WO2018146752A1 - 圧縮機及びターボチャージャ - Google Patents

圧縮機及びターボチャージャ Download PDF

Info

Publication number
WO2018146752A1
WO2018146752A1 PCT/JP2017/004610 JP2017004610W WO2018146752A1 WO 2018146752 A1 WO2018146752 A1 WO 2018146752A1 JP 2017004610 W JP2017004610 W JP 2017004610W WO 2018146752 A1 WO2018146752 A1 WO 2018146752A1
Authority
WO
WIPO (PCT)
Prior art keywords
wing
tip
gap
edge position
size
Prior art date
Application number
PCT/JP2017/004610
Other languages
English (en)
French (fr)
Inventor
健一郎 岩切
Original Assignee
三菱重工エンジン&ターボチャージャ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工エンジン&ターボチャージャ株式会社 filed Critical 三菱重工エンジン&ターボチャージャ株式会社
Priority to PCT/JP2017/004610 priority Critical patent/WO2018146752A1/ja
Priority to JP2018566692A priority patent/JP6770594B2/ja
Priority to US16/465,381 priority patent/US11092163B2/en
Priority to CN201780075347.4A priority patent/CN110036208B/zh
Priority to EP17895529.0A priority patent/EP3530957B1/en
Publication of WO2018146752A1 publication Critical patent/WO2018146752A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/30Vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/16Sealings between pressure and suction sides
    • F04D29/161Sealings between pressure and suction sides especially adapted for elastic fluid pumps
    • F04D29/162Sealings between pressure and suction sides especially adapted for elastic fluid pumps of a centrifugal flow wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/16Sealings between pressure and suction sides
    • F04D29/161Sealings between pressure and suction sides especially adapted for elastic fluid pumps
    • F04D29/164Sealings between pressure and suction sides especially adapted for elastic fluid pumps of an axial flow wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/284Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/321Rotors specially for elastic fluids for axial flow pumps for axial flow compressors
    • F04D29/324Blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/681Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
    • F04D29/685Inducing localised fluid recirculation in the stator-rotor interface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/307Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the tip of a rotor blade

Definitions

  • the present disclosure relates to a compressor and a turbocharger.
  • the boundary layer (low energy fluid) developed on the suction surface of the wing accumulates in the vicinity of the wing tip by the action of the centrifugal force, and is rolled up by the clearance flow to create a vortex (hereinafter referred to as “tip leak vortex”).
  • tip leak vortex a vortex
  • the low energy fluid accumulates in the vortex core of the tip leakage vortex, and particularly at high pressure operating points, the accumulated low energy fluid may lose pressure (reverse pressure gradient) and cause backflow. Such a phenomenon is called "vortex collapse" and is a major cause of loss.
  • the clearance drift flow is intended to be suppressed by the tip clearance reducing plate formed in a bowl shape on the end face of the wing.
  • At least one embodiment of the present invention has been made in view of the conventional problems as described above, and an object of the present invention is to provide a highly efficient compressor and a turbocharger provided with the same. .
  • a compressor includes: a rotor including a hub and a wing provided on an outer peripheral surface of the hub; and the rotor so as to face the tip of the wing via a gap. And a casing that encloses the space, where the size of the gap between the tip of the wing and the casing at the leading edge position of the wing is t0, the tip of the wing and the casing are: A gap larger than the size t0 is provided in at least a part of the area downstream of the leading edge position in the axial direction of the rotor.
  • the clearance flow between the tip of the wing tip leakage vortex is increased by maintaining the size of the gap between the wing tip and the casing small at the leading edge position of the wing. Can be suppressed. In this way, it is possible to effectively suppress the increase in loss due to the tip leakage vortex.
  • the pressure surface of the wing via the gap in the at least part of the area It is possible to actively supply a large energy flow from the side to the suction side of the low energy fluid. This can suppress an increase in the accumulation amount of low energy fluid in the vicinity of the tip of the wing. Therefore, by suppressing the development of the boundary layer on the suction surface of the wing and suppressing the collapse of the tip leakage vortex (the occurrence of the backflow on the vortex center line), the reverse flow near the tip of the wing is reduced or the backflow is reduced. Occurrence can be suppressed.
  • the pressure difference between the pressure surface side and the negative pressure surface side is small at a position downstream of the front edge position of the blade to some extent, even if the gap in at least a part of the above range is relatively increased, The reverse flow near the tip of the wing can be effectively reduced or the occurrence of reverse flow can be effectively suppressed without excessively increasing the clearance flow of the As described above, according to the compressor described in the above (1), it is possible to reduce the reverse flow area in the vicinity of the tip of the wing or to suppress the occurrence of reverse flow while suppressing an increase in loss due to the clearance flow Therefore, a highly efficient centrifugal compressor can be realized.
  • a meridional length L from the leading edge position along the tip of the wing is L, along the tip of the wing Assuming that the length of the meridional plane from the leading edge position to the trailing edge position of the wing is L1, the tip of the wing and the casing are large in at least a part of the range of 0 ⁇ L ⁇ 0.5L1. There is a gap larger than t0.
  • the phenomenon in which a tip leakage vortex is generated from the leading edge of the blade, and a low energy fluid in the center of the vortex loses the pressure gradient and starts reverse flow (vortex collapse occurs) is 0
  • the large clearance flow of energy can be positively supplied from the pressure surface side of the wing to the area where the phenomenon of starting to cause reverse flow occurs.
  • the distribution of the size of the gap between the tip of the wing and the casing from the leading edge position to the trailing edge position The position of the maximum value of the gap is located within the range of 0 ⁇ L ⁇ 0.5 L1.
  • the phenomenon that the tip leakage vortex is generated from the leading edge of the blade and the low energy fluid in the center of the vortex loses the pressure gradient and causes backflow is 0 ⁇ L.
  • the collapse of the tip leakage vortex can be effectively suppressed while suppressing the increase of the resulting loss, thereby reducing the reverse flow near the tip of the wing or suppressing the occurrence of backflow. Therefore, a highly efficient centrifugal compressor can be realized.
  • the tip and the tip of the wing from the leading edge position to the trailing edge position of the wing
  • the maximum value t MAX of the gap in the distribution of the gap size with the casing satisfies 1.1t 0 ⁇ t MAX ⁇ 1.5t 0.
  • the maximum value t MAX of the gap has a certain size. Therefore, by setting the maximum value t MAX of the gap to satisfy 1.1t 0 ⁇ t MAX ⁇ 1.5t 0 as described in the above (4), the suppression of the increase in the leakage loss and the boundary on the suction surface of the wing It is possible to realize a highly efficient centrifugal compressor while achieving both suppression of bed development.
  • a meridional plane length from the leading edge position along the tip of the wing is The distribution of the size of the gap from the leading edge position to the trailing edge position of the wing in the case where the vertical axis is the size of the gap between the tip of the wing and the casing as the axis is convex upward Containing a smooth curved convex shape.
  • the curved convex shape exists from the leading edge position to the trailing edge position.
  • the size of the gap in the size distribution of the gap, is constant in a first range from the leading edge position.
  • the curved convex shape is present in a second range on the downstream side of the first range.
  • the compressor described in the above (7) for example, in the case where the inner circumferential surface of the casing is formed parallel to the axial direction of the rotor in the vicinity of the leading edge position of the wing, the high efficiency centrifugal compressor is simplified. It can be realized with various wing configurations.
  • a turbocharger includes the compressor according to any one of (1) to (7) above.
  • a high efficiency compressor and a turbocharger provided with the same are provided.
  • a diagram showing a distribution Dg of the size t of the gap between the tip 12 of the wing 8 and the casing 14 from the leading edge position P0 of the wing 8 to the trailing edge position P1 of the wing 8 in the centrifugal compressor 2 according to one embodiment is there.
  • a diagram showing a distribution Dg of the size t of the gap between the tip 12 of the wing 8 and the casing 14 from the leading edge position P0 of the wing 8 to the trailing edge position P1 of the wing 8 in the centrifugal compressor 2 according to one embodiment is there. It is a schematic sectional drawing (merid surface view) along the rotation axis of axial flow compressor 3 which concerns on one Embodiment.
  • expressions that indicate that things such as “identical”, “equal” and “homogeneous” are equal states not only represent strictly equal states, but also have tolerances or differences with which the same function can be obtained. It also represents the existing state.
  • expressions representing shapes such as quadrilateral shapes and cylindrical shapes not only represent shapes such as rectangular shapes and cylindrical shapes in a geometrically strict sense, but also uneven portions and chamfers within the range where the same effect can be obtained. The shape including a part etc. shall also be expressed.
  • the expressions “comprising”, “having”, “having”, “including” or “having” one component are not exclusive expressions excluding the presence of other components.
  • FIG. 1 is a schematic cross-sectional view (a meridional view) along the rotation axis of the centrifugal compressor 2 according to one embodiment.
  • the centrifugal compressor 2 is applicable to, for example, a turbocharger for an automobile, a marine vessel, or a power generation engine, a centrifugal compressor for industrial use, and the like.
  • the centrifugal compressor 2 includes a hub 4 fixed to a rotating shaft (not shown) and a rotor 10 including a plurality of wings 8 provided on the outer peripheral surface 6 of the hub 4 And a casing 14 surrounding the rotor 10 so as to face each other with a gap therebetween.
  • the tip 12 of the wing 8 extends along the casing 14 from the leading edge 16 to the trailing edge 18 of the wing 8.
  • the size of the gap between the tip 12 of the wing 8 and the casing 14 at the leading edge position P0 of the wing 8 (the connection position between the leading edge 16 and the tip 12 of the wing 8) as shown in FIG.
  • the tip 12 of the eight and the casing 14 have a gap larger than the size t0 in at least a part of the downstream side in the axial direction of the rotor 10 than the leading edge position P0.
  • the broken line in FIG. 1 is a line connecting the position of distance t0 from the casing 14 from the front edge position P0 of the wing 8 to the rear edge position P1 (connection position between the rear edge 18 of the wing 8 and the tip 12). 1 illustrates an example of the tip shape of a wing in a conventional centrifugal compressor.
  • FIG. 2 is a view showing the clearance flow and the distribution of the reverse flow area A generated on the negative pressure surface 22 side of the wing 8 in the centrifugal compressor 2 according to one embodiment.
  • FIG. 3 shows a conventional centrifugal compressor (as shown by the broken line in FIG. 1, the size of the gap between the tip 12 of the wing 8 and the casing 14 is constant from the front edge position P0 to the rear edge position P1 of the wing 8
  • FIG. 6 is a view showing the clearance flow in the centrifugal compressor set in FIG. 2 and the distribution of the reverse flow area A generated on the negative pressure surface 22 side of the wing 8.
  • FIG. 3 shows a conventional centrifugal compressor (as shown by the broken line in FIG. 1, the size of the gap between the tip 12 of the wing 8 and the casing 14 is constant from the front edge position P0 to the rear edge position P1 of the wing 8
  • FIG. 6 is a view showing the clearance flow in the centrifugal compressor set in FIG. 2 and the distribution of
  • FIG. 4 is a diagram showing streamlines of low-energy fluid separated from the leading edge 16 and accumulated near the tip 12 of the wing 8 in the centrifugal compressor 2 according to one embodiment.
  • FIG. 5 shows a conventional centrifugal compressor (as shown by the broken line in FIG. 1, the gap between the tip 12 of the wing 8 and the casing 14 is set constant from the front edge position P0 to the rear edge position P1 of the wing 8).
  • FIG. 16 is a diagram showing a streamline of low energy fluid Fc separated from leading edge 16 and accumulated near tip 12 of wing 8 in the centrifugal compressor.
  • the tip leakage vortex is maintained by keeping the size t0 of the gap between the tip 12 of the wing 8 and the casing 14 small at the leading edge position P0 of the wing 8. It is possible to suppress an increase in the clearance flow Fa at the V winding start portion. This makes it possible to effectively suppress an increase in loss due to the tip leakage vortex V.
  • the conventional centrifugal is achieved by making the size t of the gap larger than t0 as described above in at least a part of the downstream side of the front edge position P0 of the wing 8.
  • a clearance flow Fb having a large energy from the pressure surface 20 side of the wing 8 to the suction surface 22 side where the low energy fluid is accumulated via the gap in at least a part of the area.
  • Can thereby, as shown in FIGS. 4 and 5, it is possible to suppress an increase in the accumulation amount of the low energy fluid Fc in the vicinity of the tip 12 of the wing 8 as compared with the conventional centrifugal compressor. For this reason, as shown in FIG. 2 and FIG.
  • the development of the boundary layer on the suction surface 22 of the wing 8 is suppressed to collapse the wing tip leakage vortex (backflow on the vortex center line By suppressing the occurrence of backflow in the vicinity of the tip 12 of the wing 8 or suppressing the occurrence of backflow.
  • the size t of the gap in the above at least part of the range is relatively Even if the size is increased, the reverse flow area A in the vicinity of the tip 12 of the wing 8 can be effectively reduced or the occurrence of reverse flow can be effectively suppressed without excessively increasing the clearance flow Fb from the gap.
  • centrifugal compressor 2 it is possible to reduce the reverse flow area in the vicinity of the tip 12 of the wing 8 or to suppress the occurrence of reverse flow while suppressing an increase in loss due to the clearance flow.
  • An efficient centrifugal compressor can be realized. Further, according to the knowledge of the inventor of the present invention, as shown in FIG. 6 and FIG. 7, the effect of improving the performance is enhanced particularly on the high pressure ratio side in the high rotation speed region.
  • FIG. 8 is a schematic cross-sectional view for explaining the configuration of the centrifugal compressor 2 according to one embodiment.
  • FIG. 9 shows the distribution Dg of the size t of the gap between the tip 12 of the wing 8 and the casing 14 from the leading edge position P0 of the wing 8 to the trailing edge position P1 of the wing 8 in the centrifugal compressor 2 according to one embodiment.
  • the meridional plane length L from the leading edge position P0 along the tip 12 of the wing 8 (the meridional plane length position along the tip 12 of the wing 8 when the leading edge position P0 is the origin)
  • a distribution Dg of the size t of the gap is shown as the axis and the size t of the gap between the tip 12 of the wing 8 and the casing 14 as the vertical axis.
  • the “distribution Dg” refers to the size t of the gap at each position on the tip 12 of the wing 8 from the leading edge position P0 of the wing 8 to the trailing edge position P1 of the wing 8 in the horizontal axis and the vertical axis When plotted, it means a line consisting of a set of plotted points.
  • meridional plane length refers to a meridional plane (a cross-sectional view of the compressor 2 along the rotation axis of the rotor 10, a shape obtained by overlapping a shape obtained by rotationally projecting the shape of the wing 8 around the rotation axis) ) Means the length specified above.
  • the length of the meridional plane from the leading edge position P0 along the tip 12 of the wing 8 is L, and from the leading edge position P0 along the tip 12 of the wing 8 Assuming that the length of the meridional plane to the trailing edge position P1 is L1, the tip 12 of the wing 8 and the casing 14 have a gap t larger than the size t0 in at least a part of the range of 0 ⁇ L ⁇ 0.5L1. Have.
  • the phenomenon in which a tip leakage vortex is generated from the leading edge of the blade, and a low energy fluid in the center of the vortex loses the pressure gradient and starts reverse flow (vortex collapse occurs) is 0
  • the tip 12 of the wing 8 and the casing 14 are in the range of 0 ⁇ L ⁇ 0.5 L1 (preferably 0.1 L1 ⁇ L ⁇ 0.4 L1 and more preferably 0.2 L1 ⁇ L ⁇ 0).
  • the position P2 of the maximum value t MAX of the gap in the distribution Dg of the gap size t is within the range of 0 ⁇ L ⁇ 0.5 L1 (preferably 0.1 L1 ⁇ Within the range of L ⁇ 0.4 L1, more preferably within the range of 0.2 L1 ⁇ L ⁇ 0.3 L1).
  • the phenomenon that the tip leakage vortex is generated from the leading edge of the blade and the low energy fluid in the center of the vortex loses the pressure gradient and causes backflow is 0 ⁇ L.
  • leakage loss loss due to clearance flow itself
  • the maximum value t MAX of the gaps in the distribution Dg of the gap size t satisfies 1.1t0 ⁇ t MAX ⁇ 1.5t0.
  • the maximum value t MAX of the gap has a certain size. Therefore, by setting the maximum value t MAX of the gap to satisfy 1.1t 0 ⁇ t MAX ⁇ 1.5t 0 as described above, suppression of the increase in leakage loss and development of the boundary layer on the suction surface 22 of the wing 8 And a highly efficient centrifugal compressor can be realized.
  • the distribution Dg of the size t of the gap includes a smooth curved convex shape 24 which is convex upward. According to this configuration, a highly efficient centrifugal compressor is realized while suppressing an increase in the risk of breakage of the wing, as compared with the later-described form (see, for example, FIG. 14) in which the slit 26 etc. be able to.
  • the curved convex shape 24 exists from the leading edge position P0 to the trailing edge position P1. According to this configuration, the above-described high efficiency centrifugal compressor can be realized with the configuration of the simple wing 8.
  • the present invention is not limited to the above-described embodiment, and includes, as exemplified below, a mode in which the above-described embodiment is modified or a mode in which these modes are appropriately combined.
  • a mode in which the above-described embodiment is modified or a mode in which these modes are appropriately combined.
  • the size of the gap between the tip 12 of the wing 8 and the casing 14 at the trailing edge position P1 of the wing 8 is the same as that of the tip 12 of the wing 8 at the leading edge position P0 of the wing 8 and the casing 14
  • the form illustrated is equal to the size t0 of the gap.
  • the present invention is not limited to such a form.
  • the size t1 of the gap between the tip 12 of the wing 8 and the casing 14 at the trailing edge position P1 of the wing 8 is the leading edge of the wing 8 It may be smaller than the size t0 of the gap between the tip 12 of the wing 8 and the casing 14 at the position P0.
  • the size of the gap between the tip 12 of the wing 8 and the casing 14 is likely to change due to the centrifugal force of the rotor 10 near the leading edge position P0 of the wing 8, while the trailing edge of the wing 8 In the vicinity of the position P1, the size of the gap between the tip 12 of the wing 8 and the casing 14 is not easily affected by the centrifugal force of the rotor 10.
  • the size t1 of the gap between the tip 12 of the wing 8 and the casing 14 at the trailing edge position P1 of the wing 8 is equal to the tip 12 of the wing 8 at the leading edge position P0 of the wing 8 and the casing 14
  • the curved convex shape 24 illustrated the form which exists ranging from the front edge position P0 to the rear edge position P1.
  • the present invention is not limited to such a form, for example, as shown in FIG. 11, the size of the gap between the tip 12 of the wing 8 and the casing 14 from the leading edge position P0 of the wing 8 to the trailing edge position P1 of the wing 8
  • the size t of the gap is constant in the first range W1 from the front edge position P0
  • the curved convex shape 24 exists in the second range W2 on the downstream side of the first range W1. It may be done.
  • the high efficiency centrifugal compressor has a simple wing structure Can be realized by
  • FIG. 12 and 13 for example, in the distribution Dg of the size t of the gap between the tip 12 of the wing 8 and the casing 14 from the leading edge position P0 of the wing 8 to the trailing edge position P1 of the wing 8. , gap size t reaches the maximum value t MAX linearly increases toward the leading edge position P0 of the blade 8 in the axial direction downstream side from the position P2 of the maximum value t MAX axially downstream side It may decrease linearly as it goes.
  • the size t of the gap may change discontinuously.
  • the tip end 12 of the wing 8 is provided with the slit 26, and the size t of the gap takes a constant value t0 in the first range W1 from the leading edge position P0.
  • the tip 12 of the wing 8 and the casing 14 are at least partially downstream of the leading edge position P0 of the wing 8 in the axial direction of the rotor 10 At the leading edge position P0, the development of the boundary layer on the suction surface 22 of the wing 8 while suppressing the increase of the leakage loss by having a gap larger than the size t0 of the gap between the tip 12 of the wing 8 and the casing 14 at the leading edge position P0. And a highly efficient centrifugal compressor can be realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

ハブと、ハブの外周面に設けられた翼とを含むロータと、翼の先端と隙間を介して対向するようにロータを囲繞するケーシングと、を備える圧縮機であって、翼の前縁位置における翼の先端とケーシングとの隙間の大きさをt0とすると、翼の先端とケーシングとは、ロータの軸方向における前縁位置よりも下流側の少なくとも一部の範囲において、大きさt0よりも大きな隙間を有する。

Description

圧縮機及びターボチャージャ
 本開示は、圧縮機及びターボチャージャに関する。
 遠心圧縮機及び軸流圧縮機において、翼の先端とケーシングとの隙間における圧力面側から負圧面側への漏れ流れ(以下、「クリアランスフロー」という。)は、効率に対して影響を与える要因である。
 翼の負圧面上で発達した境界層(低エネルギー流体)は、遠心力の作用によって翼の先端の近傍に集積し、クリアランスフローによって巻き上がって渦(以下、「翼端漏れ渦」という。)を形成する。低エネルギー流体は、翼端漏れ渦の渦中心部に集積し、特に高圧力作動点においては、集積した低エネルギー流体が圧力上昇(逆圧力勾配)に負けて逆流を生じることがある。このような現象は「渦崩壊」と呼ばれ、損失発生の大きな要因となる。
 このような損失発生を抑制するため、クリアランスフロー自体を抑制する取り組みが行われている。例えば特許文献1に記載の翼では、翼の端面に庇状に形成したチップクリアランス低減用プレートにより、クリアランスフフローの抑制を図っている。
特開2004‐124813号公報
 特許文献1に記載されるような庇状のチップクリアランス低減用プレートを翼の端面に形成する場合、翼の構造が複雑となり、コストアップの要因となる。また、クリアランスフローを抑制することで、翼の先端近傍に翼面境界層が集積しやすくなって、流路内に掻き揚げ渦として渦が巻き上がる場合があり、クリアランスフローの抑制が必ずしも高効率化に繋がるとは限らない。
 本発明の少なくとも一実施形態は、上述したような従来の課題に鑑みなされたものであって、その目的とするところは、高効率な圧縮機及びこれを備えたターボチャージャを提供することである。
 (1)本発明の少なくとも一実施形態に係る圧縮機は、ハブと、前記ハブの外周面に設けられた翼とを含むロータと、前記翼の先端と隙間を介して対向するように前記ロータを囲繞するケーシングと、を備える圧縮機であって、前記翼の前縁位置における前記翼の先端と前記ケーシングとの隙間の大きさをt0とすると、前記翼の前記先端と前記ケーシングとは、前記ロータの軸方向における前記前縁位置よりも下流側の少なくとも一部の範囲において、前記大きさt0よりも大きな隙間を有する。
 上記(1)に記載の圧縮機によれば、翼の前縁位置では翼の先端とケーシングとの隙間の大きさを小さく維持することで、翼端漏れ渦の巻き始め部におけるクリアランスフローの増大を抑制することができる。これにより、翼端漏れ渦に起因する損失の増大を効果的に抑制することができる。
 また、翼の前縁位置より下流側の少なくとも一部の範囲で隙間の大きさを上記のように相対的に大きくすることで、当該少なくとも一部の範囲における隙間を介して、翼の圧力面側からエネルギーの大きなクリアランスフローを低エネルギー流体の集積した負圧面側へ積極的に供給することができる。これにより、翼の先端近傍における低エネルギー流体の集積量の増大を抑制することができる。このため、翼の負圧面における境界層の発達を抑制して翼端漏れ渦の崩壊(渦中心線上における逆流の発生)を抑制することにより、翼の先端近傍における逆流域を縮小し又は逆流の発生を抑制することができる。
 また、翼の前縁位置よりある程度下流側の位置では、圧力面側と負圧面側との差圧が小さいため、上記少なくとも一部の範囲における隙間を相対的に大きくしても、当該隙間からのクリアランスフローを過度に増大させることなく翼の先端近傍における逆流域を効果的に縮小し、又は逆流の発生を効果的に抑制することができる。
 このように、上記(1)に記載の圧縮機によれば、クリアランスフローに起因する損失の増大を抑制しつつ、翼の先端近傍における逆流域を縮小し又は逆流の発生を抑制することができるため、高効率な遠心圧縮機を実現することができる。
 (2)幾つかの実施形態では、上記(1)に記載の圧縮機において、前記翼の前記先端に沿った前記前縁位置からの子午面長さをL、前記翼の前記先端に沿った前記前縁位置から前記翼の後縁位置までの子午面長さをL1とすると、前記翼の前記先端と前記ケーシングとは、0<L≦0.5L1の範囲の少なくとも一部において、前記大きさt0よりも大きな隙間を有する。
 本願発明者の知見によれば、翼端漏れ渦が翼の前縁から発生し、渦中心部の低エネルギー流体が圧力勾配に負けて逆流を生じ始める(渦崩壊を生じ始める)現象は、0<L≦0.5L1の範囲内で起こる傾向がある。よって、上記(2)に記載のように、翼の先端とケーシングとを、0<L≦0.5L1の範囲の少なくとも一部において、大きさt0よりも大きな隙間を有するように構成することにより、逆流を生じ始める現象が起こる領域に翼の圧力面側からエネルギーの大きなクリアランスフローを積極的に供給することができる。これにより、翼の負圧面における境界層の発達を抑制して翼端漏れ渦の崩壊を効果的に抑制することにより、翼の先端近傍における逆流域を縮小し又は逆流の発生を抑制することができる。したがって、高効率な遠心圧縮機を実現することができる。
 (3)幾つかの実施形態では、上記(2)に記載の圧縮機において、前記前縁位置から前記後縁位置までの前記翼の前記先端と前記ケーシングとの隙間の大きさの分布における前記隙間の最大値の位置は、0<L≦0.5L1の範囲内に位置する。
 上記のように、本願発明者の知見によれば、翼端漏れ渦が翼の前縁から発生し、渦中心部の低エネルギー流体が圧力勾配に負けて逆流を生じ始める現象は、0<L≦0.5L1の範囲内で起こる傾向がある。よって、上記(3)に記載のように、上記隙間の大きさの分布における隙間の最大値の位置を0<L≦0.5L1の範囲内に設定することにより、漏れ損失(クリアランスフロー自体に起因する損失)の増大を抑制しつつ、翼端漏れ渦の崩壊を効果的に抑制して、翼の先端近傍における逆流域を縮小し又は逆流の発生を抑制することができる。したがって、高効率な遠心圧縮機を実現することができる。
 (4)幾つかの実施形態では、上記(1)乃至(3)に何れか1項に記載の圧縮機において、前記前縁位置から前記翼の後縁位置までの前記翼の前記先端と前記ケーシングとの隙間の大きさの分布における前記隙間の最大値tMAXは、1.1t0≦tMAX≦1.5t0を満たす。
 上記漏れ損失の増大を抑制する観点からは、上記隙間の大きさは基本的には極力小さくすることが望ましい。また、翼の負圧面における境界層の発達を抑制する観点からは、上記隙間の最大値tMAXは、ある程度の大きさがあることが望ましい。そこで、上記(4)に記載のように隙間の最大値tMAXを1.1t0≦tMAX≦1.5t0を満たすように設定することにより、漏れ損失の増大の抑制と翼の負圧面における境界層の発達の抑制とを両立し、高効率な遠心圧縮機を実現することができる。
 (5)幾つかの実施形態では、上記(1)乃至(4)の何れか1項に記載の圧縮機において、前記翼の前記先端に沿った前記前縁位置からの子午面長さを横軸とし、前記翼の前記先端と前記ケーシングとの隙間の大きさを縦軸とした場合における、前記前縁位置から前記翼の後縁位置までの前記隙間の大きさの分布は、上方に凸となる滑らかな湾曲凸形状を含む。
 上記(5)に記載の圧縮機によれば、翼の先端にスリット等を設けて上記(1)の構成を実現する場合と比較して、翼の破損リスクの増大を抑制しつつ高効率な遠心圧縮機を実現することができる。
 (6)幾つかの実施形態では、上記(5)に記載の圧縮機において、前記隙間の大きさの分布において、前記湾曲凸形状は、前記前縁位置から前記後縁位置に亘って存在する。
 上記(6)に記載の圧縮機によれば、高効率な遠心圧縮機を簡素な翼構成で実現することができる。
 (7)幾つかの実施形態では、上記(5)に記載の圧縮機において、前記隙間の大きさの分布において、前記隙間の大きさは、前記前縁位置からの第1範囲において一定であり、前記湾曲凸形状は、前記第1範囲の下流側の第2範囲に存在する。
 上記(7)に記載の圧縮機によれば、例えば翼の前縁位置近傍においてケーシングの内周面がロータの軸方向に平行に形成されている場合等において、高効率な遠心圧縮機を簡素な翼構成で実現することができる。
 (8)本発明の少なくとも一実施形態に係るターボチャージャは、上記(1)乃至(7)の何れか1項に記載の圧縮機を備える。
 上記(8)に記載のターボチャージャによれば、高効率な圧縮機を備えたターボチャージャを実現することができる。
 本発明の少なくとも一つの実施形態によれば、高効率な圧縮機及びこれを備えたターボチャージャが提供される。
一実施形態に係る遠心圧縮機2の回転軸線に沿った概略断面図(子午面図)である。 一実施形態に係る遠心圧縮機2における、クリアランスフローFと翼8の負圧面22側で生じる逆流域Aの分布を示す図である。 従来の遠心圧縮機(図1の破線に示すように、翼の前縁位置から後縁位置に亘って翼の先端とケーシングとの隙間が一定に設定された遠心圧縮機)におけるクリアランスフローFと翼8の負圧面22側で生じる逆流域Aの分布を示す図である。 一実施形態に係る遠心圧縮機2における、前縁から剥離して翼の先端近傍に集積する低エネルギー流体の流線を示す図である。 従来の遠心圧縮機(図1の破線に示すように、翼の前縁位置から後縁位置に亘って翼の先端とケーシングとの隙間が一定に設定された遠心圧縮機)における、前縁から剥離して翼の先端近傍に集積する低エネルギー流体Fcの流線を示す図である。 一実施形態に係る遠心圧縮機2と従来構成について、高回転数及び低回転数での重量流量と出口効率との関係を示す図である。 一実施形態に係る遠心圧縮機2と従来構成について、高回転数及び低回転数での重量流量と圧力比との関係を示す図である。 一実施形態に係る遠心圧縮機2の構成を説明するための概略断面図(子午面図)である。 一実施形態に係る遠心圧縮機2における、翼8の前縁位置P0から翼8の後縁位置P1までの翼8の先端12とケーシング14との隙間の大きさtの分布Dgを示す図である。 一実施形態に係る遠心圧縮機2における、翼8の前縁位置P0から翼8の後縁位置P1までの翼8の先端12とケーシング14との隙間の大きさtの分布Dgを示す図である。 一実施形態に係る遠心圧縮機2における、翼8の前縁位置P0から翼8の後縁位置P1までの翼8の先端12とケーシング14との隙間の大きさtの分布Dgを示す図である。 一実施形態に係る軸流圧縮機3の回転軸線に沿った概略断面図(子午面図)である。 一実施形態に係る軸流圧縮機3における、翼8の前縁位置P0から翼8の後縁位置P1までの翼8の先端12とケーシング14との隙間の大きさtの分布Dgを示す図である。 一実施形態に係る軸流圧縮機3の回転軸線に沿った概略断面図(子午面図)である。 一実施形態に係る軸流圧縮機3における、翼8の前縁位置P0から翼8の後縁位置P1までの翼8の先端12とケーシング14との隙間の大きさtの分布Dgを示す図である。
 以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
 例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
 例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
 一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
 図1は、一実施形態に係る遠心圧縮機2の回転軸線に沿った概略断面図(子午面図)である。遠心圧縮機2は、例えば自動車用、舶用、又は発電エンジン用のターボチャージャや、産業用の遠心圧縮機等に適用可能である。
 図1に示すように、遠心圧縮機2は、不図示の回転軸に固定されたハブ4及びハブ4の外周面6に設けられた複数の翼8を含むロータ10と、翼8の先端12と隙間を介して対向するようにロータ10を囲繞するケーシング14と、を備える。翼8の先端12は、翼8の前縁16から後縁18までケーシング14に沿って延在する。
 図1に示すように、翼8の前縁位置P0(翼8の前縁16と先端12との接続位置)における翼8の先端12とケーシング14との隙間の大きさをt0とすると、翼8の先端12とケーシング14とは、前縁位置P0よりもロータ10の軸方向における下流側の少なくとも一部の範囲において、大きさt0よりも大きな隙間を有する。なお、図1における破線は、ケーシング14から距離t0の位置を翼8の前縁位置P0から後縁位置P1(翼8の後縁18と先端12との接続位置)に亘って結んだ線であり、従来の遠心圧縮機における翼の先端形状の例を示している。
 上記遠心圧縮機2の構成により得られる効果について、図2~図5を用いて説明する。図2は、一実施形態に係る遠心圧縮機2における、クリアランスフローと翼8の負圧面22側で生じる逆流域Aの分布を示す図である。図3は、従来の遠心圧縮機(図1の破線に示すように、翼8の前縁位置P0から後縁位置P1に亘って翼8の先端12とケーシング14との隙間の大きさが一定に設定された遠心圧縮機)におけるクリアランスフローと翼8の負圧面22側で生じる逆流域Aの分布を示す図である。図4は、一実施形態に係る遠心圧縮機2における、前縁16から剥離して翼8の先端12近傍に集積する低エネルギー流体の流線を示す図である。図5は、従来の遠心圧縮機(図1の破線に示すように、翼8の前縁位置P0から後縁位置P1に亘って翼8の先端12とケーシング14との隙間が一定に設定された遠心圧縮機)における、前縁16から剥離して翼8の先端12近傍に集積する低エネルギー流体Fcの流線を示す図である。
 上記遠心圧縮機2によれば、翼8の前縁位置P0では翼8の先端12とケーシング14との隙間の大きさt0を小さく維持することで、図2に示すように、翼端漏れ渦Vの巻き始め部におけるクリアランスフローFaの増大を抑制することができる。これにより、翼端漏れ渦Vに起因する損失の増大を効果的に抑制することができる。
 また、翼8の前縁位置P0より下流側の少なくとも一部の範囲で隙間の大きさtを上記のようにt0よりも大きくすることで、図2及び図3に示すように、従来の遠心圧縮機と比較して、当該少なくとも一部の範囲における隙間を介して翼8の圧力面20側からエネルギーの大きなクリアランスフローFbを低エネルギー流体の集積した負圧面22側へ積極的に供給することができる。これにより、図4及び図5に示すように、従来の遠心圧縮機と比較して、翼8の先端12近傍における低エネルギー流体Fcの集積量の増大を抑制することができる。このため、図2及び図3に示すように、従来の遠心圧縮機と比較して、翼8の負圧面22における境界層の発達を抑制して翼端漏れ渦の崩壊(渦中心線上における逆流の発生)を抑制することにより、翼8の先端12近傍における逆流域Aを縮小し又は逆流の発生を抑制することができる。
 また、翼8の前縁位置P0よりある程度下流側の位置では、圧力面20側と負圧面22側との差圧が小さいため、上記少なくとも一部の範囲における隙間の大きさtを相対的に大きくしても、当該隙間からのクリアランスフローFbを過度に増大させることなく翼8の先端12近傍における逆流域Aを効果的に縮小し、又は逆流の発生を効果的に抑制することができる。
 このように、遠心圧縮機2によれば、クリアランスフローに起因する損失の増大を抑制しつつ、翼8の先端12近傍における逆流域を縮小し又は逆流の発生を抑制することができるため、高効率な遠心圧縮機を実現することができる。また、本願発明者の知見によれば、図6及び図7に示すように、特に、高回転数域における高圧力比側で性能向上効果が大きくなる。
 図8は、一実施形態に係る遠心圧縮機2の構成を説明するための概略断面図である。図9は、一実施形態に係る遠心圧縮機2における、翼8の前縁位置P0から翼8の後縁位置P1までの翼8の先端12とケーシング14との隙間の大きさtの分布Dgを示す図である。図9では、翼8の先端12に沿った前縁位置P0からの子午面長さL(前縁位置P0を原点とした場合の翼8の先端12に沿った子午面長さ位置)を横軸とし、翼8の先端12とケーシング14との隙間の大きさtを縦軸として、隙間の大きさtの分布Dgを示している。なお、「分布Dg」とは、翼8の前縁位置P0から翼8の後縁位置P1までの翼8の先端12上の各位置における隙間の大きさtを、上記横軸及び縦軸においてプロットしたときの、プロットした各点の集合からなる線のことを意味する。また、「子午面長さ」とは、子午面(ロータ10の回転軸線に沿った圧縮機2の断面図において、翼8の形状を当該回転軸線の周りに回転投影した形状を重ね合わせた図)上で規定される長さを意味する。
 一実施形態では、例えば図8及び図9に示すように、翼8の先端12に沿った前縁位置P0からの子午面長さをL、翼8の先端12に沿った前縁位置P0から後縁位置P1までの子午面長さをL1とすると、翼8の先端12とケーシング14とは、0<L≦0.5L1の範囲の少なくとも一部において、大きさt0よりも大きな隙間tを有する。
 本願発明者の知見によれば、翼端漏れ渦が翼の前縁から発生し、渦中心部の低エネルギー流体が圧力勾配に負けて逆流を生じ始める(渦崩壊を生じ始める)現象は、0<L≦0.5L1の範囲内で起こる傾向がある。よって、上記のように、翼8の先端12とケーシング14とを、0<L≦0.5L1の範囲(好ましく0.1L1≦L≦0.4L1の範囲、更に好ましく0.2L1≦L≦0.3L1の範囲)の少なくとも一部において、大きさt0よりも大きな隙間tを有するように構成することにより、逆流を生じ始める現象が起こる領域に翼8の圧力面20側からエネルギーの大きなクリアランスフローFb(図2参照)を積極的に供給することができる。これにより、翼8の負圧面22における境界層の発達を抑制して翼端漏れ渦の崩壊を効果的に抑制することにより、翼8の先端12近傍における逆流域A(図2参照)を縮小し又は逆流の発生を抑制することができる。したがって、高効率な遠心圧縮機を実現することができる。
 一実施形態では、例えば図9に示すように、上記隙間の大きさtの分布Dgにおける隙間の最大値tMAXの位置P2は、0<L≦0.5L1の範囲内(好ましく0.1L1≦L≦0.4L1の範囲内、更に好ましく0.2L1≦L≦0.3L1の範囲内)に位置する。
 上記のように、本願発明者の知見によれば、翼端漏れ渦が翼の前縁から発生し、渦中心部の低エネルギー流体が圧力勾配に負けて逆流を生じ始める現象は、0<L≦0.5L1の範囲内で起こる傾向がある。よって、上記隙間の大きさtの分布Dgにおける隙間の最大値tMAXの位置P2を、0<L≦0.5L1の範囲内に設定することにより、漏れ損失(クリアランスフロー自体に起因する損失)の増大を抑制しつつ、翼端漏れ渦の崩壊を効果的に抑制して、翼8の先端12近傍における逆流域A(図2参照)を縮小し又は逆流の発生を抑制することができる。したがって、高効率な遠心圧縮機を実現することができる。
 一実施形態では、図9に示すように、上記隙間の大きさtの分布Dgにおける隙間の最大値tMAXは、1.1t0≦tMAX≦1.5t0を満たす。
 上記漏れ損失の増大を抑制する観点からは、上記隙間の大きさtは基本的には極力小さくすることが望ましい。また、翼8の負圧面22における境界層の発達を抑制する観点からは、上記隙間の最大値tMAXは、ある程度の大きさがあることが望ましい。そこで、上記のように隙間の最大値tMAXを1.1t0≦tMAX≦1.5t0を満たすように設定することにより、漏れ損失の増大の抑制と翼8の負圧面22における境界層の発達の抑制とを両立し、高効率な遠心圧縮機を実現することができる。
 一実施形態では、図9に示すように、上記隙間の大きさtの分布Dgは、上方に凸となる滑らかな湾曲凸形状24を含む。かかる構成によれば、翼8の先端12にスリット26等を設ける後述の形態(例えば図14参照)と比較して、翼の破損リスクの増大を抑制しつつ高効率な遠心圧縮機を実現することができる。
 一実施形態では、図9に示す隙間の大きさtの分布Dgにおいて、湾曲凸形状24は、前縁位置P0から後縁位置P1に亘って存在する。かかる構成によれば、上記高効率な遠心圧縮機を簡素な翼8の構成で実現することができる。
 本発明は上述した実施形態に限定されることはなく、以下に例示するように、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。以下では、上述した構成と同一名称の構成については同一の符号を付して基本的な説明を省略し、各実施形態の特徴的な構成を中心に説明する。
 例えば、上述した実施形態では、翼8の後縁位置P1における翼8の先端12とケーシング14との隙間の大きさが、翼8の前縁位置P0における翼8の先端12とケーシング14との隙間の大きさt0に等しい形態を例示した。
 しかしながら、本発明はかかる形態に限定されず、例えば図10に示すように、翼8の後縁位置P1における翼8の先端12とケーシング14との隙間の大きさt1が、翼8の前縁位置P0における翼8の先端12とケーシング14との隙間の大きさt0よりも小さくてもよい。
 遠心圧縮機では、翼8の前縁位置P0近傍では、ロータ10の遠心力の影響で翼8の先端12とケーシング14との隙間の大きさが変化しやすいのに対し、翼8の後縁位置P1近傍では、翼8の先端12とケーシング14との隙間の大きさはロータ10の遠心力の影響を受けにくい。このため、上記のように、翼8の後縁位置P1における翼8の先端12とケーシング14との隙間の大きさt1を、翼8の前縁位置P0における翼8の先端12とケーシング14との隙間の大きさt0よりも小さくすることにより、クリアランスフローに起因する損失を低減し、高効率な遠心圧縮機を実現することができる。
 また、上述した実施形態では、湾曲凸形状24が前縁位置P0から後縁位置P1に亘って存在する形態を例示した。
 しかしながら、本発明はかかる形態に限定されず、例えば図11に示すように、翼8の前縁位置P0から翼8の後縁位置P1までの翼8の先端12とケーシング14との隙間の大きさtの分布Dgにおいて、隙間の大きさtは、前縁位置P0からの第1範囲W1において一定であり、湾曲凸形状24は、第1範囲W1の下流側の第2範囲W2内に存在していてもよい。
 かかる構成によれば、例えば翼8の前縁位置P0近傍においてケーシング14の内周面がロータ10の軸方向に平行に形成されている場合等において、高効率な遠心圧縮機を簡素な翼構成で実現することができる。
 また、上述した実施形態では、本発明を遠心圧縮機2に適用する場合を例示したが、本発明は、かかる形態に限定されず軸流圧縮機3に適用してもよい。
 この場合、例えば図12及び図13に示すように、翼8の前縁位置P0から翼8の後縁位置P1までの翼8の先端12とケーシング14との隙間の大きさtの分布Dgにおいて、隙間の大きさtは、翼8の前縁位置P0から軸方向下流側に向かうにつれて直線的に増加して最大値tMAXに到達し、最大値tMAXの位置P2から軸方向下流側に向かうにつれて直線的に減少してもよい。
 また、例えば図14及び図15に示すように、翼8の前縁位置P0から翼8の後縁位置P1までの翼8の先端12とケーシング14との隙間の大きさtの分布Dgにおいて、隙間の大きさtは不連続に変化してもよい。図14及び図15に示す形態では、翼8の先端12にはスリット26が設けられており、隙間の大きさtは、前縁位置P0からの第1範囲W1において一定値t0をとり、第1範囲W1の下流側に隣接する第2範囲W2(スリット26が設けられた範囲)において一定の最大値tMAXをとり、第2範囲W2の下流側に隣接する第3範囲W3において一定値t0をとる。
 図10~図15に示した幾つかの実施形態においても、翼8の先端12とケーシング14とが、翼8の前縁位置P0よりもロータ10の軸方向における下流側の少なくとも一部の範囲において、前縁位置P0における翼8の先端12とケーシング14との隙間の大きさt0よりも大きな隙間を有することにより、漏れ損失の増大を抑制しつつ翼8の負圧面22における境界層の発達の抑制し、高効率な遠心圧縮機を実現することができる。
2 遠心圧縮機
3 軸流圧縮機
4 ハブ
6 外周面
8 翼
10 ロータ
12 先端
14 ケーシング
16 前縁
18 後縁
20 圧力面
22 負圧面
24 湾曲凸形状
26 スリット

Claims (8)

  1.  ハブと、前記ハブの外周面に設けられた翼とを含むロータと、
     前記翼の先端と隙間を介して対向するように前記ロータを囲繞するケーシングと、
     を備える圧縮機であって、
     前記翼の前縁位置における前記翼の先端と前記ケーシングとの隙間の大きさをt0とすると、
     前記翼の前記先端と前記ケーシングとは、前記ロータの軸方向における前記前縁位置よりも下流側の少なくとも一部の範囲において、前記大きさt0よりも大きな隙間を有する、圧縮機。
  2.  前記翼の前記先端に沿った前記前縁位置からの子午面長さをL、前記翼の前記先端に沿った前記前縁位置から前記翼の後縁位置までの子午面長さをL1とすると、
     前記翼の前記先端と前記ケーシングとは、0<L≦0.5L1の範囲の少なくとも一部において、前記大きさt0よりも大きな隙間を有する、請求項1に記載の圧縮機。
  3.  前記前縁位置から前記後縁位置までの前記翼の前記先端と前記ケーシングとの隙間の大きさの分布における前記隙間の最大値の位置は、0<L≦0.5L1の範囲内に位置する、請求項2に記載の圧縮機。
  4.  前記前縁位置から前記翼の後縁位置までの前記翼の前記先端と前記ケーシングとの隙間の大きさの分布における前記隙間の最大値tMAXは、1.1t0≦tMAX≦1.5t0を満たす、請求項1乃至3の何れか1項に記載の圧縮機。
  5.  前記翼の前記先端に沿った前記前縁位置からの子午面長さを横軸とし、前記翼の前記先端と前記ケーシングとの隙間の大きさを縦軸とした場合における、前記前縁位置から前記翼の後縁位置までの前記隙間の大きさの分布は、上方に凸となる滑らかな湾曲凸形状を含む、請求項1乃至4の何れか1項に記載の圧縮機。
  6.  前記隙間の大きさの分布において、前記湾曲凸形状は、前記前縁位置から前記後縁位置に亘って存在する、請求項5に記載の圧縮機。
  7.  前記隙間の大きさの分布において、前記隙間の大きさは、前記前縁位置からの第1範囲において一定であり、前記湾曲凸形状は、前記第1範囲の下流側の第2範囲に存在する、請求項5に記載の圧縮機。
  8.  請求項1乃至7の何れか1項に記載の圧縮機を備えるターボチャージャ。
     
PCT/JP2017/004610 2017-02-08 2017-02-08 圧縮機及びターボチャージャ WO2018146752A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2017/004610 WO2018146752A1 (ja) 2017-02-08 2017-02-08 圧縮機及びターボチャージャ
JP2018566692A JP6770594B2 (ja) 2017-02-08 2017-02-08 遠心圧縮機及びターボチャージャ
US16/465,381 US11092163B2 (en) 2017-02-08 2017-02-08 Compressor and turbocharger
CN201780075347.4A CN110036208B (zh) 2017-02-08 2017-02-08 离心压缩机以及涡轮增压器
EP17895529.0A EP3530957B1 (en) 2017-02-08 2017-02-08 Compressor and turbocharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/004610 WO2018146752A1 (ja) 2017-02-08 2017-02-08 圧縮機及びターボチャージャ

Publications (1)

Publication Number Publication Date
WO2018146752A1 true WO2018146752A1 (ja) 2018-08-16

Family

ID=63108023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004610 WO2018146752A1 (ja) 2017-02-08 2017-02-08 圧縮機及びターボチャージャ

Country Status (5)

Country Link
US (1) US11092163B2 (ja)
EP (1) EP3530957B1 (ja)
JP (1) JP6770594B2 (ja)
CN (1) CN110036208B (ja)
WO (1) WO2018146752A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB202112576D0 (en) * 2021-09-03 2021-10-20 Cummins Ltd Impeller element for compressor

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5240809A (en) * 1975-09-25 1977-03-30 Rolls Royce Axiallflow compressors casings
JPS5795500U (ja) * 1980-12-02 1982-06-11
JPS60124599U (ja) * 1984-01-30 1985-08-22 三菱重工業株式会社 ケ−シングトリ−トメントを有する回転流体機械
JPS6173099U (ja) * 1984-10-19 1986-05-17
JP2000170695A (ja) * 1998-12-10 2000-06-20 United Technol Corp <Utc> 流体圧縮機のためのケ―シング処理
JP2001280295A (ja) * 2000-02-18 2001-10-10 General Electric Co <Ge> 凸形圧縮機ケーシング
JP2004124813A (ja) 2002-10-02 2004-04-22 Ishikawajima Harima Heavy Ind Co Ltd 回転機械の動翼
JP2014214649A (ja) * 2013-04-24 2014-11-17 トヨタ自動車株式会社 多段圧縮機
JP2015531447A (ja) * 2012-09-25 2015-11-02 スネクマ タービンエンジンケーシング及びロータホイール

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1317707A (en) * 1919-10-07 Inghouse electric
US4152092A (en) * 1977-03-18 1979-05-01 Swearingen Judson S Rotary device with bypass system
EP0593797B1 (de) * 1992-10-17 1996-07-10 Asea Brown Boveri Ag Stabilisierungseinrichtung zur Kennfelderweiterung eines Verdichters
DE59208865D1 (de) * 1992-12-08 1997-10-09 Asea Brown Boveri Stabilierungseinrichtung zur Kennfelderweiterung eines Verdichters
JPH08303389A (ja) 1995-05-09 1996-11-19 Hitachi Ltd 遠心羽根車及び該遠心羽根車の製造方法
JP2954539B2 (ja) 1996-08-09 1999-09-27 川崎重工業株式会社 タンデム翼列
CN1190597C (zh) * 2000-03-20 2005-02-23 株式会社日立制作所 涡轮式泵送装置
GB0513377D0 (en) * 2005-06-30 2005-08-03 Rolls Royce Plc A blade
GB0718846D0 (en) * 2007-09-27 2007-11-07 Cummins Turbo Tech Ltd Compressor
US8157504B2 (en) 2009-04-17 2012-04-17 General Electric Company Rotor blades for turbine engines
EP2538024B1 (de) * 2011-06-24 2015-09-23 Alstom Technology Ltd Schaufel einer Strömungsmaschine
JP6097487B2 (ja) 2012-03-16 2017-03-15 三菱重工業株式会社 遠心ポンプ
DE102012217381A1 (de) * 2012-09-26 2014-03-27 Bosch Mahle Turbo Systems Gmbh & Co. Kg Radialverdichter für einen Abgasturbolader
DE102013201771A1 (de) * 2013-02-04 2014-08-07 Bosch Mahle Turbo Systems Gmbh & Co. Kg Verdichter eines Abgasturboladers
JP2014173427A (ja) 2013-03-06 2014-09-22 Ihi Corp ディフューザベーン及びそれを備えた遠心圧縮機
EP3012417B1 (en) * 2013-06-20 2017-11-01 Mitsubishi Heavy Industries, Ltd. Radial-inflow type axial turbine and turbocharger
FR3010463B1 (fr) * 2013-09-11 2015-08-21 IFP Energies Nouvelles Impulseur de pompe polyphasique avec des moyens d'amplification et de repartition d'ecoulements de jeu.
JP2015086710A (ja) * 2013-10-28 2015-05-07 株式会社日立製作所 ガスパイプライン用遠心圧縮機及びガスパイプライン
JP2015214649A (ja) * 2014-05-12 2015-12-03 国立大学法人九州大学 液晶材料の製造方法及び液晶材料
JP6374760B2 (ja) * 2014-10-24 2018-08-15 三菱重工業株式会社 軸流タービン及び過給機
CN105201904B (zh) * 2015-09-02 2017-07-28 亿昇(天津)科技有限公司 一种半开式叶轮叶顶间隙的控制方法
US10221858B2 (en) * 2016-01-08 2019-03-05 Rolls-Royce Corporation Impeller blade morphology
US10385865B2 (en) * 2016-03-07 2019-08-20 General Electric Company Airfoil tip geometry to reduce blade wear in gas turbine engines
EP3594506A1 (de) * 2018-07-12 2020-01-15 Siemens Aktiengesellschaft Konturring für einen verdichter

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5240809A (en) * 1975-09-25 1977-03-30 Rolls Royce Axiallflow compressors casings
JPS5795500U (ja) * 1980-12-02 1982-06-11
JPS60124599U (ja) * 1984-01-30 1985-08-22 三菱重工業株式会社 ケ−シングトリ−トメントを有する回転流体機械
JPS6173099U (ja) * 1984-10-19 1986-05-17
JP2000170695A (ja) * 1998-12-10 2000-06-20 United Technol Corp <Utc> 流体圧縮機のためのケ―シング処理
JP2001280295A (ja) * 2000-02-18 2001-10-10 General Electric Co <Ge> 凸形圧縮機ケーシング
JP2004124813A (ja) 2002-10-02 2004-04-22 Ishikawajima Harima Heavy Ind Co Ltd 回転機械の動翼
JP2015531447A (ja) * 2012-09-25 2015-11-02 スネクマ タービンエンジンケーシング及びロータホイール
JP2014214649A (ja) * 2013-04-24 2014-11-17 トヨタ自動車株式会社 多段圧縮機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3530957A4

Also Published As

Publication number Publication date
US11092163B2 (en) 2021-08-17
EP3530957B1 (en) 2021-05-12
JP6770594B2 (ja) 2020-10-14
JPWO2018146752A1 (ja) 2019-11-07
EP3530957A4 (en) 2019-11-06
EP3530957A1 (en) 2019-08-28
CN110036208B (zh) 2021-05-28
US20200003223A1 (en) 2020-01-02
CN110036208A (zh) 2019-07-19

Similar Documents

Publication Publication Date Title
JP6234600B2 (ja) タービン
WO2018105423A1 (ja) 遠心圧縮機及びターボチャージャ
US9441636B2 (en) Rotor for a compressor of a gas turbine
JP2012229693A (ja) 車両用のファンアセンブリ
EP3147464A1 (en) Expansion turbine and turbocharger
JP2012052432A (ja) 遠心圧縮機のディフューザおよびこれを備えた遠心圧縮機
WO2018124068A1 (ja) タービン及びガスタービン
US11073020B2 (en) Impeller and rotating machine provided with same
JP2018168707A (ja) 遠心圧縮機用インペラ及び電動式遠心圧縮機
CA2669061C (en) Compressor stator blade and compressor rotor blade
WO2018131167A1 (ja) タービンホイール、タービン及びターボチャージャ
WO2018146752A1 (ja) 圧縮機及びターボチャージャ
JP2012047085A (ja) タービンインペラ
JP5558183B2 (ja) ターボ機械
WO2017221839A1 (ja) 可変ノズルベーン及び可変容量型ターボチャージャ
US9976430B2 (en) Blade in fan, and fan
CA2842473A1 (en) Blade leading edge tip rib
JP2021032106A (ja) ベーンドディフューザ及び遠心圧縮機
CN111911455A (zh) 离心压缩机的叶轮、离心压缩机以及涡轮增压器
JP2016094914A (ja) 軸流機械の翼
JP2018105221A (ja) ディフューザ、タービン及びガスタービン
JP3927887B2 (ja) 軸流圧縮機の静翼
JP2024071544A (ja) 遠心圧縮機のインペラ及び遠心圧縮機
JP2015017615A (ja) 回転機械の翼体、及びガスタービン
JP2008248734A (ja) 軸流流体機械用翼

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17895529

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018566692

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017895529

Country of ref document: EP

Effective date: 20190522

NENP Non-entry into the national phase

Ref country code: DE