JP7369756B2 - Connection body and method for manufacturing the connection body - Google Patents

Connection body and method for manufacturing the connection body Download PDF

Info

Publication number
JP7369756B2
JP7369756B2 JP2021187333A JP2021187333A JP7369756B2 JP 7369756 B2 JP7369756 B2 JP 7369756B2 JP 2021187333 A JP2021187333 A JP 2021187333A JP 2021187333 A JP2021187333 A JP 2021187333A JP 7369756 B2 JP7369756 B2 JP 7369756B2
Authority
JP
Japan
Prior art keywords
conductive particles
electrode
film
connection
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021187333A
Other languages
Japanese (ja)
Other versions
JP2022033786A (en
Inventor
賢一 猿山
恭志 阿久津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Dexerials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dexerials Corp filed Critical Dexerials Corp
Publication of JP2022033786A publication Critical patent/JP2022033786A/en
Application granted granted Critical
Publication of JP7369756B2 publication Critical patent/JP7369756B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member

Description

本発明は、電子部品と回路基板とが接続された接続体及び接続体の製造方法に関し、特に導電性粒子を含有する接着剤を介して電子部品が回路基板に接続された接続体及び接続体の製造方法に関する。 The present invention relates to a connection body in which an electronic component and a circuit board are connected, and a method for manufacturing the connection body, and particularly to a connection body and a connection body in which an electronic component is connected to a circuit board through an adhesive containing conductive particles. Relating to a manufacturing method.

従来から、テレビやPCモニタ、携帯電話やスマートホン、携帯型ゲーム機、タブレット端末やウェアラブル端末、あるいは車載用モニタ等の各種表示手段として、液晶表示装置や有機ELパネルが用いられている。近年、このような表示装置においては、ファインピッチ化、軽量薄型化等の観点から、駆動用ICを直接表示パネルのガラス基板上に実装するいわゆるCOG(chip on glass)が採用されている。 BACKGROUND ART Liquid crystal display devices and organic EL panels have conventionally been used as various display means for televisions, PC monitors, mobile phones, smart phones, portable game machines, tablet terminals, wearable terminals, vehicle monitors, and the like. In recent years, in such display devices, so-called COG (chip on glass), in which a driving IC is directly mounted on a glass substrate of a display panel, has been adopted from the viewpoints of finer pitch, lighter weight, and thinner design.

例えばCOG実装方式が採用された液晶表示パネルにおいては、図12(A)(B)に示すように、ガラス基板等からなる透明基板101に、ITO(酸化インジウムスズ)等からなる透明電極102が複数形成され、これら透明電極102上に液晶駆動用IC103等の電子部品が接続される。液晶駆動用IC103は、実装面に、透明電極102に対応して複数の電極端子104が形成され、異方性導電フィルム105を介して透明基板101上に熱圧着されることにより、電極端子104と透明電極102とが接続される。 For example, in a liquid crystal display panel that uses the COG mounting method, as shown in FIGS. 12A and 12B, a transparent electrode 102 made of ITO (indium tin oxide) or the like is mounted on a transparent substrate 101 made of a glass substrate or the like. A plurality of transparent electrodes 102 are formed, and electronic components such as a liquid crystal driving IC 103 are connected to these transparent electrodes 102. The liquid crystal driving IC 103 has a plurality of electrode terminals 104 formed on its mounting surface corresponding to the transparent electrodes 102, and is thermocompression bonded onto the transparent substrate 101 via an anisotropic conductive film 105. and transparent electrode 102 are connected.

異方性導電フィルム105は、バインダー樹脂に導電性粒子を混ぜ込んでフィルム状としたもので、2つの導体間で加熱圧着されることにより導電性粒子で導体間の電気的導通がとられ、バインダー樹脂にて導体間の機械的接続が保持される。異方性導電フィルム105を構成する接着剤としては、通常、信頼性の高い熱硬化性のバインダー樹脂が用いられるが、光硬化性のバインダー樹脂又は光熱併用型のバインダー樹脂であってもよい。 The anisotropic conductive film 105 is made into a film by mixing conductive particles into a binder resin, and is heated and pressed between two conductors to establish electrical continuity between the conductors using the conductive particles. The mechanical connection between the conductors is maintained by the binder resin. As the adhesive constituting the anisotropic conductive film 105, a highly reliable thermosetting binder resin is usually used, but a photocurable binder resin or a photothermal binder resin may also be used.

このような異方性導電フィルム105を介して液晶駆動用IC103を透明電極102へ接続する場合は、先ず、透明基板101の透明電極102上に異方性導電フィルム105を図示しない仮圧着手段によって仮貼りする。続いて、異方性導電フィルム105を介して透明基板101上に液晶駆動用IC103を搭載し仮接続体を形成した後、熱圧着ヘッド106等の熱圧着手段によって液晶駆動用IC103を異方性導電フィルム105とともに透明電極102側へ加熱押圧する。この熱圧着ヘッド106による加熱によって、異方性導電フィルム105は熱硬化反応を起こし、これにより液晶駆動用IC103が透明電極102上に接着される。 When connecting the liquid crystal driving IC 103 to the transparent electrode 102 via such an anisotropic conductive film 105, first, the anisotropic conductive film 105 is attached onto the transparent electrode 102 of the transparent substrate 101 by temporary pressure bonding means (not shown). Paste temporarily. Subsequently, the liquid crystal driving IC 103 is mounted on the transparent substrate 101 via the anisotropic conductive film 105 to form a temporary connection, and then the liquid crystal driving IC 103 is anisotropically bonded by thermocompression bonding means such as a thermocompression bonding head 106. It is heated and pressed together with the conductive film 105 toward the transparent electrode 102 side. The heating by the thermocompression head 106 causes a thermosetting reaction in the anisotropic conductive film 105, thereby adhering the liquid crystal driving IC 103 onto the transparent electrode 102.

特許第4789738号公報Patent No. 4789738 特開2004-214374号公報Japanese Patent Application Publication No. 2004-214374 特開2005-203758号公報Japanese Patent Application Publication No. 2005-203758

近年の液晶表示装置その他の電子機器の小型化、高精細化に伴い、回路基板の配線ピッチや電子部品の電極端子のファインピッチ化も進み、異方性導電フィルムを用いて、電極端子がファインピッチ化された回路基板上にICチップ等の電子部品をCOG接続する場合、狭小化された電極端子間においても確実に導電性粒子が挟持され導通を確保するために、導電性粒子を高密度に充填する必要がある。 In recent years, with the miniaturization and higher definition of liquid crystal display devices and other electronic devices, the wiring pitch of circuit boards and the electrode terminals of electronic components have become finer. When connecting electronic components such as IC chips to a pitched circuit board by COG, the conductive particles must be placed at a high density to ensure conductivity by sandwiching the conductive particles even between the narrowed electrode terminals. need to be filled.

しかし、図13に示すように、回路基板の配線ピッチや電子部品の電極端子のファインピッチ化が進むなかで導電性粒子107を高密度に充填すると、電極端子104間に分散された導電性粒子107が連続することによる端子間ショートの発生率が高まる。 However, as shown in FIG. 13, as the wiring pitch of circuit boards and the electrode terminals of electronic components become finer, when the conductive particles 107 are packed in a high density, the conductive particles dispersed between the electrode terminals 104 The occurrence rate of short circuit between terminals due to consecutive 107 increases.

なお、一般に回路基板に形成される電極は印刷等により数十nm~数μmオーダーの薄さで形成されるため、回路基板側の電極間におけるショートは問題にならない。 Note that since the electrodes formed on the circuit board are generally formed with a thickness on the order of tens of nanometers to several micrometers by printing or the like, short circuits between the electrodes on the circuit board side do not pose a problem.

そこで、本発明は、回路基板の配線ピッチや電子部品の電極端子がファインピッチ化されても、電子部品と回路基板との導通性を確保するとともに、電子部品の電極端子間におけるショートを防止することができる接続体及び接続体の製造方法を提供することを目的とする。 Therefore, even if the wiring pitch of the circuit board or the electrode terminal of the electronic component becomes finer pitch, the present invention ensures continuity between the electronic component and the circuit board and prevents short circuit between the electrode terminal of the electronic component. An object of the present invention is to provide a connecting body and a method for manufacturing the connecting body.

上述した課題を解決するために、本発明に係る接続体は、回路基板上に異方性導電接着剤を介して電子部品が接続された接続体において、上記異方性導電接着剤は、バインダー樹脂に導電性粒子が配列され、上記電子部品に形成された接続電極と上記回路基板に形成された基板電極とが、上記接続電極及び上記基板電極の配列方向にずれており、上記接続電極及び上記基板電極の配列方向における最小距離が上記導電性粒子の粒子径の4倍未満であり、上記電子部品に形成された接続電極間のスペースにおける導電性粒子同士の粒子間距離は、上記基板電極と上記接続電極との間に捕捉された導電性粒子同士の粒子間距離よりも長いものである。 In order to solve the above-mentioned problems, a connecting body according to the present invention is a connecting body in which an electronic component is connected to a circuit board via an anisotropic conductive adhesive, wherein the anisotropic conductive adhesive is a binder. Conductive particles are arranged in the resin, and the connection electrode formed on the electronic component and the substrate electrode formed on the circuit board are shifted in the direction in which the connection electrode and the substrate electrode are arranged, and the connection electrode and the substrate electrode are aligned. The minimum distance in the arrangement direction of the substrate electrodes is less than four times the particle diameter of the conductive particles, and the interparticle distance between the conductive particles in the space between the connection electrodes formed on the electronic component is This distance is longer than the interparticle distance between the conductive particles captured between the conductive particles and the connecting electrode.

また、本発明に係る接続体の製造方法は、回路基板上に、導電性粒子を含有した接着剤を介して電子部品を搭載し、上記電子部品を上記回路基板に対して押圧するとともに、上記接着剤を硬化させることにより、上記電子部品を上記回路基板上に接続する接続体の製造方法において、上記異方性導電接着剤は、バインダー樹脂に導電性粒子が配列され、上記電子部品に形成された接続電極と上記回路基板に形成された基板電極とが、上記接続電極及び上記基板電極の配列方向にずれており、上記接続電極及び上記基板電極の配列方向における最小距離が上記導電性粒子の粒子径の4倍未満であり、上記接続電極間のスペースにおける導電性粒子同士の粒子間距離は、上記基板電極と上記接続電極との間に捕捉された導電性粒子同士の粒子間距離よりも長いものである。 Further, the method for manufacturing a connection body according to the present invention includes mounting an electronic component on a circuit board via an adhesive containing conductive particles, pressing the electronic component against the circuit board, and pressing the electronic component against the circuit board. In the method for manufacturing a connection body that connects the electronic component to the circuit board by curing the adhesive, the anisotropic conductive adhesive is formed on the electronic component by arranging conductive particles in a binder resin. The connected electrode and the substrate electrode formed on the circuit board are shifted in the arrangement direction of the connection electrode and the substrate electrode, and the minimum distance in the arrangement direction of the connection electrode and the substrate electrode is the same as that of the conductive particles. The distance between the conductive particles in the space between the connecting electrodes is less than 4 times the particle diameter of the conductive particles trapped between the substrate electrode and the connecting electrode. It is also long.

本発明によれば、隣接する電極端子間の端子間スペースにおける導電性粒子同士の粒子間距離は、接続電極と基板電極との間に捕捉された導電性粒子同士の粒子間距離よりも長い。したがって、ファインピッチ化された接続電極の端子間スペースにおいて導電性粒子が連なることによる端子間ショートを防止することができる。 According to the present invention, the interparticle distance between conductive particles in the interterminal space between adjacent electrode terminals is longer than the interparticle distance between conductive particles captured between the connection electrode and the substrate electrode. Therefore, it is possible to prevent a short circuit between the terminals due to conductive particles being connected in a space between the terminals of the fine-pitched connection electrodes.

図1は、接続体の一例として示す液晶表示パネルの断面図である。FIG. 1 is a cross-sectional view of a liquid crystal display panel shown as an example of a connector. 図2は、液晶駆動用ICと透明基板との接続工程を示す断面図である。FIG. 2 is a cross-sectional view showing a process of connecting a liquid crystal driving IC and a transparent substrate. 図3は、液晶駆動用ICの電極端子(バンプ)及び端子間スペースを示す平面図である。FIG. 3 is a plan view showing the electrode terminals (bumps) of the liquid crystal driving IC and the spaces between the terminals. 図4は、液晶駆動用ICと透明基板において、電極端子及び端子部の配列方向における最小距離Dを示す断面図である。FIG. 4 is a cross-sectional view showing the minimum distance D in the arrangement direction of the electrode terminals and terminal portions in the liquid crystal driving IC and the transparent substrate. 図5は、異方性導電フィルムを示す断面図である。FIG. 5 is a cross-sectional view showing an anisotropic conductive film. 図6は、導電性粒子が格子状に規則配列された異方性導電フィルムを示す平面図である。FIG. 6 is a plan view showing an anisotropic conductive film in which conductive particles are regularly arranged in a lattice shape. 図7は、導電性粒子が規則配列された異方性導電フィルムと、ランダム分散された異方性導電フィルムを用いた接続体における電極端子の粒子捕捉数の分布を示すグラフである。FIG. 7 is a graph showing the distribution of the number of particles captured by electrode terminals in a connection body using an anisotropic conductive film in which conductive particles are regularly arranged and an anisotropic conductive film in which conductive particles are randomly dispersed. 図8(A)は、導電性粒子が長手方向に疎、幅方向に密に配列された異方性導電フィルムを示す平面図であり、図8(B)は、導電性粒子が長手方向に密、幅方向に疎に配列された異方性導電フィルムを示す平面図である。FIG. 8(A) is a plan view showing an anisotropic conductive film in which conductive particles are arranged sparsely in the longitudinal direction and densely in the width direction. FIG. 2 is a plan view showing anisotropic conductive films arranged densely and sparsely in the width direction. 図9は、導電性粒子をフィルム長手方向及び幅方向に対して傾斜して配列させた異方性導電フィルムを、フィルム長手方向を端子部の配列方向に沿って端子部上に配置した状態を示す平面図である。Figure 9 shows a state in which an anisotropic conductive film in which conductive particles are arranged obliquely with respect to the longitudinal direction and the width direction of the film is arranged on a terminal part with the longitudinal direction of the film along the arrangement direction of the terminal part. FIG. 図10は、導電性粒子をフィルム長手方向及び幅方向に対して傾斜して配列させた他の異方性導電フィルムを、フィルム長手方向を端子部の配列方向に沿って端子部上に配置した状態を示す平面図である。FIG. 10 shows another anisotropic conductive film in which conductive particles are arranged obliquely with respect to the longitudinal direction and the width direction of the film, which is arranged on a terminal part with the longitudinal direction of the film along the arrangement direction of the terminal part. It is a top view showing a state. 図11は、導電性粒子をフィルム長手方向及び幅方向に対して傾斜して配列させた他の異方性導電フィルムを、フィルム長手方向を端子部の配列方向に沿って端子部上に配置した状態を示す平面図である。FIG. 11 shows another anisotropic conductive film in which conductive particles are arranged obliquely with respect to the longitudinal direction and the width direction of the film, and is arranged on a terminal part with the longitudinal direction of the film along the arrangement direction of the terminal part. It is a top view showing a state. 図12は、液晶表示パネルの透明基板にICチップを接続する工程を示す断面図であり、(A)接続前の工程、(B)は接続工程を示す。FIG. 12 is a cross-sectional view showing a process of connecting an IC chip to a transparent substrate of a liquid crystal display panel, in which (A) shows the process before connection, and (B) shows the connection process. 図13は、従来の透明基板とICチップとの接続状態を示す断面図である。FIG. 13 is a cross-sectional view showing a connection state between a conventional transparent substrate and an IC chip.

以下、本発明が適用された接続体及び接続体の製造方法について、図面を参照しながら詳細に説明する。なお、本発明は、以下の実施形態のみに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更が可能であることは勿論である。また、図面は模式的なものであり、各寸法の比率等は現実のものとは異なることがある。具体的な寸法等は以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。 Hereinafter, a connecting body and a method for manufacturing the connecting body to which the present invention is applied will be described in detail with reference to the drawings. Note that the present invention is not limited only to the following embodiments, and it goes without saying that various changes can be made without departing from the gist of the present invention. Further, the drawings are schematic, and the ratio of each dimension may differ from the actual one. Specific dimensions etc. should be determined with reference to the following explanation. Furthermore, it goes without saying that the drawings include portions with different dimensional relationships and ratios.

[液晶表示パネル]
以下では、本発明が適用された接続体として、ガラス基板に、電子部品として液晶駆動用のICチップが実装された液晶表示パネルを例に説明する。この液晶表示パネル10は、図1に示すように、ガラス基板等からなる二枚の透明基板11,12が対向配置され、これら透明基板11,12が枠状のシール13によって互いに貼り合わされている。そして、液晶表示パネル10は、透明基板11,12によって囲繞された空間内に液晶14が封入されることによりパネル表示部15が形成されている。
[LCD display panel]
In the following, a liquid crystal display panel in which an IC chip for driving a liquid crystal as an electronic component is mounted on a glass substrate will be described as an example of a connection body to which the present invention is applied. As shown in FIG. 1, this liquid crystal display panel 10 has two transparent substrates 11 and 12 made of glass substrates or the like arranged facing each other, and these transparent substrates 11 and 12 are bonded to each other with a frame-shaped seal 13. . In the liquid crystal display panel 10, a panel display section 15 is formed by sealing liquid crystal 14 in a space surrounded by transparent substrates 11 and 12.

透明基板11,12は、互いに対向する両内側表面に、ITO(酸化インジウムスズ)等からなる縞状の一対の透明電極16,17が、互いに交差するように形成されている。そして、両透明電極16,17は、これら両透明電極16,17の当該交差部位によって液晶表示の最小単位としての画素が構成されるようになっている。 A pair of striped transparent electrodes 16, 17 made of ITO (indium tin oxide) or the like are formed on both opposing inner surfaces of the transparent substrates 11, 12 so as to cross each other. The transparent electrodes 16 and 17 are configured such that a pixel as the minimum unit of liquid crystal display is formed by the intersection of the transparent electrodes 16 and 17.

両透明基板11,12のうち、一方の透明基板12は、他方の透明基板11よりも平面寸法が大きく形成されており、この大きく形成された透明基板12の縁部12aには、電子部品として液晶駆動用IC18が実装されるCOG実装部20が設けられている。なお、COG実装部20には、透明電極17の端子部17a、及び液晶駆動用IC18に設けられたIC側アライメントマーク22と重畳させる基板側アライメントマーク21が形成されている。 Of both transparent substrates 11 and 12, one transparent substrate 12 is formed to have a larger planar dimension than the other transparent substrate 11, and an edge 12a of this large transparent substrate 12 is provided with electronic components. A COG mounting section 20 on which a liquid crystal driving IC 18 is mounted is provided. Note that the COG mounting portion 20 is formed with a substrate-side alignment mark 21 that overlaps with the terminal portion 17a of the transparent electrode 17 and the IC-side alignment mark 22 provided on the liquid crystal driving IC 18.

液晶駆動用IC18は、画素に対して液晶駆動電圧を選択的に印加することにより、液晶の配向を部分的に変化させて所定の液晶表示を行うことができるようになっている。また、図2に示すように、液晶駆動用IC18は、透明基板12への実装面18aに、透明電極17の端子部17aと導通接続される複数の電極端子19(バンプ)が形成されている。電極端子19は、例えば銅バンプや金バンプ、あるいは銅バンプに金メッキを施したもの等が好適に用いられる。 The liquid crystal driving IC 18 is capable of performing a predetermined liquid crystal display by selectively applying a liquid crystal driving voltage to pixels to partially change the orientation of the liquid crystal. Further, as shown in FIG. 2, the liquid crystal driving IC 18 has a plurality of electrode terminals 19 (bumps) formed on the mounting surface 18a on the transparent substrate 12 to be electrically connected to the terminal portion 17a of the transparent electrode 17. . As the electrode terminal 19, for example, a copper bump, a gold bump, or a copper bump plated with gold is preferably used.

[電極端子]
液晶駆動用IC18は、例えば、図3に示すように、実装面18aの一方の側縁に沿って電極端子19(入力バンプ)が一列で配列され、一方の側縁と対向する他方の側縁に沿って電極端子19(出力バンプ)が複数列で千鳥状に配列されている。電極端子19と、透明基板12のCOG実装部20に設けられている端子部17aとは、それぞれ同数かつ同ピッチで形成され、透明基板12と液晶駆動用IC18とが位置合わせされて接続されることにより、接続される。
[Electrode terminal]
For example, as shown in FIG. 3, the liquid crystal driving IC 18 has electrode terminals 19 (input bumps) arranged in a row along one side edge of the mounting surface 18a, and the other side edge opposite to one side edge. Along these lines, electrode terminals 19 (output bumps) are arranged in multiple rows in a staggered manner. The electrode terminals 19 and the terminal portions 17a provided on the COG mounting portion 20 of the transparent substrate 12 are formed in the same number and at the same pitch, and the transparent substrate 12 and the liquid crystal driving IC 18 are aligned and connected. By doing so, it is connected.

なお、近年の液晶表示装置その他の電子機器の小型化、高機能化に伴い、液晶駆動用IC18等の電子部品も小型化、低背化が求められ、電極端子19もその高さが低くなっている(例えば6~15μm)。 In addition, as liquid crystal display devices and other electronic devices have become smaller and more sophisticated in recent years, electronic components such as the LCD driving IC 18 are also required to be smaller and lower in height, and the electrode terminals 19 are also becoming smaller in height. (for example, 6 to 15 μm).

また、上述したように、近年の液晶表示装置その他の電子機器の小型化、高精細化に伴い、回路基板の配線ピッチや電子部品の電極端子のファインピッチ化も進んでいる。例えば、液晶駆動用IC18は、電極端子19の端子部17aと接続される接続面の大きさが、幅8~60μm、長さ400μm以下で下限が幅と同距離(8~60μm)又は導電性
粒子径の7倍未満とされている。また、電極端子19間の最小距離も、電極端子19の幅に準じ、例えば8~30μmとされる。また、例えば、図4に示す電極端子19及び端子部17aの配列方向における最小距離D(この距離は、異方性接続が可能な範囲で配列方向にずれていてもよい。)が導電性粒子径の4倍未満とすることができる。
Further, as described above, as liquid crystal display devices and other electronic devices have become smaller and more precise in recent years, the wiring pitch of circuit boards and the finer pitch of electrode terminals of electronic components are also progressing. For example, in the liquid crystal driving IC 18, the size of the connection surface connected to the terminal portion 17a of the electrode terminal 19 is 8 to 60 μm in width, 400 μm or less in length, and the lower limit is the same distance as the width (8 to 60 μm) or conductive. It is said to be less than 7 times the particle diameter. Further, the minimum distance between the electrode terminals 19 is also set to 8 to 30 μm, for example, according to the width of the electrode terminals 19. Further, for example, the minimum distance D in the arrangement direction of the electrode terminal 19 and the terminal portion 17a shown in FIG. 4 (this distance may be shifted in the arrangement direction within a range that allows anisotropic connection) is It can be less than four times the diameter.

また、後述するように、液晶駆動用IC18は、透明基板12のCOG実装部20に実装されることにより、異方性導電フィルム1のバインダー樹脂の流動性が電極端子19上と、隣接する電極端子19間のスペース23とで異なり、この端子間スペース23におけるバインダー樹脂の流動性の方が高く、流動しやすい。この流動性に起因して、液晶表示パネル10は、端子部17aと接続される電極端子19上における導電性粒子4の最も近接する粒子との距離(以下、「粒子間距離」とも言う。)よりも、端子間スペース23における導電性粒子4の粒子間距離が長くなる。 In addition, as will be described later, the liquid crystal driving IC 18 is mounted on the COG mounting portion 20 of the transparent substrate 12, so that the fluidity of the binder resin of the anisotropic conductive film 1 is on the electrode terminal 19 and on the adjacent electrode. Unlike the space 23 between the terminals 19, the binder resin in this inter-terminal space 23 has higher fluidity and is easier to flow. Due to this fluidity, the liquid crystal display panel 10 has a distance between the conductive particles 4 and the nearest particle on the electrode terminal 19 connected to the terminal portion 17a (hereinafter also referred to as "interparticle distance"). , the distance between the conductive particles 4 in the inter-terminal space 23 becomes longer.

また、液晶駆動用IC18は、実装面18aに、基板側アライメントマーク21と重畳させることにより、透明基板12に対するアライメントを行うIC側アライメントマーク22が形成されている。なお、透明基板12の透明電極17の配線ピッチや液晶駆動用IC18の電極端子19のファインピッチ化が進んでいることから、液晶駆動用IC18と透明基板12とは、高精度のアライメント調整が求められている。 Further, the liquid crystal driving IC 18 has an IC side alignment mark 22 formed on the mounting surface 18a to perform alignment with the transparent substrate 12 by overlapping with the substrate side alignment mark 21. In addition, as the wiring pitch of the transparent electrode 17 of the transparent substrate 12 and the fine pitch of the electrode terminal 19 of the liquid crystal driving IC 18 are progressing, highly accurate alignment adjustment is required between the liquid crystal driving IC 18 and the transparent substrate 12. It is being

基板側アライメントマーク21及びIC側アライメントマーク22は、組み合わされることにより透明基板12と液晶駆動用IC18とのアライメントが取れる種々のマークを用いることができる。 As the substrate-side alignment mark 21 and the IC-side alignment mark 22, various marks can be used that can be combined to align the transparent substrate 12 and the liquid crystal driving IC 18.

COG実装部20に形成されている透明電極17の端子部17a上には、回路接続用接着剤として異方性導電フィルム1を用いて液晶駆動用IC18が接続される。異方性導電フィルム1は、導電性粒子4を含有しており、液晶駆動用IC18の電極端子19と透明基板12の縁部12aに形成された透明電極17の端子部17aとを、導電性粒子4を介して電気的に接続させるものである。この異方性導電フィルム1は、熱圧着ヘッド33により熱圧着されることによりバインダー樹脂が流動化して導電性粒子4が端子部17aと液晶駆動用IC18の電極端子19との間で押し潰され、この状態でバインダー樹脂が硬化する。これにより、異方性導電フィルム1は、透明基板12と液晶駆動用IC18とを電気的、機械的に接続する。 A liquid crystal driving IC 18 is connected onto the terminal portion 17a of the transparent electrode 17 formed on the COG mounting portion 20 using the anisotropic conductive film 1 as a circuit connection adhesive. The anisotropic conductive film 1 contains conductive particles 4, and connects the electrode terminal 19 of the liquid crystal driving IC 18 and the terminal portion 17a of the transparent electrode 17 formed on the edge 12a of the transparent substrate 12 with conductive particles 4. Electrical connection is made via the particles 4. This anisotropic conductive film 1 is thermocompressed by a thermocompression bonding head 33, so that the binder resin is fluidized and the conductive particles 4 are crushed between the terminal portion 17a and the electrode terminal 19 of the liquid crystal driving IC 18. , the binder resin is cured in this state. Thereby, the anisotropic conductive film 1 electrically and mechanically connects the transparent substrate 12 and the liquid crystal driving IC 18.

また、両透明電極16,17上には、所定のラビング処理が施された配向膜24が形成されており、この配向膜24によって液晶分子の初期配向が規制されるようになっている。さらに、両透明基板11,12の外側には、一対の偏光板25,26が配設されており、これら両偏光板25,26によってバックライト等の光源(図示せず)からの透過光の振動方向が規制されるようになっている。 Furthermore, an alignment film 24 that has been subjected to a predetermined rubbing process is formed on both the transparent electrodes 16 and 17, and the initial alignment of the liquid crystal molecules is regulated by this alignment film 24. Furthermore, a pair of polarizing plates 25 and 26 are arranged on the outside of both transparent substrates 11 and 12, and these polarizing plates 25 and 26 prevent transmitted light from a light source (not shown) such as a backlight. The direction of vibration is regulated.

[異方性導電フィルム]
次いで、異方性導電フィルム1について説明する。異方性導電フィルム(ACF:Anisotropic Conductive Film)1は、図5に示すように、通常、基材となる剥離フィルム2上に導電性粒子4を含有するバインダー樹脂層(接着剤層)3が形成されたものである。異方性導電フィルム1は、熱硬化型あるいは紫外線等の光硬化型の接着剤であり、液晶表示パネル10の透明基板12に形成された透明電極17上に貼着されるとともに液晶駆動用IC18が搭載され、熱圧着ヘッド33により熱加圧されることにより流動化して導電性粒子4が相対向する透明電極17の端子部17aと液晶駆動用IC18の電極端子19との間で押し潰され、加熱あるいは紫外線照射により、導電性粒子が押し潰された状態で硬化する。これにより、異方性導電フィルム1は、透明基板12と液晶駆動用IC18とを接続し、導通させることができる。
[Anisotropic conductive film]
Next, the anisotropic conductive film 1 will be explained. As shown in FIG. 5, an anisotropic conductive film (ACF) 1 usually has a binder resin layer (adhesive layer) 3 containing conductive particles 4 on a release film 2 serving as a base material. It was formed. The anisotropic conductive film 1 is a thermosetting adhesive or a photocurable adhesive such as ultraviolet rays, and is adhered to a transparent electrode 17 formed on a transparent substrate 12 of a liquid crystal display panel 10 and is attached to a liquid crystal driving IC 18. is mounted, and is fluidized by being heated and pressurized by the thermocompression bonding head 33, and the conductive particles 4 are crushed between the opposing terminal portion 17a of the transparent electrode 17 and the electrode terminal 19 of the liquid crystal driving IC 18. The conductive particles are cured in a crushed state by heating or ultraviolet irradiation. Thereby, the anisotropic conductive film 1 can connect the transparent substrate 12 and the liquid crystal driving IC 18 to establish electrical continuity.

また、異方性導電フィルム1は、膜形成樹脂、熱硬化性樹脂、潜在性硬化剤、シランカップリング剤等を含有する通常のバインダー樹脂層3に導電性粒子4が所定のパターンで規則的に配列されている。 In addition, the anisotropic conductive film 1 includes conductive particles 4 arranged regularly in a predetermined pattern in a normal binder resin layer 3 containing a film-forming resin, a thermosetting resin, a latent curing agent, a silane coupling agent, etc. are arranged in

バインダー樹脂層3を支持する剥離フィルム2は、例えば、PET(Poly Ethylene Terephthalate)、OPP(Oriented Polypropylene)、PMP(Poly-4-methylpentene-1)、PTFE(Polytetrafluoroethylene)等にシリコーン等の剥離剤を塗布してなり、異方性導電フィルム1の乾燥を防ぐとともに、異方性導電フィルム1の形状を維持する。 The release film 2 supporting the binder resin layer 3 is made of, for example, PET (Poly Ethylene Terephthalate), OPP (Oriented Polypropylene), PMP (Poly-4-methylpentene-1), PTFE (Polytetrafluoroethylene), etc., coated with a release agent such as silicone. This coating prevents the anisotropic conductive film 1 from drying out and maintains the shape of the anisotropic conductive film 1.

バインダー樹脂層3に含有される膜形成樹脂としては、平均分子量が10000~80000程度の樹脂が好ましい。膜形成樹脂としては、エポキシ樹脂、変形エポキシ樹脂、ウレタン樹脂、フェノキシ樹脂等の各種の樹脂が挙げられる。中でも、膜形成状態、接続信頼性等の観点からフェノキシ樹脂が特に好ましい。 The film-forming resin contained in the binder resin layer 3 is preferably a resin having an average molecular weight of about 10,000 to 80,000. Examples of the film-forming resin include various resins such as epoxy resin, modified epoxy resin, urethane resin, and phenoxy resin. Among these, phenoxy resin is particularly preferred from the viewpoint of film formation state, connection reliability, and the like.

熱硬化性樹脂としては、特に限定されず、例えば、市販のエポキシ樹脂、アクリル樹脂等が挙げられる。 The thermosetting resin is not particularly limited, and examples thereof include commercially available epoxy resins, acrylic resins, and the like.

エポキシ樹脂としては、特に限定されないが、例えば、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビスフェノール型エポキシ樹脂、スチルベン型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトール型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂等が挙げられる。これらは単独でも、2種以上の組み合わせであってもよい。 Examples of epoxy resins include, but are not limited to, naphthalene-type epoxy resins, biphenyl-type epoxy resins, phenol novolak-type epoxy resins, bisphenol-type epoxy resins, stilbene-type epoxy resins, triphenolmethane-type epoxy resins, and phenol-aralkyl-type epoxy resins. , naphthol type epoxy resin, dicyclopentadiene type epoxy resin, triphenylmethane type epoxy resin, etc. These may be used alone or in combination of two or more.

アクリル樹脂としては、特に制限はなく、目的に応じてアクリル化合物、液状アクリレート等を適宜選択することができる。例えば、メチルアクリレート、エチルアクリレート、イソプロピルアクリレート、イソブチルアクリレート、エポキシアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、トリメチロールプロパントリアクリレート、ジメチロールトリシクロデカンジアクリレート、テトラメチレングリコールテトラアクリレート、2-ヒドロキシ-1,3-ジアクリロキシプロパン、2,2-ビス[4-(アクリロキシメトキシ)フェニル]プロパン、2,2-ビス[4-(アクリロキシエトキシ)フェニル]プロパン、ジシクロペンテニルアクリレート、トリシクロデカニルアクリレート、トリス(アクリロキシエチル)イソシアヌレート、ウレタンアクリレート、エポキシアクリレート等を挙げることができる。なお、アクリレートをメタクリレートにしたものを用いることもできる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。 The acrylic resin is not particularly limited, and acrylic compounds, liquid acrylates, etc. can be appropriately selected depending on the purpose. For example, methyl acrylate, ethyl acrylate, isopropyl acrylate, isobutyl acrylate, epoxy acrylate, ethylene glycol diacrylate, diethylene glycol diacrylate, trimethylolpropane triacrylate, dimethylol tricyclodecane diacrylate, tetramethylene glycol tetraacrylate, 2-hydroxy- 1,3-Diacryloxypropane, 2,2-bis[4-(acryloxymethoxy)phenyl]propane, 2,2-bis[4-(acryloxyethoxy)phenyl]propane, dicyclopentenyl acrylate, tricyclo Examples include decanyl acrylate, tris(acryloxyethyl)isocyanurate, urethane acrylate, and epoxy acrylate. Note that it is also possible to use a methacrylate instead of an acrylate. These may be used alone or in combination of two or more.

潜在性硬化剤としては、特に限定されないが、例えば、加熱硬化型、UV硬化型等の各種硬化剤が挙げられる。潜在性硬化剤は、通常では反応せず、熱、光、加圧等の用途に応じて選択される各種のトリガにより活性化し、反応を開始する。熱活性型潜在性硬化剤の活性化方法には、加熱による解離反応などで活性種(カチオンやアニオン、ラジカル)を生成する方法、室温付近ではエポキシ樹脂中に安定に分散しており高温でエポキシ樹脂と相溶・溶解し、硬化反応を開始する方法、モレキュラーシーブ封入タイプの硬化剤を高温で溶出して硬化反応を開始する方法、マイクロカプセルによる溶出・硬化方法等が存在する。熱活性型潜在性硬化剤としては、イミダゾール系、ヒドラジド系、三フッ化ホウ素-アミン錯体、スルホニウム塩、アミンイミド、ポリアミン塩、ジシアンジアミド等や、これらの変性物があり、これらは単独でも、2種以上の混合体であってもよい。中でも、マイクロカプセル型イミダゾール系潜在性硬化剤が好適である。 The latent curing agent is not particularly limited, and examples thereof include various curing agents such as heat curing type and UV curing type. The latent curing agent does not normally react, but is activated by various triggers selected depending on the application, such as heat, light, and pressure, and starts a reaction. Activation methods for heat-activated latent curing agents include generating active species (cations, anions, and radicals) through a dissociation reaction caused by heating; There are methods such as a method in which the curing agent is compatible with the resin and starts the curing reaction, a method in which a molecular sieve-encapsulated curing agent is eluted at high temperature to start the curing reaction, and a method in which the curing agent is eluted and cured using microcapsules. Heat-activated latent curing agents include imidazole type, hydrazide type, boron trifluoride-amine complex, sulfonium salt, amine imide, polyamine salt, dicyandiamide, etc., and modified products of these. A mixture of the above may also be used. Among these, microcapsule-type imidazole-based latent curing agents are preferred.

シランカップリング剤としては、特に限定されないが、例えば、エポキシ系、アミノ系、メルカプト・スルフィド系、ウレイド系等を挙げることができる。シランカップリング剤を添加することにより、有機材料と無機材料との界面における接着性が向上される。 Examples of the silane coupling agent include, but are not limited to, epoxy, amino, mercapto sulfide, ureide, and the like. By adding a silane coupling agent, the adhesion at the interface between the organic material and the inorganic material is improved.

[導電性粒子]
導電性粒子4としては、異方性導電フィルム1において使用されている公知の何れの導電性粒子を挙げることができる。導電性粒子4としては、例えば、ニッケル、鉄、銅、アルミニウム、錫、鉛、クロム、コバルト、銀、金等の各種金属や金属合金の粒子、金属酸化物、カーボン、グラファイト、ガラス、セラミック、プラスチック等の粒子の表面に金属をコートしたもの、或いは、これらの粒子の表面に更に絶縁薄膜をコートしたもの等が挙げられる。樹脂粒子の表面に金属をコートしたものである場合、樹脂粒子としては、例えば、エポキシ樹脂、フェノール樹脂、アクリル樹脂、アクリロニトリル・スチレン(AS)樹脂、ベンゾグアナミン樹脂、ジビニルベンゼン系樹脂、スチレン系樹脂等の粒子を挙げることができる。導電性粒子4の大きさは1~10μmが好ましいが、本発明はこれに限定されるものではない。
[Conductive particles]
As the conductive particles 4, any known conductive particles used in the anisotropic conductive film 1 can be mentioned. Examples of the conductive particles 4 include particles of various metals and metal alloys such as nickel, iron, copper, aluminum, tin, lead, chromium, cobalt, silver, and gold, metal oxides, carbon, graphite, glass, ceramics, Examples include those in which the surface of particles of plastic or the like is coated with a metal, or those in which the surface of these particles is further coated with an insulating thin film. When the surface of the resin particles is coated with metal, examples of the resin particles include epoxy resins, phenol resins, acrylic resins, acrylonitrile styrene (AS) resins, benzoguanamine resins, divinylbenzene resins, styrene resins, etc. particles can be mentioned. The size of the conductive particles 4 is preferably 1 to 10 μm, but the present invention is not limited thereto.

[導電性粒子の規則配列]
異方性導電フィルム1は、導電性粒子4が平面視において所定の配列パターンで規則的に配列され、例えば図6に示すように、格子状かつ均等に配列されるものがある。平面視において規則的に配列されることにより、異方性導電フィルム1は、導電性粒子4がランダムに分散されている場合に比して、液晶駆動用IC18の隣接する電極端子19間がファインピッチ化し端子間面積が狭小化するとともに、導電性粒子4が高密度に充填されていても、液晶駆動用IC18の接続工程において、導電性粒子4の凝集体による電極端子19間のショートを防止することができる。
[Ordered arrangement of conductive particles]
In the anisotropic conductive film 1, the conductive particles 4 are regularly arranged in a predetermined arrangement pattern in a plan view, for example, as shown in FIG. 6, there is an anisotropic conductive film 1 in which the conductive particles 4 are arranged evenly in a lattice shape. By being regularly arranged in a plan view, the anisotropic conductive film 1 has a finer distance between adjacent electrode terminals 19 of the liquid crystal driving IC 18 than when the conductive particles 4 are randomly dispersed. Even if the area between the terminals is narrowed due to the pitch, and the conductive particles 4 are packed at a high density, short circuits between the electrode terminals 19 due to aggregates of the conductive particles 4 can be prevented in the connection process of the liquid crystal driving IC 18. can do.

また、異方性導電フィルム1は、導電性粒子4が規則的に配列されることにより、バインダー樹脂層3に高密度に充填した場合にも、導電性粒子4の凝集による疎密の発生が防止されている。したがって、異方性導電フィルム1によれば、ファインピッチ化された端子部17aや電極端子19においても導電性粒子4を捕捉することができる。導電性粒子4の均等配列パターンは、任意に設定することができる。液晶駆動用IC18の接続工程については後に詳述する。 Furthermore, since the conductive particles 4 are regularly arranged in the anisotropic conductive film 1, even when the binder resin layer 3 is filled with high density, the occurrence of spacing due to agglomeration of the conductive particles 4 is prevented. has been done. Therefore, according to the anisotropic conductive film 1, the conductive particles 4 can be captured even in the fine pitched terminal portions 17a and electrode terminals 19. The uniform arrangement pattern of the conductive particles 4 can be set arbitrarily. The process of connecting the liquid crystal driving IC 18 will be described in detail later.

このような異方性導電フィルム1は、例えば、延伸可能なシート上に粘着剤を塗布し、その上に導電性粒子4を単層配列した後、当該シートを、所望の延伸倍率で延伸させる方法、導電性粒子4を基板上に所定の配列パターンに整列させた後、剥離フィルム2に支持されたバインダー樹脂層3に導電性粒子4を転写する方法、あるいは剥離フィルム2に支持されたバインダー樹脂層3上に、配列パターンに応じた開口部が設けられた配列板を介して導電性粒子4を供給する方法等により製造することができる。 Such an anisotropic conductive film 1 can be produced, for example, by applying an adhesive onto a stretchable sheet, arranging conductive particles 4 in a single layer thereon, and then stretching the sheet at a desired stretching ratio. method, a method in which conductive particles 4 are arranged in a predetermined arrangement pattern on a substrate and then transferred to a binder resin layer 3 supported on a release film 2, or a binder supported on a release film 2. It can be manufactured by a method of supplying the conductive particles 4 onto the resin layer 3 through an array plate provided with openings according to the array pattern.

[粒子個数密度]
ここで、透明基板12の透明電極17の配線ピッチや液晶駆動用IC18の電極端子19のファインピッチ化が進んでいることから、透明基板12上に液晶駆動用IC18をCOG接続する場合、ファインピッチ化された電極端子19及び端子部17aとの間においても確実に導電性粒子が挟持され導通を確保するために、異方性導電フィルム1は、導電性粒子4が高密度で配列されている。
[Particle number density]
Here, since the wiring pitch of the transparent electrode 17 of the transparent substrate 12 and the electrode terminal 19 of the liquid crystal driving IC 18 are becoming finer pitch, when connecting the liquid crystal driving IC 18 on the transparent substrate 12 by COG, fine pitch The anisotropic conductive film 1 has conductive particles 4 arranged at a high density in order to ensure conductive particles are sandwiched between the electrode terminal 19 and the terminal portion 17a, which have been formed into an anisotropic conductive film 1. .

具体的に、異方性導電フィルム1は、導電性粒子4が5000~60000個/mm2の個数密度で配列されている。粒子個数密度が5000個/mm2よりも少ないとファインピッチ化された電極端子19及び端子部17aとの間における粒子捕捉数が減少し、導通抵抗が上がってしまう。また、粒子個数密度が60000個/mm2よりも多いと狭小
化された電極端子19間の端子間スペース23にある導電性粒子4が連なってしまい、隣接する電極端子19間をショートさせるおそれがある。なお、これらは一例であり、粒子個数密度は導電性粒子4の大きさから任意に調整するものであり、本発明はこれに限定されるものではない。
Specifically, in the anisotropic conductive film 1, the conductive particles 4 are arranged at a number density of 5,000 to 60,000 pieces/mm 2 . If the particle number density is less than 5000 particles/mm 2 , the number of particles captured between the fine-pitched electrode terminal 19 and the terminal portion 17a will decrease, and the conduction resistance will increase. Furthermore, if the particle number density is more than 60,000 particles/mm 2 , the conductive particles 4 in the narrowed inter-terminal space 23 between the electrode terminals 19 may become connected, causing a short circuit between adjacent electrode terminals 19. be. Note that these are just examples, and the particle number density is arbitrarily adjusted based on the size of the conductive particles 4, and the present invention is not limited thereto.

なお、異方性導電フィルム1の形状は、特に限定されないが、例えば、図5に示すように、巻取リール6に巻回可能な長尺テープ形状とし、所定の長さだけカットして使用することができる。 Note that the shape of the anisotropic conductive film 1 is not particularly limited, but for example, as shown in FIG. can do.

また、上述の実施の形態では、異方性導電フィルム1として、バインダー樹脂層3に導電性粒子4を規則配列した熱硬化性樹脂組成物をフィルム状に成形した接着フィルムを例に説明したが、本発明に係る接着剤は、これに限定されず、例えばバインダー樹脂3のみからなる絶縁性接着剤層と導電性粒子4を規則配列したバインダー樹脂3からなる導電性粒子含有層とを積層した構成とすることができる。また、異方性導電フィルム1は、導電性粒子4が平面視で規則配列されていれば、図5に示すように単層配列されている他、複数のバインダー樹脂層3にわたって導電性粒子4が配列されるとともに平面視において規則配列されるものでもよい。また、異方性導電フィルム1は、多層構成の少なくとも一つの層内で、所定距離で単一に分散されたものでもよい。 Further, in the above embodiment, an adhesive film in which a thermosetting resin composition in which conductive particles 4 are regularly arranged in a binder resin layer 3 is molded into a film shape is used as an anisotropic conductive film 1. The adhesive according to the present invention is not limited to this, and for example, an insulating adhesive layer made of only a binder resin 3 and a conductive particle-containing layer made of a binder resin 3 in which conductive particles 4 are regularly arranged are laminated. It can be configured as follows. In addition, in the anisotropic conductive film 1, if the conductive particles 4 are regularly arranged in a plan view, the conductive particles 4 are arranged in a single layer as shown in FIG. may be arranged and arranged regularly in plan view. Further, the anisotropic conductive film 1 may be singly dispersed at a predetermined distance within at least one layer of a multilayer structure.

[接続工程]
次いで、透明基板12に液晶駆動用IC18を接続する接続工程について説明する。先ず、透明基板12の端子部17aが形成されたCOG実装部20上に異方性導電フィルム1を仮貼りする。次いで、この透明基板12を接続装置のステージ上に載置し、透明基板12の実装部上に異方性導電フィルム1を介して液晶駆動用IC18を配置する。
[Connection process]
Next, a connection process for connecting the liquid crystal driving IC 18 to the transparent substrate 12 will be described. First, the anisotropic conductive film 1 is temporarily pasted onto the COG mounting section 20 on which the terminal section 17a of the transparent substrate 12 is formed. Next, this transparent substrate 12 is placed on the stage of a connecting device, and the liquid crystal driving IC 18 is placed on the mounting portion of the transparent substrate 12 via the anisotropic conductive film 1.

次いで、バインダー樹脂層3を硬化させる所定の温度に加熱された熱圧着ヘッド33によって、所定の圧力、時間で液晶駆動用IC18上から熱加圧する。これにより、異方性導電フィルム1のバインダー樹脂層3は流動性を示し、液晶駆動用IC18の実装面18aと透明基板12のCOG実装部20の間から流出するとともに、バインダー樹脂層3中の導電性粒子4は、液晶駆動用IC18の電極端子19と透明基板12の端子部17aとの間に挟持されて押し潰される。 Next, heat is applied from above the liquid crystal driving IC 18 at a predetermined pressure and time using a thermocompression bonding head 33 heated to a predetermined temperature to harden the binder resin layer 3 . As a result, the binder resin layer 3 of the anisotropic conductive film 1 exhibits fluidity and flows out from between the mounting surface 18a of the liquid crystal driving IC 18 and the COG mounting portion 20 of the transparent substrate 12, and the binder resin layer 3 of the anisotropic conductive film 1 exhibits fluidity. The conductive particles 4 are sandwiched between the electrode terminal 19 of the liquid crystal driving IC 18 and the terminal portion 17a of the transparent substrate 12 and crushed.

その結果、電極端子19と端子部17aとの間で導電性粒子4を挟持することにより電気的に接続され、この状態で熱圧着ヘッド33によって加熱されたバインダー樹脂が硬化する。これにより、液晶駆動用IC18の電極端子19と透明基板12に形成された端子部17aとの間で導通性を確保された液晶表示パネル10を製造することができる。 As a result, an electrical connection is established by sandwiching the conductive particles 4 between the electrode terminal 19 and the terminal portion 17a, and in this state, the binder resin heated by the thermocompression bonding head 33 is cured. Thereby, it is possible to manufacture a liquid crystal display panel 10 in which conductivity is ensured between the electrode terminals 19 of the liquid crystal driving IC 18 and the terminal portions 17a formed on the transparent substrate 12.

電極端子19と端子部17aとの間にない導電性粒子4は、隣接する電極端子19間の端子間スペース23においてバインダー樹脂に分散されており、電気的に絶縁した状態を維持している。これにより、液晶駆動用IC18の電極端子19と透明基板12の端子部17aとの間のみで電気的導通が図られる。なお、バインダー樹脂として、ラジカル重合反応系の速硬化タイプのものを用いることで、短い加熱時間によってもバインダー樹脂を速硬化させることができる。また、異方性導電フィルム1としては、熱硬化型に限らず、加圧接続を行うものであれば、光硬化型もしくは光熱併用型の接着剤を用いてもよい。 The conductive particles 4 that are not between the electrode terminals 19 and the terminal portions 17a are dispersed in the binder resin in the inter-terminal spaces 23 between adjacent electrode terminals 19, and maintain an electrically insulated state. Thereby, electrical continuity is achieved only between the electrode terminal 19 of the liquid crystal driving IC 18 and the terminal portion 17a of the transparent substrate 12. In addition, by using a fast-curing type of radical polymerization reaction type binder resin, the binder resin can be rapidly cured even with a short heating time. Further, the anisotropic conductive film 1 is not limited to a thermosetting adhesive, but may be a photocuring adhesive or a combined photothermal adhesive as long as it performs pressure connection.

[導電性粒子間距離]
ここで、本発明においては、隣接する電極端子19間の端子間スペース23における導電性粒子4同士の粒子間距離は、電極端子19と端子部17aとの間に捕捉された導電性粒子4同士の粒子間距離よりも長い。したがって、液晶表示パネル10は、ファインピッチ化された電極端子19の端子間スペース23において導電性粒子4が連なることによる
端子間ショートを防止することができる。
[Distance between conductive particles]
Here, in the present invention, the distance between the conductive particles 4 in the inter-terminal space 23 between adjacent electrode terminals 19 is the distance between the conductive particles 4 captured between the electrode terminal 19 and the terminal portion 17a. is longer than the interparticle distance. Therefore, the liquid crystal display panel 10 can prevent a short circuit between the terminals due to the conductive particles 4 being connected in a row in the interterminal space 23 of the fine-pitch electrode terminals 19.

すなわち、本発明においては、異方性導電フィルム1の導電性粒子4が規則的に配置されている。また、熱圧着ヘッド33による熱加圧時において、液晶駆動用IC18は、電極端子19上よりも、端子間スペース23の方がバインダー樹脂の流動性が高く流動しやすい。さらに、電極端子19と端子部17aとの間に捕捉された導電性粒子4は、バインダー樹脂の流動による影響が低い。 That is, in the present invention, the conductive particles 4 of the anisotropic conductive film 1 are regularly arranged. Furthermore, during thermal pressurization by the thermocompression bonding head 33, the binder resin of the liquid crystal driving IC 18 has higher fluidity and flows more easily in the inter-terminal space 23 than on the electrode terminal 19. Furthermore, the conductive particles 4 captured between the electrode terminal 19 and the terminal portion 17a are less affected by the flow of the binder resin.

一方、端子間スペース23における導電性粒子4は、電極端子19や端子部17aに挟持されておらず、熱圧着ヘッド33による熱加圧によって流動するバインダー樹脂の影響を相対的に大きく受ける。このため、端子間スペース23における導電性粒子4は、粒子間距離が相対的に大きくなる。したがって、液晶表示パネル10は、電極端子19と端子部17aとの間に確実に導電性粒子4を捕捉して導通性を確保することができ、かつ、隣接する電極端子19間の端子間スペース23において、粒子間距離を保持するため、電極端子19間のショートを防止することができる。 On the other hand, the conductive particles 4 in the inter-terminal space 23 are not sandwiched between the electrode terminals 19 or the terminal portions 17a, and are relatively largely influenced by the binder resin that flows due to heat pressurization by the thermocompression bonding head 33. Therefore, the distance between the conductive particles 4 in the inter-terminal space 23 becomes relatively large. Therefore, the liquid crystal display panel 10 can reliably capture the conductive particles 4 between the electrode terminals 19 and the terminal portions 17a to ensure conductivity, and the inter-terminal space between the adjacent electrode terminals 19. In step 23, since the distance between the particles is maintained, short circuits between the electrode terminals 19 can be prevented.

また、上述したように、導電性粒子の個数密度は5000~60000個/mm2とされていることが好ましい。当該個数密度を有することにより、液晶表示パネル10は、狭小化された端子間スペース23において導電性粒子4が連続することによる端子間ショートを防止するとともに、ファインピッチ化された電極端子19と端子部17aとの間に導電性粒子4を確実に捕捉し、導通性を向上させることができる。 Further, as described above, the number density of the conductive particles is preferably 5,000 to 60,000 particles/mm 2 . By having this number density, the liquid crystal display panel 10 prevents short circuits between the terminals due to the continuity of the conductive particles 4 in the narrowed interterminal space 23, and also prevents short-circuiting between the terminals and the fine-pitch electrode terminals 19. The conductive particles 4 can be reliably captured between the part 17a and the conductive part 17a, thereby improving conductivity.

図7は、導電性粒子4が規則的に配置された異方性導電フィルム1(個数密度:28000個/mm2)と導電性粒子がランダムに分散されている異方性導電フィルム(個数密度:60000個/mm2)とを用いてそれぞれ異方性導電接続された接続体における一つの電極端子19の導電性粒子捕捉数の分布を対比したグラフである。電極端子19のサイズは14μm×50μm(=700μm2)、電極端子19間の距離は14μmである。また、異方性導電フィルム1のバインダー及び接続条件は、下記の実施例及び比較例に準ずる。 FIG. 7 shows an anisotropic conductive film 1 in which conductive particles 4 are regularly arranged (number density: 28000 pieces/mm 2 ) and an anisotropic conductive film in which conductive particles are randomly dispersed (number density: 28000 pieces/mm 2 ). 60,000 particles/mm 2 ) is a graph comparing the distribution of the number of conductive particles captured by one electrode terminal 19 in the anisotropic conductively connected connectors. The size of the electrode terminals 19 is 14 μm×50 μm (=700 μm 2 ), and the distance between the electrode terminals 19 is 14 μm. Moreover, the binder and connection conditions of the anisotropic conductive film 1 are in accordance with the following Examples and Comparative Examples.

図7に示すように、異方性導電フィルム1を用いて製造された接続体では、捕捉の確実性が向上されていることがわかる。 As shown in FIG. 7, it can be seen that the reliability of capture is improved in the connection body manufactured using the anisotropic conductive film 1.

[フィルム長手方向に疎密配列]
また、図8(A)に示すように、異方性導電フィルム1は、端子部17a及び電極端子19の配列方向を長手方向とするフィルム状に形成され、導電性粒子4が、長手方向にわたって疎、幅方向に亘って密に配列されていてもよい。
[Dense and dense arrangement in the longitudinal direction of the film]
Further, as shown in FIG. 8(A), the anisotropic conductive film 1 is formed into a film shape whose longitudinal direction is the arrangement direction of the terminal portions 17a and the electrode terminals 19, and the conductive particles 4 are arranged in the longitudinal direction. They may be sparsely arranged or densely arranged in the width direction.

異方性導電フィルム1は、長手方向を端子部17a及び電極端子19の配列方向に沿って貼着される。したがって、異方性導電フィルム1は、COG実装部20に貼り合われることにより、導電性粒子4が端子部17a及び電極端子19の配列方向にわたって疎に配列され、端子部17a及び電極端子19の長さ方向にわたって密に配列される。 The anisotropic conductive film 1 is attached with its longitudinal direction along the direction in which the terminal portions 17a and the electrode terminals 19 are arranged. Therefore, when the anisotropic conductive film 1 is bonded to the COG mounting part 20, the conductive particles 4 are sparsely arranged in the arrangement direction of the terminal parts 17a and the electrode terminals 19, and densely arranged along the length.

このような異方性導電フィルム1は、相対的に導電性粒子4が端子部17a及び電極端子19の配列方向にわたって疎に配列されることにより、端子間スペース23において隣接する電極端子19間にわたる導電性粒子4の数が減り、粒子間距離が広がるため、より電極端子19間のショートを防止することができる。 In such an anisotropic conductive film 1, the conductive particles 4 are relatively sparsely arranged in the arrangement direction of the terminal portion 17a and the electrode terminals 19, so that the conductive particles 4 span between adjacent electrode terminals 19 in the inter-terminal space 23. Since the number of conductive particles 4 is reduced and the distance between the particles is increased, short circuits between the electrode terminals 19 can be further prevented.

また、異方性導電フィルム1は、相対的に導電性粒子4が幅方向に亘って密に配列されているため、端子部17a及び電極端子19の間における導電性粒子4の粒子捕捉率が上
がる。したがって、液晶駆動用IC18との導通性を損なうこともない。
In addition, in the anisotropic conductive film 1, since the conductive particles 4 are relatively densely arranged in the width direction, the particle capture rate of the conductive particles 4 between the terminal portion 17a and the electrode terminal 19 is low. Go up. Therefore, the conductivity with the liquid crystal driving IC 18 is not impaired.

なお、図8(B)に示すように、異方性導電フィルム1は、端子部17a及び電極端子19の配列方向を長手方向とするフィルム状に形成され、導電性粒子4が、長手方向にわたって密、幅方向に亘って疎に配列されていてもよい。 As shown in FIG. 8(B), the anisotropic conductive film 1 is formed into a film shape whose longitudinal direction is the arrangement direction of the terminal portions 17a and the electrode terminals 19, and the conductive particles 4 are arranged in the longitudinal direction. They may be arranged densely or sparsely across the width direction.

この場合も、端子間スペース23における導電性粒子4は、熱圧着ヘッド33による熱加圧によって流動するバインダー樹脂の影響を大きく受け、粒子間距離が相対的に大きくなる。そのため、液晶表示パネル10は、電極端子19間のショートを防止することができる。 In this case as well, the conductive particles 4 in the inter-terminal space 23 are greatly influenced by the binder resin that flows due to the heat pressurization by the thermocompression bonding head 33, and the distance between the particles becomes relatively large. Therefore, the liquid crystal display panel 10 can prevent short circuits between the electrode terminals 19.

また、液晶表示パネル10は、相対的に導電性粒子4がフィルムの長さ方向に亘って密に配列されているため、端子部17a及び電極端子19の間において導電性粒子4を確実に捕捉することができ、液晶駆動用IC18との導通性を損なうこともない。 Further, in the liquid crystal display panel 10, since the conductive particles 4 are relatively densely arranged in the length direction of the film, the conductive particles 4 can be reliably captured between the terminal portion 17a and the electrode terminal 19. The conductivity with the liquid crystal driving IC 18 is not impaired.

[高密度充填配列]
また、図9~図11に示すように、異方性導電フィルム1は、フィルムの長手方向Lfと直交する幅方向Ltに対して、導電性粒子4を傾斜させて配列し、フィルムの長手方向Lfを端子部17aの配列方向と平行、且つフィルムの幅方向Ltを端子部17aの長手方向と平行に配置させることにより、異方導電性フィルム1の長手方向Lfに直交する方向の、導電性粒子Pの外接線(二点鎖線)が、その導電性粒子Pに隣接する導電性粒子Pc、Peを貫いてもよい。
[Densely packed array]
Further, as shown in FIGS. 9 to 11, the anisotropic conductive film 1 has conductive particles 4 arranged obliquely with respect to the width direction Lt perpendicular to the longitudinal direction Lf of the film, and By arranging Lf parallel to the arrangement direction of the terminal portions 17a and the width direction Lt of the film parallel to the longitudinal direction of the terminal portions 17a, the conductivity in the direction perpendicular to the longitudinal direction Lf of the anisotropically conductive film 1 is improved. The outer tangent line (two-dot chain line) of the particle P may pass through the conductive particles Pc and Pe adjacent to the conductive particle P.

これにより、透明電極17の端子部17aに異方導電性フィルム1を重ねた平面図において、端子部17aの幅方向(フィルムの長手方向Lf)に対する隣接する導電性粒子4の粒子間距離が密となり、ファインピッチ化された端子部17aの接続面に占める導電性粒子4の捕捉率を向上することができる。よって、異方性導電フィルム1は、異方導電接続時に対向する電極端子19との間で挟持されて端子部17aに押し込まれ、電極端子19と端子部17aとの間を導通させる導電性粒子Pの数が不十分になることを防止することができる。 As a result, in a plan view of the anisotropically conductive film 1 overlaid on the terminal portion 17a of the transparent electrode 17, the distance between adjacent conductive particles 4 in the width direction of the terminal portion 17a (longitudinal direction Lf of the film) is reduced. Therefore, it is possible to improve the capture rate of the conductive particles 4 occupying the connection surface of the fine pitched terminal portion 17a. Therefore, during anisotropic conductive connection, the anisotropic conductive film 1 is sandwiched between the opposing electrode terminals 19 and pushed into the terminal portion 17a, and the conductive particles create electrical continuity between the electrode terminal 19 and the terminal portion 17a. It is possible to prevent the number of P from becoming insufficient.

なお、図9~図11に示す異方性導電フィルム1は、導電性粒子がフィルム幅方向Ltへの第2配列方向L2がフィルム幅方向Ltに対して傾斜するとともに、フィルムの長手方向Lfへの第1配列方向L1がフィルム長手方向Lfに対して傾斜することにより、端子部17aの幅方向及び長手方向に対する隣接する導電性粒子間距離が密とされ、より捕捉率が向上されている。 In addition, in the anisotropic conductive film 1 shown in FIGS. 9 to 11, the second arrangement direction L2 of the conductive particles in the film width direction Lt is inclined with respect to the film width direction Lt, and the conductive particles are arranged in the film longitudinal direction Lf. By tilting the first arrangement direction L1 with respect to the longitudinal direction Lf of the film, the distance between adjacent conductive particles in the width direction and longitudinal direction of the terminal portion 17a is made dense, and the capture rate is further improved.

次いで、本発明の実施例について説明する。本実施例では、導電性粒子が規則配列された異方性導電フィルムと、導電性粒子がランダムに分散された異方性導電フィルムを用いて、評価用ガラス基板に評価用ICを接続した接続体サンプルを作成し、それぞれ評価用ガラス基板に形成された基板電極と評価用ICに形成されたICバンプとの間に捕捉された導電性粒子の数及び導電性粒子の最も近接する粒子との距離(粒子間距離)、隣接するICバンプ間に亘るバンプ間スペースにおける導電性粒子の数及び導電性粒子の最も近接する粒子との距離(粒子間距離)、初期導通抵抗、隣接するICバンプ間のショート発生率を測定した。 Next, examples of the present invention will be described. In this example, an evaluation IC was connected to an evaluation glass substrate using an anisotropic conductive film in which conductive particles were regularly arranged and an anisotropic conductive film in which conductive particles were randomly dispersed. The number of conductive particles captured between the substrate electrode formed on the glass substrate for evaluation and the IC bump formed on the IC for evaluation, and the number of conductive particles that are closest to each other are calculated. Distance (distance between particles), number of conductive particles in the inter-bump space spanning between adjacent IC bumps, distance between the conductive particles and the nearest particle (distance between particles), initial conduction resistance, and distance between adjacent IC bumps. The short circuit occurrence rate was measured.

[異方性導電フィルム]
評価用ICの接続に用いる異方性導電フィルムのバインダー樹脂層は、フェノキシ樹脂(商品名:YP50、新日鐵化学社製)60質量部、エポキシ樹脂(商品名:jER828、三菱化学社製)40質量部、カチオン系硬化剤(商品名:SI‐60L、三新化学工業社製)2質量部を溶剤に加えたバインダー樹脂組成物を調整し、このバインダー樹脂組成物を剥離フィルム上に塗布、焼成することにより形成した。
[Anisotropic conductive film]
The binder resin layer of the anisotropic conductive film used to connect the evaluation IC was made of 60 parts by mass of phenoxy resin (product name: YP50, manufactured by Nippon Steel Chemical Co., Ltd.) and epoxy resin (product name: jER828, manufactured by Mitsubishi Chemical Corporation). Prepare a binder resin composition by adding 40 parts by mass and 2 parts by mass of a cationic curing agent (trade name: SI-60L, manufactured by Sanshin Kagaku Kogyo Co., Ltd.) to a solvent, and apply this binder resin composition on a release film. , formed by firing.

[評価用IC]
評価素子として、外形;1.8mm×20mm、厚み0.5mm、バンプ(Au‐plated);幅30μ×長さ85μm、高さ15μm、バンプ間スペース幅;50μmの評価用ICを用いた。
[Evaluation IC]
As an evaluation element, an evaluation IC was used which had an outer diameter of 1.8 mm x 20 mm, a thickness of 0.5 mm, a bump (Au-plated) width of 30 μm x a length of 85 μm, a height of 15 μm, and an inter-bump space width of 50 μm.

[評価用ガラス基板]
評価用ICが接続される評価用ガラス基板として、外形;30mm×50mm、厚み0.5mm、評価用ICのバンプと同サイズ同ピッチの櫛歯状の電極パターンが形成されたITOパターングラスを用いた。
[Glass substrate for evaluation]
As the evaluation glass substrate to which the evaluation IC is connected, an ITO patterned glass with external dimensions: 30 mm x 50 mm, thickness 0.5 mm, and a comb-shaped electrode pattern with the same size and pitch as the bumps of the evaluation IC was used. there was.

この評価用ガラス基板に異方性導電フィルムを仮貼りした後、ICバンプと基板電極とのアライメントを取りながら評価用ICを搭載し、熱圧着ヘッドにより180℃、80MPa、5secの条件で熱圧着することにより接続体サンプルを作成した。各接続体サンプルについて、ICバンプと基板電極との間に挟持されている導電性粒子の捕捉数及び粒子間距離、隣接するICバンプ間に亘るバンプ間スペースにある導電性粒子の数及び粒子間距離、初期導通抵抗、隣接するICバンプ間のショート発生率を測定した。 After temporarily pasting an anisotropic conductive film on this evaluation glass substrate, the evaluation IC was mounted while aligning the IC bumps and the substrate electrodes, and then thermocompression bonded using a thermocompression head at 180°C, 80MPa, and 5 seconds. A connected body sample was created by doing this. For each connection body sample, the number of captured conductive particles and the distance between the particles sandwiched between the IC bump and the substrate electrode, the number of conductive particles in the inter-bump space between adjacent IC bumps, and the distance between the particles. The distance, initial conduction resistance, and short circuit occurrence rate between adjacent IC bumps were measured.

ICバンプと基板電極との間に挟持されている導電性粒子の捕捉数は、各接続体サンプルについて、基板電極に現れる圧痕を評価用ガラス基板の裏面から観察し、1対のICバンプ及び基板電極の間に捕捉された導電性粒子の数を、任意の100個のICバンプ及び基板電極について計測して、その平均を求めた。同様に、ICバンプと基板電極との間に捕捉された導電性粒子の粒子間距離は、基板電極に現れる圧痕を評価用ガラス基板の裏面から観察し、任意の100個のICバンプ及び基板電極について計測し、その平均及び最小距離を求めた。 The number of captured conductive particles sandwiched between the IC bump and the substrate electrode is determined by observing the indentation appearing on the substrate electrode from the back side of the evaluation glass substrate for each connection sample. The number of conductive particles trapped between the electrodes was measured for 100 arbitrary IC bumps and substrate electrodes, and the average was determined. Similarly, the interparticle distance of conductive particles trapped between an IC bump and a substrate electrode can be determined by observing the indentations appearing on the substrate electrode from the back side of the glass substrate for evaluation, and measuring the distance between any 100 IC bumps and substrate electrodes. The average and minimum distances were determined.

バンプ間スペースにある導電性粒子の数は、各接続体サンプルについて、評価用ガラス基板の裏面から観察し、任意の100個のバンプ間スペースについて計測し、その平均を求めた。同様に、バンプ間スペースにある導電性粒子の粒子間距離は、評価用ガラス基板の裏面から観察し、任意の100個のバンプ間スペースについて計測し、その平均及び最小距離を求めた。なお、同一観察面において深さ方向でずれているものは、計測値から概算して求めた。 The number of conductive particles in the inter-bump spaces was determined by observing each connector sample from the back surface of the glass substrate for evaluation, measuring the number of conductive particles in any 100 inter-bump spaces, and calculating the average. Similarly, the distance between conductive particles in the inter-bump space was observed from the back surface of the evaluation glass substrate, measured for any 100 inter-bump spaces, and the average and minimum distance were determined. Note that deviations in the depth direction on the same observation plane were roughly estimated from the measured values.

また、各接続体サンプルは、初期導通抵抗が0.5Ω以下、ICバンプ間のショート発生率が50ppm以下を良好と評価した。 In addition, each connection sample was evaluated as good if the initial conduction resistance was 0.5Ω or less and the short circuit occurrence rate between IC bumps was 50 ppm or less.

[実施例1]
実施例1では、導電性粒子がバインダー樹脂層に規則配列された異方性導電フィルムを用いた。実施例1で用いた異方性導電フィルムは、延伸可能なシート上に粘着剤を塗布し、その上に導電性粒子を格子状かつ均等に単層配列した後、当該シートを所望の延伸倍率で延伸させた状態で、バインダー樹脂層をラミネートすることにより製造した。使用した導電性粒子(商品名:AUL704、積水化学工業社製)は粒子径4μmで、接続前における粒子間距離は0.5μm、粒子個数密度は28000個/mm2である。
[Example 1]
In Example 1, an anisotropic conductive film in which conductive particles were regularly arranged in a binder resin layer was used. The anisotropic conductive film used in Example 1 was prepared by coating a stretchable sheet with an adhesive, arranging conductive particles in a single layer evenly in a lattice pattern, and then stretching the sheet to a desired stretching ratio. The film was manufactured by laminating a binder resin layer in the stretched state. The conductive particles used (trade name: AUL704, manufactured by Sekisui Chemical Co., Ltd.) have a particle diameter of 4 μm, a distance between particles before connection of 0.5 μm, and a particle number density of 28,000 particles/mm 2 .

[実施例2]
実施例2では、接続前における粒子間距離が1μm、粒子個数密度が16000個/mm2の異方性導電フィルムを用いた他は、実施例1と同じ条件とした。
[Example 2]
In Example 2, the same conditions as in Example 1 were used, except that an anisotropic conductive film having an interparticle distance of 1 μm and a particle number density of 16000/mm 2 before connection was used.

[実施例3]
実施例3では、接続前における粒子間距離が1.5μm、粒子個数密度が10500個/mm2の異方性導電フィルムを用いた他は、実施例1と同じ条件とした。
[Example 3]
In Example 3, the same conditions as in Example 1 were used, except that an anisotropic conductive film having an interparticle distance of 1.5 μm and a particle number density of 10,500/mm 2 before connection was used.

[実施例4]
実施例4では、接続前における粒子間距離が3μm、粒子個数密度が5200個/mm2の異方性導電フィルムを用いた他は、実施例1と同じ条件とした。
[Example 4]
In Example 4, the same conditions as in Example 1 were used, except that an anisotropic conductive film having an interparticle distance of 3 μm and a particle number density of 5200/mm 2 before connection was used.

[実施例5]
実施例5では、接続前における粒子間距離が0.5μm、粒子個数密度が50000個/mm2の異方性導電フィルムを用いた他は、実施例1と同じ条件とした。
[Example 5]
In Example 5, the same conditions as in Example 1 were used, except that an anisotropic conductive film having an interparticle distance of 0.5 μm and a particle number density of 50,000/mm 2 before connection was used.

[比較例1]
比較例1では、バインダー樹脂組成物に導電性粒子を加えて調整し、剥離フィルム上に塗布、焼成することにより、バインダー樹脂層に導電性粒子がランダムに分散されている異方性導電フィルムを用いた。使用した導電性粒子(商品名:AUL704、積水化学工業社製)は粒子径4μmで、粒子個数密度は100000個/mm2である。
[Comparative example 1]
In Comparative Example 1, an anisotropic conductive film in which conductive particles are randomly dispersed in a binder resin layer was prepared by adding conductive particles to a binder resin composition, coating it on a release film, and baking it. Using. The conductive particles used (trade name: AUL704, manufactured by Sekisui Chemical Co., Ltd.) have a particle diameter of 4 μm and a particle number density of 100,000 particles/mm 2 .

[比較例2]
比較例2では、粒子個数密度は16000個/mm2である他は、比較例1と同じ条件とした。
[Comparative example 2]
In Comparative Example 2, the same conditions as Comparative Example 1 were used except that the particle number density was 16,000 particles/mm 2 .

Figure 0007369756000001
Figure 0007369756000001

表1に示すように、実施例1~5に係る接続体サンプルでは、1対の評価用ICのICバンプ及び評価用ガラス基板の基板電極の間に挟持された導電性粒子の数が平均8.1以上であり、初期導通抵抗が0.4Ω以下と良好であった。1対のICバンプ及び基板電極の間に挟持された導電性粒子の粒子間距離は、平均1.2μm以上で、最小でも0.2μm以上であった。 As shown in Table 1, in the connection body samples according to Examples 1 to 5, the number of conductive particles sandwiched between the IC bumps of a pair of evaluation ICs and the substrate electrodes of the evaluation glass substrate was 8 on average. .1 or more, and the initial conduction resistance was 0.4Ω or less, which was good. The distance between the conductive particles sandwiched between the pair of IC bumps and the substrate electrode was 1.2 μm or more on average, and 0.2 μm or more at the minimum.

また、実施例1~5に係る接続体サンプルでは、隣接するICバンプ間に亘るバンプ間スペースにおける導電性粒子の数が平均で14.3~194.2と分かれたが、導電性粒子の粒子間距離は、平均で1.4μm以上、最小でも0.3μmとなり、ICバンプ間のショート発生率は50ppmよりも低く、絶縁性も良好であった。 In addition, in the connection body samples according to Examples 1 to 5, the number of conductive particles in the inter-bump space between adjacent IC bumps was 14.3 to 194.2 on average, but the number of conductive particles was 14.3 to 194.2. The distance between the IC bumps was 1.4 μm or more on average and 0.3 μm at the minimum, the short circuit occurrence rate between IC bumps was lower than 50 ppm, and the insulation was good.

一方、比較例1では、個数密度が100000個/mm2で充填された導電性粒子がバインダー樹脂層にランダムに分散されているため、基板電極とICバンプとの間に挟持された導電性粒子数は平均48個、粒子間距離は、平均で0.5μm、最小距離は0μmであり、初期導通抵抗は0.2Ωと問題は無かった。一方、バンプ間スペースにおいては、導電性粒子の数が平均80個、粒子間距離は平均で0.7μm、最小距離は0μm、すなわち導電性粒子同士の接触がみられ、バンプ間ショートの発生率が1000ppm以上となった。 On the other hand, in Comparative Example 1, conductive particles filled with a number density of 100,000 particles/mm 2 are randomly dispersed in the binder resin layer, so that the conductive particles are sandwiched between the substrate electrode and the IC bump. The number of particles was 48 on average, the distance between particles was 0.5 μm on average, the minimum distance was 0 μm, and the initial conduction resistance was 0.2Ω, so there were no problems. On the other hand, in the space between bumps, the number of conductive particles is 80 on average, the distance between particles is 0.7 μm on average, and the minimum distance is 0 μm, that is, contact between conductive particles is observed, and the incidence of shorts between bumps is became 1000 ppm or more.

また、比較例2では、個数密度が16000個/mm2で充填された導電性粒子がランダムに分散されているため、バンプ間スペースにおいては、導電性粒子の数が平均12.8個、粒子間距離は平均で2.6μm、最小距離は0μm、すなわち導電性粒子同士の接触がみられたが、バンプ間ショートの発生率は50ppm以下となった。一方、基板電極とICバンプとの間に挟持された導電性粒子数は平均7.7個、粒子間距離は、平均で2.1μm、最小距離は0μmであり、導通抵抗が5Ωと高くなった。 In Comparative Example 2, the conductive particles filled with a number density of 16,000 particles/mm 2 are randomly dispersed, so the average number of conductive particles in the inter-bump space is 12.8 particles/mm 2 . The average distance between the bumps was 2.6 μm, and the minimum distance was 0 μm, that is, contact between the conductive particles was observed, but the occurrence rate of shorts between bumps was 50 ppm or less. On the other hand, the number of conductive particles sandwiched between the substrate electrode and the IC bump is 7.7 on average, the distance between particles is 2.1 μm on average, the minimum distance is 0 μm, and the conduction resistance is as high as 5Ω. Ta.

なお、実施例4では、導電性粒子の個数密度が5000個/mm2であるが、導通抵抗が0.5Ωより大きい場合が不良であるところ、0.4Ωであり、実用上問題なかった。また実施例5では、導電性粒子の個数密度が50000個/mm2であるが、バンプ間のショート数が50ppmより大きい場合が不良であるところ、50ppm以下であり、実用上問題なかった。すなわち、異方性導電フィルムの接着前における導電性粒子の個数密度は、5000~60000個/mm2とすることが好ましいことが分かる。 In Example 4, the number density of conductive particles was 5,000 pieces/mm 2 , but the conduction resistance was 0.4Ω, which was considered to be poor if it was larger than 0.5Ω, and there was no problem in practical use. Further, in Example 5, the number density of conductive particles was 50,000 particles/mm 2 , and although it would be considered a defect if the number of short circuits between bumps was greater than 50 ppm, it was 50 ppm or less, and there was no problem in practical use. That is, it can be seen that the number density of conductive particles before adhesion of the anisotropic conductive film is preferably 5,000 to 60,000 particles/mm 2 .

なお、圧痕からバンプに捕捉された導電性粒子の個数をカウントする場合、上述のように基板側から観察するのが一般的である。このとき、バンプ間スペースの導電性粒子は、バンプに捕捉された導電性粒子と同一平面上に存在しているものは少ない。これは、流動による影響と推測される。 Note that when counting the number of conductive particles captured by the bump from the indentation, it is common to observe from the substrate side as described above. At this time, few of the conductive particles in the inter-bump space exist on the same plane as the conductive particles captured by the bumps. This is presumed to be due to the influence of flow.

1 異方性導電フィルム、2 剥離フィルム、3 バインダー樹脂層、4 導電性粒子、6 巻取リール、10 液晶表示パネル、11,12 透明基板、12a 縁部、13 シール、14 液晶、15 パネル表示部、16,17 透明電極、17a 端子部、18 液晶駆動用IC、18a 実装面、19 電極端子、20 COG実装部、21 基板側アライメントマーク、22 IC側アライメントマーク、23 端子間スペース、33 熱圧着ヘッド 1 Anisotropic conductive film, 2 Release film, 3 Binder resin layer, 4 Conductive particles, 6 Take-up reel, 10 Liquid crystal display panel, 11, 12 Transparent substrate, 12a Edge, 13 Seal, 14 Liquid crystal, 15 Panel display parts, 16, 17 transparent electrode, 17a terminal part, 18 liquid crystal driving IC, 18a mounting surface, 19 electrode terminal, 20 COG mounting part, 21 board side alignment mark, 22 IC side alignment mark, 23 space between terminals, 33 heat crimp head

Claims (12)

回路基板上に異方性導電接着剤を介して電子部品が接続された接続体において、
上記異方性導電接着剤は、バインダー樹脂に導電性粒子が配列され、
上記電子部品に形成された接続電極と上記回路基板に形成された基板電極とが、上記接続電極及び上記基板電極の配列方向にずれており、上記接続電極及び上記基板電極の配列方向における最小距離が上記導電性粒子の粒子径の4倍未満であり、
上記電子部品に形成された接続電極間のスペースにおける導電性粒子同士の粒子間距離は、上記基板電極と上記接続電極との間に捕捉された導電性粒子同士の粒子間距離よりも長い接続体。
In a connection body in which electronic components are connected to a circuit board via an anisotropic conductive adhesive,
The above-mentioned anisotropic conductive adhesive has conductive particles arranged in a binder resin,
The connection electrode formed on the electronic component and the substrate electrode formed on the circuit board are shifted in the arrangement direction of the connection electrode and the substrate electrode, and the minimum distance in the arrangement direction of the connection electrode and the substrate electrode is is less than 4 times the particle diameter of the conductive particles,
The interparticle distance between the conductive particles in the space between the connection electrodes formed on the electronic component is longer than the interparticle distance between the conductive particles captured between the substrate electrode and the connection electrode. .
上記接続電極の高さは15μm以下である請求項に記載の接続体。 The connection body according to claim 1 , wherein the height of the connection electrode is 15 μm or less. 上記異方性導電接着剤はフィルム状に形成され、上記導電性粒子がフィルム幅方向への配列方向がフィルム幅方向に対して傾斜するとともに、フィルムの長手方向への配列方向がフィルム長手方向に対して傾斜している請求項1又は2に記載の接続体。 The anisotropic conductive adhesive is formed into a film, and the direction in which the conductive particles are arranged in the width direction of the film is inclined to the width direction of the film, and the direction in which the conductive particles are arranged in the longitudinal direction of the film is oriented in the longitudinal direction of the film. The connecting body according to claim 1 or 2, which is inclined with respect to the connecting body. 上記異方性導電接着剤は、上記基板電極及び上記接続電極の配列方向を長手方向とするフィルム状に形成され、上記導電性粒子が、長手方向にわたって疎、幅方向に亘って密に配列されている請求項1~のいずれか1項に記載の接続体。 The anisotropic conductive adhesive is formed into a film whose longitudinal direction is the direction in which the substrate electrodes and the connection electrodes are arranged, and the conductive particles are arranged sparsely in the longitudinal direction and densely in the width direction. The connecting body according to any one of claims 1 to 3 , wherein: 上記異方性導電接着剤は、上記基板電極及び上記接続電極の配列方向を長手方向とするフィルム状に形成され、上記導電性粒子が、長手方向にわたって密、幅方向に亘って疎に配列されている請求項1~のいずれか1項に記載の接続体。 The anisotropic conductive adhesive is formed into a film whose longitudinal direction is the direction in which the substrate electrodes and the connection electrodes are arranged, and the conductive particles are arranged densely in the longitudinal direction and sparsely arranged in the width direction. The connecting body according to any one of claims 1 to 3 , wherein: 上記基板電極と上記接続電極との間に捕捉された導電性粒子と同一平面上に存在している上記接続電極間のスペースにおける導電性粒子は、上記基板電極と上記接続電極との間に捕捉された導電性粒子よりも少ない請求項1~のいずれか1項に記載の接続体。 The conductive particles trapped between the substrate electrode and the connection electrode and the conductive particles in the space between the connection electrodes that exist on the same plane are trapped between the substrate electrode and the connection electrode. The connecting body according to any one of claims 1 to 5 , in which the number of conductive particles is smaller than that of the conductive particles . 回路基板上に、導電性粒子を含有した接着剤を介して電子部品を搭載し、
上記電子部品を上記回路基板に対して押圧するとともに、上記接着剤を硬化させることにより、上記電子部品を上記回路基板上に接続する接続体の製造方法において、
上記異方性導電接着剤は、バインダー樹脂に導電性粒子が配列され、
上記電子部品に形成された接続電極と上記回路基板に形成された基板電極とが、上記接続電極及び上記基板電極の配列方向にずれており、上記接続電極及び上記基板電極の配列方向における最小距離が上記導電性粒子の粒子径の4倍未満であり、
上記接続電極間のスペースにおける導電性粒子同士の粒子間距離は、上記基板電極と上記接続電極との間に捕捉された導電性粒子同士の粒子間距離よりも長い接続体の製造方法。
Electronic components are mounted on a circuit board via an adhesive containing conductive particles,
In a method for manufacturing a connection body that connects the electronic component to the circuit board by pressing the electronic component against the circuit board and curing the adhesive,
The above-mentioned anisotropic conductive adhesive has conductive particles arranged in a binder resin,
The connection electrode formed on the electronic component and the substrate electrode formed on the circuit board are shifted in the arrangement direction of the connection electrode and the substrate electrode, and the minimum distance in the arrangement direction of the connection electrode and the substrate electrode is is less than 4 times the particle diameter of the conductive particles,
The method for manufacturing a connected body, wherein the interparticle distance between the conductive particles in the space between the connection electrodes is longer than the interparticle distance between the conductive particles captured between the substrate electrode and the connection electrode.
上記接続電極の高さは15μm以下である請求項に記載の接続体の製造方法。 8. The method of manufacturing a connection body according to claim 7 , wherein the height of the connection electrode is 15 μm or less. 上記異方性導電接着剤はフィルム状に形成され、上記導電性粒子がフィルム幅方向への配列方向がフィルム幅方向に対して傾斜するとともに、フィルムの長手方向への配列方向がフィルム長手方向に対して傾斜している請求項7又は8に記載の接続体の製造方法。 The anisotropic conductive adhesive is formed into a film, and the direction in which the conductive particles are arranged in the width direction of the film is inclined to the width direction of the film, and the direction in which the conductive particles are arranged in the longitudinal direction of the film is oriented in the longitudinal direction of the film. The method for manufacturing a connecting body according to claim 7 or 8, wherein the connecting body is inclined with respect to the connecting body. 上記異方性導電接着剤は、上記基板電極及び上記接続電極の配列方向を長手方向とするフィルム状に形成され、上記導電性粒子が、長手方向にわたって疎、幅方向に亘って密に配列されている請求項7~9のいずれか1項に記載の接続体の製造方法。 The anisotropic conductive adhesive is formed into a film whose longitudinal direction is the direction in which the substrate electrodes and the connection electrodes are arranged, and the conductive particles are arranged sparsely in the longitudinal direction and densely in the width direction. The method for manufacturing a connecting body according to any one of claims 7 to 9 . 上記異方性導電接着剤は、上記基板電極及び上記接続電極の配列方向を長手方向とするフィルム状に形成され、上記導電性粒子が、長手方向にわたって密、幅方向に亘って疎に配列されている請求項7~9のいずれか1項に記載の接続体の製造方法。 The anisotropic conductive adhesive is formed into a film whose longitudinal direction is the direction in which the substrate electrodes and the connection electrodes are arranged, and the conductive particles are arranged densely in the longitudinal direction and sparsely arranged in the width direction. The method for manufacturing a connecting body according to any one of claims 7 to 9 . 上記基板電極と上記接続電極との間に捕捉された導電性粒子と同一平面上に存在している上記接続電極間のスペースにおける導電性粒子は、上記基板電極と上記接続電極との間に捕捉された導電性粒子よりも少ない請求項7~11のいずれか1項に記載の接続体の製造方法。
The conductive particles trapped between the substrate electrode and the connection electrode and the conductive particles in the space between the connection electrodes that exist on the same plane are trapped between the substrate electrode and the connection electrode. The method for producing a connecting body according to any one of claims 7 to 11, in which the number of conductive particles is smaller than that of the conductive particles .
JP2021187333A 2014-01-28 2021-11-17 Connection body and method for manufacturing the connection body Active JP7369756B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014013696 2014-01-28
JP2014013696 2014-01-28
JP2019209099A JP7027390B2 (en) 2014-01-28 2019-11-19 Connection body and manufacturing method of connection body

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019209099A Division JP7027390B2 (en) 2014-01-28 2019-11-19 Connection body and manufacturing method of connection body

Publications (2)

Publication Number Publication Date
JP2022033786A JP2022033786A (en) 2022-03-02
JP7369756B2 true JP7369756B2 (en) 2023-10-26

Family

ID=69738265

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019209099A Active JP7027390B2 (en) 2014-01-28 2019-11-19 Connection body and manufacturing method of connection body
JP2021187333A Active JP7369756B2 (en) 2014-01-28 2021-11-17 Connection body and method for manufacturing the connection body

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2019209099A Active JP7027390B2 (en) 2014-01-28 2019-11-19 Connection body and manufacturing method of connection body

Country Status (1)

Country Link
JP (2) JP7027390B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022038109A (en) 2020-08-26 2022-03-10 セイコーエプソン株式会社 Electro-optical device and electronic apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007035743A (en) 2005-07-25 2007-02-08 Asahi Kasei Electronics Co Ltd Circuit connection method and connection structure
JP2007165052A (en) 2005-12-12 2007-06-28 Sumitomo Bakelite Co Ltd Anisotropic conductive film

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0582199A (en) * 1991-05-28 1993-04-02 Minato Electron Kk Structure for arranging connector having anisotropic conducting connector and anisotropic conducting connector
JPH09320345A (en) * 1996-05-31 1997-12-12 Whitaker Corp:The Anisotropic conductive film
JP3504134B2 (en) * 1997-03-05 2004-03-08 セイコーインスツルメンツ株式会社 Implementation method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007035743A (en) 2005-07-25 2007-02-08 Asahi Kasei Electronics Co Ltd Circuit connection method and connection structure
JP2007165052A (en) 2005-12-12 2007-06-28 Sumitomo Bakelite Co Ltd Anisotropic conductive film

Also Published As

Publication number Publication date
JP2020038993A (en) 2020-03-12
JP2022033786A (en) 2022-03-02
JP7027390B2 (en) 2022-03-01

Similar Documents

Publication Publication Date Title
KR102637835B1 (en) Connection body and method for manufacturing connection body
JP6645730B2 (en) Connection body and method for manufacturing connection body
TWI661027B (en) Connecting body, manufacturing method of connecting body, connecting method, anisotropic conductive adhesive
US9960138B2 (en) Connection body
JP7369756B2 (en) Connection body and method for manufacturing the connection body
WO2016114381A1 (en) Connecting structure
JP7122084B2 (en) Flexible circuit board, connector, method for manufacturing connector, method for designing flexible circuit board
JP2019140413A (en) Connection body, manufacturing method of the same, and connection method
JP6393039B2 (en) Manufacturing method of connecting body, connecting method and connecting body
CN110246767B (en) Electronic component, connector, method for manufacturing connector, and method for connecting electronic component
JP2016039308A (en) Connection body, manufacturing method of the same, and connection method of electronic components

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211216

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221122

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231016

R150 Certificate of patent or registration of utility model

Ref document number: 7369756

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150