WO2018147135A1 - 高周波フィルタ、高周波フロントエンド回路及び通信装置 - Google Patents

高周波フィルタ、高周波フロントエンド回路及び通信装置 Download PDF

Info

Publication number
WO2018147135A1
WO2018147135A1 PCT/JP2018/003140 JP2018003140W WO2018147135A1 WO 2018147135 A1 WO2018147135 A1 WO 2018147135A1 JP 2018003140 W JP2018003140 W JP 2018003140W WO 2018147135 A1 WO2018147135 A1 WO 2018147135A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
circuit
switch
series arm
arm resonator
Prior art date
Application number
PCT/JP2018/003140
Other languages
English (en)
French (fr)
Inventor
浩司 野阪
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2018147135A1 publication Critical patent/WO2018147135A1/ja
Priority to US16/527,639 priority Critical patent/US10763825B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02228Guided bulk acoustic wave devices or Lamb wave devices having interdigital transducers situated in parallel planes on either side of a piezoelectric layer
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H11/00Networks using active elements
    • H03H11/02Multiple-port networks
    • H03H11/04Frequency selective two-port networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • H03H9/542Filters comprising resonators of piezoelectric or electrostrictive material including passive elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6403Programmable filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • H03H9/6483Ladder SAW filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6489Compensation of undesirable effects
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves
    • H03H9/725Duplexers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/44Transmit/receive switching
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H2210/00Indexing scheme relating to details of tunable filters
    • H03H2210/02Variable filter component
    • H03H2210/025Capacitor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H2210/00Indexing scheme relating to details of tunable filters
    • H03H2210/02Variable filter component
    • H03H2210/026Inductor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02157Dimensional parameters, e.g. ratio between two dimension parameters, length, width or thickness

Definitions

  • the present invention relates to a high-frequency filter having a resonator, a high-frequency front-end circuit, and a communication device.
  • variable-frequency high-frequency filter (tunable filter) has been proposed as a high-frequency filter compatible with multiband.
  • variable frequency type high frequency filter for example, a first configuration in which two parallel arm resonators having different resonance frequencies are connected in series and a switch is connected in parallel to at least one of the two parallel arm resonators.
  • This first configuration is a series connection of a resonator (correcting resonator) and a switch with respect to two series arm resonators connected via a node to which a parallel arm resonator is connected by star delta conversion. It becomes the 2nd structure where the circuit was connected in parallel (for example, refer to Drawing 9A of patent documents 1).
  • the first attenuation pole at the low end of the pass band is variable in frequency toward the pass band in accordance with switching of the switch on (conducting state) and off (non-conducting state).
  • the presence or absence of a new third attenuation pole between the second attenuation pole at the end of the band and the passband can be switched.
  • the first attenuation pole on the low side of the pass band is variable in frequency to the pass band side (that is, the high frequency side), and the second attenuation on the high side of the pass band.
  • a new third attenuation pole is added between the pole and the passband.
  • the present invention improves the loss at the low end of the passband and the attenuation at the high end of the passband, or improves the loss at the high end of the passband and the attenuation at the low end of the passband.
  • An object of the present invention is to provide a frequency variable high-frequency filter, a high-frequency front-end circuit, and a communication device that can be used.
  • a high-frequency filter includes a series arm circuit provided on a path connecting a first input / output terminal and a second input / output terminal, a node on the path, A parallel arm circuit connected to the ground, wherein the series arm circuit includes a first series arm resonator provided on the path, and a first frequency connected in parallel with the first series arm resonator.
  • a variable circuit, and the first frequency variable circuit includes a second series arm resonator and a first switch connected in series with the second series arm resonator, and passes through the high frequency filter.
  • At least one of a resonance frequency constituting a band and an anti-resonance frequency constituting an attenuation pole of the high frequency filter is varied, and a resonance frequency of the second series arm resonator is a resonance frequency of the first series arm resonator. Different from frequency.
  • the series arm circuit has a third resonance frequency that is the same as the resonance frequency of the first series arm resonator and a slightly lower frequency than the anti-resonance frequency of the first series arm resonator. And a third anti-resonance frequency located on the side.
  • the series arm circuit has a first resonance frequency that is the same as the resonance frequency of the first series arm resonator and a second resonance frequency that is the same as the resonance frequency of the second series arm resonator when the first switch is on.
  • the first anti-resonance frequency located between the resonance frequency of the first series arm resonator and the resonance frequency of the second series arm resonator, and the second anti-resonance frequency located on the higher frequency side than the second resonance frequency And having.
  • the third resonance frequency of the second series arm resonator when the resonance frequency of the second series arm resonator is lower than the resonance frequency of the first series arm resonator, when the first switch is off, the third resonance frequency constitutes a passband, and the third antiresonance frequency is This constitutes the attenuation pole on the high side of the passband.
  • the first switch when the first switch is on, the second resonance frequency forms a pass band, the first anti-resonance frequency forms an attenuation pole on the low pass band side, and the second anti-resonance frequency has a high pass band. Configures the attenuation pole on the band side. That is, in this case, a new attenuation pole is formed on the low pass band side by switching the first switch from OFF to ON.
  • the third resonance frequency constitutes a passband, and the third antiresonance.
  • the frequency constitutes an attenuation pole on the high side of the passband.
  • the first resonance frequency constitutes a passband
  • both the first antiresonance frequency and the second antiresonance frequency constitute an attenuation pole on the high passband side.
  • a new attenuation pole is configured on the high pass band side by switching the first switch from OFF to ON.
  • the following can be said with respect to the switching between the on / off of the first switch and the pass band.
  • a new attenuation pole is formed on one side (for example, the low frequency side) of the pass band, so that the attenuation band on the one side of the pass band becomes wider. Is done.
  • no new attenuation pole is formed on the other side of the pass band (in this case, the high frequency side)
  • deterioration of loss at the other end of the pass band in this case, the high frequency end
  • the deterioration of the attenuation on the other side of the passband in this case, the low frequency side
  • the loss at the high end of the pass band and the attenuation at the low pass band side are improved, or the loss at the low pass band and the attenuation at the high pass band side are improved. It is possible to realize a variable-frequency high-frequency filter that enables this.
  • the resonance frequency of the second series arm resonator may be lower than the resonance frequency of the first series arm resonator.
  • the resonance frequency of the second series arm resonator is lower than the frequency of the first series arm resonator, the number of attenuation poles on the lower passband side is increased or decreased by switching the first switch on and off. can do. Therefore, it is possible to change the frequency of the passband and the frequency of the attenuation pole on the low passband side while suppressing the loss at the high end of the passband and improving the attenuation on the low passband side.
  • the series arm circuit includes a plurality of first frequency variable circuits, and the plurality of second series arm resonators included in the plurality of first frequency variable circuits have different resonance frequencies. Also good.
  • the plurality of second series arm resonators pass according to the selection of the first switch to be turned on among the plurality of first switches included in the plurality of first frequency variable circuits.
  • the band and the attenuation band can be varied. That is, it is possible to finely set the frequency of the pass band and the frequency variable width of the attenuation pole on the other side of the pass band while suppressing loss at one end of the pass band.
  • the resonance frequency of at least one of the plurality of second series arm resonators is lower than the resonance frequency of the first series arm resonator, and at least one other resonance of the plurality of second series arm resonators.
  • the frequency may be higher than the resonance frequency of the first series arm resonator.
  • the switch hereinafter referred to as the low-frequency side variable switch
  • the switch By switching the switch (hereinafter referred to as the low-frequency side variable switch) on and off, the loss of the high end of the passband is suppressed, and the frequency of the passband and the frequency of the attenuation pole on the low passband side are varied. Can do.
  • the first series arm resonator connected in series with the at least one second series arm resonator
  • a high-frequency side variable switch By switching on and off one switch (hereinafter referred to as a high-frequency side variable switch), the frequency of the passband and the frequency of the attenuation pole on the high-frequency side of the passband are varied while suppressing loss at the low end of the passband. be able to.
  • the passband end of both the low-frequency side and the high-frequency side of the passband can be varied while suppressing the loss.
  • the resonance frequency of the plurality of second series arm resonators may be lower than the resonance frequency of the first series arm resonator.
  • the plurality of first switches included in the plurality of first frequency variable circuits are turned on.
  • the pass band and the attenuation band on the low pass band side can be varied. That is, the passband frequency and the frequency variable width of the attenuation pole on the low passband side can be set finely while suppressing the loss at the high end of the passband.
  • the series arm circuit further includes a first impedance element connected in series with the first series arm resonator, and the first frequency variable circuit includes the first series arm resonator and the first impedance. You may decide to be connected in parallel with the 1st series connection circuit comprised with an element.
  • the first series arm resonator and the first impedance element are connected in series, so that the frequency difference between the resonance frequency and the antiresonance frequency of the first series connection circuit can be determined. It can be changed from the frequency difference. Specifically, when the first impedance element is a capacitor, the frequency difference can be reduced, and when the first impedance element is an inductor, the frequency difference can be increased. Therefore, since the frequency difference between the second resonance frequency and the second anti-resonance frequency of the series arm circuit can be adjusted by appropriately adjusting the circuit constant of the first impedance element, the passage defined by the frequency difference is passed. The frequency difference between the cutoff frequency on the high band side and the attenuation pole on the high band side can be adjusted. Accordingly, the pass bandwidth and the steepness of the attenuation slope can be arbitrarily set.
  • the parallel arm circuit includes a first parallel arm resonator connected between the node and the ground, and a second frequency variable circuit connected in series with the first parallel arm resonator.
  • the second frequency variable circuit includes a second impedance element and a second switch connected in parallel to the second impedance element, and a resonance frequency of the first parallel arm resonator is the first series. It may be lower than the resonance frequency of the arm resonator.
  • ⁇ Attenuation amount may deteriorate as the frequency of the attenuation pole is changed by switching the first switch on and off. Therefore, by providing the second frequency variable circuit connected in series with the first parallel arm resonator, the resonance frequency constituting the attenuation pole of the high-frequency filter for the parallel arm circuit by switching the second switch on and off. Can be varied. Therefore, by appropriately adjusting the circuit constant of the second impedance element according to the attenuation band and attenuation required for the high-frequency filter, it is possible to suppress the deterioration of the attenuation on the low side of the passband due to the variable frequency of the series arm circuit. can do.
  • the parallel arm circuit further includes a second parallel arm resonator connected in parallel with a second series connection circuit configured by the first parallel arm resonator and the second frequency variable circuit,
  • the resonance frequency of the second parallel arm resonator may be higher than the resonance frequency of the first parallel arm resonator.
  • the passband high frequency band is determined by the resonance frequency of the second parallel arm resonator.
  • a new attenuation pole is formed on the side. For this reason, the amount of attenuation on the high side of the passband can be improved.
  • the parallel arm circuit has two resonance frequencies and two anti-resonance frequencies by having the second parallel arm resonator, and the resonance frequency and anti-resonance frequency in the case of not having the second parallel arm resonator.
  • the frequency difference between the low frequency side resonance frequency and the low frequency side anti-resonance frequency can be reduced. Therefore, according to this aspect, since the cut-off frequency on the low pass band side can be shifted to the low frequency side, the loss at the low end of the pass band can be improved (improved).
  • the second impedance element is a capacitor.
  • the second switch When the first switch is on, the second switch is off.
  • the first switch When the first switch is off, the second switch is on. Also good.
  • the capacitor connected in series to the first parallel arm resonator becomes effective. Therefore, since the resonance frequency of the parallel arm circuit shifts to the high frequency side, the attenuation pole on the low pass band side constituted by the resonance frequency shifts to the high frequency side. Therefore, when the first switch is on, the second switch is turned off, so that the attenuation amount on the low pass band side when the low pass band side shifts to the high frequency side (during high frequency shift). Can improve (enlarge).
  • the control circuit for the first switch and the second switch can be shared, the high-frequency filter can be downsized.
  • the second impedance element is an inductor. When the first switch is on, the second switch is on. When the first switch is off, the second switch is off. Also good.
  • the inductor is connected in series to the first parallel arm resonator. Therefore, since the resonance frequency of the parallel arm circuit shifts to the low frequency side, the attenuation pole on the low band side of the pass band constituted by the resonance frequency shifts to the low frequency side. Therefore, when the first switch is turned on, the second switch is turned off, so that the frequency on the low side of the pass band is lowered when the low side of the pass band is shifted to the low frequency side (at the time of low frequency shift). Can do. That is, the frequency variable width on the low pass band side can be increased.
  • the control circuit for the first switch and the second switch can be shared, the high-frequency filter can be downsized.
  • first switch may be connected to the first input / output terminal or the second input / output terminal without any series arm resonator.
  • the number of terminals of the resonator chip can be reduced.
  • a terminal connected to the one input / output terminal and a terminal connected to the other chip can be shared.
  • tip for resonators can be reduced, and size reduction of a high frequency filter is achieved.
  • the first switch may be a FET switch made of GaAs or CMOS, or a diode switch.
  • the resistance of the first switch can be reduced, and the loss in the passband can be suppressed.
  • the first switch can be reduced in size, the high-frequency filter can be reduced in size and cost.
  • a high frequency front end circuit includes any one of the high frequency filters described above and a control unit that controls on and off of the first switch.
  • a communication device includes an RF signal processing circuit that processes a high-frequency signal transmitted and received by an antenna element, and the high-frequency signal that is transmitted between the antenna element and the RF signal processing circuit. And a high-frequency front-end circuit.
  • variable frequency type high frequency filter, high frequency front end circuit, and communication apparatus According to the variable frequency type high frequency filter, high frequency front end circuit, and communication apparatus according to the present invention, the loss at the low end of the passband and the attenuation on the high passband side are improved, or the high end of the passband Loss and attenuation on the low pass band side can be improved.
  • FIG. 1A is a circuit configuration diagram of a high frequency filter according to an example (Example 1-1) of the first embodiment.
  • FIG. 1B is a graph illustrating various characteristics relating to the high-frequency filter according to Example 1-1.
  • FIG. 2 is a plan view and a cross-sectional view schematically showing an electrode configuration of an acoustic wave resonator using a surface acoustic wave.
  • FIG. 3A is a circuit configuration diagram of a high-frequency filter according to a comparative example.
  • FIG. 3B is a graph showing various characteristics related to the high-frequency filter according to the comparative example.
  • FIG. 4A is a graph comparing characteristics at the time of low frequency shift of the high frequency filter according to Example 1-1 and the comparative example.
  • FIG. 4B is a graph comparing characteristics at the time of high frequency shift of the high frequency filter according to Example 1-1 and the comparative example.
  • FIG. 5 is a graph showing the influence on the filter characteristics when the resonance frequency (fr_s1b) of the series arm resonator is changed in the high frequency filter according to Example 1-1.
  • FIG. 6 is a circuit configuration diagram of a high-frequency filter according to a modification.
  • FIG. 7A is a circuit configuration diagram of a high frequency filter according to an example (Example 1-2-1) of the first embodiment.
  • FIG. 7B is a circuit configuration diagram of a high frequency filter according to an example (Example 1-2-2) of the first embodiment.
  • FIG. 7C is a graph showing various characteristics of the high-frequency filter according to Example 1-2-1 and Example 1-2-2 in comparison with Example 1-1.
  • FIG. 7D is a graph comparing the characteristics of the high frequency filters according to Example 1-1, Example 1-2-1, and Example 1-2-2 at the time of low frequency shift.
  • FIG. 7E is a graph comparing the characteristics of the high frequency filters according to Example 1-1, Example 1-2-1, and Example 1-2-2 at the time of high frequency shift.
  • FIG. 8A is a circuit configuration diagram of a high-frequency filter according to an example (Example 1-3) of the first embodiment.
  • FIG. 8B is a graph showing various characteristics of the high frequency filter according to Example 1-3 in comparison with Example 1-1.
  • FIG. 8C is a graph showing changes in filter characteristics when the on / off of the switch of the high-frequency filter according to Example 1-3 is individually switched.
  • FIG. 9A is a diagram illustrating an equivalent circuit model of a resonator and a resonance characteristic thereof.
  • FIG. 9B is a diagram illustrating an equivalent circuit model and its resonance characteristics when an impedance element is connected in series to the resonator.
  • FIG. 9C is a diagram illustrating an equivalent circuit model of two resonators connected in parallel and a resonance characteristic thereof.
  • FIG. 10A is a circuit configuration diagram of a high-frequency filter according to an example (Example 2-1) of the second embodiment.
  • FIG. 10B is a graph illustrating various characteristics relating to the high-frequency filter according to Example 2-1.
  • FIG. 11A is a graph comparing the characteristics of the high frequency filters according to Example 2-1 and Example 1-1 at the time of low frequency shift.
  • FIG. 11B is a graph comparing the characteristics of the high frequency filters according to Example 2-1 and Example 1-1 at the time of high frequency shift.
  • FIG. 12 is a graph showing changes in filter characteristics when the on / off switch of the high-frequency filter according to Example 2-1 is individually switched.
  • FIG. 13A is a circuit configuration diagram of a high-frequency filter according to an example (Example 2-2) of the second embodiment.
  • FIG. 13B is a graph illustrating various characteristics relating to the high-frequency filter according to Example 2-2.
  • FIG. 14A is a graph comparing the characteristics of the high frequency filters according to Example 2-2 and Example 1-1 at the time of low frequency shift.
  • FIG. 14B is a graph comparing the characteristics of the high frequency filters according to Example 2-2 and Example 1-1 at the time of high frequency shift.
  • FIG. 15 is a graph illustrating changes in filter characteristics when the on / off of the switch of the high-frequency filter according to Example 2-2 is individually switched.
  • FIG. 16A is a circuit configuration diagram of a high-frequency filter according to an example (Example 3) of the third embodiment.
  • FIG. 16B is a graph illustrating various characteristics related to the high-frequency filter according to the third embodiment.
  • FIG. 17A is a graph comparing the characteristics of the high-frequency filters according to Example 3 and Example 1-1 at the time of low frequency shift.
  • FIG. 17B is a graph comparing the characteristics of the high frequency filters according to Example 3 and Example 1-1 at the time of high frequency shift.
  • FIG. 18A is an enlarged view of the passband and the vicinity thereof in the graph shown in the upper part of FIG. 17A.
  • FIG. 18B is an enlarged view showing the passband and the vicinity thereof in the graph shown in the upper part of FIG. 17B.
  • FIG. 19 is a graph illustrating changes in filter characteristics when the on / off switch of the high-frequency filter according to the third embodiment is individually switched.
  • FIG. 19 is a graph illustrating changes in filter characteristics when the on / off switch of the high-frequency filter according to the third embodiment is individually switched.
  • FIG. 20A is a circuit configuration diagram of a high-frequency filter according to an example (Example 4) of the fourth embodiment.
  • FIG. 20B is a plan view illustrating the structure of the high-frequency filter according to the fourth embodiment.
  • FIG. 21 is a circuit configuration diagram of a multiplexer according to the fourth embodiment.
  • FIG. 22 is a configuration diagram of a communication apparatus according to the fifth embodiment.
  • circuit elements such as resonators can be appropriately adjusted according to required specifications. For this reason, the circuit elements may have different constants even if they have the same sign.
  • “pass band low band edge” and “pass band high band edge” are respectively “low band edge in the pass band (low frequency side edge)” and “high band edge in the pass band, respectively. (High frequency side end) ".
  • “passband low band side” and “passband high band side” are “outside the passband and lower than the passband (lower frequency side)” and “outside the passband and passband, respectively.
  • “Higher frequency side (high frequency side)” means.
  • the resonance frequency in the resonator or circuit is a resonance frequency for forming an attenuation pole in the pass band of the filter including the resonator or the circuit or in the vicinity of the pass band unless otherwise specified.
  • it is the frequency of a “resonance point” that is a singular point where the impedance of the circuit is minimized (ideally a point where the impedance is 0).
  • the anti-resonance frequency in the resonator or circuit is an anti-resonance frequency for forming an attenuation pole near the passband or the passband of the filter including the resonator or the circuit, unless otherwise specified.
  • This is the frequency of the “anti-resonance point”, which is a singular point where the impedance of the resonator or the circuit becomes maximum (ideally, the point where the impedance becomes infinite).
  • the series arm circuit and the parallel arm circuit are defined as follows.
  • the parallel arm circuit is a circuit arranged between one node on the path connecting the first input / output terminal and the second input / output terminal and the ground.
  • the serial arm circuit is a circuit arranged between the first input / output terminal or the second input / output terminal and the node on the path to which the parallel arm circuit is connected, or one parallel arm circuit is connected.
  • a circuit arranged between one node on the path and another node on the path to which another parallel arm circuit is connected.
  • FIG. 1A is a circuit configuration diagram of the high-frequency filter 10 according to Example 1-1.
  • the high frequency filter 10 shown in the figure includes a series arm circuit 11 and a parallel arm circuit 12.
  • the serial arm circuit 11 is a resonance circuit provided on a path (series arm) connecting the input / output terminal 11m (first input / output terminal) and the input / output terminal 11n (second input / output terminal).
  • the series arm circuit 11 includes a series arm resonator s1a (first series arm resonator), a series arm resonator s1b (second series arm resonator), and a switch SWb (first switch).
  • Frequency variable circuit 11b (first frequency variable circuit).
  • the series arm circuit 11 includes the series arm resonators s1a and s1b having the resonance frequency (resonance point) at which the impedance is minimized and the antiresonance frequency (antiresonance point) at which the impedance is maximized.
  • a resonance frequency and an anti-resonance frequency depending on the frequency and the anti-resonance frequency. Details of this will be described later.
  • the series arm resonator s1a is a first series arm resonator provided on the series arm connecting the input / output terminal 11m and the input / output terminal 11n, and the input / output terminal 11m (first input / output terminal) and the input / output terminal. 11n (second input / output terminal).
  • the series arm resonator s1b is a second series arm resonator provided on the series arm and on a path bypassing the series arm resonator s1a, and one terminal is connected to one terminal of the series arm resonator s1b. The other terminal is connected to the other terminal of the series arm resonator s1a via the switch SWb.
  • the switch SWb is a first switch connected in series with the series arm resonator s1b (second series arm resonator).
  • This switch SWb is a SPST (Single Pole Single Throw) type switch element, for example, a FET (Field Effect Transistor) switch made of GaAs or CMOS (Complementary Metal Oxide Semiconductor), or a diode switch, for example, an IC switch. It is configured as (Integrated Circuit).
  • the switch SWb is not limited to a semiconductor switch formed on a semiconductor substrate, and may be a mechanical switch configured by MEMS (Micro Electro Mechanical Systems).
  • the frequency variable circuit 11b (first frequency variable circuit) configured by the series arm resonator s1b and the switch SWb is a resonance frequency that configures the pass band of the high frequency filter 10 and an antipole that configures the attenuation pole of the high frequency filter 10.
  • the resonance frequency is varied.
  • the switch SWb is turned on (conducting state) and off (non-conducting state) according to a control signal from a control unit (not shown) such as an RFIC, and the resonance frequency and The antiresonance frequency is varied.
  • the frequency variable circuit 11b may change at least one of the resonance frequency and the anti-resonance frequency, and may change only one of the resonance frequency and the anti-resonance frequency.
  • the series arm resonator s1b and the switch SWb constituting the frequency variable circuit 11b are connected in this order from the input / output terminal 11m side, but they may be connected in the reverse order.
  • the series arm circuit 11 includes the series arm resonator s1a (first series arm resonator) and the frequency variable circuit 11b connected in parallel with the series arm resonator s1a.
  • the parallel arm circuit 12 is a resonance circuit connected to the node x1 on the path (series arm) connecting the input / output terminal 11m and the input / output terminal 11n and the ground (reference terminal).
  • the parallel arm circuit 12 includes a parallel arm resonator p1 connected between the node x1 and the ground.
  • the parallel arm circuit 12 includes the parallel arm resonator p1 having the resonance frequency (resonance point) at which the impedance is minimized and the antiresonance frequency (antiresonance point) at which the impedance is maximized. It has a resonance frequency and an anti-resonance frequency depending on the anti-resonance frequency.
  • each resonator in the present embodiment, the series arm resonators s1a and s1b and the parallel arm resonator p1 is constituted by, for example, an acoustic wave resonator using a surface acoustic wave.
  • FIG. 2 is a plan view and a cross-sectional view schematically showing an electrode configuration of an acoustic wave resonator 120 using a surface acoustic wave.
  • the electrode configuration shown in the figure is for explaining a typical structure of each resonator in the high-frequency filter 10, and the number and length of electrode fingers constituting the electrode are the same. It is not limited.
  • the acoustic wave resonator 120 includes a piezoelectric substrate 101 that is a substrate having piezoelectricity at least in part, and an IDT electrode 111 formed on the piezoelectric substrate 101.
  • the IDT electrode 111 has a plurality of electrode fingers 111a and a pair of bus bar electrodes arranged to face each other across the plurality of electrode fingers 111a, and the plurality of electrode fingers 111a is one of the set of bus bar electrodes. And are alternately connected to the other.
  • the plurality of electrode fingers 111a are formed along a direction orthogonal to the propagation direction of the surface acoustic wave, and are periodically formed along the propagation direction.
  • the wavelength of the surface acoustic wave to be excited is defined by the design parameters of the IDT electrode 111 and the like.
  • design parameters of the IDT electrode 111 will be described.
  • the wavelength of the surface acoustic wave is defined by the repetition period ⁇ of the electrode fingers 111a connected to one bus bar electrode among the plurality of electrode fingers 111a.
  • the electrode finger pitch (pitch of the plurality of electrode fingers 111a, that is, the electrode finger cycle) P is 1 ⁇ 2 of the repetition cycle ⁇
  • the line width of the electrode fingers 111a is W
  • the electrode duty (duty ratio) is the line width occupation ratio of the plurality of electrode fingers 111a, and the ratio of the line width to the sum of the line width and the space width of the plurality of electrode fingers 111a, that is, W / ( W + S).
  • the electrode duty is defined by the ratio of the width of the plurality of electrode fingers 111a to the electrode finger pitch (the pitch of the plurality of electrode fingers 111a), that is, W / P.
  • ⁇ 0 is the dielectric constant in vacuum
  • ⁇ r is the dielectric constant of the piezoelectric substrate 101.
  • the high frequency filter 10 configured as described above can change (frequency shift) the frequency on the low pass band side while suppressing the loss at the high end of the pass band.
  • the filter characteristics (pass characteristics) of the high frequency filter 10 of the present embodiment will be described while also describing the impedance characteristics (resonance characteristics) that define the filter characteristics.
  • Table 1 shows the circuit constants of the high-frequency filter 10 of Example 1-1.
  • the off-capacitance (Coff) which is a capacitance component when the switch SWb is off, is 0.2 pF. Details of the off-capacitance (Coff) will be described later.
  • the resonance frequency (fr_s1b) of the series arm resonator s1b is different from the resonance frequency (fr_s1a) of the series arm resonator s1a (first series arm resonator) ( fr_s1b ⁇ fr_s1a), which is lower than the resonance frequency of the series arm resonator s1a in the present embodiment (fr_s1b ⁇ fr_s1a).
  • the resonance frequency (fr_p1) of the parallel arm resonator p1 is lower than the resonance frequency of the series arm resonator s1a (fr_p1 ⁇ fr_s1a).
  • FIG. 1B is a graph showing various characteristics related to the high-frequency filter 10. Specifically, the upper stage of FIG. 2 shows two-state filter characteristics when the switch SWb is on and when the switch SWb is off. In the middle of the figure, impedance characteristics of the series arm circuit 11 and the parallel arm circuit 12 are shown. In the lower part of the figure, impedance characteristics of the series arm resonator s1a, the series arm resonator s1b, and the parallel arm resonator p1 are shown. The series arm circuit 11 shows two-state impedance characteristics when the switch SWb is on and when the switch SWb is off.
  • the high-frequency filter 10 is a variable-frequency reception filter that switches a corresponding frequency band (that is, a frequency band to be filtered) between Band 29 and Band 12 defined by 3GPP (Third Generation Partnership Project). Therefore, as shown in the upper part of FIG. 1B, the high-frequency filter 10 switches the pass band between Band 29 Rx (717-727 MHz), which is the Band 29 reception band, and Band 12 Rx (729-746 MHz), which is the Band 12 reception band.
  • the series arm circuit 11 is in a state where the frequency variable circuit 11b in which the switch SWb is turned off is connected in parallel to the series arm resonator s1a. At this time, since the impedance of the frequency variable circuit 11b is very high (ideally infinite), the series arm circuit 11 exhibits substantially the same characteristics (ideally completely the same characteristics) as the series arm resonator s1a. .
  • the antiresonance frequency (fa_s1_off) of the series arm circuit 11 is equal to the off-capacitance (Coff) of the series arm resonator s1b of the frequency variable circuit 11b and the switch SWb. Is slightly shifted ( ⁇ fa_s1a) to the lower frequency side than the antiresonance frequency (fa_s1a) of the series arm resonator s1a.
  • the off-capacitance (Coff) of the switch SWb is a capacitance component when the switch SWb is off. That is, when the switch SWb is off, the switch SWb is ideally in a state where there is no capacitance component (that is, infinite impedance), but actually has an off capacitance (Coff) that is a minute capacitance component. Since the off-capacitance is sufficiently smaller than the capacitance of the series arm resonator s1b (in this embodiment, 0.2 pF), the combined capacitance of the series arm resonator s1b and the off-capacitance of the switch SWb is the series arm. The value is sufficiently smaller than the capacitance of the resonator s1b. Therefore, there is a slight frequency difference ( ⁇ fa_s1a) in the anti-resonance frequency of the series arm circuit 11 between when the switch SWb is off and when it is on.
  • the resonance frequency (fr_s1_off) of the series arm circuit 11 is not affected by the frequency variable circuit 11b, it becomes equal to the resonance frequency (fr_s1a) of the series arm resonator s1a.
  • the series arm circuit 11 is in a state where the frequency variable circuit 11b in which the switch SWb is turned on is connected in parallel to the series arm resonator s1a. That is, the series arm circuit 11 is a parallel connection circuit of the series arm resonator s1a and the series arm resonator s1b.
  • the series arm circuit 11 has two resonance frequencies and two anti-resonance frequencies. Specifically, the series arm circuit 11 includes a first resonance frequency (fr1_s1_on) equal to the resonance frequency (fr_s1b) of the series arm resonator s1b, and a second resonance equal to the resonance frequency (fr_s1a) of the series arm resonator s1a.
  • the second anti-resonance frequency (fa2_s1_on) is located between the child s1a and the anti-resonance frequency (fa_s1a).
  • the anti-resonance frequency and the resonance frequency of the series arm circuit 11 are shifted in accordance with the switching of the switch SWb.
  • the resonance frequency and antiresonance frequency of the parallel arm circuit 12 are not shifted by switching the switch SWb on and off, the resonance frequency is equal to the resonance frequency (fr_p1) of the parallel arm resonator p2, and the antiresonance frequency is parallel. It is equal to the antiresonance frequency (fa_p1) of the arm resonator p2.
  • a series arm circuit composed of only series arm resonators has one resonance frequency (frs) and one anti-resonance frequency (fas).
  • a parallel arm circuit composed of only parallel arm resonators has one resonance frequency (frp) and one anti-resonance frequency (fap).
  • a band is formed, an attenuation pole on the low pass band side is configured by the resonance frequency (frp) of the parallel arm circuit, and an attenuation pole on the high pass band side is configured by the anti-resonance frequency (fas) of the series arm circuit. .
  • the resonance frequency (fa_s1_off fr_s1a) of the series arm circuit 11
  • the anti-resonance frequency (fa_p1) of the parallel arm circuit 12 the resonance frequency (fr_p1) of the parallel arm circuit 12
  • a filter characteristic indicated by a broken line (B29side (SWb Off)) in FIG. 1B that is, a filter characteristic having a band 29Rx (717-727 MHz) as a pass band is configured.
  • the loss (I. Loss: Insertion Loss) at the low end of the pass band (717 MHz) is 0.288 dB
  • the loss at the high end of the pass band (727 MHz) is 0.265 dB. Loss is suppressed.
  • Band 29 is a band dedicated to reception.
  • a pass band is formed by the second resonance frequency (fr2_s1_on, ie, fr_s1a) of the series arm circuit 11 and the anti-resonance frequency (fa_p1) of the parallel arm circuit 12, and
  • the attenuation pole on the low pass band side is configured by the frequency (fr_p1)
  • the attenuation pole on the high pass band side is configured by the second anti-resonance frequency (fa2_s1_on) of the series arm circuit 11.
  • a new attenuation pole is formed on the low pass band side by the first anti-resonance frequency (fa1_s1_on) of the series arm circuit 11.
  • the filter characteristic indicated by the solid line (B12side (SWb On)) in FIG. 1B that is, Band12Rx (729-746 MHz) is used as the passband, and Band12Tx (699-716 MHz) is the attenuation band. Is formed.
  • the loss at the low end of the passband (729 MHz) is 0.314 dB
  • the loss at the high end of the passband (746 MHz) is 0.237 dB
  • the loss in the passband is suppressed.
  • the high-frequency filter 10 can be applied to a variable frequency filter that switches between Band29Rx and Band12Rx.
  • FIG. 3A is a circuit configuration diagram of a high-frequency filter 10X according to a comparative example.
  • the high-frequency filter 10X shown in the figure includes a series arm circuit 11X configured by a series arm resonator s1, and a parallel arm circuit 12X configured by parallel arm resonators p1a and p1b and a switch SWx.
  • the parallel arm resonator p1a and the parallel arm resonator p1b are connected in series, and the parallel arm resonator p1b and the switch SWx are connected in parallel.
  • the frequency of the attenuation pole on the low pass band side can be varied by switching the switch SWx on and off.
  • the filter characteristics (pass characteristics) of the high-frequency filter 10X of the comparative example will be described while also describing the impedance characteristics (resonance characteristics) that define the filter characteristics.
  • Table 2 shows the circuit constants of the high-frequency filter 10X of the comparative example. Note that the off-capacitance (Coff) of the switch SWx is 0.2 pF.
  • FIG. 3B is a graph showing various characteristics related to the high-frequency filter 10X.
  • the upper stage of FIG. 2 shows two-state filter characteristics when the switch SWx is on and when the switch SWx is off.
  • impedance characteristics of the series arm circuit 11X and the parallel arm circuit 12X are shown.
  • impedance characteristics of the series arm resonator s1, the parallel arm resonator p1a, and the parallel arm resonator p1b are shown.
  • the parallel arm circuit 12X two-state impedance characteristics are shown when the switch SWx is on and when the switch SWx is off.
  • the parallel arm circuit 12X exhibits the same characteristics as the parallel arm resonator p1a when the parallel arm resonator p1b is short-circuited by the switch SWx. That is, the resonance frequency (fr_p1_on) of the parallel arm circuit 12X is equal to the resonance frequency (fr_p1a) of the parallel arm resonator p1a, and the antiresonance frequency (fa_p1_on) of the parallel arm circuit 12X is the antiresonance of the parallel arm resonator p1a. It becomes equal to the frequency (fa_p1a).
  • the parallel arm circuit 12X is a circuit in which the parallel arm resonator p1a and the parallel arm resonator p1b are connected in series, the parallel arm resonator p1a and the parallel arm resonator p1b exhibit the combined characteristics.
  • the parallel arm circuit 12X exhibits characteristics slightly different from the above-described combined characteristics due to the off-capacitance of the switch SWx.
  • the off-capacitance of the switch SWx is very small (0.2 pF in this embodiment) compared to the capacitance of the parallel arm resonators p1a and p1b (5.0 pF and 3.0 pF in this embodiment, respectively). It hardly affects the characteristics of the parallel arm circuit 12X. Therefore, for simplicity, the switch SWx will be described as an ideal switch having no off capacitance.
  • the parallel arm circuit 12X has two resonance frequencies and two anti-resonance frequencies. Specifically, the parallel arm circuit 12X is equal to the first anti-resonance frequency (fa1_p1_off) equal to the anti-resonance frequency (fa_p1a) of the parallel arm resonator p1a and the anti-resonance frequency (fa_p1b) of the parallel arm resonator p1b.
  • the second resonance frequency (fr2_p1_off) is located between the frequency (fr1_p1_off) and the second anti-resonance frequency (fa2_p1_off).
  • the anti-resonance frequency and the number of resonance frequencies of the parallel arm circuit 12X are switched and the resonance frequency is shifted in accordance with the on / off switching of the switch SWx.
  • the resonance frequency and antiresonance frequency of the series arm circuit 11X are not shifted by switching the switch SWx on and off, the resonance frequency is equal to the resonance frequency (fr_s1) of the series arm resonator s1, and the antiresonance frequency is in series. It is equal to the antiresonance frequency (fa_s1) of the arm resonator s1.
  • the filter characteristic indicated by the broken line (B29side (SWx On)) in FIG. 3B that is, the filter characteristic having the band 29Rx as a pass band (“B29side” in the figure).
  • the loss at the low end of the passband (717 MHz) is 0.323 dB
  • the loss at the high end of the passband (727 MHz) is 0.269 dB
  • the loss in the passband is suppressed.
  • the filter characteristic indicated by the solid line (B12side (SWx Off)) in FIG. 3B that is, the filter characteristic having the Band12Rx as the pass band and the Band12Tx as the attenuation band is configured.
  • the loss at the low end of the passband (729 MHz) is 0.267 dB
  • the loss at the high end of the passband (746 MHz) is 0.904 dB
  • the loss at the high end of the passband is deteriorated ( Increased).
  • the attenuation at the lower end of the attenuation band (699 MHz) is 4.249 dB
  • the attenuation at the upper end of the attenuation band (716 MHz) is 0.694 dB
  • the attenuation at the upper end of the attenuation band is 0.694 dB. It is insufficient.
  • the high frequency filter 10X according to the comparative example when applied to a frequency variable filter that switches between Band29Rx and Band12Rx, when SWx is turned off, the loss at the high end of the passband deteriorates and the low passband The attenuation in the attenuation band on the side will deteriorate.
  • the frequency of the low pass band when the frequency of the low pass band is changed to the high frequency, the loss at the high end of the pass band deteriorates and the attenuation in the attenuation band on the low pass band side. There is a problem that gets worse.
  • FIG. 4A compares the characteristics of the high-frequency filter according to Example 1-1 and the comparative example at the time of low frequency shift (B29side: when the passband frequency and attenuation pole on the low side of the passband are varied to a low frequency). It is a graph.
  • FIG. 4B compares the characteristics of the high-frequency filter according to Example 1-1 and the comparative example at the time of high frequency shift (B12side: when the passband frequency on the low passband side and the attenuation pole are varied to a high frequency). It is a graph.
  • Example 1-1 and the comparative example show the same passband (Band 29Rx) characteristics at the time of low frequency shift.
  • the second attenuation pole P_H92 is located on the lower frequency side than the first attenuation pole P_H91, the loss at the high end of the passband when the switch SWx is turned on is deteriorated.
  • only one attenuation pole P_L1 composed of the first resonance frequency (fr_p1_off) of the parallel arm circuit 12X appears on the low pass band side, and therefore, the attenuation amount in the low pass band attenuation band. Will be insufficient.
  • the attenuation pole P_L1 configured by the resonance frequency (fr_p1) of the parallel arm circuit 12 and the attenuation configured by the first anti-resonance frequency (fa_s1_on) of the series arm circuit 11 is provided. Since two attenuation poles of the pole P_L2 appear, the attenuation is improved in the attenuation band on the low pass band side.
  • the pass band of the high-frequency filter 10 is configured for the series arm circuit 11 by switching the switch SWb (first switch) on (conductive state) and off (non-conductive state). And the anti-resonance frequency constituting the attenuation pole of the high-frequency filter 10 can be varied.
  • the series arm circuit 11 has the same third resonance frequency (fr2_s1_off) as the resonance frequency (fr_s1a) of the series arm resonator s1a (first series arm resonator), and the series arm circuit 11
  • the third anti-resonance frequency (fa_s1_off) is located slightly lower than the anti-resonance frequency (fa_s1a) of the arm resonator s1a (first series arm resonator).
  • the series arm circuit 11 has the same first resonance frequency (fr2_s1_on) as the resonance frequency (fr_s1a) of the series arm resonator s1a, and the series arm resonator s1b (second series arm resonator).
  • the second resonance frequency (fr1_s1_on) which is the same as the resonance frequency (fr_s1b) of the first arm
  • a resonance frequency (fa1_s1_on) and a second anti-resonance frequency (fa2_s1_on) located on a higher frequency side than the second resonance frequency (fr1_s1_on).
  • the resonance frequency of the series arm resonator s1b is lower than the resonance frequency of the series arm resonator s1a (fr_s1b ⁇ fr_s1a). Therefore, when the switch SWb is off, the third resonance frequency (fr2_s1_off) forms a passband, and the third antiresonance frequency forms an attenuation pole on the high side of the passband.
  • the second resonance frequency (fr1_s1_on) constitutes a passband
  • the first antiresonance frequency (fa1_s1_on) constitutes an attenuation pole on the low passband side
  • the second antiresonance frequency ( fa2_s1_on) constitutes an attenuation pole on the high side of the passband. That is, in this embodiment, a new attenuation pole is formed on the low pass band side by switching the switch SWb from OFF to ON.
  • the following can be said about the relationship between the on / off switching of the switch SWb and the pass band.
  • the switch SWb is switched from OFF to ON, a new attenuation pole is formed on the low band side of the pass band, so that the attenuation band on the low band side is widened.
  • a new attenuation pole is not formed on the high side of the pass band, the deterioration of the loss at the high end of the pass band is suppressed, and the deterioration of the attenuation on the low side of the pass band can be suppressed.
  • the loss at the high end of the passband is suppressed, and the passband frequency on the low passband side and the frequency of the attenuation pole are variable while improving the attenuation on the low passband side.
  • a variable frequency type high frequency filter 10 can be realized.
  • the resonance frequency of the series arm resonator s1b is lower than the frequency of the series arm resonator s1a, the number of attenuation poles on the low side of the passband by switching the switch SWb on and off. Can be increased or decreased. Therefore, the loss at the high end of the pass band and the attenuation on the low pass band side can be improved.
  • the resonance frequency of the series arm resonator s1b (second series arm resonator) is not limited to the above frequency (702 Mz).
  • FIG. 5 is a graph showing the influence on the filter characteristics when the resonance frequency (fr_s1b) of the series arm resonator s1b is changed in the high-frequency filter 10 according to Example 1-1. More specifically, the figure shows a filter characteristic in which the switch SWb is turned on and the resonance frequency (fr_s1b) of the series arm resonator s1b is changed at intervals of 5 MHz in the range of 690 MHz to 710 MHz, and the filter with the switch SWb turned off. The characteristics are shown.
  • the specific bandwidth (Fa-fr) is obtained by dividing the frequency difference (fa-fr) between the antiresonance frequency (fa) and the resonance frequency (fr) by the resonance frequency (fr). (Fa ⁇ fr) / fr) is fixed.
  • the resonance frequency (fr_s1b) of the series arm resonator s1b By changing the resonance frequency (fr_s1b) of the series arm resonator s1b, the first anti-resonance frequency (fr1_s1_on) of the series arm circuit 11 when the switch SWb is turned on is changed. Therefore, as is clear from the figure, the attenuation on the passband side which is the attenuation pole constituted by the first anti-resonance frequency (fr1_s1_on) of the series arm circuit 11 among the two attenuation poles on the low passband side. The pole frequency changes.
  • the high frequency filter may have a plurality of second series arm resonators having different resonance frequencies. That is, the high frequency filter may have a plurality of first frequency variable circuits.
  • FIG. 6 is a circuit configuration diagram of the high-frequency filter 10A (high-frequency filter according to a modification) configured as described above.
  • the high frequency filter 10A shown in the figure has a plurality of frequency variable circuits 11b1 to 11bn.
  • the plurality of frequency variable circuits 11b1 to 11bn correspond to the frequency variable circuit 11b (first frequency variable circuit) of Example 1-1, respectively, and the series arm resonator s1b (second series arm resonator) of Example 1-1.
  • the plurality of series arm resonators s1b1 to s1bn have different resonance frequencies (fr_s1b1 ⁇ ..., Fr_s1bn).
  • the resonance frequencies of the plurality of series arm resonators s1b1 to s1bn are all lower than the resonance frequency of the series arm resonator s1a (first series arm resonator) (fr_s1b1 ⁇ fr_s1a,... ⁇ Fr_s1bn ⁇ fr_s1a).
  • the first anti-resonance frequency (fr1_s1_on) of the series arm circuit 11 can be varied according to the selection of the switch to be turned on among the plurality of switches SWb1 to SWbn. . That is, the frequency of the passband and the attenuation band on the low passband side can be varied in fine steps, so that the frequency variable range of the passband frequency and the attenuation pole on the low passband side can be set finely. . Therefore, it is possible to select the filter characteristic that provides the lowest loss for each channel of the band to be used (for example, Band12Rx).
  • the series arm circuit according to the present embodiment may further include a first impedance element connected in series with the first series arm resonator. Therefore, hereinafter, such a high-frequency filter will be described using Examples (Examples 1-2-1 and 1-2-2).
  • FIG. 7A is a circuit configuration diagram of the high-frequency filter 10Ba according to Example 1-2-1.
  • the high-frequency filter 10Ba is different from the example 1-1 in that the capacitor C11 (first impedance) connected in series with the series arm resonator s1a (first series arm resonator).
  • a series arm circuit 11Ba further including an element is provided.
  • the frequency variable circuit 11b is connected in parallel with a series connection circuit 11aa (first series connection circuit) including the series arm resonator s1a and the capacitor C11.
  • FIG. 7B is a circuit configuration diagram of the high-frequency filter 10Bb according to Example 1-2-2.
  • the high-frequency filter 10Bb according to the present example has a configuration in which the capacitor C11 is replaced with an inductor L11 (first impedance element) in the high-frequency filter 10Ba according to Example 1-2-1.
  • Example 1-2-1 the characteristics of the high-frequency filter according to Example 1-2-1 and Example 1-2-2 configured as described above will be described in comparison with Example 1-1.
  • the circuit constant of the high frequency filter 10Ba of Example 1-2-1 is substantially the same as the circuit constant of Example 1, and the resonance frequency (fr) of the series arm resonator s1a (first series arm resonator) is The only difference is that 725 MHz and the antiresonance frequency (fa) is 783 MHz.
  • the capacitance value of the capacitor C11 is 8 pF.
  • the circuit constant of the high frequency filter 10Bb of Example 1-2-2 is substantially the same as the circuit constant of Example 1, and the resonance frequency (fr) of the series arm resonator s1a (first series arm resonator) is 745 MHz. The only difference is that the antiresonance frequency (fa) is 804 MHz.
  • the inductance value of the inductor L11 is 2 nH.
  • FIG. 7C is a graph showing various characteristics of the high frequency filter according to Example 1-2-1 and Example 1-2-2 in comparison with Example 1-1.
  • the left column of the figure shows various characteristics of the high frequency filter 10 according to Example 1-1
  • the center column of the figure shows various characteristics of the high frequency filter 10Ba according to Example 1-2-1
  • the right column shows various characteristics of the high-frequency filter 10Bb according to Example 1-2-2.
  • the upper part of the figure shows two-state filter characteristics when the switch SWb is on and when the switch SWb is off.
  • impedance characteristics of the series arm circuit and the parallel arm circuit 12 are shown.
  • impedance characteristics of the series arm resonator s1a, the series arm resonator s1b, and the parallel arm resonator p1 are shown.
  • two-state impedance characteristics are shown when the switch SWb is on and when the switch SWb is off.
  • Example 1-2-1 and Example 1-2-2 in which the impedance element is connected in series to the series arm resonator s1a are the same as those of Example 1-1.
  • the pass band low band side can be varied while suppressing the loss at the high end of the pass band.
  • the pass band is larger than that in Example 1-1 in which no impedance element is provided.
  • a narrow band filter characteristic can be configured.
  • the inductor L11 as an impedance element connected in series to the series arm resonator s1a as in the example 1-2-2, the passband is larger than that in the example 1-1 in which no impedance element is provided.
  • a broadband filter characteristic can be configured.
  • FIG. 7D is a graph comparing the characteristics of the high-frequency filters according to Example 1-1, Example 1-2-1, and Example 1-2-2 at the time of low frequency shift (when the switch SWb is off).
  • FIG. 7E is a graph comparing the characteristics of the high frequency filters according to Example 1-1, Example 1-2-1, and Example 1-2-2 at the time of high frequency shift (when the switch SWb is on).
  • the upper part shows the filter characteristics
  • the lower part shows the impedance of the series arm circuit when the switch SWb is on or when the switch SWb is off.
  • the series arm circuit 11Ba according to the embodiment 1-2-1 has a resonance compared with the series arm circuit 11 according to the embodiment 1-1 because the series arm resonator s1a and the capacitor C11 are connected in series.
  • the frequency difference between the frequency and the antiresonance frequency can be reduced. Therefore, when the resonance frequency of the series arm circuit 11Ba is matched with the pass band of the high frequency filter 10Ba, the antiresonance frequency of the series arm circuit 11Ba is located on the lower frequency side than the antiresonance frequency of the series arm circuit 11.
  • the passband is narrowed because the attenuation pole on the high side of the passband is positioned on the low frequency side compared to Example 1-1.
  • the series arm circuit 11Bb of the embodiment 1-2-2 has a series arm resonator s1a and an inductor L11 connected in series, so that the series arm circuit 11Bb of the embodiment 1-2-2 is compared with the series arm circuit 11 of the embodiment 1-1.
  • the frequency difference between the resonance frequency and the anti-resonance frequency can be increased. Therefore, when the resonance frequency of the series arm circuit 11Bb is matched with the pass band of the high frequency filter 10Bb, the antiresonance frequency of the series arm circuit 11Bb is positioned higher than the antiresonance frequency of the series arm circuit 11. For this reason, according to the embodiment 1-2-2, compared with the embodiment 1-1, the attenuation band on the high side of the passband is positioned on the high frequency side, so that the passband is widened.
  • the series arm circuit 11Ba of Example 1-2-1 has a first resonance frequency (resonance frequency on the low frequency side) and a second resonance frequency (high frequency) compared to the series arm circuit 11 of Example 1-1.
  • Side resonance frequency) and the first antiresonance frequency (low frequency side antiresonance frequency) are substantially the same frequency, and the second antiresonance frequency (high frequency side antiresonance frequency) is located on the low frequency side.
  • the passband is narrowed because the attenuation pole on the high side of the passband is positioned on the low frequency side compared to Example 1-1.
  • the series arm circuit 11Bb of the embodiment 1-2-2 has a first resonance frequency (resonance frequency on the low frequency side) and a second resonance frequency (resonance frequency) compared to the series arm circuit 11 of the embodiment 1-1.
  • the resonance frequency on the high frequency side) and the first anti-resonance frequency (the anti-resonance frequency on the low frequency side) are substantially the same frequency, and the second anti-resonance frequency (the anti-resonance frequency on the high frequency side) is located on the high frequency side.
  • the attenuation band on the high side of the passband is positioned on the high frequency side, so that the passband is widened.
  • the series arm resonator s1a (first series arm resonator) and the first impedance element (capacitor C11 in Example 1-2-1 and inductor L11 in Example 1-2-2) are connected in series.
  • the frequency difference between the resonance frequency and the anti-resonance frequency of the first series connection circuit (the series connection circuit 11aa in the embodiment 1-2-1 and the series connection circuit 11ab in the embodiment 1-2-2) is calculated.
  • the frequency difference of the series arm resonator s1a can be changed. Specifically, the frequency difference can be reduced when the first impedance element is a capacitor (in the case of Example 1-2-1), and when the first impedance element is an inductor (in Example 1-2-2). 2), the frequency difference can be increased.
  • the frequency difference between the second resonance frequency and the second anti-resonance frequency of the series arm circuit can be adjusted by appropriately adjusting the circuit constant of the first impedance element, the passage defined by the frequency difference is passed.
  • the frequency difference between the cutoff frequency on the high band side and the attenuation pole on the high band side can be adjusted. Accordingly, the pass bandwidth and the steepness of the attenuation slope can be arbitrarily set.
  • variable width for narrowing or widening the pass band depends on the constant of the first impedance element.
  • the first impedance element is a capacitor
  • the element is an inductor
  • the constant of a 1st impedance element can be suitably determined according to the frequency specification requested
  • the capacitor may be a variable capacitor such as a varicap and DTC (Digitally Tunable Capacitor).
  • the inductor may be a variable inductor using MEMS (Micro Electro Mechanical Systems).
  • the frequency variable circuit (first frequency variable circuit) included in the series arm circuit has, as the second series arm resonator, the resonance frequency of the first series arm resonator (series arm resonator s1 in the above embodiment). It has been described as having a low resonance frequency. However, the resonance frequency of the second series arm resonator only needs to be different from the resonance frequency of the first series arm resonator, and may be higher than the resonance frequency of the first series arm resonator.
  • FIG. 8A is a circuit configuration diagram of the high-frequency filter 10C according to Example 1-3.
  • the high-frequency filter 10C shown in the figure is different from the high-frequency filter 10 according to Example 1-1 in that the series arm circuit 11C further includes a frequency variable circuit 11c (first frequency variable circuit).
  • the frequency variable circuit 11c includes a series arm resonator s1c (second series arm resonator) and a switch SWc (first switch) connected in series with the series arm resonator s1c.
  • the resonance frequency (fr_s1c) of the series arm resonator s1c is higher than the resonance frequency (fr_s1a) of the series arm resonator s1a.
  • the serial arm circuit 11C includes a plurality of first frequency variable circuits (here, two frequency variable circuits 11b and 11c).
  • the resonance frequency of at least one (here, the series arm resonator s1b) of the plurality of second series arm resonators (here, the two series arm resonators s1b and s1c) is the series arm resonator s1a (first Lower than the resonance frequency of the series arm resonator (fr_s1b ⁇ fr_s1a).
  • the resonance frequency of at least one of the plurality of second series arm resonators (here, the series arm resonator s1c) is higher than the resonance frequency of the series arm resonator s1a (fr_s1a ⁇ fr_s1c).
  • the number of first frequency variable circuits is not limited to two and may be three or more.
  • the high-frequency filter 10C configured as described above can individually switch on and off, for example, the switch SWb and the switch SWc.
  • Table 3 shows circuit constants of the high-frequency filter 10C of Example 1-3. Note that the off capacitances (Coff) of the switches SWb and SWc are both 0.2 pF.
  • FIG. 8B is a graph showing various characteristics of the high-frequency filter 10C according to Example 1-3 in comparison with Example 1-1.
  • Example 1-3 and Example 1-1 when the switch SWb is on and SWc is off in order from the left column to the right column, (i) various characteristics of Example 1-3 and Example 1-1 when the switch SWb is on and SWc is off, (ii ) Various characteristics of Example 1-3 when switch SWb is off and SWc is on, (iii) Various characteristics of Example 1-3 and Example 1-1 when switch SWb is off and SWc is off, (Iv) Various characteristics of Example 1-3 when the switch SWb is on and SWc is on are shown.
  • the upper part of the figure shows the filter characteristics
  • the lower part of the figure shows the impedance characteristics of the series arm circuit and the parallel arm resonator (that is, the parallel arm circuit).
  • Example 1-1 when switch SWb is on (or off) and SWc is off are the various characteristics of Example 1-1 when switch SWb is on (or off).
  • the resonant frequency and antiresonance of the series arm circuit 11C are not only switched on and off of the switch SWb but also switched on and off of the switch SWc.
  • the frequency of the frequency can be varied.
  • the series arm circuit 11C further has a resonance frequency at the same frequency as the resonance frequency (fr_s1c) of the series arm resonator s1c, and is higher than the resonance frequency. Has an anti-resonance frequency on the frequency side. Further, in this way, in the series arm circuit 11C, the anti-resonance frequency closest to the lower frequency side than the resonance frequency (fr_s1c) of the series arm resonator s1c is shifted to the lower frequency side.
  • the anti-resonance frequency constitutes an attenuation pole on the high side of the passband. For this reason, the attenuation pole on the high passband side is shifted to the low frequency side by switching the switch SWc from off to on.
  • FIG. 8C is a graph showing changes in filter characteristics when the switches SWb and SWc of the high-frequency filter 10C according to Example 1-3 are individually switched on and off.
  • the high frequency filter 10C switches the frequency of the pass band and the frequency of the attenuation pole on the low pass band side while suppressing the loss at the high end of the pass band by switching the switch SWb on and off.
  • the high-frequency filter 10C can vary the frequency of the passband and the frequency of the attenuation pole on the high side of the passband while suppressing the loss at the low end of the passband by switching the switch SWc on and off.
  • the high-frequency filter 10C individually switches the switches SWb and SWc on and off, thereby suppressing the loss of the passband end and reducing the attenuation band for both the low-pass side and the high-pass side of the passband. Can be variable.
  • FIG. 9A is a diagram illustrating an equivalent circuit model of one resonator and a resonance characteristic thereof.
  • the resonator can be represented by a series circuit of a capacitor C 1 and the inductor L 1 parallel circuit of the (series connection circuit) and a capacitor C 0 (parallel connection circuit).
  • the capacitor C 0 is the capacitance of the resonator.
  • the resonance frequency fr of the resonator is defined by a series circuit of the capacitor C 1 and the inductor L 1, and is a frequency at which the impedance of the equivalent circuit becomes 0.
  • Equation 4 is obtained by solving Equation 4.
  • the antiresonance frequency fa appears on the higher frequency side than the resonance frequency fr.
  • the resonator has one resonance frequency and one anti-resonance frequency positioned higher than the resonance frequency.
  • Figure 9B is a diagram showing an equivalent circuit model and its resonant characteristics when the impedance element X 1 to resonators are connected in series.
  • the resonator can be represented by a parallel circuit of a capacitor C 1 and a series circuit of an inductor L 1 and a capacitor C 0 .
  • the capacitor C 0 is the capacitance of the resonator.
  • a parallel circuit of the impedance element X 1 and the switch SW is connected.
  • the switch SW is in an ideal state in which there is no capacitance component (that is, impedance is infinite) when it is off, and the resistance component is zero (that is, impedance is zero) when it is on. Treated as a typical switch.
  • the resonance characteristics of the equivalent circuit will be described for the case where the switch SW is on. If the switch SW is on, the impedance element X 1 becomes a short circuit, the resonance frequency fr_on and anti-resonance frequency fa_on, respectively, becomes the same as the resonant frequency fr and anti-resonant frequency fa in Fig. 9A, in Formula 6 and Formula 7 expressed.
  • the impedance elements X 1 be a capacitor, and will be described separately in the case, it is (2) the impedance element X 1 is an inductor.
  • the anti-resonance frequency fa_off1 when the switch SW is off is the same as the anti-resonance frequency fa_on when the switch SW is on, and is expressed by Expression 10.
  • Equation 6 Equation 7, Equation 9 and Equation 10
  • the impedance element X 1 is a capacitor, as shown in the right graph of FIG. 9B
  • the anti-resonant frequency fa_on And fa_off1 match.
  • the resonance frequency shifts to a higher frequency side when the switch SW is off (fr_off1) than when the switch SW is on (fr_on).
  • fr_off2L is a resonance frequency on the low frequency side when the switch SW is off
  • fr_off2H is a resonance frequency on the high frequency side when the switch SW is off.
  • the anti-resonance frequency fa_off2 when the switch SW is off is the same as the anti-resonance frequency fa_on when the switch SW is on, and is expressed by Expression 13.
  • FIG. 9C is a diagram illustrating an equivalent circuit model of two resonators connected in parallel and a resonance characteristic thereof.
  • a model in which the resonators res1 and res2 are connected in parallel is shown.
  • Resonator res1 is represented by a parallel circuit of the series circuit and the capacitor C 01 of the capacitor C 1 and the inductor L 1
  • resonator res2 is parallel with the series circuit and the capacitor C 02 of the capacitor C 2 and the inductor L 2 It can be represented by a circuit.
  • the capacitors C 01 and C 02 are capacitances of the resonators res 1 and res 2, respectively.
  • the resonance frequency fr of the resonator is defined by a series circuit of the capacitor C 1 and the inductor L 1 and is expressed by Equation 2.
  • the two resonance frequencies are defined, the resonance frequency fr1, fr2, respectively, a series circuit of a capacitor C 1 and the inductor L 1, and is defined by a series circuit of a capacitor C 2 and the inductor L 2 , Expressed by Equation 14.
  • the two resonance frequencies fr1 and fr2 represented by the equivalent circuit are substantially equal to the resonance frequency fr_res1 of the resonator res1 and the resonance frequency fr_res2 of the resonator res2, respectively.
  • the anti-resonance frequency of the equivalent circuit is a frequency at which the admittance Y of the equivalent circuit becomes 0, by solving Equation 15, two anti-resonance frequencies (fa1, fa2) are obtained as shown in Equation 16. I understand that I have it.
  • the anti-resonance frequencies fa1 and fa2 obtained by the above equation 16 are different from the anti-resonance frequencies of the single resonator obtained by the equation 4 (shown as fa_res1 and fa_res2 in the graph of FIG. 9C). Further, the antiresonance frequency fa1 derived from Expression 15 is lower than the antiresonance frequency fa_res1 of the resonator res1 alone, and the antiresonance frequency fa2 is lower than the antiresonance frequency fa_res2 of the resonator res2 alone.
  • the series arm circuit 11 has two resonance frequencies (first resonance frequency and second resonance frequency) and two anti-resonance frequencies (first anti-resonance frequency and second anti-resonance frequency). That is, the first resonance frequency and the second resonance frequency of the series arm circuit 11 are the same as the resonance frequency of the series arm resonator s1a and the resonance frequency of the series arm resonator s1b, respectively.
  • the first anti-resonance frequency of the series arm circuit 11 is lower than the anti-resonance frequency of the series arm resonator s1a, and the second anti-resonance frequency of the series arm circuit 11 is lower than the anti-resonance frequency of the series arm resonator s1a. Also lower.
  • the switch SWb (first switch) is off
  • the combined capacitance of the capacitance of the series arm resonator s1b and the off capacitance of the switch SWb is connected in parallel to the series arm resonator s1a.
  • the off-capacitance of the switch SWb is sufficiently smaller than the capacitance of the series arm resonator s1b. Therefore, the combined capacitance of the capacitance of the series arm resonator s1b and the off-capacitance (Coff) of the switch SWb. Is a value sufficiently smaller than the capacitance value of the capacitance of the series arm resonator s1b.
  • the third resonance frequency that is the resonance frequency of the series arm circuit 11 is the same as the resonance frequency of the series arm resonator s1a, and the third antiresonance frequency that is the resonance frequency of the series arm circuit 11 is the series arm resonance.
  • the frequency shifts slightly lower than the anti-resonance frequency of the child s1a.
  • Example 1-2-1 and Example 1-2-2 an impedance element (capacitor in Example 1-2-1 and inductor in Example 1-2-2) is connected to the series arm resonator s1a.
  • an impedance element capacitor in Example 1-2-1 and inductor in Example 1-2-2
  • the resonance frequency of the first series connection circuit constituted by the series arm resonator s1a and the impedance element is shifted to a higher frequency side or a lower frequency side than the resonance frequency of the series arm resonator s1a.
  • the anti-resonance frequency of the first series connection circuit is equal to the resonance frequency of the series arm resonator s1a.
  • the resonance characteristics of the series arm circuit 11 when both the switches SWb and SWc in the embodiment 1-3 are on are described using an equivalent circuit model of three resonators connected in parallel to each other.
  • the three frequencies at which the impedance of the equivalent circuit model (equivalent circuit) is 0 are resonance frequencies
  • the three frequencies at which the admittance is 0 are anti-resonance frequencies.
  • the resonance frequency or anti-resonance frequency of the parallel arm circuit is fixed.
  • the resonance frequency or anti-resonance frequency of the parallel arm circuit may be variable as in the case of the series arm circuit. Therefore, in the present embodiment, such a high-frequency filter will be described using examples (Example 2-1 and Example 2-2).
  • FIG. 10A is a circuit configuration diagram of the high-frequency filter 20 according to Example 2-1.
  • the parallel arm circuit 22 in this example is further in series with the parallel arm resonator p1 (first parallel arm resonator) compared to the parallel arm circuit 12 in the example of the first embodiment. It has a connected frequency variable circuit 11d (second frequency variable circuit).
  • the frequency variable circuit 11d is a second frequency variable circuit having a capacitor C22 (second impedance element) and a switch SWp (second switch) connected in parallel with the capacitor C22. That is, the frequency variable circuit 11d is a parallel connection circuit of the capacitor C22 and the switch SWp, and is connected in series with the parallel arm resonator p1.
  • the frequency variable circuit 11d changes the resonance frequency of the parallel arm circuit 22 by switching the switch SWp on and off in accordance with a control signal from a control unit (not shown) such as an RFIC.
  • the parallel arm resonator p1 and the frequency variable circuit 11d are connected in this order from the node x1 side, but may be connected in the reverse order.
  • the switch SWp is arranged on the node x1 side from the parallel arm resonator p1
  • the loss of the high-frequency filter 20 is deteriorated due to the resistance component (on resistance) of the switch SWp when the switch SWp is on.
  • the frequency variable circuit 11d is preferably arranged on the ground side from the parallel arm resonator p1.
  • the switch SWb when the switch SWb (first switch) is on (conductive state), the switch SWp (second switch) is off (non-conductive state).
  • the switch SWp When SWb is off, the switch SWp is on. That is, when one of the switches SWb and SWp switches from on to off, the other switches from off to on at the same time.
  • the control circuit for controlling the on / off of the switches SWb and SWp can be made common, the high-frequency filter 20 can be downsized.
  • the switch SWp is an SPST type switch element, and is configured in the same manner as the switch SWb, for example.
  • the same circuit elements as in the embodiment 1-1 have the same constants.
  • the capacitance value of the capacitor C22 is 12 pF, and the off capacitance of the switch SWp is 0.2 pF.
  • FIG. 10B is a graph showing various characteristics related to the high-frequency filter 20.
  • the upper stage of FIG. 2 shows two-state filter characteristics when the switch SWb is on and the switch SWp is off, and when the switch SWb is off and the switch SWp is on.
  • impedance characteristics of the series arm circuit 11 and the parallel arm circuit 22 are shown.
  • impedance characteristics of the series arm resonator s1a, the series arm resonator s1b, and the parallel arm resonator p1 are shown.
  • the series arm circuit 11 shows two-state impedance characteristics when the switch SWb is on and when the switch SWb is off.
  • two-state impedance characteristics are shown when the switch SWp is on and when the switch SWp is off.
  • the characteristics of the series arm circuit 11 are the same as the characteristics when the switch SWb is OFF in the embodiment 1-1, and thus detailed description thereof is omitted.
  • the parallel arm circuit 22 exhibits the same characteristics as the parallel arm resonator p1 when the capacitor C22 is short-circuited by the switch SWp.
  • the characteristics of the series arm circuit 11 are the same as the characteristics when the switch SWb is turned on in Example 1-1, and thus detailed description thereof is omitted.
  • the parallel arm circuit 22 is a circuit in which the parallel arm resonator p1 and the capacitor C22 are connected in series when the switch SWb is turned off, the combined characteristic of the parallel arm resonator p1 and the capacitor C22 is obtained. Indicates.
  • the parallel arm circuit 22 exhibits characteristics slightly different from the above-described combined characteristics due to the off-capacitance of the switch SWp.
  • the off-capacitance of the switch SWp is very small (0.2 pF in this embodiment) compared to the capacitance of the capacitor C22 (12 pF in this embodiment), and therefore hardly affects the characteristics of the parallel arm circuit 22. Therefore, for simplicity, the switch SWp will be described as an ideal switch having no off-capacitance.
  • the parallel arm circuit 22 is equal to the resonance frequency positioned higher than the resonance frequency of the parallel arm resonator p1 and the anti-resonance frequency of the parallel arm resonator p1. And an anti-resonance frequency.
  • FIG. 11A is a graph comparing the characteristics of the high frequency filters according to Example 2-1 and Example 1-1 at the time of low frequency shift.
  • FIG. 11B is a graph comparing the characteristics of the high frequency filters according to Example 2-1 and Example 1-1 at the time of high frequency shift.
  • the upper stage shows the filter characteristics
  • the middle stage shows the impedance characteristics of the series arm circuit
  • the lower stage shows the impedance characteristics of the parallel arm circuit.
  • Example 2-1 characteristics equivalent to Example 1-1 can be obtained during low frequency shift.
  • the switch SWp is switched from on to off, whereby the capacitor C22 is connected in series to the parallel arm resonator p1. Therefore, since the resonance frequency of the parallel arm circuit 22 is shifted to the high frequency side, the attenuation pole on the low side of the pass band constituted by the resonance frequency is shifted to the high frequency side, and at the low end of the pass band. The frequency shifts to a higher frequency.
  • the switch SWb when the switch SWb is turned on when the switch SWb is on, the frequency at the low end of the passband and the attenuation pole on the low passband side are shifted to the high frequency side (during high frequency shift). It is possible to improve (increase) the amount of attenuation on the low pass band side.
  • the variable-frequency high-frequency filter used for this has one of the Tx band and the Rx band as a pass band and the other as an attenuation band, and simultaneously shifts the pass band and the attenuation band to the low frequency side or the high frequency side. There is a need.
  • the high frequency filter 20 can improve the attenuation on the low pass band side when the pass band is shifted to the high frequency side, and is therefore suitable as a reception filter of a band specified by 3GPP, for example. is there.
  • switch SWb and the switch SWp may be individually switched on and off.
  • FIG. 12 is a graph showing changes in filter characteristics when the switches SWb and SWp of the high-frequency filter 20 according to Example 2-1 are individually switched on and off.
  • the high-frequency filter 20 can vary the low pass band side of the pass band while suppressing the loss at the high end of the pass band by switching the switch SWb on and off. Further, the high frequency filter 20 can vary the attenuation pole on the low pass band side by switching the switch SWp on and off.
  • the high-frequency filter 20 can configure filter characteristics that meet the required frequency specifications by appropriately switching the switches SWb and SWp on and off.
  • the impedance element connected in series with the parallel arm resonator p1 is not limited to a capacitor, and may be an inductor.
  • FIG. 13A is a circuit configuration diagram of a high-frequency filter 20A according to Example 2-2.
  • the parallel arm circuit 22A in this embodiment has an inductor L22 instead of the capacitor C22 in the embodiment 2-1. That is, the parallel arm circuit 22A in the present embodiment includes the frequency variable circuit 11e (second frequency variable circuit) connected in series with the parallel arm resonator p1 (first parallel arm resonator).
  • the frequency variable circuit 11e is a second frequency variable circuit including an inductor L22 (second impedance element) and a switch SWp (second switch) connected in parallel with the inductor L22.
  • the switch SWb when the switch SWb (first switch) is on (conductive state), the switch SWp (second switch is on and switch SWb is off (non-conductive). State), the switch SWp is off, that is, the switches SWb and SWp are simultaneously on or off.
  • the filter characteristics (pass characteristics) of the high-frequency filter 20A of this embodiment will be described while also describing the impedance characteristics (resonance characteristics) that define the filter characteristics.
  • the same circuit elements as in the embodiment 2-1 have the same constants.
  • the inductance value of the inductor L22 is 3 nH.
  • FIG. 13B is a graph showing various characteristics related to the high-frequency filter 20A.
  • the upper stage of FIG. 2 shows two-state filter characteristics when the switch SWb is on and the switch SWp is on, and when the switch SWb is off and the switch SWp is off.
  • impedance characteristics of the series arm circuit 11 and the parallel arm circuit 22A are shown.
  • impedance characteristics of the series arm resonator s1a, the series arm resonator s1b, and the parallel arm resonator p1 are shown.
  • the series arm circuit 11 shows two-state impedance characteristics when the switch SWb is on and when the switch SWb is off.
  • the parallel arm circuit 22A two-state impedance characteristics are shown when the switch SWp is on and when the switch SWp is off.
  • the characteristics of the series arm circuit 11 are the same as the characteristics when the switch SWb is OFF in the embodiment 1-1, and thus detailed description thereof is omitted.
  • the parallel arm circuit 22A is a circuit in which the parallel arm resonator p1 and the inductor L22 are connected in series when the switch SWb is turned off, the combined characteristics of the parallel arm resonator p1 and the inductor L22 are combined. Indicates.
  • a ripple is actually generated in the impedance characteristic of the parallel arm circuit 22A due to the off-capacitance of the switch SWp.
  • this ripple has little effect on the characteristics in the passband if the off-capacitance of the switch SWp is very small (for example, 0.4 pF or less).
  • the off-capacitance of the switch SWp is 0.2 pF. Therefore, the influence on the characteristics in the passband can be ignored. Therefore, for the sake of simplicity, the following description will be made by treating the switch SWp as an ideal switch having no off capacitance.
  • the parallel arm circuit 22A is equal to the resonance frequency located on the lower frequency side than the resonance frequency of the parallel arm resonator p1 and the antiresonance frequency of the parallel arm resonator p1. And an anti-resonance frequency.
  • the characteristics of the series arm circuit 11 are the same as the characteristics when the switch SWb is turned on in Example 1-1, and thus detailed description thereof is omitted.
  • the parallel arm circuit 22A exhibits the same characteristics as the parallel arm resonator p1 when the inductor L22 is short-circuited by the switch SWp.
  • FIG. 14A is a graph comparing the characteristics of the high frequency filters according to Example 2-2 and Example 1-1 at the time of low frequency shift.
  • FIG. 14B is a graph comparing the characteristics of the high frequency filters according to Example 2-2 and Example 1-1 at the time of high frequency shift.
  • the upper stage shows the filter characteristics
  • the middle stage shows the impedance characteristics of the series arm circuit
  • the lower stage shows the impedance characteristics of the parallel arm circuit.
  • Example 2-2 the attenuation pole on the lower passband side is shifted to the lower frequency side than in Example 1-1 during the low frequency shift.
  • Example 2-1 when the switch SWp is switched from on to off, the inductor L22 is connected in series to the parallel arm resonator p1. Therefore, since the resonance frequency of the parallel arm circuit 22A is shifted to the low frequency side, the attenuation pole on the low pass band side constituted by the resonance frequency is shifted to the low frequency side, and at the low end of the pass band. The frequency shifts to a higher frequency.
  • the switch SWb when the switch SWb is turned on when the switch SWb is turned on, the frequency at the low end of the pass band and the attenuation pole on the low pass band side are shifted to the low frequency side (at the time of low frequency shift). It is possible to improve the attenuation amount of the low pass band side.
  • Example 2-2 characteristics equivalent to those of Example 1-1 can be obtained during a high frequency shift.
  • the embodiment 2-2 it is possible to increase the variable width of the frequency on the low side of the passband and the frequency of the attenuation pole on the low side of the passband while suppressing the loss at the high end of the passband.
  • switch SWb and the switch SWp may be individually switched on and off.
  • FIG. 15 is a graph showing changes in filter characteristics when the switches SWb and SWp of the high-frequency filter 20A according to Example 2-2 are individually switched on and off.
  • the high-frequency filter 20A suppresses the loss at the high end of the passband by switching the switch SWb on and off, while reducing the frequency at the low end of the passband and the attenuation pole on the low passband side.
  • the frequency can be varied.
  • the high frequency filter 20A can vary the attenuation pole of the frequency at the low end of the passband and the frequency of the attenuation pole on the low passband side by switching the switch SWp on and off.
  • the high frequency filter 20A can configure filter characteristics that meet the required frequency specifications by appropriately switching the switches SWb and SWp on and off.
  • the parallel arm circuit has one parallel arm resonator.
  • the parallel arm circuit may have a plurality of parallel arm resonators. Therefore, in the present embodiment, such a high-frequency filter will be described using an example (Example 3).
  • FIG. 16A is a circuit configuration diagram of the high-frequency filter 30 according to the third embodiment.
  • the parallel arm circuit 32 in this example is similar to the parallel arm circuit p1a (first parallel arm resonator) in comparison with the parallel arm circuit 22 in Example 2-1 of the second embodiment. It has a parallel arm resonator p1b (second parallel arm resonator) connected in parallel with a series connection circuit 321 (second series connection circuit) composed of a frequency variable circuit 11d (second frequency variable circuit).
  • the parallel arm resonator p1a corresponds to the parallel arm resonator p1 of Example 2-1.
  • the parallel arm resonator p1b is a resonator (second parallel arm resonator) provided on the parallel arm connecting the node x1 and the ground, and one terminal is connected to the node x1 and the other terminal is connected to the ground. It is connected.
  • the resonance frequency of the parallel arm resonator p1b is higher than the resonance frequency of the parallel arm resonator p1a.
  • the switch SWb first switch
  • the switch SWp second switch is off
  • the switch SWp is on, that is, when one of the switches SWb and SWp switches from on to off, the other switches from off to on at the same time.
  • Table 4 shows circuit constants of the high-frequency filter 30 of Example 3.
  • the capacitance value of the capacitor C22 is 3 pF, and the off capacitances (Coff) of the switches SWb and SWp are both 0.2 pF.
  • FIG. 16B is a graph showing various characteristics related to the high-frequency filter 30.
  • the upper stage of FIG. 2 shows two-state filter characteristics when the switch SWb is on and the switch SWp is off, and when the switch SWb is off and the switch SWp is on.
  • impedance characteristics of the series arm circuit 11 and the parallel arm circuit 32 are shown.
  • impedance characteristics of the series arm resonator s1a, the series arm resonator s1b, the parallel arm resonator p1a, and the parallel arm resonator p1b are shown.
  • the series arm circuit 11 shows two-state impedance characteristics when the switch SWb is on and when the switch SWb is off.
  • the parallel arm circuit 32 two-state impedance characteristics are shown when the switch SWp is on and when the switch SWp is off.
  • the characteristics of the series arm circuit 11 are the same as the characteristics when the switch SWb is OFF in the embodiment 1-1, and thus detailed description thereof is omitted.
  • the parallel arm circuit 32 is in a state where the parallel arm resonator p1a and the parallel arm resonator p1b are connected in parallel by the capacitor C22 being short-circuited by the switch SWp. For this reason, the parallel arm circuit 32 exhibits the combined characteristics of the parallel arm resonator p1a and the parallel arm resonator p1b. Therefore, as shown in the middle graph of FIG. 16B, the parallel arm circuit 32 has two resonance frequencies and two anti-resonance frequencies. Specifically, the parallel arm circuit 32 includes a first resonance frequency equal to the resonance frequency of the parallel arm resonator p1a, a second resonance frequency equal to the resonance frequency of the parallel arm resonator p1b, and the first resonance frequency. A first anti-resonance frequency located between the second resonance frequency and a second anti-resonance frequency located between the second resonance frequency and the anti-resonance frequency of the parallel arm resonator p1b.
  • the characteristics of the series arm circuit 11 are the same as the characteristics when the switch SWb is turned on in Example 1-1, and thus detailed description thereof is omitted.
  • the parallel arm circuit 32 is in a state where the parallel arm resonator p1a, the series connection circuit 321 of the capacitor C22, and the parallel arm resonator p1b are connected in parallel. For this reason, the parallel arm circuit 32 exhibits a combined characteristic of the parallel arm resonator p1a and the capacitor C22 and the parallel arm resonator p1b. Therefore, as shown in the middle graph of FIG. 16B, the parallel arm circuit 32 has two resonance frequencies and two anti-resonance frequencies.
  • the parallel arm circuit 32 includes a third resonance frequency positioned higher than the resonance frequency of the parallel arm resonator p1a, a fourth resonance frequency equal to the resonance frequency of the parallel arm resonator p1b, and A third anti-resonance frequency located between the first resonance frequency and the second resonance frequency; and a fourth anti-resonance frequency located between the second resonance frequency and the anti-resonance frequency of the parallel arm resonator p1b.
  • the parallel arm circuit 32 has a third resonance frequency that is higher than the first resonance frequency, a fourth resonance frequency that is equal to the second resonance frequency, and a third anti-frequency that is higher than the first anti-resonance frequency.
  • the resonance frequency and the fourth anti-resonance frequency are approximately equal to the second anti-resonance frequency.
  • the parallel arm circuit 32 causes the resonance frequency on the low frequency side to increase from the first resonance frequency to the third resonance frequency.
  • the anti-resonance frequency on the low frequency side is shifted to the high frequency side from the first anti-resonance frequency to the third anti-resonance frequency.
  • FIG. 17A is a graph comparing characteristics at the time of low frequency shift of the high frequency filter according to Example 3 and Example 1-1.
  • FIG. 17B is a graph comparing the characteristics of the high frequency filters according to Example 3 and Example 1-1 at the time of high frequency shift.
  • the upper stage shows the filter characteristics
  • the middle stage shows the impedance characteristics of the series arm circuit
  • the lower stage shows the impedance characteristics of the parallel arm circuit.
  • the parallel arm circuit 32 according to the third embodiment includes a parallel arm resonator p1b (second parallel arm resonator) as compared with the parallel arm circuit 12 according to the embodiment 1-1.
  • the second resonance frequency is equal to the resonance frequency of the child p1b.
  • the attenuation amount on the low side of the passband can be improved at the time of high frequency shift as compared with the first embodiment 1-1.
  • Example 3-1 when the switch SWp is switched from on to off, the capacitor C22 connected in series to the parallel arm resonator p1a becomes effective. Therefore, since the first resonance frequency of the parallel arm circuit 32 is shifted to the high frequency side, the attenuation pole on the low pass band side formed by the resonance frequency is shifted to the high frequency side. Accordingly, when the switch SWb is turned on, the switch SWp is turned off, thereby improving the attenuation amount on the low pass band side when the low pass band side is shifted to the high frequency side (during high frequency shift). be able to.
  • FIG. 18A is an enlarged view showing the pass band and its vicinity in the graph shown in the upper part of FIG. 17A
  • FIG. 18B is an enlarged view showing the pass band in the upper part of FIG. 17B and its vicinity. is there.
  • the loss at the low end of the passband is better in both the low frequency shift and the high frequency shift than in the first embodiment.
  • the parallel arm circuit 32 according to the third embodiment has two resonance frequencies and two anti-resonance frequencies by including the parallel arm resonator p1b, and the parallel arm circuit 12 according to the embodiment 1-1.
  • the frequency difference between the resonance frequency on the low frequency side and the antiresonance frequency on the low frequency side can be made smaller than the frequency difference between the resonance frequency and the antiresonance frequency. Therefore, according to the third embodiment, the cut-off frequency on the low passband side can be shifted to the low frequency side as compared with the first example 1-1, so that the loss at the low end of the passband can be improved. Can do.
  • switch SWb and the switch SWp may be individually switched on and off.
  • FIG. 19 is a graph showing changes in filter characteristics when the switches SWb and SWp of the high-frequency filter 30 according to the third embodiment are individually switched on and off.
  • the high-frequency filter 30 can vary the low pass band side while suppressing the loss at the high end of the pass band by switching the switch SWb on and off. Further, the high frequency filter 30 can vary the attenuation pole on the low pass band side by switching the switch SWp on and off.
  • the high-frequency filter 30 can configure filter characteristics that meet the required frequency specifications by appropriately switching the switches SWb and SWp on and off.
  • FIG. 20A is a circuit configuration diagram of the high-frequency filter 40 according to the fourth embodiment.
  • the high frequency filter 40 shown in the figure includes a plurality of series arm circuits (this embodiment) provided on a path connecting the input / output terminal 11m (first input / output terminal) and the input / output terminal 11n (second input / output terminal).
  • the high frequency filter 40 includes six series arm resonators s1a, s1b, s2, s3, s4a, s4b, and further includes four parallel arm resonators p1a, p1b, p2a, p2b, p3,
  • This is a variable-frequency bandpass filter having four switches SW1b, SW4b, SW1p, and SW2p and two capacitors C41 and C42 and having a plurality of bands as a pass band.
  • the numbers of series arm circuits and parallel arm circuits are not limited to the above numbers.
  • the series arm circuit 210s provided closest to the input / output terminal 11m and the series arm circuit 240s provided closest to the input / output terminal 11n are: This corresponds to the series arm circuit 11 of the high-frequency filter according to any one of the first to third embodiments (here, the first embodiment). Therefore, the series arm resonators s1a and s4a correspond to the series arm resonator s1a of the series arm circuit 11, the series arm resonators s1b and s4b correspond to the series arm resonator s1b of the series arm circuit 11, and the switches SW1b and SW4b.
  • the parallel arm circuits 210p and 220p correspond to the parallel arm circuit 32 of the high-frequency filter 30 according to the third embodiment, and the parallel arm circuit 230p is the same as the first embodiment (embodiment 1-1, modified example, implementation). This corresponds to the parallel arm circuit 12 of the high-frequency filter according to Examples 1-2-1, 1-2-2, and 1-3).
  • the parallel arm resonators p1a and p2a correspond to the parallel arm resonator p1a of the parallel arm circuit 32
  • the parallel arm resonator p3 corresponds to the parallel arm resonator p1 of the parallel arm circuit 12
  • the capacitors C41 and C42 The parallel arm resonator 32 corresponds to the capacitor C22
  • the parallel arm resonators p1b and p2b correspond to the parallel arm resonator p1b of the parallel arm circuit 32
  • the switches SW1p and SW2p correspond to the switch SWp of the parallel arm circuit 32.
  • the high frequency filter 40 is provided with a configuration corresponding to the high frequency filter 30 according to the third embodiment closest to the input / output terminal 11m, and corresponds to the high frequency filter according to the first embodiment closest to the input / output terminal 11n.
  • a configuration is provided.
  • the configuration of the high frequency filter 40 is not limited to this.
  • at least one of the plurality of series arm circuits corresponds to the series arm circuit of any of the first to third embodiments, and only the series arm circuit provided closest to one input / output terminal is the above-described one. It may correspond to any of the series arm circuits of the first to third embodiments, and only the series arm circuit different from the series arm circuit provided closest to the input / output terminal is any of the first to third embodiments. It may be equivalent to such a series arm circuit.
  • a parallel arm circuit is provided for connecting a node on the path between the input / output terminal (the input / output terminal 11m or the input / output terminal 11n) and the series arm circuit provided closest to the input / output terminal to the ground. It doesn't matter.
  • the high frequency filter 40 configured as described above includes the configuration of any of the high frequency filters of the first to third embodiments, the frequency that improves the loss at the low end of the passband and the attenuation on the high passband side.
  • a variable high-frequency filter can be realized.
  • FIG. 20B is a plan view illustrating the structure of the high-frequency filter 40 according to the fourth embodiment.
  • resonator there is one resonator (series arm resonators s1a, s1b, s2, s3, s4a, s4b and parallel arm resonators p1a, p1b, p2a, p2b, p3).
  • the resonator package 41 (chip) is used, and the other elements (switches SW1b, SW4b, SW1p, SW2p, and capacitors C41, C42) are formed of packages 42a to 42c different from the resonator package 41.
  • the packages 41 and 42a to 42c are mounted on the wiring board 43. That is, the resonator and the switch are formed in separate packages.
  • the packages 41, 42a to 42c have surface electrodes (also referred to as circles, “lands” or “pads” in FIG. 20B) for mounting the packages 41, 42a to 42c on the wiring board 43 on the bottom surface.
  • surface electrodes also referred to as circles, “lands” or “pads” in FIG. 20B
  • circuit elements and wirings configured in each package are schematically shown, and the surface electrodes on the bottom surface of the packages 41 and 42a to 42c are illustrated.
  • the wiring board 43 has external connection electrodes (circles in FIG. 20B) constituting the input / output terminals 11m and 11n, respectively.
  • This external connection electrode is, for example, a surface electrode for mounting the wiring board 43 on a mother board or the like, a connector for connecting the wiring board 43 and another electronic component, or another electronic component mounted on the wiring board 43 If it is, it is a part of the pattern wiring that connects the other electronic component and the package 42a or the package 42c.
  • one terminal of the switch SW1b is connected to the common terminal 421 and is connected to the input / output terminal 11m via the common terminal 421.
  • the other terminal of the switch SW1b is connected to the first terminal 422 of the package 42a.
  • the common terminal 421 and the second terminal 423 of the package 42a are short-circuited.
  • one terminal of the switch SW4b is connected to the common terminal 431 and is connected to the input / output terminal 11n through the common terminal 431. Further, the other terminal of the switch SW4b is connected to the first terminal 432. Further, the common terminal 431 and the second terminal 433 of the package 42c are short-circuited.
  • the resonators are connected as follows.
  • each series arm resonator (series arm resonators s1a, s1b, s2, s3, s4a, s4b) will be described.
  • One terminal of the series arm resonator s1a is connected to the first terminal 411 of the package 41, and the other terminal is connected to the first node N1.
  • One terminal of the series arm resonator s1b is connected to the second terminal 412 of the package 41, and the other terminal is connected to the first node N1.
  • One terminal of the series arm resonator s2 is connected to the first node N1, and the other terminal is connected to the second node N2.
  • One terminal of the series arm resonator s3 is connected to the second node N2, and the other terminal is connected to the third node N3.
  • One terminal of the series arm resonator s 4 a is connected to the third node N 3, and the other terminal is connected to the fourth terminal 414 of the package 41.
  • One terminal of the series arm resonator s 4 b is connected to the third node N 3, and the other terminal is connected to the third terminal 413 of the package 41.
  • each parallel arm resonator (parallel arm resonators p1a, p1b, p2a, p2b, p3) will be described.
  • One terminal of the parallel arm resonator p1a is connected to the first node N1, the other terminal is connected to the terminal of the package 42b via the terminal of the package 41, and the switch SW1p and the capacitor configured in the package 42b. It is connected to the ground terminal of the package 42b through a parallel circuit of C41.
  • One terminal of the parallel arm resonator p1b is connected to the first node N1, and the other terminal is connected to the ground terminal of the package 41.
  • One terminal of the parallel arm resonator p2a is connected to the second node N2, the other terminal is connected to the terminal of the package 42b via the terminal of the package 41, and the switch SW2p and the capacitor configured in the package 42b. It is connected to the ground terminal of the package 42b through a parallel circuit of C42.
  • One terminal of the parallel arm resonator p ⁇ b> 2 b is connected to the second node N ⁇ b> 2, and the other terminal is connected to the ground terminal of the package 41.
  • One terminal of the parallel arm resonator p3 is connected to the third node N3, and the other terminal is connected to the ground terminal of the package 41.
  • one terminal of the switch provided in the series arm when one terminal of the switch provided in the series arm is connected to one of the input / output terminals 11m and 11n, it is divided into the packages 42a and 42c including the switch and the package 41 including the resonator group. Since the switch is closer to one of the input / output terminals than the resonator group, the number of terminals of the resonator package 41 and the switch packages 42a and 42c can be reduced, and the high frequency filter 40 can be reduced. Can be reduced in size.
  • the switch (first switch, here, switches SW1b and SW4b) provided in the series arm is not limited to the above configuration, and the input / output terminal 11m (first input / output terminal) or the input without any series arm resonance. It may be connected to the output terminal 11n (second input / output terminal).
  • the resonator is provided.
  • the number of terminals on the chip can be reduced. Specifically, in this case, in the resonator chip, a terminal connected to the input / output terminal and a terminal connected to the other chip can be shared. For this reason, compared with the structure which provided these terminals separately, the terminal number of the chip
  • At least one of the capacitors C41 and C42 may be incorporated in the resonator package 41.
  • At least one parallel arm resonator p1a, p1b, p2a, p2b, p3 may be provided separately from the resonator package 41, and a switch SW1b, SW4b, SW1p, SW2p, a capacitor C41, C42 may be packaged in a combination different from the above.
  • Such a high frequency filter 40 can be applied to a multiplexer.
  • FIG. 21 is a circuit configuration diagram of a multiplexer (duplexer) 200 according to the fourth embodiment.
  • the multiplexer 200 shown in the figure includes a transmission filter 60, a reception filter 50, and a matching inductor 70.
  • the transmission filter 60 is connected to the input terminal 200T and the common terminal 200c
  • the reception filter 50 is connected to the common terminal 200c and the output terminal 200R.
  • the transmission-side filter 60 is a band-pass filter having a transmission band as a pass band, and the circuit configuration is not particularly limited.
  • the reception-side filter 50 corresponds to the high-frequency filter 40 according to the fourth embodiment, and is a frequency variable type band-pass filter having a plurality of bands as a pass band.
  • the above configuration realizes a high-performance duplexer that can improve the loss at the high end of the passband and the attenuation at the low end of the passband in a tunable duplexer that is applied to a system that appropriately selects multiple frequency bands. can do.
  • the multiplexer since a filter corresponding to each frequency band is not arranged and the filter can be applied to a plurality of frequency bands by one filter circuit having a switch, the multiplexer can be downsized.
  • the reception-side filter 50 is not limited to the configuration of the fourth embodiment, and may have the configuration of any one of the first to third embodiments.
  • the high frequency filter according to each embodiment is not limited to the reception side filter, and may be applied to the transmission side filter. Further, these high frequency filters are not limited to duplexers, and may be applied to a multiplexer including a plurality of transmission side filters or a plurality of reception side filters.
  • FIG. 22 is a configuration diagram of the communication apparatus 300 according to the sixth embodiment.
  • the communication device 300 includes a switch group 310 composed of a plurality of switches, a filter group 320 composed of a plurality of filters, transmission side switches 331 and 332, reception side switches 351 and 352, and 353, transmission amplification circuits 341 and 342 and reception amplification circuits 361 and 362, an RF signal processing circuit (RFIC), a baseband signal processing circuit (BBIC), and an antenna element (ANT). Note that the antenna element (ANT) may not be built in the communication device 300.
  • RFIC RF signal processing circuit
  • BBIC baseband signal processing circuit
  • ANT antenna element
  • the antenna element (ANT) may not be built in the communication device 300.
  • the switch group 310 connects the antenna element (ANT) and a signal path corresponding to a predetermined band in accordance with a control signal from a control unit (not shown), and is configured by a plurality of SPST type switches, for example. .
  • the number of signal paths connected to the antenna element (ANT) is not limited to one, and a plurality of signal paths may be used. That is, the communication apparatus 300 may support carrier aggregation.
  • the filter group 320 is composed of, for example, a plurality of filters (including a duplexer) having the following band in the pass band.
  • the band includes (i) Band 12 transmission band, (ii) Band 13 transmission band, (iii) Band 14 transmission band, (iv) Band 27 transmission band, (v) Band 26 transmission band, ( vi) Band 29 and Band 14 (or Band 12, Band 67 and Band 13) reception band, (vii-Tx) Band 68 (or Band 28a or Band 28b) transmission band, (vii-Rx) Band 68 (or Band 28a or Band 28b) reception band, Viii-TxBand20 transmission band, (viii-Rx) Band20 reception band, (ix-Tx) Band27 (or Band26) transmission band, (x-Tx) Band8 transmission band, and (x-Rx) Band8 Reception band , It is.
  • the transmission-side switch 331 is a switch circuit having a plurality of selection terminals connected to a plurality of transmission signal paths on the low band side and a common terminal connected to the transmission amplifier circuit 341.
  • the transmission side switch 332 is a switch circuit having a plurality of selection terminals connected to a plurality of transmission side signal paths on the high band side and a common terminal connected to the transmission amplification circuit 342.
  • These transmission-side switches 331 and 332 are switch circuits that are provided in the previous stage of the filter group 320 (here, the previous stage in the transmission-side signal path) and whose connection state is switched in accordance with a control signal from a control unit (not shown). . Thereby, the high frequency signals (here, the high frequency transmission signals) amplified by the transmission amplifier circuits 341 and 342 are output to the antenna element (ANT) through the predetermined filter of the filter group 320.
  • ANT antenna element
  • the reception side switch 351 is a switch circuit having a plurality of selection terminals connected to a plurality of reception side signal paths on the low band side and a common terminal connected to the reception amplification circuit 361.
  • the reception side switch 352 has a common terminal connected to the reception side signal path of a predetermined band (here, Band 20), and two selection terminals connected to the common terminal of the reception side switch 351 and the common terminal of the reception side switch 352. And a switch circuit.
  • the reception side switch 353 is a switch circuit having a plurality of selection terminals connected to a plurality of reception side signal paths on the high band side and a common terminal connected to the reception amplification circuit 362.
  • reception-side switches 351 to 353 are provided in the subsequent stage of the filter group 320 (here, the subsequent stage in the reception-side signal path), and the connection state is switched according to a control signal from a control unit (not shown).
  • the high-frequency signal here, the high-frequency reception signal
  • the antenna element ANT
  • the RF signal processing circuit RFIC
  • an RF signal processing circuit (RFIC) corresponding to the low band and an RF signal processing circuit (RFIC) corresponding to the high band may be provided separately.
  • the transmission amplification circuit 341 is a power amplifier that amplifies the power of the low-band high-frequency transmission signal
  • the transmission amplification circuit 342 is a power amplifier that amplifies the power of the high-band high-frequency transmission signal.
  • the reception amplification circuit 361 is a low noise amplifier that amplifies the power of the low-band high-frequency reception signal
  • the reception amplification circuit 362 is a low-noise amplifier that amplifies the power of the high-band high-frequency reception signal.
  • the RF signal processing circuit is a circuit that processes a high-frequency signal transmitted and received by the antenna element (ANT). Specifically, the RF signal processing circuit (RFIC) processes a high-frequency signal (here, a high-frequency reception signal) input from the antenna element (ANT) via the reception-side signal path by down-conversion, etc. A reception signal generated by the signal processing is output to a baseband signal processing circuit (BBIC).
  • the RF signal processing circuit (RFIC) processes the transmission signal input from the baseband signal processing circuit (BBIC) by up-conversion and the like, and generates a high-frequency signal (here, a high-frequency transmission signal) generated by the signal processing. ) To the transmitting side signal path.
  • the communication apparatus 300 configured as described above includes (vi) a filter having a reception band of Band 29 and Band 14 (or Band 12, Band 67, and Band 13) in a pass band, and a transmission band of (vii-Tx) Band 68 (or Band 28a or Band 28b).
  • a filter having a reception band of (vii-Rx) Band 68 (or Band 28a or Band 28b) in the pass band, and a filter having a transmission band of (ix-Tx) Band 27 (or Band 26) in the pass band As one, the high frequency filter according to any of Embodiments 1 to 4 is provided. That is, the filter switches the pass band according to the control signal.
  • the control unit constitutes a high frequency front end circuit.
  • control unit may be included in an RF signal processing circuit (RFIC), or may constitute a switch IC together with each switch controlled by the control unit. Good.
  • RFIC RF signal processing circuit
  • the loss at the passband high band end and the low passband band by including the high-frequency filter according to any of the first to fourth embodiments, the loss at the passband high band end and the low passband band.
  • the side attenuation can be improved. That is, for example, it is possible to realize a high-performance high-frequency front-end circuit and communication device that can switch the pass band and the attenuation band while suppressing loss at the high end of the pass band. Further, since the number of filters can be reduced as compared with the case where a filter is provided for each band, the size can be reduced.
  • the transmission-side switches 331 and 332 and the reception-side switches 351 to 353 switch circuits provided before or after the filter group 320 (a plurality of high-frequency filters). Is provided.
  • a part of the signal path through which the high-frequency signal is transmitted can be shared. Therefore, for example, it is possible to share transmission amplifier circuits 341 and 242 or reception amplifier circuits 361 and 362 (amplifier circuits) corresponding to a plurality of high frequency filters. Therefore, the high-frequency front end circuit can be reduced in size and cost.
  • the transmission side switches 331 and 332 and the reception side switches 351 to 353 may be provided. Further, the number of transmission side switches 331 and 332 and the number of reception side switches 351 to 353 are not limited to the above-described numbers, and, for example, one transmission side switch and one reception side switch are provided. It doesn't matter. Further, the number of selection terminals and the like of the transmission side switch and the reception side switch is not limited to this embodiment, and may be two each.
  • the high frequency filter, the high frequency front end circuit, and the communication device according to the embodiments of the present invention have been described with reference to Embodiments 1 to 5.
  • the high frequency filter, the high frequency front end circuit, and the communication device of the present invention have been described. Is not limited to the above embodiment.
  • Examples and various devices incorporating the high-frequency filter, high-frequency front-end circuit, and communication device of the present disclosure are also included in the present invention.
  • the high frequency filters according to Embodiments 1 to 4 are not limited to being applied to a system that exclusively switches between adjacent frequency bands, and a plurality of adjacent channels allocated within one frequency band are used. It is also applicable to a system that switches exclusively.
  • the series arm resonator and the parallel arm resonator are not limited to the acoustic wave resonator using the surface acoustic wave, and for example, a bulk wave or a boundary acoustic wave is used. It may be configured by an elastic wave resonator.
  • Each of the series arm resonator and the parallel arm resonator is not limited to one elastic wave resonator, and includes a plurality of divided resonators in which one elastic wave resonator is divided in series.
  • the series arm circuit has at least one second series arm resonator having a resonance frequency lower than that of the first series arm resonator. It is only necessary to have a second series arm resonator having a resonance frequency different from that of the resonator. For this reason, the series arm circuit includes one first series arm resonator and one first frequency variable circuit, and the one first frequency variable circuit has a second resonance frequency higher than that of the first series arm resonator. It may be configured by a series arm resonator and a second switch. According to the high frequency filter configured as described above, it is possible to vary (frequency shift) the high passband side while suppressing the loss at the low end of the passband.
  • the following can be said about the relationship between the on / off switching of the first switch and the pass band.
  • a new attenuation pole is formed on the high side of the passband, so that the attenuation band on the high side of the passband is widened.
  • the deterioration of the loss at the low band end of the pass band is suppressed, and the deterioration of the attenuation on the high pass band side can be suppressed. That is, it is possible to realize a variable-frequency high-frequency filter that improves the loss at the low end of the passband and the attenuation on the high passband side.
  • the parallel arm circuit may be formed of an LC resonance circuit instead of an elastic wave resonator.
  • the parallel arm circuit is not limited to a resonance circuit, and may be an inductance element or a capacitance element.
  • the configuration of the serial arm circuit described in the first to third embodiments can be applied to a ladder-type filter circuit including a plurality of serial arm circuits including the serial arm circuit and one or more parallel arm circuits. it can.
  • the configuration of the series arm circuit different from the series arm circuit described in the first to third embodiments is not particularly limited.
  • the filter circuit is a resonance circuit such as a longitudinally coupled resonator or an LC resonance circuit. It may be an inductance element or a capacitance element.
  • the configuration of the series arm circuit may be appropriately selected according to the required specification. For example, when the attenuation enhancement is required, a longitudinally coupled resonator may be selected.
  • the configuration of the ladder-type filter circuit including a plurality of series arm circuits including the series arm circuit described in the first to third embodiments and one or more parallel arm circuits is used.
  • the configuration in which the series arm circuit described in the first to third embodiments is provided closest to the input / output terminal 11m or the input / output terminal 11n has been described.
  • the configuration of the ladder type filter circuit is not limited to this, and for example, a series arm circuit different from the series arm circuit described in the first to third embodiments is provided closest to the input / output terminal 11m or the input / output terminal 11n. It does not matter even if it is done. That is, the series arm circuit described in the first to fourth embodiments may be provided at a portion other than the ends of the plurality of series arm circuits.
  • an inductance element and a capacitance element may be connected between the input / output terminals and the common terminal. Furthermore, an inductance component due to wiring connecting each circuit element may be included.
  • the present invention is widely used in communication devices such as mobile phones as small high-frequency filters, high-frequency front-end circuits, and communication devices that can be applied to multiband and multimode systems that use a plurality of adjacent bands simultaneously or exclusively. it can.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Filters And Equalizers (AREA)

Abstract

高周波フィルタ(10)は、直列腕回路(11)と、並列腕回路(12)と、を備え、直列腕回路(11)は、当該経路上に設けられた直列腕共振子(s1a)と、直列腕共振子(s1a)と並列接続された周波数可変回路(11b)と、を有し、周波数可変回路(11b)は、直列腕共振子(s1b)と、直列腕共振子(s1b)と直列接続されたスイッチ(SWb)と、を有し、高周波フィルタ(10)の通過帯域を構成する共振周波数、及び、高周波フィルタ(10)の減衰極を構成する***振周波数の少なくとも1つを可変し、直列腕共振子(s1b)の共振周波数は、直列腕共振子(s1a)の共振周波数と異なる。

Description

高周波フィルタ、高周波フロントエンド回路及び通信装置
 本発明は、共振子を有する高周波フィルタ、高周波フロントエンド回路及び通信装置に関する。
 従来、マルチバンド化に対応する高周波フィルタとして、周波数可変型の高周波フィルタ(チューナブルフィルタ)が提案されている。
 このような周波数可変型の高周波フィルタとしては、例えば、共振周波数が互いに異なる2つの並列腕共振子を直列接続し、これら2つの並列腕共振子の少なくとも一方にスイッチを並列接続した第1の構成が知られている(例えば、特許文献1の図10参照)。この第1の構成は、スターデルタ変換により、並列腕共振子の接続されるノードを介して接続された2つの直列腕共振子に対して、共振子(補正共振子)とスイッチとの直列接続回路が並列に接続された第2の構成となる(例えば、特許文献1の図9A参照)。
特許第5441095号公報
 上記従来の構成によれば、スイッチのオン(導通状態)及びオフ(非導通状態)の切り替えに応じて、通過帯域低域端の第1減衰極が通過帯域側に周波数可変し、通過帯域高域端の第2減衰極と通過帯域との間の新たな第3減衰極の有無を切り替えることができる。具体的には、スイッチをオンからオフに切り替えた場合に、通過帯域低域側の第1減衰極が通過帯域側(すなわち高周波数側)に周波数可変し、通過帯域高域側の第2減衰極と通過帯域との間に新たな第3減衰極が追加される。そして、上記従来の構成では、第2減衰極から第3減衰極までの周波数差が、上記第1減衰極の周波数可変幅よりも大きくなってしまうため、通過帯域低域端のロスが悪化する(挿入損失が増大する)とともに通過帯域高域側の減衰量が悪化する、または、通過帯域高域端のロスが悪化する(挿入損失が増大する)とともに通過帯域低域側の減衰量が悪化する、という問題がある。
 そこで、本発明は、通過帯域低域端のロスと通過帯域高域側の減衰量を改善する、または、通過帯域高域端のロスと通過帯域低域側の減衰量を改善する、ことを可能にする周波数可変型の高周波フィルタ、高周波フロントエンド回路及び通信装置を提供することを目的とする。
 上記目的を達成するために、本発明の一態様に係る高周波フィルタは、第1入出力端子と第2入出力端子とを結ぶ経路上に設けられた直列腕回路と、前記経路上のノードとグランドとに接続された並列腕回路と、を備え、前記直列腕回路は、前記経路上に設けられた第1直列腕共振子と、前記第1直列腕共振子と並列接続された第1周波数可変回路と、を有し、前記第1周波数可変回路は、第2直列腕共振子と、前記第2直列腕共振子と直列接続された第1スイッチと、を有し、前記高周波フィルタの通過帯域を構成する共振周波数、及び、前記高周波フィルタの減衰極を構成する***振周波数の少なくとも1つを可変し、前記第2直列腕共振子の共振周波数は、前記第1直列腕共振子の共振周波数と異なる。
 このような構成により、第1スイッチのオンとオフとの切り替えにより、直列腕回路について、高周波フィルタの通過帯域を構成する共振周波数、及び、高周波フィルタの減衰極を構成する***振周波数の少なくとも一方を可変することができる。具体的には、直列腕回路は、第1スイッチがオフである場合、第1直列腕共振子の共振周波数と同じ第3共振周波数と、第1直列腕共振子の***振周波数より若干低周波数側に位置する第3***振周波数と、を有する。また、直列腕回路は、第1スイッチがオンである場合、第1直列腕共振子の共振周波数と同じ第1共振周波数、及び、第2直列腕共振子の共振周波数と同じ第2共振周波数と、第1直列腕共振子の共振周波数と第2直列腕共振子の共振周波数との間に位置する第1***振周波数、及び、第2共振周波数より高周波数側に位置する第2***振周波と、を有する。
 これに関し、第2直列腕共振子の共振周波数が第1直列腕共振子の共振周波数より低い場合、第1スイッチがオフでは、第3共振周波数は通過帯域を構成し、第3***振周波数は通過帯域高域側の減衰極を構成する。また、この場合、第1スイッチがオンでは、第2共振周波数は通過帯域を構成し、第1***振周波数は通過帯域低域側の減衰極を構成し、第2***振周波数は通過帯域高域側の減衰極を構成する。すなわち、この場合、第1スイッチのオフからオンへの切り替えにより、通過帯域低域側に新たな減衰極が構成される。
 一方、第2直列腕共振子の共振周波数が第1直列腕共振子の共振周波数より高い場合、第1スイッチがオフの場合には、第3共振周波数は通過帯域を構成し、第3***振周波数は通過帯域高域側の減衰極を構成する。また、この場合、第1スイッチがオンの場合には、第1共振周波数は通過帯域を構成し、第1***振周波数及び第2***振周波数のいずれも通過帯域高域側の減衰極を構成する。すなわち、第1スイッチのオフからオンへの切り替えにより、通過帯域高域側に新たな減衰極が構成される。
 よって、並列腕回路の共振周波数によって構成される通過帯域低域側の減衰極を考慮すると、第1スイッチのオンとオフとの切り替えと、通過帯域との関係について、次のことが言える。具体的には、第1スイッチをオフからオンに切り替えると、通過帯域の一方側(例えば低域側)に新たな減衰極が構成されるため、通過帯域の当該一方側の減衰帯域が広帯域化される。このとき、通過帯域の他方側(この場合には高域側)には新たな減衰極が構成されないため、通過帯域の他方端(この場合には高域端)におけるロスの悪化が抑制されるとともに、通過帯域の他方側(この場合には低域側)の減衰量の悪化を抑制できる。
 したがって、本態様によれば、通過帯域高域端のロスと通過帯域低域側の減衰量を改善する、または、通過帯域低域端のロスと通過帯域高域側の減衰量を改善する、ことを可能にする周波数可変型の高周波フィルタを実現することができる。
 また、前記第2直列腕共振子の共振周波数は、前記第1直列腕共振子の共振周波数より低いことにしてもよい。
 このように第2直列腕共振子の共振周波数が第1直列腕共振子の周波数より低いことにより、第1スイッチのオンとオフとの切り替えにより、通過帯域低域側の減衰極の個数を増減することができる。よって、通過帯域高域端のロスを抑制するとともに、通過帯域低域側の減衰量を改善しつつ、通過帯域の周波数及び通過帯域低域側の減衰極の周波数を可変することができる。
 また、前記直列腕回路は、複数の前記第1周波数可変回路を有し、複数の前記第1周波数可変回路が有する複数の前記第2直列腕共振子は、互いに異なる共振周波数を有することにしてもよい。
 このように複数の第2直列腕共振子が互いに異なる共振周波数を有することにより、複数の第1周波数可変回路が有する複数の第1スイッチのうちオンとする第1スイッチの選択に応じて、通過帯域及び減衰帯域を可変することができる。つまり、通過帯域一方端のロスを抑制しつつ、通過帯域の周波数及び通過帯域他方側の減衰極の周波数可変幅を細かく設定することができる。
 また、複数の前記第2直列腕共振子のうち少なくとも1つの共振周波数は、前記第1直列腕共振子の共振周波数より低く、複数の前記第2直列腕共振子のうち他の少なくとも1つの共振周波数は、前記第1直列腕共振子の共振周波数より高いことにしてもよい。
 このように複数の第2直列腕共振子のうち少なくとも1つの共振周波数が第1直列腕共振子の共振周波数より低いことにより、当該少なくとも1つの第2直列腕共振子と直列接続された第1スイッチ(以下、低域側可変スイッチ)のオンとオフとの切り替えによって、通過帯域高域端のロスを抑制しつつ、通過帯域の周波数及び通過帯域低域側の減衰極の周波数を可変することができる。また、複数の第2直列腕共振子のうち他の少なくとも1つの共振周波数が第1直列腕共振子の共振周波数より高いことにより、当該少なくとも1つの第2直列腕共振子と直列接続された第1スイッチ(以下、高域側可変スイッチ)のオンとオフとの切り替えによって、通過帯域低域端のロスを抑制しつつ、通過帯域の周波数及び通過帯域高域側の減衰極の周波数を可変することができる。
 したがって、本態様によれば、低域側可変スイッチ及び高域側可変スイッチのオンとオフとを個別に切り替えることにより、通過帯域の低域側及び高域側のいずれについても、通過帯域端のロスを抑制しつつ、減衰極の周波数を可変することができる。
 また、複数の前記第2直列腕共振子の共振周波数は、いずれも前記第1直列腕共振子の共振周波数より低いことにしてもよい。
 このように複数の第2直列腕共振子の共振周波数がいずれも第1直列腕共振子の共振周波数より低いことにより、複数の第1周波数可変回路が有する複数の第1スイッチのうちオンとする第1スイッチの選択に応じて、通過帯域及び通過帯域低域側の減衰帯域を可変することができる。つまり、通過帯域高域端のロスを抑制しつつ、通過帯域の周波数及び通過帯域低域側の減衰極の周波数可変幅を細かく設定することができる。
 また、前記直列腕回路は、さらに、前記第1直列腕共振子と直列接続された第1インピーダンス素子を有し、前記第1周波数可変回路は、前記第1直列腕共振子と前記第1インピーダンス素子とで構成される第1直列接続回路と並列接続されていることにしてもよい。
 このように第1直列腕共振子と第1インピーダンス素子とが直列接続されていることにより、第1直列接続回路の共振周波数と***振周波数との周波数差を、第1直列腕共振子の当該周波数差から変えることができる。具体的には、第1インピーダンス素子がキャパシタの場合に当該周波数差を小さくすることができ、第1インピーダンス素子がインダクタの場合に当該周波数差を大きくすることができる。よって、第1インピーダンス素子の回路定数を適宜調整することによって、直列腕回路の第2共振周波数と第2***振周波数との周波数差を調整することができるため、当該周波数差によって規定される通過帯域高域側のカットオフ周波数と通過帯域高域側の減衰極との周波数差を調整することができる。したがって、通過帯域幅及び減衰スロープの急峻性を任意に設定することができる。
 また、前記並列腕回路は、前記ノードと前記グランドとの間に接続された第1並列腕共振子と、前記第1並列腕共振子と直列接続された第2周波数可変回路と、を有し、前記第2周波数可変回路は、第2インピーダンス素子と、前記第2インピーダンス素子と並列接続された第2スイッチと、を有し、前記第1並列腕共振子の共振周波数は、前記第1直列腕共振子の共振周波数よりも低いことにしてもよい。
 第1スイッチのオンとオフとの切り替えによる減衰極の周波数可変に伴い、減衰量が悪化することがある。そこで、第1並列腕共振子と直列接続された第2周波数可変回路を設けることにより、第2スイッチのオンとオフとの切り替えによって、並列腕回路について、高周波フィルタの減衰極を構成する共振周波数を可変することができる。よって、高周波フィルタに要求される減衰帯域及び減衰量に応じて第2インピーダンス素子の回路定数を適宜調整することにより、直列腕回路の周波数可変に伴う通過帯域低域側の減衰量の悪化を抑制することができる。
 また、前記並列腕回路は、さらに、前記第1並列腕共振子と前記第2周波数可変回路とで構成される第2直列接続回路と並列接続された第2並列腕共振子を有し、前記第2並列腕共振子の共振周波数は、前記第1並列腕共振子の共振周波数より高いことにしてもよい。
 このように並列腕回路に第1直列腕共振子の共振周波数よりも高い共振周波数を有する第2並列腕共振子が設けられることにより、第2並列腕共振子の共振周波数によって、通過帯域高域側に新たな減衰極が構成される。このため、通過帯域高域側の減衰量を改善することができる。
 また、並列腕回路は、第2並列腕共振子を有することにより2つの共振周波数と2つの***振周波数とを有し、第2並列腕共振子を有さない場合の共振周波数と***振周波数の周波数差に比べて、低周波数側の共振周波数と低周波数側の***振周波数との周波数差を小さくすることができる。したがって、本態様によれば、通過帯域低域側のカットオフ周波数を低周波数側にシフトさせることができるため、通過帯域低域端のロスを良化(改善)することができる。
 また、前記第2インピーダンス素子はキャパシタであり、前記第1スイッチがオンの場合、前記第2スイッチがオフであり、前記第1スイッチがオフの場合、前記第2スイッチがオンであることにしてもよい。
 これにより、第2スイッチをオンからオフに切り替えると、第1並列腕共振子に直列接続されたキャパシタが有効となる。よって、並列腕回路の共振周波数が高周波数側へとシフトするため、当該共振周波数によって構成される通過帯域低域側の減衰極が高周波数側へとシフトする。したがって、第1スイッチがオンの場合に第2スイッチがオフとなることにより、通過帯域低域側が高周波数側へシフトしているとき(高周波数シフト時)の通過帯域低域側の減衰量を改善する(大きくする)ことができる。
 また、第1スイッチと第2スイッチの制御回路を共通化できるため、高周波フィルタの小型化が可能になる。
 また、前記第2インピーダンス素子はインダクタであり、前記第1スイッチがオンの場合、前記第2スイッチがオンであり、前記第1スイッチがオフの場合、前記第2スイッチがオフであることにしてもよい。
 これにより、第2スイッチをオンからオフに切り替えると、第1並列腕共振子にインダクタが直列接続される。よって、並列腕回路の共振周波数が低周波数側へとシフトするため、当該共振周波数によって構成される通過帯域低域側の減衰極が低周波数側へとシフトする。したがって、第1スイッチがオンの場合に第2スイッチがオフとなることにより、通過帯域低域側が低周波数側へシフトするとき(低周波数シフト時)の通過帯域低域側の周波数を低くすることができる。つまり、通過帯域低域側の周波数可変幅を大きくすることができる。
 また、第1スイッチと第2スイッチの制御回路を共通化できるため、高周波フィルタの小型化が可能になる。
 また、前記第1スイッチは、いずれの直列腕共振子も介することなく前記第1入出力端子または前記第2入出力端子と接続されていることにしてもよい。
 これにより、直列腕共振子が共振子用のチップに設けられ、第1スイッチが別のチップに設けられた場合に、共振子用のチップの端子数を削減することができる。具体的には、この場合、共振子用のチップにおいて、上記一方の入出力端子に接続される端子と上記別のチップに接続される端子とを共通化することができる。このため、本態様によれば、これらの端子を個別に設けた構成に比べて、共振子用のチップの端子数を削減することができ、高周波フィルタの小型化が図られる。
 また、前記第1スイッチは、GaAsもしくはCMOSからなるFETスイッチ、または、ダイオードスイッチであることにしてもよい。
 これにより、第1スイッチの低抵抗化を図ることができるので、通過帯域内のロスを抑制できる。また、第1スイッチを小型化できるので、高周波フィルタの小型化及び低コスト化が可能となる。
 また、本発明の一態様に係る高周波フロントエンド回路は、上記いずれかの高周波フィルタと、前記第1スイッチのオン及びオフを制御する制御部と、を備える。
 これにより、通過帯域低域端のロスと通過帯域高域側の減衰量を改善する、または、通過帯域高域端のロスと通過帯域低域側の減衰量を改善できる小型の高周波フロントエンド回路を実現できる。
 また、本発明の一態様に係る通信装置は、アンテナ素子で送受信される高周波信号を処理するRF信号処理回路と、前記アンテナ素子と前記RF信号処理回路との間で前記高周波信号を伝達する上記の高周波フロントエンド回路と、を備える。
 これにより、通過帯域低域端のロスと通過帯域高域側の減衰量を改善する、または、通過帯域高域端のロスと通過帯域低域側の減衰量を改善できる小型の通信装置を実現できる。
 本発明に係る周波数可変型の高周波フィルタ、高周波フロントエンド回路、及び通信装置によれば、通過帯域低域端のロスと通過帯域高域側の減衰量を改善する、または、通過帯域高域端のロスと通過帯域低域側の減衰量を改善することができる。
図1Aは、実施の形態1の実施例(実施例1-1)に係る高周波フィルタの回路構成図である。 図1Bは、実施例1-1に係る高周波フィルタに関する各種特性を示すグラフである。 図2は、弾性表面波を用いた弾性波共振子の電極構成を模式的に示す平面図及び断面図である。 図3Aは、比較例に係る高周波フィルタの回路構成図である。 図3Bは、比較例に係る高周波フィルタに関する各種特性を示すグラフである。 図4Aは、実施例1-1及び比較例に係る高周波フィルタの低周波数シフト時の特性を比較したグラフである。 図4Bは、実施例1-1及び比較例に係る高周波フィルタの高周波数シフト時の特性を比較したグラフである。 図5は、実施例1-1に係る高周波フィルタにおいて、直列腕共振子の共振周波数(fr_s1b)を変えた場合のフィルタ特性への影響を示すグラフである。 図6は、変形例に係る高周波フィルタの回路構成図である。 図7Aは、実施の形態1の実施例(実施例1-2-1)に係る高周波フィルタの回路構成図である。 図7Bは、実施の形態1の実施例(実施例1-2-2)に係る高周波フィルタの回路構成図である。 図7Cは、実施例1-2-1及び実施例1-2-2に係る高周波フィルタに関する各種特性を、実施例1-1と比較して示すグラフである。 図7Dは、実施例1-1、実施例1-2-1及び実施例1-2-2に係る高周波フィルタの低周波数シフト時の特性を比較したグラフである。 図7Eは、実施例1-1、実施例1-2-1及び実施例1-2-2に係る高周波フィルタの高周波数シフト時の特性を比較したグラフである。 図8Aは、実施の形態1の実施例(実施例1-3)に係る高周波フィルタの回路構成図である。 図8Bは、実施例1-3に係る高周波フィルタに関する各種特性を、実施例1-1と比較して示すグラフである。 図8Cは、実施例1-3に係る高周波フィルタのスイッチのオン及びオフを個別に切り替えた場合のフィルタ特性の変化を示すグラフである。 図9Aは、共振子の等価回路モデル及びその共振特性を表す図である。 図9Bは、共振子にインピーダンス素子が直列接続された場合の等価回路モデル及びその共振特性を表す図である。 図9Cは、並列接続された2つの共振子の等価回路モデル及びその共振特性を表す図である。 図10Aは、実施の形態2の実施例(実施例2-1)に係る高周波フィルタの回路構成図である。 図10Bは、実施例2-1に係る高周波フィルタに関する各種特性を示すグラフである。 図11Aは、実施例2-1及び実施例1-1に係る高周波フィルタの低周波数シフト時の特性を比較したグラフである。 図11Bは、実施例2-1及び実施例1-1に係る高周波フィルタの高周波数シフト時の特性を比較したグラフである。 図12は、実施例2-1に係る高周波フィルタのスイッチのオン及びオフを個別に切り替えた場合のフィルタ特性の変化を示すグラフである。 図13Aは、実施の形態2の実施例(実施例2-2)に係る高周波フィルタの回路構成図である。 図13Bは、実施例2-2に係る高周波フィルタに関する各種特性を示すグラフである。 図14Aは、実施例2-2及び実施例1-1に係る高周波フィルタの低周波数シフト時の特性を比較したグラフである。 図14Bは、実施例2-2及び実施例1-1に係る高周波フィルタの高周波数シフト時の特性を比較したグラフである。 図15は、実施例2-2に係る高周波フィルタのスイッチのオン及びオフを個別に切り替えた場合のフィルタ特性の変化を示すグラフである。 図16Aは、実施の形態3の実施例(実施例3)に係る高周波フィルタの回路構成図である。 図16Bは、実施例3に係る高周波フィルタに関する各種特性を示すグラフである。 図17Aは、実施例3及び実施例1-1に係る高周波フィルタの低周波数シフト時の特性を比較したグラフである。 図17Bは、実施例3及び実施例1-1に係る高周波フィルタの高周波数シフト時の特性を比較したグラフである。 図18Aは、図17Aの上段に示すグラフの通過帯域及びその近傍を拡大して示す図である。 図18Bは、図17Bの上段に示すグラフの通過帯域及びその近傍を拡大して示す図である。 図19は、実施例3に係る高周波フィルタのスイッチのオン及びオフを個別に切り替えた場合のフィルタ特性の変化を示すグラフである。 図20Aは、実施の形態4の実施例(実施例4)に係る高周波フィルタの回路構成図である。 図20Bは、実施例4に係る高周波フィルタの構造を説明する平面図である。 図21は、実施例4に係るマルチプレクサの回路構成図である。 図22は、実施の形態5に係る通信装置の構成図である。
 以下、本発明の実施の形態について、実施例及び図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置及び接続形態などは、一例であり、本発明を限定する主旨ではない。以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、図面に示される構成要素の大きさ、または大きさの比は、必ずしも厳密ではない。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略または簡略化する場合がある。また、共振子等の回路素子については要求仕様等に応じて定数が適宜調整され得る。このため、回路素子については、同一の符号であっても定数が異なる場合もある。また、以下において、「通過帯域低域端」及び「通過帯域高域端」とは、それぞれ、「通過帯域内の低域端(低周波数側端部)」及び「通過帯域内の高域端(高周波数側端部)」を意味する。また、以下において、「通過帯域低域側」及び「通過帯域高域側」とは、それぞれ、「通過帯域外かつ通過帯域より低域側(低周波数側)」及び「通過帯域外かつ通過帯域より高域側(高周波数側)」を意味する。
 また、共振子または回路における共振周波数とは、特に断りの無い限り、当該共振子または当該回路を含むフィルタの通過帯域または通過帯域近傍の減衰極を形成するための共振周波数であり、当該共振子または当該回路のインピーダンスが極小となる特異点(理想的にはインピーダンスが0となる点)である「共振点」の周波数である。
 また、共振子または回路における***振周波数とは、特に断りの無い限り、当該共振子または当該回路を含むフィルタの通過帯域または通過帯域近傍の減衰極を形成するための***振周波数であり、当該共振子または当該回路のインピーダンスが極大となる特異点(理想的にはインピーダンスが無限大となる点)である「***振点」の周波数である。
 なお、以下の実施の形態において、直列腕回路および並列腕回路は、以下のように定義される。
 並列腕回路は、第1入出力端子および第2入出力端子を結ぶ経路上の一のノードと、グランドと、の間に配置された回路である。
 直列腕回路は、第1入出力端子または第2入出力端子と、並列腕回路が接続される上記経路上のノードと、の間に配置された回路、または、一の並列腕回路が接続される上記経路上の一のノードと、他の並列腕回路が接続される上記経路上の他のノードと、の間に配置された回路である。
 (実施の形態1)
 以下、本実施の形態に係る高周波フィルタについて、実施例(実施例1-1、実施例1-2、及び、実施例1-3)を用いて説明する。
 [1-1. 構成]
 図1Aは、実施例1-1に係る高周波フィルタ10の回路構成図である。同図に示された高周波フィルタ10は、直列腕回路11と、並列腕回路12と、を備える。
 直列腕回路11は、入出力端子11m(第1入出力端子)と入出力端子11n(第2入出力端子)とを結ぶ経路(直列腕)上に設けられた共振回路である。具体的には、直列腕回路11は、直列腕共振子s1a(第1直列腕共振子)と、直列腕共振子s1b(第2直列腕共振子)及びスイッチSWb(第1スイッチ)で構成される周波数可変回路11b(第1周波数可変回路)と、を有する。このように、直列腕回路11は、インピーダンスが極小となる共振周波数(共振点)及びインピーダンスが極大となる***振周波数(***振点)を持つ直列腕共振子s1a、s1bを有するため、当該共振周波数及び当該***振周波数に依存する共振周波数及び***振周波数を持つ。なお、この詳細については、後述する。
 直列腕共振子s1aは、入出力端子11mと入出力端子11nとを結ぶ直列腕上に設けられた第1直列腕共振子であり、入出力端子11m(第1入出力端子)と入出力端子11n(第2入出力端子)との間に接続されている。
 直列腕共振子s1bは、上記直列腕上かつ直列腕共振子s1aをバイパスする経路上に設けられた第2直列腕共振子であり、一方の端子が直列腕共振子s1bの一方の端子と接続され、他方の端子がスイッチSWbを介して直列腕共振子s1aの他方の端子と接続されている。
 スイッチSWbは、直列腕共振子s1b(第2直列腕共振子)と直列接続された第1スイッチである。このスイッチSWbは、SPST(Single Pole Single Throw)型のスイッチ素子であり、例えば、GaAsもしくはCMOS(Complementary Metal Oxide Semiconductor)からなるFET(Field Effect Transistor)スイッチ、または、ダイオードスイッチであり、例えばスイッチIC(Integrated Circuit)として構成される。なお、スイッチSWbは、半導体基板に形成された半導体スイッチに限らず、MEMS(Micro Electro Mechanical Systems)で構成された機械式スイッチであってもかまわない。
 これら直列腕共振子s1b及びスイッチSWbで構成された周波数可変回路11b(第1周波数可変回路)は、高周波フィルタ10の通過帯域を構成する共振周波数、及び、高周波フィルタ10の減衰極を構成する***振周波数を可変し、具体的には、RFIC等の制御部(図示せず)からの制御信号にしたがってスイッチSWbのオン(導通状態)及びオフ(非導通状態)が切り替わることにより当該共振周波数及び当該***振周波数を可変する。
 なお、周波数可変回路11bは、当該共振周波数及び当該***振周波数の少なくとも一方を可変すればよく、当該共振周波数及び当該***振周波数のいずれか一方のみを可変してもかまわない。
 本実施例では、周波数可変回路11bを構成する直列腕共振子s1b及びスイッチSWbは、入出力端子11m側からこの順に接続されているが、この逆の順序で接続されていてもかまわない。
 このように、直列腕回路11は、直列腕共振子s1a(第1直列腕共振子)と、直列腕共振子s1aと並列接続された周波数可変回路11bと、を有する。
 並列腕回路12は、入出力端子11mと入出力端子11nとを結ぶ経路(直列腕)上のノードx1とグランド(基準端子)とに接続された共振回路である。具体的には、並列腕回路12は、ノードx1とグランドとの間に接続された並列腕共振子p1を有する。このように、並列腕回路12は、インピーダンスが極小となる共振周波数(共振点)及びインピーダンスが極大となる***振周波数(***振点)を持つ並列腕共振子p1を有するため、当該共振周波数及び当該***振周波数に依存する共振周波数及び***振周波数を持つ。
 このような高周波フィルタ10において、各共振子(本実施例では、直列腕共振子s1a、s1b及び並列腕共振子p1)は、例えば、弾性表面波を用いた弾性波共振子によって構成される。
 図2は、弾性表面波を用いた弾性波共振子120の電極構成を模式的に示す平面図及び断面図である。なお、同図に示された電極構成は、高周波フィルタ10における各共振子の典型的な構造を説明するためのものであって、電極を構成する電極指の本数や長さなどは、これに限定されない。
 同図に示すように、弾性波共振子120は、少なくとも一部に圧電性を有する基板である圧電基板101と、圧電基板101上に形成されたIDT電極111と、を有する。
 IDT電極111は、複数の電極指111aと、当該複数の電極指111aを挟んで対向して配置された1組のバスバー電極とを有し、複数の電極指111aが1組のバスバー電極の一方と他方に対して交互に接続されることにより構成されている。ここで、複数の電極指111aは、弾性表面波の伝搬方向と直交する方向に沿って形成され、当該伝搬方向に沿って周期的に形成されている。
 このように構成された弾性波共振子120では、IDT電極111の設計パラメータ等によって、励振される弾性表面波の波長が規定される。以下、IDT電極111の設計パラメータについて説明する。
 上記弾性表面波の波長は、複数の電極指111aのうち1つのバスバー電極に接続された電極指111aの繰り返し周期λで規定される。また、電極指ピッチ(複数の電極指111aのピッチ、すなわち電極指周期)Pとは、当該繰り返し周期λの1/2であり、電極指111aのライン幅をWとし、隣り合う電極指111aの間のスペース幅をSとした場合、P=(W+S)で定義される。また、電極デューティ(デューティ比)とは、複数の電極指111aのライン幅占有率であり、複数の電極指111aのライン幅とスペース幅との加算値に対する当該ライン幅の割合、つまりW/(W+S)で定義される。すなわち、電極デューティは、電極指ピッチ(複数の電極指111aのピッチ)に対する複数の電極指111aの幅の比、つまりW/Pで定義される。また、対数とは、対をなす電極指111aの数であり、電極指111aの総数の概ね半数である。例えば、対数をNとし、電極指111aの総数をMとすると、M=2N+1を満たす。また、弾性波共振子120の静電容量Cは、以下の式1で示される。
Figure JPOXMLDOC01-appb-M000001
 なお、εは真空中の誘電率、εrは圧電基板101の誘電率である。
 [1-2. 特性]
 以上のように構成された高周波フィルタ10は、通過帯域高域端のロスを抑制しつつ、通過帯域低域側の周波数を可変(周波数シフト)することができる。以下、本実施例の高周波フィルタ10のフィルタ特性(通過特性)について、当該フィルタ特性を規定するインピーダンス特性(共振特性)についても述べつつ説明する。
 実施例1-1の高周波フィルタ10の回路定数を、表1に示す。なお、スイッチSWbのオフ時の容量成分であるオフ容量(Coff)は0.2pFである。なお、オフ容量(Coff)の詳細については、後述する。
Figure JPOXMLDOC01-appb-T000002
 表1に示すように、直列腕共振子s1b(第2直列腕共振子)の共振周波数(fr_s1b)は、直列腕共振子s1a(第1直列腕共振子)の共振周波数(fr_s1a)と異なり(fr_s1b≠fr_s1a)、本実施例では、直列腕共振子s1aの共振周波数より低い(fr_s1b<fr_s1a)。また、並列腕共振子p1の共振周波数(fr_p1)は、直列腕共振子s1aの共振周波数より低い(fr_p1<fr_s1a)。
 図1Bは、高周波フィルタ10に関する各種特性を示すグラフである。具体的には、同図上段には、スイッチSWbがオンの場合、ならびに、スイッチSWbがオフの場合の2状態のフィルタ特性が示されている。また、同図中段には、直列腕回路11と、並列腕回路12と、のインピーダンス特性が示されている。また、同図下段には、直列腕共振子s1aと、直列腕共振子s1bと、並列腕共振子p1と、のインピーダンス特性が示されている。なお、直列腕回路11においては、スイッチSWbがオンの場合、ならびに、スイッチSWbがオフの場合の2状態のインピーダンス特性が示されている。
 本実施例に係る高周波フィルタ10は、対応する周波数帯域(すなわちフィルタリングする周波数帯域)を、3GPP(Third Generation Partnership Project)で規定されたBand29とBand12とで切り替える周波数可変型の受信フィルタである。このため、図1B上段に示すように、高周波フィルタ10は、通過帯域をBand29の受信帯域であるBand29Rx(717-727MHz)とBand12の受信帯域であるBand12Rx(729-746MHz)とで切り替える。
 まず、図1Aに示された回路構成において、スイッチSWbがオフである場合の特性について説明する。
 この場合、直列腕回路11は、直列腕共振子s1aに対して、スイッチSWbがオフとなっている周波数可変回路11bが並列に接続された状態となる。このとき、周波数可変回路11bのインピーダンスは非常に高い(理想的には無限大)ため、直列腕回路11は、直列腕共振子s1aと概ね同じ特性(理想的には完全に同じ特性)を示す。
 ただし、実際には、図1B中段及び下段のグラフに示すように、直列腕回路11の***振周波数(fa_s1_off)は、周波数可変回路11bの直列腕共振子s1bとスイッチSWbのオフ容量(Coff)との合成容量の影響を受けることにより、直列腕共振子s1aの***振周波数(fa_s1a)よりも若干(Δfa_s1a)低周波数側にシフトする。
 ここで、スイッチSWbのオフ容量(Coff)とは、スイッチSWbがオフの場合における容量成分である。つまり、スイッチSWbは、オフの場合、理想的には容量成分がない状態(すなわちインピーダンス無限大)となるが、実際には微小な容量成分であるオフ容量(Coff)を有する。このオフ容量は、直列腕共振子s1bの静電容量に比べて十分に小さい(本実施例では0.2pF)ため、直列腕共振子s1bとスイッチSWbのオフ容量との合成容量は、直列腕共振子s1bの静電容量に比べて十分小さい値となる。よって、スイッチSWbがオフの場合とオン状態の場合とでは、直列腕回路11の***振周波数に僅かに周波数差(Δfa_s1a)が生じる。
 一方、直列腕回路11の共振周波数(fr_s1_off)は、周波数可変回路11bの影響を受けないため、直列腕共振子s1aの共振周波数(fr_s1a)と等しくなる。
 次に、図1Aに示された回路構成において、スイッチSWbがオン状態である場合の特性について説明する。
 この場合、直列腕回路11は、直列腕共振子s1aに対して、スイッチSWbがオンとなっている周波数可変回路11bが並列に接続された状態となる。つまり、直列腕回路11は、直列腕共振子s1aと直列腕共振子s1bとの並列接続回路となる。
 したがって、図1B中段のグラフに示すように、直列腕回路11は、2つの共振周波数と2つの***振周波数を有する。具体的には、直列腕回路11は、直列腕共振子s1bの共振周波数(fr_s1b)と等しい第1共振周波数(fr1_s1_on)、及び、直列腕共振子s1aの共振周波数(fr_s1a)と等しい第2共振周波数(fr2_s1_on)、ならびに、第1共振周波数(fr_s1b)と第2共振周波数(fr2_s1_on)との間に位置する第1***振周波数(fa1_s1_on)、及び、第2共振周波数(fr2_s1_on)と直列腕共振子s1aの***振周波数(fa_s1a)との間に位置する第2***振周波数(fa2_s1_on)を有する。
 このように、本実施例では、スイッチSWbのオン及びオフの切り替えに応じて、直列腕回路11の***振周波数及び共振周波数がシフトする。
 なお、並列腕回路12の共振周波数及び***振周波数は、スイッチSWbのオン及びオフの切り替えによってシフトせず、共振周波数は並列腕共振子p2の共振周波数(fr_p1)と等しく、***振周波数は並列腕共振子p2の***振周波数(fa_p1)と等しい。
 通常、直列腕共振子のみで構成される直列腕回路は、1つの共振周波数(frs)と1つの***振周波数(fas)を有する。同様に、並列腕共振子のみで構成される並列腕回路は、1つの共振周波数(frp)と1つの***振周波数(fap)を有する。このため、直列腕回路と並列腕回路とで構成されるバンドパス型のラダー型フィルタでは、並列腕回路の***振周波数(fap)と直列腕回路の共振周波数(frs)を近接させることにより通過帯域が構成され、並列腕回路の共振周波数(frp)によって通過帯域低域側の減衰極が構成され、直列腕回路の***振周波数(fas)によって通過帯域高域側の減衰極が構成される。
 このため、本実施例では、以下のようなフィルタ特性が構成される。
 まず、スイッチSWbがオフの場合、直列腕回路11の共振周波数(fr_s1_off=fr_s1a)及び並列腕回路12の***振周波数(fa_p1)によって通過帯域が構成され、並列腕回路12の共振周波数(fr_p1)によって通過帯域低域側の減衰極が構成され、直列腕回路11の***振周波数(fa_s1_off=fa_s1a-Δfa_s1a)によって通過帯域高域側の減衰極が構成される。
 これにより、スイッチSWbがオフの場合、図1B上段の破線(B29side(SWb Off))で示されるフィルタ特性、すなわちBand29Rx(717-727MHz)を通過帯域とするフィルタ特性が構成される。このとき、通過帯域低域端(717MHz)でのロス(I.Loss:Insertion Loss)は0.288dBであり、通過帯域高域端(727MHz)でのロスは0.265dBであり、通過帯域内のロスが抑制されている。なお、Band29は受信専用のバンドである。
 一方、スイッチSWbがオン状態の場合、直列腕回路11の第2共振周波数(fr2_s1_on、すなわちfr_s1a)及び並列腕回路12の***振周波数(fa_p1)によって通過帯域が構成され、並列腕回路12の共振周波数(fr_p1)によって通過帯域低域側の減衰極が構成され、直列腕回路11の第2***振周波数(fa2_s1_on)によって通過帯域高域側の減衰極が構成される。さらに、直列腕回路11の第1***振周波数(fa1_s1_on)によって、通過帯域低域側に新たな減衰極が構成される。
 これにより、スイッチSWbがオン状態の場合、図1B上段の実線(B12side(SWb On))で示されるフィルタ特性、すなわちBand12Rx(729-746MHz)を通過帯域とし、Band12Tx(699-716MHz)を減衰帯域とするフィルタ特性が構成される。このとき、通過帯域低域端(729MHz)でのロスは0.314dBであり、通過帯域高域端(746MHz)でのロスは0.237dBであり、通過帯域内のロスが抑制されている。また、減衰帯域低域端(699MHz)での減衰量(Att.:Attenuation)は17.555dBであり、減衰帯域高域端(716MHz)での減衰量は4.020dBであり、減衰帯域における減衰量が確保されている。
 このように、本実施例に係る高周波フィルタ10は、Band29RxとBand12Rxとを切り替える周波数可変型フィルタに適用することができる。
 [1-3. 効果等]
 以下、本実施例によって奏される効果について、本実施の形態の比較例に係る高周波フィルタと比較して説明する。
 [1-3-1. 比較例]
 図3Aは、比較例に係る高周波フィルタ10Xの回路構成図である。同図に示された高周波フィルタ10Xは、直列腕共振子s1によって構成された直列腕回路11Xと、並列腕共振子p1a、p1b及びスイッチSWxによって構成された並列腕回路12Xと、を備える。並列腕共振子p1aと並列腕共振子p1bとは直列接続されており、並列腕共振子p1bとスイッチSWxとは並列接続されている。
 このように構成された高周波フィルタ10Xであっても、スイッチSWxのオン及びオフの切り替えにより通過帯域低域側の減衰極の周波数を可変することができる。以下、比較例の高周波フィルタ10Xのフィルタ特性(通過特性)について、当該フィルタ特性を規定するインピーダンス特性(共振特性)についても述べつつ説明する。
 比較例の高周波フィルタ10Xの回路定数を、表2に示す。なお、スイッチSWxのオフ容量(Coff)は0.2pFである。
Figure JPOXMLDOC01-appb-T000003
 図3Bは、高周波フィルタ10Xに関する各種特性を示すグラフである。具体的には、同図上段には、スイッチSWxがオンの場合、ならびに、スイッチSWxがオフの場合の2状態のフィルタ特性が示されている。また、同図中段には、直列腕回路11Xと、並列腕回路12Xと、のインピーダンス特性が示されている。また、同図下段には、直列腕共振子s1と、並列腕共振子p1aと、並列腕共振子p1bと、のインピーダンス特性が示されている。なお、並列腕回路12Xにおいては、スイッチSWxがオンの場合、ならびに、スイッチSWxがオフの場合の2状態のインピーダンス特性が示されている。
 まず、図3Aに示された回路構成において、スイッチSWxがオンである場合の特性について説明する。
 この場合、並列腕回路12Xは、並列腕共振子p1bがスイッチSWxによって短絡されることにより、並列腕共振子p1aと同じ特性を示す。つまり、並列腕回路12Xの共振周波数(fr_p1_on)は、並列腕共振子p1aの共振周波数(fr_p1a)と等しくなり、並列腕回路12Xの***振周波数(fa_p1_on)は、並列腕共振子p1aの***振周波数(fa_p1a)と等しくなる。
 次に、図3Aに示された回路構成において、スイッチSWxがオフである場合の特性について説明する。
 この場合、並列腕回路12Xは、並列腕共振子p1aと並列腕共振子p1bとが直列接続された回路となるため、並列腕共振子p1a及び並列腕共振子p1bの合成特性を示す。
 なお、この場合、実際には、スイッチSWxのオフ容量により、並列腕回路12Xは上記合成特性とは僅かに異なる特性を示す。しかし、スイッチSWxのオフ容量は並列腕共振子p1a、p1bの静電容量(本実施例ではそれぞれ5.0pF、3.0pF)に比べて微小(本実施例では0.2pF)であるため、並列腕回路12Xの特性にはほとんど影響しない。よって、簡明のため、ここではスイッチSWxをオフ容量がない理想的なスイッチとして扱って説明する。
 したがって、図3B中段のグラフに示すように、並列腕回路12Xは、2つの共振周波数と2つの***振周波数を有する。具体的には、並列腕回路12Xは、並列腕共振子p1aの***振周波数(fa_p1a)と等しい第1***振周波数(fa1_p1_off)、及び、並列腕共振子p1bの***振周波数(fa_p1b)と等しい第2***振周波数(fa2_p1_off)、ならびに、並列腕共振子p1aの共振周波数(fr_p1a)と第1***振周波数(fa1_p1_off)との間に位置する第1共振周波数(fr1_p1_off)、及び、第1共振周波数(fr1_p1_off)と第2***振周波数(fa2_p1_off)との間に位置する第2共振周波数(fr2_p1_off)を有する。
 このように、比較例では、スイッチSWxのオン及びオフの切り替えに応じて、並列腕回路12Xの***振周波数及び共振周波数の個数が切り替わるとともに、共振周波数がシフトする。
 なお、直列腕回路11Xの共振周波数及び***振周波数は、スイッチSWxのオン及びオフの切り替えによってシフトせず、共振周波数は直列腕共振子s1の共振周波数(fr_s1)と等しく、***振周波数は直列腕共振子s1の***振周波数(fa_s1)と等しい。
 これにより、本比較例では、スイッチSWxがオン状態の場合、図3B上段の破線(B29side(SWx On))で示されるフィルタ特性、すなわちBand29Rxを通過帯域とするフィルタ特性(図中の「B29side」)が構成される。このとき、通過帯域低域端(717MHz)でのロスは0.323dBであり、通過帯域高域端(727MHz)でのロスは0.269dBであり、通過帯域内のロスが抑制されている。
 一方、スイッチSWxがオフの場合、図3B上段の実線(B12side(SWx Off))で示されるフィルタ特性、すなわちBand12Rxを通過帯域とし、Band12Txを減衰帯域とするフィルタ特性が構成される。このとき、通過帯域低域端(729MHz)でのロスは0.267dBであり、通過帯域高域端(746MHz)でのロスは0.904dBであり、通過帯域高域端でのロスが悪化(増大)している。また、減衰帯域低域端(699MHz)での減衰量は4.249dBであり、減衰帯域高域端(716MHz)での減衰量は0.694dBであり、減衰帯域高域端での減衰量が不十分である。
 これにより、比較例に係る高周波フィルタ10XをBand29RxとBand12Rxとを切り替える周波数可変型フィルタに適用すると、SWxをオフとした場合に、通過帯域高域端でのロスが悪化するとともに、通過帯域低域側の減衰帯域での減衰量が悪化してしまう。このように、比較例では、通過帯域低域側を高周波数側に周波数可変させた場合に、通過帯域高域端でのロスが悪化するとともに、通過帯域低域側の減衰帯域での減衰量が悪化するという問題がある。
 [1-3-2. 比較例との対比]
 本願発明者は、鋭意検討の結果、比較例では、通過帯域低域側の減衰極の周波数を高周波数側に周波数可変させる場合に、通過帯域高域側近傍に新たな減衰極ができることにより上記問題が生じることを見出した。そして、通過帯域低域側の減衰極の周波数を高周波数側に周波数可変させる場合に新たな減衰極が通過帯域高域側近傍にできず通過帯域低域にできるようにすることで、通過帯域高域端のロスと通過帯域低域側の減衰量を改善するという着想を得た。
 図4Aは、実施例1-1及び比較例に係る高周波フィルタの低周波数シフト時(B29side:通過帯域低域側の通過帯域周波数及び減衰極を低周波数に周波数可変したとき)の特性を比較したグラフである。図4Bは、実施例1-1及び比較例に係る高周波フィルタの高周波数シフト時(B12side:通過帯域低域側の通過帯域周波数及び減衰極を高周波数に周波数可変したとき)の特性を比較したグラフである。
 図4Aから明らかなように、低周波数シフト時において、実施例1-1と比較例とは、同等の通過帯域(Band29Rx)内特性を示す。
 図4A及び図4Bから明らかなように、比較例では、スイッチSWxをオンからオフに切り替えることにより通過帯域低域側の通過帯域周波数及び減衰極を高周波数側に周波数可変させたとき、通過帯域高域側に、直列腕回路11Xの***振周波数(fa_s1)によって構成される第1減衰極P_H91に加え、並列腕回路12Xの第2共振周波数(fr2_p1_off)によって構成される第2減衰極P_H92が現れる。この第2減衰極P_H92は第1減衰極P_H91よりも低周波数側に位置するため、スイッチSWxをオンとしたときの通過帯域高域端のロスが悪化してしまう。一方、このとき、通過帯域低域側には、並列腕回路12Xの第1共振周波数(fr_p1_off)で構成される1つの減衰極P_L1のみが現れるため、通過帯域低域側の減衰帯域において減衰量が不十分となってしまう。
 これに対し、本実施例では、スイッチSWbをオフからオンに切り替えることにより通過帯域低域側の通過帯域周波数及び減衰極を高周波数側に周波数可変させたときであっても、通過帯域高域側には、直列腕回路11の第2***振周波数(fa2_s1_on)によって構成される1つの減衰極(スイッチSWbオフ時には減衰極P_H1off、スイッチSWbオン時には減衰極P_H1on)のみが現れる。このため、本実施例では、比較例に比べて、通過帯域低域側を高周波数側に周波数可変させたときの通過帯域高域端でのロスの悪化を抑制することができる。一方、このとき、通過帯域低域側には、並列腕回路12の共振周波数(fr_p1)で構成される減衰極P_L1と、直列腕回路11の第1***振周波数(fa_s1_on)で構成される減衰極P_L2と、の2つの減衰極が現れるため、通過帯域低域側の減衰帯域において減衰量が改善する。
 [1-3-3. まとめ]
 以上のように、本実施例によれば、スイッチSWb(第1スイッチ)のオン(導通状態)及びオフ(非導通状態)の切り替えにより、直列腕回路11について、高周波フィルタ10の通過帯域を構成する共振周波数、及び、高周波フィルタ10の減衰極を構成する***振周波数を可変することができる。具体的には、直列腕回路11は、スイッチSWbがオフの場合、直列腕共振子s1a(第1直列腕共振子)の共振周波数(fr_s1a)と同じ第3共振周波数(fr2_s1_off)、及び、直列腕共振子s1a(第1直列腕共振子)の***振周波数(fa_s1a)より若干低周波数側に位置する第3***振周波数(fa_s1_off)を有する。また、直列腕回路11は、スイッチSWbがオンの場合、直列腕共振子s1aの共振周波数(fr_s1a)と同じ第1共振周波数(fr2_s1_on)、及び、直列腕共振子s1b(第2直列腕共振子)の共振周波数(fr_s1b)と同じ第2共振周波数(fr1_s1_on)と、直列腕共振子s1aの共振周波数(fr_s1a)と直列腕共振子s1bの共振周波数(fr_s1b)との間に位置する第1***振周波数(fa1_s1_on)、及び、第2共振周波数(fr1_s1_on)より高周波数側に位置する第2***振周波(fa2_s1_on)と、を有する。
 これに関し、本実施例では、直列腕共振子s1bの共振周波数が直列腕共振子s1aの共振周波数より低い(fr_s1b<fr_s1a)。よって、スイッチSWbがオフのとき、第3共振周波数(fr2_s1_off)は通過帯域を構成し、第3***振周波数は通過帯域高域側の減衰極を構成する。また、スイッチSWbがオンのとき、第2共振周波数(fr1_s1_on)は通過帯域を構成し、第1***振周波数(fa1_s1_on)は通過帯域低域側の減衰極を構成し、第2***振周波数(fa2_s1_on)は通過帯域高域側の減衰極を構成する。すなわち、本実施例では、スイッチSWbのオフからオンへの切り替えにより、通過帯域低域側に新たな減衰極が構成される。
 よって、並列腕回路の共振周波数によって構成される通過帯域低域側の減衰極を考慮すると、スイッチSWbのオン及びオフの切り替えと、通過帯域との関係について、次のことが言える。具体的には、スイッチSWbをオフからオンに切り替えると、通過帯域の低域側に新たな減衰極が構成されるため、通過帯域低域側の減衰帯域が広帯域化される。このとき、通過帯域高域側には新たな減衰極が構成されないため、通過帯域高域端におけるロスの悪化が抑制されるとともに、通過帯域の低域側の減衰量の悪化を抑制できる。
 したがって、本実施例によれば、通過帯域高域端のロスを抑制するとともに、通過帯域低域側の減衰量を改善しつつ、通過帯域低域側の通過帯域周波数及び減衰極の周波数を可変できる周波数可変型の高周波フィルタ10を実現することができる。
 このように、本実施例では、直列腕共振子s1bの共振周波数が直列腕共振子s1aの周波数より低いことにより、スイッチSWbのオン及びオフの切り替えにより、通過帯域低域側の減衰極の個数を増減することができる。よって、通過帯域高域端のロスと通過帯域低域側の減衰量を改善することができる。
 なお、直列腕共振子s1b(第2直列腕共振子)の共振周波数は上記周波数(702Mz)に限らない。
 図5は、実施例1-1に係る高周波フィルタ10において、直列腕共振子s1bの共振周波数(fr_s1b)を変えた場合のフィルタ特性への影響を示すグラフである。具体的には、同図には、スイッチSWbをオンとして直列腕共振子s1bの共振周波数(fr_s1b)を690MHz~710MHzの範囲において5MHz間隔で変化させたフィルタ特性と、スイッチSWbをオフとしたフィルタ特性と、が示されている。なお、同図に示す直列腕共振子s1bについて、***振周波数(fa)と共振周波数(fr)との周波数差(fa-fr)を共振周波数(fr)で除した値である比帯域幅((fa-fr)/fr)は固定である。
 直列腕共振子s1bの共振周波数(fr_s1b)を変えることにより、スイッチSWbをオンとしたときの直列腕回路11の第1***振周波数(fr1_s1_on)が変わる。このため、同図から明らかなように、通過帯域低域側の2つの減衰極のうち、直列腕回路11の第1***振周波数(fr1_s1_on)によって構成される減衰極である通過帯域側の減衰極の周波数が変化する。
 よって、高周波フィルタは、共振周波数が互いに異なる複数の第2直列腕共振子を有してもかまわない。つまり、高周波フィルタは、複数の第1周波数可変回路を有してもかまわない。
 図6は、このように構成された高周波フィルタ10A(変形例に係る高周波フィルタ)の回路構成図である。
 同図に示す高周波フィルタ10Aは、複数の周波数可変回路11b1~11bnを有する。複数の周波数可変回路11b1~11bnは、それぞれ実施例1-1の周波数可変回路11b(第1周波数可変回路)に相当し、実施例1-1の直列腕共振子s1b(第2直列腕共振子)に相当する直列腕共振子s1b1~s1bnと、実施例1-1のスイッチSWb(第1スイッチ)に相当するスイッチSWb1~SWbnと、を有する。
 ここで、複数の直列腕共振子s1b1~s1bn(複数の第2直列腕共振子)は、互いに異なる共振周波数を有する(fr_s1b1≠・・・≠fr_s1bn)。具体的には、ここでは、複数の直列腕共振子s1b1~s1bnの共振周波数は、いずれも直列腕共振子s1a(第1直列腕共振子)の共振周波数よりも低い(fr_s1b1<fr_s1a、・・・、fr_s1bn<fr_s1a)。
 このように構成された高周波フィルタ10Aによれば、複数のスイッチSWb1~SWbnのうちオンとするスイッチの選択に応じて、直列腕回路11の第1***振周波数(fr1_s1_on)を可変することができる。つまり、通過帯域の周波数及び通過帯域低域側の減衰帯域を細かいステップで可変することができることにより、通過帯域の周波数及び通過帯域低域側の減衰極の周波数可変幅を細かく設定することができる。よって、使用するバンド(例えばBand12Rx)のチャネルごとに最も低損失となるフィルタ特性を選択することが可能となる。
 [1-4. 他の実施例]
 [1-4-1. 第1直列腕共振子にキャパシタまたはインダクタを直列接続]
 本実施の形態に係る直列腕回路は、さらに、第1直列腕共振子と直列接続された第1インピーダンス素子を有してもかまわない。そこで、以下、このような高周波フィルタについて、実施例(実施例1-2-1及び実施例1-2-2)を用いて説明する。
 図7Aは、実施例1-2-1に係る高周波フィルタ10Baの回路構成図である。
 同図に示すように、本実施例に係る高周波フィルタ10Baは、実施例1-1に比べて、直列腕共振子s1a(第1直列腕共振子)と直列接続されたキャパシタC11(第1インピーダンス素子)をさらに有する直列腕回路11Baが設けられている。また、周波数可変回路11bは、直列腕共振子s1aとキャパシタC11とで構成される直列接続回路11aa(第1直列接続回路)と並列接続されている。
 図7Bは、実施例1-2-2に係る高周波フィルタ10Bbの回路構成図である。
 同図に示すように、本実施例に係る高周波フィルタ10Bbは、上記実施例1-2-1に係る高周波フィルタ10BaにおいてキャパシタC11をインダクタL11(第1インピーダンス素子)に置き換えた構成である。
 以下、このように構成された実施例1-2-1及び実施例1-2-2に係る高周波フィルタの特性について、実施例1-1と比較して説明する。
 なお、実施例1-2-1の高周波フィルタ10Baの回路定数は、実施例1の回路定数と概ね同じであり、直列腕共振子s1a(第1直列腕共振子)の共振周波数(fr)が725MHz、***振周波数(fa)が783MHzである点のみ異なる。また、キャパシタC11の容量値は8pFである。
 実施例1-2-2の高周波フィルタ10Bbの回路定数は、実施例1の回路定数と概ね同じであり、直列腕共振子s1a(第1直列腕共振子)の共振周波数(fr)が745MHz、***振周波数(fa)が804MHzである点のみ異なる。また、インダクタL11のインダクタンス値は2nHである。
 図7Cは、実施例1-2-1及び実施例1-2-2に係る高周波フィルタに関する各種特性を、実施例1-1と比較して示すグラフである。具体的には、同図左列には実施例1-1に係る高周波フィルタ10の各種特性が示され、同図中央列には実施例1-2-1に係る高周波フィルタ10Baの各種特性が示され、同図右列には実施例1-2-2に係る高周波フィルタ10Bbの各種特性が示されている。また、同図上段には、スイッチSWbがオンの場合、ならびに、スイッチSWbがオフの場合の2状態のフィルタ特性が示されている。また、同図中段には、直列腕回路と、並列腕回路12と、のインピーダンス特性が示されている。また、同図下段には、直列腕共振子s1aと、直列腕共振子s1bと、並列腕共振子p1と、のインピーダンス特性が示されている。なお、直列腕回路においては、スイッチSWbがオンの場合、ならびに、スイッチSWbがオフの場合の2状態のインピーダンス特性が示されている。
 同図上段から明らかなように、直列腕共振子s1aにインピーダンス素子を直列接続した実施例1-2-1及び実施例1-2-2の構成であっても、実施例1-1と同様、通過帯域高域端のロスを抑制しつつ、通過帯域低域側を可変することができる。
 また、実施例1-2-1のように、直列腕共振子s1aに直列接続されるインピーダンス素子としてキャパシタC11を設けることにより、インピーダンス素子を設けない実施例1-1に比べて、通過帯域が狭帯域化されたフィルタ特性を構成することができる。一方、実施例1-2-2のように、直列腕共振子s1aに直列接続されるインピーダンス素子としてインダクタL11を設けることにより、インピーダンス素子を設けない実施例1-1に比べて、通過帯域が広帯域化されたフィルタ特性を構成することができる。
 このことについて、以下、図7D及び図7Eを用いて説明する。
 図7Dは、実施例1-1、実施例1-2-1及び実施例1-2-2に係る高周波フィルタの低周波数シフト時(スイッチSWbがオフのとき)の特性を比較したグラフである。図7Eは、実施例1-1、実施例1-2-1及び実施例1-2-2に係る高周波フィルタの高周波数シフト時(スイッチSWbがオンのとき)の特性を比較したグラフである。具体的には、図7D及び図7Eについて、上段にはフィルタ特性が示され、下段にはスイッチSWbがオンの場合あるいはスイッチSWbがオフの場合の直列腕回路のインピーダンスが示されている。
 まず、図7Dに示すスイッチSWbがオフである場合の特性について説明する。
 この場合、実施例1-2-1の直列腕回路11Baは、直列腕共振子s1aとキャパシタC11とが直列接続されていることにより、実施例1-1の直列腕回路11に比べて、共振周波数と***振周波数との周波数差を小さくすることができる。よって、直列腕回路11Baの共振周波数を高周波フィルタ10Baの通過帯域内に合わせると、直列腕回路11Baの***振周波数が直列腕回路11の***振周波数よりも低周波数側に位置する。このため、実施例1-2-1によれば、実施例1-1に比べ、通過帯域高域側の減衰極が低周波数側に位置することにより通過帯域が狭帯域化される。
 また、この場合、実施例1-2-2の直列腕回路11Bbは、直列腕共振子s1aとインダクタL11とが直列接続されていることにより、実施例1-1の直列腕回路11に比べて、共振周波数と***振周波数との周波数差を大きくすることができる。よって、直列腕回路11Bbの共振周波数を高周波フィルタ10Bbの通過帯域に合わせると、直列腕回路11Bbの***振周波数が直列腕回路11の***振周波数よりも高周波数側に位置する。このため、実施例1-2-2によれば、実施例1-1に比べ、通過帯域高域側の減衰極が高周波数側に位置することにより通過帯域が広帯域化される。
 次に、図7Eに示すスイッチSWbがオン状態である場合の特性について説明する。
 この場合、実施例1-2-1の直列腕回路11Baは、実施例1-1の直列腕回路11と比べ、第1共振周波数(低周波数側の共振周波数)、第2共振周波数(高周波数側の共振周波数)及び第1***振周波数(低周波数側の***振周波数)が概ね同じ周波数となり、第2***振周波数(高周波数側の***振周波数)が低周波数側に位置する。このため、実施例1-2-1によれば、実施例1-1に比べ、通過帯域高域側の減衰極が低周波数側に位置することにより通過帯域が狭帯域化される。
 また、この場合、実施例1-2-2の直列腕回路11Bbは、実施例1-1の直列腕回路11と比べ、第1共振周波数(低周波数側の共振周波数)、第2共振周波数(高周波数側の共振周波数)及び第1***振周波数(低周波数側の***振周波数)が概ね同じ周波数となり、第2***振周波数(高周波数側の***振周波数)が高周波数側に位置する。このため、実施例1-2-2によれば、実施例1-1に比べ、通過帯域高域側の減衰極が高周波数側に位置することにより通過帯域が広帯域化される。
 以上のように、直列腕共振子s1a(第1直列腕共振子)と第1インピーダンス素子(実施例1-2-1ではキャパシタC11、実施例1-2-2ではインダクタL11)とが直列接続されていることにより、第1直列接続回路(実施例1-2-1では直列接続回路11aa、実施例1-2-2では直列接続回路11ab)の共振周波数と***振周波数との周波数差を、直列腕共振子s1aの当該周波数差から変えることができる。具体的には、第1インピーダンス素子がキャパシタの場合(実施例1-2-1の場合)に当該周波数差を小さくすることができ、第1インピーダンス素子がインダクタの場合(実施例1-2-2の場合)に当該周波数差を大きくすることができる。よって、第1インピーダンス素子の回路定数を適宜調整することによって、直列腕回路の第2共振周波数と第2***振周波数との周波数差を調整することができるため、当該周波数差によって規定される通過帯域高域側のカットオフ周波数と通過帯域高域側の減衰極との周波数差を調整することができる。したがって、通過帯域幅及び減衰スロープの急峻性を任意に設定することができる。
 なお、通過帯域の狭帯域化もしくは広帯域化の可変幅は、第1インピーダンス素子の定数に依存し、例えば、第1インピーダンス素子がキャパシタの場合、キャパシタの定数が小さいほど狭帯域となり、第1インピーダンス素子がインダクタの場合、インダクタの定数が大きいほど広帯域となる。このため、第1インピーダンス素子の定数は、高周波フィルタに要求される周波数仕様に応じて、適宜決定され得る。また、キャパシタは、バリキャップ及びDTC(Digitally Tunable Capacitor)等の可変キャパシタであってもかまわない。また、インダクタは、MEMS(Micro Electro Mechanical Systems)を用いた可変インダクタであってもかまわない。
 [1-4-2. 共振周波数が高い直列腕共振子を有する周波数可変回路を接続]
 ここまで、直列腕回路が備える周波数可変回路(第1周波数可変回路)は、第2直列腕共振子として、第1直列腕共振子(上記実施例の直列腕共振子s1)の共振周波数よりも低い共振周波数を持つ、として説明した。しかし、第2直列腕共振子の共振周波数は、第1直列腕共振子の共振周波数と異なっていればよく、第1直列腕共振子の共振周波数より高くてもかまわない。
 そこで、以下、このような高周波フィルタについて、実施例(実施例1-3)を用いて説明する。
 図8Aは、実施例1-3に係る高周波フィルタ10Cの回路構成図である。
 同図に示す高周波フィルタ10Cは、実施例1-1に係る高周波フィルタ10に比べて、直列腕回路11Cがさらに、周波数可変回路11c(第1周波数可変回路)を備える点が異なる。周波数可変回路11cは、直列腕共振子s1c(第2直列腕共振子)と、直列腕共振子s1cと直列接続されたスイッチSWc(第1スイッチ)と、で構成される。
 ここで、直列腕共振子s1cの共振周波数(fr_s1c)は、直列腕共振子s1aの共振周波数(fr_s1a)よりも高い。
 つまり、本実施例では、直列腕回路11Cは、複数の第1周波数可変回路(ここでは2つの周波数可変回路11b、11c)を有する。また、複数の第2直列腕共振子(ここでは2つの直列腕共振子s1b、s1c)のうち少なくとも1つ(ここでは直列腕共振子s1b)の共振周波数は、直列腕共振子s1a(第1直列腕共振子)の共振周波数より低い(fr_s1b<fr_s1a)。また、複数の第2直列腕共振子のうち他の少なくとも1つ(ここでは直列腕共振子s1c)の共振周波数は、直列腕共振子s1aの共振周波数より高い(fr_s1a<fr_s1c)。なお、第1周波数可変回路の個数は2つに限らず、3以上であってもかまわない。
 このように構成された高周波フィルタ10Cは、例えば、スイッチSWb及びスイッチSWcについて個別にオン及びオフを切り替えることができる。
 以下、実施例1-3に係る高周波フィルタ10Cの特性について説明する。
 実施例1-3の高周波フィルタ10Cの回路定数を、表3に示す。なお、スイッチSWb、SWcのオフ容量(Coff)は、いずれも0.2pFである。
Figure JPOXMLDOC01-appb-T000004
 図8Bは、実施例1-3に係る高周波フィルタ10Cに関する各種特性を、実施例1-1と比較して示すグラフである。
 具体的には、同図には、左列から右列へと順に、(i)スイッチSWbがオンかつSWcがオフの場合の実施例1-3及び実施例1-1の各種特性、(ii)スイッチSWbがオフかつSWcがオンの場合の実施例1-3の各種特性、(iii)スイッチSWbがオフかつSWcがオフの場合の実施例1-3及び実施例1-1の各種特性、(iv)スイッチSWbがオンかつSWcがオンの場合の実施例1-3の各種特性が示されている。また、同図上段にはフィルタ特性が示され、同図下段には、直列腕回路と、並列腕共振子(すなわち並列腕回路)とのインピーダンス特性が示されている。
 なお、スイッチSWbがオン(またはオフ)かつSWcがオフの場合の実施例1-1の各種特性とは、スイッチSWbがオン(またはオフ)の場合の実施例1-1の各種特性である。
 同図から明らかなように、実施例1-3によれば、スイッチSWbのオン及びオフの切り替えだけでなく、スイッチSWcのオン及びオフの切り替えによっても、直列腕回路11Cの共振周波数及び***振周波数の周波数を可変することができる。
 具体的には、スイッチSWcのオフからオンへの切り替えによって、直列腕回路11Cは、さらに、直列腕共振子s1cの共振周波数(fr_s1c)と同じ周波数に共振周波数を持ち、当該共振周波数よりも高周波数側に***振周波数を持つ。さらに、これによって、直列腕回路11Cでは、直列腕共振子s1cの共振周波数(fr_s1c)より低周波数側に最も近い***振周波数が低周波数側にシフトされる。ここで、当該***振周波数は、通過帯域高域側の減衰極を構成している。このため、スイッチSWcのオフからオンへの切り替えによって、通過帯域高域側の減衰極が低周波数側へシフトされることになる。
 図8Cは、実施例1-3に係る高周波フィルタ10CのスイッチSWb、SWcのオン及びオフを個別に切り替えた場合のフィルタ特性の変化を示すグラフである。
 同図に示すように、高周波フィルタ10Cは、スイッチSWbのオン及びオフの切り替えによって、通過帯域高域端のロスを抑制しつつ、通過帯域の周波数及び通過帯域低域側の減衰極の周波数を可変できる。また、高周波フィルタ10Cは、スイッチSWcのオン及びオフの切り替えによって、通過帯域低域端のロスを抑制しつつ、通過帯域の周波数及び通過帯域高域側の減衰極の周波数を可変できる。
 したがって、高周波フィルタ10Cは、スイッチSWb、SWcのオン及びオフを個別に切り替えることにより、通過帯域の低域側及び高域側のいずれについても、通過帯域端のロスを抑制しつつ、減衰帯域を可変することができる。
 [1-5. 共振解析]
 ここで、実施の形態に係る高周波フィルタの共振特性について、等価回路を用いて説明しておく。
 [1-5-1. 共振子単体]
 まず、共振子単体の共振特性について説明する。
 図9Aは、1つの共振子の等価回路モデル及びその共振特性を表す図である。同図に示すように、共振子は、キャパシタC及びインダクタLの直列回路(直列接続回路)とキャパシタCとの並列回路(並列接続回路)で表すことができる。ここで、キャパシタCは、共振子の静電容量である。
 上記等価回路において、共振子の共振周波数frは、キャパシタCとインダクタLとの直列回路で規定され、上記等価回路のインピーダンスが0となる周波数であることから、式2を解くことにより、式3で示される。
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
 また、共振子の***振周波数faは、上記等価回路のアドミッタンスYが0となる周波数であることから、式4を解くことにより、式5で示される。
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
 上記式3及び式5より、図9Aの右側グラフに示すように、***振周波数faは、共振周波数frよりも高周波数側に出現する。
 つまり、共振子は、1つの共振周波数と、当該共振周波数よりも高周波数側に位置する1つの***振周波数と、を持つ。
 [1-5-2. 共振子にインピーダンス素子を直列接続]
 次に、共振子にインピーダンス素子が直列接続された場合の共振特性について、等価回路モデルを用いて説明しておく。
 図9Bは、共振子にインピーダンス素子Xが直列接続された場合の等価回路モデル及びその共振特性を表す図である。同図に示すように、共振子は、キャパシタC及びインダクタLの直列回路とキャパシタCとの並列回路で表すことができる。ここで、キャパシタCは、共振子の静電容量である。また、共振子に対して、インピーダンス素子XとスイッチSWとの並列回路が接続されている。なお、共振解析での等価回路モデルにおいて、スイッチSWは、オフの場合に容量成分がない状態(すなわちインピーダンスが無限大)となり、オンの場合に抵抗成分がゼロ(すなわちインピーダンスがゼロ)となる理想的なスイッチとして扱う。
 まず、スイッチSWがオンの場合について、上記等価回路の共振特性を説明する。スイッチSWがオンの場合、インピーダンス素子Xは短絡となるため、共振周波数fr_on及び***振周波数fa_onは、それぞれ、図9Aにおける共振周波数fr及び***振周波数faと同じとなり、式6及び式7で表される。
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
 次に、スイッチSWがオフの場合については、(1)インピーダンス素子Xがキャパシタである場合、及び、(2)インピーダンス素子Xがインダクタである場合、に分けて説明する。
 (1)インピーダンス素子XがキャパシタCtである場合
 スイッチSWがオフの場合の共振周波数fr_off1は、上記等価回路のインピーダンスZが0となる周波数であることから、式8を解くことにより、式9で示される。
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
 一方、スイッチSWがオフの場合の***振周波数fa_off1は、スイッチSWがオンの場合の***振周波数fa_onと同じであり、式10で表される。
Figure JPOXMLDOC01-appb-M000013
 式6、式7、式9、及び式10より、インピーダンス素子Xがキャパシタである場合、図9Bの右側グラフに示すように、スイッチSWのオン及びオフの切り替えによらず、***振周波数fa_on及びfa_off1は一致している。一方、共振周波数については、スイッチSWのオン時(fr_on)に比べて、スイッチSWのオフ時(fr_off1)には、高周波数側へシフトすることが解る。
 (2)インピーダンス素子XがインダクタLtである場合
 スイッチSWがオフの場合の共振周波数fr_off2は、上記等価回路のインピーダンスZが0となる周波数であることから、式11を解くことにより、式12で示される。
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
 式12において、fr_off2LはスイッチSWがオフの場合の低周波数側の共振周波数であり、fr_off2HはスイッチSWがオフの場合の高周波数側の共振周波数である。
 一方、スイッチSWがオフの場合の***振周波数fa_off2は、スイッチSWがオンの場合の***振周波数fa_onと同じであり、式13で表される。
Figure JPOXMLDOC01-appb-M000016
 式6、式7、式12、及び式13より、インピーダンス素子Xがインダクタである場合、図9Bの右側グラフに示すように、スイッチSWのオン及びオフの切り替えによらず、***振周波数fa_on及びfa_off2は一致している。一方、共振周波数については、スイッチSWのオン時(fr_on)に比べて、スイッチSWのオフ時(fr_off2L)には、低周波数側へシフトすることが解る。
 [1-5-3. 2つの共振子が並列接続]
 次に、2つの共振子が並列接続された場合の特性について、等価回路モデルを用いて説明しておく。
 図9Cは、並列接続された2つの共振子の等価回路モデル及びその共振特性を表す図である。同図には、共振子res1及びres2が並列接続されたモデルが示されている。共振子res1は、キャパシタC及びインダクタLの直列回路とキャパシタC01との並列回路で表わされ、共振子res2は、キャパシタC及びインダクタLの直列回路とキャパシタC02との並列回路で表すことができる。ここで、キャパシタC01及びC02は、それぞれ、共振子res1及びres2の静電容量である。これら2つの共振子res1及びres2で構成された共振回路は、図9C左下に示された等価回路で表される。つまり、上記共振回路は、キャパシタC及びインダクタLの直列回路と、キャパシタC及びインダクタLの直列回路と、キャパシタC(=C01+C02)との並列回路で表わされる。
 上記等価回路において、共振子の共振周波数frは、キャパシタCとインダクタLとの直列回路で規定され、式2で示される。
 上記等価回路において、2つの共振周波数が規定され、共振周波数fr1、fr2は、それぞれ、キャパシタCとインダクタLとの直列回路、及び、キャパシタCとインダクタLとの直列回路で規定され、式14で示される。
Figure JPOXMLDOC01-appb-M000017
 つまり、上記等価回路で表される2つの共振周波数fr1、fr2は、それぞれ、共振子res1の共振周波数fr_res1及び共振子res2の共振周波数fr_res2と略等しい。
 また、上記等価回路の***振周波数は、上記等価回路のアドミッタンスYが0となる周波数であることから、式15を解くことにより、式16のように2つの***振周波数(fa1、fa2)を有することが解る。
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000019
 上記式16により得られる***振周波数fa1、fa2は、式4により得られる共振子単体の***振周波数(図9Cのグラフではfa_res1、fa_res2として表示)と異なることが解る。また、式15から導出される***振周波数fa1は、共振子res1単体の***振周波数fa_res1よりも低く、***振周波数fa2は、共振子res2単体の***振周波数fa_res2よりも低くなる。
 [1-5-4. 共振解析に基づく実施例の説明]
 上述した共振解析に基づき、本実施の形態に係る高周波フィルタにおいて、第1スイッチのオン及びオフの切り替えに応じて直列腕回路の共振特性がシフトすることが説明される。
 すなわち、例えば、実施例1-1において、スイッチSWb(第1スイッチ)がオンの場合には、直列腕共振子s1aと直列腕共振子s1bとが並列接続される。このため、直列腕回路11は、2つの共振周波数(第1共振周波数及び第2共振周波数)と2つの***振周波数(第1***振周波数及び第2***振周波数)と、を持つ。すなわち、直列腕回路11の第1共振周波数及び第2共振周波数は、それぞれ、直列腕共振子s1aの共振周波数と直列腕共振子s1bの共振周波数と同じとなる。また、直列腕回路11の第1***振周波数は、直列腕共振子s1aの***振周波数よりも低くなり、直列腕回路11の第2***振周波数は、直列腕共振子s1aの***振周波数よりも低くなる。
 一方、スイッチSWb(第1スイッチ)がオフの場合には、直列腕共振子s1aに対して直列腕共振子s1bの静電容量とスイッチSWbのオフ容量との合成容量が並列に接続される。上述したようにスイッチSWbのオフ容量は、直列腕共振子s1bの静電容量に比べて十分に小さいため、直列腕共振子s1bの静電容量とスイッチSWbのオフ容量(Coff)との合成容量は、直列腕共振子s1bの静電容量の容量値に比べて十分小さい値となる。このため、この場合、直列腕回路11の共振周波数である第3共振周波数は直列腕共振子s1aの共振周波数と同じとなり、直列腕回路11の共振周波数である第3***振周波数は直列腕共振子s1aの***振周波数より若干低周波数側にシフトする。
 つまり、スイッチSWbのオフからオンへの切り替えにより、共振周波数及び***振周波数が低周波数側にシフトするとともに、新たな共振周波数及び***振周波数が追加される。
 また、例えば、実施例1-2-1及び実施例1-2-2では、直列腕共振子s1aにインピーダンス素子(実施例1-2-1ではキャパシタ、実施例1-2-2ではインダクタ)が直列接続される。このため、直列腕共振子s1aとインピーダンス素子とで構成される第1直列接続回路の共振周波数は、直列腕共振子s1aの共振周波数に比べ、高周波数側もしくは低周波数側にシフトする。また、第1直列接続回路の***振周波数は、直列腕共振子s1aの共振周波数と等しくなる。
 また、例えば、実施例1-3におけるスイッチSWb、SWcいずれもオンの場合の直列腕回路11の共振特性についても、互いに並列接続された3つの共振子の等価回路モデルを用いて説明される。このため、この場合、直列腕回路11は、当該等価回路モデル(等価回路)のインピーダンスが0となる3つの周波数が共振周波数となり、アドミッタンスが0となる3つの周波数が***振周波数となる。なお、この場合の各共振周波数及び各***振周波数の具体例については、説明を省略する。
 (実施の形態2)
 上記実施の形態では、並列腕回路の共振周波数あるいは***振周波数は固定であったが、直列腕回路と同様に、並列腕回路の共振周波数あるいは***振周波数を可変できてもかまわない。そこで、本実施の形態では、このような高周波フィルタについて、実施例(実施例2-1、及び、実施例2-2)を用いて説明する。
 [2-1. 構成]
 図10Aは、実施例2-1に係る高周波フィルタ20の回路構成図である。
 同図に示すように、本実施例における並列腕回路22は、実施の形態1の実施例における並列腕回路12に比べて、さらに、並列腕共振子p1(第1並列腕共振子)と直列接続された周波数可変回路11d(第2周波数可変回路)を有する。
 周波数可変回路11dは、キャパシタC22(第2インピーダンス素子)と、キャパシタC22と並列接続されたスイッチSWp(第2スイッチ)と、を有する第2周波数可変回路である。つまり、周波数可変回路11dは、キャパシタC22とスイッチSWpとの並列接続回路であって、並列腕共振子p1と直列接続されている。この周波数可変回路11dは、RFIC等の制御部(図示せず)からの制御信号にしたがってスイッチSWpのオン及びオフが切り替わることにより、並列腕回路22の共振周波数を可変する。
 本実施例では、並列腕共振子p1及び周波数可変回路11dは、ノードx1側からこの順に接続されているが、この逆の順序で接続されていてもかまわない。ただし、スイッチSWpが並列腕共振子p1よりノードx1側に配置されると、スイッチSWpオン時においてスイッチSWpの抵抗成分(オン抵抗)により高周波フィルタ20のロスが悪化する。このため、周波数可変回路11dが並列腕共振子p1よりグランド側に配置されていることが好ましい。
 本実施例では、周波数可変回路11b及び周波数可変回路11dにおいて、スイッチSWb(第1スイッチ)がオン(導通状態)の場合、スイッチSWp(第2スイッチ)がオフ(非導通状態)であり、スイッチSWbがオフの場合、スイッチSWpがオンである。つまり、スイッチSWb、SWpは、一方がオンからオフに切り替わると、同時に、他方がオフからオンに切り替わる。これにより、スイッチSWb、SWpのオン及びオフを制御する制御回路を共通化できるため、高周波フィルタ20の小型化が可能となる。
 ここで、スイッチSWpは、SPST型のスイッチ素子であり、例えば、スイッチSWbと同様に構成されている。
 [2-2. 特性]
 次に、本実施例の高周波フィルタ20のフィルタ特性(通過特性)について、当該フィルタ特性を規定するインピーダンス特性(共振特性)についても述べつつ説明する。
 なお、本実施例の高周波フィルタ20を構成する回路素子のうち実施例1-1と同じ回路素子については、同一の定数を有する。また、キャパシタC22の容量値は12pFであり、スイッチSWpのオフ容量は0.2pFである。
 図10Bは、高周波フィルタ20に関する各種特性を示すグラフである。具体的には、同図上段には、スイッチSWbがオンかつスイッチSWpがオフの場合、ならびに、スイッチSWbがオフかつスイッチSWpがオンの場合の2状態のフィルタ特性が示されている。また、同図中段には、直列腕回路11と、並列腕回路22と、のインピーダンス特性が示されている。また、同図下段には、直列腕共振子s1aと、直列腕共振子s1bと、並列腕共振子p1と、のインピーダンス特性が示されている。なお、直列腕回路11においては、スイッチSWbがオンの場合、ならびに、スイッチSWbがオフの場合の2状態のインピーダンス特性が示されている。また、並列腕回路22においては、スイッチSWpがオンの場合、ならびに、スイッチSWpがオフの場合の2状態のインピーダンス特性が示されている。
 まず、図10Aに示された回路構成において、スイッチSWbがオフかつスイッチSWpがオンの場合(低周波数シフト)の特性について説明する。
 この場合、直列腕回路11の特性は、実施例1-1においてスイッチSWbがオフの場合の特性と同様であるため、詳細な説明については省略する。
 また、この場合、並列腕回路22は、キャパシタC22がスイッチSWpによって短絡されることにより、並列腕共振子p1と同じ特性を示す。
 次に、図10Aに示された回路構成において、スイッチSWbがオンかつスイッチSWpがオフの場合(高周波数シフト)の特性について説明する。
 この場合、直列腕回路11の特性は、実施例1-1においてスイッチSWbがオンの場合の特性と同様であるため、詳細な説明については省略する。
 また、この場合、並列腕回路22は、スイッチSWbがオフとなることにより、並列腕共振子p1とキャパシタC22とが直列接続された回路となるため、並列腕共振子p1及びキャパシタC22の合成特性を示す。
 なお、この場合、実際には、スイッチSWpのオフ容量により、並列腕回路22は上記合成特性とは僅かに異なる特性を示す。しかし、スイッチSWpのオフ容量はキャパシタC22の容量(本実施例では12pF)に比べて微小(本実施例では0.2pF)であるため、並列腕回路22の特性にはほとんど影響しない。よって、簡明のため、ここではスイッチSWpをオフ容量のない理想的なスイッチとして扱って説明する。
 したがって、図10B中段及び下段のグラフに示すように、並列腕回路22は、並列腕共振子p1の共振周波数より高周波数側に位置する共振周波数と、並列腕共振子p1の***振周波数と等しい***振周波数と、を有する。
 これにより、本実施例では、スイッチSWbがオフかつスイッチSWpがオンの場合、図10B上段の破線(SWb Off,SWp On)で示されるフィルタ特性が構成される。一方、スイッチSWbがオンかつスイッチSWpがオフの場合、図10B上段の実線(SWb On,SWp Off)で示されるフィルタ特性が構成される。
 [2-3. 効果]
 以下、本実施例によって奏される効果について、実施例1-1と比較して説明する。
 図11Aは、実施例2-1及び実施例1-1に係る高周波フィルタの低周波数シフト時の特性を比較したグラフである。図11Bは、実施例2-1及び実施例1-1に係る高周波フィルタの高周波数シフト時の特性を比較したグラフである。具体的には、これらの図において、上段にはフィルタ特性が示され、中段には直列腕回路のインピーダンス特性が示され、下段には並列腕回路のインピーダンス特性が示されている。
 図11Aから明らかなように、実施例2-1によれば、低周波数シフト時において、実施例1-1と同等の特性を得ることができる。
 また、図11Bの上段から明らかなように、実施例2-1によれば、高周波数シフト時において、実施例1-1に比べて、通過帯域低域側の減衰量を改善することができる。具体的には、実施例2-1では、スイッチSWpがオンからオフに切り替わることにより、並列腕共振子p1にキャパシタC22が直列接続される。よって、並列腕回路22の共振周波数が高周波数側へとシフトするため、当該共振周波数によって構成される通過帯域低域側の減衰極が高周波数側へとシフトするとともに、通過帯域低域端の周波数が高周波数へとシフトする。したがって、スイッチSWbがオンの場合にスイッチSWpがオフとなることにより、通過帯域低域端の周波数及び通過帯域低域側の減衰極が高周波数側へシフトしているとき(高周波数シフト時)の通過帯域低域側の減衰量を改善する(大きくする)ことができる。
 例えば、3GPPで規定されるバンドの多くは、Tx帯域(送信帯域)が低周波数側、Rx帯域(受信帯域)が高周波数側になり、各バンドの中心周波数及び帯域幅が異なる。そのため、これに使用する周波数可変型の高周波フィルタは、Tx帯域及びRx帯域のいずれか一方を通過帯域、他方を減衰帯域とし、通過帯域と減衰帯域を同時に低周波数側もしくは高周波数側にシフトする必要がある。
 本実施例に係る高周波フィルタ20は、通過帯域を高周波数側にシフトした際の通過帯域低域側の減衰量を改善することができるため、例えば3GPPで規定されるバンドの受信フィルタとして好適である。
 なお、スイッチSWb及びスイッチSWpは、個別にオン及びオフが切り替えられてもかまわない。
 図12は、実施例2-1に係る高周波フィルタ20のスイッチSWb、SWpのオン及びオフを個別に切り替えた場合のフィルタ特性の変化を示すグラフである。
 同図に示すように、高周波フィルタ20は、スイッチSWbのオン及びオフの切り替えによって、通過帯域高域端のロスを抑制しつつ、通過帯域低域側を可変できる。また、高周波フィルタ20は、スイッチSWpのオン及びオフの切り替えによって、通過帯域低域側の減衰極を可変できる。
 したがって、高周波フィルタ20は、スイッチSWb、SWpのオン及びオフを適宜切り替えることにより、要求される周波数仕様に合わせたフィルタ特性を構成することができる。
 [2-4. 他の実施例]
 また、並列腕共振子p1と直列接続されるインピーダンス素子はキャパシタに限らず、インダクタであってもかまわない。
 図13Aは、実施例2-2に係る高周波フィルタ20Aの回路構成図である。
 同図に示すように、本実施例における並列腕回路22Aは、上記実施例2-1におけるキャパシタC22に代わりインダクタL22を有する。つまり、本実施例における並列腕回路22Aは、並列腕共振子p1(第1並列腕共振子)と直列接続された周波数可変回路11e(第2周波数可変回路)を有する。この周波数可変回路11eは、インダクタL22(第2インピーダンス素子)と、インダクタL22と並列接続されたスイッチSWp(第2スイッチ)と、を有する第2周波数可変回路である。
 本実施例では、周波数可変回路11b及び周波数可変回路11eにおいて、スイッチSWb(第1スイッチ)がオン(導通状態)の場合、スイッチSWp(第2スイッチがオンであり、スイッチSWbがオフ(非導通状態)の場合、スイッチSWpがオフである。つまり、スイッチSWb、SWpは、同時にオンまたは同時にオフとなる。
 次に、本実施例の高周波フィルタ20Aのフィルタ特性(通過特性)について、当該フィルタ特性を規定するインピーダンス特性(共振特性)についても述べつつ説明する。
 なお、本実施例の高周波フィルタ20Aを構成する回路素子のうち実施例2-1と同じ回路素子については、同一の定数を有する。また、インダクタL22のインダクタンス値は3nHである。
 図13Bは、高周波フィルタ20Aに関する各種特性を示すグラフである。具体的には、同図上段には、スイッチSWbがオンかつスイッチSWpがオンの場合、ならびに、スイッチSWbがオフかつスイッチSWpがオフの場合の2状態のフィルタ特性が示されている。また、同図中段には、直列腕回路11と、並列腕回路22Aと、のインピーダンス特性が示されている。また、同図下段には、直列腕共振子s1aと、直列腕共振子s1bと、並列腕共振子p1と、のインピーダンス特性が示されている。なお、直列腕回路11においては、スイッチSWbがオンの場合、ならびに、スイッチSWbがオフの場合の2状態のインピーダンス特性が示されている。また、並列腕回路22Aにおいては、スイッチSWpがオンの場合、ならびに、スイッチSWpがオフの場合の2状態のインピーダンス特性が示されている。
 まず、図13Aに示された回路構成において、スイッチSWbがオフかつスイッチSWpがオフの場合(低周波数シフト)の特性について説明する。
 この場合、直列腕回路11の特性は、実施例1-1においてスイッチSWbがオフの場合の特性と同様であるため、詳細な説明については省略する。
 また、この場合、並列腕回路22Aは、スイッチSWbがオフとなることにより、並列腕共振子p1とインダクタL22とが直列接続された回路となるため、並列腕共振子p1及びインダクタL22の合成特性を示す。
 なお、この場合、実際には、スイッチSWpのオフ容量により、並列腕回路22Aのインピーダンス特性にリップルが発生する。しかし、このリップルはスイッチSWpのオフ容量が微小(例えば、0.4pF以下)であれば、通過帯域内の特性にはほとんど影響せず、本実施例ではスイッチSWpのオフ容量が0.2pFであるため、通過帯域内の特性への影響を無視することができる。よって、簡明のため、以下ではスイッチSWpをオフ容量のない理想的なスイッチとして扱って説明する。
 したがって、図13A中段及び下段のグラフに示すように、並列腕回路22Aは、並列腕共振子p1の共振周波数より低周波数側に位置する共振周波数と、並列腕共振子p1の***振周波数と等しい***振周波数と、を有する。
 次に、図13Aに示された回路構成において、スイッチSWbがオンかつスイッチSWpがオンの場合(高周波数シフト)の特性について説明する。
 この場合、直列腕回路11の特性は、実施例1-1においてスイッチSWbがオンの場合の特性と同様であるため、詳細な説明については省略する。
 また、この場合、並列腕回路22Aは、インダクタL22がスイッチSWpによって短絡されることにより、並列腕共振子p1と同じ特性を示す。
 これにより、本実施例では、スイッチSWbがオフかつスイッチSWpがオフの場合、図13B上段の破線(SWb Off,SWn Off)で示されるフィルタ特性が構成される。一方、スイッチSWbがオンかつスイッチSWがオンの場合、図13B上段の実線(SWb  On,SWp On)で示されるフィルタ特性が構成される。
 以下、本実施例によって奏される効果について、実施例1-1と比較して説明する。
 図14Aは、実施例2-2及び実施例1-1に係る高周波フィルタの低周波数シフト時の特性を比較したグラフである。図14Bは、実施例2-2及び実施例1-1に係る高周波フィルタの高周波数シフト時の特性を比較したグラフである。具体的には、これらの図において、上段にはフィルタ特性が示され、中段には直列腕回路のインピーダンス特性が示され、下段には並列腕回路のインピーダンス特性が示されている。
 図14Aの上段から明らかなように、実施例2-2によれば、低周波数シフト時において、実施例1-1に比べて、通過帯域低域側の減衰極を低周波数側にシフトすることができる。具体的には、実施例2-1では、スイッチSWpがオンからオフに切り替わることにより、並列腕共振子p1にインダクタL22が直列接続される。よって、並列腕回路22Aの共振周波数が低周波数側へとシフトするため、当該共振周波数によって構成される通過帯域低域側の減衰極が低周波数側へとシフトするとともに、通過帯域低域端の周波数が高周波数へとシフトする。したがって、スイッチSWbがオンの場合にスイッチSWpがオフとなることにより、通過帯域低域端の周波数及び通過帯域低域側の減衰極が低周波数側へシフトしているとき(低周波数シフト時)の通過帯域低域側の減衰量を改善することができる。
 また、図14Bから明らかなように、実施例2-2によれば、高周波数シフト時において、実施例1-1と同等の特性を得ることができる。
 したがって、実施例2-2によれば、通過帯域高域端のロスを抑制しつつ、通過帯域低域側の周波数及び通過帯域低域側の減衰極の周波数の可変幅を大きくすることができる。
 なお、スイッチSWb及びスイッチSWpは、個別にオン及びオフが切り替えられてもかまわない。
 図15は、実施例2-2に係る高周波フィルタ20AのスイッチSWb、SWpのオン及びオフを個別に切り替えた場合のフィルタ特性の変化を示すグラフである。
 同図に示すように、高周波フィルタ20Aは、スイッチSWbのオン及びオフの切り替えによって、通過帯域高域端のロスを抑制しつつ、通過帯域低域端の周波数及び通過帯域低域側の減衰極の周波数を可変できる。また、高周波フィルタ20Aは、スイッチSWpのオン及びオフの切り替えによって、通過帯域低域端の周波数及び通過帯域低域側の減衰極の周波数の減衰極を可変できる。
 したがって、高周波フィルタ20Aは、スイッチSWb、SWpのオン及びオフを適宜切り替えることにより、要求される周波数仕様に合わせたフィルタ特性を構成することができる。
 (実施の形態3)
 上記実施の形態1及び2では、並列腕回路は1つの並列腕共振子を有したが、直列腕回路と同様に、複数の並列腕共振子を有してもかまわない。そこで、本実施の形態では、このような高周波フィルタについて、実施例(実施例3)を用いて説明する。
 [3-1. 構成]
 図16Aは、実施例3に係る高周波フィルタ30の回路構成図である。
 同図に示すように、本実施例における並列腕回路32は、実施の形態2の実施例2-1における並列腕回路22に比べて、並列腕共振子p1a(第1並列腕共振子)と周波数可変回路11d(第2周波数可変回路)とで構成される直列接続回路321(第2直列接続回路)と並列接続された並列腕共振子p1b(第2並列腕共振子)を有する。なお、並列腕共振子p1aは、実施例2-1の並列腕共振子p1に相当する。
 並列腕共振子p1bは、ノードx1とグランドとを結ぶ並列腕上に設けられた共振子(第2並列腕共振子)であり、一方の端子がノードx1に接続され、他方の端子がグランドに接続されている。この並列腕共振子p1bの共振周波数は、並列腕共振子p1aの共振周波数より高い。
 本実施例では、実施例2-1と同様に、周波数可変回路11b及び周波数可変回路11dにおいて、スイッチSWb(第1スイッチ)がオン(導通状態)の場合、スイッチSWp(第2スイッチがオフ(非導通状態)であり、スイッチSWbがオフの場合、スイッチSWpがオンである。つまり、スイッチSWb、SWpは、一方がオンからオフに切り替わると、同時に、他方がオフからオンに切り替わる。
 [3-2. 特性]
 次に、本実施例の高周波フィルタ30のフィルタ特性(通過特性)について、当該フィルタ特性を規定するインピーダンス特性(共振特性)についても述べつつ説明する。
 実施例3の高周波フィルタ30の回路定数を、表4に示す。また、キャパシタC22の容量値は3pFであり、スイッチSWb、SWpのオフ容量(Coff)は、いずれも0.2pFである。
Figure JPOXMLDOC01-appb-T000020
 図16Bは、高周波フィルタ30に関する各種特性を示すグラフである。具体的には、同図上段には、スイッチSWbがオンかつスイッチSWpがオフの場合、ならびに、スイッチSWbがオフかつスイッチSWpがオンの場合の2状態のフィルタ特性が示されている。また、同図中段には、直列腕回路11と、並列腕回路32と、のインピーダンス特性が示されている。また、同図下段には、直列腕共振子s1aと、直列腕共振子s1bと、並列腕共振子p1aと、並列腕共振子p1bと、のインピーダンス特性が示されている。なお、直列腕回路11においては、スイッチSWbがオンの場合、ならびに、スイッチSWbがオフの場合の2状態のインピーダンス特性が示されている。また、並列腕回路32においては、スイッチSWpがオンの場合、ならびに、スイッチSWpがオフの場合の2状態のインピーダンス特性が示されている。
 まず、図16Aに示された回路構成において、スイッチSWbがオフかつスイッチSWpがオンの場合(低周波数シフト)の特性について説明する。
 この場合、直列腕回路11の特性は、実施例1-1においてスイッチSWbがオフの場合の特性と同様であるため、詳細な説明については省略する。
 また、この場合、並列腕回路32は、キャパシタC22がスイッチSWpによって短絡されることにより、並列腕共振子p1aと並列腕共振子p1bとが並列に接続された状態となる。このため、並列腕回路32は、並列腕共振子p1aと並列腕共振子p1bとの合成特性を示す。よって、図16B中段のグラフに示すように、並列腕回路32は、2つの共振周波数と2つの***振周波数を有する。具体的には、並列腕回路32は、並列腕共振子p1aの共振周波数と等しい第1共振周波数、及び、並列腕共振子p1bの共振周波数と等しい第2共振周波数、ならびに、第1共振周波数と第2共振周波数との間に位置する第1***振周波数、及び、第2共振周波数と並列腕共振子p1bの***振周波数との間に位置する第2***振周波数を有する。
 次に、図16Aに示された回路構成において、スイッチSWbがオンかつスイッチSWpがオフの場合(高周波数シフト)の特性について説明する。
 この場合、直列腕回路11の特性は、実施例1-1においてスイッチSWbがオンの場合の特性と同様であるため、詳細な説明については省略する。
 また、この場合、並列腕回路32は、並列腕共振子p1aとキャパシタC22の直列接続回路321と並列腕共振子p1bとが並列に接続された状態となる。このため、並列腕回路32は、並列腕共振子p1a及びキャパシタC22と並列腕共振子p1bとの合成特性を示す。よって、図16B中段のグラフに示すように、並列腕回路32は、2つの共振周波数と2つの***振周波数を有する。
 具体的には、並列腕回路32は、並列腕共振子p1aの共振周波数より高周波数側に位置する第3共振周波数、及び、並列腕共振子p1bの共振周波数と等しい第4共振周波数、ならびに、第1共振周波数と第2共振周波数との間に位置する第3***振周波数、及び、第2共振周波数と並列腕共振子p1bの***振周波数との間に位置する第4***振周波数を有する。つまり、並列腕回路32は、第1共振周波数よりも周波数が高い第3共振周波数、及び、第2共振周波数と等しい第4共振周波数、ならびに、第1***振周波数よりも周波数が高い第3***振周波数、及び、第2***振周波数と概ね等しい第4***振周波数を有する。
 したがって、図16B中段のグラフに示すように、並列腕回路32は、スイッチSWpがオンからオフに切り替わると、低周波数側の共振周波数が第1共振周波数から第3共振周波数へと高周波数側にシフトし、低周波数側の***振周波数が第1***振周波数から第3***振周波数へと高周波数側にシフトする。
 これにより、本実施例では、スイッチSWbがオフかつスイッチSWpがオンの場合、図16B上段の破線(SWb Off,SWp On)で示されるフィルタ特性が構成される。一方、スイッチSWbがオンかつスイッチSWpがオフの場合、図16B上段の実線(SWb On,SWp Off)で示されるフィルタ特性が構成される。
 [3-3. 効果]
 以下、本実施例によって奏される効果について、実施例1-1と比較して説明する。
 図17Aは、実施例3及び実施例1-1に係る高周波フィルタの低周波数シフト時の特性を比較したグラフである。図17Bは、実施例3及び実施例1-1に係る高周波フィルタの高周波数シフト時の特性を比較したグラフである。具体的には、これらの図において、上段にはフィルタ特性が示され、中段には直列腕回路のインピーダンス特性が示され、下段には並列腕回路のインピーダンス特性が示されている。
 図17A及び図17Bの上段から明らかなように、実施例3によれば、実施例1-1に比べて、低周波数シフト時及び高周波数シフト時のいずれにおいても、通過帯域高域側の減衰量を改善することができる。具体的には、実施例3の並列腕回路32は、実施例1-1の並列腕回路12に比べて、並列腕共振子p1b(第2並列腕共振子)を有することにより、並列腕共振子p1bの共振周波数と等しい第2共振周波数を有する。これにより、並列腕共振子p1bの共振周波数によって通過帯域高域側に新たな減衰極が構成されるため、通過帯域高域側の減衰量を改善することができる。
 また、図17Bの上段から明らかなように、実施例3によれば、実施例1-1に比べて、高周波数シフト時において、通過帯域低域側の減衰量を改善することができる。具体的には、実施例3-1では、スイッチSWpがオンからオフに切り替わることにより、並列腕共振子p1aに直列接続されたキャパシタC22が有効となる。よって、並列腕回路32の第1共振周波数が高周波数側へとシフトするため、当該共振周波数によって構成される通過帯域低域側の減衰極が高周波数側へとシフトする。したがって、スイッチSWbがオンの場合にスイッチSWpがオフとなることにより、通過帯域低域側が高周波数側へシフトしているとき(高周波数シフト時)の通過帯域低域側の減衰量を改善することができる。
 図18Aは、図17Aの上段に示すグラフの通過帯域及びその近傍を拡大して示す図であり、図18Bは、図17Bの上段に示すグラフの通過帯域及びその近傍を拡大して示す図である。
 図18A及び図18Bから明らかなように、実施例3によれば、実施例1-1に比べて、低周波数シフト時及び高周波数シフト時のいずれにおいても、通過帯域低域端のロスを良化(抑制)することができる。具体的には、実施例3の並列腕回路32は、並列腕共振子p1bを有することにより、2つの共振周波数と2つの***振周波数とを有し、実施例1-1の並列腕回路12の共振周波数と***振周波数の周波数差に比べて、低周波数側の共振周波数と低周波数側の***振周波数の周波数差を小さくすることができる。したがって、実施例3によれば、実施例1-1に比べ、通過帯域低域側のカットオフ周波数を低周波数側にシフトさせることができるため、通過帯域低域端のロスを良化することができる。
 なお、スイッチSWb及びスイッチSWpは、個別にオン及びオフが切り替えられてもかまわない。
 図19は、実施例3に係る高周波フィルタ30のスイッチSWb、SWpのオン及びオフを個別に切り替えた場合のフィルタ特性の変化を示すグラフである。
 同図に示すように、高周波フィルタ30は、スイッチSWbのオン及びオフの切り替えによって、通過帯域高域端のロスを抑制しつつ、通過帯域低域側を可変できる。また、高周波フィルタ30は、スイッチSWpのオン及びオフの切り替えによって、通過帯域低域側の減衰極を可変できる。
 したがって、高周波フィルタ30は、スイッチSWb、SWpのオン及びオフを適宜切り替えることにより、要求される周波数仕様に合わせたフィルタ特性を構成することができる。
 (実施の形態4)
 以上説明した高周波フィルタの構成は、複数の直列腕共振子を有する構成に適用されてもかまわない。そこで、本実施の形態では、このような高周波フィルタについて、実施例(実施例4)を用いて説明する。
 [4-1. 構成]
 図20Aは、実施例4に係る高周波フィルタ40の回路構成図である。
 同図に示す高周波フィルタ40は、入出力端子11m(第1入出力端子)と入出力端子11n(第2入出力端子)とを結ぶ経路上に設けられた複数の直列腕回路(本実施例では4つの直列腕回路210s、220s、230s、240s)、及び、1以上の並列腕回路(本実施例では3つの並列腕回路210p、220p、230p)によって構成されたラダー型のフィルタ回路である。具体的には、高周波フィルタ40は、6つの直列腕共振子s1a、s1b、s2、s3、s4a、s4bを有し、さらに、4つの並列腕共振子p1a、p1b、p2a、p2b、p3と、4つのスイッチSW1b、SW4b、SW1p、SW2pと、2つのキャパシタC41、C42と、を有する、複数のバンドを通過帯域とする周波数可変型のバンドパスフィルタである。なお、直列腕回路及び並列腕回路の数は、上記の数に限定されない。
 ここで、直列腕回路210s、220s、230s、240sのうち、入出力端子11mの最も近くに設けられた直列腕回路210s、及び、入出力端子11nの最も近くに設けられた直列腕回路240sは、上記実施の形態1~3のいずれか(ここでは実施の形態1)に係る高周波フィルタの直列腕回路11に相当する。よって、直列腕共振子s1a、s4aは直列腕回路11の直列腕共振子s1aに相当し、直列腕共振子s1b、s4bは直列腕回路11の直列腕共振子s1bに相当し、スイッチSW1b、SW4bは直列腕回路11のスイッチSW1bに相当する。また、並列腕回路210p、220pは、上記実施例3に係る高周波フィルタ30の並列腕回路32に相当し、並列腕回路230pは、上記実施の形態1(実施例1-1、変形例、実施例1-2-1、1-2-2、1-3)に係る高周波フィルタの並列腕回路12に相当する。このため、並列腕共振子p1a、p2aは並列腕回路32の並列腕共振子p1aに相当し、並列腕共振子p3は並列腕回路12の並列腕共振子p1に相当し、キャパシタC41、C42は並列腕回路32のキャパシタC22に相当し、並列腕共振子p1b、p2bは並列腕回路32の並列腕共振子p1bに相当し、スイッチSW1p、SW2pは並列腕回路32のスイッチSWpに相当する。つまり、高周波フィルタ40は、入出力端子11mの最も近くに実施例3に係る高周波フィルタ30に相当する構成が設けられ、入出力端子11nの最も近くに実施の形態1に係る高周波フィルタに相当する構成が設けられている。
 なお、高周波フィルタ40の構成はこれに限らない。例えば、複数の直列腕回路は、少なくとも1つが上記実施の形態1~3のいずれかの直列腕回路に相当すればよく、一方の入出力端子の最も近くに設けられた直列腕回路のみが上記実施の形態1~3のいずれかの直列腕回路に相当してもかまわないし、入出力端子の最も近くに設けられた直列腕回路と異なる直列腕回路のみが上記実施の形態1~3のいずれかの直列腕回路に相当してもかまわない。
 また、入出力端子(入出力端子11mまたは入出力端子11n)と当該入出力端子の最も近くに設けられた直列腕回路との経路上のノードとグランドとを接続する並列腕回路が設けられていてもかまわない。
 このように構成された高周波フィルタ40は、上記実施の形態1~3のいずれかの高周波フィルタの構成を含むため、通過帯域低域端のロスと通過帯域高域側の減衰量を改善する周波数可変型の高周波フィルタを実現することができる。
 [4-2. 構造]
 図20Bは、実施例4に係る高周波フィルタ40の構造を説明する平面図である。
 同図に示すように、本実施例では、複数の共振子(直列腕共振子s1a、s1b、s2、s3、s4a、s4b及び並列腕共振子p1a、p1b、p2a、p2b、p3)は1つの共振子用のパッケージ41(チップ)で構成され、他の素子(スイッチSW1b、SW4b、SW1p、SW2pと、キャパシタC41、C42)は共振子用のパッケージ41とは別のパッケージ42a~42cで構成されており、これらパッケージ41、42a~42cは、配線基板43上に搭載されている。つまり、共振子と、スイッチは別のパッケージに形成されている。
 パッケージ41、42a~42cは、当該パッケージ41、42a~42cを配線基板43に実装するための表面電極(図20B中の丸印、「ランド」または「パッド」とも言う)を底面に有する。なお、図20Bでは、簡明のため、各パッケージに構成された回路素子及び配線を模式的に示し、パッケージ41、42a~42cの内部を透過してその底面の表面電極を図示している。
 また、配線基板43は、入出力端子11m及び入出力端子11nのそれぞれを構成する外部接続電極(図20B中の丸印)を有する。この外部接続電極は、例えば、配線基板43をマザー基板等に実装するための表面電極、配線基板43と他の電子部品とを接続するコネクタ、あるいは、配線基板43上に他の電子部品が搭載されている場合には当該他の電子部品とパッケージ42aまたはパッケージ42cとを接続するパターン配線の一部である。
 同図から明らかなように、パッケージ42aにおいては、スイッチSW1bの一方端子は共通端子421に接続され、共通端子421を介して入出力端子11mと接続されている。また、スイッチSW1bの他方端子はパッケージ42aの第1端子422に接続されている。また、共通端子421とパッケージ42aの第2端子423は短絡されている。
 パッケージ42cにおいては、スイッチSW4bの一方端子は共通端子431に接続され、共通端子431を介して入出力端子11nと接続されている。また、スイッチSW4bの他方端子は第1端子432に接続されている。また、共通端子431とパッケージ42cの第2端子433は短絡されている。
 共振子用のパッケージ41においては、各共振子は次のように接続されている。
 まず、各直列腕共振子(直列腕共振子s1a、s1b、s2、s3、s4a、s4b)の接続関係について述べる。直列腕共振子s1aの一方の端子はパッケージ41の第1端子411に接続され、他方の端子は第1ノードN1に接続されている。直列腕共振子s1bの一方の端子はパッケージ41の第2端子412に接続され、他方の端子は第1ノードN1に接続されている。直列腕共振子s2の一方の端子は第1ノードN1に接続され、他方の端子は第2ノードN2に接続されている。また、直列腕共振子s3の一方の端子は第2ノードN2に接続され、他方の端子は第3ノードN3に接続されている。直列腕共振子s4aの一方の端子は第3ノードN3に接続され、他方の端子はパッケージ41の第4端子414に接続されている。直列腕共振子s4bの一方の端子は第3ノードN3に接続され、他方の端子はパッケージ41の第3端子413に接続されている。
 次いで、各並列腕共振子(並列腕共振子p1a、p1b、p2a、p2b、p3)の接続関係について述べる。並列腕共振子p1aの一方の端子は第1ノードN1に接続され、他方の端子はパッケージ41の端子を介して、パッケージ42bの端子に接続され、さらに、パッケージ42bに構成されたスイッチSW1pとキャパシタC41の並列回路を介して、パッケージ42bのグランド端子に接続される。並列腕共振子p1bの一方の端子は第1ノードN1に接続され、他方の端子はパッケージ41のグランド端子に接続されている。並列腕共振子p2aの一方の端子は第2ノードN2に接続され、他方の端子はパッケージ41の端子を介して、パッケージ42bの端子に接続され、さらに、パッケージ42bに構成されたスイッチSW2pとキャパシタC42の並列回路を介して、パッケージ42bのグランド端子に接続される。並列腕共振子p2bの一方の端子は第2ノードN2に接続され、他方の端子はパッケージ41のグランド端子に接続されている。並列腕共振子p3の一方の端子は第3ノードN3に接続され、他方の端子はパッケージ41のグランド端子に接続されている。
 このように、直列腕に設けられたスイッチの一方端子が入出力端子11m、11nの一方に接続されている場合には、スイッチを含むパッケージ42a,42cと、共振子群を含むパッケージ41に分けたときに、スイッチが共振子群よりも入出力端子の一方に近い位置にあるので、共振子用のパッケージ41及びスイッチ用のパッケージ42a,42cの端子数を削減することができ、高周波フィルタ40の小型化が図られる。
 なお、上記構成に限らず、直列腕に設けられたスイッチ(第1スイッチ、ここではスイッチSW1b、SW4b)がいずれの直列腕共振も介することなく入出力端子11m(第1入出力端子)または入出力端子11n(第2入出力端子)に接続されていればよい。このような構成によれば、直列腕共振子が共振子用のチップ(ここではパッケージ41)に設けられ、スイッチが別のチップ(ここではパッケージ42a、42c)に設けられた場合に、共振子用のチップの端子数を削減することができる。具体的には、この場合、共振子用のチップにおいて、入出力端子に接続される端子と上記別のチップに接続される端子とを共通化することができる。このため、これらの端子を個別に設けた構成に比べて、共振子用のチップの端子数を削減することができ、高周波フィルタの小型化が図られる。
 例えば、図20Aに示す回路構成において、キャパシタC41、C42の少なくとも1つは、共振子用のパッケージ41に組み込まれていてもかまわない。
 また、少なくとも1つの並列腕共振子p1a、p1b、p2a、p2b、p3は、共振子用のパッケージ41とは別に設けられていても構わないし、スイッチSW1b、SW4b、SW1p、SW2pと、キャパシタC41、C42とは、上記と異なる組み合わせでパッケージ化されていてもかまわない。
 [4-3. マルチプレクサへの適用例]
 このような高周波フィルタ40は、マルチプレクサに適用することができる。
 図21は、実施例4に係るマルチプレクサ(デュプレクサ)200の回路構成図である。同図に示されたマルチプレクサ200は、送信側フィルタ60と、受信側フィルタ50と、整合用インダクタ70とを備える。送信側フィルタ60は、入力端子200T及び共通端子200cに接続され、受信側フィルタ50は、共通端子200c及び出力端子200Rに接続されている。
 送信側フィルタ60は、送信帯域を通過帯域とするバンドパスフィルタであり、回路構成は特に限定されない。
 受信側フィルタ50は、実施例4に係る高周波フィルタ40に相当し、複数のバンドを通過帯域とする周波数可変型のバンドパスフィルタである。
 上記構成によれば、複数の周波数帯域を適宜選択するシステムに適用されるチューナブルなデュプレクサにおいて、通過帯域高域端のロスと通過帯域低域側の減衰量を改善できる高性能なデュプレクサを実現することができる。また、周波数帯域ごとに対応するフィルタを配置せず、スイッチを有する1つのフィルタ回路により複数の周波数帯域に適用できるので、マルチプレクサを小型化することができる。
 なお、受信側フィルタ50は、実施例4の構成に限らず、実施の形態1~3のいずれかの実施例の構成であってもかまわない。また、各実施例に係る高周波フィルタは、受信側フィルタに限らず、送信側フィルタに適用されてもかまわない。また、これらの高周波フィルタは、デュプレクサに限らず、複数の送信側フィルタまたは複数の受信側フィルタを備えるマルチプレクサに適用されてもかまわない。
 (実施の形態5)
 以上の実施の形態1~4で説明した高周波フィルタ及びマルチプレクサは、使用バンド数が多いシステムに対応する高周波フロントエンド回路に適用することもできる。そこで、本実施の形態では、このような高周波フロントエンド回路及び通信装置について説明する。
 図22は、実施の形態6に係る通信装置300の構成図である。
 同図に示すように、通信装置300は、複数のスイッチにより構成されるスイッチ群310と、複数のフィルタにより構成されるフィルタ群320と、送信側スイッチ331、332ならびに受信側スイッチ351、352及び353と、送信増幅回路341、342ならびに受信増幅回路361、362と、RF信号処理回路(RFIC)と、ベースバンド信号処理回路(BBIC)と、アンテナ素子(ANT)と、を備える。なお、アンテナ素子(ANT)は、通信装置300に内蔵されていなくてもよい。
 スイッチ群310は、制御部(図示せず)からの制御信号にしたがって、アンテナ素子(ANT)と所定のバンドに対応する信号経路とを接続し、例えば、複数のSPST型のスイッチによって構成される。なお、アンテナ素子(ANT)と接続される信号経路は1つに限らず、複数であってもかまわない。つまり、通信装置300は、キャリアアグリゲーションに対応してもかまわない。
 フィルタ群320は、例えば次の帯域を通過帯域に有する複数のフィルタ(デュプレクサを含む)によって構成される。具体的には、当該帯域は、(i)Band12の送信帯域、(ii)Band13の送信帯域、(iii)Band14の送信帯域、(iv)Band27の送信帯域、(v)Band26の送信帯域、(vi)Band29及びBand14(またはBand12、Band67及びBand13)の受信帯域、(vii-Tx)Band68(またはBand28aまたはBand28b)の送信帯域、(vii-Rx)Band68(またはBand28aまたはBand28b)の受信帯域、(viii-TxBand20の送信帯域、(viii-Rx)Band20の受信帯域、(ix-Tx)Band27(またはBand26)の送信帯域、(x-Tx)Band8の送信帯域、ならびに、(x-Rx)Band8の受信帯域、である。
 送信側スイッチ331は、ローバンド側の複数の送信側信号経路に接続された複数の選択端子と送信増幅回路341に接続された共通端子とを有するスイッチ回路である。送信側スイッチ332は、ハイバンド側の複数の送信側信号経路に接続された複数の選択端子と送信増幅回路342に接続された共通端子とを有するスイッチ回路である。これら送信側スイッチ331、332は、フィルタ群320の前段(ここでは送信側信号経路における前段)に設けられ、制御部(図示せず)からの制御信号にしたがって接続状態が切り替えられるスイッチ回路である。これにより、送信増幅回路341、342で増幅された高周波信号(ここでは高周波送信信号)は、フィルタ群320の所定のフィルタを介してアンテナ素子(ANT)に出力される。
 受信側スイッチ351は、ローバンド側の複数の受信側信号経路に接続された複数の選択端子と受信増幅回路361に接続された共通端子とを有するスイッチ回路である。受信側スイッチ352は、所定のバンド(ここではBand20)の受信側信号経路に接続された共通端子と、受信側スイッチ351の共通端子及び受信側スイッチ352の共通端子に接続された2つの選択端子とを有するスイッチ回路である。受信側スイッチ353は、ハイバンド側の複数の受信側信号経路に接続された複数の選択端子と受信増幅回路362に接続された共通端子とを有するスイッチ回路である。これら受信側スイッチ351~353は、フィルタ群320の後段(ここでは受信側信号経路における後段)に設けられ、制御部(図示せず)からの制御信号にしたがって接続状態が切り替えられる。これにより、アンテナ素子(ANT)に入力された高周波信号(ここでは高周波受信信号)は、フィルタ群320の所定のフィルタを介して、受信増幅回路361、362で増幅されて、RF信号処理回路(RFIC)に出力される。なお、ローバンドに対応するRF信号処理回路(RFIC)とハイバンドに対応するRF信号処理回路(RFIC)とが個別に設けられていてもかまわない。
 送信増幅回路341は、ローバンドの高周波送信信号を電力増幅するパワーアンプであり、送信増幅回路342は、ハイバンドの高周波送信信号を電力増幅するパワーアンプである。
 受信増幅回路361は、ローバンドの高周波受信信号を電力増幅するローノイズアンプであり、受信増幅回路362は、ハイバンドの高周波受信信号を電力増幅するローノイズアンプである。
 RF信号処理回路(RFIC)は、アンテナ素子(ANT)で送受信される高周波信号を処理する回路である。具体的には、RF信号処理回路(RFIC)は、アンテナ素子(ANT)から受信側信号経路を介して入力された高周波信号(ここでは高周波受信信号)を、ダウンコンバートなどにより信号処理し、当該信号処理して生成された受信信号をベースバンド信号処理回路(BBIC)へ出力する。また、RF信号処理回路(RFIC)は、ベースバンド信号処理回路(BBIC)から入力された送信信号をアップコンバートなどにより信号処理し、当該信号処理して生成された高周波信号(ここでは高周波送信信号)を送信側信号経路に出力する。
 このように構成された通信装置300は、(vi)Band29及びBand14(またはBand12、Band67及びBand13)の受信帯域を通過帯域に有するフィルタ、(vii-Tx)Band68(またはBand28aまたはBand28b)の送信帯域を通過帯域に有するフィルタ、(vii-Rx)Band68(またはBand28aまたはBand28b)の受信帯域を通過帯域に有するフィルタ、(ix-Tx)Band27(またはBand26)の送信帯域を通過帯域に有するフィルタの少なくとも1つとして、実施の形態1~4のいずれかに係る高周波フィルタを備える。つまり、当該フィルタは、制御信号にしたがって、通過帯域を切り替える。
 なお、通信装置300のうち、スイッチ群310と、フィルタ群320と、送信側スイッチ331、332ならびに受信側スイッチ351、352、353と、送信増幅回路341、342ならびに受信増幅回路361、362と、上記制御部とは、高周波フロントエンド回路を構成する。
 ここで、上記制御部は、図22には図示していないが、RF信号処理回路(RFIC)が有していてもよいし、制御部が制御する各スイッチとともにスイッチICを構成していてもよい。
 以上のように構成された高周波フロントエンド回路及び通信装置300によれば、上記実施の形態1~4のいずれかに係る高周波フィルタを備えることにより、通過帯域高域端のロスと通過帯域低域側の減衰量を改善することができる。つまり、例えば、通過帯域高域端のロスを抑制しつつ、通過帯域及び減衰帯域を切り替えることができる高性能な高周波フロントエンド回路及び通信装置を実現できる。また、バンドごとにフィルタを設ける場合に比べてフィルタの個数を削減できるため、小型化することができる。
 また、本実施の形態に係る高周波フロントエンド回路によれば、フィルタ群320(複数の高周波フィルタ)の前段または後段に設けられた送信側スイッチ331、332ならびに受信側スイッチ351~353(スイッチ回路)を備える。これにより、高周波信号が伝達される信号経路の一部を共通化することができる。よって、例えば、複数の高周波フィルタに対応する送信増幅回路341、242あるいは受信増幅回路361、362(増幅回路)を共通化することができる。したがって、高周波フロントエンド回路の小型化及び低コスト化が可能となる。
 なお、送信側スイッチ331、332ならびに受信側スイッチ351~353は、少なくとも1つが設けられていればよい。また、送信側スイッチ331、332の個数、ならびに、受信側スイッチ351~353の個数は、上記説明した個数に限らず、例えば、1つの送信側スイッチと1つの受信側スイッチとが設けられていてもかまわない。また、送信側スイッチ及び受信側スイッチの選択端子等の個数も、本実施の形態に限らず、それぞれ2つであってもかまわない。
 (その他の実施の形態など)
 以上、本発明の実施の形態に係る高周波フィルタ、高周波フロントエンド回路、及び通信装置について、実施の形態1~5を挙げて説明したが、本発明の高周波フィルタ、高周波フロントエンド回路、及び通信装置は、上記実施の形態に限定されるものではない。上記実施の形態における任意の構成要素を組み合わせて実現される別の実施の形態や、上記実施の形態に対して本発明の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例や、本開示の高周波フィルタ、高周波フロントエンド回路、及び通信装置を内蔵した各種機器も本発明に含まれる。
 なお、上記実施の形態1~4に係る高周波フィルタは、互いに近接する周波数帯域を排他的に切り替えるシステムへの適用に限らず、1つの周波数帯域内に割り当てられた、互いに近接する複数のチャネルを排他的に切り替えるシステムにも適用可能である。
 また、上記実施の形態1~4に係る高周波フィルタにおいて、直列腕共振子及び並列腕共振子は、弾性表面波を用いた弾性波共振子に限らず、例えば、バルク波または弾性境界波を用いた弾性波共振子によって構成されていてもかまわない。また、直列腕共振子及び並列腕共振子のそれぞれは、1つの弾性波共振子に限らず、1つの弾性波共振子が直列分割等された複数の分割共振子が含まれる。
 また、上記実施の形態1~4に係る高周波フィルタにおいて、直列腕回路は、第1直列腕共振子よりも共振周波数が低い第2直列腕共振子を少なくとも1つ有したが、第1直列腕共振子と共振周波数が異なる第2直列腕共振子を有していればよい。このため、直列腕回路が1つの第1直列腕共振子と1つの第1周波数可変回路で構成され、当該1つの第1周波数可変回路は、第1直列腕共振子より共振周波数が高い第2直列腕共振子と、第2スイッチとで構成されていてもかまわない。このように構成された高周波フィルタによれば、通過帯域低域端のロスを抑制しつつ、通過帯域高域側を可変(周波数シフト)することができる。
 具体的には、第1直列腕共振子の共振周波数(fr_s1a)が第2直列腕共振子の共振周波数(fr_s1b)より高い(fr_s1b>fr_s1a)場合、第1直列腕共振子の共振周波数(fr_s1a)と第2直列腕共振子の共振周波数(fr_s1b)との間に位置する第1***振周波数(fa1_s1_on)、及び、第1***振周波数より高周波数側に位置する第2***振周波(fa2_s1_on)のいずれも通過帯域高域側の減衰極を構成する。すなわち、第1スイッチのオフ(非導通状態)からオン(導通状態)への切り替えにより、通過帯域高域側に新たな減衰極が構成される。
 よって、並列腕回路の共振周波数によって構成される通過帯域低域側の減衰極を考慮すると、第1スイッチのオン及びオフの切り替えと、通過帯域との関係について、次のことが言える。具体的には、第1スイッチをオンからオフに切り替えると、通過帯域高域側に新たな減衰極が構成されるため、通過帯域高域側の減衰帯域が広帯域化される。このとき、通過帯域低域側には新たな減衰極が構成されないため、通過帯域の低域端におけるロスの悪化が抑制されるとともに、通過帯域高域側の減衰量の悪化を抑制できる。つまり、通過帯域低域端のロスと通過帯域高域側の減衰量を改善する周波数可変型の高周波フィルタを実現することができる。
 また、上記実施の形態1~4に係る高周波フィルタにおいて、並列腕回路は、弾性波共振子でなく、LC共振回路で構成されていてもかまわない。また、この並列腕回路は、共振回路に限らず、インダクタンス素子やキャパシタンス素子であってもかまわない。
 また、上記実施の形態1~3で説明した直列腕回路の構成は、当該直列腕回路を含む複数の直列腕回路と1以上の並列腕回路とを備えるラダー型のフィルタ回路に適用することができる。このようなフィルタ回路において、上記実施の形態1~3で説明した直列腕回路と異なる直列腕回路の構成は、特に限定されず、例えば、縦結合共振子またはLC共振回路等の共振回路であってもかまわないし、インダクタンス素子やキャパシタンス素子であってもかまわない。このため、当該直列腕回路の構成は、要求仕様に応じて適宜選択されればよく、例えば、減衰強化等が要求される場合には縦結合共振子が選択され得る。
 また、上記実施の形態4では、上記実施の形態1~3で説明した直列腕回路を含む複数の直列腕回路と1以上の並列腕回路とを備えるラダー型のフィルタ回路の構成として、上記実施の形態1~3で説明した直列腕回路が入出力端子11mまたは入出力端子11nに最も近く設けられた構成について説明した。しかし、当該ラダー型のフィルタ回路の構成はこれに限らず、例えば、上記実施の形態1~3で説明した直列腕回路と異なる直列腕回路が入出力端子11mまたは入出力端子11nに最も近く設けられていてもかまわない。つまり、上記実施の形態1~4で説明した直列腕回路は、複数の直列腕回路の端部以外に設けられていても構わない。
 また、上記実施の形態1~5に係る高周波フィルタ、高周波フロントエンド回路、及び通信装置において、さらに、各入出力端子及び共通端子の間に、インダクタンス素子やキャパシタンス素子が接続されていてもよい。さらに、各回路素子を接続する配線によるインダクタンス成分を有してもよい。
 本発明は、近接する複数のバンドを同時または排他的に使用するマルチバンド及びマルチモードシステムに適用できる小型の高周波フィルタ、高周波フロントエンド回路、及び通信装置として、携帯電話などの通信機器に広く利用できる。
 10、10A、10Ba、10Bb、10C、10X、20、20A、30、40 高周波フィルタ
 11、11A、11Ba、11Bb、11C、11X、210s、220s、230s、240s 直列腕回路
 11aa、11ab、321 直列接続回路
 11b、11b1、11bn、11c、11d 周波数可変回路
 11m 入出力端子
 11n 入出力端子
 12、22、22A、32、210p、220p、230p 並列腕回路
 41、42a、42b、42c パッケージ
 43 配線基板
 50 受信側フィルタ
 60 送信側フィルタ
 70 整合用インダクタ
 101 圧電基板
 111 IDT電極
 111a 電極指
 120 弾性波共振子
 200 マルチプレクサ(デュプレクサ)
 200c 共通端子
 200R 出力端子
 200T 入力端子
 300 通信装置
 310 スイッチ群
 320 フィルタ群
 331、332 送信側スイッチ
 341、342 送信増幅回路
 351~353 受信側スイッチ
 361、362 受信増幅回路
 411,422、432 第1端子
 412、423、433 第2端子
 413 第3端子
 414 第4端子
 421、431 共通端子
 ANT アンテナ素子
 BBIC ベースバンド信号処理回路
 C11、C22、C41、C42 キャパシタ
 L11、L22
 N1 第1ノード
 N2 第2ノード
 N3 第3ノード
 p1、p1a、p1b、p2a、p2b、p3 並列腕共振子
 s1、s1a、s1b、s1b1、s1bn、s2、s3、s4a、s4b 直列腕共振子
 SW1b、SW1p、SW2p、SW4b、SWb、SWb1、SWbn、SWp、SWx スイッチ
 x1 ノード

Claims (14)

  1.  高周波フィルタであって、
     第1入出力端子と第2入出力端子とを結ぶ経路上に設けられた直列腕回路と、
     前記経路上のノードとグランドとに接続された並列腕回路と、を備え、
     前記直列腕回路は、
      前記経路上に設けられた第1直列腕共振子と、
      前記第1直列腕共振子と並列接続された第1周波数可変回路と、
     を有し、
     前記第1周波数可変回路は、
      第2直列腕共振子と、
      前記第2直列腕共振子と直列接続された第1スイッチと、
     を有し、
      前記高周波フィルタの通過帯域を構成する共振周波数、及び、前記高周波フィルタの減衰極を構成する***振周波数の少なくとも1つを可変し、
     前記第2直列腕共振子の共振周波数は、前記第1直列腕共振子の共振周波数と異なる、
     高周波フィルタ。
  2.  前記第2直列腕共振子の共振周波数は、前記第1直列腕共振子の共振周波数より低い、
     請求項1に記載の高周波フィルタ。
  3.  前記直列腕回路は、複数の前記第1周波数可変回路を有し、
     複数の前記第1周波数可変回路が有する複数の前記第2直列腕共振子は、互いに異なる共振周波数を有する、
     請求項1に記載の高周波フィルタ。
  4.  複数の前記第2直列腕共振子のうち少なくとも1つの共振周波数は、前記第1直列腕共振子の共振周波数より低く、
     複数の前記第2直列腕共振子のうち他の少なくとも1つの共振周波数は、前記第1直列腕共振子の共振周波数より高い、
     請求項3に記載の高周波フィルタ。
  5.  複数の前記第2直列腕共振子の共振周波数は、いずれも前記第1直列腕共振子の共振周波数より低い、
     請求項3に記載の高周波フィルタ。
  6.  前記直列腕回路は、さらに、前記第1直列腕共振子と直列接続された第1インピーダンス素子を有し、
     前記第1周波数可変回路は、前記第1直列腕共振子と前記第1インピーダンス素子とで構成される第1直列接続回路と並列接続されている、
     請求項1~5のいずれか1項に記載の高周波フィルタ。
  7.  前記並列腕回路は、
      前記ノードと前記グランドとの間に接続された第1並列腕共振子と、
      前記第1並列腕共振子と直列接続された第2周波数可変回路と、
     を有し、
     前記第2周波数可変回路は、
      第2インピーダンス素子と、
      前記第2インピーダンス素子と並列接続された第2スイッチと、
     を有し、
     前記第1並列腕共振子の共振周波数は、前記第1直列腕共振子の共振周波数よりも低い、
     請求項1~6のいずれか1項に記載の高周波フィルタ。
  8.  前記並列腕回路は、さらに、前記第1並列腕共振子と前記第2周波数可変回路とで構成される第2直列接続回路と並列接続された第2並列腕共振子を有し、
     前記第2並列腕共振子の共振周波数は、前記第1並列腕共振子の共振周波数より高い、
     請求項7に記載の高周波フィルタ。
  9.  前記第2インピーダンス素子はキャパシタであり、
     前記第1スイッチが導通状態の場合、前記第2スイッチが非導通状態であり、
     前記第1スイッチが非導通状態の場合、前記第2スイッチが導通状態である、
     請求項7または8に記載の高周波フィルタ。
  10.  前記第2インピーダンス素子はインダクタであり、
     前記第1スイッチが導通状態の場合、前記第2スイッチが導通状態であり、
     前記第1スイッチが非導通状態の場合、前記第2スイッチが非導通状態である、
     請求項7または8に記載の高周波フィルタ。
  11.  前記第1スイッチは、いずれの直列腕共振子も介することなく前記第1入出力端子または前記第2入出力端子と接続されている、
     請求項1~10のいずれか1項に記載の高周波フィルタ。
  12.  前記第1スイッチは、GaAsもしくはCMOSからなるFETスイッチ、または、ダイオードスイッチである、
     請求項1~11のいずれか1項に記載の高周波フィルタ。
  13.  請求項1~12のいずれか1項に記載の高周波フィルタと、
     前記第1スイッチの導通状態及び非導通状態を制御する制御部と、を備える、
     高周波フロントエンド回路。
  14.  アンテナ素子で送受信される高周波信号を処理するRF信号処理回路と、
     前記アンテナ素子と前記RF信号処理回路との間で前記高周波信号を伝達する請求項13に記載の高周波フロントエンド回路と、を備える、
     通信装置。
PCT/JP2018/003140 2017-02-07 2018-01-31 高周波フィルタ、高周波フロントエンド回路及び通信装置 WO2018147135A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/527,639 US10763825B2 (en) 2017-02-07 2019-07-31 Radio-frequency filter, radio-frequency front-end circuit, and communication device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017020579 2017-02-07
JP2017-020579 2017-02-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/527,639 Continuation US10763825B2 (en) 2017-02-07 2019-07-31 Radio-frequency filter, radio-frequency front-end circuit, and communication device

Publications (1)

Publication Number Publication Date
WO2018147135A1 true WO2018147135A1 (ja) 2018-08-16

Family

ID=63108340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003140 WO2018147135A1 (ja) 2017-02-07 2018-01-31 高周波フィルタ、高周波フロントエンド回路及び通信装置

Country Status (2)

Country Link
US (1) US10763825B2 (ja)
WO (1) WO2018147135A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111183585B (zh) * 2017-10-10 2023-09-15 株式会社村田制作所 多工器
US11397864B2 (en) * 2020-10-05 2022-07-26 Daniel John VOGEL Multi-positional switch using passive wireless tags and systems and methods for using a multi-positional switch that uses passive wireless tags
US11955942B2 (en) * 2021-02-27 2024-04-09 Anlotek Limited Active multi-pole filter
US11817893B2 (en) * 2021-03-29 2023-11-14 Psemi Corporation Hybridized wideband notch filter topologies and methods

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05183380A (ja) * 1991-10-28 1993-07-23 Fujitsu Ltd 弾性表面波フィルタ
JPH11330904A (ja) * 1998-05-13 1999-11-30 Oki Electric Ind Co Ltd 共振器型弾性表面波フィルタ
JP2009207116A (ja) * 2008-01-31 2009-09-10 Fujitsu Ltd 弾性波デバイス、デュープレクサ、通信モジュール、および通信装置
JP2014502803A (ja) * 2010-12-10 2014-02-03 ペレグリン セミコンダクター コーポレイション 共振器回路及び共振器の調整のための方法、システム、及び装置
JP2015159488A (ja) * 2014-02-25 2015-09-03 株式会社村田製作所 チューナブルフィルタ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5441095B2 (ja) 1974-05-20 1979-12-06
JP3844725B2 (ja) * 2002-09-30 2006-11-15 富士通メディアデバイス株式会社 弾性表面波フィルタ、それを有する弾性表面波分波器
JP4725537B2 (ja) 2007-03-07 2011-07-13 株式会社村田製作所 減衰特性可変フィルタ
CN101785184B (zh) 2007-08-23 2013-03-06 太阳诱电株式会社 弹性波滤波器、使用该弹性波滤波器的双工器及使用该双工器的通信机
FR2927742A1 (fr) 2008-02-15 2009-08-21 St Microelectronics Sa Filtre a resonateur acoustiques de type baw reconfigurable par voie numerique et procede
JP2011146768A (ja) 2010-01-12 2011-07-28 Panasonic Corp ラダー型弾性波フィルタと、これを用いたアンテナ共用器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05183380A (ja) * 1991-10-28 1993-07-23 Fujitsu Ltd 弾性表面波フィルタ
JPH11330904A (ja) * 1998-05-13 1999-11-30 Oki Electric Ind Co Ltd 共振器型弾性表面波フィルタ
JP2009207116A (ja) * 2008-01-31 2009-09-10 Fujitsu Ltd 弾性波デバイス、デュープレクサ、通信モジュール、および通信装置
JP2014502803A (ja) * 2010-12-10 2014-02-03 ペレグリン セミコンダクター コーポレイション 共振器回路及び共振器の調整のための方法、システム、及び装置
JP2015159488A (ja) * 2014-02-25 2015-09-03 株式会社村田製作所 チューナブルフィルタ

Also Published As

Publication number Publication date
US10763825B2 (en) 2020-09-01
US20190363698A1 (en) 2019-11-28

Similar Documents

Publication Publication Date Title
WO2018051846A1 (ja) 弾性波フィルタ装置、マルチプレクサ、高周波フロントエンド回路及び通信装置
US10944381B2 (en) Acoustic wave filter device, multiplexer, radio-frequency front end circuit, and communication device
US10715110B2 (en) Acoustic wave filter device, multiplexer, RF front-end circuit, and communication apparatus
CN107689778B (zh) 高频模块以及通信装置
CN107431477B (zh) 高频滤波器、前端电路以及通信设备
WO2018147135A1 (ja) 高周波フィルタ、高周波フロントエンド回路及び通信装置
US10958242B2 (en) Acoustic wave filter device, multiplexer, radio-frequency front end circuit, and communication device
WO2018151218A1 (ja) フィルタ装置、マルチプレクサ、高周波フロントエンド回路、および通信装置
CN110431744B (zh) 多工器、高频前端电路以及通信装置
US11476835B2 (en) High-frequency filter circuit, high-frequency front end circuit, and communication device
US10742193B2 (en) Acoustic wave filter device, RF front-end circuit, and communication apparatus
US10819310B2 (en) Radio-frequency filter circuit, multiplexer, radio-frequency front-end circuit, and communication apparatus
CN109661777B (zh) 弹性波滤波器装置、高频前端电路以及通信装置
US11394368B2 (en) Acoustic wave filter, multiplexer, radio frequency front-end circuit, and communication device
WO2018135538A1 (ja) 高周波フィルタ、高周波フロントエンド回路、および通信装置
WO2018186227A1 (ja) 弾性波フィルタ装置、デュプレクサ、高周波フロントエンド回路、および通信装置
WO2018061783A1 (ja) 弾性波フィルタ装置、高周波フロントエンド回路及び通信装置
WO2018139320A1 (ja) 高周波フィルタ、高周波フロントエンド回路及び通信装置
CN112019186A (zh) 高频电路以及通信装置
WO2018012274A1 (ja) ラダー型周波数可変フィルタ、マルチプレクサ、高周波フロントエンド回路、および、通信端末
US11881844B2 (en) Multiplexer
US11146242B2 (en) Filter device, multiplexer, radio frequency front end circuit, and communication device
CN111510276B (zh) 多工器以及通信装置
US10763824B2 (en) High-frequency filter and multiplexer
CN112204881B (zh) 多工器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18751426

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18751426

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP