 있다. For example, the dispersing agent is included to provide dispersion stability of the metal powder and the ceramic powder, and is not particularly limited as long as it is a dispersant commonly used in the photosensitive electrode composition. The dispersant is preferably oleic acid, polyethylene glycol fatty acid ester, glycerin ester, sorbitan ester, propylene glycol ester, sugar ester, fatty acid alkanolamide, polyoxyethylene fatty acid amide, polyoxyethylene alkylamine, amine oxide and poly 12 - At least one selected from the group consisting of hydroxystearic acid may be used.
한편, 상기 분산제 등을 포함하는 첨가제는 감광성 수지 100 중량부에 대해서 10 ~ 50중량부로 포함될 수 있다. 만일 첨가제가 10 중량부 미만으로 구비 시 첨가제를 통한 목적하는 효과를 달성하기 어려울 수 있다. 또한, 50 중량부를 초과 시 감광성 전극 조성물의 현상성, 인쇄성, 도전성 등의 물성이 저하될 우려가 있다. Meanwhile, the additive including the dispersant may be included in an amount of 10 to 50 parts by weight based on 100 parts by weight of the photosensitive resin. If the additive is included in less than 10 parts by weight, it may be difficult to achieve a desired effect through the additive. In addition, when it exceeds 50 parts by weight, there is a fear that physical properties such as developability, printability, and conductivity of the photosensitive electrode composition may be deteriorated.
또한, 상술한 성분들을 함유한 감광성 전극조성물은 25℃에서 점도가 50 ~ 150cps, 보다 바람직하게는 70 ~ 100cps일 수 있으며, 이를 통해 전기분사에 적합하고, 전기분사된 후 초박막의 감광성 전극물질층 및 소결된 내부전극을 구현하기에 유리하다. 만일 점도가 50cps 미만인 경우 분산된 도전성 금속 분말 및 세라믹 분말의 침전이 빠르게 발생할 수 있고, 분산성이 악화될 우려가 있다. 또한, 만일 점도가 150cps를 초과 시 전기분사를 통해 세밀하게 두께를 제어하기 어려울 수 있고, 얇은 두께의 전극을 제조하기 어려울 수 있다. 한편, 여기서 점도는 온도 25℃ 상대습도 65%, 10rpm의 조건으로 ISO 554에 의거해 브룩필드 회전형 점도계 LV로 측정한 결과이다. In addition, the photosensitive electrode composition containing the above-described components may have a viscosity of 50 to 150 cps, more preferably 70 to 100 cps at 25° C., and is suitable for electrospraying, and after electrospraying, an ultra-thin photosensitive electrode material layer And it is advantageous to implement a sintered internal electrode. If the viscosity is less than 50 cps, precipitation of the dispersed conductive metal powder and ceramic powder may occur rapidly, and there is a risk that the dispersibility may be deteriorated. In addition, if the viscosity exceeds 150cps, it may be difficult to precisely control the thickness through electrospray, and it may be difficult to manufacture a thin electrode. On the other hand, the viscosity here is the result of measurement with a Brookfield rotational viscometer LV based on ISO 554 under the conditions of a temperature of 25° C. and a relative humidity of 65% and 10 rpm.
한편, 상술한 감광성 전극 조성물은 도전성 금속분말, 세라믹 분말, 바인더 수지 및 용제를 혼합한 뒤 도전성 금속분말과 세라믹 분말을 분산시켜서 구현될 수 있다. 이때 혼합 및 분산 시 미세화된 분말들로 인해서 많은 열이 발생하므로 고압분산장치나 비즈밀 등을 이용하여 혼합 및 분산시키는 것이 더 유리할 수 있다.Meanwhile, the photosensitive electrode composition described above may be implemented by mixing the conductive metal powder, ceramic powder, binder resin and solvent, and then dispersing the conductive metal powder and ceramic powder. At this time, since a lot of heat is generated due to the fine powder during mixing and dispersing, it may be more advantageous to mix and disperse using a high-pressure dispersing device or a bead mill.
한편, 상기 전기분사(2)는 공지된 전기분사장치에 분사용액으로 감광성 전극 조성물을 투입하여 수행될 수 있다. 또한, 전기분사 시 조건은 공지된 전기분사 조건을 적절히 변경하여 수행할 수 있다. 또한, 감광성 전극조성물은 전기분사장치 내부로 이송되어 노즐을 통해 분사되기전까지 최대한의 분산 상태를 유지하는 것이 좋으며, 이를 위해 전기분사장치 내 분사용액 탱크 내에는 분산상태를 계속 유지시킬 수 있는 교반장치를 더 포함할 수 있고, 상기 교반장치는 임펠러 등의 공지된 교반장치 일 수 있어서 본 발명은 이에 대해 특별히 한정하지 않는다.On the other hand, the electrospray (2) may be performed by injecting the photosensitive electrode composition as an injection solution into a known electrospray device. In addition, the conditions at the time of electrospray may be performed by appropriately changing known electrospray conditions. In addition, it is recommended to maintain the maximum dispersion state until the photosensitive electrode composition is transferred into the electrospray device and sprayed through the nozzle. It may further include, and the stirring device may be a known stirring device such as an impeller, so the present invention is not particularly limited thereto.
다음으로 본 발명에 따른 (3) 단계로써, 도 1의 (c)에 도시된 것과 같이 마스크 패턴층(3)을 상기 감광성 전극물질층(12a) 상에 배치시킨 뒤 노광시키는 단계를 수행한다. Next, as step (3) according to the present invention, as shown in (c) of FIG. 1 , the mask pattern layer 3 is disposed on the photosensitive electrode material layer 12a and then exposed to light.
상기 마스크 패턴층(3)은 구현하고자 하는 전극 패턴층(12)에 상응하는 패턴이나, 상응하는 패턴의 역상의 패턴을 가질 수 있다. 즉, 포지티브 타입의 포토레지스트를 사용할 경우 목적하는 전극 패턴층(12)의 패턴에 대응되는 마스크 패턴층을 이용할 수 있고, 네거티브 타입의 포토레지스트를 사용할 경우 목적하는 전극 패턴층(12)의 패턴 역상에 대응되는 마스크 패턴층을 이용할 수 있다. The mask pattern layer 3 may have a pattern corresponding to the electrode pattern layer 12 to be implemented or a pattern inverse of the corresponding pattern. That is, when a positive type photoresist is used, a mask pattern layer corresponding to the pattern of the desired electrode pattern layer 12 can be used, and when a negative type photoresist is used, the pattern of the desired electrode pattern layer 12 is reversed. A mask pattern layer corresponding to may be used.
또한, 노광은 감광성 전극조성물에 대한 공지된 방법을 이용할 수 있는데, 활성광선이나 방사선의 조사를 통해 수행될 수 있으며, 구체적으로 적외광, 가시광, 자외광, 원자외광, X선, 전자선 등이 있으며, 이에 대한 예시로 초고압수은등, KrF 엑시머 레이저, ArF 엑시머 레이저, F2 엑시머 레이저, X선, 전자빔 등을 이용할 수 있다. 또한, 노광 시 광선의 종류가 UV일 경우 노광량은 100mJ 내지 700mJ일 수 있으나 이에 제한되는 것은 아니며, 감광성 전극 조성물에 함유된 성분들의 종류, 감광성 전극물질층의 두께 등을 고려해 적절히 변경될 수 있다. In addition, the exposure can use a known method for the photosensitive electrode composition, it can be carried out through irradiation of actinic ray or radiation, specifically, infrared light, visible light, ultraviolet light, far ultraviolet light, X-ray, electron beam, etc. , an ultrahigh pressure mercury lamp, a KrF excimer laser, an ArF excimer laser, an F2 excimer laser, an X-ray, an electron beam, etc. may be used as an example for this. In addition, when the type of light during exposure is UV, the exposure amount may be 100 mJ to 700 mJ, but is not limited thereto, and may be appropriately changed in consideration of the types of components contained in the photosensitive electrode composition, the thickness of the photosensitive electrode material layer, and the like.
다음으로 본 발명에 따른 (4) 단계로써, 도 1의 (d)에 도시된 것과 같이 현상액을 처리해 노광 또는 비노광된 감광성 전극물질층 부분을 제거시켜서 전극 패턴층(12)을 구현하는 단계를 수행한다. Next, as step (4) according to the present invention, as shown in (d) of FIG. 1, by treating the developer to remove the exposed or unexposed photosensitive electrode material layer portion to implement the electrode pattern layer 12 carry out
상기 현상액은 포토리소공정에서 공지된 현상액의 경우 제한 없이 사용할 수 있으며, 일 예로 알칼리 현상액을 사용할 수 있다. 구체적으로 알칼리 현상액으로는 수산화나트륨, 수산화 칼륨, 탄산 나트륨, 규산 나트륨, 메타규산 나트륨, 암모니아수 등의 무기 알칼리류; 에틸아민, n-프로필아민 등의 제 1 아민류, 디에틸아민, 디-n-부틸아민 등의 2차 아민류; 트리에틸아민, 메틸디에틸아민 등의 3차 아민류; 디메틸에탄올아민, 트리에탄올아민 등의 알콜 아민류, 테트라메틸암모늄 히드록시드, 테트라에틸암모늄 히드록시드 등의 4급 암모늄염, 피롤, 피페리딘 등의 환상 아민류; 등의 알칼리성 수용액을 사용할 수 있다. 또한, 상기 알칼리 현상액에 알콜류, 계면활성제를 적당량 첨가해서 사용할 수도 있다. 또한, 상기 알칼리 현상액의 농도는 0.1 ~ 5중량% 농도인 것을 사용할 수 있다. 또한, 현상시간은 20 ~ 100초 일 수 있는데, 이에 한정되는 것은 아니며, 현상액의 구체적인 종류, 제거되는 부분의 면적, 두께 등을 고려해 변경될 수 있다. The developer may be used without limitation in the case of a known developer in the photolithography process, and an alkaline developer may be used, for example. Specific examples of the alkali developer include inorganic alkalis such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, and aqueous ammonia; primary amines such as ethylamine and n-propylamine; secondary amines such as diethylamine and di-n-butylamine; tertiary amines such as triethylamine and methyldiethylamine; alcohol amines such as dimethylethanolamine and triethanolamine; quaternary ammonium salts such as tetramethylammonium hydroxide and tetraethylammonium hydroxide; cyclic amines such as pyrrole and piperidine; Alkaline aqueous solution, such as these can be used. In addition, an appropriate amount of alcohol and a surfactant may be added to the alkali developer to be used. Also, the concentration of the alkali developer may be 0.1 to 5% by weight. In addition, the developing time may be 20 to 100 seconds, but is not limited thereto, and may be changed in consideration of the specific type of the developer, the area to be removed, the thickness, and the like.
한편, 현상액을 통해 제거되는 부분은 사용된 감광성 전극 조성물의 타입에 따라서 달라지는데, 포지티브 타입의 감광성 전극 조성물의 경우 노광된 부분이 제거된다. 또한, 네거티브 타입의 감광성 전극 조성물의 경우 비노광된 부분이 제거될 수 있으며, 도 1(d)의 경우 네거티브 타입의 감광성 전극 조성물을 사용해 비노광된 부분이 제거되어 형성된 전극 패턴층(12)을 도시한다.On the other hand, the portion removed through the developer varies depending on the type of the photosensitive electrode composition used. In the case of the positive type photosensitive electrode composition, the exposed portion is removed. In addition, in the case of a negative-type photosensitive electrode composition, the unexposed portion may be removed, and in the case of FIG. 1(d), the electrode pattern layer 12 formed by removing the unexposed portion using the negative-type photosensitive electrode composition. show
다음으로 본 발명의 (5) 단계로써, 전극 패턴층(12)이 구비된 세라믹 그린시트(10,20,30)를 다수 장 적층시킨 뒤 가압 소결시키는 단계를 수행한다. Next, as step (5) of the present invention, a plurality of ceramic green sheets 10 , 20 , 30 provided with an electrode pattern layer 12 are stacked and then pressure sintered is performed.
적층되는 세라믹 그린시트(10,20,30)의 개수는 구현하고자 하는 적층형세라믹 전자부품의 종류, 전자부품의 크기를 고려해 결정될 수 있다. 일 예로 MLCC의 경우 적층수는 100층 이상, 보다 바람직하게는 150 층 이상일 수 있고 이를 통해서 대용량의 MLCC를 구현하기에 유리할 수 있다. The number of laminated ceramic green sheets 10 , 20 , and 30 may be determined in consideration of the type of multilayer ceramic electronic component to be implemented and the size of the electronic component. For example, in the case of an MLCC, the number of layers may be 100 or more, and more preferably, 150 or more, which may be advantageous for realizing a large-capacity MLCC.
또한, 적층된 세라믹 그린시트(10,20,30)는 가압 되면서 소결되는데, 이때 압력은 세라믹 그린시트의 두께, 적층수를 고려해 적절히 조절할 수 있으므로 본 발명은 이에 대해 특별히 한정하지 않는다. 또한, 소결 조건은 전극 패턴층(12)이 구비된 세라믹 그린시트(10,20,30)에서 전극 패턴층과 세라믹 그린시트의 열적특성을 고려해 적절하게 조절될 수 있다. In addition, the laminated ceramic green sheets 10, 20, and 30 are sintered while being pressurized. At this time, the pressure can be appropriately adjusted in consideration of the thickness and the number of laminated ceramic green sheets, so the present invention is not particularly limited thereto. In addition, the sintering condition may be appropriately adjusted in consideration of the thermal characteristics of the electrode pattern layer and the ceramic green sheet in the ceramic green sheets 10 , 20 , and 30 provided with the electrode pattern layer 12 .
상술한 본 발명의 일 실시예에 따른 제조방법을 통해 구현되는 적층세라믹 전자부품(100)은 도 1의 (f)에 도시된 것과 같이 세라믹 몸체(110) 및 몸체 내부에 배치되며, 전극 패턴층 유래의 평균두께가 0.7㎛ 이하, 바람직하게는 0.5㎛ 이하인 다수 개의 내부전극을 포함한다. 또한, 세라믹 몸체(110)의 외부면에 형성되고, 내부전극과 전기적으로 연결되는 외부전극(미도시)을 더 구비할 수 있다. The multilayer ceramic electronic component 100 implemented through the manufacturing method according to an embodiment of the present invention described above is disposed inside the ceramic body 110 and the body as shown in FIG. 1(f), and the electrode pattern layer It includes a plurality of internal electrodes having an average thickness of 0.7 μm or less, preferably 0.5 μm or less. In addition, an external electrode (not shown) formed on the outer surface of the ceramic body 110 and electrically connected to the internal electrode may be further provided.
상기 다수 개의 내부전극 중 일부는 세라믹 그린시트의 적층방향을 세라믹 몸체(110)의 두께방향으로 기준할 때, 상기 두께 방향으로 소정의 간격만큼 이격해 배치될 수 있고, 일부의 내부전극은 상기 두께방향에 수직한 면방향으로 소정의 간격을 두고 이격해 배치될 수 있다.Some of the plurality of internal electrodes may be spaced apart from each other by a predetermined interval in the thickness direction when the stacking direction of the ceramic green sheet is based on the thickness direction of the ceramic body 110, and some of the internal electrodes have the thickness. It may be disposed to be spaced apart from each other at a predetermined distance in a plane direction perpendicular to the direction.
또한, 상기 세라믹 몸체(110)의 한정된 부피 내 세라믹 그린시트가 적어도 100층 이상, 바람직하게는 150층 이상, 다른 일예로 200층 이상, 300층 이상, 400층 이상, 500층 이상, 600층 이상, 700층 이상 또는 1000층 이상 적층된 것일 수 있다. 또한, 이와 같이 고적층화를 위하여 내부전극의 평균두께는 0.7㎛ 이하, 바람직하게는 0.5㎛ 이하이며, 세라믹 몸체(110)의 두께방향으로 이격하여 인접한 내부전극 간 수직거리의 최소값은 2.0㎛ 이하를 만족하며, 이와 같은 적층세라믹 전자부품은 일 예로 MLCC일 수 있다.In addition, the ceramic green sheet in the limited volume of the ceramic body 110 has at least 100 layers, preferably 150 layers or more, in another example 200 layers or more, 300 layers or more, 400 layers or more, 500 layers or more, 600 layers or more. , 700 or more or 1000 or more layers may be laminated. In addition, for high lamination as described above, the average thickness of the internal electrodes is 0.7 μm or less, preferably 0.5 μm or less, and the minimum value of the vertical distance between adjacent internal electrodes spaced apart in the thickness direction of the ceramic body 110 is 2.0 μm or less. satisfied, and such a multilayer ceramic electronic component may be, for example, an MLCC.
하기의 실시예를 통하여 본 발명을 더욱 구체적으로 설명하기로 하지만, 하기 실시예가 본 발명의 범위를 제한하는 것은 아니며, 이는 본 발명의 이해를 돕기 위한 것으로 해석되어야 할 것이다.The present invention will be described in more detail through the following examples, but the following examples are not intended to limit the scope of the present invention, which should be construed to aid understanding of the present invention.
<제조예1><Production Example 1>
세라믹 그린시트와 전기분사용 감광성 전극조성물을 각각 준비했다. A ceramic green sheet and a photosensitive electrode composition for electrospray were prepared, respectively.
상기 세라믹 그린시트는 구체적으로 티탄산바륨인 세라믹 성분 100중량부에 폴리비닐부틸랄 바인더 수지를 10중량부 포함하고 용제로 부틸 카르비톨 아세테이트(butyl carbitol acetate)가 혼합되어 제조된 점도 300cps인 세라믹 슬러리를 통상의 방법을 이용해 제조된 두께가 5㎛가 되도록 처리 후 건조시켜서 다수 장의 세라믹 그린시트를 준비했다. Specifically, the ceramic green sheet contains 10 parts by weight of a polyvinylbutylal binder resin in 100 parts by weight of a ceramic component, which is barium titanate, and a ceramic slurry having a viscosity of 300 cps prepared by mixing butyl carbitol acetate as a solvent. A plurality of ceramic green sheets were prepared by drying after treatment so as to have a thickness of 5 μm manufactured using a conventional method.
또한, 전기분사용 감광성 전극조성물은 구체적으로 건식 플라즈마를 통해 평균입경이 438㎚인 니켈분말을 제조했다. 이후 준비된 니켈분말을 원심분리법을 통한 습식분급을 통해서 평균입경이 75.0㎚이며, 평균입경의 2배 이상의 입경을 가지는 입자가 전체 니케분말의 9%, 평균입경의 0.5배 이하의 입경을 가지는 입자가 전체 니켈분말의 7%인 입도분포를 가지는 도전성 금속분말을 준비했다. 또한, 세라믹 분말로 평균입경이 155㎚이고 티탄산바륨(BaTiO3)인 세라믹 분말을 준비한 뒤, 이를 원심분리법을 통한 습식분급을 통해서 평균입경이 21.8㎚이며, 평균입경의 2배 이상의 입경을 가지는 입자가 전체 세라믹 분말의 8.8%, 평균입경의 0.5배 이하의 입경을 가지는 입자가 전체 세라믹 분말의 7.6%인 입도분포를 가지는 세라믹 분말을 준비했다. 이후 용제로써 디하이드로테르피네올 및 디하이드로테르피네올 아세테이트가 1:1의 중량비로 혼합된 혼합용매에 상술한 입도가 조절된 니켈인 도전성 금속분말, 세라믹 분말, 감광성 수지로서 중량평균분자량이 약 10,000이며 메타크릴산 19.5몰%, 메틸메타크릴레이트 38.5 몰% 및 이소보닐 메타크릴레이트가 42몰%가 공중합된 아크릴레이트계 공중합체 75중량% 및 중량평균분자량이 약 70,000인 폴리비닐부티랄 수지 25중량%를 포함하는 바인더 수지, 감광성 수지 100 중량부에 대해서 다관능성 모노머로서 펜타에리쓰리톨 트리-아크릴레이트 13중량부 및 광개시제로서 아조비스이소부티로나이트릴(Azobisisobutyronitrile)을 혼합하였고, 구체적으로 도전성 금속분말 100 중량부에 대해서 세라믹 분말이 6.8 중량부, 바인더 수지 및 다관능성 모노머 중량 총합이 8 중량부, 감광성 수지 100 중량부에 대해서 광개시제 1중량부가 되도록 혼합하되 전체 조성물에서 도전성 금속분말의 중량이 25중량%가 되도록 혼합하여 25℃ 온도에서 점도가 80cps인 전기분사용 감광성 전극조성물을 제조했다. 이때, 제조된 전기분사용 전극조성물의 점도는 온도 25℃ 상대습도 65% 및 회전속도 10rpm의 조건으로 ISO 554에 의거해 브룩필드 회전형 점도계 LV로 측정된 결과이다.In addition, as for the photosensitive electrode composition for electrospray, nickel powder having an average particle diameter of 438 nm was specifically prepared through dry plasma. Afterwards, the prepared nickel powder was subjected to wet classification through centrifugal separation, with an average particle diameter of 75.0 nm, and particles having a particle diameter more than twice the average particle diameter were 9% of the total nickel powder, and particles having a particle diameter less than 0.5 times the average particle diameter were A conductive metal powder having a particle size distribution of 7% of the total nickel powder was prepared. In addition, after preparing a ceramic powder having an average particle diameter of 155 nm and barium titanate (BaTiO 3 ) as a ceramic powder, the average particle diameter is 21.8 nm through wet classification through centrifugation, and particles having a particle diameter twice or more of the average particle diameter A ceramic powder having a particle size distribution in which 8.8% of the total ceramic powder and particles having a particle diameter of 0.5 times or less of the average particle diameter were 7.6% of the total ceramic powder was prepared. Thereafter, as a solvent, dihydroterpineol and dihydroterpineol acetate are mixed in a mixed solvent in a weight ratio of 1:1, and the above-mentioned particle size is controlled nickel as conductive metal powder, ceramic powder, and photosensitive resin with a weight average molecular weight of about Polyvinyl butyral resin having a weight average molecular weight of about 70,000 and 75% by weight of an acrylate-based copolymer copolymerized with 10,000, 19.5 mol% of methacrylic acid, 38.5 mol% of methyl methacrylate and 42 mol% of isobornyl methacrylate A binder resin containing 25% by weight, 13 parts by weight of pentaerythritol tri-acrylate as a polyfunctional monomer, and azobisisobutyronitrile as a photoinitiator with respect to 100 parts by weight of the photosensitive resin were mixed, specifically Mix so that the total weight of the ceramic powder is 6.8 parts by weight, the binder resin and the polyfunctional monomer is 8 parts by weight, and the photoinitiator is 1 part by weight based on 100 parts by weight of the photosensitive resin with respect to 100 parts by weight of the conductive metal powder, but the weight of the conductive metal powder in the total composition This mixture was mixed so as to be 25% by weight to prepare a photosensitive electrode composition for electrospray having a viscosity of 80 cps at a temperature of 25°C. At this time, the viscosity of the prepared electrode composition for electrospray is the result of measurement with a Brookfield rotary viscometer LV according to ISO 554 under the conditions of a temperature of 25° C. and a relative humidity of 65% and a rotation speed of 10 rpm.
이후 준비된 상기 세라믹 그린시트 상에 전기분사용 감광성 전극조성물을 18℃ 상대습도 30% 인 조건에서 전기분사장치를 이용해 Hole당 3ml/min의 토출속도, 노즐과 세라믹 그린시트면 간의 거리인 에어갭이 24㎝, 인가되는 전압 70kV인 조건으로 건조 시 두께가 1.0㎛ 이내가 되도록 전기분사 시킨 뒤 65℃분 동안 건조한 후 건조된 상태의 감광성 전극물질층을 구현했다. After that, the photosensitive electrode composition for electrospray was applied on the prepared ceramic green sheet using an electrospray device under the condition of 18°C and 30% relative humidity. Under the conditions of 24 cm and applied voltage of 70 kV, electrospray was performed so that the thickness was within 1.0 μm when dried, dried at 65° C. for minutes, and then a dried photosensitive electrode material layer was implemented.
이후 소정의 전극라인 패턴을 가지도록 마스크 패턴층을 상기 감광성 전극물질층 상에 위치시킨 뒤, UV를 550mJ 세기로 노광시키고, 3중량% Na2CO3 용액인 현상액을 통해서 30초간 현상을 진행해 전극 패턴층을 구현했다. 이후 전극 패턴층이 형성된 세라믹 그린시트 115장 적층시킨 뒤 가압하고 대기 분위기 가열해 탈지 후 1200℃ 온도로 환원 분위기에서 2시간 소성하고, 그 후 1100℃ 온도로 N2 분위기에서 2시간 재산화 처리하여 적층 세라믹 부품을 제조하였다. Thereafter, a mask pattern layer is placed on the photosensitive electrode material layer to have a predetermined electrode line pattern, and then exposed to UV at an intensity of 550 mJ, and development is performed for 30 seconds through a developer, which is a 3 wt% Na 2 CO 3 solution. A pattern layer was implemented. After laminating 115 ceramic green sheets with electrode pattern layers, pressurized, heated in an atmospheric atmosphere, degreased, sintered at 1200 ° C. for 2 hours in a reducing atmosphere, and then reoxidized at 1100 ° C. in N 2 atmosphere for 2 hours. A multilayer ceramic part was manufactured.
제조된 적층 세라믹 부품은 외관의 어느 부분이 움푹 패이도록 형상이 변형되거나 크랙이 발생하는 등의 외관 이상이 없는 양호한 외관을 가졌고, 두께방향으로의 절단면을 관찰한 광학현미경 사진에서도 내부전극의 크랙이나 내부전극의 단락과 같은 전극 손상이나 내부전극과 소결된 몸체 간의 이격된 틈과 같은 전극 박리가 관찰되지 않았다. 또한, 광학현미경에서 관찰 시 단일의 내부전극 들의 두께를 살펴본 결과 두께가 균일했다. The manufactured multilayer ceramic part had a good appearance without any external abnormalities such as deformation or cracking so that any part of the exterior was dented. No electrode damage such as short circuit of the inner electrode or electrode peeling such as a spaced gap between the inner electrode and the sintered body was observed. In addition, as a result of examining the thickness of single internal electrodes when observed under an optical microscope, the thickness was uniform.
본 발명의 일 실시예에 사용되는 전기분사용 감광성 전극조성물이 세라믹 그린시트에 전기분사된 후 건조 및 소결되었을 때 구현되는 두께 특성, 연속전극면 형성특성 등을 살펴보기 위하여 아래와 같이 전기분사용 감광성 전극조성물의 조성을 변경하여 구현된 건조된 상태의 감광성 전극물질층 및 소결된 전극패턴층 특성을 살펴보았다.In order to examine the thickness characteristics and continuous electrode surface formation characteristics realized when the photosensitive electrode composition for electrospray used in an embodiment of the present invention is dried and sintered after being electrosprayed on a ceramic green sheet, the electrospray photosensitivity is as follows. The characteristics of the photosensitive electrode material layer and the sintered electrode pattern layer in a dried state realized by changing the composition of the electrode composition were examined.
<실시예1><Example 1>
제조예1과 동일하게 실시하여 제조하되, 감광성 전극조성물을 하기 준비예 1로 변경하여 실시하여 구현된 전극패턴층이 형성된 세라믹 그린시트를 여러 장 적층시키지 않고 낱 장으로 동일 조건으로 소결시켜서 소결된 전극패턴층이 구비된 세라믹시트를 제조했다. Prepared in the same manner as in Preparation Example 1, except that the photosensitive electrode composition was changed to Preparation Example 1 below, and several ceramic green sheets with electrode pattern layers were sintered and sintered under the same conditions without stacking multiple sheets. A ceramic sheet provided with an electrode pattern layer was manufactured.
*준비예1*Preparation Example 1
제조예1에서 사용된 전기분사용 감광성 전극조성물과 동일하게 실시하여 제조하되, 도전성 금속분말인 니켈분말을 원심분리법을 통한 습식분급을 통해서 평균입경이 147.1㎚이며, 평균입경의 2배 이상의 입경을 가지는 입자가 전체 니케분말의 15%, 평균입경의 0.5배 이하의 입경을 가지는 입자가 전체 니켈분말의 18%인 입도분포를 가지는 도전성 금속분말로 변경하고, 세라믹 분말을 원심분리법을 통한 습식분급을 통해서 평균입경이 65.8㎚이며, 평균입경의 2배 이상의 입경을 가지는 입자가 전체 세라믹 분말의 10%, 평균입경의 0.5배 이하의 입경을 가지는 입자가 전체 세라믹 분말의 9%인 입도분포를 가지는 세라믹 분말로 변경하여 하기 표 1과 같은 전기분사용 감광성 전극조성물을 제조했다. It was prepared in the same manner as the photosensitive electrode composition for electrospray used in Preparation Example 1, except that the nickel powder, which is a conductive metal powder, had an average particle diameter of 147.1 nm through wet classification through centrifugation, and a particle diameter that was more than twice the average particle diameter. Change the particles to conductive metal powder with a particle size distribution in which 15% of the total nickel powder and particles having a particle diameter of 0.5 times or less of the average particle diameter are 18% of the total nickel powder, and wet classification of the ceramic powder through centrifugation. The average particle diameter is 65.8 nm, and particles having a particle diameter of more than twice the average particle diameter are 10% of the total ceramic powder, and particles having a particle diameter less than 0.5 times the average particle diameter are 9% of the total ceramic powder. By changing the powder into a photosensitive electrode composition for electrospray as shown in Table 1 below was prepared.
<실시예 2 ~ 15><Examples 2 to 15>
실시예1과 동일하게 실시하여 제조하되, 준비되는 전기분사용 감광성 전극 조성물의 도전성 금속분말의 함량, 평균입경, 입도분포, 세라믹 분말의 함량, 평균입경, 및/또는 전극조성물의 점도를 하기 표 1 또는 표 2와 같이 변경하여 하기 표 1 또는 하기 표 2와 같은 소결된 전극패턴층이 구비된 세라믹시트를 제조했다. The preparation was carried out in the same manner as in Example 1, but the content, average particle diameter, particle size distribution, content of ceramic powder, average particle diameter, and/or the viscosity of the electrode composition of the prepared electrospray photosensitive electrode composition are shown in the table below. A ceramic sheet provided with a sintered electrode pattern layer as shown in Table 1 or Table 2 was prepared by changing as shown in Table 1 or Table 2.
이때, 사용된 세라믹 분말은 평균입경의 2배 이상의 입경을 가지는 입자가 전체 세라믹 분말의 10% 이내, 평균입경의 0.5배 이하의 입경을 가지는 입자가 전체 세라믹 분말의 10%이내가 되는 입도분포를 가지도록 습식분급을 통해 입도가 조절된 세라믹 분말을 사용했다. 한편, 실시예 4에서 사용된 전기분사용 감광성 전극 조성물은 제조예 1에서 사용된 것과 동일한 것을 사용했다.At this time, the ceramic powder used has a particle size distribution such that particles having a particle diameter of 2 times or more of the average particle diameter are within 10% of the total ceramic powder, and particles having a particle diameter of 0.5 times or less of the average particle diameter are within 10% of the total ceramic powder. Ceramic powder whose particle size was controlled through wet classification was used. On the other hand, the photosensitive electrode composition for electrospray used in Example 4 was the same as that used in Preparation Example 1.
<실험예><Experimental example>
실시예에 따른 소결된 전극패턴층이 구현된 세라믹시트의 제조과정 중에서 감광성 전극조성물이 전기분사된 뒤 건조 후 구현된 감광성 전극물질층(이하 '건조전극' 이라고도 함) 또는 노광, 현상 및 소결 후 전극패턴층(이하 '소결전극'이라고도 함)에 대해서 하기의 물성을 측정해 그 결과를 하기 표 1 또는 표 2에 나타내었다.During the manufacturing process of the ceramic sheet in which the sintered electrode pattern layer is implemented according to the embodiment, the photosensitive electrode composition is electrosprayed and dried after the photosensitive electrode material layer (hereinafter also referred to as 'dry electrode') or after exposure, development and sintering The following physical properties were measured for the electrode pattern layer (hereinafter also referred to as 'sintered electrode'), and the results are shown in Table 1 or Table 2 below.
1. 평균두께 및 두께 균일성1. Average thickness and thickness uniformity
평균두께는 촉침식 표면 단차 측정기인 알파-스텝(Dektak 150, Bruker)을 이용하여 측정하였다.The average thickness was measured using an alpha-step (Dektak 150, Bruker), which is a stylus-type surface step measuring instrument.
또한, 측정된 전극면을 대상으로 해당 전극면을 중첩되지 않는 임의의 동일면적의 5개 영역으로 나눈 뒤 5개 영역 각각에 대한 평균두께를 측정 후 5개 전극영역에 대한 두께의 평균값 및 이에 대한 표준편차를 계산해 하기 식 1에 따른 두께균일도를 계산했다.In addition, after dividing the electrode surface into 5 regions of the same area that do not overlap with the measured electrode surface, the average thickness of each of the 5 regions is measured. The standard deviation was calculated to calculate the thickness uniformity according to Equation 1 below.
[식 1][Equation 1]
두께균일도(%) = [5개 영역의 평균두께에 대한 표준편차(㎚)/5개 영역의 평균두께에 대한 평균값(㎚)]×100Thickness uniformity (%) = [Standard deviation for the average thickness of 5 regions (nm) / Average value for the average thickness of 5 regions (nm)] × 100
2. 연속 전극면 형성성2. Continuous electrode surface formability
감광성 전극물질층을 광학현미경으로 관찰해 전극이 형성되지 않은 부분의 개수를 카운팅하고 면적을 측정했고, 아래의 기준에 따라서 0 ~ 5점으로 평가했다.The photosensitive electrode material layer was observed with an optical microscope, counting the number of parts where no electrode was formed, and measuring the area, and evaluated as 0 to 5 points according to the following criteria.
- 전극이 형성되지 않은 부분이 존재하지 않는 경우 5점 - 5 points if there is no part where the electrode is not formed
- 전극이 형성되지 않은 부분의 개수가 1 ~ 2개 및 전극이 형성되지 않은 부분의 면적이 관찰한 전극 전체 면적의 2% 이내: 4점- The number of parts where electrodes are not formed is 1 to 2 and the area of parts where electrodes are not formed is within 2% of the total area of the observed electrode: 4 points
- 전극이 형성되지 않은 부분의 개수가 2개 초과 5개 이내 및 전극 미형성 면적이 관찰한 전극 전체 면적의 5% 이내: 3점- The number of parts where electrodes are not formed is more than 2 and less than 5, and the non-electrode area is less than 5% of the total area of the observed electrode: 3 points
- 전극이 형성되지 않은 부분의 개수가 5개 초과 10개 이내 및 전극 미형성 면적이 관찰한 전극 전체 면적의 5% 초과 ~ 10% 이내: 2점- The number of parts where electrodes are not formed exceeds 5 and within 10 and the non-electrode area exceeds 5% to within 10% of the total area of the observed electrode: 2 points
- 전극이 형성되지 않은 부분의 개수가 10개 초과 20개 이내 및 전극 미형성 면적이 관찰한 전극 전체 면적의 5%초과 ~ 15% 이내: 1점- The number of parts where no electrodes are formed exceeds 10 and less than 20, and the non-electrode area exceeds 5% to less than 15% of the total electrode area observed: 1 point
전극이 형성되지 않은 부분의 개수가 20개 초과 및 전극 미형성 면적이 관찰한 전극 전체 면적의 15% 초과: 0점The number of non-electrode areas exceeds 20 and the non-electrode area exceeds 15% of the observed total area of the electrode: 0 points
3. 언더컷 비율3. Undercut Ratio
노광 후 현상된 전극패턴층에 대해서 임의의 10개 지점에 대해서 단면을 자른 뒤 SEM 사진을 촬영해 각 지점별 전극단면의 상부폭과 하부폭을 각각 측정한 뒤 상부폭에 대한 하부폭의 백분율(하부폭(㎛)×100 / 상부폭(㎛))인 각 지점의 언더컷 비율을 계산한 뒤 10개 지점의 언더컷 비율의 평균값을 계산했다. 언터컷 비율이 100%에 가까울수록 전극의 하부측까지 노광이 잘 이루어진 우수한 품질의 전극이 구현된 것으로 평가할 수 있다. After exposing the developed electrode pattern layer, cut a cross section at 10 random points, take an SEM picture, measure the upper width and lower width of the electrode cross section at each point, and then measure the percentage of the lower width to the upper width ( After calculating the undercut ratio of each point (lower width (㎛) × 100 / upper width (㎛)), the average value of the undercut ratio of 10 points was calculated. As the undercut ratio is closer to 100%, it can be evaluated that an electrode of excellent quality that is well exposed to the lower side of the electrode is realized.
4. 소결 전극의 상대적 수축특성 및 두께균일성4. Relative shrinkage characteristics and thickness uniformity of sintered electrodes
소결된 전극패턴층에 대해서 수축율을 측정하고, 실시예4의 수축율 값을 100으로 기준해 다른 실시예의 수축정도를 상대적인 백분율로 나타내었다.The shrinkage ratio of the sintered electrode pattern layer was measured, and the shrinkage degree of the other examples was expressed as a relative percentage based on the shrinkage ratio value of Example 4 as 100.
이때 수축율은 소결 전 전극패턴층의 평균두께와 소결 후 전극패턴층 평균두께를 측정하여 하기 식2로 계산한 값을 수축율로 하였다.In this case, the shrinkage ratio was calculated by measuring the average thickness of the electrode pattern layer before sintering and the average thickness of the electrode pattern layer after sintering, and the value calculated by Equation 2 below was used as the shrinkage ratio.
[식 2] [Equation 2]
수축율(%) = (소결 후 전극패턴층 평균두께(㎚)/소결 전 전극패턴층 평균두께(㎚)) × 100Shrinkage (%) = (Average thickness of electrode pattern layer after sintering (nm)/Average thickness of electrode pattern layer before sintering (nm)) × 100
또한, 두께 균일성은 두께가 측정된 전극면을 대상으로 해당 전극면을 중첩되지 않은 임의의 5개 영역으로 나눈 뒤 5개 영역에 각각에 대한 평균두께를 측정 후 5개 전극영역에 대한 두께 평균값 및 이에 대한 표준편차를 계산해 상술한 식 1에 따라서 두께균일도를 계산했다.In addition, thickness uniformity is obtained by dividing the electrode surface into 5 non-overlapping areas for the electrode surface on which the thickness is measured, then measuring the average thickness for each of the 5 areas, and then measuring the average thickness of the 5 electrode areas and The standard deviation was calculated and the thickness uniformity was calculated according to Equation 1 above.
아래 표 1 및 표 2에서 '비율 A' 및 '비율 B'는 각각 도전성 금속분말의 전체 개수 중 도전성 금속분말 평균입경의 2배 이상의 입경을 가지는 입자의 비율 및 평균입경의 0.5배 이하의 입경을 가지는 입자의 비율을 의미한다. 또한, '비율 C'란 세라믹 분말의 평균입경을 도전성 금속분말의 평균입경으로 나눈 값을 의미한다. 또한, 도전성 금속분말의 함량은 전기분사용 전극조성물 전체 중량 기준한 함량비율이며, 세라믹 분말의 함량은 도전성 금속분말 100 중량부에 기준한 함량이다.In Tables 1 and 2 below, 'Ratio A' and 'Ratio B' are the ratio of particles having a particle diameter of at least twice the average particle diameter of the conductive metal powder and 0.5 times or less of the average particle diameter of the total number of conductive metal powders, respectively. It means the proportion of particles. In addition, the 'ratio C' means a value obtained by dividing the average particle diameter of the ceramic powder by the average particle diameter of the conductive metal powder. In addition, the content of the conductive metal powder is a content ratio based on the total weight of the electrode composition for electrospray, and the content of the ceramic powder is the content based on 100 parts by weight of the conductive metal powder.
실시예15Example 15 실시예1Example 1 실시예2Example 2 실시예3Example 3 실시예4Example 4 실시예5Example 5 실시예6Example 6 실시예7Example 7
도전성 금속분말conductive metal powder 종류/
함량(중량%)
type/
Content (wt%)
2525 2525 2525 2525 2525 2525 2525 2525
평균입경
(㎚)
average particle diameter
(nm)
160.3160.3 147.1147.1 142.2142.2 98.098.0 75.075.0 75.075.0 75.075.0 75.075.0
비율A(%)Ratio A (%) 1010 1515 2626 1212 99 99 99 99
비율B(%)Ratio B (%) 88 1818 2323 99 77 77 77 77
세라믹 분말(종류/함량)Ceramic powder (type/content) 종류/함량
(중량부)
Type/content
(parts by weight)
6.86.8 6.86.8 6.86.8 6.86.8 6.86.8 6.86.8 6.86.8 6.86.8
평균입경
(㎚)
average particle diameter
(nm)
7575 65.865.8 65.865.8 42.242.2 21.821.8 31.131.1 6.56.5 39.839.8
비율CRatio C 0.470.47 0.450.45 0.460.46 0.430.43 0.290.29 0.410.41 0.0870.087 0.530.53
점도(cps)Viscosity (cps) 8080 8080 8080 8080 8080 8080 8080 8080
건조전극 평균두께(nm)Dry electrode average thickness (nm) 765765 752752 810810 579579 442442 444444 445445 470470
건조전극 두께균일도(%)Dry electrode thickness uniformity (%) 30.1530.15 9.789.78 16.816.8 9.99.9 9.09.0 9.89.8 15.715.7 11.111.1
건조전극 내 최대두께(㎛)Maximum thickness in dry electrode (㎛) 1.0 초과greater than 1.0 1.0 이내within 1.0 1.0 이내within 1.0 1.0 이내within 1.0 1.0 이내within 1.0 1.0 이내within 1.0 1.0 이내within 1.0 1.0 이내within 1.0
연속 전극면 형성성Continuous electrode surface formation 33 33 1One 44 55 44 44 44
언더컷(%)Undercut (%) 65.865.8 71.571.5 58.958.9 75.075.0 86.686.6 77.177.1 62.462.4 73.573.5
소결전극
상대적 수축특성
sintered electrode
Relative shrinkage characteristics
미평가Unrated 미평가Unrated 미평가Unrated 120120 100100 117117 122122 151151
소결전극 두께균일도(%)Sintered electrode thickness uniformity (%) 미평가Unrated 미평가Unrated 미평가Unrated 14.614.6 9.49.4 11.511.5 23.923.9 11.211.2
실시예8Example 8 실시예9Example 9 실시예10Example 10 실시예11Example 11 실시예12Example 12 실시예13Example 13 실시예14Example 14
도전성 금속분말conductive metal powder 종류/
함량(중량%)
type/
Content (wt%)
3535 1010 88 2525 2525 2525 2525
평균입경(㎚)Average particle diameter (nm) 75.075.0 75.075.0 75.075.0 75.075.0 75.075.0 75.075.0 75.075.0
비율A(%)Ratio A (%) 99 99 99 99 99 99 99
비율B(%)Ratio B (%) 77 77 77 77 77 77 77
세라믹 분말ceramic powder 종류/
함량(중량부)
type/
Content (parts by weight)
4.24.2 6.86.8 6.86.8 9.79.7 11.511.5 44 2.52.5
평균입경(㎚)Average particle diameter (nm) 21.821.8 21.821.8 21.821.8 21.821.8 21.821.8 21.821.8 21.821.8
비율CRatio C 0.290.29 0.290.29 0.290.29 0.290.29 0.290.29 0.290.29 0.290.29
점도(cps)Viscosity (cps) 9494 7272 7171 8484 8585 7979 7979
건조전극 평균두께(nm)Dry electrode average thickness (nm) 440440 446446 408408 450450 441441 442442 428428
건조전극 두께균일도(%)Dry electrode thickness uniformity (%) 16.916.9 10.310.3 25.125.1 9.49.4 9.89.8 9.59.5 19.219.2
건조전극 내
최대두께(㎛)
in dry electrode
Maximum thickness (㎛)
1.0 이내within 1.0 1.0 이내within 1.0 1.0 이내within 1.0 1.0 이내within 1.0 1.0 이내within 1.0 1.0 이내within 1.0 1.0 이내within 1.0
연속 전극면 형성성Continuous electrode surface formation 33 44 22 44 44 44 22
언더컷 비율(%)Undercut rate (%) 69.869.8 87.587.5 88.688.6 80.580.5 74.874.8 85.685.6 86.086.0
소결전극
상대적 수축특성
sintered electrode
Relative shrinkage characteristics
미평가 Unrated 미평가Unrated 미평가Unrated 110110 126126 미평가Unrated 미평가Unrated
소결전극 두께균일도(%)Sintered electrode thickness uniformity (%) 미평가Unrated 미평가Unrated 미평가Unrated 미평가Unrated 미평가Unrated 미평가Unrated 미평가Unrated
표 1 및 표 2를 통해 알 수 있듯이, As can be seen from Table 1 and Table 2,
평균입경이 150㎚를 초과하는 도전성 금속분말을 함유한 감광성 전극조성물을 사용한 실시예 15의 경우 건조전극의 평균두께가 1.0㎛ 이내를 만족했으나 두께균일도가 30.15%로 매우 나쁨에 따라서 건조전극의 최대두께가 1.0㎛을 초과하고 소결시켜도 박형화된 내부전극은 구현하기 어렵다는 것을 알 수 있다. In the case of Example 15 using the photosensitive electrode composition containing the conductive metal powder having an average particle diameter of more than 150 nm, the average thickness of the dry electrode satisfies within 1.0 μm, but the thickness uniformity is very poor at 30.15%. It can be seen that it is difficult to implement a thin internal electrode even if the thickness exceeds 1.0 μm and is sintered.
또한, 실시예 중 평균입경이 150㎚ 이내인 도전성 금속분말을 함유한 감광성 전극조성물을 사용한 실시예 1 및 실시예2의 경우 전기분사 후 형성한 건조전극의 최대두께가 1.0㎛ 이하였으나, 실시예2의 경우 평균입경의 2배 이상의 입경을 가지는 입자가 도전성 금속분말의 26%에 달해 조대입자수가 많고, 이로 인한 도전성 금속분말의 침강속도가 빨라 전기분사 시 분사되는 용액에 도전성 금속분말이 불균일하게 분사됨에 따라서 연속 전극면 형성성이 실시예1에 대비해 크게 저하된 것을 알 수 있다. 또한, 전극 하부 측에 노광이 제대로 이루어지지 못해 언더컷이 심화되어 구현된 전극의 품질이 저하된 것을 알 수 있다. In addition, in the case of Examples 1 and 2 using the photosensitive electrode composition containing the conductive metal powder having an average particle diameter of 150 nm or less among the Examples, the maximum thickness of the dry electrode formed after electrospraying was 1.0 μm or less, but in Example In case of 2, particles with a particle size more than twice the average particle diameter amount to 26% of the conductive metal powder, resulting in a large number of coarse particles. As it is sprayed, it can be seen that the continuous electrode surface formability is significantly lowered compared to Example 1. In addition, it can be seen that the quality of the implemented electrode is deteriorated because the undercut is deepened because exposure to the lower side of the electrode is not performed properly.
한편, 도전성 금속분말의 평균입경이 100㎚ 이하가 되도록 구비한 감광성 전극조성물을 사용한 실시예 3 및 실시예 4의 경우 동일조건으로 전기분사 시 구현되는 건조전극의 평균두께가 실시예1에 대비 더욱 얇게 구현하면서 건조전극의 두께균일도와 연속 전극면 형성성이 증가하는 것을 알 수 있다. On the other hand, in the case of Examples 3 and 4 using the photosensitive electrode composition having the average particle diameter of the conductive metal powder to be 100 nm or less, the average thickness of the dry electrode realized when electrospraying under the same conditions was higher than in Example 1. It can be seen that the thickness uniformity of the dry electrode and the formability of the continuous electrode surface are increased while being implemented thin.
다만, 실시예3에서 사용된 감광성 전극조성물에 대비해 실시예 4에서 사용된 감광성 전극조성물은 도전성 금속분말의 평균입경 대비 2배 이상이 되는 입자의 비율이 더욱 줄어들어 전기 분사 시 분사되는 도전성 금속분말의 함량 균일성이 증가하고, 도전성 금속분말의 평균입경 대비 세라믹 분말의 평균입경이 더욱 조절되도록 혼합됨에 따라서 건조전극의 두께균일성, 연속 전극면 형성성 및 소결된 전극의 수축특성과 두께균일성이 매우 우수하게 구현된 것을 알 수 있다. However, compared to the photosensitive electrode composition used in Example 3, in the photosensitive electrode composition used in Example 4, the proportion of particles that are more than twice the average particle diameter of the conductive metal powder is further reduced, so that the conductive metal powder sprayed during electric spraying. As the content uniformity increases and the average particle diameter of the ceramic powder is more controlled compared to the average particle diameter of the conductive metal powder, the thickness uniformity of the dry electrode, the continuous electrode surface formation, and the shrinkage and thickness uniformity of the sintered electrode are improved. It can be seen that it is implemented very well.
또한, 도전성 금속분말의 평균입경에 대비해 0.1 배 미만의 평균입경을 가지는 세라믹 분말을 혼합한 감광성 전극조성물을 사용한 실시예6은 건조전극의 두께균일성이 실시예4에 대비 저하되며, 소결전극의 수축특성 및 두께균일성이 저하된 것을 알 수 있다. 또한, 도전성 금속분말의 평균입경에 대비해 0.5배를 넘는 평균입경을 갖는 세라믹 분말을 혼합한 감광성 전극조성물을 사용한 실시예7의 경우 소결전극의 수축특성 저하가 크게 발생한 것을 알 수 있다. In addition, in Example 6 using a photosensitive electrode composition in which a ceramic powder having an average particle diameter of less than 0.1 times the average particle diameter of the conductive metal powder was mixed, the thickness uniformity of the dry electrode was lowered compared to that of Example 4, and the sintered electrode was It can be seen that the shrinkage characteristics and thickness uniformity are lowered. In addition, in the case of Example 7 using the photosensitive electrode composition mixed with ceramic powder having an average particle diameter exceeding 0.5 times the average particle diameter of the conductive metal powder, it can be seen that the shrinkage characteristic of the sintered electrode was greatly reduced.
또한, 도전성 금속분말의 함량이 30중량%를 초과한 감광성 전극조성물을 사용한 실시예8은 감광성 전극조성물의 높아진 전기전도도가 전기분사에 영향을 미쳐 연속전극면 형성성이 실시예4에 대비해 저하되고, 건조전극의 두께균일성도 낮아진 것을 알 수 있다. 또한, 전극 하부측의 노광이 제대로 이루어지지 못해 언더컷이 심화된 것을 알 수 있다. In addition, in Example 8 using the photosensitive electrode composition in which the content of the conductive metal powder exceeds 30% by weight, the increased electrical conductivity of the photosensitive electrode composition affects the electrospray, and the continuous electrode surface formability is lowered compared to Example 4. , it can be seen that the thickness uniformity of the dry electrode is also lowered. In addition, it can be seen that the undercut is deepened because exposure of the lower side of the electrode is not performed properly.
또한, 도전성 금속분말의 함량이 10중량% 미만으로 함유된 감광성 전극조성물을 사용한 실시예10의 경우에도 실시예9에 대비해 연속 전극면 형성성 및 건조두께의 균일도가 저하된 것을 알 수 있다. In addition, it can be seen that even in the case of Example 10 using the photosensitive electrode composition containing less than 10% by weight of the conductive metal powder, the continuous electrode surface formability and uniformity of dry thickness were lowered compared to Example 9.
한편, 세라믹 분말의 함량과 관련하여 바람직한 범위를 초과해 함유한 감광성 전극조성물을 사용한 실시예 12는 소결전극의 수축이 실시예4에 대비해 크게 증가했고, 세라믹 분말을 바람직한 범위 미만으로 함유한 감광성 전극조성물을 사용한 실시예14는 전기전도도 저하 효과가 미미해 구현된 건조전극의 두께균일도가 실시예 13에 대비해 저하된 것을 알 수 있다. On the other hand, in Example 12 using the photosensitive electrode composition containing more than the preferred range with respect to the content of the ceramic powder, the shrinkage of the sintered electrode was significantly increased compared to that of Example 4, and the photosensitive electrode containing the ceramic powder below the preferred range It can be seen that the thickness uniformity of the dry electrode implemented in Example 14 using the composition was insignificant compared to that of Example 13.
이상에서 본 발명의 일 실시예에 대하여 설명하였으나, 본 발명의 사상은 본 명세서에 제시되는 실시 예에 제한되지 아니하며, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서, 구성요소의 부가, 변경, 삭제, 추가 등에 의해서 다른 실시 예를 용이하게 제안할 수 있을 것이나, 이 또한 본 발명의 사상범위 내에 든다고 할 것이다.Although one embodiment of the present invention has been described above, the spirit of the present invention is not limited to the embodiments presented herein, and those skilled in the art who understand the spirit of the present invention can add components within the scope of the same spirit. , changes, deletions, additions, etc. may easily suggest other embodiments, but this will also fall within the scope of the present invention.

Claims (15)

  1. (1) 세라믹 그린시트를 준비하는 단계;(1) preparing a ceramic green sheet;
    (2) 세라믹 그린시트 상부 전면에 감광성 전극 조성물을 전기 분사시켜서 포지티브 또는 네거티브 타입의 감광성 전극물질층을 형성시키는 단계;(2) forming a photosensitive electrode material layer of a positive or negative type by electrospraying the photosensitive electrode composition on the entire upper surface of the ceramic green sheet;
    (3) 마스크 패턴층을 상기 포지티브 또는 네거티브 타입의 감광성 전극물질층 상에 배치시킨 뒤 노광시키는 단계;(3) disposing a mask pattern layer on the positive or negative type photosensitive electrode material layer and then exposing it;
    (4) 현상액을 처리해 노광 또는 비노광된 감광성 전극물질층 부분을 제거시켜서 전극 패턴층을 구현하는 단계; 및(4) removing the exposed or unexposed portion of the photosensitive electrode material layer by treating the developer to form an electrode pattern layer; and
    (5) 전극 패턴층이 구비된 세라믹 그린시트를 다수 장 적층시킨 뒤 가압 소결시키는 단계;를 포함하는 적층세라믹 전자부품 제조방법.(5) laminating a plurality of ceramic green sheets provided with electrode pattern layers and then press-sintering;
  2. 제1항에 있어서,According to claim 1,
    상기 세라믹 그린시트는 평균두께가 5.0㎛ 이하인 적층세라믹 전자부품 제조방법.The ceramic green sheet has an average thickness of 5.0 μm or less.
  3. 제1항에 있어서,The method of claim 1,
    제조된 적층세라믹 전자부품은 MLCC이며, (5) 단계에서 세라믹 그린시트의 적층수는 100개 이상인 적층세라믹 전자부품 제조방법.The manufactured multilayer ceramic electronic component is MLCC, and the number of laminated ceramic green sheets in step (5) is 100 or more.
  4. 제1항에 있어서,According to claim 1,
    상기 감광성 전극 조성물은 건조 시 평균두께가 1.0㎛ 이하인 감광성 전극물질층을 구현하기 위하여 평균입경이 150㎚ 이하인 도전성 금속분말, 세라믹 분말, 감광성 수지를 포함하는 바인더 수지, 모노머, 광개시제 및 용제를 포함하는 적층세라믹 전자부품 제조방법.The photosensitive electrode composition has an average particle diameter of 150 nm or less to realize a photosensitive electrode material layer having an average thickness of 1.0 μm or less when dried, a binder resin including a conductive metal powder, a ceramic powder, a photosensitive resin, a monomer, a photoinitiator, and a solvent. A method for manufacturing a laminated ceramic electronic component.
  5. 제4항에 있어서,5. The method of claim 4,
    상기 도전성 금속분말은 평균입경이 80㎚ 이하인 적층세라믹 전자부품 제조방법.The method for manufacturing a multilayer ceramic electronic component, wherein the conductive metal powder has an average particle diameter of 80 nm or less.
  6. 제4항에 있어서,5. The method of claim 4,
    상기 도전성 금속분말은 평균입경의 2배 이상의 입경을 가지는 입자의 수가 전체 도전성 금속분말 개수의 20% 이하이며, 평균입경의 0.5배 이하의 입경을 가지는 입자의 수가 전체 도전성 금속분말 개수의 20% 이하인 적층세라믹 전자부품 제조방법.In the conductive metal powder, the number of particles having a particle diameter of 2 times or more of the average particle diameter is 20% or less of the total number of conductive metal powders, and the number of particles having a particle diameter of 0.5 times or less of the average particle diameter is 20% or less of the total number of conductive metal powders A method for manufacturing a laminated ceramic electronic component.
  7. 제4항에 있어서,5. The method of claim 4,
    상기 도전성 금속분말은 Ni, Mn, Cr, Al, Ag, Cu, Pd, W, Mo 및 Co로 이루어진 군에서 선택된 1종의 금속, 이들 중 적어도 1종을 포함하는 합금, 및 이들 중 적어도 2종을 포함하는 혼합금속 중 어느 하나 이상을 포함하며,The conductive metal powder includes at least one metal selected from the group consisting of Ni, Mn, Cr, Al, Ag, Cu, Pd, W, Mo and Co, an alloy including at least one of them, and at least two of them. Containing any one or more of the mixed metal containing,
    상기 세라믹 분말은 티타니아, 알루미나, 실리카, 코디에라이트, 뮬라이트, 스피넬, 티탄산 바륨, 칼슘지르코니아 및 지르코니아로 이루어지는 군으로부터 선택되는 적어도 1종 이상의 세라믹 분말을 포함하는 적층세라믹 전자부품 제조방법.The ceramic powder includes at least one ceramic powder selected from the group consisting of titania, alumina, silica, cordierite, mullite, spinel, barium titanate, calcium zirconia and zirconia.
  8. 제4항에 있어서, 5. The method of claim 4,
    상기 세라믹 분말은 도전성 금속분말 평균입경의 0.1 ~ 0.5배의 평균입경을 갖는 적층세라믹 전자부품 제조방법.The method for manufacturing a multilayer ceramic electronic component, wherein the ceramic powder has an average particle diameter of 0.1 to 0.5 times the average particle diameter of the conductive metal powder.
  9. 제4항에 있어서, 5. The method of claim 4,
    상기 도전성 금속분말은 감광성 전극 조성물 전체 중량 기준 10 ~ 30중량%로 구비되는 적층세라믹 전자부품 제조방법.The method for manufacturing a multilayer ceramic electronic component, wherein the conductive metal powder is provided in an amount of 10 to 30% by weight based on the total weight of the photosensitive electrode composition.
  10. 제4항에 있어서,5. The method of claim 4,
    상기 도전성 금속분말 100 중량부에 대해서 세라믹 분말 4 ~ 10 중량부, 바인더 수지 및 모노머의 중량 총합이 2 ~ 13중량부로 포함되는 적층세라믹 전자부품 제조방법.4 to 10 parts by weight of the ceramic powder, the binder resin, and the total weight of the monomer with respect to 100 parts by weight of the conductive metal powder is included in the total weight of 2 to 13 parts by weight of a multilayer ceramic electronic component manufacturing method.
  11. 제4항에 있어서,5. The method of claim 4,
    상기 감광성 전극 조성물은 네거티브 타입이며, 메타크릴산, 메틸메타크릴레이트 및 이소보닐 메타크릴레이트가 공중합된 것으로서, 메타크릴산이 15.5 내지 19.5몰%로 함유되고, 중량평균분자량이 8000 내지 15000인 아크릴레이트계 공중합체를 포함하는 적층세라믹 전자부품 제조방법.The photosensitive electrode composition is a negative type, copolymerized with methacrylic acid, methyl methacrylate, and isobornyl methacrylate, and contains 15.5 to 19.5 mol% of methacrylic acid and an acrylate having a weight average molecular weight of 8000 to 15000. A method for manufacturing a multilayer ceramic electronic component comprising a copolymer.
  12. 제4항에 있어서,5. The method of claim 4,
    상기 모노머는 다관능성 모노머인 적층세라믹 전자부품 제조방법.The monomer is a multifunctional monomer manufacturing method of a multilayer ceramic electronic component.
  13. 제4항에 있어서,5. The method of claim 4,
    상기 바인더 수지는 폴리비닐부티랄 수지를 더 포함하는 적층세라믹 전자부품 제조방법.The method for manufacturing a laminated ceramic electronic component, wherein the binder resin further comprises a polyvinyl butyral resin.
  14. 제1항에 있어서,According to claim 1,
    상기 감광성 전극 조성물은 25℃에서 점도가 50 ~ 150cps인 적층세라믹 전자부품 제조방법.The method for manufacturing a multilayer ceramic electronic component wherein the photosensitive electrode composition has a viscosity of 50 to 150 cps at 25°C.
  15. 세라믹 몸체 및 상기 몸체 내부에 배치된 다수 개의 내부전극을 포함하는 적층세라믹 전자부품에 있어서, 상기 내부전극의 평균두께가 0.7㎛ 이하이며, 다수 개의 내부전극 중 세라믹 몸체의 두께방향으로 이격하여 인접한 내부전극 간 수직거리의 최소값은 2.0㎛ 이하인 적층세라믹 전자부품.A multilayer ceramic electronic component including a ceramic body and a plurality of internal electrodes disposed inside the body, wherein the internal electrode has an average thickness of 0.7 μm or less, and among the plurality of internal electrodes, the internal electrodes are spaced apart from each other in the thickness direction of the ceramic body and adjacent to each other The minimum value of the vertical distance between electrodes is 2.0㎛ or less for multilayer ceramic electronic components.
PCT/KR2022/005768 2021-04-22 2022-04-22 Multilayer ceramic electronic component manufacturing method, and multilayer ceramic electronic component implemented through same WO2022225361A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0052236 2021-04-22
KR20210052236 2021-04-22

Publications (1)

Publication Number Publication Date
WO2022225361A1 true WO2022225361A1 (en) 2022-10-27

Family

ID=83723080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/005768 WO2022225361A1 (en) 2021-04-22 2022-04-22 Multilayer ceramic electronic component manufacturing method, and multilayer ceramic electronic component implemented through same

Country Status (2)

Country Link
KR (1) KR102622934B1 (en)
WO (1) WO2022225361A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060000784A (en) * 2004-06-29 2006-01-06 전자부품연구원 Composition of photosensitive conductor paste and method for manufacturing the same
KR101807641B1 (en) * 2010-04-14 2017-12-11 도레이 카부시키가이샤 Negative photosensitive resin composition, and protective film and touch panel member using the same
KR20180102712A (en) * 2017-03-07 2018-09-18 희성전자 주식회사 Manufacturing method of transparent electrode formed pattern structure
KR20190111776A (en) * 2018-03-23 2019-10-02 가부시키가이샤 노리타케 캄파니 리미티드 Photosensitive composition, composite, electronic component and electronic component manufacturing method
WO2020067363A1 (en) * 2018-09-27 2020-04-02 住友金属鉱山株式会社 Conductive paste, electronic component, and multilayer ceramic capacitor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100320928B1 (en) 1999-07-14 2002-02-06 이형도 A Method for Manufacturing MLCC
KR101538046B1 (en) * 2013-02-15 2015-07-21 주식회사 아모텍 Method for manufacturing ceramic device having fine line pattern, and ceramic device having fine line pattern
KR101366023B1 (en) * 2013-03-08 2014-02-24 주식회사 아모그린텍 Manufacturing method of electrodes
JP7176227B2 (en) * 2017-05-23 2022-11-22 住友金属鉱山株式会社 Conductive paste, electronic parts and laminated ceramic capacitors

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060000784A (en) * 2004-06-29 2006-01-06 전자부품연구원 Composition of photosensitive conductor paste and method for manufacturing the same
KR101807641B1 (en) * 2010-04-14 2017-12-11 도레이 카부시키가이샤 Negative photosensitive resin composition, and protective film and touch panel member using the same
KR20180102712A (en) * 2017-03-07 2018-09-18 희성전자 주식회사 Manufacturing method of transparent electrode formed pattern structure
KR20190111776A (en) * 2018-03-23 2019-10-02 가부시키가이샤 노리타케 캄파니 리미티드 Photosensitive composition, composite, electronic component and electronic component manufacturing method
WO2020067363A1 (en) * 2018-09-27 2020-04-02 住友金属鉱山株式会社 Conductive paste, electronic component, and multilayer ceramic capacitor

Also Published As

Publication number Publication date
KR102622934B1 (en) 2024-01-09
KR20220145787A (en) 2022-10-31

Similar Documents

Publication Publication Date Title
US4613560A (en) Photosensitive ceramic coating composition
JP4769803B2 (en) Aqueous developable photoimageable precursor composition for use in photopatterning methods
KR100887013B1 (en) Cationically Polymerizable Photoimageable Thick Film Compositions, Electrodes, and Methods of Forming Thereof
JP2723975B2 (en) Photosensitive ceramic coating composition
KR100803498B1 (en) Black conductive compositions, black electrodes, and methods of forming thereof
KR100768647B1 (en) Photosensitive thick-film dielectric paste composition and method for making an insulating layer using same
JP3311735B2 (en) Photosensitive ceramic composition containing polycarbonate polymer
WO2022225361A1 (en) Multilayer ceramic electronic component manufacturing method, and multilayer ceramic electronic component implemented through same
KR100803476B1 (en) Conductor composition for use in ltcc photosensitive tape on substrate applications
WO2022216136A1 (en) Electrode composition for electrospraying
US7674403B2 (en) Composition, an electrode transfer film including the same, a display panel, and a method of forming an electrode
KR100874281B1 (en) Display apparatus and dielectric manufacturing method with dielectric and dielectric
EP1837914A2 (en) Dielectric, display equipped with dielectric, and method for manufacturing said dielectric
WO2022225360A1 (en) Method for manufacturing multilayer ceramic electronic component, and multilayer ceramic electronic component implemented using same
JP4411940B2 (en) Inorganic material paste, plasma display member and plasma display
WO2017025943A1 (en) Lead-free thick film resistant composition, lead-free thick film resistor, and method for manufacturing same
KR102611513B1 (en) Photosensitive electrode composition for electrospraying
WO2017135619A1 (en) Silver coated glass frit, method for preparing same, and silver paste composition using silver coated glass frit for solar cell)
WO2016171323A1 (en) Electrode paste composition for chip component
WO2018147713A1 (en) Lead-free thick film resistor and electronic component comprising same
WO2017183740A1 (en) Uv-cured electrode paste composition for internal bonding, and method for producing chip component which has used electrode paste composition
WO2019066468A1 (en) Method for manufacturing chip inductor having fine-pitch line width and photosensitive material used therefor
WO2020184996A2 (en) Light-sintering copper precursor, manufacturing method therefor, and light-sintering method therfor
KR20220140441A (en) Electrode composition for electrospraying
TW202244068A (en) Photosensitive composition and use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22792059

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22792059

Country of ref document: EP

Kind code of ref document: A1