WO2018139474A1 - Light control cell, light control body and moving body - Google Patents

Light control cell, light control body and moving body Download PDF

Info

Publication number
WO2018139474A1
WO2018139474A1 PCT/JP2018/002064 JP2018002064W WO2018139474A1 WO 2018139474 A1 WO2018139474 A1 WO 2018139474A1 JP 2018002064 W JP2018002064 W JP 2018002064W WO 2018139474 A1 WO2018139474 A1 WO 2018139474A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
conductive film
layer
alignment layer
light control
Prior art date
Application number
PCT/JP2018/002064
Other languages
French (fr)
Japanese (ja)
Inventor
博志 久保田
弘毅 渡
悟 二嶋
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to JP2018545245A priority Critical patent/JP6439907B1/en
Publication of WO2018139474A1 publication Critical patent/WO2018139474A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals

Definitions

  • the present invention relates to a light control cell including a liquid crystal light control unit having variable light transmittance and an electrode connection unit for connecting an external electrode, a light control unit including such a light control cell, and so on.
  • the present invention relates to a moving body provided with a simple dimmer.
  • a light control cell that adjusts the light transmittance by utilizing the orientation of liquid crystal is known and used as an electronic shade or the like.
  • Patent Document 1 discloses a dimming window that can be used as a sunshade and can be applied to windows of vehicles such as automobiles, trains, and ships.
  • a mixed film containing high-molecular liquid crystal and low-molecular liquid crystal is sandwiched between a pair of transparent electrode films.
  • the liquid crystal layer is provided adjacent to the alignment layer, and the electrode layer is provided on the opposite side of the liquid crystal layer via the alignment layer. Therefore, normally, a liquid crystal layer, an alignment layer, an electrode layer, and a base material layer are laminated by applying liquid crystal on the laminate having the orientation layer, the electrode layer, and the base material layer. For this reason, in the laminate before the liquid crystal is applied, the electrode layer is generally covered with an insulating alignment layer such as polyimide. In order to electrically connect an external electrode such as FPC (Flexible Printed Circuits) to the electrode layer of such a laminate, the alignment layer is removed to expose the electrode layer, and the exposed portion of the electrode layer is externally exposed. It was necessary to connect the electrodes.
  • FPC Flexible Printed Circuits
  • FIGS. 9A to 9D are diagrams showing a typical example of a process of connecting the external electrode body 12 such as an FPC to the electrode layer 43, and an enlarged sectional structure of the electrode connecting portion 41 to which the external electrode body 12 is connected.
  • the alignment layer 42 is removed by chemical treatment or the like, and as shown in FIG. 43 is exposed.
  • a conductor 50 made of a conductive tape or conductive paste is disposed between the external electrode 46 supported by the external support portion 47 and the exposed electrode layer 43, as shown in FIG. 9D.
  • the electrode layer 43, the conductor 50, and the external electrode body 12 are pressure-bonded.
  • the external electrode 46 and the electrode layer 43 are electrically connected via the conductor 50.
  • the base material layer supporting the electrode layer to be made of resin.
  • the resin is more easily damaged than glass, and there is a concern that the resin base layer may be damaged when the alignment layer is removed as described above.
  • the alignment layer, the electrode layer, and the base material layer are made common between the liquid crystal light control unit having variable light transmittance and the electrode connection unit to which the external electrode is connected, thereby aligning the alignment layer. In-plane uniformity is improved and the yield is increased.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a technique for electrically connecting an external electrode and an electrode layer without removing an alignment layer.
  • One embodiment of the present invention is a dimming cell including a liquid crystal dimming unit having variable light transmittance and an electrode connection unit for connecting an external electrode, and the liquid crystal dimming unit includes a liquid crystal layer.
  • the electrode connecting portion has a conductive film, an alignment layer and an electrode layer, and in the electrode connecting portion, the alignment layer is disposed at least partially between the conductive film and the electrode layer.
  • a part of the conductive film relates to a light control cell in which a part of the conductive film is inserted into an alignment layer disposed between the conductive film and the electrode layer, and the conductive film and the electrode layer are electrically connected to each other.
  • the alignment layer may be disposed over the entire range covered by both the conductive film and the electrode layer.
  • the conductive film includes a plurality of conductive particles, and at least a part of the plurality of conductive particles bites into an alignment layer disposed between the conductive film and the electrode layer.
  • At least a part of the plurality of conductive particles may have a diameter larger than the thickness of the alignment layer disposed between the conductive film and the electrode layer.
  • At least some of the plurality of conductive particles may have a diameter equal to or less than the thickness of the alignment layer disposed between the conductive film and the electrode layer.
  • the electrode connection portion at least a part of the laminated portion constituted by the conductive film, the alignment layer, and the electrode layer may exhibit a specific resistance of 150 ⁇ ⁇ m or less.
  • An external electrode is affixed to one side of the conductive film, an alignment layer is affixed to the other side of the conductive film, and the peeling force of the external electrode with respect to the alignment layer is a tensile speed of 300 mm / min and a peel angle of 180 degrees. 1N / 10 mm or more may be used.
  • Each of the liquid crystal light control part and the electrode connection part has a base material layer that supports the electrode layer, and the base material layer may be made of a resin.
  • An external electrode is attached to one side of the conductive film, an alignment layer is attached to the other side of the conductive film, the conductive film has a relatively thick portion and a relatively thin portion, and the external electrode is The conductive film may be electrically connected to the electrode layer through a relatively thin portion.
  • the light control cell may further include a spacer existing at least in the alignment layer in the electrode connection portion, and the spacer may bite into the conductive film.
  • the external electrode may be attached to one side of the conductive film, the alignment layer may be attached to the other side of the conductive film, and the external electrode may have a tapered shape that tapers toward the alignment layer of the electrode connection portion.
  • An external electrode is attached to one side of the conductive film, an alignment layer is attached to the other side of the conductive film, and a layered external support portion that supports the external electrode is provided on the opposite side of the conductive film through the external electrode.
  • the distance between the external support portion and the electrode layer at the location where the external electrode is not attached is between the external support portion and the electrode layer at the location where the external electrode is attached. It may be smaller than the interval.
  • Another aspect of the present invention relates to a light control body including any one of the light control cells described above and a transparent member that supports the light control cells.
  • Another aspect of the present invention relates to a moving body including the above-described dimmer.
  • the external electrode and the electrode layer can be electrically connected without removing the alignment layer.
  • FIG. 1 is a plan view showing an example of a light control cell.
  • FIG. 2 is an enlarged cross-sectional view illustrating a configuration example of the liquid crystal light control unit.
  • FIG. 3A is an enlarged cross-sectional view illustrating a configuration example of an electrode connection unit according to an embodiment of the present invention.
  • FIG. 3B is an enlarged cross-sectional view illustrating a configuration example of the electrode connection portion according to the embodiment of the present invention.
  • FIG. 4A is an enlarged cross-sectional view schematically showing an example of a conductive film.
  • FIG. 4B is an enlarged cross-sectional view schematically showing an example of a conductive film.
  • FIG. 5A is an enlarged cross-sectional view schematically showing another example of a conductive film.
  • FIG. 5B is an enlarged cross-sectional view schematically showing another example of a conductive film.
  • FIG. 6A is an enlarged cross-sectional view showing a first configuration example of an electrode connecting portion according to another embodiment of the present invention.
  • FIG. 6B is an enlarged cross-sectional view showing a second configuration example of the electrode connecting portion according to another embodiment of the present invention.
  • FIG. 7 is a perspective view schematically showing an example (automobile) of a moving body provided with a dimmer.
  • FIG. 8 is a longitudinal sectional view showing an example of a light control body.
  • FIG. 9A is a diagram illustrating a typical example of a process of connecting an external electrode body such as an FPC to an electrode layer.
  • FIG. 9B is a diagram illustrating a typical example of a process of connecting the external electrode body to the electrode layer.
  • FIG. 9C is a diagram illustrating a typical example of a process of connecting the external electrode body to the electrode layer.
  • FIG. 9D is a diagram illustrating a typical example of a process of connecting the external electrode body to the electrode layer.
  • FIG. 1 is a plan view showing an example of the light control cell 10.
  • the light control cell 10 of this embodiment includes a liquid crystal light control unit 20 and an outer peripheral part 40.
  • the liquid crystal light control unit 20 has a variable light transmittance.
  • the liquid crystal light control unit 20 can exhibit a desired light control function by changing the transmittance and the light shielding rate of the intrusion light from the outside.
  • the outer peripheral part 40 is provided adjacent to the liquid crystal light control part 20, and is provided around the liquid crystal light control part 20 in the light control cell 10 shown in FIG. 1.
  • the outer peripheral portion 40 is provided with an electrode connecting portion 41 for connecting the external electrode body 12 such as an FPC.
  • FIG. 2 is an enlarged cross-sectional view showing a configuration example of the liquid crystal light control unit 20.
  • FIG. 2 only a part of the elements constituting the liquid crystal dimming unit 20 is simply enlarged and shown.
  • the liquid crystal light control unit 20 includes a pair of polarizing plates 21 and 22, a pair of base material layers 23 and 24 disposed between the polarizing plates 21 and 22, and a pair of electrodes disposed between the base material layers 23 and 24.
  • the electrode layer 25 supported by the base material layer 23 is covered with an alignment layer 27, and the electrode layer 26 supported by the base material layer 24 is covered with an alignment layer 28.
  • the base material layers 23 and 24 of this embodiment are comprised with resin.
  • the liquid crystal layer 29 is provided over the entire liquid crystal light control unit 20, but is not provided in the outer peripheral part 40.
  • the alignment layers 27 and 28, the electrode layers 25 and 26, and the base material layers 23 and 24 are provided not only on the entire liquid crystal light control unit 20 but also on the entire outer periphery 40.
  • the outer peripheral portion 40 has an integral structure.
  • Other elements constituting the liquid crystal light control unit 20 such as the polarizing plates 21 and 22 may be provided over the liquid crystal light control unit 20 and the outer peripheral part 40, or may be provided only in the liquid crystal light control unit 20. Good.
  • the configuration of the liquid crystal light control unit 20 is not particularly limited, and may have a configuration other than the configuration shown in FIG.
  • the liquid crystal light control unit 20 of the present embodiment includes at least a liquid crystal layer, an alignment layer, and an electrode layer.
  • the liquid crystal light control unit 20 has a configuration corresponding to the driving method of the liquid crystal layer.
  • the electrode layers 25 and 26 are arranged on both sides of the liquid crystal layer 29.
  • the electrode is the liquid crystal layer. It may be arranged only on one side.
  • the liquid crystal light control unit 20 employs a guest-host type liquid crystal layer (that is, a liquid crystal layer including a dichroic dye (guest) and a liquid crystal (host)), for example, the alignment of the liquid crystal provided by the alignment layer
  • the polarizing plate may be provided only on one side of the liquid crystal layer, or the polarizing plate may not be provided.
  • the liquid crystal light control part 20 may contain elements other than the above-mentioned elements, for example, a spacer, a seal part, an index matching layer, a hard coat layer, and other functional bodies for maintaining the interval between the liquid crystal layers. And a functional layer may be provided.
  • FIG. 3A and 3B are enlarged cross-sectional views showing a configuration example of the electrode connection portion 41 according to an embodiment of the present invention, in which a plurality of layers constituting the electrode connection portion 41 are stacked (that is, perpendicular to the paper surface of FIG. 1).
  • FIG. 3A shows an external electrode body 12 (that is, an external electrode 46 and an external support portion 47) in which a conductive film 30 (for example, ACF: Anisotropic Conductive Film) is disposed on both sides, an alignment layer 28, an electrode layer 26, and a base material layer 24. Shows a state separated from.
  • FIG. 3B shows a state in which the base material layer 24, the electrode layer 26, the orientation layer 28, the conductive film 30 and the external electrode body 12 (that is, the external electrode 46 and the external support portion 47) are sequentially laminated.
  • ACF Anisotropic Conductive Film
  • the electrode connection part 41 includes a conductive film 30 in addition to the alignment layer 28, the electrode layer 26, and the base material layer 24.
  • the conductive film 30 is formed on the alignment layer 28.
  • the alignment layer 28 is disposed in at least a partial region between the conductive film 30 and the electrode layer 26.
  • the alignment layer 28 is disposed in the entire region between the conductive film 30 and the electrode layer 26, and is in a range covered by both the conductive film 30 and the electrode layer 26.
  • An alignment layer 28 is disposed throughout.
  • the conductive film 30 and the electrode layer 26 are electrically connected to each other by part of the conductive film 30 biting into the alignment layer 28 disposed between the conductive film 30 and the electrode layer 26.
  • the formation method of the conductive film 30 is not specifically limited. Typically, a part of the conductive film 30 is formed by forming the conductive film 30 on the alignment layer 28 of the electrode connection portion 41 and pressing the external electrode body 12 (particularly, the external electrode 46) on the conductive film 30. Bite into the alignment layer 28. Thereby, the conductive film 30 and the electrode layer 26 are electrically connected to each other, and the external electrode 46 and the electrode layer 26 are electrically connected to each other via the conductive film 30.
  • the configuration of the conductive film 30 is not particularly limited as long as it exhibits the above-described function.
  • the conductive film 30 has the configuration shown in FIGS. 4A and 4B and the configuration shown in FIGS. 5A and 5B. sell.
  • 4A and 4B are enlarged cross-sectional views schematically showing an example of the conductive film 30, and show a cross section in the stacking direction of a plurality of layers constituting the electrode connecting portion 41 (that is, a direction perpendicular to the paper surface of FIG. 1).
  • . 4A shows a state in which the conductive film 30 is separated from the external electrode body 12 (that is, the external electrode 46 and the external support portion 47) disposed on both sides, the alignment layer 28, the electrode layer 26, and the base material layer 24.
  • FIG. FIG. 4B shows a state in which the base material layer 24, the electrode layer 26, the alignment layer 28, the conductive film 30, and the external electrode body 12 (that is, the external electrode 46 and the external support portion 47) are sequentially laminated.
  • the conductive film 30 shown in FIGS. 4A and 4B includes a plurality of conductive particles 31. As shown in FIG. 4B, a plurality of conductive particles 31 included in the conductive film 30 in a state where the external electrode body 12 (particularly the external electrode 46) is pressure-bonded to the electrode layer 26 via the conductive film 30 and the alignment layer 28. At least a part of the bite bites into the alignment layer 28 disposed between the conductive film 30 and the electrode layer 26.
  • At least a part of the plurality of conductive particles 31 included in the conductive film 30 is larger than the thickness of the alignment layer 28 disposed between the conductive film 30 and the electrode layer 26 as shown in FIGS. 4A and 4B. Also have a large diameter. Then, the external electrode body 12 (particularly the external electrode 46) is disposed on the conductive film 30 and pressed toward the alignment layer 28 and the electrode layer 26, whereby each conductive particle 31 bites into the alignment layer 28, and the conductive particle 31. And the distance between the electrode layer 26 is reduced. Thereby, dielectric breakdown occurs between each conductive particle 31 and the electrode layer 26, and the external electrode 46 and the electrode layer 26 can be electrically connected to each other via each conductive particle 31.
  • FIG. 5A and 5B are enlarged cross-sectional views schematically showing another example of the conductive film 30, and a cross section in the stacking direction of a plurality of layers constituting the electrode connecting portion 41 (that is, a direction perpendicular to the paper surface of FIG. 1).
  • FIG. 5A shows a state in which the conductive film 30 is separated from the external electrode body 12 (that is, the external electrode 46 and the external support portion 47) disposed on both sides, the alignment layer 28, the electrode layer 26, and the base material layer 24.
  • FIG. 5B shows a state in which the base material layer 24, the electrode layer 26, the alignment layer 28, the conductive film 30, and the external electrode body 12 (that is, the external electrode 46 and the external support portion 47) are sequentially laminated.
  • the conductive film 30 shown in FIGS. 5A and 5B includes a plurality of conductive particles 31 in the same manner as the conductive film 30 shown in FIGS. 4A and 4B.
  • the plurality of conductive particles 31 included in the conductive film 30 in a state where the external electrode body 12 (particularly, the external electrode 46) is pressure-bonded to the electrode layer 26 via the conductive film 30 and the alignment layer 28 (see FIG. 5B). A part of this bites into the alignment layer 28 disposed between the conductive film 30 and the electrode layer 26.
  • At least a part of the plurality of conductive particles 31 included in the conductive film 30 is equal to or less than the thickness of the alignment layer 28 disposed between the conductive film 30 and the electrode layer 26, as shown in FIGS. 5A and 5B. Have a diameter. Then, when the external electrode body 12 (particularly the external electrode 46) is disposed on the conductive film 30 and pressed toward the alignment layer 28 and the electrode layer 26, a part of the conductive particles 31 bite into the alignment layer 28, and the conductive layer The interval between the particles 31 and the electrode layer 26 is reduced. Thereby, dielectric breakdown occurs between the conductive particles 31 and the electrode layer 26, and the external electrode 46 and the electrode layer 26 can be electrically connected via the conductive particles 31.
  • the conductive particles 31 may penetrate the alignment layer 28 and contact the electrode layer 26. However, it does not have to penetrate the alignment layer 28 and be in contact with the electrode layer 26. However, in any case, the external electrode 46 and the electrode layer 26 can be electrically connected via the conductive particles 31. From the viewpoint of surely causing dielectric breakdown between the conductive particles 31 and the electrode layer 26, the conductive film 30 and the conductive film 30 and the electrode layer 26 so that the conductive particles 31 penetrate the alignment layer 28 and are in direct contact with each other. It is preferable that the external electrode body 12 (particularly the external electrode 46) is pressure-bonded to the electrode layer 26 via the alignment layer 28. However, the conductive particles 31 and the electrode layer 26 are not necessarily in direct contact, and the conductive particles 31 are close to the electrode layer 26 to such an extent that dielectric breakdown occurs between the conductive particles 31 and the electrode layer 26. Just do it.
  • the conductive particles 31 may be in contact with the external electrode 46, or the external electrode 46 It may not be in contact. However, in any case, the external electrode 46 and the electrode layer 26 can be electrically connected via the conductive particles 31. From the viewpoint of ensuring electrical continuity between the conductive particle 31 and the external electrode 46, it is preferable that the conductive particle 31 is in direct contact with the external electrode 46. However, the conductive particles 31 and the external electrode 46 are not necessarily in contact with each other, and the conductive particles 31 are close to the external electrode 46 to such an extent that electrical conduction between the conductive particles 31 and the external electrode 46 is possible. Just do it.
  • each conductive particle 31 can conduct electricity to the same extent as an electric conductor (for example, if electric conductivity is 10 6 S / m or more), the specific configuration is particularly limited.
  • each conductive particle 31 may be constituted only by an electric conductor such as metal, or by coating a resin, metal, or the like with an electric conductor having excellent conductivity such as metal (for example, silver or gold).
  • Each conductive particle 31 may be made.
  • particles obtained by performing gold plating on a metal such as nickel can be used as each conductive particle 31.
  • the conductive particles 31 composed of a plurality of materials can have a plurality of characteristics based on the constituent materials in a well-balanced manner.
  • each conductive particle 31 softer than the conductive particles 31 made of only a single kind of metal. Can be prevented from being damaged or damaged.
  • 4A, 4B, 5A, and 5B are spherical, but the shape of each conductive particle 31 is not particularly limited, and each conductive particle 31 may bite into the alignment layer 28. It can have any shape possible.
  • the conductive film 30 may include a plurality of conductive particles 31 having a substantially constant diameter, or may include a plurality of conductive particles 31 having various diameters. The conductive particles 31 having a diameter larger than the thickness of the conductive particles 31 and the conductive particles 31 having a diameter equal to or smaller than the thickness of the alignment layer 28 may be mixed.
  • the constituent components and state of the particle holding material that holds the respective conductive particles 31 among the constituent components of the conductive film 30 are not particularly limited.
  • a particle holding material in a fluid state for example, liquid or gel
  • the external electrode body 12 is attached to the conductive film 30 while the particle holding material maintains the fluid state.
  • the particle holding material may be changed from a fluid state to a solid state.
  • the conductive particles 31 are digged into the alignment layer 28, the thickness of the conductive film 30 is adjusted, and the conductive film 30 is appropriately applied to the external electrode body 12 (particularly the external electrode 46) and the alignment layer 28. It is easy to fix.
  • FIG. 4A, FIG. 4B, FIG. 5A, and FIG. 5B provided as enlarged views show the external electrode body 12 having a uniform thickness.
  • the external electrode body 12 is not necessarily uniform in thickness. May not be included.
  • the thickness may be different between a portion of the external electrode body 12 where the external electrode 46 and the external support portion 47 are provided and a location where only the external support portion 47 is provided.
  • 6A and 6B are enlarged cross-sectional views showing a configuration example of an electrode connection portion 41 according to another embodiment of the present invention, in the stacking direction of a plurality of layers constituting the electrode connection portion 41 (that is, on the paper surface of FIG. 1).
  • 6A shows a first configuration example of the electrode connection portion 41
  • FIG. 6B shows a second configuration example of the electrode connection portion 41.
  • 6A and 6B show a state in which the base material layer 24, the electrode layer 26, the alignment layer 28, the conductive film 30, and the external electrode body 12 (that is, the external electrode 46 and the external support portion 47) are sequentially laminated. Note that the stacking order shown in FIGS. 6A and 6B is opposite to the stacking order shown in FIGS. 3 to 5 in the vertical direction.
  • the electrode connecting portion 41 shown in FIGS. 6A and 6B does not correspond to a different portion from the electrode connecting portion 41 shown in FIGS. 3 to 5, and FIG.
  • the stacking order of the electrode connecting portions 41 shown in FIG. 6B is not reverse to the stacking order of the electrode connecting portions 41 shown in FIGS. 6A and 6B show conductive particles 31 having a diameter equal to or larger than the thickness of the alignment layer 28 as shown in FIGS. 4A and 4B, the alignment layer 28 as shown in FIGS. 5A and 5B. Even when the conductive film 31 includes a conductive particle 31 having a diameter smaller than the thickness of the electrode connection portion 41, the electrode connection portion 41 can be configured in the same manner.
  • the external electrode body 12 including the external electrode 46 is attached to one side of the conductive film 30 (the lower side of FIGS. 6A and 6B).
  • the alignment layer 28, the electrode layer 26, and the base material layer 24 are affixed on the side (the upper side in FIGS. 6A and 6B). Therefore, the external electrode body 12 (that is, the external electrode 46 and the external support portion 47), the alignment layer 28, and the electrode layer 26 face each other with the conductive film 30 interposed therebetween.
  • the conductive film 30 has a relatively thick portion 30B and a relatively thin portion 30A.
  • the relatively thin portion 30A of the conductive film 30 corresponds to the location where the external electrode 46 is disposed, and the relatively thick portion 30B of the conductive film 30 is This corresponds to a location where the external electrode 46 is not disposed in the external electrode body 12 (that is, a location where only the external support portion 47 is provided).
  • the external electrode body 12 also has a relatively thick portion and a relatively thin portion, the external electrode 46 is provided in the relatively thick portion, and the external electrode 46 is not provided in the relatively thin portion. .
  • the external electrode 46 is electrically connected to the electrode layer 26 through a relatively thin portion 30A of the conductive film 30.
  • the external electrode body 12 is bonded to the electrode connecting portion 41 via the conductive film 30, compared to a portion of the conductive film 30 where the external electrode 46 is not provided (see reference numeral “30B” in FIGS. 6A and 6B).
  • a portion corresponding to the external electrode 46 is more strongly pressed toward the alignment layer.
  • the conductive particles 31 included in the portion of the conductive film 30 corresponding to the external electrode 46 bite into the alignment layer 28, and the conductive film 30 is relatively thin.
  • Dielectric breakdown occurs between the conductive particles 31 present in the portion 30 ⁇ / b> A and the electrode layer 26, and the external electrode 46 and the electrode layer 26 can be electrically connected to each other via the conductive particles 31.
  • the electrical conduction can be realized relatively easily and reliably. it can.
  • a plurality of spacers 60 may exist in the alignment layer 28 in the electrode connection portion 41 shown in FIGS. 6A and 6B. These spacers 60 may be provided so as to protrude from the alignment layer 28 toward the conductive film 30 and to bite into the conductive film 30, and to exist over both the alignment layer 28 and the conductive film 30 having a layer structure. May be provided. As described above, when the external electrode body 12 is bonded to the alignment layer 28 and the electrode layer 26 through the conductive film 30, the spacer 60 supported by the alignment layer 28 is arranged to bite into the conductive film 30.
  • the conductive film 30 for the alignment layer 28 and the electrode layer 26 is provided so that the spacer 60 supported by the alignment layer 28 exists over both the alignment layer 28 and the conductive film 30 having a layer structure.
  • the adhesiveness of the external electrode body 12 can be improved. Thereby, for example, the positional deviation of the conductive film 30 and the external electrode body 12 with respect to the alignment layer 28 and the electrode layer 26 can be prevented, and unintended peeling of the conductive film 30 and the external electrode body 12 can be effectively suppressed. Can do.
  • the spacer 60 disposed in the electrode connecting portion 41 is provided in the liquid crystal layer 29 in order to secure a desired thickness (that is, a cell gap) in the liquid crystal layer 29 (see FIG. 2) of the liquid crystal light adjusting portion 20 (see FIG. 1). It can be the same as the spacer disposed in the. In general, the size of such a spacer is sufficiently smaller than the size of the conductive particles 31.
  • the diameter of the bead-shaped spacer 60 shown in FIGS. 6A and 6B is one to several tens of times the diameter of the conductive particles. It can be about 1.
  • the number of the spacers 60 may be about one-tenth to several tenths of the number of the conductive particles 31.
  • the spacer 60 Even if such a spacer 60 exists between the electrode layer 26 and the external electrode body 12 (particularly, the external electrode 46), the spacer 60 has conductivity and adhesion between the electrode layer 26 and the external electrode body 12. Is not substantially adversely affected. Rather, as described above, the spacer 60 provided between the electrode layer 26 and the external electrode body 12 has a positive effect on the adhesion between the electrode layer 26 and the external electrode body 12.
  • positioned at the electrode connection part 41 is good also as a thing different from the spacer arrange
  • FIG. The shape and arrangement of the spacer 60 are not limited.
  • the entire spacer 60 is covered with the constituent material of the alignment layer 28 to improve the adhesion of the spacer 60 to the alignment layer 28.
  • a part of each spacer 60 may not be covered with the constituent material of the alignment layer 28 (see FIG. 6B).
  • the alignment layer 28 is provided.
  • the effect that the adhesiveness of the conductive film 30 with respect to can be improved can be acquired.
  • the entire spacers 60 are covered with 28 constituent materials, for example, a large number of spacers 60 are mixed in advance with the material for forming the alignment layer 28, and this material (coating solution) is placed on the electrode layer 26. After coating, the solvent of this coating solution may be volatilized in a drying furnace or the like.
  • the alignment layer 28 is partially solidified so as to protrude toward the conductive film 30 to form a convex portion, and each spacer 60 is held by the convex portion.
  • each spacer 60 shown in FIGS. 6A and 6B has a spherical shape, but each spacer 60 may have a shape other than the spherical shape, for example, may have a column shape. 6A and 6B do not penetrate the alignment layer 28, but each spacer 60 may extend from the electrode layer 26 toward the conductive film 30 so as to penetrate the alignment layer 28. Good.
  • the method of providing each spacer 60 is not limited. For example, after providing the alignment layer 28 on the electrode layer 26, the spacer 60 may be provided on the alignment layer 28. And the alignment layer 28 may be formed by applying the material on the electrode layer 26, or a columnar spacer 60 may be formed in advance on the electrode layer 26 by a technique such as photolithography. The alignment layer 28 may be provided on the electrode layer 26 in a state where the spacer 60 is formed.
  • the cross-sectional shape of the external electrode 46 has a tapered shape (that is, a forward tapered shape) that tapers toward the alignment layer 28.
  • a tapered shape that is, a forward tapered shape
  • the material of the conductive film 30 easily flows along the side surface of the external electrode 46 when the external electrode body 12 is crimped and connected to the electrode layer 26.
  • the electrode connection portion 41 can be easily formed.
  • the external electrode 46 since the external electrode 46 has a forward tapered shape, the external electrode body 12 and the conductive film 30 that can be generated by bonding the external electrode body 12 to the alignment layer 28 and the electrode layer 26 via the conductive film 30 It is possible to effectively prevent air bubbles from entering and remaining of such air bubbles.
  • Bubbles existing between the external electrode body 12 and the conductive film 30 may cause the external electrode body 12 to unintentionally peel from the conductive film 30, and may cause other unexpected problems. Therefore, from the viewpoint of reliably and reliably bonding the external electrode body 12 to the alignment layer 28 and the electrode layer 26 via the conductive film 30, the external electrode 46 has a forward tapered shape as shown in FIGS. 6A and 6B. It is preferable.
  • the specific shape of the forward tapered shape of the external electrode 46 is not particularly limited.
  • the tapered portion of the external electrode 46 may be inclined linearly or may be inclined curvedly.
  • the cross section regarding the direction (for example, horizontal direction of FIG. 1) of the external electrode 46 should just have the above forward taper shape.
  • interval DB between the external support part 47 and the electrode layer 26 in the location where the external electrode 46 is not affixed has the external electrode 46 affixed.
  • the distance DA is smaller than the distance DA between the external support 47 and the electrode layer 26 (that is, DA> DB).
  • the external support portion 47 that supports the external electrode 46 is provided on the side opposite to the conductive film 30 via the external electrode 46. Since it is not necessary to ensure electrical continuity with respect to the electrode layer 26 at a location where the external electrode 46 is not provided, the interval between the external support portion 47 and the electrode layer 26 can be reduced. Thus, by narrowing the distance between the external support 47 and the electrode layer 26, the adhesion between the external support 47 and the electrode layer 26 (and the alignment layer 28) via the conductive film 30 can be improved. it can.
  • the manufacturing method of the light control cell 10 which concerns on each above-mentioned embodiment typically includes the following steps. That is, in the electrode connection portion 41, a laminated body having the alignment layer 28, the electrode layer 26, and the base material layer 24 sequentially laminated, and a laminated body in which the conductive film 30 is formed on the alignment layer 28 is prepared. .
  • the method for forming the conductive film 30 on the alignment layer 28 is not particularly limited, and the conductive film 30 can be formed at a desired location on the alignment layer 28 by coating or the like. Further, the conductive film 30 prepared in advance may be pressure-bonded to the alignment layer 28.
  • the conductive film 30 formed on the alignment layer 28 may or may not have fluidity as described above.
  • the compression is such that a part of the constituent elements of the conductive film 30 (the conductive particles 31 in the above-described embodiment) can bite into the alignment layer 28.
  • the conductive film 30 has properties (particularly compressibility in the stacking direction).
  • the external electrode 46 is pressure-bonded to the conductive film 30.
  • the external electrode 46 and the external support 47 are arranged on the conductive film 30 so that the conductive film 30 is sandwiched between the external electrode 46 and the external support 47 and the alignment layer 28, and the external electrode 46 and the external support are supported.
  • the part 47 is pressed toward the conductive film 30.
  • the conductive film 30 and the electrode layer 26 are electrically connected to each other in a state where the alignment layer 28 is disposed in at least a partial region between the conductive film 30 and the electrode layer 26.
  • the conductive film 30 and the external electrode 46 are electrically connected to each other.
  • the pressure bonding method is not particularly limited, and various processes such as heating, cooling, ultraviolet irradiation, or electron beam irradiation may be performed together with pressure for pressure bonding.
  • the conductive film 30 is required to establish appropriate conductivity with the electrode layer 26 when being pressed from above the alignment layer 28, and suitable for the external electrode 46 and the alignment layer 28. High adhesion (that is, adhesive strength) is required.
  • the conductive film 30 of the present embodiment has a composition and configuration that can satisfy these conductivity and adhesion.
  • the electrode connection part 41 at least a part of the laminated part constituted by the conductive film 30, the alignment layer 28, and the electrode layer 26 exhibits a specific resistance of 150 ⁇ ⁇ m or less.
  • the peeling force of the external electrode 46 with respect to the alignment layer 28 is 1 N / when measured according to measurement conditions (tensile speed: 300 mm / min; peeling distance: 150 mm; peeling angle: 180 degrees) according to JIS Z 0237: 2009. 10 mm or more.
  • the conductivity (resistance) and adhesion (stripping force) of the conductive film 30 will be considered.
  • the inventor of the present invention has a laminated body (that is, an electrode connection portion 41) including the external electrode body 12 (that is, the external electrode 46 and the external support portion 47) configured as an FPC, and the base material layer 24, the electrode layer 26, and the alignment layer 28. And prepared.
  • the base material layer 24 is made of resin
  • the electrode layer 26 is made of ITO (Indium Tin Oxide), has a film thickness of 0.05 ⁇ m, and has a surface resistance of 150 ⁇ / ⁇ (ohms per square). It was.
  • the alignment layer 28 was made of polyimide, and the thickness of the alignment layer 28 was 0.1 ⁇ m (micrometer).
  • a conductive film 30 (product name: CP923CM-25) manufactured by Dexerials Corporation was disposed between the external electrode 46 and the alignment layer 28, and these were pressure-bonded to each other (see FIGS. 3A and 3B).
  • the film thickness of the conductive film 30 was 25 micrometers, and the film thickness of the orientation layer 28 was 0.1 micrometer.
  • the film thickness of the conductive film 30 is 18 ⁇ m, the conductive particles 31 bite into the alignment layer 28, and the distance between the lower part of the conductive particles 31 and the electrode layer 26 via the alignment layer 28 is 0. It was 05 ⁇ m.
  • the resistance of the laminated part constituted by the conductive film 30, the alignment layer 28, and the electrode layer 26 in the pressure-bonded laminate obtained in this way was measured, and a specific resistance of 150 ⁇ ⁇ m or less was shown.
  • “Loresta-GX MCP-T700 manufactured by Mitsubishi Chemical Analytech” was used for the measurement of resistance.
  • the inventor of the present invention has another pressure-bonded laminate (that is, the base material layer 24, the electrode layer 26, the orientation layer 28, the conductive film 30, the external electrode 46) under the same conditions as those of the pressure-bonded laminate used for the above-described conductivity verification. And a laminate having an external support 47).
  • This press-bonded laminate had a size of 25 mm (length) ⁇ 150 mm (width).
  • peeling distance The force (peeling force) required to peel the external electrode body 12 (that is, the external electrode 46 and the external support portion 47) from other components was measured under the measurement conditions of 150 mm and peeling angle: 180 degrees.
  • the pressure-bonded laminate is gripped by two chucks arranged on a straight line that moves with force, the tensile speed is set to 300 mm / min, the peeling distance is set to 150 mm, and the peeling is performed.
  • the chuck was moved away from each other at an angle of 180 degrees, and the external electrode body 12 (that is, the external electrode 46 and the external support portion 47) was peeled off from the other components.
  • the load acting on the pressure-bonded laminate was measured, and the force (tensile strength) required for peeling was calculated based on the following formula.
  • T 10 ⁇ P / W (However, “T” indicates the tensile strength (N / 10 mm), “P” indicates the maximum load (N), and “W” indicates the width (mm) of the test piece (ie, the pressure-bonded laminate).)
  • the tensile strength (peeling force) of the external electrode body 12 (that is, the external electrode 46 and the external support 47) with respect to the alignment layer 28 was 1 N in any measurement. / 10mm or more force was required.
  • the conductive film 30 can achieve appropriate adhesion (that is, adhesive force) to the external electrode 46 and the alignment layer 28.
  • the conductive film 30 and the external electrode 46 can be removed without removing the alignment layer 28. Appropriate electrical conduction with the electrode layer 26 can be ensured.
  • the external electrode body 12 (particularly the external electrode 46) such as FPC is simply pressed from above the conductive film 30 and the alignment layer 28 toward the electrode layer 26.
  • the conductive particles 31 can be bitten into the alignment layer 28 and the external electrode 46 and the electrode layer 26 can be electrically connected to each other.
  • the base material layer 24 included in each of the liquid crystal light control unit 20 and the electrode connection unit 41 is formed of resin, the resin has light weight, deformability, and safety while preventing damage to the base material layer 24. It is possible to enjoy characteristics such as sex.
  • the above-described technique using the conductive film 30 can be applied to each of the alignment layer and electrode layer stacks provided on both sides of the liquid crystal layer 29. Accordingly, the external electrode body 12 is electrically connected to the electrode layer 26 disposed on one side of the liquid crystal layer 29 via the conductive film 30, while the electrode layer 25 disposed on the other side of the liquid crystal layer 29 is connected. It is also possible to electrically connect other external electrode bodies 12 via other conductive films 30. Further, the above-described technique using the conductive film 30 can be applied to a laminated body of an alignment layer and an electrode layer provided only on one side of the liquid crystal layer 29.
  • the application field of the light control cell 10 according to the present invention is not particularly limited, and the above-described technology related to the light control cell 10 can be applied to various technical fields.
  • the light control cell according to the present invention for a sunshade device that adjusts the transmission and shading of sunlight, a light-emitting panel that can display various types of information as necessary, and other devices that require a change in light transmittance 10 can be applied.
  • the dimming cell 10 can be applied to windows and doors.
  • the dimming cell 10 is applied not only to windows and doors of non-moving bodies such as buildings but also to windows and doors of moving bodies such as airplanes, ships, trains and automobiles. can do.
  • the dimming cell 10 is applied to a sunroof of the automobile.
  • the dimming cell 10 is bonded to a transparent member such as glass, or between a pair of transparent members 11 such as glass as shown in FIG. It is used by being sandwiched between. That is, the movable body 1 can include the light control body 5 having the transparent member 11 and the light control cell 10 stacked on the transparent member 11 and supported by the transparent member 11 as a window, a door, or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Mathematical Physics (AREA)

Abstract

The present invention provides a light control cell which is capable of electrically connecting an external electrode and an electrode layer without removing an alignment layer. A light control cell according to the present invention is provided with: a liquid crystal light control part, the light transmittance of which is variable; and an electrode connection part (41) for the connection of an external electrode (46). The liquid crystal light control part comprises a liquid crystal layer, an alignment layer (28) and an electrode layer (26). The electrode connection part (41) comprises a conductive film (30), the alignment layer (28) and the electrode layer (26). With respect to the electrode connection part (41), the alignment layer (28) is arranged at least partially between the conductive film (30) and the electrode layer (26). A part of the conductive film (30) is arranged so as to dig into the alignment layer (28), which is arranged between the conductive film (30) and the electrode layer (26); and the conductive film (30) and the electrode layer (26) are electrically connected to each other.

Description

調光セル、調光体及び移動体Dimming cell, dimmer and moving body
 本発明は、光の透過率が可変である液晶調光部と、外部電極を接続するための電極接続部とを備える調光セル、そのような調光セルを備える調光体、及びそのような調光体を備える移動体に関する。 The present invention relates to a light control cell including a liquid crystal light control unit having variable light transmittance and an electrode connection unit for connecting an external electrode, a light control unit including such a light control cell, and so on. The present invention relates to a moving body provided with a simple dimmer.
 液晶の配向性を利用して光の透過率を調整する調光セルが知られており、電子シェード等として用いられている。 A light control cell that adjusts the light transmittance by utilizing the orientation of liquid crystal is known and used as an electronic shade or the like.
 例えば特許文献1は、サンシェードとして利用可能な調光窓であって、自動車、電車及び船舶などの乗り物の窓に適用可能な調光窓を開示する。この調光窓では、高分子液晶及び低分子液晶を含む混合膜が、一対の透明電極膜によって挟まれている。 For example, Patent Document 1 discloses a dimming window that can be used as a sunshade and can be applied to windows of vehicles such as automobiles, trains, and ships. In this light control window, a mixed film containing high-molecular liquid crystal and low-molecular liquid crystal is sandwiched between a pair of transparent electrode films.
特開平06-273725号公報Japanese Patent Laid-Open No. 06-273725
 液晶を用いた上述のような調光セルにおいて、液晶層は配向層に隣接して設けられ、配向層を介して液晶層とは反対側に電極層が設けられている。したがって通常は、配向層、電極層及び基材層を有する積層体上に液晶が付与されることによって、液晶層、配向層、電極層及び基材層の積層構造が作られる。そのため液晶が付与される前の積層体では、電極層がポリイミド等の絶縁性の配向層によって被覆されているのが一般的である。このような積層体の電極層に対してFPC(Flexible Printed Circuits)等の外部電極を電気的に接続するためには、配向膜を取り除いて電極層を露出させ、その電極層の露出部分に外部電極を接続する必要があった。 In the light control cell using liquid crystal as described above, the liquid crystal layer is provided adjacent to the alignment layer, and the electrode layer is provided on the opposite side of the liquid crystal layer via the alignment layer. Therefore, normally, a liquid crystal layer, an alignment layer, an electrode layer, and a base material layer are laminated by applying liquid crystal on the laminate having the orientation layer, the electrode layer, and the base material layer. For this reason, in the laminate before the liquid crystal is applied, the electrode layer is generally covered with an insulating alignment layer such as polyimide. In order to electrically connect an external electrode such as FPC (Flexible Printed Circuits) to the electrode layer of such a laminate, the alignment layer is removed to expose the electrode layer, and the exposed portion of the electrode layer is externally exposed. It was necessary to connect the electrodes.
 図9A~図9Dは、FPC等の外部電極体12を電極層43に接続する工程の典型例を示す図であって、外部電極体12が接続される電極接続部41の断面構造を拡大して示す。まず、図9Aに示すような配向層42、電極層43及び基材層44の積層体を有する電極接続部41のうち配向層42が薬液処理等によって除去され、図9Bに示すように電極層43が露出される。そして図9Cに示すように、外部支持部47によって支持された外部電極46と露出した電極層43との間に、導電テープや導電ペーストによって構成される導電体50が配置され、図9Dに示すように電極層43、導電体50及び外部電極体12(特に外部電極46)が圧着される。これにより、外部電極46と電極層43とは導電体50を介して電気的に接続される。 9A to 9D are diagrams showing a typical example of a process of connecting the external electrode body 12 such as an FPC to the electrode layer 43, and an enlarged sectional structure of the electrode connecting portion 41 to which the external electrode body 12 is connected. Show. First, in the electrode connection portion 41 having a laminate of the alignment layer 42, the electrode layer 43, and the base material layer 44 as shown in FIG. 9A, the alignment layer 42 is removed by chemical treatment or the like, and as shown in FIG. 43 is exposed. Then, as shown in FIG. 9C, a conductor 50 made of a conductive tape or conductive paste is disposed between the external electrode 46 supported by the external support portion 47 and the exposed electrode layer 43, as shown in FIG. 9D. Thus, the electrode layer 43, the conductor 50, and the external electrode body 12 (especially the external electrode 46) are pressure-bonded. Thereby, the external electrode 46 and the electrode layer 43 are electrically connected via the conductor 50.
 このように液晶を用いた従来の調光セルでは、FPC等の外部電極体を電極層に接続するために、事前に配向層を取り除いて電極層を露出させる必要があった。しかしながら、配向層を取り除く作業は、手間及びコストがかかる。また、配向層を適切に取り除くのは必ずしも容易ではない。配向層が適切に除去されずに電極層上に意図せずに残存してしまうと、導通不良等の不具合を招く。 Thus, in the conventional light control cell using liquid crystal, in order to connect an external electrode body such as an FPC to the electrode layer, it is necessary to remove the alignment layer in advance and expose the electrode layer. However, the operation of removing the alignment layer is laborious and expensive. Moreover, it is not always easy to remove the alignment layer appropriately. If the alignment layer is not properly removed and remains unintentionally on the electrode layer, problems such as poor conduction are caused.
 また特に近年では、樹脂の有する軽量性、変形可能性及び安全性等の特性に注目し、電極層を支持する基材層を樹脂で構成することの要望がある。しかしながら、樹脂はガラスと比較して損傷しやすく、上述のように配向層を除去する場合には、樹脂製の基材層を痛めてしまう懸念がある。 In particular, in recent years, attention has been paid to the properties such as lightness, deformability and safety of the resin, and there is a demand for the base material layer supporting the electrode layer to be made of resin. However, the resin is more easily damaged than glass, and there is a concern that the resin base layer may be damaged when the alignment layer is removed as described above.
 なお、外部電極が接続される電極接続部では予め配向層を設けずに電極層を露出させておくことで、配向層を取り除く上述の工程を省くことも考えられる。しかしながら、そのような特殊な構造の積層体を準備するには特別な処理が必要になり、手間及びコストがかかる。一方、光の透過率が可変である液晶調光部と、外部電極が接続される電極接続部との間で、配向層、電極層及び基材層の構成を共通化することによって、配向層の面内均一性が向上し、歩留まりも上がる。 Note that it may be possible to omit the above-described step of removing the alignment layer by exposing the electrode layer without providing the alignment layer in advance in the electrode connection portion to which the external electrode is connected. However, special processing is required to prepare a laminate having such a special structure, which takes time and cost. On the other hand, the alignment layer, the electrode layer, and the base material layer are made common between the liquid crystal light control unit having variable light transmittance and the electrode connection unit to which the external electrode is connected, thereby aligning the alignment layer. In-plane uniformity is improved and the yield is increased.
 そのため、配向層を除去せずに、外部電極と電極層とを適切に電気的に導通させることができる新たな技術の提案が望まれている。 Therefore, a proposal of a new technique that can appropriately electrically connect the external electrode and the electrode layer without removing the alignment layer is desired.
 本発明は上述の事情に鑑みてなされたものであり、配向層を除去せずに、外部電極と電極層とを電気的に導通させるための技術を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a technique for electrically connecting an external electrode and an electrode layer without removing an alignment layer.
 本発明の一態様は、光の透過率が可変である液晶調光部と、外部電極を接続するための電極接続部と、を備える調光セルであって、液晶調光部は、液晶層、配向層及び電極層を有し、電極接続部は、導電フィルム、配向層及び電極層を有し、電極接続部において、導電フィルムと電極層との間には少なくとも一部において配向層が配置され、導電フィルムの一部は、導電フィルムと電極層との間に配置される配向層に食い込んで配置され、導電フィルム及び電極層が相互に電気的に導通される調光セルに関する。 One embodiment of the present invention is a dimming cell including a liquid crystal dimming unit having variable light transmittance and an electrode connection unit for connecting an external electrode, and the liquid crystal dimming unit includes a liquid crystal layer. , Having an alignment layer and an electrode layer, the electrode connecting portion has a conductive film, an alignment layer and an electrode layer, and in the electrode connecting portion, the alignment layer is disposed at least partially between the conductive film and the electrode layer. In addition, a part of the conductive film relates to a light control cell in which a part of the conductive film is inserted into an alignment layer disposed between the conductive film and the electrode layer, and the conductive film and the electrode layer are electrically connected to each other.
 導電フィルム及び電極層の両者によって覆われる範囲の全体にわたって配向層が配置されていてもよい。 The alignment layer may be disposed over the entire range covered by both the conductive film and the electrode layer.
 導電フィルムは、複数の導電粒子を含み、複数の導電粒子の少なくとも一部が、導電フィルムと電極層との間に配置される配向層に食い込んでいる。 The conductive film includes a plurality of conductive particles, and at least a part of the plurality of conductive particles bites into an alignment layer disposed between the conductive film and the electrode layer.
 複数の導電粒子の少なくとも一部は、導電フィルムと電極層との間に配置される配向層の厚みよりも大きな径を有してもよい。 At least a part of the plurality of conductive particles may have a diameter larger than the thickness of the alignment layer disposed between the conductive film and the electrode layer.
 複数の導電粒子の少なくとも一部は、導電フィルムと電極層との間に配置される配向層の厚み以下の径を有してもよい。 At least some of the plurality of conductive particles may have a diameter equal to or less than the thickness of the alignment layer disposed between the conductive film and the electrode layer.
 電極接続部において、導電フィルム、配向層及び電極層によって構成される積層部の少なくとも一部は、150Ω・m以下の比抵抗を示してもよい。 In the electrode connection portion, at least a part of the laminated portion constituted by the conductive film, the alignment layer, and the electrode layer may exhibit a specific resistance of 150 Ω · m or less.
 導電フィルムの一方側に外部電極が貼り付けられ、導電フィルムの他方側に配向層が貼り付けられ、配向層に対する外部電極の引き剥がし力は、引張速度を300mm/分とし、剥離角度を180度として測定を行った場合に1N/10mm以上であってもよい。 An external electrode is affixed to one side of the conductive film, an alignment layer is affixed to the other side of the conductive film, and the peeling force of the external electrode with respect to the alignment layer is a tensile speed of 300 mm / min and a peel angle of 180 degrees. 1N / 10 mm or more may be used.
 液晶調光部及び電極接続部の各々は、電極層を支持する基材層を有し、基材層は樹脂によって構成されていてもよい。 Each of the liquid crystal light control part and the electrode connection part has a base material layer that supports the electrode layer, and the base material layer may be made of a resin.
 導電フィルムの一方側に外部電極が貼り付けられ、導電フィルムの他方側に配向層が貼り付けられ、導電フィルムは、相対的に厚い部分と相対的に薄い部分とを有し、外部電極は、導電フィルムのうち相対的に薄い部分を介し、電極層と電気的に導通されてもよい。 An external electrode is attached to one side of the conductive film, an alignment layer is attached to the other side of the conductive film, the conductive film has a relatively thick portion and a relatively thin portion, and the external electrode is The conductive film may be electrically connected to the electrode layer through a relatively thin portion.
 調光セルは、電極接続部において、少なくとも配向層において存在するスペーサを更に備え、スペーサは、導電フィルムに食い込んでもよい。 The light control cell may further include a spacer existing at least in the alignment layer in the electrode connection portion, and the spacer may bite into the conductive film.
 導電フィルムの一方側に外部電極が貼り付けられ、導電フィルムの他方側に配向層が貼り付けられ、外部電極は、電極接続部の配向層に向かって先細るテーパー形状を有してもよい。 The external electrode may be attached to one side of the conductive film, the alignment layer may be attached to the other side of the conductive film, and the external electrode may have a tapered shape that tapers toward the alignment layer of the electrode connection portion.
 導電フィルムの一方側に外部電極が貼り付けられ、導電フィルムの他方側に配向層が貼り付けられ、外部電極を介して導電フィルムとは反対側に、外部電極を支持する層状の外部支持部が設けられ、電極接続部において、外部電極が貼り付けられていない箇所における外部支持部と電極層との間の間隔は、外部電極が貼り付けられている箇所における外部支持部と電極層との間の間隔よりも小さくてもよい。 An external electrode is attached to one side of the conductive film, an alignment layer is attached to the other side of the conductive film, and a layered external support portion that supports the external electrode is provided on the opposite side of the conductive film through the external electrode. In the electrode connection portion, the distance between the external support portion and the electrode layer at the location where the external electrode is not attached is between the external support portion and the electrode layer at the location where the external electrode is attached. It may be smaller than the interval.
 本発明の他の態様は、上記のいずれかの調光セルと、調光セルを支持する透明部材と、を備える調光体に関する。 Another aspect of the present invention relates to a light control body including any one of the light control cells described above and a transparent member that supports the light control cells.
 本発明の他の態様は、上記の調光体を備える移動体に関する。 Another aspect of the present invention relates to a moving body including the above-described dimmer.
 本発明によれば、配向層を除去せずに、外部電極と電極層とを電気的に導通させることができる。 According to the present invention, the external electrode and the electrode layer can be electrically connected without removing the alignment layer.
図1は、調光セルの一例を示す平面図である。FIG. 1 is a plan view showing an example of a light control cell. 図2は、液晶調光部の構成例を示す拡大断面図である。FIG. 2 is an enlarged cross-sectional view illustrating a configuration example of the liquid crystal light control unit. 図3Aは、本発明の一実施形態に係る電極接続部の構成例を示す拡大断面図である。FIG. 3A is an enlarged cross-sectional view illustrating a configuration example of an electrode connection unit according to an embodiment of the present invention. 図3Bは、本発明の一実施形態に係る電極接続部の構成例を示す拡大断面図である。FIG. 3B is an enlarged cross-sectional view illustrating a configuration example of the electrode connection portion according to the embodiment of the present invention. 図4Aは、導電フィルムの一例を概略的に示す拡大断面図である。FIG. 4A is an enlarged cross-sectional view schematically showing an example of a conductive film. 図4Bは、導電フィルムの一例を概略的に示す拡大断面図である。FIG. 4B is an enlarged cross-sectional view schematically showing an example of a conductive film. 図5Aは、導電フィルムの他の例を概略的に示す拡大断面図である。FIG. 5A is an enlarged cross-sectional view schematically showing another example of a conductive film. 図5Bは、導電フィルムの他の例を概略的に示す拡大断面図である。FIG. 5B is an enlarged cross-sectional view schematically showing another example of a conductive film. 図6Aは、本発明の他の実施形態に係る電極接続部の第1構成例を示す拡大断面図である。FIG. 6A is an enlarged cross-sectional view showing a first configuration example of an electrode connecting portion according to another embodiment of the present invention. 図6Bは、本発明の他の実施形態に係る電極接続部の第2構成例を示す拡大断面図である。FIG. 6B is an enlarged cross-sectional view showing a second configuration example of the electrode connecting portion according to another embodiment of the present invention. 図7は、調光体を備えた移動体の一例(自動車)を概略的に示す斜視図である。FIG. 7 is a perspective view schematically showing an example (automobile) of a moving body provided with a dimmer. 図8は、調光体の一例を示す縦断面図である。FIG. 8 is a longitudinal sectional view showing an example of a light control body. 図9Aは、FPC等の外部電極体を電極層に接続する工程の典型例を示す図である。FIG. 9A is a diagram illustrating a typical example of a process of connecting an external electrode body such as an FPC to an electrode layer. 図9Bは、外部電極体を電極層に接続する工程の典型例を示す図である。FIG. 9B is a diagram illustrating a typical example of a process of connecting the external electrode body to the electrode layer. 図9Cは、外部電極体を電極層に接続する工程の典型例を示す図である。FIG. 9C is a diagram illustrating a typical example of a process of connecting the external electrode body to the electrode layer. 図9Dは、外部電極体を電極層に接続する工程の典型例を示す図である。FIG. 9D is a diagram illustrating a typical example of a process of connecting the external electrode body to the electrode layer.
 以下、図面を参照して本発明の一実施形態について説明する。なお、図示及び理解を容易にするため、図面に示される各要素のサイズや要素間のサイズ比率等は必ずしも図面間で一致していないが、当業者であれば各図面に示された要素のサイズやサイズ比率等を容易に理解することができる。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. For ease of illustration and understanding, the size of each element shown in the drawings and the size ratio between the elements do not necessarily match between the drawings, but those skilled in the art will understand the elements shown in each drawing. Sizes and size ratios can be easily understood.
 図1は、調光セル10の一例を示す平面図である。 FIG. 1 is a plan view showing an example of the light control cell 10.
 本実施形態の調光セル10は、液晶調光部20及び外周部40を備える。液晶調光部20は、光の透過率が可変であり、例えば外部からの侵入光の透過率及び遮光率を変えて、所望の調光機能を発揮することができる。外周部40は、液晶調光部20に隣接して設けられ、図1に示す調光セル10では液晶調光部20の周囲に設けられている。この外周部40には、FPC等の外部電極体12を接続するための電極接続部41が設けられている。 The light control cell 10 of this embodiment includes a liquid crystal light control unit 20 and an outer peripheral part 40. The liquid crystal light control unit 20 has a variable light transmittance. For example, the liquid crystal light control unit 20 can exhibit a desired light control function by changing the transmittance and the light shielding rate of the intrusion light from the outside. The outer peripheral part 40 is provided adjacent to the liquid crystal light control part 20, and is provided around the liquid crystal light control part 20 in the light control cell 10 shown in FIG. 1. The outer peripheral portion 40 is provided with an electrode connecting portion 41 for connecting the external electrode body 12 such as an FPC.
 図2は、液晶調光部20の構成例を示す拡大断面図である。なお、図2には液晶調光部20を構成する要素の一部のみが簡略的に拡大して示されている。 FIG. 2 is an enlarged cross-sectional view showing a configuration example of the liquid crystal light control unit 20. In FIG. 2, only a part of the elements constituting the liquid crystal dimming unit 20 is simply enlarged and shown.
 液晶調光部20は、一対の偏光板21、22と、偏光板21、22間に配置された一対の基材層23、24と、基材層23、24間に配置された一対の電極層25、26と、電極層25、26間に配置された一対の配向層27、28と、配向層27、28間に配置された液晶層29とを有する。基材層23によって支持されている電極層25は配向層27によって被覆され、基材層24により支持されている電極層26は配向層28によって被覆されている。なお、本実施形態の基材層23、24は樹脂によって構成されている。 The liquid crystal light control unit 20 includes a pair of polarizing plates 21 and 22, a pair of base material layers 23 and 24 disposed between the polarizing plates 21 and 22, and a pair of electrodes disposed between the base material layers 23 and 24. The layers 25 and 26, a pair of alignment layers 27 and 28 disposed between the electrode layers 25 and 26, and a liquid crystal layer 29 disposed between the alignment layers 27 and 28. The electrode layer 25 supported by the base material layer 23 is covered with an alignment layer 27, and the electrode layer 26 supported by the base material layer 24 is covered with an alignment layer 28. In addition, the base material layers 23 and 24 of this embodiment are comprised with resin.
 液晶層29は、液晶調光部20の全体にわたって設けられているが、外周部40には設けられていない。一方、配向層27、28、電極層25、26及び基材層23、24は、液晶調光部20の全体だけではなく、外周部40の全体にわたって設けられており、それぞれ液晶調光部20及び外周部40において一体的な構成を有する。偏光板21、22等の液晶調光部20を構成する他の要素は、液晶調光部20及び外周部40にわたって設けられていてもよいし、液晶調光部20のみに設けられていてもよい。 The liquid crystal layer 29 is provided over the entire liquid crystal light control unit 20, but is not provided in the outer peripheral part 40. On the other hand, the alignment layers 27 and 28, the electrode layers 25 and 26, and the base material layers 23 and 24 are provided not only on the entire liquid crystal light control unit 20 but also on the entire outer periphery 40. The outer peripheral portion 40 has an integral structure. Other elements constituting the liquid crystal light control unit 20 such as the polarizing plates 21 and 22 may be provided over the liquid crystal light control unit 20 and the outer peripheral part 40, or may be provided only in the liquid crystal light control unit 20. Good.
 なお、液晶調光部20の構成は特に限定されず、図2に示す構成以外の構成を有していてもよい。ただし、本実施形態の液晶調光部20は、液晶層、配向層及び電極層を少なくとも有する。 The configuration of the liquid crystal light control unit 20 is not particularly limited, and may have a configuration other than the configuration shown in FIG. However, the liquid crystal light control unit 20 of the present embodiment includes at least a liquid crystal layer, an alignment layer, and an electrode layer.
 液晶層として、典型的には、VA(Vertical Alignment)型、TN(Twisted Nematic)型、IPS(In-Place-Switching)型、及びFFS(Fringe Field Switching)型の液晶層が知られており、液晶調光部20は液晶層の駆動方式に応じた構成を有する。図2に示す液晶調光部20では液晶層29の両側に電極層25、26が配置されているが、例えばIPS型の液晶層等を採用する液晶調光部20では、電極が液晶層の片側にのみ配置されていてもよい。また液晶調光部20がゲストホスト型の液晶層(すなわち二色性色素(ゲスト)及び液晶(ホスト)を含む液晶層)を採用する場合には、例えば、配向層によって付与される液晶の配向性に応じて、偏光板が液晶層の片側にのみ設けられていてもよいし、偏光板が設けられていなくてもよい。また液晶調光部20は、上述の要素以外の要素を含んでいてもよく、例えば、液晶層の間隔を保持するためのスペーサ、シール部、インデックスマッチング層、ハードコート層、及びその他の機能体及び機能層が設けられていてもよい。 Typically, VA (Vertical Alignment) type, TN (Twisted Nematic) type, IPS (In-Place-Switching) type, and FFS (Fringe Field Switching) type liquid crystal layer are known as the liquid crystal layer, The liquid crystal light control unit 20 has a configuration corresponding to the driving method of the liquid crystal layer. In the liquid crystal light control unit 20 shown in FIG. 2, the electrode layers 25 and 26 are arranged on both sides of the liquid crystal layer 29. However, in the liquid crystal light control unit 20 adopting, for example, an IPS type liquid crystal layer, the electrode is the liquid crystal layer. It may be arranged only on one side. Further, when the liquid crystal light control unit 20 employs a guest-host type liquid crystal layer (that is, a liquid crystal layer including a dichroic dye (guest) and a liquid crystal (host)), for example, the alignment of the liquid crystal provided by the alignment layer Depending on the property, the polarizing plate may be provided only on one side of the liquid crystal layer, or the polarizing plate may not be provided. Moreover, the liquid crystal light control part 20 may contain elements other than the above-mentioned elements, for example, a spacer, a seal part, an index matching layer, a hard coat layer, and other functional bodies for maintaining the interval between the liquid crystal layers. And a functional layer may be provided.
 次に、電極接続部41の構成について説明する。 Next, the configuration of the electrode connecting portion 41 will be described.
 図3A及び図3Bは、本発明の一実施形態に係る電極接続部41の構成例を示す拡大断面図であり、電極接続部41を構成する複数層の積層方向(すなわち図1の紙面に垂直な方向)に関する断面を示す。図3Aは、導電フィルム30(例えばACF:Anisotropic Conductive Film)が、両側に配置される外部電極体12(すなわち外部電極46及び外部支持部47)と配向層28、電極層26及び基材層24とから分離した状態を示す。図3Bは、基材層24、電極層26、配向層28、導電フィルム30及び外部電極体12(すなわち外部電極46及び外部支持部47)が順次積層した状態を示す。 3A and 3B are enlarged cross-sectional views showing a configuration example of the electrode connection portion 41 according to an embodiment of the present invention, in which a plurality of layers constituting the electrode connection portion 41 are stacked (that is, perpendicular to the paper surface of FIG. 1). A cross-section with respect to a specific direction is shown. FIG. 3A shows an external electrode body 12 (that is, an external electrode 46 and an external support portion 47) in which a conductive film 30 (for example, ACF: Anisotropic Conductive Film) is disposed on both sides, an alignment layer 28, an electrode layer 26, and a base material layer 24. Shows a state separated from. FIG. 3B shows a state in which the base material layer 24, the electrode layer 26, the orientation layer 28, the conductive film 30 and the external electrode body 12 (that is, the external electrode 46 and the external support portion 47) are sequentially laminated.
 電極接続部41は、配向層28、電極層26及び基材層24の他に、導電フィルム30を有する。導電フィルム30は配向層28上に形成される。電極接続部41において、導電フィルム30と電極層26との間には少なくとも一部領域において配向層28が配置されている。図3A及び図3Bに示す電極接続部41では、導電フィルム30と電極層26との間の全領域において配向層28が配置されており、導電フィルム30及び電極層26の両者によって覆われる範囲の全体にわたって配向層28が配置されている。 The electrode connection part 41 includes a conductive film 30 in addition to the alignment layer 28, the electrode layer 26, and the base material layer 24. The conductive film 30 is formed on the alignment layer 28. In the electrode connection portion 41, the alignment layer 28 is disposed in at least a partial region between the conductive film 30 and the electrode layer 26. In the electrode connection portion 41 shown in FIGS. 3A and 3B, the alignment layer 28 is disposed in the entire region between the conductive film 30 and the electrode layer 26, and is in a range covered by both the conductive film 30 and the electrode layer 26. An alignment layer 28 is disposed throughout.
 そして導電フィルム30の一部が、導電フィルム30と電極層26との間に配置される配向層28に食い込んで配置されることによって、導電フィルム30及び電極層26は相互に電気的に導通される。なお、導電フィルム30の形成方法は特に限定されない。典型的には、電極接続部41の配向層28上に導電フィルム30を形成し、当該導電フィルム30上に外部電極体12(特に外部電極46)を圧着することによって、導電フィルム30の一部を配向層28に食い込ませる。これにより、導電フィルム30及び電極層26は相互に電気的に導通され、外部電極46及び電極層26は導電フィルム30を介して相互に電気的に導通される。 The conductive film 30 and the electrode layer 26 are electrically connected to each other by part of the conductive film 30 biting into the alignment layer 28 disposed between the conductive film 30 and the electrode layer 26. The In addition, the formation method of the conductive film 30 is not specifically limited. Typically, a part of the conductive film 30 is formed by forming the conductive film 30 on the alignment layer 28 of the electrode connection portion 41 and pressing the external electrode body 12 (particularly, the external electrode 46) on the conductive film 30. Bite into the alignment layer 28. Thereby, the conductive film 30 and the electrode layer 26 are electrically connected to each other, and the external electrode 46 and the electrode layer 26 are electrically connected to each other via the conductive film 30.
 導電フィルム30の構成は、上述の機能を発揮するのであれば特に限定されないが、典型的には、導電フィルム30は図4A及び図4Bに示す構成や図5A及び図5Bに示す構成を有しうる。 The configuration of the conductive film 30 is not particularly limited as long as it exhibits the above-described function. Typically, the conductive film 30 has the configuration shown in FIGS. 4A and 4B and the configuration shown in FIGS. 5A and 5B. sell.
 図4A及び図4Bは、導電フィルム30の一例を概略的に示す拡大断面図であり、電極接続部41を構成する複数層の積層方向(すなわち図1の紙面に垂直な方向)に関する断面を示す。図4Aは、導電フィルム30が、両側に配置される外部電極体12(すなわち外部電極46及び外部支持部47)と配向層28、電極層26及び基材層24とから分離した状態を示す。図4Bは、基材層24、電極層26、配向層28、導電フィルム30及び外部電極体12(すなわち外部電極46及び外部支持部47)が順次積層した状態を示す。 4A and 4B are enlarged cross-sectional views schematically showing an example of the conductive film 30, and show a cross section in the stacking direction of a plurality of layers constituting the electrode connecting portion 41 (that is, a direction perpendicular to the paper surface of FIG. 1). . 4A shows a state in which the conductive film 30 is separated from the external electrode body 12 (that is, the external electrode 46 and the external support portion 47) disposed on both sides, the alignment layer 28, the electrode layer 26, and the base material layer 24. FIG. FIG. 4B shows a state in which the base material layer 24, the electrode layer 26, the alignment layer 28, the conductive film 30, and the external electrode body 12 (that is, the external electrode 46 and the external support portion 47) are sequentially laminated.
 図4A及び図4Bに示す導電フィルム30は、複数の導電粒子31を含む。図4Bに示すように、導電フィルム30及び配向層28を介して外部電極体12(特に外部電極46)が電極層26に圧着されている状態で、導電フィルム30に含まれる複数の導電粒子31の少なくとも一部は、導電フィルム30と電極層26との間に配置される配向層28に食い込んでいる。 The conductive film 30 shown in FIGS. 4A and 4B includes a plurality of conductive particles 31. As shown in FIG. 4B, a plurality of conductive particles 31 included in the conductive film 30 in a state where the external electrode body 12 (particularly the external electrode 46) is pressure-bonded to the electrode layer 26 via the conductive film 30 and the alignment layer 28. At least a part of the bite bites into the alignment layer 28 disposed between the conductive film 30 and the electrode layer 26.
 また特に、導電フィルム30に含まれる複数の導電粒子31の少なくとも一部は、図4A及び図4Bに示すように、導電フィルム30と電極層26との間に配置される配向層28の厚みよりも大きな径を有する。そして、外部電極体12(特に外部電極46)が導電フィルム30上に配置され配向層28及び電極層26に向かって押圧されることにより、各導電粒子31は配向層28に食い込み、導電粒子31と電極層26との間の間隔が小さくなる。これにより、各導電粒子31と電極層26との間で絶縁破壊が生じ、外部電極46と電極層26とは各導電粒子31を介して相互に電気的に導通可能となる。 In particular, at least a part of the plurality of conductive particles 31 included in the conductive film 30 is larger than the thickness of the alignment layer 28 disposed between the conductive film 30 and the electrode layer 26 as shown in FIGS. 4A and 4B. Also have a large diameter. Then, the external electrode body 12 (particularly the external electrode 46) is disposed on the conductive film 30 and pressed toward the alignment layer 28 and the electrode layer 26, whereby each conductive particle 31 bites into the alignment layer 28, and the conductive particle 31. And the distance between the electrode layer 26 is reduced. Thereby, dielectric breakdown occurs between each conductive particle 31 and the electrode layer 26, and the external electrode 46 and the electrode layer 26 can be electrically connected to each other via each conductive particle 31.
 図5A及び図5Bは、導電フィルム30の他の例を概略的に示す拡大断面図であり、電極接続部41を構成する複数層の積層方向(すなわち図1の紙面に垂直な方向)に関する断面を示す。図5Aは、導電フィルム30が、両側に配置される外部電極体12(すなわち外部電極46及び外部支持部47)と配向層28、電極層26及び基材層24とから分離した状態を示す。図5Bは、基材層24、電極層26、配向層28、導電フィルム30及び外部電極体12(すなわち外部電極46及び外部支持部47)が順次積層した状態を示す。 5A and 5B are enlarged cross-sectional views schematically showing another example of the conductive film 30, and a cross section in the stacking direction of a plurality of layers constituting the electrode connecting portion 41 (that is, a direction perpendicular to the paper surface of FIG. 1). Indicates. FIG. 5A shows a state in which the conductive film 30 is separated from the external electrode body 12 (that is, the external electrode 46 and the external support portion 47) disposed on both sides, the alignment layer 28, the electrode layer 26, and the base material layer 24. FIG. 5B shows a state in which the base material layer 24, the electrode layer 26, the alignment layer 28, the conductive film 30, and the external electrode body 12 (that is, the external electrode 46 and the external support portion 47) are sequentially laminated.
 図5A及び図5Bに示す導電フィルム30は、図4A及び図4Bに示す導電フィルム30と同様に、複数の導電粒子31を含む。そして、導電フィルム30及び配向層28を介して外部電極体12(特に外部電極46)が電極層26に圧着されている状態(図5B参照)で、導電フィルム30に含まれる複数の導電粒子31の一部が、導電フィルム30と電極層26との間に配置される配向層28に食い込んでいる。 The conductive film 30 shown in FIGS. 5A and 5B includes a plurality of conductive particles 31 in the same manner as the conductive film 30 shown in FIGS. 4A and 4B. The plurality of conductive particles 31 included in the conductive film 30 in a state where the external electrode body 12 (particularly, the external electrode 46) is pressure-bonded to the electrode layer 26 via the conductive film 30 and the alignment layer 28 (see FIG. 5B). A part of this bites into the alignment layer 28 disposed between the conductive film 30 and the electrode layer 26.
 ただし、導電フィルム30に含まれる複数の導電粒子31の少なくとも一部は、図5A及び図5Bに示すように、導電フィルム30と電極層26との間に配置される配向層28の厚み以下の径を有する。そして、外部電極体12(特に外部電極46)が導電フィルム30上に配置され配向層28及び電極層26に向かって押圧されることにより、一部の導電粒子31が配向層28に食い込み、導電粒子31と電極層26との間の間隔が小さくなる。これにより、導電粒子31と電極層26との間で絶縁破壊が生じ、外部電極46と電極層26とは導電粒子31を介して電気的に導通可能となる。 However, at least a part of the plurality of conductive particles 31 included in the conductive film 30 is equal to or less than the thickness of the alignment layer 28 disposed between the conductive film 30 and the electrode layer 26, as shown in FIGS. 5A and 5B. Have a diameter. Then, when the external electrode body 12 (particularly the external electrode 46) is disposed on the conductive film 30 and pressed toward the alignment layer 28 and the electrode layer 26, a part of the conductive particles 31 bite into the alignment layer 28, and the conductive layer The interval between the particles 31 and the electrode layer 26 is reduced. Thereby, dielectric breakdown occurs between the conductive particles 31 and the electrode layer 26, and the external electrode 46 and the electrode layer 26 can be electrically connected via the conductive particles 31.
 なお、図4A及び図4Bに示す電極接続部41と図5A及び図5Bに示す電極接続部41との各々において、導電粒子31は配向層28を貫いて電極層26に接触していてもよいし、配向層28を貫かず電極層26に接触していなくてもよい。ただし、いずれにしても、外部電極46と電極層26とは導電粒子31を介して電気的に導通可能である。導電粒子31と電極層26との間で絶縁破壊を確実に生じさせる観点からは、導電粒子31が配向層28を貫いて電極層26に対して直接的に接触するように、導電フィルム30及び配向層28を介して外部電極体12(特に外部電極46)を電極層26に圧着させることが好ましい。ただし、導電粒子31と電極層26とは必ずしも直接的に接触している必要はなく、導電粒子31と電極層26との間で絶縁破壊が生じる程度に導電粒子31が電極層26に近づいていればよい。 In each of the electrode connection part 41 shown in FIGS. 4A and 4B and the electrode connection part 41 shown in FIGS. 5A and 5B, the conductive particles 31 may penetrate the alignment layer 28 and contact the electrode layer 26. However, it does not have to penetrate the alignment layer 28 and be in contact with the electrode layer 26. However, in any case, the external electrode 46 and the electrode layer 26 can be electrically connected via the conductive particles 31. From the viewpoint of surely causing dielectric breakdown between the conductive particles 31 and the electrode layer 26, the conductive film 30 and the conductive film 30 and the electrode layer 26 so that the conductive particles 31 penetrate the alignment layer 28 and are in direct contact with each other. It is preferable that the external electrode body 12 (particularly the external electrode 46) is pressure-bonded to the electrode layer 26 via the alignment layer 28. However, the conductive particles 31 and the electrode layer 26 are not necessarily in direct contact, and the conductive particles 31 are close to the electrode layer 26 to such an extent that dielectric breakdown occurs between the conductive particles 31 and the electrode layer 26. Just do it.
 また、図4A及び図4Bに示す電極接続部41と図5A及び図5Bに示す電極接続部41との各々において、導電粒子31は外部電極46に接触していてもよいし、外部電極46に接触していなくてもよい。ただし、いずれにしても、外部電極46と電極層26とは導電粒子31を介して電気的に導通可能である。導電粒子31と外部電極46との間で電気的な導通を確実に確保する観点からは、導電粒子31が外部電極46に対して直接的に接触することが好ましい。ただし、導電粒子31と外部電極46とは必ずしも接触している必要はなく、導電粒子31と外部電極46との間で電気的な導通が可能な程度に導電粒子31が外部電極46に近づいていればよい。 4A and 4B and the electrode connection part 41 shown in FIGS. 5A and 5B, the conductive particles 31 may be in contact with the external electrode 46, or the external electrode 46 It may not be in contact. However, in any case, the external electrode 46 and the electrode layer 26 can be electrically connected via the conductive particles 31. From the viewpoint of ensuring electrical continuity between the conductive particle 31 and the external electrode 46, it is preferable that the conductive particle 31 is in direct contact with the external electrode 46. However, the conductive particles 31 and the external electrode 46 are not necessarily in contact with each other, and the conductive particles 31 are close to the external electrode 46 to such an extent that electrical conduction between the conductive particles 31 and the external electrode 46 is possible. Just do it.
 なお、各導電粒子31は、電気伝導体と同等程度に電気を導通させることができるのであれば(例えば電気伝導率が10S/m以上であれば)、その具体的な構成は特に限定されない。例えば、金属等の電気伝導体のみによって各導電粒子31を構成してもよいし、樹脂や金属等を金属等(例えば銀や金)の優れた導電性を有する電気伝導体によってコーティングすることによって各導電粒子31が作られてもよい。典型的には、ニッケル等の金属に金メッキを施した粒子を各導電粒子31として使用することができる。このように複数の材料から構成される導電粒子31は、その構成材料に基づく複数の特徴をバランス良く持つことができる。例えば、上述のように複数の材料を組み合わせることによって、単一種類の金属のみによって構成される導電粒子31に比べ、各導電粒子31を柔らかく構成することができ、各導電粒子31が電極層26を傷つけたり破損したりすることを防ぐことができる。また、図4A、図4B、図5A及び図5Bに示す各導電粒子31は球体であるが、各導電粒子31の形状は特に限定されず、各導電粒子31は、配向層28に食い込むことができる任意の形状を有することができる。また導電フィルム30には、ほぼ一定の径を有する複数の導電粒子31が含まれていてもよいし、様々な径を有する複数の導電粒子31が含まれていてもよく、例えば、配向層28の厚みよりも大きな径を有する導電粒子31と配向層28の厚み以下の径を有する導電粒子31とが混在していてもよい。 In addition, as long as each conductive particle 31 can conduct electricity to the same extent as an electric conductor (for example, if electric conductivity is 10 6 S / m or more), the specific configuration is particularly limited. Not. For example, each conductive particle 31 may be constituted only by an electric conductor such as metal, or by coating a resin, metal, or the like with an electric conductor having excellent conductivity such as metal (for example, silver or gold). Each conductive particle 31 may be made. Typically, particles obtained by performing gold plating on a metal such as nickel can be used as each conductive particle 31. Thus, the conductive particles 31 composed of a plurality of materials can have a plurality of characteristics based on the constituent materials in a well-balanced manner. For example, by combining a plurality of materials as described above, it is possible to make each conductive particle 31 softer than the conductive particles 31 made of only a single kind of metal. Can be prevented from being damaged or damaged. 4A, 4B, 5A, and 5B are spherical, but the shape of each conductive particle 31 is not particularly limited, and each conductive particle 31 may bite into the alignment layer 28. It can have any shape possible. Further, the conductive film 30 may include a plurality of conductive particles 31 having a substantially constant diameter, or may include a plurality of conductive particles 31 having various diameters. The conductive particles 31 having a diameter larger than the thickness of the conductive particles 31 and the conductive particles 31 having a diameter equal to or smaller than the thickness of the alignment layer 28 may be mixed.
 また、導電フィルム30の構成成分のうち各導電粒子31を保持する粒子保持材の構成成分や状態も特に限定されない。例えば、流動状態(例えば液状又はゲル状)の粒子保持材を各導電粒子31とともに配向層28上に塗布し、粒子保持材が流動状態を保持している間に外部電極体12を導電フィルム30上に圧着し、その後、粒子保持材を流動状態から固体状態に変化させてもよい。この場合には、導電粒子31を配向層28に食い込ませたり、導電フィルム30の厚みを調整したり、導電フィルム30を外部電極体12(特に外部電極46)及び配向層28に対して適切に固着させたりすることが容易である。 Also, the constituent components and state of the particle holding material that holds the respective conductive particles 31 among the constituent components of the conductive film 30 are not particularly limited. For example, a particle holding material in a fluid state (for example, liquid or gel) is applied onto the alignment layer 28 together with the respective conductive particles 31, and the external electrode body 12 is attached to the conductive film 30 while the particle holding material maintains the fluid state. Then, the particle holding material may be changed from a fluid state to a solid state. In this case, the conductive particles 31 are digged into the alignment layer 28, the thickness of the conductive film 30 is adjusted, and the conductive film 30 is appropriately applied to the external electrode body 12 (particularly the external electrode 46) and the alignment layer 28. It is easy to fix.
 なお、拡大図として提供されている上述の図4A、図4B、図5A及び図5Bでは一様な厚みを有する外部電極体12が示されているが、外部電極体12は必ずしも一様な厚みを有していなくてもよい。例えば、外部電極体12のうち外部電極46及び外部支持部47が設けられている箇所と、外部支持部47のみが設けられている箇所との間で厚みが異なっていてもよい。 4A, FIG. 4B, FIG. 5A, and FIG. 5B provided as enlarged views show the external electrode body 12 having a uniform thickness. However, the external electrode body 12 is not necessarily uniform in thickness. May not be included. For example, the thickness may be different between a portion of the external electrode body 12 where the external electrode 46 and the external support portion 47 are provided and a location where only the external support portion 47 is provided.
 図6A及び図6Bは、本発明の他の実施形態に係る電極接続部41の構成例を示す拡大断面図であり、電極接続部41を構成する複数層の積層方向(すなわち図1の紙面に垂直な方向)に関する断面を示し、図6Aは電極接続部41の第1構成例を示し、図6Bは電極接続部41の第2構成例を示す。図6A及び図6Bは、基材層24、電極層26、配向層28、導電フィルム30及び外部電極体12(すなわち外部電極46及び外部支持部47)が順次積層した状態を示す。なお図6A及び図6Bに示す積層順序は、上述の図3~図5に示す積層順序とは上下方向に関して逆になっている。これは単なる説明の便宜のためであり、図6A及び図6Bに示す電極接続部41は、図3~図5に示す電極接続部41とは異なる部分に対応するわけではなく、また図6A及び図6Bに示す電極接続部41の積層順序が図3~図5に示す電極接続部41の積層順序と逆になっているわけではない。また図6A及び図6Bには、図4A及び図4Bに示すような配向層28の厚み以上の径を有する導電粒子31が図示されているが、図5A及び図5Bに示すような配向層28の厚みよりも小さい径を有する導電粒子31が導電フィルム30に含まれる場合にも、同様にして電極接続部41を構成することができる。 6A and 6B are enlarged cross-sectional views showing a configuration example of an electrode connection portion 41 according to another embodiment of the present invention, in the stacking direction of a plurality of layers constituting the electrode connection portion 41 (that is, on the paper surface of FIG. 1). 6A shows a first configuration example of the electrode connection portion 41, and FIG. 6B shows a second configuration example of the electrode connection portion 41. 6A and 6B show a state in which the base material layer 24, the electrode layer 26, the alignment layer 28, the conductive film 30, and the external electrode body 12 (that is, the external electrode 46 and the external support portion 47) are sequentially laminated. Note that the stacking order shown in FIGS. 6A and 6B is opposite to the stacking order shown in FIGS. 3 to 5 in the vertical direction. This is merely for convenience of explanation, and the electrode connecting portion 41 shown in FIGS. 6A and 6B does not correspond to a different portion from the electrode connecting portion 41 shown in FIGS. 3 to 5, and FIG. The stacking order of the electrode connecting portions 41 shown in FIG. 6B is not reverse to the stacking order of the electrode connecting portions 41 shown in FIGS. 6A and 6B show conductive particles 31 having a diameter equal to or larger than the thickness of the alignment layer 28 as shown in FIGS. 4A and 4B, the alignment layer 28 as shown in FIGS. 5A and 5B. Even when the conductive film 31 includes a conductive particle 31 having a diameter smaller than the thickness of the electrode connection portion 41, the electrode connection portion 41 can be configured in the same manner.
 図6A及び図6Bに示す電極接続部41においても、導電フィルム30の一方側(図6A及び図6Bの下側)に外部電極46を含む外部電極体12が貼り付けられ、導電フィルム30の他方側(図6A及び図6Bの上側)に配向層28、電極層26及び基材層24が貼り付けられている。したがって、導電フィルム30を介して外部電極体12(すなわち外部電極46及び外部支持部47)と配向層28及び電極層26とは対向する。 6A and 6B, the external electrode body 12 including the external electrode 46 is attached to one side of the conductive film 30 (the lower side of FIGS. 6A and 6B). The alignment layer 28, the electrode layer 26, and the base material layer 24 are affixed on the side (the upper side in FIGS. 6A and 6B). Therefore, the external electrode body 12 (that is, the external electrode 46 and the external support portion 47), the alignment layer 28, and the electrode layer 26 face each other with the conductive film 30 interposed therebetween.
 ただし図6A及び図6Bに示す電極接続部41では、導電フィルム30は、相対的に厚い部分30Bと相対的に薄い部分30Aとを有する。図6A及び図6Bに示す電極接続部41では、導電フィルム30の相対的に薄い部分30Aは、外部電極46が配置される箇所に対応し、導電フィルム30のうち相対的に厚い部分30Bは、外部電極体12において外部電極46が配置されていない箇所(すなわち外部支持部47のみが設けられている箇所)に対応する。なお外部電極体12にも相対的に厚い部分と相対的に薄い部分とが存在し、相対的に厚い部分に外部電極46が設けられ、相対的に薄い部分には外部電極46が設けられない。 However, in the electrode connection portion 41 shown in FIGS. 6A and 6B, the conductive film 30 has a relatively thick portion 30B and a relatively thin portion 30A. 6A and 6B, the relatively thin portion 30A of the conductive film 30 corresponds to the location where the external electrode 46 is disposed, and the relatively thick portion 30B of the conductive film 30 is This corresponds to a location where the external electrode 46 is not disposed in the external electrode body 12 (that is, a location where only the external support portion 47 is provided). The external electrode body 12 also has a relatively thick portion and a relatively thin portion, the external electrode 46 is provided in the relatively thick portion, and the external electrode 46 is not provided in the relatively thin portion. .
 そして外部電極46は、導電フィルム30のうち相対的に薄い部分30Aを介し、電極層26と電気的に導通される。導電フィルム30を介して外部電極体12を電極接続部41に貼り合わせる際に、導電フィルム30のうち外部電極46が設けられていない箇所(図6A及び図6Bの符合「30B」参照)に比べ、外部電極46に対応する箇所(図6A及び図6Bの符合「30A」参照)がより強く配向層28に向かって押圧される。これにより、導電フィルム30のうち外部電極46に対応する箇所(図6A及び図6Bの符合「30A」参照)に含まれる導電粒子31が配向層28に食い込み、この導電フィルム30のうち相対的薄い部分30Aに存在する導電粒子31と電極層26との間で絶縁破壊が生じ、外部電極46と電極層26とはその導電粒子31を介して相互に電気的に導通可能となる。このように、導電フィルム30の相対的に薄い部分30Aを介して電極層26と外部電極46とを電気的に導通させることで、その電気的な導通を比較的簡単且つ確実に実現することができる。 The external electrode 46 is electrically connected to the electrode layer 26 through a relatively thin portion 30A of the conductive film 30. When the external electrode body 12 is bonded to the electrode connecting portion 41 via the conductive film 30, compared to a portion of the conductive film 30 where the external electrode 46 is not provided (see reference numeral “30B” in FIGS. 6A and 6B). A portion corresponding to the external electrode 46 (see reference numeral “30A” in FIGS. 6A and 6B) is more strongly pressed toward the alignment layer. As a result, the conductive particles 31 included in the portion of the conductive film 30 corresponding to the external electrode 46 (see reference numeral “30A” in FIGS. 6A and 6B) bite into the alignment layer 28, and the conductive film 30 is relatively thin. Dielectric breakdown occurs between the conductive particles 31 present in the portion 30 </ b> A and the electrode layer 26, and the external electrode 46 and the electrode layer 26 can be electrically connected to each other via the conductive particles 31. Thus, by electrically conducting the electrode layer 26 and the external electrode 46 through the relatively thin portion 30A of the conductive film 30, the electrical conduction can be realized relatively easily and reliably. it can.
 また図6A及び図6Bに示す電極接続部41には、配向層28において複数のスペーサ60が存在してもよい。これらのスペーサ60は、配向層28から導電フィルム30側に向かって突出し、導電フィルム30に食い込むように設けられていてもよく、層構造を有する配向層28及び導電フィルム30の両者にわたって存在するように設けられていてもよい。このように、導電フィルム30を介して外部電極体12を配向層28及び電極層26に対して接着した際に、配向層28により支持されているスペーサ60が導電フィルム30に食い込むように配置されることで、また配向層28により支持されているスペーサ60が層構造を有する配向層28及び導電フィルム30の両者にわたって存在するように設けられることで、配向層28及び電極層26に対する導電フィルム30及び外部電極体12(特に導電フィルム30)の密着性を向上させることができる。これにより、例えば、配向層28及び電極層26に対する導電フィルム30及び外部電極体12の位置ズレを防ぐことができ、また導電フィルム30及び外部電極体12の意図しない剥離を効果的に抑制することができる。 Moreover, a plurality of spacers 60 may exist in the alignment layer 28 in the electrode connection portion 41 shown in FIGS. 6A and 6B. These spacers 60 may be provided so as to protrude from the alignment layer 28 toward the conductive film 30 and to bite into the conductive film 30, and to exist over both the alignment layer 28 and the conductive film 30 having a layer structure. May be provided. As described above, when the external electrode body 12 is bonded to the alignment layer 28 and the electrode layer 26 through the conductive film 30, the spacer 60 supported by the alignment layer 28 is arranged to bite into the conductive film 30. In addition, the conductive film 30 for the alignment layer 28 and the electrode layer 26 is provided so that the spacer 60 supported by the alignment layer 28 exists over both the alignment layer 28 and the conductive film 30 having a layer structure. And the adhesiveness of the external electrode body 12 (especially conductive film 30) can be improved. Thereby, for example, the positional deviation of the conductive film 30 and the external electrode body 12 with respect to the alignment layer 28 and the electrode layer 26 can be prevented, and unintended peeling of the conductive film 30 and the external electrode body 12 can be effectively suppressed. Can do.
 なお電極接続部41に配置されるスペーサ60は、液晶調光部20(図1参照)の液晶層29(図2参照)において所望の厚み(すなわちセルギャップ)を確保するために液晶層29中に配置されるスペーサと同じものにすることができる。通常、そのようなスペーサのサイズは導電粒子31のサイズよりも十分に小さく、例えば図6A及び図6Bに示すビーズ状のスペーサ60の径は導電粒子の径の数分の1~数十分の1程度としうる。また単位面積当たりの数についても、スペーサ60の数は導電粒子31の数の数分の1~数十分の1程度としうる。このようなスペーサ60が電極層26と外部電極体12(特に外部電極46)との間に存在していても、スペーサ60は電極層26と外部電極体12との間の導電性や密着性に対して実質的に悪影響を及ぼさない。むしろ上述のように、電極層26と外部電極体12との間に設けられるスペーサ60は、電極層26と外部電極体12との間の密着性に関して良い影響を及ぼす。 The spacer 60 disposed in the electrode connecting portion 41 is provided in the liquid crystal layer 29 in order to secure a desired thickness (that is, a cell gap) in the liquid crystal layer 29 (see FIG. 2) of the liquid crystal light adjusting portion 20 (see FIG. 1). It can be the same as the spacer disposed in the. In general, the size of such a spacer is sufficiently smaller than the size of the conductive particles 31. For example, the diameter of the bead-shaped spacer 60 shown in FIGS. 6A and 6B is one to several tens of times the diameter of the conductive particles. It can be about 1. As for the number per unit area, the number of the spacers 60 may be about one-tenth to several tenths of the number of the conductive particles 31. Even if such a spacer 60 exists between the electrode layer 26 and the external electrode body 12 (particularly, the external electrode 46), the spacer 60 has conductivity and adhesion between the electrode layer 26 and the external electrode body 12. Is not substantially adversely affected. Rather, as described above, the spacer 60 provided between the electrode layer 26 and the external electrode body 12 has a positive effect on the adhesion between the electrode layer 26 and the external electrode body 12.
 なお電極接続部41に配置されるスペーサ60は、液晶調光部20の液晶層29に配置されるスペーサと異なるものとしてもよい。またスペーサ60の形状及び配置は限定されない。例えば、導電フィルム30及び外部電極体12の位置ズレや剥離を抑制する観点からは、各スペーサ60の全体を配向層28の構成材料により被覆して配向層28に対する各スペーサ60の固着性を向上させることが好ましいが(図6A参照)、各スペーサ60の一部が配向層28の構成材料により被覆されていなくてもよい(図6B参照)。各スペーサ60の一部が配向層28の構成材料により被覆されていなくても、各スペーサ60の一部が配向層28と導電フィルムの両方にわたって存在するように設けられていれば、配向層28に対する導電フィルム30の密着性を向上させることができるという効果を得ることができる。各スペーサ60の全体を28の構成材料により被覆する場合には、例えば配向層28を形成する材料に多数のスペーサ60を予め混合しておき、この材料(塗工液)を電極層26上に塗工した後に、この塗工液の溶剤を乾燥炉等にて揮発させてもよい。このような多数のスペーサ60を含む塗工液の溶剤を揮発させると、塗工液の水位(液位)が減少するが、スペーサ60と接触している部分の塗工液の水位(液位)は、他の部分に比べて減少しない。したがって、スペーサ60の周囲では配向層28が部分的に導電フィルム30側に突出した形で固まって凸部が形成され、この凸部により各スペーサ60が保持される。 In addition, the spacer 60 arrange | positioned at the electrode connection part 41 is good also as a thing different from the spacer arrange | positioned at the liquid-crystal layer 29 of the liquid-crystal light control part 20. FIG. The shape and arrangement of the spacer 60 are not limited. For example, from the viewpoint of suppressing displacement and peeling of the conductive film 30 and the external electrode body 12, the entire spacer 60 is covered with the constituent material of the alignment layer 28 to improve the adhesion of the spacer 60 to the alignment layer 28. Although it is preferable to make them (see FIG. 6A), a part of each spacer 60 may not be covered with the constituent material of the alignment layer 28 (see FIG. 6B). Even if a part of each spacer 60 is not covered with the constituent material of the alignment layer 28, as long as a part of each spacer 60 is provided over both the alignment layer 28 and the conductive film, the alignment layer 28 is provided. The effect that the adhesiveness of the conductive film 30 with respect to can be improved can be acquired. In the case where the entire spacers 60 are covered with 28 constituent materials, for example, a large number of spacers 60 are mixed in advance with the material for forming the alignment layer 28, and this material (coating solution) is placed on the electrode layer 26. After coating, the solvent of this coating solution may be volatilized in a drying furnace or the like. When the solvent of the coating liquid including such a large number of spacers 60 is volatilized, the water level (liquid level) of the coating liquid decreases, but the water level (liquid level) of the coating liquid in the part in contact with the spacer 60 is reduced. ) Does not decrease compared to other parts. Therefore, around the spacer 60, the alignment layer 28 is partially solidified so as to protrude toward the conductive film 30 to form a convex portion, and each spacer 60 is held by the convex portion.
 また図6A及び図6Bに示す各スペーサ60は球形状を有するが、各スペーサ60は、球形状以外の形状を有していてもよく、例えば柱形状を有していてもよい。また図6A及び図6Bに示す各スペーサ60は配向層28を貫通していないが、各スペーサ60は、配向層28を貫通するように電極層26から導電フィルム30に向かって延在してもよい。各スペーサ60を設ける方法も限定されず、例えば電極層26上に配向層28を付与した後に配向層28上にスペーサ60を付与してもよいし、配向層28を構成する材料に予めスペーサ60が混ぜておき、その材料を電極層26上に付与して配向層28を形成してもよいし、フォトリソグラフィ等の技術により電極層26上に柱状のスペーサ60を予め形成しておき、柱状のスペーサ60が形成された状態で電極層26上に配向層28を付与してもよい。 Each spacer 60 shown in FIGS. 6A and 6B has a spherical shape, but each spacer 60 may have a shape other than the spherical shape, for example, may have a column shape. 6A and 6B do not penetrate the alignment layer 28, but each spacer 60 may extend from the electrode layer 26 toward the conductive film 30 so as to penetrate the alignment layer 28. Good. The method of providing each spacer 60 is not limited. For example, after providing the alignment layer 28 on the electrode layer 26, the spacer 60 may be provided on the alignment layer 28. And the alignment layer 28 may be formed by applying the material on the electrode layer 26, or a columnar spacer 60 may be formed in advance on the electrode layer 26 by a technique such as photolithography. The alignment layer 28 may be provided on the electrode layer 26 in a state where the spacer 60 is formed.
 また図6A及び図6Bに示す電極接続部41では、外部電極46の断面形状が、配向層28に向かって先細るテーパー形状(すなわち順テーパー形状)を有する。このように順テーパー形状を有する外部電極46によれば、外部電極体12を電極層26に対して圧着接続する際に、導電フィルム30の材料が外部電極46の側面に沿って流れ易いため、電極接続部41の形成が容易である。また外部電極46が順テーパー形状を有することによって、導電フィルム30を介して外部電極体12を配向層28及び電極層26に対して貼り合わせることで生じうる、外部電極体12と導電フィルム30との間における気泡の混入及びそのような気泡の残存を、効果的に防ぐことができる。外部電極体12と導電フィルム30との間に存在する気泡は、導電フィルム30から外部電極体12が意図せずに剥離する要因になり、また予期しない他の不具合の要因となりうる。そのため、導電フィルム30を介して外部電極体12を配向層28及び電極層26に確実且つ信頼性良く貼り合わせる観点からは、図6A及び図6Bに示すように外部電極46が順テーパー形状を有することが好ましい。 6A and 6B, the cross-sectional shape of the external electrode 46 has a tapered shape (that is, a forward tapered shape) that tapers toward the alignment layer 28. Thus, according to the external electrode 46 having the forward tapered shape, the material of the conductive film 30 easily flows along the side surface of the external electrode 46 when the external electrode body 12 is crimped and connected to the electrode layer 26. The electrode connection portion 41 can be easily formed. In addition, since the external electrode 46 has a forward tapered shape, the external electrode body 12 and the conductive film 30 that can be generated by bonding the external electrode body 12 to the alignment layer 28 and the electrode layer 26 via the conductive film 30 It is possible to effectively prevent air bubbles from entering and remaining of such air bubbles. Bubbles existing between the external electrode body 12 and the conductive film 30 may cause the external electrode body 12 to unintentionally peel from the conductive film 30, and may cause other unexpected problems. Therefore, from the viewpoint of reliably and reliably bonding the external electrode body 12 to the alignment layer 28 and the electrode layer 26 via the conductive film 30, the external electrode 46 has a forward tapered shape as shown in FIGS. 6A and 6B. It is preferable.
 なお、外部電極46の順テーパー形状の具体的な形状は特に限定されず、例えば外部電極46のテーパー部分は直線的に傾斜していてもよいし、曲線的に傾斜していてもよい。また外部電極46のある方向(例えば図1の横方向)に関する断面が上述のような順テーパー形状を有していればよい。 The specific shape of the forward tapered shape of the external electrode 46 is not particularly limited. For example, the tapered portion of the external electrode 46 may be inclined linearly or may be inclined curvedly. Moreover, the cross section regarding the direction (for example, horizontal direction of FIG. 1) of the external electrode 46 should just have the above forward taper shape.
 また図6A及び図6Bに示す電極接続部41では、外部電極46が貼り付けられていない箇所における外部支持部47と電極層26との間の間隔DBは、外部電極46が貼り付けられている箇所における外部支持部47と電極層26との間の間隔DAよりも小さい(すなわちDA>DB)。上述のように、外部電極46を介して導電フィルム30とは反対側には、外部電極46を支持する外部支持部47が設けられている。外部電極46が設けられていない箇所においては、電極層26に対する電気的な導通を確保する必要がないため、外部支持部47と電極層26との間の間隔を狭くすることができる。このように外部支持部47と電極層26と間隔を狭くすることによって、導電フィルム30を介した外部支持部47と電極層26(及び配向層28)との間の密着性を向上させることができる。 Moreover, in the electrode connection part 41 shown to FIG. 6A and 6B, the space | interval DB between the external support part 47 and the electrode layer 26 in the location where the external electrode 46 is not affixed has the external electrode 46 affixed. The distance DA is smaller than the distance DA between the external support 47 and the electrode layer 26 (that is, DA> DB). As described above, the external support portion 47 that supports the external electrode 46 is provided on the side opposite to the conductive film 30 via the external electrode 46. Since it is not necessary to ensure electrical continuity with respect to the electrode layer 26 at a location where the external electrode 46 is not provided, the interval between the external support portion 47 and the electrode layer 26 can be reduced. Thus, by narrowing the distance between the external support 47 and the electrode layer 26, the adhesion between the external support 47 and the electrode layer 26 (and the alignment layer 28) via the conductive film 30 can be improved. it can.
 なお、上述の各実施形態に係る調光セル10の製造方法は、典型的には、以下のステップを含む。すなわち、電極接続部41において、順次積層された配向層28、電極層26及び基材層24を有する積層体であって、配向層28上に導電フィルム30が形成された積層体が準備される。配向層28上に導電フィルム30を形成する手法は特に限定されず、塗布等によって配向層28上の所望箇所に導電フィルム30を形成することが可能である。また予め準備された導電フィルム30を配向層28に対して圧着してもよい。なお、配向層28上に形成された導電フィルム30は、上述のように流動性を有していてもよいし、有していなくてもよい。ただし、導電フィルム30が配向層28に向かって押圧されることで、導電フィルム30の構成要素の一部(上述の実施形態では導電粒子31)を配向層28に食い込ませることができる程度の圧縮性(特に積層方向の圧縮性)を導電フィルム30は有する。 In addition, the manufacturing method of the light control cell 10 which concerns on each above-mentioned embodiment typically includes the following steps. That is, in the electrode connection portion 41, a laminated body having the alignment layer 28, the electrode layer 26, and the base material layer 24 sequentially laminated, and a laminated body in which the conductive film 30 is formed on the alignment layer 28 is prepared. . The method for forming the conductive film 30 on the alignment layer 28 is not particularly limited, and the conductive film 30 can be formed at a desired location on the alignment layer 28 by coating or the like. Further, the conductive film 30 prepared in advance may be pressure-bonded to the alignment layer 28. The conductive film 30 formed on the alignment layer 28 may or may not have fluidity as described above. However, when the conductive film 30 is pressed toward the alignment layer 28, the compression is such that a part of the constituent elements of the conductive film 30 (the conductive particles 31 in the above-described embodiment) can bite into the alignment layer 28. The conductive film 30 has properties (particularly compressibility in the stacking direction).
 そして、外部電極46を導電フィルム30に圧着する。具体的には、外部電極46及び外部支持部47と配向層28とによって導電フィルム30を挟むように、外部電極46及び外部支持部47を導電フィルム30上に配置し、外部電極46及び外部支持部47を導電フィルム30に向かって押圧する。これにより、電極接続部41において、導電フィルム30と電極層26との間の少なくとも一部領域において配向層28が配置された状態で、導電フィルム30及び電極層26を相互に電気的に導通させるとともに、導電フィルム30及び外部電極46を相互に電気的に導通させる。なお圧着方式は特に限定されず、加熱、冷却、紫外線照射或いは電子線照射等の各種処理が、圧着のための加圧とともに行われてもよい。 Then, the external electrode 46 is pressure-bonded to the conductive film 30. Specifically, the external electrode 46 and the external support 47 are arranged on the conductive film 30 so that the conductive film 30 is sandwiched between the external electrode 46 and the external support 47 and the alignment layer 28, and the external electrode 46 and the external support are supported. The part 47 is pressed toward the conductive film 30. Thereby, in the electrode connection part 41, the conductive film 30 and the electrode layer 26 are electrically connected to each other in a state where the alignment layer 28 is disposed in at least a partial region between the conductive film 30 and the electrode layer 26. At the same time, the conductive film 30 and the external electrode 46 are electrically connected to each other. The pressure bonding method is not particularly limited, and various processes such as heating, cooling, ultraviolet irradiation, or electron beam irradiation may be performed together with pressure for pressure bonding.
 上述のように、導電フィルム30は、配向層28上から圧着された際に電極層26との間で適切な導電性を構築することが要求されるとともに、外部電極46及び配向層28に対する適切な密着性(すなわち接着力)が要求される。本実施形態の導電フィルム30は、これらの導電性及び密着性を満たすことができる組成及び構成を有する。 As described above, the conductive film 30 is required to establish appropriate conductivity with the electrode layer 26 when being pressed from above the alignment layer 28, and suitable for the external electrode 46 and the alignment layer 28. High adhesion (that is, adhesive strength) is required. The conductive film 30 of the present embodiment has a composition and configuration that can satisfy these conductivity and adhesion.
 具体的には、電極接続部41において、導電フィルム30、配向層28及び電極層26によって構成される積層部の少なくとも一部は、150Ω・m以下の比抵抗を示す。また配向層28に対する外部電極46の引き剥がし力は、JIS Z 0237:2009に準拠した測定条件(引張速度:300mm/分;剥離距離:150mm;剥離角度:180度)によって測定した場合に1N/10mm以上である。 Specifically, in the electrode connection part 41, at least a part of the laminated part constituted by the conductive film 30, the alignment layer 28, and the electrode layer 26 exhibits a specific resistance of 150 Ω · m or less. Further, the peeling force of the external electrode 46 with respect to the alignment layer 28 is 1 N / when measured according to measurement conditions (tensile speed: 300 mm / min; peeling distance: 150 mm; peeling angle: 180 degrees) according to JIS Z 0237: 2009. 10 mm or more.
 以下、導電フィルム30の導電性(抵抗)及び密着性(引き剥がし力)について考察する。 Hereinafter, the conductivity (resistance) and adhesion (stripping force) of the conductive film 30 will be considered.
[導電性]
 本件発明者は、FPCとして構成される外部電極体12(すなわち外部電極46及び外部支持部47)と、基材層24、電極層26及び配向層28を含む積層体(すなわち電極接続部41)と、を準備した。基材層24は樹脂製であり、電極層26はITO(Indium Tin Oxide:酸化インジウムスズ)によって作られ、膜厚が0.05μmであり、表面抵抗が150Ω/□(ohms per square)であった。配向層28はポリイミドによって作られ、また配向層28の膜厚は0.1μm(マイクロメートル)であった。
[Conductivity]
The inventor of the present invention has a laminated body (that is, an electrode connection portion 41) including the external electrode body 12 (that is, the external electrode 46 and the external support portion 47) configured as an FPC, and the base material layer 24, the electrode layer 26, and the alignment layer 28. And prepared. The base material layer 24 is made of resin, and the electrode layer 26 is made of ITO (Indium Tin Oxide), has a film thickness of 0.05 μm, and has a surface resistance of 150Ω / □ (ohms per square). It was. The alignment layer 28 was made of polyimide, and the thickness of the alignment layer 28 was 0.1 μm (micrometer).
 そして、デクセリアルズ株式会社製の導電フィルム30(製品名:CP923CM-25)を外部電極46と配向層28との間に配置して、これらを相互に圧着した(図3A及び図3B参照)。なお圧着前は、導電フィルム30の膜厚が25μmであり、配向層28の膜厚が0.1μmであった。一方、圧着後は、導電フィルム30の膜厚が18μmであり、導電粒子31が配向層28に食い込み、配向層28を介した導電粒子31の下部と電極層26との間の距離が0.05μmであった。 Then, a conductive film 30 (product name: CP923CM-25) manufactured by Dexerials Corporation was disposed between the external electrode 46 and the alignment layer 28, and these were pressure-bonded to each other (see FIGS. 3A and 3B). In addition, before the crimping | compression-bonding, the film thickness of the conductive film 30 was 25 micrometers, and the film thickness of the orientation layer 28 was 0.1 micrometer. On the other hand, after pressure bonding, the film thickness of the conductive film 30 is 18 μm, the conductive particles 31 bite into the alignment layer 28, and the distance between the lower part of the conductive particles 31 and the electrode layer 26 via the alignment layer 28 is 0. It was 05 μm.
 このようにして得られた圧着積層体において、導電フィルム30、配向層28及び電極層26によって構成される積層部の抵抗を測定したところ、150Ω・m以下の比抵抗を示した。なお抵抗の測定には「三菱化学アナリテック製 ロレスタ-GX MCP-T700」を用いた。 The resistance of the laminated part constituted by the conductive film 30, the alignment layer 28, and the electrode layer 26 in the pressure-bonded laminate obtained in this way was measured, and a specific resistance of 150 Ω · m or less was shown. For the measurement of resistance, “Loresta-GX MCP-T700 manufactured by Mitsubishi Chemical Analytech” was used.
 上述の考察からも、本実施形態の調光セル10において導電フィルム30を用いることで、外部電極46と配向層28との間で十分な電気的な導通性を実現することができることが分かる。 From the above consideration, it can be seen that sufficient electrical conductivity can be realized between the external electrode 46 and the alignment layer 28 by using the conductive film 30 in the light control cell 10 of the present embodiment.
[密着性]
 本件発明者は、上述の導電性の検証に用いた圧着積層体と同じ条件下で、別の圧着積層体(すなわち基材層24、電極層26、配向層28、導電フィルム30、外部電極46及び外部支持部47を有する積層体)を準備した。この圧着積層体は、25mm(縦)×150mm(横)のサイズを有していた。
[Adhesion]
The inventor of the present invention has another pressure-bonded laminate (that is, the base material layer 24, the electrode layer 26, the orientation layer 28, the conductive film 30, the external electrode 46) under the same conditions as those of the pressure-bonded laminate used for the above-described conductivity verification. And a laminate having an external support 47). This press-bonded laminate had a size of 25 mm (length) × 150 mm (width).
 常温常圧(約23℃、約60%RH)環境下において、引張試験機(型番:RTF-1150H;株式会社エー・アンド・デイ社製)を用いて引張速度:300mm/分、剥離距離:150mm、及び剥離角度:180度の測定条件により、外部電極体12(すなわち外部電極46及び外部支持部47)を他の構成要素から剥離するのに要した力(剥離力)を測定した。具体的には、上記引張試験機において、力をかけて移動する直線上に配置された2個のチャックにより圧着積層体を把持し、引張速度を300mm/分とし、剥離距離を150mmとし、剥離角度を180度として、互いに離れる方向にチャックを移動させて、外部電極体12(すなわち外部電極46及び外部支持部47)を他の構成要素から剥離させた。この際に、圧着積層体に作用する荷重を測定し、以下の式に基づいて、剥離に要した力(引張強さ)を算出した。
 T=10×P/W
(ただし「T」は引張強さ(N/10mm)を示し、「P」は最大荷重(N)を示し、「W」は試験片(すなわち圧着積層体)の幅(mm)を示す。)
 上述の条件下で複数回の測定を行ったところ、いずれの測定においても、配向層28に対する外部電極体12(すなわち外部電極46及び外部支持部47)の引張強さ(引き剥がし力)として1N/10mm以上の力を要した。
Under a normal temperature and normal pressure (about 23 ° C., about 60% RH) environment, using a tensile tester (model number: RTF-1150H; manufactured by A & D Co., Ltd.), tensile speed: 300 mm / min, peeling distance: The force (peeling force) required to peel the external electrode body 12 (that is, the external electrode 46 and the external support portion 47) from other components was measured under the measurement conditions of 150 mm and peeling angle: 180 degrees. Specifically, in the above tensile testing machine, the pressure-bonded laminate is gripped by two chucks arranged on a straight line that moves with force, the tensile speed is set to 300 mm / min, the peeling distance is set to 150 mm, and the peeling is performed. The chuck was moved away from each other at an angle of 180 degrees, and the external electrode body 12 (that is, the external electrode 46 and the external support portion 47) was peeled off from the other components. At this time, the load acting on the pressure-bonded laminate was measured, and the force (tensile strength) required for peeling was calculated based on the following formula.
T = 10 × P / W
(However, “T” indicates the tensile strength (N / 10 mm), “P” indicates the maximum load (N), and “W” indicates the width (mm) of the test piece (ie, the pressure-bonded laminate).)
When measurement was performed a plurality of times under the above-described conditions, the tensile strength (peeling force) of the external electrode body 12 (that is, the external electrode 46 and the external support 47) with respect to the alignment layer 28 was 1 N in any measurement. / 10mm or more force was required.
 上述の考察からも、本実施形態の調光セル10において、導電フィルム30が、外部電極46及び配向層28に対する適切な密着性(すなわち接着力)を実現することができることが分かる。 From the above consideration, it can be seen that in the light control cell 10 of the present embodiment, the conductive film 30 can achieve appropriate adhesion (that is, adhesive force) to the external electrode 46 and the alignment layer 28.
 以上説明したように上述の実施形態に係る調光セル10によれば、絶縁性を有する配向層28が用いられていても、導電フィルム30によって、配向層28を取り除くことなく、外部電極46と電極層26との間で適切な電気的導通を確保することができる。 As described above, according to the light control cell 10 according to the above-described embodiment, even if the alignment layer 28 having an insulating property is used, the conductive film 30 and the external electrode 46 can be removed without removing the alignment layer 28. Appropriate electrical conduction with the electrode layer 26 can be ensured.
 特に、複数の導電粒子31を含む導電フィルム30を用いることによって、FPC等の外部電極体12(特に外部電極46)を導電フィルム30及び配向層28の上から電極層26に向かって押圧するだけで、導電粒子31を配向層28に食い込ませて、外部電極46と電極層26とを相互に電気的に導通させることができる。 In particular, by using the conductive film 30 including a plurality of conductive particles 31, the external electrode body 12 (particularly the external electrode 46) such as FPC is simply pressed from above the conductive film 30 and the alignment layer 28 toward the electrode layer 26. Thus, the conductive particles 31 can be bitten into the alignment layer 28 and the external electrode 46 and the electrode layer 26 can be electrically connected to each other.
 また、外部電極46と電極層26との間の電気的な導通を確保するために配向層28を取り除く必要がないため、配向層28を除去する際に基材層24に加えられうるダメージを、本実施形態の調光セル10では考慮する必要がない。そのため、液晶調光部20及び電極接続部41の各々が有する基材層24を樹脂によって構成する場合には、基材層24の損傷を防ぎつつ、樹脂の有する軽量性、変形可能性及び安全性等の特性を享受することができる。 In addition, since it is not necessary to remove the alignment layer 28 in order to ensure electrical continuity between the external electrode 46 and the electrode layer 26, damage that may be applied to the base material layer 24 when the alignment layer 28 is removed. In the light control cell 10 of this embodiment, it is not necessary to consider. Therefore, when the base material layer 24 included in each of the liquid crystal light control unit 20 and the electrode connection unit 41 is formed of resin, the resin has light weight, deformability, and safety while preventing damage to the base material layer 24. It is possible to enjoy characteristics such as sex.
 本発明は、上述の実施形態及び変形例に限定されるものではなく、当業者が想到しうる種々の変形が加えられた各種態様も含みうるものであり、本発明によって奏される効果も上述の事項に限定されない。したがって、本発明の技術的思想及び趣旨を逸脱しない範囲で、特許請求の範囲及び明細書に記載される各要素に対して種々の追加、変更及び部分的削除が可能である。 The present invention is not limited to the above-described embodiments and modifications, and can include various aspects to which various modifications that can be conceived by those skilled in the art can be included. The effects achieved by the present invention are also described above. It is not limited to the matter of. Therefore, various additions, modifications, and partial deletions can be made to each element described in the claims and the specification without departing from the technical idea and spirit of the present invention.
 例えば、導電フィルム30を使用した上述の技術は、液晶層29の両側に設けられる配向層及び電極層の積層体の各々に対して適用可能である。したがって、液晶層29の一方側に配置される電極層26に対し導電フィルム30を介して外部電極体12を電気的に接続させつつ、液晶層29の他方側に配置される電極層25に対して他の導電フィルム30を介して他の外部電極体12を電気的に接続させることも可能である。また、導電フィルム30を使用した上述の技術は、液晶層29の一方側にのみ設けられる配向層及び電極層の積層体に対しても適用可能である。 For example, the above-described technique using the conductive film 30 can be applied to each of the alignment layer and electrode layer stacks provided on both sides of the liquid crystal layer 29. Accordingly, the external electrode body 12 is electrically connected to the electrode layer 26 disposed on one side of the liquid crystal layer 29 via the conductive film 30, while the electrode layer 25 disposed on the other side of the liquid crystal layer 29 is connected. It is also possible to electrically connect other external electrode bodies 12 via other conductive films 30. Further, the above-described technique using the conductive film 30 can be applied to a laminated body of an alignment layer and an electrode layer provided only on one side of the liquid crystal layer 29.
 また、本発明に係る調光セル10の適用分野も特に限定されず、様々な技術分野に対して上述の調光セル10に関する技術を応用することが可能である。例えば、太陽光の透過及び遮光を調整するサンシェード装置、各種の情報を必要に応じて表示可能な発光パネル、及び光の透過率の変更を要するその他の装置に対し、本発明に係る調光セル10を応用することが可能である。典型的には窓及びドア等に対して調光セル10を適用することができる。具体的には、建築物等の非移動体の窓やドア等に対してだけではなく、飛行機、船、電車及び自動車等の移動体の窓やドア等に対しても調光セル10を適用することができる。図7には、移動体1の一例として自動車が示されており、自動車のサンルーフに調光セル10が適用されている。このような窓やドア等への適用において、調光セル10は、ガラス等の透明部材に貼合され、或いは、図8に示されているように、一対のガラス等の透明部材11の間に挟持されて、用いられる。すなわち、移動体1は、透明部材11と、透明部材11に積層されて透明部材11により支持される調光セル10と、を有する調光体5を、窓やドア等として備えることができる。 Also, the application field of the light control cell 10 according to the present invention is not particularly limited, and the above-described technology related to the light control cell 10 can be applied to various technical fields. For example, the light control cell according to the present invention for a sunshade device that adjusts the transmission and shading of sunlight, a light-emitting panel that can display various types of information as necessary, and other devices that require a change in light transmittance 10 can be applied. Typically, the dimming cell 10 can be applied to windows and doors. Specifically, the dimming cell 10 is applied not only to windows and doors of non-moving bodies such as buildings but also to windows and doors of moving bodies such as airplanes, ships, trains and automobiles. can do. FIG. 7 shows an automobile as an example of the moving body 1, and the dimming cell 10 is applied to a sunroof of the automobile. In application to such windows and doors, the dimming cell 10 is bonded to a transparent member such as glass, or between a pair of transparent members 11 such as glass as shown in FIG. It is used by being sandwiched between. That is, the movable body 1 can include the light control body 5 having the transparent member 11 and the light control cell 10 stacked on the transparent member 11 and supported by the transparent member 11 as a window, a door, or the like.
1 移動体
5 調光体
11 透明部材
10 調光セル
12 外部電極体
20 液晶調光部
21 偏光板
22 偏光板
23 基材層
24 基材層
25 電極層
26 電極層
27 配向層
28 配向層
29 液晶層
30 導電フィルム
31 導電粒子
40 外周部
41 電極接続部
42 配向層
43 電極層
44 基材層
46 外部電極
47 外部支持部
50 導電体
60 スペーサ
DESCRIPTION OF SYMBOLS 1 Mobile body 5 Light control body 11 Transparent member 10 Light control cell 12 External electrode body 20 Liquid crystal light control part 21 Polarizing plate 22 Polarizing plate 23 Base material layer 24 Base material layer 25 Electrode layer 26 Electrode layer 27 Orientation layer 28 Orientation layer 29 Liquid crystal layer 30 Conductive film 31 Conductive particle 40 Peripheral part 41 Electrode connection part 42 Alignment layer 43 Electrode layer 44 Base layer 46 External electrode 47 External support part 50 Conductor 60 Spacer

Claims (14)

  1.  光の透過率が可変である液晶調光部と、外部電極を接続するための電極接続部と、を備える調光セルであって、
     前記液晶調光部は、液晶層、配向層及び電極層を有し、
     前記電極接続部は、導電フィルム、前記配向層及び前記電極層を有し、
     前記電極接続部において、前記導電フィルムと前記電極層との間には少なくとも一部において前記配向層が配置され、
     前記導電フィルムの一部は、前記導電フィルムと前記電極層との間に配置される前記配向層に食い込んで配置され、前記導電フィルム及び前記電極層が相互に電気的に導通される調光セル。
    A dimming cell comprising a liquid crystal dimming unit having variable light transmittance, and an electrode connecting unit for connecting an external electrode,
    The liquid crystal light control part has a liquid crystal layer, an alignment layer and an electrode layer,
    The electrode connection portion includes a conductive film, the alignment layer, and the electrode layer,
    In the electrode connection portion, the alignment layer is disposed at least in part between the conductive film and the electrode layer,
    A part of the conductive film is arranged to bite into the alignment layer disposed between the conductive film and the electrode layer, and the conductive film and the electrode layer are electrically connected to each other. .
  2.  前記導電フィルム及び前記電極層の両者によって覆われる範囲の全体にわたって前記配向層が配置されている請求項1に記載の調光セル。 The light control cell according to claim 1, wherein the alignment layer is disposed over the entire range covered by both the conductive film and the electrode layer.
  3.  前記導電フィルムは、複数の導電粒子を含み、
     前記複数の導電粒子の少なくとも一部が、前記導電フィルムと前記電極層との間に配置される前記配向層に食い込んでいる請求項1又は2に記載の調光セル。
    The conductive film includes a plurality of conductive particles,
    3. The light control cell according to claim 1, wherein at least some of the plurality of conductive particles bite into the alignment layer disposed between the conductive film and the electrode layer.
  4.  前記複数の導電粒子の少なくとも一部は、前記導電フィルムと前記電極層との間に配置される前記配向層の厚みよりも大きな径を有する請求項3に記載の調光セル。 4. The light control cell according to claim 3, wherein at least a part of the plurality of conductive particles has a diameter larger than a thickness of the alignment layer disposed between the conductive film and the electrode layer.
  5.  前記複数の導電粒子の少なくとも一部は、前記導電フィルムと前記電極層との間に配置される前記配向層の厚み以下の径を有する請求項3又は4に記載の調光セル。 The light control cell according to claim 3 or 4, wherein at least a part of the plurality of conductive particles has a diameter equal to or less than a thickness of the alignment layer disposed between the conductive film and the electrode layer.
  6.  前記電極接続部において、前記導電フィルム、前記配向層及び前記電極層によって構成される積層部の少なくとも一部は、150Ω・m以下の比抵抗を示す請求項1~5のいずれか一項に記載の調光セル。 6. The electrode connecting portion according to claim 1, wherein at least a part of the laminated portion constituted by the conductive film, the alignment layer, and the electrode layer exhibits a specific resistance of 150 Ω · m or less. Dimming cell.
  7.  前記導電フィルムの一方側に前記外部電極が貼り付けられ、前記導電フィルムの他方側に前記配向層が貼り付けられ、
     前記配向層に対する前記外部電極の引き剥がし力は、引張速度を300mm/分とし、剥離角度を180度として測定を行った場合に1N/10mm以上である請求項1~6のいずれか一項に記載の調光セル。
    The external electrode is attached to one side of the conductive film, the alignment layer is attached to the other side of the conductive film,
    The peeling force of the external electrode with respect to the alignment layer is 1 N / 10 mm or more when measured with a tensile speed of 300 mm / min and a peeling angle of 180 degrees. The dimming cell as described.
  8.  前記液晶調光部及び前記電極接続部の各々は、前記電極層を支持する基材層を有し、
     前記基材層は樹脂によって構成されている請求項1~7のいずれか一項に記載の調光セル。
    Each of the liquid crystal light control part and the electrode connection part has a base material layer that supports the electrode layer,
    The light control cell according to any one of claims 1 to 7, wherein the base material layer is made of a resin.
  9.  前記導電フィルムの一方側に前記外部電極が貼り付けられ、前記導電フィルムの他方側に前記配向層及び前記電極層が貼り付けられ、
     前記導電フィルムは、相対的に厚い部分と相対的に薄い部分とを有し、
     前記外部電極は、前記導電フィルムのうち前記相対的に薄い部分を介し、前記電極層と電気的に導通される請求項1~8のいずれか一項に記載の調光セル。
    The external electrode is attached to one side of the conductive film, the alignment layer and the electrode layer are attached to the other side of the conductive film,
    The conductive film has a relatively thick portion and a relatively thin portion,
    The light control cell according to any one of claims 1 to 8, wherein the external electrode is electrically connected to the electrode layer through the relatively thin portion of the conductive film.
  10.  前記電極接続部において、少なくとも前記配向層において存在するスペーサを更に備え、
     前記スペーサは、前記導電フィルムに食い込む請求項1~9のいずれか一項に記載の調光セル。
    The electrode connection part further comprises a spacer present at least in the alignment layer,
    The light control cell according to any one of claims 1 to 9, wherein the spacer bites into the conductive film.
  11.  前記導電フィルムの一方側に前記外部電極が貼り付けられ、前記導電フィルムの他方側に前記配向層及び前記電極層が貼り付けられ、
     前記外部電極は、前記電極接続部の前記配向層に向かって先細るテーパー形状を有する請求項1~10のいずれか一項に記載の調光セル。
    The external electrode is attached to one side of the conductive film, the alignment layer and the electrode layer are attached to the other side of the conductive film,
    The light control cell according to any one of claims 1 to 10, wherein the external electrode has a tapered shape that tapers toward the alignment layer of the electrode connection portion.
  12.  前記導電フィルムの一方側に前記外部電極が貼り付けられ、前記導電フィルムの他方側に前記配向層及び前記電極層が貼り付けられ、
     前記外部電極を介して前記導電フィルムとは反対側に、前記外部電極を支持する層状の外部支持部が設けられ、
     前記電極接続部において、前記外部電極が貼り付けられていない箇所における前記外部支持部と前記電極層との間の間隔は、前記外部電極が貼り付けられている箇所における前記外部支持部と前記電極層との間の間隔よりも小さい請求項1~10のいずれか一項に記載の調光セル。
    The external electrode is attached to one side of the conductive film, the alignment layer and the electrode layer are attached to the other side of the conductive film,
    A layered external support part for supporting the external electrode is provided on the side opposite to the conductive film via the external electrode,
    In the electrode connection portion, the interval between the external support portion and the electrode layer at a location where the external electrode is not attached is such that the external support portion and the electrode at a location where the external electrode is attached. The dimming cell according to any one of claims 1 to 10, wherein the dimming cell is smaller than an interval between the layers.
  13.  請求項1~12のいずれか一項に記載の調光セルと、
     前記調光セルを支持する透明部材と、を備える調光体。
    A dimming cell according to any one of claims 1 to 12,
    And a transparent member that supports the light control cell.
  14.  請求項13に記載の調光体を備える移動体。 A moving body comprising the dimmer according to claim 13.
PCT/JP2018/002064 2017-01-24 2018-01-24 Light control cell, light control body and moving body WO2018139474A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018545245A JP6439907B1 (en) 2017-01-24 2018-01-24 Dimming cell, dimmer and moving body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-010566 2017-01-24
JP2017010566 2017-01-24

Publications (1)

Publication Number Publication Date
WO2018139474A1 true WO2018139474A1 (en) 2018-08-02

Family

ID=62978417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/002064 WO2018139474A1 (en) 2017-01-24 2018-01-24 Light control cell, light control body and moving body

Country Status (2)

Country Link
JP (2) JP6439907B1 (en)
WO (1) WO2018139474A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113867012A (en) * 2021-08-30 2021-12-31 福耀玻璃工业集团股份有限公司 Light modulation member, manufacturing method thereof, light transmission assembly and vehicle
WO2023274410A1 (en) * 2021-07-01 2023-01-05 福耀玻璃工业集团股份有限公司 Dimming component and manufacturing method therefor, light-transmitting assembly, and vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH103089A (en) * 1996-06-14 1998-01-06 Sharp Corp Liquid crystal display element and its manufacture
JP2008083365A (en) * 2006-09-27 2008-04-10 Citizen Miyota Co Ltd Liquid crystal display device
JP2010208861A (en) * 2007-07-03 2010-09-24 Asahi Glass Co Ltd Toning window material
US20150277167A1 (en) * 2014-03-28 2015-10-01 Himax Display, Inc. Liquid crystal display panel
JP6024844B1 (en) * 2016-03-31 2016-11-16 大日本印刷株式会社 Light control film, light control film laminate and vehicle

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06273727A (en) * 1993-03-18 1994-09-30 Sumitomo Electric Ind Ltd Liquid crystal element and its production
KR20080020841A (en) * 2006-09-01 2008-03-06 엘지이노텍 주식회사 Apparatus and method for electrode connection of display panel
US20100321908A1 (en) * 2007-02-22 2010-12-23 Motoji Shiota Electronic circuit device, production method thereof, and display device
JP2013182823A (en) * 2012-03-02 2013-09-12 Dexerials Corp Manufacturing method of connection body and anisotropic conductive adhesive

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH103089A (en) * 1996-06-14 1998-01-06 Sharp Corp Liquid crystal display element and its manufacture
JP2008083365A (en) * 2006-09-27 2008-04-10 Citizen Miyota Co Ltd Liquid crystal display device
JP2010208861A (en) * 2007-07-03 2010-09-24 Asahi Glass Co Ltd Toning window material
US20150277167A1 (en) * 2014-03-28 2015-10-01 Himax Display, Inc. Liquid crystal display panel
JP6024844B1 (en) * 2016-03-31 2016-11-16 大日本印刷株式会社 Light control film, light control film laminate and vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023274410A1 (en) * 2021-07-01 2023-01-05 福耀玻璃工业集团股份有限公司 Dimming component and manufacturing method therefor, light-transmitting assembly, and vehicle
CN113867012A (en) * 2021-08-30 2021-12-31 福耀玻璃工业集团股份有限公司 Light modulation member, manufacturing method thereof, light transmission assembly and vehicle

Also Published As

Publication number Publication date
JPWO2018139474A1 (en) 2019-02-07
JP2019061253A (en) 2019-04-18
JP6439907B1 (en) 2018-12-19
JP7047724B2 (en) 2022-04-05

Similar Documents

Publication Publication Date Title
JP5131279B2 (en) Circuit connection method, circuit connection structure, and method of manufacturing circuit connection structure
US20130092426A1 (en) Anisotropic conductive film and fabrication method thereof
US10175544B2 (en) Connection body, method for manufacturing a connection body, connecting method and anisotropic conductive adhesive agent
US9960138B2 (en) Connection body
WO2004061640A1 (en) Narrow-frame touch panel
JP2012531060A (en) Connection of solar cell tab to solar cell bus and manufactured solar cell
US20160381801A1 (en) Connection body and connection body manufacturing method
WO2013129437A1 (en) Method for manufacturing connection element, and anisotropic electroconductive adhesive
JP6439907B1 (en) Dimming cell, dimmer and moving body
JP7119305B2 (en) dimmer
JP7369756B2 (en) Connection body and method for manufacturing the connection body
JP7151137B2 (en) dimming unit
JPS60120772A (en) Anisotropically conductive adhesive
KR20080087527A (en) Touch panel and manufacturing method thereof
US11360358B2 (en) Method for attaching electrode to liquid crystal element
JP2000259092A (en) Electro-optic device
JP2019184909A (en) Connecting equipment
JPH11297218A (en) Electrode structure of plasma display panel
KR20230057852A (en) Display device and multi-panel display device
JP2013222102A (en) Display sheet, manufacturing method for the same, display device and electronic apparatus
WO2016093261A1 (en) Connector inspection method, connector, conductive particle and anisotropic conductive adhesive
JPH06186577A (en) Anisotropically conductive connecting structure
KR20150118381A (en) Anisotropic conductive multi-layer tape and a method of making the same film
JP2000067948A (en) Adhesive anisotropic conductive film connector on
JPH06267604A (en) Heat seal connector

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018545245

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18744756

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18744756

Country of ref document: EP

Kind code of ref document: A1