WO2018124654A1 - 온간성형용 고강도 중망간강과 그 제조방법 - Google Patents

온간성형용 고강도 중망간강과 그 제조방법 Download PDF

Info

Publication number
WO2018124654A1
WO2018124654A1 PCT/KR2017/015341 KR2017015341W WO2018124654A1 WO 2018124654 A1 WO2018124654 A1 WO 2018124654A1 KR 2017015341 W KR2017015341 W KR 2017015341W WO 2018124654 A1 WO2018124654 A1 WO 2018124654A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
weight
manganese steel
composition
warm
Prior art date
Application number
PCT/KR2017/015341
Other languages
English (en)
French (fr)
Inventor
이영국
한정호
남재훈
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170177216A external-priority patent/KR102030815B1/ko
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Priority to US16/760,263 priority Critical patent/US11566306B2/en
Publication of WO2018124654A1 publication Critical patent/WO2018124654A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese

Definitions

  • the present invention relates to high strength medium manganese steel. Specifically, the present invention relates to a high strength intermediate manganese steel for warm forming and a method of manufacturing the same.
  • an ultra high strength steel sheet having a tensile strength of 980 MPa or more is used, and should have high elongation as well as high strength.
  • research on commercialization of high strength steel is increasing as the ratio of using high strength steel increases.
  • the prior art hot stamping process has several problems.
  • the boron-added steel cannot obtain a hard martensite structure unless it is quenched after molding.
  • water is flowed into the mold to cool it rapidly while keeping the specimen as it is in the mold. This not only lowers the productivity of the process, but also causes the mold surface to suffer from heat fatigue due to repeated heating and cooling.
  • Patent Document 1 (Document 1) Korea Patent Registration No. 10-0765723 (2007.10.02)
  • Patent Document 2 (Document 2) Korean Unexamined Patent Publication No. 10-2013-0050138 (2013.05.15)
  • the high strength medium manganese steel for warm forming and the method of manufacturing the same according to the present invention have the following problems.
  • the high strength medium manganese steel for warm forming according to the present invention contains components of manganese (Mn): 3-10% by weight, carbon (C): 0.05-0.3% by weight and silicon (Si): 0.1-1.0% by weight. It is preferred to be composed of iron and iron (Fe) and inevitably contained impurities.
  • niobium (Nb) 0.001-0.1% by weight is further contained in the medium manganese steel.
  • the aluminum manganese steel further contains 0.001-5.0% by weight of aluminum (Al).
  • At least one member selected from the group consisting of chromium (Cr), molybdenum (Mo), nickel (Ni) and titanium (Ti) is 0.001-2.0 wt% It is preferable to contain more.
  • the high strength medium manganese steel forming member for warm forming contains components of manganese (Mn): 3-10% by weight, carbon (C): 0.05-0.3% by weight and silicon (Si): 0.1-1.0% by weight.
  • the high strength medium manganese steel forming member for warm forming according to the present invention contains components of manganese (Mn): 3-10% by weight, carbon (C): 0.05-0.3% by weight and silicon (Si): 0.1-1.0% by weight.
  • T 50 the sum of the volume fractions of tempered martensite, bainite and ferrite is preferably 50% or more.
  • the high strength medium manganese steel forming member for warm forming contains components of manganese (Mn): 3-10% by weight, carbon (C): 0.05-0.3% by weight and silicon (Si): 0.1-1.0% by weight. in the composition or the composition containing glass denied iron (Fe) and inevitable impurities, niobium (Nb): 0.001 to 0.1 of a composition further contains the components of the% by weight of ferrite and austenite or more reverse Ac 3 At temperature, Ac 3 After the austenizing process in the second temperature section from the temperature to 100 °C, it is preferable that the volume fraction of martensite is 90% or more.
  • the yield strength of the high strength medium manganese steel forming member for warm forming according to the present invention is preferably 1.0 GPa or more, and tensile strength is 1.5 GPa or more.
  • the method for manufacturing a high strength medium manganese steel forming member for warm forming comprises manganese (Mn): 3-10% by weight, carbon (C): 0.05-0.3% by weight and silicon (Si): 0.1-1.0% by weight S3 step of preparing a hot-rolled steel sheet or a cold-rolled steel sheet containing a composition containing the remaining iron (Fe) and unavoidable impurities, or the composition further contains niobium (Nb): 0.001-0.1% by weight of the component; Ac 3 at a temperature which is 1 (T 50): 1 and Ac 3 -Ac than the ferrite and austenite in the first station 1st temperature range up to temperature or Ac 3 It is preferable to include the step S4 of performing austenizing while maintaining a predetermined time after heating the hot-rolled steel sheet or the cold-rolled steel sheet in a second temperature section from a temperature to 100 °C.
  • the intermediate manganese steel slab having the composition is reheated for a predetermined time at 1000-1200 ° C., which is a temperature section of the austenitic single phase region, and Ac 3 Ms temperature ⁇ Ac 3 after hot finish rolling at temperature above 1000 °C It is preferable to further include an S1 step of producing a hot rolled steel sheet by winding at a temperature.
  • step S1 In the method for manufacturing a high strength medium manganese steel forming member for warm forming according to the present invention, after the step S1 and before the step S3, it is preferable to further include the step S2 of performing cold rolling at room temperature to produce a cold rolled steel sheet.
  • step S3-1 before annealing the hot rolled steel sheet or the cold rolled steel sheet.
  • the method for manufacturing a high strength intermediate manganese steel forming member for warm forming according to the present invention preferably includes a step S5-1 of performing warm forming in a temperature section of step S4 after the austenizing.
  • the method for manufacturing a high strength intermediate manganese steel forming member for warm forming according to the present invention preferably includes a step S5-2 after performing austenizing and performing warm forming at a temperature lower than 10-300 ° C. than the austenizing temperature.
  • the method for manufacturing a high strength medium manganese steel forming member for warm forming according to the present invention is heated to 1-100 ° C./sec to the warm forming temperature, and is press-molded after holding at 10-1000 sec, followed by a speed of 1 to 30 ° C./sec. Slow cooling is preferred.
  • the high-strength medium manganese steel for warm forming according to the present invention and its manufacturing method have the following effects.
  • the heat energy is reduced by heat treatment of the high heat energy consumption of the existing hot stamping process at low austenizing temperature of the middle manganese steel.
  • Example 1 is a graph showing the tensile properties according to the heat treatment temperature after cold rolling of the specimen of Example 1 according to the present invention.
  • Example 2 is a graph showing the tensile properties according to the heat treatment temperature after cold rolling annealing the specimen of Example 1 according to the present invention.
  • Example 3 is a graph showing the tensile properties according to the heat treatment temperature after cold rolling of the specimen of Example 2 according to the present invention.
  • Figure 4 is a photograph showing the microstructure between the tempered martens formed during slow cooling after the hot rolling and winding process of Example 1 according to the present invention.
  • Example 5 is a graph showing the hardness value according to the presence or absence of the winding process after hot rolling of Example 1 according to the present invention.
  • Figure 6 shows a method of manufacturing a high-strength medium manganese steel forming member for warm molding according to the present invention.
  • the high strength medium manganese steel for warm forming according to the present invention contains components of manganese (Mn): 3-10% by weight, carbon (C): 0.05-0.3% by weight and silicon (Si): 0.1-1.0% by weight. It is preferred to be composed of iron and iron (Fe) and inevitably contained impurities.
  • the alloy of the present invention comprises Mn: 3-10% by weight, C: 0.05-0.3% by weight, Si: 0.1-0.5% by weight and is composed of the remaining Fe and other unavoidable impurities.
  • a small amount of alloying elements Nb is included at 0.001-0.1% by weight.
  • the steel sheet may additionally contain 0.001-5.0 wt% of one or more selected from the group consisting of Cr, Mo, Ni, Al, and Ti.
  • the 3-10% by weight Mn content improves the stability of austenite at high temperatures, suppresses ferrite transformation during cooling, and thus martensite structure can be obtained even in slow cooling.
  • the press molding temperature can be lowered by lowering the dual-phase zone temperature.
  • Mn content is less than 3% by weight, austenite stability is poor, and ferrite may be generated during cooling after hot rolling, and may exhibit martensite-ferrite abnormality at room temperature.
  • Mn content exceeds 10% by weight, not only the increase in raw material cost and manufacturing cost but also a problem in that the weldability is lowered and a large amount of manganese sulfide (MnS) is formed. Therefore, in the present invention, it is preferable to limit the Mn content to 3-10% by weight.
  • the C content of 0.05-0.3% by weight can ensure the stability of the austenite at high temperatures, and can be dissolved in martensite at room temperature to improve strength.
  • the C content is less than 0.05% by weight, there is a possibility that austenite is less stable and ferrite is formed during cooling, and the strength of the martensite internal solid solution C is lowered.
  • the C content is more than 0.3% by weight, there is a possibility that the cold rolling property after the hot rolling is less than the strength, the weldability may be lowered. Therefore, in the present invention, it is preferable to limit the C content to 0.05-0.3% by weight.
  • Si is a ferrite stabilizing element, it increases the austenite hardenability at high temperatures to suppress ferrite transformation during cooling. It also inhibits carbide formation during cooling and accelerates C segregation to austenite in ferrite-austenite anomalies.
  • Si is less than 0.1% by weight, the solid solution strengthening effect of Si is reduced and the diffusion of carbon into austenite becomes difficult.
  • Si content exceeds 1.0% by weight, problems such as an increase in raw material costs and manufacturing costs, continuous casting, difficulty in welding and plating, and the like may occur. Therefore, in the present invention, it is preferable to limit the Si content to 0.1-1.0% by weight.
  • Nb is an element that enhances the strength of steel sheet, refines grains, and improves heat treatment properties by depositing a solid solution effect and solid solution carbon.
  • the content of the element is less than 0.001% by weight, the amount of precipitated niobium carbide (NbC) is small and it is difficult to expect the effect of improving the strength.
  • the content of the element exceeds 0.1% by weight, the excessive manufacturing cost rises. Therefore, it is preferable to limit the content to 0.001-0.1% by weight.
  • Al deoxidizes and is added as an element which improves the cleanliness of steel and suppresses carbide generation.
  • the abnormal region may be expanded to perform uniform heat treatment, but if it exceeds 5.0% by weight, the abnormal region temperature is increased, and the low austenizing temperature of the present invention is increased again. Higher stability may result in the presence of ferrite at room temperature after molding.
  • the plating property of the steel sheet is lowered and the manufacturing cost is increased. Therefore, in the present invention, it is preferable to limit the Al content to 0.001-5.0% by weight.
  • Cr, Mo, Ti, and Ni are hardening elements and precipitation strengthening effects, and are elements having a large effect to further secure high strength. If it is less than 0.001 weight%, sufficient hardenability and precipitation strengthening effect are hard to expect, and when it exceeds 2.0 weight%, manufacturing cost will rise. Therefore, in the present invention, it is preferable to limit the content to 0.001-2.0% by weight.
  • Niobium (Nb) addition manganese steel manufacturing method for warm stamping includes hot rolling and cold rolling conditions, blank forming step, blank heating and forming step, blank cooling step. do.
  • the cast ingot is homogenized for 12 hours at 1000-1400 °C for uniform alloy element distribution in the steel. If the said heating temperature is less than 1000 degreeC, the homogenization of performance structure will not fully be ensured. If it exceeds 1400 ° C., an increase in manufacturing cost occurs.
  • Hot finish rolling shall be performed at the temperature of Ac 3 , which is the transformation critical temperature, at 1000 ° C. or lower during heating. Thereafter, the annealed wound in more than Ac 3 temperature below Ms (martensite start temperature generated).
  • austenite begins to transform martensite as it passes Ms.
  • martensite is a body-centered tetragonal (bct) crystal structure with many dislocations formed therein, and carbon diffusion is accelerated. Therefore, cementite precipitates inside martensite during slow cooling.
  • the final microstructure consists of two phases of tempered martensite and bainite, or three phases of tempered martensite, bainite and ferrite. In the three phases, the volume fraction of ferrite is preferably 10% or less (0% not included). The tissue photograph and hardness test results of the three phases are shown in FIG. 4.
  • ferrite In the austenizing heat treatment, ferrite remains at a temperature of Ac 3 or lower, and the final normal temperature strength is lowered. Through the above process, it is possible to improve the cold rolling property by lowering the strength of the hot rolled steel sheet.
  • the hot rolled plate may be additionally cold rolled at room temperature to produce a cold rolled steel sheet.
  • the cold rolled steel sheet may then comprise an annealing heat treatment at 550-750 ° C. for 1 minute-5 minutes.
  • the steel sheet is cut to form a blank.
  • This blank is designed to fit the mold shape.
  • the heat treatment temperature was proposed as an Ac 1 -Ac 3 or higher region temperature.
  • a low molding temperature strength corresponding to a hot stamping steel was not obtained.
  • the composition and content of the present invention such as essentially containing aluminum (Al)
  • Al does not produce sufficient austenite at the heat treatment temperature, and thus sufficient martensite is not produced during cooling after molding, thereby securing a target strength. It is judged that it was difficult.
  • the high-strength steel having a high elongation in the first temperature range from the temperature (T 50 ) at which the volume fraction of ferrite and austenite becomes 1: 1 in the Ac 1 -Ac 3 or higher region to Ac 3 temperature and a second temperature range of from Ac 3 temperature to 100 °C a temperature above the Ac 3 temperature is designated the ultra-high strength in the age ranging austenite temperature range of interest.
  • the heated steel sheet After the austenizing process, the heated steel sheet is transferred to a mold for warm forming at a temperature 10-300 ° C. lower than the austenizing temperature.
  • a mold When transferring to a mold, it is inevitable that the temperature of the heated steel sheet falls below 10 ° C., and when the temperature falls below 300 ° C., the yield strength of the steel sheet increases, and a large load is applied to the mold during molding. This leads to an increase in the life of the mold and the manufacturing cost.
  • the heated blank is transferred to a press die for press molding, and then the molded parts are taken out and cooled in air.
  • quenching is required in a mold to obtain martensite, but the inventive steel can obtain martensite structure even at a slow cooling rate such as air cooling.
  • the microstructure of the formed steel sheet exhibits martensite, bainite, ferrite, austenite multiphase structure. Martensite and bainite in the first temperature range. Ferrites, the sum of their volume fractions is at least 50%. When the austenite volume fraction is T50, the stability of the austenite becomes 20% or more. In the second temperature section, the steel sheet has a volume fraction of martensite of 90% or more.
  • the cold rolled sheet thus manufactured was used to simulate the heat treatment conditions of the warm stamping process.
  • the ferrite and austenite were 1: 1 at a temperature ranging from T 50 to austenite single phase region temperature range of 50 ° C. higher than A 3 .
  • the temperature increase rate is 3 °C / second and the cooling rate is 10 °C / second.
  • inventive steels A-1 to A-3 exhibit excellent room temperature tensile properties when the heat treatment is performed at a temperature of about 10-50 degrees or more than the A 3 temperature.
  • invented steels A-4 to A-7 which are lower than A 3 temperature, do not reach the yield strength and tensile strength (TS) required as a hot stamping replacement steel.
  • Invented steel A-7 can be applied to parts requiring high yield strength and elongation index (EI).
  • EI elongation index
  • Inventive steels B and C also exhibit excellent physical properties when subjected to austenizing heat treatment above the A 3 temperature.
  • Tensile curves according to the respective heat treatment temperatures of the inventive steels B and C are shown in FIGS. 2 and 3, respectively.
  • the austenitic fraction of the final microstructure at room temperature after air cooling according to temperature is shown in Table 5 below. The lower the temperature, the higher the stability of the reverse-transformed austenite and the residual austenite fraction increased.
  • Inventive steel A-3 heat-treated above the A3 temperature indicates that no residual austenite is present, and all of the reverse austenite is transformed into martensite. Therefore, room temperature yield and tensile strength are excellent.
  • the yield and tensile strength of the inventive steel A increased without decreasing the elongation of the inventive steel B at the same heat treatment temperature. It can be confirmed that the strength due to the solid solution strengthening and precipitation strengthening by adding Nb is improved.
  • Inventive steel A which was cold rolled in Example 1, was further subjected to annealing heat treatment (CA).
  • the heat treatment conditions were performed while changing the temperature to 650-750 ° C 3 minutes.
  • the cold-rolled steel sheet was processed by subdividing the heat treatment conditions of the warm stamping process into an austenizing temperature (T A ) and a molding temperature (T S ).
  • the austenizing temperature was 650-750 o C for 5 minutes and the molding temperature was 650-750 o C for 1 minute.
  • air was cooled to room temperature. At this time, the temperature increase rate is 3 o C / sec and the cooling rate is 10 o C / sec.
  • the annealing temperature (CA) and the molding temperature (T S ) was confirmed that does not significantly affect the room temperature tensile properties. Similar to Example 1, the austenizing temperature (T A ) has a large effect. Inventive steel A-8 to invention steel A-11, invention steel A-18 to invention steel A-21, and invention steel A-28 to invention steel A-31 all exhibited superior physical properties than hot stamping steel. have. At low T A , the target tensile temperature was not reached.
  • Example 3 unlike Example 1 and Example 2, the inventive steel A was advanced to a hot rolled steel sheet without cold rolling.
  • Invented steel A-38 and Invented steel A-39 were subjected to annealing heat treatment at 750 ° C. for 3 minutes. Thereafter, the steel sheet was further divided into heat treatment conditions of a warm stamping process into an austenizing temperature (T A ) and a molding temperature (T S ).
  • the austenizing temperature was varied by changing the temperature to 650-750 ° C. for 5 minutes and the molding temperature to 600 ° C. for 1 minute.
  • air was cooled to room temperature. At this time, the temperature increase rate is 3 °C / second and the cooling rate is 10 ° C / second.
  • the annealing temperature (CA) and the forming temperature (T S ) was confirmed that does not significantly affect the room temperature tensile properties. Similar to Examples 1 and 2, the austenizing temperature (T A ) has a large effect. Invented steel A-38 and invented steel A-40 all exhibit superior physical properties than hot stamping steel. At low T A , the target tensile temperature was not reached. Through the above embodiment, it was confirmed that the hot stamping steel sheet can be applied as a hot stamping steel sheet to replace the hot stamping steel sheet without the hot rolling process.
  • Figure 6 shows a method of manufacturing a high strength intermediate manganese steel forming member for warm molding according to the present invention.
  • One manufacturing method according to the invention comprises at least S3 step and S4 step.
  • Step S3 contains components of manganese (Mn): 3-10% by weight, carbon (C): 0.05-0.3% by weight and silicon (Si): 0.1-1.0% by weight, and the balance of iron (Fe) ) And a hot rolled steel sheet or a cold rolled steel sheet having a composition containing an unavoidable impurity or a composition further containing a component of niobium (Nb): 0.001-0.1% by weight.
  • step S3 all compositions of FMS according to the present invention can be applied.
  • a cold rolled steel sheet subjected to hot rolling and cold rolling may be applied, or a hot rolled steel sheet roughly subjected to hot rolling may be applied.
  • the intermediate manganese steel slab having the composition is reheated for a predetermined time at 1000-1200 ° C., which is a temperature section of the austenitic single phase region, and subjected to hot finishing rolling at an Ac 3 temperature or more and 1000 ° C. or lower, and then, an Ms temperature.
  • ⁇ Ac 3 It can be wound at a temperature to produce a hot rolled steel sheet.
  • S2 step according to the present invention can be produced by cold rolling at room temperature cold rolling.
  • it may further comprise a S3-1 step of annealing the hot rolled steel sheet or the cold rolled steel sheet.
  • Step S4 is Ac 1 -Ac 3 above reverse the ferrite and austenite 1 at a temperature (T 50) is the first Ac 3 1st temperature range up to temperature or Ac 3 After heating the hot rolled steel sheet or the cold rolled steel sheet in a second temperature section from a temperature to 100 ° C., austenizing may be performed while maintaining a predetermined time.
  • after the austenizing may include a step S5-1 performing the warm molding in the temperature section of the step S4.
  • FIG. 7 shows that steps S4 and S5-1 are performed in the second temperature section
  • FIG. 8 shows that steps S4 and S5-1 are performed in the second temperature section.
  • step S5-2 to perform the warm molding at a temperature 10-300 °C lower than the austenizing temperature.
  • 9 shows that step S4 is performed in the first temperature section
  • step S5-2 is performed in the lower temperature section
  • FIG. 10 shows step S4 is performed in the first temperature section, and in the lower temperature section. Indicates that step S5-2 is performed.
  • the present invention can obtain martensite structure by slow cooling such as air cooling after warm forming.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

본 발명은 망간(Mn): 3-10 중량%, 탄소(C): 0.05-0.3 중량% 및 규소(Si): 0.1-1.0 중량%의 성분을 함유하고, 잔부인 철(Fe)과 불가피하게 함유되는 불순물로 조성되는 것을 특징으로 하는 온간성형용 고강도 중망간강에 관한 것이다. 본 발명은 기존 열간성형(hot stamping) 공정의 높은 열에너지 소비를 중망간강의 낮은 오스테나이징 온도에서 열처리를 함으로써 열에너지를 감소시키는 효과가 있다. 또한, 추가적인 템퍼링(tempering) 공정이 불필요하고, 금형 내에서 빠른 속도로 냉각시키지 않고, 금형 밖에서 공냉과 같은 서냉만으로도 고강도를 얻으므로 공정이 간소화되고 생산성이 향상되는 효과가 있다.

Description

온간성형용 고강도 중망간강과 그 제조방법
본 발명은 고강도 중망간강에 관한 것이다. 구체적으로는 온간성형용 고강도 중망간강과 그 제조방법에 관한 것이다.
최근 대기오염과 같은 환경문제가 대두되면서, 자동차의 연비 효율을 높이기 위한 많은 방법이 제기되고 있다. 특히 자동차의 경량화가 중요한 부분으로 부각되면서 높은 성형성 뿐만 아니라 높은 강도를 가지는 고강도 강판이 요구되고 있다.
또한, 범퍼 보강재 혹은 도어내의 충격 흡수재와 같은 자동차 부품은 승객 안전과 직접적으로 관계되는 부품이기 때문에, 인장강도 980 MPa 이상의 초고강도 강판이 사용되고 있고, 고강도와 더불어 높은 연신율을 가져야 한다. 이러한 부품도 마찬가지로 높은 강도의 강을 사용하는 비율이 증가함에 따라 고강도 강의 상업화에 대한 연구가 증가하고 있다.
이러한 사회적 요구에 따라 고강도강을 손쉽게 성형할 수 있는 방법에 대한 연구가 진행되었다. 이러한 종래 기술로서 한국 등록특허 제10-0765723호에 제시된 열간성형(hot stamping)공정이 있다. 본 종래기술은 고온의 오스테나이트 단상역에서 열처리 및 프레스 성형을 행한 후, 금형에 의한 빠른 급냉을 실시함으로써 최종 제품에서 초고강도 냉연강판을 얻는 제조방법이 제시되어 있다.
하지만, 종래 기술인 열간성형(hot stamping) 공정은 여러 문제점을 내포하고 있다. 먼저, 900℃ 이상의 고온의 성형 때문에 열 에너지 소비가 큰 문제점이 있다. 다음으로, 보론 첨가강은 성형 후 급냉을 하지 않으면 단단한 마르텐사이트 조직을 얻을 수 없다. 그래서, 성형이 끝났음에도 불구하고, 금형 안에 물을 흘려서 금형 안에 그대로 시편을 유지한 채 빠른 속도로 냉각시킨다. 이것은 공정의 생산성을 저하 시킬 뿐 아니라, 금형 표면이 가열 및 냉각이 반복되어 열피로 때문에 금형의 수명이 줄어드는 문제점을 발생시킨다.
이러한 문제점을 개선하기 위한 종래기술로서, 한국 공개특허공보 10-2013-0050138호가 있다. 본 종래 기술에는 Ac1-Ac3의 이상영역(dual-phase) 온도범위까지 가열하고, 가열 후 온도를 유지 및 성형이 포함된 온간프레스(warm press) 공정이 제시되어 있다. 그러나 이상영역의 낮은 성형온도로 인해 최종 제품의 물성이 기존 열간성형(hot stamping)강에 준하는 물성에 도달하지 못하는 문제점이 있다. 또한, 항복강도(yield strength)는 자동차 차체 부재의 중요한 물성이지만, 본 종래 기술에서는 논의되고 있지 않다. 따라서, 열간성형(hot stamping)의 대체 공정으로는 한계가 있다고 판단된다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) (문헌 1) 한국 등록특허 제10-0765723호 (2007.10.02)
(특허문헌 2) (문헌 2) 한국 공개특허 제10-2013-0050138호 (2013.05.15)
본 발명에 따른 온간성형용 고강도 중망간강과 그 제조방법은 다음과 같은 해결과제를 가진다.
첫째, 기존 열간성형 (hot stamping)용 보론 첨가강의 단점인 고온의 성형 온도를 낮추고자 한다.
둘째, 공정들을 간소화하는 새로운 철계 온간성형(warm stamping)용 합금의 미량 합금원소 첨가 중망간강의 조성물과 함량을 제시하고자 한다.
셋째, 성형 후 금형 내에서 냉각하는 것이 아니라, 금형 밖에서 공기중에 서냉한다.
본 발명의 해결과제는 이상에서 언급한 것들에 한정되지 않으며, 언급되지 아니한 다른 해결과제들은 아래의 기재로부터 당업자에게 명확하게 이해되어 질 수 있을 것이다.
본 발명에 따른 온간성형용 고강도 중망간강은 망간(Mn): 3-10 중량%, 탄소(C): 0.05-0.3 중량% 및 규소(Si): 0.1-1.0 중량%의 성분을 함유하고, 잔부인 철(Fe)과 불가피하게 함유되는 불순물로 조성되는 것이 바람직하다.
본 발명에 따른 온간성형용 고강도 중망간강에 있어서, 상기 중망간강에 니오븀(Nb): 0.001-0.1 중량%의 성분이 더 함유된 것이 바람직하다.
본 발명에 따른 온간성형용 고강도 중망간강에 있어서, 상기 중망간강에 알루미늄(Al)이 0.001-5.0 중량% 더 함유된 것이 바람직하다.
본 발명에 따른 온간성형용 고강도 중망간강에 있어서, 상기 중망간강에 크롬(Cr), 몰리브덴(Mo), 니켈(Ni) 및 티타늄(Ti)으로 이루어진 그룹에서 선택된 1종 이상이 0.001-2.0 중량% 더 함유된 것이 바람직하다.
본 발명에 따른 온간성형용 고강도 중망간강 성형부재는 망간(Mn): 3-10 중량%, 탄소(C): 0.05-0.3 중량% 및 규소(Si): 0.1-1.0 중량%의 성분을 함유하고, 잔부인 철(Fe)과 불가피한 불순물을 함유하는 조성 또는 상기 조성에 니오븀(Nb): 0.001-0.1 중량%의 성분이 더 함유된 조성으로서, 열간압연 공정을 거친 후, 미세조직은 템퍼드 마르텐사이트 및 베이나이트의 2상 또는 템퍼드 마르텐사이트, 베이나이트 및 페라이트의 3상으로 이루어지며, 상기 3상인 때에는 페라이트의 부피 분율은 10% 이하(0% 불포함)인 것이 바람직하다.
본 발명에 따른 온간성형용 고강도 중망간강 성형부재는 망간(Mn): 3-10 중량%, 탄소(C): 0.05-0.3 중량% 및 규소(Si): 0.1-1.0 중량%의 성분을 함유하고, 잔부인 철(Fe)과 불가피한 불순물을 함유하는 조성 또는 상기 조성에 니오븀(Nb): 0.001-0.1 중량%의 성분이 더 함유된 조성으로서, Ac1-Ac3 이상영역에서 페라이트 및 오스테나이트가 1:1이 되는 온도(T50)에서 Ac3 온도까지의 제1 온도구간에서 오스테나이징 공정을 거친 후, 템퍼드 마르텐사이트, 베이나이트 및 페라이트의 부피 분율 합이 50% 이상인 것이 바람직하다.
본 발명에 따른 온간성형용 고강도 중망간강 성형부재는 망간(Mn): 3-10 중량%, 탄소(C): 0.05-0.3 중량% 및 규소(Si): 0.1-1.0 중량%의 성분을 함유하고, 잔부인 철(Fe)과 불가피한 불순물을 함유하는 조성 또는 상기 조성에 니오븀(Nb): 0.001-0.1 중량%의 성분이 더 함유된 조성으로서, 페라이트 및 오스테나이트 이상역의 Ac3 온도에서, Ac3 온도로부터 100℃까지의 제2 온도구간에서 오스테나이징 공정을 거친 후, 마르텐사이트의 부피 분율이 90% 이상인 것을 것이 바람직하다.
본 발명에 따른 온간성형용 고강도 중망간강 성형부재의 항복강도는 1.0 GPa 이상이고, 인장강도는 1.5 GPa 이상인 것이 바람직하다.
본 발명에 따른 온간성형용 고강도 중망간강 성형부재의 제조방법은 망간(Mn): 3-10 중량%, 탄소(C): 0.05-0.3 중량% 및 규소(Si): 0.1-1.0 중량%의 성분을 함유하고, 잔부인 철(Fe)과 불가피한 불순물을 함유하는 조성 또는 상기 조성에 니오븀(Nb): 0.001-0.1 중량%의 성분이 더 함유된 조성을 갖는 열연강판 또는 냉연강판을 준비하는 S3 단계; 및 Ac1-Ac3 이상역에서 페라이트 및 오스테나이트가 1:1이 되는 온도(T50)에서 Ac3 온도까지의 제1 온도구간 또는 Ac3 온도로부터 100℃까지의 제2 온도구간에서 상기 열연강판 또는 상기 냉연강판을 가열한 후 소정 시간을 유지하면서 오스테나이징이 수행되는 S4 단계가 포함하는 것이 바람직하다.
본 발명에 따른 온간성형용 고강도 중망간강 성형부재의 제조방법에 있어서, S3 단계 전에, 상기 조성을 갖는 중망간강 슬래브를 오스테나이트 단상영역의 온도구간인 1000-1200℃에서 소정시간 재가열을 하고, Ac3 온도 이상 1000℃ 이하에서 열간 마무리압연을 실시한 후, Ms온도 ~ Ac3 온도에서 권취하여 열연강판을 제조하는 S1 단계를 더 포함하는 것이 바람직하다.
본 발명에 따른 온간성형용 고강도 중망간강 성형부재의 제조방법에 있어서, S1 단계 후 S3 단계 전에, 상온에서 냉간압연을 실시하여 냉연 강판을 제조하는 S2 단계를 더 포함하는 것이 바람직하다.
본 발명에 따른 온간성형용 고강도 중망간강 성형부재의 제조방법에 있어서, S3 단계 전에, 상기 열연강판 또는 상기 냉연강판을 소둔하는 S3-1 단계를 더 포함하는 것이 바람직하다.
본 발명에 따른 온간성형용 고강도 중망간강 성형부재의 제조방법은 상기 오스테나이징 후 S4 단계의 온도구간에서 온간성형을 수행하는 S5-1 단계를 포함하는 것이 바람직하다.
본 발명에 따른 온간성형용 고강도 중망간강 성형부재의 제조방법은 상기 오스테나이징 후, 오스테나이징 온도보다 10-300℃ 낮은 온도에서 온간성형을 수행하는 S5-2 단계를 포함하는 것이 바람직하다.
본 발명에 따른 온간성형용 고강도 중망간강 성형부재의 제조방법은 상기 온간성형 온도까지 1-100℃/초로 승온하고, 10-1000초 유지한 후에 프레스 성형하고, 이어 1~30℃/초의 속도로 서냉하는 것이 바람직하다.
본 발명에 따른 온간성형용 고강도 중망간강 성형부재의 제조방법은 온간성형 후 서냉을 하여 마르텐사이트 조직을 얻는 것이 바람직하다.
본 발명에 따른 온간성형용 고강도 중망간강과 그 제조방법은 다음과 같은 효과를 가진다.
첫째, 기존 열간성형(hot stamping)용 보론 첨가강과 비교할 때, 낮은 함량인 3-10 중량%의 망간(Mn) 와 0.05-0.3 중량%의 탄소(C)의 중망간강으로 대체하는 효과가 있다. 나아가, 미량의 Nb가 첨가하여, 추가적으로 강도를 향상시키는 효과가 있다.
둘째, 기존 열간성형(hot stamping) 공정의 높은 열에너지 소비를 중망간강의 낮은 오스테나이징 온도에서 열처리를 함으로써 열에너지를 감소시키는 효과가 있다.
셋째, 금형 내에서 빠른 속도로 냉각시키지 않고, 금형 밖에서 공냉과 같은 서냉만으로도 고강도를 얻으므로 공정이 간소화되고 생산성이 향상되는 효과가 있다.
본 발명의 효과는 이상에서 언급된 것들에 한정되지 않으며, 언급되지 아니한 다른 효과들은 아래의 기재로부터 당업자에게 명확하게 이해되어 질 수 있을 것이다.
도 1은 본 발명에 따른 실시예 1의 시편의 냉연 후 열처리 온도에 따른 인장 성질을 나타내는 그래프이다.
도 2는 본 발명에 따른 실시예 1의 시편의 냉연소둔 후 열처리 온도에 따른 인장 성질을 나타내는 그래프이다.
도 3는 본 발명에 따른 실시예 2의 시편의 냉연 후 열처리 온도에 따른 인장 성질을 나타내는 그래프이다.
도 4는 본 발명에 따른 실시예 1의 열간 압연 및 권취 공정 후 서냉 시 형성된 템퍼드 마르텐사이의 미세조직을 나타내는 사진이다.
도 5는 본 발명에 따른 실시예 1의 열간압연 후 권취 공정 유무에 따른 경도 값을 나타내는 그래프이다.
도 6은 본 발명에 따른 온간성형용 고강도 중망간강 성형부재의 일 제조방법을 나타낸다.
도 7 내지 도 10은 본 발명에 따른 오스테나이징과 온간성형의 여러 실시예를 나타낸다.
본 발명에 따른 온간성형용 고강도 중망간강은 망간(Mn): 3-10 중량%, 탄소(C): 0.05-0.3 중량% 및 규소(Si): 0.1-1.0 중량%의 성분을 함유하고, 잔부인 철(Fe)과 불가피하게 함유되는 불순물로 조성되는 것이 바람직하다.
이하, 첨부한 도면을 참조하여, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예를 설명한다. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 이해할 수 있는 바와 같이, 후술하는 실시예는 본 발명의 개념과 범위를 벗어나지 않는 한도 내에서 다양한 형태로 변형될 수 있다. 가능한 한 동일하거나 유사한 부분은 도면에서 동일한 도면부호를 사용하여 나타낸다.
본 명세서에서 사용되는 전문용어는 단지 특정 실시예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지는 않는다. 여기서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다.
본 명세서에서 사용되는 "포함하는"의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분을 구체화하며, 다른 특정 특성, 영역, 정수, 단계, 동작, 요소, 성분 및/또는 군의 존재나 부가를 제외시키는 것은 아니다.
본 명세서에서 사용되는 기술용어 및 과학용어를 포함하는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 일반적으로 이해하는 의미와 동일한 의미를 가진다. 사전에 정의된 용어들은 관련기술문헌과 현재 개시된 내용에 부합하는 의미를 가지는 것으로 추가 해석되고, 정의되지 않는 한 이상적이거나 매우 공식적인 의미로 해석되지 않는다.
본 명세서에서는 조성물의 함량을 중량%를 사용하여 설명한다.
본 명세서에서는 기존 열간성형 (hot stamping) 공정을 대체하는 (1) 중망간계 합금 설계와 (2) 제조 방법을 제공한다. 이하, 본 발명을 상세하게 설명한다.
(1) 중망간계 합금 설계
본 발명의 합금은, Mn: 3-10 중량%, C: 0.05-0.3 중량%, Si: 0.1-0.5 중량%을 포함하고 나머지 Fe 및 기타 불가피한 불순물로 조성되는 것이다. 본 발명의 추가적인 강도 향상을 위해 소량의 미량 합금원소인 Nb를 0.001-0.1 중량% 포함한다. 상기 강판은 추가적으로 Cr, Mo, Ni, Al, Ti으로 이루어진 그룹에서 선택된 1종 이상이 0.001-5.0 중량% 포함될 수 있다.
이하, 상기한 강의 화학성분 범위의 한정 이유에 대하여 설명한다.
망간(Mn) : 3-10 중량%
3-10 중량% Mn 함량을 통해 고온에서 오스테나이트(austenite)의 안정성을 향상 시켜, 냉각 중 페라이트(ferrite) 변태를 억제하여, 서냉에서도 마르텐사이트(martensite) 조직을 얻을 수 있다. 또한, 이상(dual-phase) 영역 온도를 낮춤으로 프레스 성형 온도를 낮출 수 있다.
만약 Mn 함량이 3 중량% 미만이면, 오스테나이트 안정성이 떨어져서, 열간 압연 이후 냉각 도중 페라이트가 생성되어, 상온에서 마르텐사이트-페라이트 이상 조직을 나타낼 수 있다. 반면, Mn 함량이 10 중량%를 초과하면, 원재료비 및 제조비용의 증가를 가져올 뿐만 아니라 용접성이 저하되고 다량의 게재물인 황화망간(MnS)이 형성되는 문제가 발생할 수 있다. 따라서 본 발명에서는 Mn 함량을 3-10 중량%로 제한하는 것이 바람직하다.
탄소(C) : 0.05-0.3 중량%
0.05-0.3 중량%의 C 함량을 통해 고온에서 오스테나이트의 안정성을 확보할 수 있고, 상온에서 마르텐사이트 내부에 고용되어 강도를 향상시킬 수 있다.
만약 C 함량이 0.05 중량% 미만이면, 오스테나이트의 안정성이 떨어져 냉각 도중 페라이트가 생성될 가능성이 있고, 마르텐사이트 내부 고용 C 함량이 적어져 강도가 낮아질 수 있다. 반면 만약 C 함량이 0.3 중량%를 초과하면, 열간압연 후 냉간압연성이 떨어져 강도가 미달될 가능성이 있고, 용접성이 저하될 수 있다. 따라서 본 발명에서는 C 함량을 0.05-0.3 중량%로 제한하는 것이 바람직하다.
규소(Si) : 0.1-1.0 중량%
Si은 페라이트 안정화 원소이기는 하나, 고온에서의 오스테나이트 경화능을 높여 냉각 중 페라이트 변태를 억제한다. 뿐만 아니라, 냉각 중 탄화물 생성을 억제하며 페라이트-오스테나이트 이상 구간에서 오스테나이트로의 C 편석을 가속시키는 역할도 한다.
만약 Si이 0.1 중량% 미만이면, Si의 고용강화 효과가 줄어들고, 오스테나이트로의 탄소의 확산이 어려워진다. 반면 Si 함량이 1.0 중량%을 초과하면, 원재료비 및 제조비용의 증가, 연속주조, 용접 및 도금의 어려움 등의 문제를 일으킬 수 있다. 따라서 본 발명에서는 Si 함량을 0.1-1.0 중량% 로 제한하는 것이 바람직하다.
니오븀(Nb) : 0.001-0.1 중량%
Nb는 고용효과 및 고용탄소를 석출시켜 강판의 강도 상승, 결정립 미세화 및 열처리 특성을 향상시키는 원소이다. 상기 원소의 함량이 0.001 중량% 미만인 경우, 탄화니오븀(NbC) 석출량이 적어 강도 향상효과를 기대하기 힘들다. 상기 원소의 함량이 0.1 중량%를 초과하게 되면, 과도한 제조 비용이 상승하게 된다. 따라서 그 함량을 0.001-0.1 중량%로 제한하는 것이 바람직하다.
알루미늄(Al): 0001-5.0 중량%
Al은 탈산 작용을 하여 강의 청정성 향상 및 탄화물 생성 억제원소로서 첨가한다. 첨가량이 증가함에 따라 이상영역이 확장되어 균일한 열처리를 할 수 있으나, 5.0 중량%을 초과하면 이상역 온도가 상승하게 되어, 본 발명의 낮은 오스테나이징 온도가 다시 상승하는 문제가 있고, 페라이트의 안정성이 높아져 성형 후 상온에서 페라이트가 존재할 수 있다. 또한, 강판의 도금성 저하되어 제조비용이 상승하게 된다. 따라서, 본 발명에서는 Al 함량을 0.001-5.0 중량%로 제한하는 것이 바람직하다.
크롬(Cr), 몰리브덴(Mo), 티타늄(Ti) 및 니켈(Ni) 중 1종 이상 합: 0.001-2.0 중량%
Cr, Mo, Ti 및 Ni는 경화능 및 석출강화 효과로, 고강도를 더욱 확보할 수 있는 효과가 큰 원소들이다. 0.001 중량% 미만에서는 충분한 경화능 및 석출강화 효과를 기대하기 어렵고, 2.0 중량% 초과하게 되면 제조비용이 상승한다. 따라서 본 발명에서는 그 함량을 0.001-2.0 중량%로 제한하는 것이 바람직하다.
(2) 제조 방법
온간성형(Warm stamping) 용 니오븀(Nb) 첨가 중망간강 제조 방법은 열간압연(hot rolling) 및 냉간압연(cold rolling) 조건, 블랭크(blank) 형성 단계, 블랭크 가열 및 성형 단계, 블랭크 냉각 단계를 포함한다.
① 열간압연 및 냉간압연 조건
본 발명의 상기 조성 합금을 용해 이후, 강 내 균일한 합금원소 분포를 위하여 주조된 괴를 1000-1400℃에서 12시간 균질화를 실시한다. 상기 가열온도가 1000℃ 미만이면, 연주 조직의 균질화가 충분히 확보되지 않는다. 1400℃를 초과하면, 제조비용의 상승이 발생한다.
이후, 오스테나이트 단상영역인 1000-1200℃에서 1시간동안 재가열을 실시한다. 가열시 변태 임계온도인 Ac3 온도 이상 1000℃ 이하에서 열간 마무리압연을 실시한다. 이후, Ac3 이하 Ms 온도(마르텐사이트 생성 시작온도) 이상에서 권취하고 서냉한다.
서냉 시, Ms 온도를 지나면서 오스테나이트가 마르텐사이트 변태를 시작한다. 이때, 마르텐사이트는 bct(body centered tetragonal) 결정구조로 전위가 내부에 많이 형성되며 탄소 확산이 빨라진다. 따라서, 서냉 시 마르텐사이트 내부에 시멘타이트(cementite)가 석출된다. 상온에서 최종 미세조직은 템퍼드 마르텐사이트(tempered martensite) 및 베이나이트(bainite)의 2상, 또는 템퍼드 마르텐사이트(tempered martensite) 및 베이나이트(bainite), 페라이트(ferrite)의 3상으로 이루어 지며, 상기 3상인 때에는 페라이트의 부피 분율은 10% 이하(0% 불포함)가 바람직하다. 상기 3상인 경우의 조직사진과 경도 실험 결과는 도 4에 나타내었다.
오스테나이징 열처리 시, Ac3 이하 온도에서는 페라이트가 잔류하게 되어, 최종 상온 강도가 저하된다. 상기 과정을 통해, 열연강판의 강도를 낮추어 냉간압연성을 향상시킬 수 있다.
이후, 상기 열간 압연판은 추가적으로 상온에서 냉간 압연을 실시하여 냉간 압연 강판을 제조할 수 있다. 이어서 냉연강판은 550-750℃에서 1분-5분 소둔(annealing) 열처리가 포함될 수 있다.
② 블랭크 형성 단계
블랭크 형성 단계에서는 상기 강판을 재단하여 블랭크를 형성한다. 이러한 블랭크는 금형형상에 맞게 설계된다.
③ 블랭크 가열 (Austenitizing, 오스테나이징) 및 성형 단계
블랭크 가열 단계에서는 블랭크를 열처리 Ac1-Ac3 이상(dual-phase) 영역에서 페라이트 및 오스테나이트가 1:1이 되는 온도(T50)에서 Ac3 온도까지의 이상영역 온도 구간을 본 발명에서는 '제1 온도구간'이라고 한다. 또한, Ac3 온도에서 Ac3 온도로부터 100℃까지의 온도구간을 본 발명에서는 '제2 온도구간'이라고 한다. 제1 온도구간 또는 제2 온도구간에서 가열 후 약 1-15분 유지한다. 상기 공정을 오스테나이징(austenitizing) 공정이라고 명명한다(도 7 내지 도 10 참조)
열처리 온도가 종래 한국 공개특허 제10-2013-0050138호에서는 Ac1-Ac3 이상영역 온도로 제안하였는데, 상기 발명에서는 낮은 성형온도이지만 열간성형(hot stamping) 강에 준하는 강도가 확보되지 못하였다. 그 이유를 살펴보면, 알루미늄(Al)을 필수적으로 함유하는 등 상기 발명의 조성물 및 함량으로는 상기 열처리 온도에서 충분한 오스테나이트가 생성되지 않아서, 성형 후 냉각 중에 충분한 마르텐사이트가 생성되지 않으므로, 목표 강도 확보가 곤란하였다고 판단된다.
따라서, 본 발명에서는 Ac1-Ac3 이상영역에서 페라이트 및 오스테나이트의 부피분율이 1:1이 되는 온도(T50)부터 Ac3 온도까지의 제1 온도구간에서는 높은 연신율을 갖는 고강도강을 목적으로 하고, Ac3 온도에서 Ac3온도보다 100℃ 높은 온도까지의 제2 온도구간은 초고강도를 목적으로 하는 오스테나이징 온도 범위로 지정하였다.
제2 온도구간의 경우, Ac3 온도보다 낮으면 최종 미세조직에 페라이트가 존재하여 항복강도가 낮게 된다. Ac3 온도로부터 100℃가 되는 온도를 초과하면, 역변태한 오스테나이트가 조대화되어 강도가 낮아질 우려가 있으며, 열간성형의 오스테나이징 온도랑 비슷해진다. 따라서, 제조비용이 다시 상승하게 된다.
오스테나이징 공정 후, 가열된 강판을 금형으로 이송하여 오스테나이징 온도보다 10-300℃ 낮은 온도에서 온간 성형을 한다. 금형으로 이송 시, 가열된 강판의 온도가 10℃ 이상으로 떨어지는 것은 불가피하며, 300℃ 이상 떨어지면 강판의 항복강도가 높아져 성형 시 금형에 큰 부하가 걸리게 된다. 이는 금형의 수명 및 제조비용의 상승을 야기하게 된다.
④ 블랭크 냉각 단계
블랭크 냉각 단계에서는 가열된 블랭크를 프레스 금형으로 이송하여 프레스 성형한 후, 성형된 부품을 꺼내 공기 중에서 냉각한다. 기존 열간성형(hot stamping) 공정에서는 마르텐사이트를 얻기 위하여 금형 내 급냉이 필요하나, 발명강은 공냉과 같은 느린 냉각속도에서도 마르텐사이트 조직을 얻을 수 있다.
상기 성형된 강판의 미세조직은 마르텐사이트, 베이나이트, 페라이트, 오스테나이트 다상 조직을 나타낸다. 제1 온도구간에서는 마르텐사이트, 베이나이트. 페라이트, 이들의 부피 분율 합이 50% 이상이다. 오스테나이트 부피 분율은 T50일 때, 오스테나이트의 안정성이 높아져 20% 이상이다. 제2 온도구간에서는 마르텐사이트의 부피 분율이 90% 이상인 강판이다.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다.
[실시예 1]
하기 표 1과 같이 조성되는 강 슬라브를 재가열온도 1100-1250℃ 온도범위에서 1시간 가열하고 열간압연을 실시하였다. 이 때, 열간압연은 900-1000℃에서 열간압연을 종료하였으며 상온까지 공냉하였다. 제조한 열연판은 냉간압하율로 55%로 하여 냉연판을 제조하였다.
이렇게 제조된 냉연판을 이용하여 온간성형(warm stamping) 공정의 열처리 조건을 모사하여 실시하였다. 열처리 이상영역에서 페라이트 및 오스테나이트가 1:1이 되는 온도(T50)부터 A3 온도보다 50℃ 높은 오스테나이트 단상영역 온도 범위까지 변화해가며 각각 10분 열처리를 진행하고 상온까지 공냉하였다. 이 때, 승온속도는 3℃/초이며 냉각속도는 10℃/초이다.
강종 화 학 성 분 (중량 %) 이상영역온도 (oC) 비고
C Mn Si Nb B 기타 A1 A3
A 0.15 5.9 0.38 0.05 - - 610 715 발명강
B 0.16 5.15 0.37 - 625 735 발명강
C 0.093 7.22 0.49 - - - 580 700 발명강
D 0.22 1.29 0.28 - 0.003 Ti: 0.039Cr: 0.193Ni: 0.013 비교강(열간성형용보론 첨가강)
또한, 하기 표 2에서 나타난 바와 같이, 발명강 A-1 내지 A-3은 A3 온도보다 약 10-50도 이상인 온도에서 열처리를 진행하였을 때, 우수한 상온 인장물성을 나타낸다. 반면, A3 온도보다 낮은 발명강 A-4 내지 A-7은 열간성형(hot stamping) 대체 강으로서 요구되는 항복강도(yield strength) 및 인장강도(T.S; Tensile Strength)가 도달하지 못 하고 있지만, 발명강 A-7은 높은 항복강도 및 연신율(EI; Elongation Index)이 요구되는 부품에 적용될 수 있다. 발명강 A에 대한 각 열처리 온도에 따른 인장곡선은 도 1에 나타낸다.
강종 열처리 온도(실제 공정 적용 온도)(oC) 항복강도(MPa) 인장강도(MPa) 총 연신율(%) T.S.*El.(MPa%)
A-1 770 1040 1680 9.3 15624
A-2 750 1080 1765 9.7 17120
A-3 730 1030 1725 9.1 15697
A-4 710 870 1855 8.9 16509
A-5 690 480 1800 12.1 21780
A-6 670 775 1515 15.1 22876
A-7 650 1180 1200 22.8 27360
D 900 1000 1500 8 12,000
Nb를 첨가하지 않은 중망간강을 이용한 온간성형(warm stamping) 모사 열처리 후 기계적 물성은 표 3과 표 4에 나타난다. 발명강 B와 C의 경우에도 A3 온도 이상에서 오스테나이징 열처리한 경우 우수한 물성을 나타난다. 발명강 B와 C의 각 열처리 온도에 따른 인장곡선은 도 2와 도 3에 각각 나타난다. 온도에 따른 공냉 후 상온에서의 최종 미세조직의 오스테나이트 분율은 하기 표 5에 나타낸다. 온도가 낮아질수록 역변태한 오스테나이트의 안정성이 높아져 잔류 오스테나이트 분율이 증가하였다. A3 온도 이상에서 열처리된 발명강 A-3은 잔류 오스테나이트가 존재하지 않으며, 역변태한 오스테나이트가 전부 마르텐사이트로 변태하였음을 나타낸다. 따라서, 상온 항복 및 인장강도가 우수하다.
발명강 A와 B를 비교하면, 동일한 열처리 온도에서 발명강 A가 발명강 B보다 연신율 감소 없이 항복 및 인장강도가 상승하였다. 이는 Nb를 첨가하여 고용강화 및 석출강화로 인한 강도가 향상됨을 확인할 수 있다.
강종 열처리 온도(실제 공정 적용 온도)(oC) 항복강도(MPa) 인장강도(MPa) 총 연신율(%) T.S.*El.(MPa%)
B-1 770 1045 1530 9.2 14076
B-2 750 1040 1535 10 15350
B-3 730 1000 1580 9.6 15168
B-4 700 770 1660 4.5 7470
B-5 690 620 1640 11.5 18860
B-6 680 670 1410 13.5 19035
B-7 660 1000 1240 24.5 30380
D 900 1000 1500 8 12,000
강종 열처리 온도(실제 공정 적용 온도)(oC) 항복강도(MPa) 인장강도(MPa) 총 연신율(%) T.S.*El.(MPa%)
C-1 700 1000 1775 10 17,750
C-2 680 1000 1650 12 19,800
C-3 670 600 1580 17 26,860
C-4 650 1020 1400 23 32,200
D 900 1000 1500 8 12,000
강종 잔류 오스테나이트 부피 분율 (%)
A-3 0
A-4 10
A-5 32
A-6 38
[실시예 2]
상기 실시예 1에서 냉간압연된 발명강 A를 추가적으로 소둔 열처리(CA)를 진행하였다. 열처리 조건은 650-750oC 3분으로 온도를 변화해가며 진행하였다. 냉연소둔된 강판은 온간성형(warm stamping) 공정의 열처리 조건을 오스테나이징 온도(TA) 및 성형 온도(TS)로 세분화하여 진행하였다. 오스테나이징 온도는 650-750oC 5분, 성형 온도는 650-750oC 1분으로 각각 온도를 변화해가며 진행하였다. 열처리 후 상온까지 공냉하였다. 이 때, 승온속도는 3oC/초이며 냉각속도는 10oC/초이다.
강종 열처리 온도 (oC) 항복강도(MPa) 인장강도(MPa) 총 연신율(%)
CA TA TS
A-8 750 750 700 1085 1810 11.6
A-9 650 1070 1820 11.6
A-10 600 1040 1740 10.2
A-11 550 1065 1780 11.2
A-12 700 650 530 1630 14.0
A-13 600 510 1650 16.5
A-14 550 500 1630 14.6
A-15 650 600 950 1210 32.1
A-16 550 980 1160 32.5
A-17 500 970 1180 32.7
A-18 700 750 700 1090 1780 11.4
A-19 650 1010 1720 10.8
A-20 600 1000 1690 10.0
A-21 550 1040 1760 10.6
A-22 700 650 350 1640 14.3
A-23 600 360 1670 14.1
A-24 550 370 1650 14.4
A-25 650 600 1050 1350 22.7
A-26 550 1030 1330 22.4
A-27 500 1080 1380 22.8
A-28 650 750 700 1040 1750 11.7
A-29 650 1065 1800 10.4
A-30 600 1010 1760 10.3
A-31 550 1060 1780 10.3
A-32 700 650 500 1710 8.2
A-33 600 350 1680 14.8
A-34 550 340 1740 14.2
A-35 650 600 1155 1280 21.2
A-36 550 1180 1260 22.6
A-37 500 1175 1260 22.0
또한, 상기 표 6에서 나타난 바와 같이, 소둔 온도(CA) 및 성형 온도(TS)는 상온 인장물성에 크게 영향을 미치지 않는 것으로 확인되었다. 실시예 1과 유사하게 오스테나이징 온도(TA)가 크게 작용하였다. 발명강 A-8 내지 발명강 A-11, 발명강 A-18 내지 발명강 A-21 및 발명강 A-28 내지 발명강 A-31의 경우 전부 열간성형(hot stamping)강보다 우수한 물성을 보이고 있다. 그 외 낮은 TA에서는 목표 상온 인장 물성치에 미달하였다.
[실시예 3]
실시예 3에서는, 실시예 1 및 실시예 2와 다르게, 발명강 A를 냉간압연 없이 열연강판으로 진행하였다. 발명강 A-38과 발명강 A-39는 750℃ 3분으로 소둔 열처리를 진행하였다. 그 후, 강판은 온간성형(warm stamping) 공정의 열처리 조건을 오스테나이징 온도(TA) 및 성형 온도(TS)로 세분화하여 진행하였다. 오스테나이징 온도는 650-750℃ 5분, 성형 온도는 600℃ 1분으로 온도를 변화해가며 진행하였다. 열처리 후 상온까지 공냉하였다. 이 때, 승온속도는 3℃/초이며 냉각속도는 10oC/초이다.
강종 열처리 온도 (oC) 항복강도(MPa) 인장강도(MPa) 총 연신율(%)
CA TA TS
A-38 X 750 600 1025 1630 10.3
A-39 650 950 1100 23.3
A-40 750 750 1050 1670 7.4
A-41 650 900 1150 25.4
상기 표 7에서 나타난 바와 같이, 소둔 온도(CA) 및 성형 온도(TS)는 상온 인장물성에 크게 영향을 미치지 않는 것으로 확인되었다. 실시예 1 및 실시예 2와 유사하게 오스테나이징 온도(TA)가 크게 작용하였다. 발명강 A-38 및 발명강 A-40의 경우 전부 열간성형(hot stamping)강보다 우수한 물성을 보이고 있다. 그 외 낮은 TA에서는 목표 상온 인장물성치에 미달하였다. 상기 실시예를 통해, 냉간압연 공정 없이 열연강판으로도 열간성형(hot stamping) 강판을 대체하는 온간성형(warm stamping) 강판으로 적용 가능함을 확인하였다.
이하에서는 본 발명에 따른 온간성형용 고강도 중망간강 성형부재의 제조방법의 다양한 실시예를 설명한다.
도 6은 본 발명에 따른 온간성형용 고강도 중망간강 성형부재의 제조방법을 나타낸다. 본 발명에 따른 일 제조방법은 적어도 S3 단계 및 S4 단계를 포함한다.
본 발명에 따른 S3 단계는 망간(Mn): 3-10 중량%, 탄소(C): 0.05-0.3 중량% 및 규소(Si): 0.1-1.0 중량%의 성분을 함유하고, 잔부인 철(Fe)과 불가피한 불순물을 함유하는 조성 또는 상기 조성에 니오븀(Nb): 0.001-0.1 중량%의 성분이 더 함유된 조성을 갖는 열연강판 또는 냉연강판을 준비하는 단계이다. S3 단계에는 본 발명에 따FMS 모든 모든 조성이 적용될 수 있다.
또한, 열간압연과 냉간압연을 거친 냉연강판을 적용시킬 수도 있고, 열간압연만을 거친 열연강판을 적용시킬수도 있다.
본 발명에 따른 S1 단계는 상기 조성을 갖는 중망간강 슬래브를 오스테나이트 단상영역의 온도구간인 1000-1200℃에서 소정시간 재가열을 하고, Ac3 온도 이상 1000℃ 이하에서 열간 마무리압연을 실시한 후, Ms온도 ~ Ac3 온도에서 권취하여 열연강판을 제조할 수 있다.
본 발명에 따른 S2 단계는 상온에서 냉간압연을 실시하여 냉연 강판을 제조할 수 있다.
본 발명에 있어서, 열연강판 또는 상기 냉연강판을 소둔하는 S3-1 단계를 더 포함할 수 있다.
본 발명에 따른 S4 단계는 Ac1-Ac3 이상역에서 페라이트 및 오스테나이트가 1:1이 되는 온도(T50)에서 Ac3 온도까지의 제1 온도구간 또는 Ac3 온도로부터 100℃까지의 제2 온도구간에서 상기 열연강판 또는 상기 냉연강판을 가열한 후 소정 시간을 유지하면서 오스테나이징이 수행될 수 있다.
본 발명에 있어서, 상기 오스테나이징 후 S4 단계의 온도구간에서 온간성형을 수행하는 S5-1 단계를 포함할 수 있다. 도 7은 제2 온도구간에서 S4 단계와 S5-1 단계가 수행되는 것을 나타내며, 도 8은 제2 온도구간에서 S4 단계와 S5-1 단계가 수행되는 것을 나타낸다.
본 발명에 있어서, 상기 오스테나이징 후, 오스테나이징 온도보다 10-300℃ 낮은 온도에서 온간성형을 수행하는 S5-2 단계를 포함할 수 있다. 도 9는 제1 온도구간에서 S4 단계가 수행되고, 그 보다 낮은 온도구간에서 S5-2 단계가 수행되는 것을 나타내며, 도 10은 제1 온도구간에서 S4 단계가 수행되고, 그 보다 낮은 온도구간에서 S5-2 단계가 수행되는 것을 나타낸다.
나아가, 본 발명은 온간성형 후 공냉 등의 서냉을 하여 마르텐사이트 조직을 얻을 수 있다.
본 발명에 따른 제조방법으로 가능한 주요 실시예는 다음 표 8과 같으며, 표 8에 제시된 실시예에 한정되는 것은 아니다.
S1 -> S2 -> S3-1 -> S3 -> S4 -> (S5-1 or S5-2)
S1 -------> S3-1 -> S3 -> S4 -> (S5-1 or S5-2)
S1 ---------------> S3 -> S4 -> (S5-1 or S5-2)
S2 -> S3-1 -> S3 -> S4 -> (S5-1 or S5-2)
S2 ---------> S3 -> S4 -> (S5-1 or S5-2)
S1 -> S2 ---------> S3 -> S4 -> (S5-1 or S5-2)
본 명세서에서 설명되는 실시예와 첨부된 도면은 본 발명에 포함되는 기술적 사상의 일부를 예시적으로 설명하는 것에 불과하다. 따라서, 본 명세서에 개시된 실시예들은 본 발명의 기술적 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이므로, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아님은 자명하다. 본 발명의 명세서 및 도면에 포함된 기술적 사상의 범위 내에서 당업자가 용이하게 유추할 수 있는 변형 예와 구체적인 실시 예는 모두 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (16)

  1. 망간(Mn): 3-10 중량%, 탄소(C): 0.05-0.3 중량% 및 규소(Si): 0.1-1.0 중량%의 성분을 함유하고, 잔부인 철(Fe)과 불가피하게 함유되는 불순물로 조성되는 것을 특징으로 하는 온간성형용 고강도 중망간강.
  2. 청구항 1에 있어서,
    상기 중망간강에 니오븀(Nb): 0.001-0.1 중량%의 성분이 더 함유된 것을 특징으로 하는 온간성형용 고강도 중망간강.
  3. 청구항 1 또는 청구항 2에 있어서,
    상기 중망간강에 알루미늄(Al)이 0.001-5.0 중량% 더 함유된 것을 특징으로 하는 온간성형용 고강도 중망간강.
  4. 청구항 1 또는 청구항 2에 있어서,
    상기 중망간강에 크롬(Cr), 몰리브덴(Mo), 니켈(Ni) 및 티타늄(Ti)으로 이루어진 그룹에서 선택된 1종 이상이 0.001-2.0 중량% 더 함유된 것을 특징으로 하는 온간성형용 고강도 중망간강.
  5. 망간(Mn): 3-10 중량%, 탄소(C): 0.05-0.3 중량% 및 규소(Si): 0.1-1.0 중량%의 성분을 함유하고, 잔부인 철(Fe)과 불가피한 불순물을 함유하는 조성 또는 상기 조성에 니오븀(Nb): 0.001-0.1 중량%의 성분이 더 함유된 조성으로서,
    열간압연 공정을 거친 후, 미세조직은 템퍼드 마르텐사이트 및 베이나이트의 2상 또는 템퍼드 마르텐사이트, 베이나이트 및 페라이트의 3상으로 이루어지며, 상기 3상인 때에는 페라이트의 부피 분율은 10% 이하(0% 불포함)인 것을 특징으로 하는 온간성형용 고강도 중망간강 성형부재.
  6. 망간(Mn): 3-10 중량%, 탄소(C): 0.05-0.3 중량% 및 규소(Si): 0.1-1.0 중량%의 성분을 함유하고, 잔부인 철(Fe)과 불가피한 불순물을 함유하는 조성 또는 상기 조성에 니오븀(Nb): 0.001-0.1 중량%의 성분이 더 함유된 조성으로서,
    Ac1-Ac3 이상영역에서 페라이트 및 오스테나이트가 1:1이 되는 온도(T50)에서 Ac3 온도까지의 제1 온도구간에서 오스테나이징 공정을 거친 후, 템퍼드 마르텐사이트, 베이나이트 및 페라이트의 부피 분율 합이 50% 이상인 것을 특징으로 하는 온간성형용 고강도 중망간강 성형부재.
  7. 망간(Mn): 3-10 중량%, 탄소(C): 0.05-0.3 중량% 및 규소(Si): 0.1-1.0 중량%의 성분을 함유하고, 잔부인 철(Fe)과 불가피한 불순물을 함유하는 조성 또는 상기 조성에 니오븀(Nb): 0.001-0.1 중량%의 성분이 더 함유된 조성으로서,
    페라이트 및 오스테나이트 이상역의 Ac3 온도에서, Ac3 온도로부터 100℃까지의 제2 온도구간에서 오스테나이징 공정을 거친 후, 마르텐사이트의 부피 분율이 90% 이상인 것을 특징으로 하는 온간성형용 고강도 중망간강 성형부재.
  8. 청구항 6 또는 청구항 7에 있어서,
    상기 성형부재의 항복강도는 1.0 GPa 이상이고, 인장강도는 1.5 GPa 이상인 것을 특징으로 하는 온간성형용 고강도 중망간강 성형부재.
  9. 망간(Mn): 3-10 중량%, 탄소(C): 0.05-0.3 중량% 및 규소(Si): 0.1-1.0 중량%의 성분을 함유하고, 잔부인 철(Fe)과 불가피한 불순물을 함유하는 조성 또는 상기 조성에 니오븀(Nb): 0.001-0.1 중량%의 성분이 더 함유된 조성을 갖는 열연강판 또는 냉연강판을 준비하는 S3 단계; 및
    Ac1-Ac3 이상역에서 페라이트 및 오스테나이트가 1:1이 되는 온도(T50)에서 Ac3 온도까지의 제1 온도구간 또는 Ac3 온도로부터 100℃까지의 제2 온도구간에서 상기 열연강판 또는 상기 냉연강판을 가열한 후 소정 시간을 유지하면서 오스테나이징이 수행되는 S4 단계가 포함하는 것을 특징으로 하는 온간성형용 고강도 중망간강 성형부재의 제조방법.
  10. 청구항 9에 있어서, S3 단계 전에,
    상기 조성을 갖는 중망간강 슬래브를 오스테나이트 단상영역의 온도구간인 1000-1200℃에서 소정 시간 재가열을 하고, Ac3 온도 이상 1000℃ 이하에서 열간 마무리 압연을 실시한 후, Ms온도 ~ Ac3 온도에서 권취하여 열연강판을 제조하는 S1 단계를 더 포함하는 것을 특징으로 하는 온간성형용 고강도 중망간강 성형부재의 제조방법.
  11. 청구항 9에 있어서, S1 단계 후 S3 단계 전에,
    상온에서 냉간압연을 실시하여 냉연 강판을 제조하는 S2 단계를 더 포함하는 것을 특징으로 하는 온간성형용 고강도 중망간강 성형부재의 제조방법.
  12. 청구항 10 또는 청구항 11에 있어서, S3 단계 전에,
    상기 열연강판 또는 상기 냉연강판을 소둔하는 S3-1 단계를 더 포함하는 것을 특징으로 하는 온간성형용 고강도 중망간강 성형부재의 제조방법.
  13. 청구항 9에 있어서,
    상기 오스테나이징 후 S4 단계의 온도구간에서 온간성형을 수행하는 S5-1 단계를 포함하는 것을 특징으로 하는 온간성형용 고강도 중망간강 성형부재의 제조방법.
  14. 청구항 9에 있어서,
    상기 오스테나이징 후, 오스테나이징 온도보다 10-300℃ 낮은 온도에서 온간성형을 수행하는 S5-2 단계를 포함하는 것을 특징으로 하는 온간성형용 고강도 중망간강 성형부재의 제조방법.
  15. 청구항 13 또는 청구항 14에 있어서,
    상기 온간성형 온도까지 1-100℃/초로 승온하고, 10-1000초 유지한 후에 프레스 성형하고, 이어 1~30℃/초의 속도로 서냉하는 것을 특징으로 하는 온간성형용 고강도 중망간강 성형부재의 제조방법.
  16. 청구항 15에 있어서,
    온간성형 후 서냉을 하여 마르텐사이트 조직을 얻는 것을 특징으로 하는 온간성형용 고강도 중망간강 성형부재의 제조방법.
PCT/KR2017/015341 2016-12-28 2017-12-22 온간성형용 고강도 중망간강과 그 제조방법 WO2018124654A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/760,263 US11566306B2 (en) 2016-12-28 2017-12-22 High-strength medium manganese steel for warm stamping and method for manufacturing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20160180900 2016-12-28
KR10-2016-0180900 2016-12-28
KR1020170177216A KR102030815B1 (ko) 2016-12-28 2017-12-21 온간성형용 고강도 중망간강 성형부재와 그 제조방법
KR10-2017-0177216 2017-12-21

Publications (1)

Publication Number Publication Date
WO2018124654A1 true WO2018124654A1 (ko) 2018-07-05

Family

ID=62709613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/015341 WO2018124654A1 (ko) 2016-12-28 2017-12-22 온간성형용 고강도 중망간강과 그 제조방법

Country Status (1)

Country Link
WO (1) WO2018124654A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113840936A (zh) * 2019-05-31 2021-12-24 日本制铁株式会社 热冲压成型体
CN114107813A (zh) * 2021-11-22 2022-03-01 北京科技大学 一种马氏体+奥氏体双相中锰铸钢及制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60238419A (ja) * 1984-04-24 1985-11-27 ユジンヌ・アシエ 鋼の棒材又は加工用線材の製法及び該方法により得られた製品
KR20130050138A (ko) * 2011-11-07 2013-05-15 주식회사 포스코 온간프레스 성형용 강판, 온간프레스 성형 부재 및 이들의 제조방법
KR20140085225A (ko) * 2012-12-27 2014-07-07 주식회사 포스코 용접성이 우수한 고망간 내마모강 및 그 제조방법
US20140205488A1 (en) * 2012-01-19 2014-07-24 Hyun Jo Jun Ultra Fine-Grained Advanced High Strength Steel Sheet Having Superior Formability
CN104498821A (zh) * 2014-12-05 2015-04-08 武汉钢铁(集团)公司 汽车用中锰高强钢及其生产方法
CN106086653A (zh) * 2016-08-15 2016-11-09 大连理工大学 一种实现性能梯度、等厚度的温热成形中锰钢件制备方法
KR101677398B1 (ko) * 2015-11-30 2016-11-18 주식회사 포스코 열간성형용 강재 및 이를 이용한 부재 제조방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60238419A (ja) * 1984-04-24 1985-11-27 ユジンヌ・アシエ 鋼の棒材又は加工用線材の製法及び該方法により得られた製品
KR20130050138A (ko) * 2011-11-07 2013-05-15 주식회사 포스코 온간프레스 성형용 강판, 온간프레스 성형 부재 및 이들의 제조방법
US20140205488A1 (en) * 2012-01-19 2014-07-24 Hyun Jo Jun Ultra Fine-Grained Advanced High Strength Steel Sheet Having Superior Formability
KR20140085225A (ko) * 2012-12-27 2014-07-07 주식회사 포스코 용접성이 우수한 고망간 내마모강 및 그 제조방법
CN104498821A (zh) * 2014-12-05 2015-04-08 武汉钢铁(集团)公司 汽车用中锰高强钢及其生产方法
KR101677398B1 (ko) * 2015-11-30 2016-11-18 주식회사 포스코 열간성형용 강재 및 이를 이용한 부재 제조방법
CN106086653A (zh) * 2016-08-15 2016-11-09 大连理工大学 一种实现性能梯度、等厚度的温热成形中锰钢件制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113840936A (zh) * 2019-05-31 2021-12-24 日本制铁株式会社 热冲压成型体
CN113840936B (zh) * 2019-05-31 2022-06-17 日本制铁株式会社 热冲压成型体
CN114107813A (zh) * 2021-11-22 2022-03-01 北京科技大学 一种马氏体+奥氏体双相中锰铸钢及制备方法

Similar Documents

Publication Publication Date Title
KR102030815B1 (ko) 온간성형용 고강도 중망간강 성형부재와 그 제조방법
WO2013069937A1 (ko) 온간프레스 성형용 강판, 온간프레스 성형 부재 및 이들의 제조방법
WO2012002638A2 (ko) 초고강도 철근 및 그 제조방법
WO2019098483A1 (ko) 충격인성이 우수한 저온용 강재 및 그 제조방법
WO2009145563A2 (ko) 열처리성이 우수한 초고강도 열간성형 가공용 강판, 열처리 경화형 부재 및 이들의 제조방법
WO2018117646A1 (ko) 극저온 충격인성이 우수한 후강판 및 이의 제조방법
WO2019132465A1 (ko) 수소유기균열 저항성이 우수한 강재 및 그 제조방법
WO2014163431A1 (ko) 인장강도가 우수한 고강도 볼트의 제조방법
WO2018080133A1 (ko) 구멍확장성 및 항복비가 우수한 초고강도 강판 및 그 제조방법
WO2017188654A1 (ko) 항복비가 우수한 초고강도 고연성 강판 및 이의 제조방법
WO2017222159A1 (ko) 가공성이 우수한 고강도 냉연강판 및 그 제조 방법
WO2020111856A2 (ko) 연성 및 저온 인성이 우수한 고강도 강재 및 이의 제조방법
WO2018124654A1 (ko) 온간성형용 고강도 중망간강과 그 제조방법
WO2022119253A1 (ko) 굽힘가공성이 우수한 초고강도 냉연강판 및 그 제조방법
WO2020111857A1 (ko) 크리프 강도가 우수한 크롬-몰리브덴 강판 및 그 제조방법
WO2019004540A1 (ko) 핫 스탬핑 부품 및 이의 제조방법
WO2021172604A1 (ko) 신선가공성 및 충격인성이 우수한 비조질 선재 및 그 제조방법
WO2020040388A1 (ko) 인성 및 부식피로특성이 향상된 스프링용 선재, 강선 및 이들의 제조방법
WO2011081236A1 (ko) 열간 프레스 가공성이 우수한 열처리 강화형 강판 및 그 제조방법
WO2022139214A1 (ko) 강도 및 내식성이 향상된 마르텐사이트계 스테인리스강 및 이의 제조 방법
WO2021125793A1 (ko) 우수한 수소취성 저항성을 가지는 고강도 냉간압조용 선재 및 그 제조방법
WO2021125471A1 (ko) 초고강도 스프링용 선재, 강선 및 그 제조방법
WO2020130614A2 (ko) 구멍확장성이 우수한 고강도 열연강판 및 그 제조방법
WO2019031681A1 (ko) 우수한 강도와 연신율을 갖는 열연강판 및 제조방법
WO2023214634A1 (ko) 냉연 강판 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17888913

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17888913

Country of ref document: EP

Kind code of ref document: A1