WO2017222159A1 - 가공성이 우수한 고강도 냉연강판 및 그 제조 방법 - Google Patents

가공성이 우수한 고강도 냉연강판 및 그 제조 방법 Download PDF

Info

Publication number
WO2017222159A1
WO2017222159A1 PCT/KR2017/004294 KR2017004294W WO2017222159A1 WO 2017222159 A1 WO2017222159 A1 WO 2017222159A1 KR 2017004294 W KR2017004294 W KR 2017004294W WO 2017222159 A1 WO2017222159 A1 WO 2017222159A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
rolled steel
weight
high strength
cold rolled
Prior art date
Application number
PCT/KR2017/004294
Other languages
English (en)
French (fr)
Inventor
신효동
정현영
허성열
Original Assignee
현대제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대제철 주식회사 filed Critical 현대제철 주식회사
Priority to CN201780038744.4A priority Critical patent/CN109312440B/zh
Priority to DE112017003173.7T priority patent/DE112017003173T5/de
Priority to JP2018564315A priority patent/JP6804566B2/ja
Priority to US16/311,610 priority patent/US10968498B2/en
Publication of WO2017222159A1 publication Critical patent/WO2017222159A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling

Definitions

  • the present invention relates to a cold rolled steel sheet and a manufacturing method thereof, and more particularly, to a high strength cold rolled steel sheet excellent in workability and a method for manufacturing the same.
  • the steel sheets applied to automotive exterior materials are mainly cold rolled steel sheets with excellent workability and elongation.
  • the high strength cold rolled steel sheet manufacturing method for automobiles usually consists of a hot rolling, cold rolling, and annealing process.
  • the present invention provides a manufacturing method for reducing the material deviation of the edge portion and the center portion of the hot rolled steel sheet after the hot rolled winding.
  • the present invention provides a cold rolled steel sheet having a high tensile strength and yield strength, and also excellent in bending workability, and a manufacturing method thereof.
  • the slab plate is at least one of aluminum (Al): 0.35% to 0.45% by weight, phosphorus (P): more than 0 and 0.02% by weight or less, sulfur (S): more than 0 and 0.003% by weight or less. It may further include.
  • the hot rolled steel sheet may have a microstructure consisting of pearlite and ferrite.
  • the hot rolled steel sheet may have a variation in tensile strength between a central portion and an edge portion in a width direction of 50 MPa or less.
  • the annealing heat treatment is carried out at 810 °C to 850 °C
  • the overaging treatment may be carried out at 250 °C to 350 °C.
  • High strength cold rolled steel sheet is carbon (C): 0.10% to 0.13% by weight, silicon (Si): 0.9% to 1.1% by weight, manganese (Mn): 2.2% to 2.3% by weight, Chromium (Cr): 0.35% to 0.45% by weight, molybdenum (Mo): 0.04% to 0.07% by weight, antimony (Sb): 0.02% to 0.05% by weight, and the remaining iron (Fe) and inevitable impurities
  • the microstructure has a complex structure of ferrite, martensite, and bainite, wherein the sum of the area fractions of the ferrite and martensite is 90% or more and less than 100%.
  • the high strength cold rolled steel sheet is at least one of aluminum (Al): 0.35% to 0.45% by weight, phosphorus (P): more than 0 and 0.02% by weight or less, sulfur (S): more than 0 and 0.003% by weight or less. It may further include.
  • the high strength cold rolled steel sheet may have a tensile strength of 980 MPa or more, a yield strength of 600 MPa or more, an elongation of 17% or more, and a bending workability (R / t) of 2.0 or less.
  • the winding temperature of the hot rolling process by setting the winding temperature of the hot rolling process to 600 °C to 700 °C, it is possible to reduce the deviation of the tensile strength of the edge portion and the center portion of the hot rolled steel sheet after the hot rolled winding.
  • the internal oxidation depth may increase in the hot rolled steel sheet as the winding temperature is increased. As the internal oxidation depth increases, the surface color difference of the final cold rolled steel sheet may occur. According to an embodiment of the present invention, by adding a predetermined amount of antimony as an alloying element to the steel sheet, it is possible to reduce the internal oxidation depth of the hot rolled steel sheet.
  • the yield strength of 600 MPa or more, tensile strength of 980 MPa or more, elongation of 17% or more, and bending workability of 2 or less can be secured.
  • FIG. 1A is a graph showing a change in tensile strength along the width direction of a hot rolled steel sheet at a coiling temperature of 400 ° C. in one comparative example of the present invention.
  • FIG. 1B is a photograph showing a microstructure of the hot rolled steel sheet edge portion of FIG. 1A
  • FIG. 1C is a photograph showing a microstructure of the hot rolled steel sheet center portion of FIG. 1A.
  • FIG. 2A is a graph showing a change in tensile strength along the width direction of a hot rolled steel sheet at a winding temperature of 580 ° C. in one comparative example of the present invention.
  • FIG. 2B is a photograph showing a microstructure of the hot rolled steel sheet edge portion of FIG. 2A
  • FIG. 2C is a photograph showing a microstructure of the hot rolled steel sheet center portion of FIG. 2A.
  • 3A is a graph showing a change in tensile strength along the width direction of a hot rolled steel sheet at a coiling temperature of 640 ° C. in one comparative example of the present invention.
  • 3B is a photograph showing a microstructure of the hot rolled steel sheet edge portion of FIG. 3A
  • FIG. 3C is a photograph showing a microstructure of the hot rolled steel sheet center portion of FIG. 3A.
  • FIG. 4 is a graph showing an internal oxidation depth of a hot rolled steel sheet which is different from a winding temperature of a hot rolling process according to one embodiment of the present invention.
  • FIG. 5 is a process flowchart showing a method of manufacturing a non-heat treated hot rolled steel sheet according to an embodiment of the present invention.
  • Figure 6 is a photograph observing the microstructure of the cold rolled steel sheet according to an embodiment of the present invention.
  • the inventor of the present invention is a material between the edge portion and the center portion in the width direction of the hot rolled steel sheet after undergoing the hot rolling process, during the production of the cold rolled steel sheet through a manufacturing process including a hot rolling process, a cold rolling process, and an annealing heat treatment. It was found that the deviation occurred greatly. Thus, the inventor of the present invention has found that such material deviation is related to the hot rolling process winding temperature.
  • Table 1 is a chart which shows the alloy composition of the slab plate material as an example
  • FIG. 1A is a graph which shows the change of the tensile strength along the width direction of a hot rolled sheet steel at the winding temperature of 400 degreeC in one comparative example of this invention
  • FIG. 1B is a photograph showing a microstructure of the hot rolled steel sheet edge portion of FIG. 1A
  • FIG. 1C is a photograph showing a microstructure of the hot rolled steel sheet center portion of FIG. 1A.
  • FIG. 2A is a graph showing a change in tensile strength along the width direction of a hot rolled steel sheet at a winding temperature of 580 ° C. in one comparative example of the present invention.
  • FIG. 2B is a photograph showing a microstructure of the hot rolled steel sheet edge portion of FIG. 2A
  • FIG. 2C is a photograph showing a microstructure of the hot rolled steel sheet center portion of FIG. 2A.
  • 3A is a graph showing a change in tensile strength along the width direction of a hot rolled steel sheet at a coiling temperature of 640 ° C. in one comparative example of the present invention.
  • 3B is a photograph showing a microstructure of the hot rolled steel sheet edge portion of FIG. 3A
  • FIG. 3C is a photograph showing a microstructure of the hot rolled steel sheet center portion of FIG. 3A.
  • the tensile strength deviation between the center portion and the edge portion of the hot rolled steel sheet occurred in the size of about 200MPa to 240 MPa.
  • the edge portion is composed of bainite and martensite which are low temperature phases
  • the center portion is composed of relatively high fraction of pearlite and relatively small fraction of bainite and martensite.
  • the tensile strength deviation between the center portion and the edge portion of the hot rolled steel sheet occurred in the size of about 300MPa.
  • the edge portion is composed of a relatively high fraction of bainite and a relatively small fraction of ferrite and pearlite
  • the center portion is composed of ferrite and pearlite.
  • the tensile strength deviation between the center portion and the edge portion of the hot rolled steel sheet occurred in the size of about 45MPa to 50MPa.
  • both the edge portion and the center portion are composed of pearlite and ferrite.
  • the material variation of each part of the hot rolled steel sheet is caused by a difference in cooling rate depending on the position of the hot rolled steel sheet in the width direction. That is, since the cooling rate is slow in the center portion of the hot rolled steel sheet, and the cooling rate is relatively large in the edge portion of the hot rolled steel sheet, it is judged that a low temperature phase occurs in the edge portion of the hot rolled steel sheet. Accordingly, in order to reduce the material variation for each part of the hot rolled steel sheet, the winding temperature of the hot rolling process is increased, so that the pearlite transformation is performed over the entire hot rolled steel sheet even if the cooling rate of the edge portion is relatively fast. . As an example, the winding temperature of the hot rolling process may be set to 600 °C to 700 °C.
  • the inventor of the present invention has found that, when the winding temperature of the hot rolling step is raised to 600 ° C to 700 ° C, after the cold rolled steel sheet is manufactured as a final product, a color difference occurs locally on the surface of the cold rolled steel sheet. .
  • the inventors have found that such local color difference is due to the oxidation occurring from the surface of the hot rolled steel sheet in the course of cooling after winding of the hot rolled steel sheet.
  • the inventors of the present invention have found that a local color difference occurs in the cold rolled steel sheet when the winding temperature of the hot rolled steel sheet is 580 ° C or higher.
  • the winding temperature of a hot rolled sheet steel is 580 degreeC or more, it discovered that the internal oxidation depth of a hot rolled sheet steel generate
  • the internal oxidation of the hot rolled steel sheet proceeds excessively in the process of raising the coiling temperature to 600 ° C to 700 ° C. It has been found that local color difference may occur on the surface of the product cold rolled steel sheet.
  • the inventor of the present invention proposes an alloy composition of the following steel sheet in order to maintain the winding temperature of the hot rolling process at 600 ° C to 700 ° C and to suppress internal oxidation of the hot rolled steel sheet.
  • the hot rolled steel sheet having the alloy composition may be manufactured as a high strength cold rolled steel sheet while undergoing a cold rolling process, an annealing process, and an overaging process.
  • the cold rolled steel sheet may have a tensile strength of 980 MPa or more, a yield strength of 600 MPa or more, an elongation of 17% or more, and a bending workability (R / t) of 2.0 or less.
  • High strength cold rolled steel sheet is carbon (C): 0.10% to 0.13% by weight, silicon (Si): 0.9% to 1.1% by weight, manganese (Mn): 2.2% to 2.3% by weight , Chromium (Cr): 0.35% to 0.45% by weight, molybdenum (Mo): 0.04% to 0.07% by weight, antimony (Sb): 0.02% to 0.05% by weight, and the remaining iron (Fe) and unavoidable impurities Is done.
  • the high strength cold-rolled steel sheet is at least 0.35% to 0.45% by weight, phosphorus (P): more than 0 and 0.02% by weight or less, sulfur (S): more than 0 and 0.003% by weight or less. It may further include one.
  • the high strength cold rolled steel sheet may have a tensile strength of 980 MPa or more, a yield strength of 600 MPa or more, an elongation of 17% or more, and a bending workability (R / t) of 2.0 or less.
  • the bending workability (R / t) may be represented by the ratio of the minimum bending radius of curvature (R) measured in the bending generated in the specimen within the thickness (t) of the specimen and the crack does not occur.
  • the high strength cold rolled steel sheet may have a complex structure of ferrite, martensite, and bainite, and the sum of the area fractions of the ferrite and martensite may be 90% or more and less than 100%.
  • Carbon (C) is an alloying element that contributes to martensite fraction and hardness improvement.
  • the carbon (C) is added at 0.10% to 0.13% by weight of the total weight of the steel sheet. If the content of carbon (C) is less than 0.10% by weight, it is difficult to secure sufficient strength. On the contrary, when the content of carbon (C) exceeds 0.13% by weight, the target toughness may not be obtained and weldability may decrease.
  • Silicon (Si) acts as a deoxidizer in steel, and as a ferrite stabilizing element, it may contribute to securing carbide strength and elongation at inhibiting carbide formation in ferrite.
  • the silicon (Si) is added at 0.9 wt% to 1.1 wt% of the total weight of the steel sheet.
  • the content of silicon (Si) is less than 0.9% by weight, it is difficult to secure the elongation.
  • the content of silicon (Si) is more than 1.1% by weight, the playability may be reduced and the weldability may be reduced.
  • Manganese (Mn) can improve the strength of the steel sheet through strengthening of solid solution and increasing hardenability.
  • the manganese (Mn) is added at 2.2 wt% to 2.3 wt% of the total weight of the steel sheet. If the content of manganese (Mn) is less than 2.2% by weight, the addition effect may not be properly exhibited. When the content of manganese (Mn) is added in excess of 2.3% by weight, the manganese band structure is formed in the center portion of the material thickness direction, the elongation is lowered, it may inhibit the bending workability.
  • Chromium (Cr) can contribute to the strength improvement of steel through strengthening of solid solution and increasing hardenability. Chromium (Cr) is added at 0.35% to 0.45% by weight of the total weight of the steel sheet. If the content of chromium (Cr) is less than 0.35% by weight, the addition effect may not be properly exhibited. On the contrary, when the content of chromium (Cr) exceeds 0.45% by weight, weldability may be inhibited.
  • Molybdenum (Mo) can contribute to strength improvement by strengthening employment and increasing hardenability. Molybdenum (Mo) is added at 0.04% to 0.07% by weight of the total weight of the steel sheet. When the content of molybdenum (Mo) is less than 0.04% by weight, the addition effect may not be properly exhibited. On the contrary, when the content of molybdenum (Mo) exceeds 0.07% by weight, the amount of martensite may be increased to reduce toughness.
  • Antimony (Sb) can suppress the presence of manganese and silicon in the form of oxide on the steel sheet surface.
  • Antimony (Sb) does not form an oxide film by itself at a high temperature, but is concentrated at the steel plate surface and the grain interface to suppress diffusion of manganese and silicon into the steel plate surface. As such, oxide formation in the vicinity of the steel plate surface can be controlled.
  • antimony (Sb) has the effect of suppressing the generation of oxide in the steel sheet during the annealing process to suppress the color difference defect of the cold rolled steel sheet.
  • Antimony (Sb) is added at 0.02% to 0.05% by weight of the total weight of the steel sheet.
  • the content of antimony (Sb) is less than 0.02% by weight, the addition effect may not be properly exhibited.
  • the content of antimony (Sb) exceeds 0.05% by weight, the ductility may be lowered and the material properties of the steel sheet may deteriorate.
  • Aluminum (Al) is added for deoxidation during steelmaking.
  • Aluminum (Al) may combine with nitrogen in the steel to form AlN to refine the structure.
  • the content of aluminum (Al) may be 0.35% by weight to 0.45% by weight of the total weight of the steel sheet. If the aluminum content is less than 0.35% by weight, sufficient deoxidation effect cannot be obtained. Conversely, if the content of aluminum exceeds 0.45 wt%, the strength may be lowered by promoting the diffusion of carbon in the ferrite and austenite.
  • Phosphorus (P) can improve the strength of the steel by strengthening the solid solution.
  • the phosphorus (P) may be added to more than 0 0.02% by weight of the total weight of the steel sheet. If the content of phosphorus (P) exceeds 0.02% by weight, it may be the cause of hot brittleness to form a steadite of Fe3P.
  • Sulfur (S) may inhibit the toughness and weldability of the steel sheet and increase the MnS non-metal inclusions to inhibit bending workability.
  • Sulfur (S) is added in more than 0 0.003% by weight or less of the whole steel sheet. If the content of sulfur (S) exceeds 0.003% by weight, coarse inclusions may be increased to deteriorate fatigue properties.
  • the method for manufacturing a high strength cold rolled steel sheet includes a slab reheating step (S110), a hot rolling step (S120), a cold rolling step (S130), an annealing step (S140), and an overageing step (S150).
  • the slab reheating step (S110) may be carried out to derive the effect, such as re-use of the precipitate.
  • the slab plate may be obtained through the continuous casting process after obtaining the molten steel of the desired composition through the steelmaking process.
  • the slab sheet carbon (C): 0.10% to 0.13% by weight, silicon (Si): 0.9 to 1.1% by weight, manganese (Mn): 2.2% to 2.3% by weight, chromium (Cr): 0.35% by weight To 0.45% by weight, molybdenum (Mo): 0.04% to 0.07% by weight, antimony (Sb): 0.02% to 0.05% by weight, and the remaining iron (Fe) and inevitable impurities.
  • the slab plate is at least one of aluminum (Al): 0.35% to 0.45% by weight, phosphorus (P): more than 0 and less than 0.02% by weight, sulfur (S): more than 0 and 0.003% by weight or less. It may further include.
  • the slab plate having the alloy composition is reheated at Slab (Slab Reheating Temperature): 1150 ° C to 1250 ° C for about 2 to 5 hours.
  • Slab Selab Reheating Temperature
  • the stock of segregated components and the stock of precipitates may occur.
  • the slab reheating temperature is less than 1150 °C there is a problem that the segregated components are not evenly distributed evenly during casting. On the contrary, when the reheating temperature exceeds 1250 ° C, very coarse austenite grains are formed, making it difficult to secure strength. In addition, as the slab reheating temperature increases, it may cause an increase in manufacturing cost and a decrease in productivity due to additional time required for adjusting heating costs and rolling temperatures.
  • the reheated sheet is finished hot rolled at a rolling end temperature: 800 ° C to 900 ° C. If the finish hot rolling temperature (FDT) is less than 800 °C, it may cause the electric material variation of the hot rolled coil, on the contrary, if the finish hot rolling temperature (FDT) exceeds 900 °C elongation due to austenitic grain coarsening It can be hard to get ferrite to secure.
  • the hot rolled plate is cooled. Cooling may be applied by natural cooling, forced cooling, or the like.
  • the winding process may proceed at a temperature of 600 ° C to 700 ° C. As described above, when the coiling temperature is less than 600 ° C., a material deviation such as tensile strength may increase between the edge portion and the center portion along the width direction of the hot rolled steel sheet. When the winding temperature exceeds 700 ° C., sufficient strength cannot be secured. After the winding process, the hot rolled steel sheet may have a variation in tensile strength between the center portion and the edge portion in the width direction of 50 MPa or less.
  • the hot rolled steel sheet may have a microstructure consisting of pearlite and ferrite.
  • the hot rolled steel sheet is cold rolled to process the final steel sheet thickness.
  • the rolling reduction rate of cold rolling may be set to about 50 to 70% depending on the thickness of the hot rolled steel sheet and the target steel sheet final thickness. Meanwhile, a process of performing acid pickling may be further included to remove scale of the hot rolled steel sheet before cold rolling.
  • the cold rolled steel sheet is subjected to annealing in an abnormal region of the ⁇ phase and the ⁇ phase.
  • Annealing heat treatment can control the austenite phase fraction.
  • target strength, elongation, and the like can be easily ensured.
  • Annealing heat treatment may be performed in the coexistence region of the ⁇ -phase and ⁇ -phase, which is easy to secure a soft ferrite to secure bending workability.
  • the annealing heat treatment may be performed by heating to 810 ° C. to 850 ° C. for about 30 seconds to 150 seconds. If the annealing heat treatment temperature is less than 810 °C, or when the annealing heat treatment time is less than 30 seconds, it may be difficult to secure the strength of the steel sheet to be finally produced due to the lack of sufficient austenite transformation. On the other hand, when the annealing heat treatment temperature exceeds 850 ° C.
  • the austenite grain size may be greatly increased, thereby deteriorating physical properties of the steel sheet such as strength.
  • the annealing heat-treated steel sheet is cooled to the martensite temperature region.
  • the annealing heat-treated steel sheet is cooled to a temperature of 250 °C to 350 °C, the average cooling rate of 5 °C / second to 20 °C / second.
  • the cooled steel sheet is subjected to an austempering treatment in a martensite temperature range, that is, a temperature of 250 °C to 350 °C.
  • the concentration of carbon (C) into the retained austenite is carried out in a short time through the austempering, so that the bainite phase is formed in the final microstructure of the steel sheet to be manufactured.
  • the overaging treatment may include not only keeping the temperature constant for a predetermined time, but also cooling the air for a predetermined time. Formation and control of bainite phase may be difficult when the overage treatment temperature is outside the above temperature range.
  • the overaging treatment may be performed for 200 to 400 seconds. If the overaging treatment time is less than 200 seconds, the effect is insufficient, while if the overaging treatment time exceeds 400 seconds, productivity can be lowered without further effects.
  • the overaged steel sheet may be cooled to about 100 ° C.
  • the cold rolled steel sheet may finally have a composite structure of ferrite, martensite and bainite.
  • the sum of the area fractions of the ferrite and the martensite may be 90% or more and less than 100%.
  • the composition of the comparative examples and the example specimens was determined by the alloy composition shown in Table 2. However, in Table 2, notation is omitted for the alloying element inevitably added to the steel. In the case of the example specimen, antimony (Sb) may be included as an alloying element.
  • the intermediate material of the comparative example and the Example cast with the said composition was reheated to 1200 degreeC, and hot-rolled to the finishing rolling temperature of 850 degreeC. Then, it cooled and wound up at the temperature of 640 degreeC. Thereafter, the hot rolled steel sheets were cold rolled after pickling to prepare cold rolled steel sheets, respectively. The cold rolled steel sheets were heat-treated according to the annealing process conditions and the overaging process conditions of Table 3 to finally prepare the specimens of Comparative Examples 1 to 5 and the specimens of Examples 1 to 9.
  • the annealing process temperature was set low.
  • the annealing process temperature and the overaging process temperature range according to the embodiment of the present invention were set to satisfy.
  • Figure 6 is a photograph observing the microstructure of the cold rolled steel sheet according to an embodiment of the present invention.
  • 6 is a microstructure photograph of the specimen of Example 1, and as shown, it can be seen that the composite structure with ferrite and martensite as the main phase and a small amount of bainite is added.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

일 실시 예에 따르는 고강도 냉연 강판의 제조 방법은, 탄소(C): 0.10 중량% 내지 0.13 중량%, 실리콘(Si): 0.9 중량% 내지 1.1 중량%, 망간(Mn): 2.2 중량% 내지 2.3 중량%, 크롬(Cr): 0.35 중량% 내지 0.45 중량%, 몰리브덴(Mo) : 0.04 중량% 내지 0.07 중량%, 안티몬(Sb) : 0.02 중량% 내지 0.05 중량%, 및 나머지 철(Fe)과 불가피한 불순물로 이루어진 슬라브 판재를 1150℃ 내지 1250 ℃의 온도로 재가열하는 단계; 상기 재가열된 판재를 마무리 압연 온도가 800℃ 내지 900℃가 되도록 열간 압연하는 단계; 상기 열간 압연된 판재를 600℃ 내지 700℃로 냉각하여 권취하여 열연 강판을 제조하는 단계; 상기 열연 강판을 산세 후 냉간 압연하는 단계; 상기 냉간 압연된 강판을 α상과 γ상의 이상역에서 소둔 열처리하는 단계; 상기 소둔 열처리된 강판을 마르텐사이트 온도 영역까지 냉각시킨 후 과시효 처리하는 단계를 포함한다.

Description

가공성이 우수한 고강도 냉연강판 및 그 제조 방법
본 발명은 냉연강판 및 그 제조 방법에 관한 것으로, 보다 구체적으로는 가공성이 우수한 고강도 냉연강판 및 그 제조 방법에 관한 것이다.
자동차 업계는 나날이 경쟁이 심화됨에 따라 자동차 품질에 대한 고급화, 다양화 요구가 높아지고 있다. 또한, 강화되고 있는 승객 안전 및 환경 규제에 대한 법규를 만족시키고 아울러 연비 효율을 향상시키기 위하여, 경량화 및 고강도화를 추구하고 있다.
자동차 외판재에 적용되는 강판은 주로 가공성과 연신율이 우수한 냉연강판이 적용된다. 자동차용 고강도 냉연강판 제조 방법은 통상, 열간 압연, 냉간 압연, 그리고 소둔 공정을 포함하도록 이루어진다.
관련 선행문헌으로는 대한민국 공개특허공보 제10-2014-0002279호(2014.01.08 공개, 발명의 명칭: 고강도 냉연강판 및 그 제조 방법)가 있다.
본 발명은 열연 권취 후 열연 강판의 에지부와 센터부의 재질 편차를 감소시키는 제조 방법을 제공한다.
본 발명은 높은 인장 강도 및 항복 강도를 가지면서, 또한, 굽힘 가공성도 우수한 냉연강판 및 그 제조 방법을 제공한다.
본 발명의 일 측면에 따른 고강도 냉연 강판의 제조 방법은, 탄소(C): 0.10 중량% 내지 0.13 중량%, 실리콘(Si): 0.9 중량% 내지 1.1 중량%, 망간(Mn): 2.2 중량% 내지 2.3 중량%, 크롬(Cr): 0.35 중량% 내지 0.45 중량%, 몰리브덴(Mo) : 0.04 중량% 내지 0.07 중량%, 안티몬(Sb) : 0.02 중량% 내지 0.05 중량%, 및 나머지 철(Fe)과 불가피한 불순물로 이루어진 슬라브 판재를 1150℃ 내지 1250℃의 온도로 재가열하는 단계; 상기 재가열된 판재를 마무리 압연 온도가 800℃ 내지 900℃가 되도록 열간 압연하는 단계; 상기 열간 압연된 판재를 600℃ 내지 700℃로 냉각하여 권취하여 열연 강판을 제조하는 단계; 상기 열연 강판을 산세 후 냉간 압연하는 단계; 상기 냉간 압연된 강판을 α상과 γ상의 이상역에서 소둔 열처리하는 단계; 상기 소둔 열처리된 강판을 마르텐사이트 온도 영역까지 냉각시킨 후 과시효 처리하는 단계를 포함한다.
일 실시 예에 있어서, 상기 슬라브 판재는 알루미늄(Al): 0.35 중량% 내지 0.45 중량%, 인(P): 0 초과 0.02 중량% 이하, 황(S): 0 초과 0.003 중량% 이하 중 적어도 하나를 더 포함할 수 있다.
다른 실시 예에 있어서, 상기 열간 압연 후에, 상기 열연 강판은 펄라이트 및 페라이트로 이루어지는 미세 조직을 가질 수 있다.
또다른 실시 예에 있어서, 상기 열연 강판은 중심부와 폭 방향의 에지부 사이의 인장 강도의 편차가 50 MPa 이하일 수 있다.
또다른 실시 예에 있어서, 상기 소둔 열처리는 810℃ 내지 850℃에서 진행되며, 상기 과시효 처리는 250℃ 내지 350℃에서 진행될 수 있다.
본 발명의 일 측면에 따른 고강도 냉연 강판은 탄소(C): 0.10 중량% 내지 0.13 중량%, 실리콘(Si): 0.9 중량% 내지 1.1 중량%, 망간(Mn): 2.2 중량% 내지 2.3 중량%, 크롬(Cr): 0.35 중량% 내지 0.45 중량%, 몰리브덴(Mo) : 0.04 중량% 내지 0.07 중량%, 안티몬(Sb) : 0.02 중량% 내지 0.05 중량%, 및 나머지 철(Fe)과 불가피한 불순물로 이루어지며, 미세 조직이 페라이트, 마르텐사이트, 및 베이나이트의 복합 조직을 가지되, 상기 페라이트 및 상기 마르텐사이트의 면적 분율의 합이 90% 이상 100% 미만이다.
일 실시 예에 있어서, 상기 고강도 냉연 강판은 알루미늄(Al): 0.35 중량% 내지 0.45 중량%, 인(P): 0 초과 0.02 중량% 이하, 황(S): 0 초과 0.003 중량% 이하 중 적어도 하나를 더 포함할 수 있다.
다른 실시 예에 있어서, 상기 고강도 냉연 강판은 인장강도 980 MPa 이상, 항복강도 600 MPa 이상, 연신율 17% 이상 및 굽힘 가공성(R/t) 2.0 이하를 가질 수 있다.
본 발명의 실시 예에 따르면, 열연 공정의 권취 온도를 600℃ 내지 700 ℃로 설정함으로써, 열연 권취 후 열연 강판의 에지부와 센터부의 인장 강도의 편차를 감소시킬 수 있다.
본 발명의 실시 예에 따르면, 권취 온도의 상향에 따라 열연 강판에 내부 산화 깊이가 증가할 수 있다. 이러한 내부 산화 깊이 증가에 따라 최종 냉연 강판의 표면 색차가 발생할 수 있다. 본 발명의 실시 예에 따르면, 강판에 합금 원소로서 안티몬을 소정 함량 첨가함으로써, 상기 열연 강판의 내부 산화 깊이를 감소시킬 수 있다.
본 발명의 실시 예에 따르면, 합금 성분 조절과 소둔 열처리 공정 및 과시효 공정 조건의 제어를 통해, 항복강도 600 MPa 이상, 인장강도 980 MPa 이상, 17% 이상의 연신율 및 2 이하의 굽힘 가공성(R/t)를 확보할 수 있다.
도 1a는 본 발명의 일 비교예에서, 권취 온도 400℃에서, 열연 강판의 폭 방향에 따르는 인장 강도의 변화 나타내는 그래프이다. 도 1b는 도 1a의 열연 강판 에지부의 미세조직을 나타내는 사진이며, 도 1c는 도 1a의 열연 강판 센터부의 미세조직을 나타내는 사진이다.
도 2a는 본 발명의 일 비교예에서, 권취 온도 580℃에서, 열연 강판의 폭 방향에 따르는 인장 강도의 변화 나타내는 그래프이다. 도 2b는 도 2a의 열연 강판 에지부의 미세조직을 나타내는 사진이며, 도 2c는 도 2a의 열연 강판 센터부의 미세조직을 나타내는 사진이다.
도 3a는 본 발명의 일 비교예에서, 권취 온도 640℃에서, 열연 강판의 폭 방향에 따르는 인장 강도의 변화 나타내는 그래프이다. 도 3b는 도 3a의 열연 강판 에지부의 미세조직을 나타내는 사진이며, 도 3c는 도 3a의 열연 강판 센터부의 미세조직을 나타내는 사진이다.
도 4는 본 발명의 일 실시 예에 있어서, 열연 공정의 권취 온도에 다르는 열연 강판의 내부 산화 깊이를 나타내는 그래프이다.
도 5는 본 발명의 실시예에 따른 비열처리형 열연강판의 제조 방법을 나타낸 공정 순서도이다.
도 6은 본 발명의 일 실시 예에 따르는 냉연 강판의 미세 조직을 관찰한 사진이다.
이하, 첨부한 도면을 참고하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 본 명세서에서 설명하는 실시예들에 한정되지 않는다. 본 명세서 전체를 통하여 동일 또는 유사한 구성 요소에 대해서는 동일한 도면 부호를 붙였다. 또한, 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략한다.
본 발명의 발명자는, 열연공정, 냉연공정, 및 소둔 열처리를 포함하는 제조 공정을 통해 냉연 강판을 제조하는 도중에, 열연공정을 진행한 후의 열연 강판에서, 폭 방향의 에지부와 센터부 사이에서 재질 편차가 크게 발생하는 것을 발견하였다. 이에, 본 발명의 발명자는 이러한 재질 편차가 열연공정 권취온도와 관련 있음을 알아내었다.
구체적으로, 탄소(C): 0.10 중량% 내지 0.13 중량%, 실리콘(Si): 0.9 중량% 내지 1.1 중량%, 망간(Mn): 2.2 중량% 내지 2.3 중량%, 크롬(Cr): 0.35 중량% 내지 0.45 중량%, 몰리브덴(Mo) : 0.04 중량% 내지 0.07 중량% 및 나머지 철(Fe)과 불가피한 불순물로 이루어진 슬라브 판재를 재가열후에 800 내지 900℃에서 열간 압연한 후에, 냉각후 권취하는 온도에 따라, 열연 강판의 폭 방향으로 에지부와 센터부 사이의 인장 강도가 크게 차이나는 것을 확인하였다.
표 1은 일 예로서의 슬라브 판재의 합금 조성을 나타내는 도표이며, 도 1a는 본 발명의 일 비교예에서, 권취 온도 400℃에서, 열연 강판의 폭 방향에 따르는 인장 강도의 변화 나타내는 그래프이다. 도 1b는 도 1a의 열연 강판 에지부의 미세조직을 나타내는 사진이며, 도 1c는 도 1a의 열연 강판 센터부의 미세조직을 나타내는 사진이다.
도 2a는 본 발명의 일 비교예에서, 권취 온도 580℃에서, 열연 강판의 폭 방향에 따르는 인장 강도의 변화 나타내는 그래프이다. 도 2b는 도 2a의 열연 강판 에지부의 미세조직을 나타내는 사진이며, 도 2c는 도 2a의 열연 강판 센터부의 미세조직을 나타내는 사진이다.
도 3a는 본 발명의 일 비교예에서, 권취 온도 640℃에서, 열연 강판의 폭 방향에 따르는 인장 강도의 변화 나타내는 그래프이다. 도 3b는 도 3a의 열연 강판 에지부의 미세조직을 나타내는 사진이며, 도 3c는 도 3a의 열연 강판 센터부의 미세조직을 나타내는 사진이다.
C Si Mn Cr Mo
0.110 1.03 2.23 0.376 0.043
도 1a를 참조하면, 열연 강판의 센터부와 에지부 사이의 인장강도 편차는 약 200MPa 내지 240 MPa의 크기로 발생하였다. 도 1b 및 도 1c를 참조하면, 에지부의 경우, 저온상인 베이나이트 및 마르텐사이트로 구성되었으며, 센터부의 경우, 상대적으로 높은 분율의 펄라이트와, 상대적으로 적은 분율의 베이나이트와 마르텐사이트로 구성되었다.
도 2a를 참조하면, 열연 강판의 센터부와 에지부 사이의 인장강도 편차는 약 약 300MPa의 크기로 발생하였다. 도 2b 및 도 2c를 참조하면, 에지부의 경우, 상대적으로 높은 분율의 베이나이트와 상대적으로 적은 분율의 페라이트 및 펄라이트로 구성되었으며, 센터부의 경우, 페라이트 및 펄라이트로 구성되었다.
도 3a를 참조하면, 열연 강판의 센터부와 에지부 사이의 인장강도 편차는 약 약 45MPa 내지 50MPa의 크기로 발생하였다. 도 3b 및 도 3c를 참조하면, 에지부와 센터부는 모두 펄라이트와 페라이트로 구성되었다.
이로부터, 열연 강판의 부위별 재질 편차는 권취 이후, 열연 강판의 폭 방향별 위치에 따른 냉각 속도 차이에 의해 발생하는 것으로 판단된다. 즉, 열연 강판의 센터부의 경우 냉각 속도가 느리고, 열연 강판의 에지부의 경우, 냉각 속도가 상대적으로 크기 때문에, 상기 열연 강판의 에지부의 경우, 저온 상이 발생하는 것으로 판단된다. 이에 따라, 상기 열연 강판의 부위별 재질 편차를 감소시키기 위해, 상기 열연 공정의 권취 온도를 상승시켜, 상기 에지부의 냉각 속도가 상대적으로 빠르더라도, 상기 열연 강판의 전체에 걸쳐 펄라이트 변태가 이루어지도록 한다. 일 예로서, 상기 열연 공정의 권취 온도는 600℃ 내지 700℃로 설정할 수 있다.
한편, 본 발명의 발명자는, 상기 열연 공정의 권취 온도를 600℃ 내지 700 ℃로 상승시킨 경우, 최종 제품으로서 냉연 강판이 제조된 후에, 상기 냉연 강판의 표면에 국부적으로 색차가 발생하는 것을 발견하였다. 한편, 본 발명자는 이러한 국부적인 색차는, 상기 열연 강판의 권취 이후에 냉각하는 과정에서 상기 열연 강판의 표면으로부터 발생하는 산화에 기인한다는 것을 발견하였다.
본 발명의 발명자는 도 4에서와 같이, 열연 강판의 권취 온도가 580℃ 이상일 때, 냉연 강판에서 국부적인 색차가 발생하는 것을 발견하였다. 또한, 열연 강판의 권취 온도가 580℃ 이상일 때, 열연 강판의 내부 산화 깊이가 6 ㎛ 이상 발생한다는 사실을 알아내었다.
이와 같이, 열연 강판의 센터부와 에지부 사이의 인장강도 편차를 감소시키기 위해, 권취 온도를 600℃ 내지 700℃로 상향하는 과정에서, 열연 강판의 내부 산화가 과도하게 진행되며, 이로 인해, 최종 제품인 냉연 강판의 표면에 국부적인 색차가 발생할 수 있음을 발견하였다.
결론적으로, 본 발명의 발명자는 열연 공정의 권취 온도를 600℃ 내지 700 ℃로 유지시키는 동시에, 상기 열연 강판의 내부 산화를 억제하기 위해, 이하의 강판의 합금 조성을 제안한다. 또한, 상기 합금 조성을 가지는 열연 강판은 냉연 공정, 소둔 공정 및 과시효 공정을 거치면서, 고강도 냉연 강판으로 제조될 수 있다. 상기 냉연 강판은 인장강도 980 MPa 이상, 항복강도 600 MPa 이상, 연신율 17% 이상 및 굽힘 가공성(R/t) 2.0 이하를 가질 수 있다.
고강도 냉연 강판
본 발명의 일 실시예에 따르는 고강도 냉연 강판은 탄소(C): 0.10 중량% 내지 0.13 중량%, 실리콘(Si): 0.9 중량% 내지 1.1 중량%, 망간(Mn): 2.2 중량% 내지 2.3 중량%, 크롬(Cr): 0.35 중량% 내지 0.45 중량%, 몰리브덴(Mo) : 0.04 중량% 내지 0.07 중량%, 안티몬(Sb) : 0.02 중량% 내지 0.05 중량%, 및 나머지 철(Fe)과 불가피한 불순물로 이루어진다. 또다른 실시예에 있어서, 상기 고강도 냉연 강판은 알루미늄(Al): 0.35 중량% 내지 0.45 중량%, 인(P): 0 초과 0.02 중량% 이하, 황(S): 0 초과 0.003 중량% 이하 중 적어도 하나를 더 포함할 수 있다.
상기 고강도 냉연 강판은 인장강도 980 MPa 이상, 항복강도 600 MPa 이상, 연신율 17% 이상 및 굽힘 가공성(R/t) 2.0 이하를 가질 수 있다. 상기 굽힘 가공성(R/t)은 시편의 두께(t)과 크랙이 발생하지 않는 한도 내에서 상기 시편에 발생시킨 굽힘에서 측정되는 최소 굽힘 곡률 반경(R)의 비로 나타낼 수 있다.
상기 고강도 냉연 강판은 페라이트, 마르텐사이트, 및 베이나이트의 복합 조직을 가지되, 상기 페라이트 및 상기 마르텐사이트의 면적 분율의 합이 90% 이상 100% 미만일 수 있다.
이하, 본 발명에 따른 고강도 냉연강판의 합금조성에 포함되는 각 성분의 역할 및 그 함량에 대하여 더욱 구체적으로 설명한다.
탄소(C)
탄소(C)는 마르텐사이트 분율 및 경도 향상에 기여하는 합금 원소이다. 상기 탄소(C)는 강판 전체 중량의 0.10 중량% 내지 0.13 중량%로 첨가된다. 탄소(C)의 함량이 0.10 중량% 미만일 경우에는 충분한 강도를 확보하는 데 어려움이 따른다. 반대로, 탄소(C)의 함량이 0.13 중량%를 초과할 경우에는 목표하는 인성을 획득할 수 없게 되고 용접성이 저하될 수 있다.
실리콘(Si)
실리콘(Si)은 강 중의 탈산제 역할을 수행하며, 페라이트 안정화 원소로써 페라이트 내 카바이드 형성을 억제항 강도 및 연신율 확보에 기여할 수 있다.
상기 실리콘(Si)은 강판 전체 중량의 0.9 중량% 내지 1.1 중량%로 첨가된다. 실리콘(Si)의 함량이 0.9 중량% 미만일 경우 연신율 확보가 어려우며, 1.1 중량%를 초과할 경우, 연주성을 저하시킬 수 있으며, 용접성을 저하시킬 수 있다.
망간(Mn)
망간(Mn)은 고용 강화 및 소입성 증대를 통해 강판의 강도를 향상시킬 수 있다. 상기 망간(Mn)은 강판 전체 중량의 2.2 중량% 내지 2.3 중량%로 첨가된다. 망간(Mn)의 함량이 2.2 중량% 미만일 경우에는 그 첨가 효과를 제대로 발휘할 수 없다. 망간(Mn)의 함량이 2.3 중량%를 초과하여 첨가될 경우, 소재 두께 방향 중심부에 망간 밴드 조직이 형성되어 연신율이 저하되고, 굽힘 가공성을 저해할 수 있다.
크롬(Cr)
크롬(Cr)은 고용강화 및 소입성 증대를 통해 강의 강도 향상에 기여할 수 있다. 크롬(Cr)은 강판 전체 중량의 0.35 중량% 내지 0.45 중량%로 첨가된다. 크롬(Cr)의 함량이 0.35 중량% 미만일 경우에는 그 첨가 효과를 제대로 발휘할 수 없다. 반대로, 크롬(Cr)의 함량이 0.45 중량%를 초과할 경우 용접성을 저해할 수 있다.
몰리브덴(Mo)
몰리브덴(Mo)은 고용 강화 및 소입성 증대를 통해 강도 향상에 기여할 수 있다. 몰리브덴(Mo)은 강판 전체 중량의 0.04 중량% 내지 0.07 중량%로 첨가된다. 몰리브덴(Mo)의 함량이 0.04 중량% 미만일 경우에는 그 첨가 효과를 제대로 발휘할 수 없다. 반대로, 몰리브덴(Mo)의 함량이 0.07 중량%를 초과할 경우 마르텐사이트의 양이 증가하여 인성이 저하될 수 있다.
안티몬(Sb)
안티몬(Sb)은 망간과 실리콘이 강판 표면에 산화물 형태로 존재하는 것을 억제할 수 있다. 안티몬(Sb)은 고온에서 원자 자체로 산화 피막을 형성하지는 않지만, 강판 표면 및 결정립 계면에 농화되어 강 중 망간 및 실리콘이 강판 표면으로 확산하는 것을 억제할 수 있다. 이로서, 강판 표면 부근에서의 산화물 형성이 제어될 수 있다. 또한, 안티몬(Sb)은 소둔 공정 중에 강판에 산화물이 생성되는 것을 억제하여 냉연 강판의 색차 결함을 억제하는 효과가 있다.
안티몬(Sb)은 강판 전체 중량의 0.02 중량% 내지 0.05 중량%로 첨가된다. 안티몬(Sb)의 함량이 0.02 중량% 미만일 경우에는 그 첨가 효과를 제대로 발휘할 수 없다. 반대로, 안티몬(Sb)의 함량이 0.05 중량%를 초과할 경우, 연성이 저하되어 강판의 재질 특성이 열화될 수 있다.
알루미늄(Al)
알루미늄(Al)은 제강 시의 탈산을 위해 첨가한다. 알루미늄(Al)은 강 중의 질소와 결합하여 AlN을 형성시켜 조직을 미세화할 수 있다. 알루미늄(Al)의 함량은 강판 전체 중량의 0.35 중량% 내지 0.45 중량% 일 수 있다. 알루미늄의 함량이 0.35 중량% 미만일 경우 충분한 탈산 효과를 얻을 수 없다. 반대로, 알루미늄의 함량이 0.45 wt% 를 초과하면, 페라이트와 오스테나이트 중의 탄소 확산을 촉지하여 강도가 저하될 수 있다.
인(P)
인(P)은 고용 강화에 의해 강의 강도를 향상시킬 수 있다. 상기 인(P)은 강판 전체 중량의 0 초과 0.02 중량% 이하로 첨가될 수 있다. 인(P)의 함량이 0.02 중량%를 초과할 경우, Fe3P의 스테다이트를 형성하여 열간 취성의 원인이 될 수 있다.
황(S)
황(S)은 강판의 인성 및 용접성을 저해하고 MnS 비금속 개재물을 증가시켜 굽힘 가공성을 저해할 수 있다. 황(S)은 강판 전체 중의 0 초과 0.003 중량% 이하로 첨가한다. 황(S)의 함량이 0.003 중량%를 초과하는 경우, 조대한 개재물을 증가시켜 피로 특성을 열화시킬 수 있다.
고강도 냉연 강판 제조 방법
이하에서는 본 발명의 일 실시 예에 따르는 고강도 냉연 강판을 제조하는 방법을 설명하도록 한다.
도 5는 본 발명의 실시예에 따른 고강도 냉연 강판의 제조 방법을 나타낸 공정 순서도이다. 도 5를 참조하면, 고강도 냉연 강판의 제조 방법은 슬라브 재가열 단계(S110), 열간 압연 단계(S120), 냉간 압연 단계(S130), 소둔 단계(S140) 및 과시효 단계(S150)를 포함한다. 이때, 슬라브 재가열 단계(S110)는 석출물의 재고용 등의 효과를 도출하기 위해서 실시될 수 있다. 이때, 슬라브 판재는 제강공정을 통해 원하는 조성의 용강을 얻은 다음에 연속주조공정을 통해 얻어질 수 있다. 상기 슬라브 판재는, 탄소(C): 0.10 중량% 내지 0.13 중량%, 실리콘(Si): 0.9 내지 1.1 중량%, 망간(Mn): 2.2 중량% 내지 2.3 중량%, 크롬(Cr): 0.35 중량% 내지 0.45 중량%, 몰리브덴(Mo) : 0.04 중량% 내지 0.07 중량%, 안티몬(Sb) : 0.02 중량% 내지 0.05 중량%, 및 나머지 철(Fe)과 불가피한 불순물로 이루어진다. 또 다른 실시예에 있어서, 상기 슬라브 판재는 알루미늄(Al): 0.35 중량% 내지 0.45 중량%, 인(P): 0 초과 0.02 중량% 이하, 황(S): 0 초과 0.003 중량% 이하 중 적어도 하나를 더 포함할 수 있다.
슬라브 재가열
슬라브 재가열 단계(S110)에서는 상기의 합금 조성을 갖는 슬라브 판재를 SRT(Slab Reheating Temperature) : 1150℃ 내지 1250℃에서 대략 2시간 내지 5시간 동안 재가열한다. 이러한 슬라브 판재의 재가열을 통하여, 주조 시 편석된 성분의 재고용 및 석출물의 재고용이 발생할 수 있다.
슬라브 재가열 온도가 1150℃ 미만일 경우에는 주조시 편석된 성분들이 충분히 고르게 분포되지 않는 문제점이 있다. 반대로, 재가열 온도가 1250℃를 초과할경우 매우 조대한 오스테나이트 결정립이 형성되어 강도 확보가 어렵게 된다. 또한, 슬라브 재가열 온도가 올라갈수록 가열 비용 및 압연 온도를 맞추기 위한 추가시간 소요 등으로 제조 비용 상승 및 생산성 저하를 야기할 수 있다.
열간 압연
열간 압연 단계(S120)는, 재가열된 판재를 압연종료온도 : 800℃ 내지 900℃ 조건으로 마무리 열간압연한다. 마무리 열간압연온도(FDT)가 800℃ 미만일 경우에는 열연 코일의 전장 재질 편차를 야기할 수 있으며, 반대로, 마무리 열간압연온도(FDT)가 900℃를 초과할 경우에는 오스테나이트 결정립 조대화로 인해 연신율 확보를 위한 페라이트를 얻기 힘들 수 있다.
상기 열간 압연된 판재를 냉각한다. 냉각은 자연 냉각, 강제 냉각 등의 방식이 적용될 수 있다. 권취 공정은 600℃ 내지 700℃의 온도에서 진행될 수 있다. 상술한 바와 같이, 권취 온도가 600℃ 미만일 경우, 열연 강판의 폭 방향에 따르는 에지부와 센터부 사이에 인장강도와 같은 재질 편차가 커질 수 있다. 권취 온도가 700℃를 초과하는 경우, 충분한 강도를 확보할 수 없게 된다. 상기 권취 공정 후에, 상기 열연 강판은 중심부와 폭 방향의 에지부 사이의 인장 강도의 편차가 50 MPa 이하일 수 있다. 상기 열연 강판은 펄라이트 및 페라이트로 이루어지는 미세 조직을 가질 수 있다.
냉간 압연
냉간 압연 단계(S130)에서는 상기 열연 강판을 냉간에서 압연하여 강판 최종 두께로 가공한다. 냉간 압연의 압하율은 열연 강판의 두께와 목표하는 강판 최종 두께에 따라 대략 50~70% 정도로 정해질 수 있다. 한편, 냉간 압연 전에 열연 강판의 스케일을 제거하기 위하여 산세(acid pickling)를 수행하는 과정이 더 포함될 수 있다.
소둔
소둔 단계(S140)에서는 상기 냉간 압연된 강판을 α상과 γ상의 이상역에서 소둔 열처리한다. 소둔 열처리는 오스테나이트 상분율을 제어할 수 있다. 또한, 소둔 열처리를 통해, 목표로 하는 강도 및 연신율 등을 용이하게 확보할 수 있다.
소둔 열처리는 굽힘 가공성 확보를 위해 연질의 페라이트 확보가 용이한 α상과 γ상의 공존 영역에서 진행될 수 있다. 상기 소둔 열처리는 구체적인 일 예로서, 810℃ 내지 850℃로 가열하여 대략 30초 내지 150초 동안 진행할 수 있다. 소둔 열처리 온도가 810℃ 미만이거나, 소둔 열처리 시간이 30초 미만인 경우, 충분한 오스테나이트 변태가 이루어지지 못하여 최종 제조되는 강판의 강도 확보가 어려울 수 있다. 반면에, 소둔 열처리 온도가 850℃를 초과하거나 소둔 열처리 시간이 150초를 초과하는 경우, 오스테나이트 결정립 사이즈가 크게 증가하여 강도 등 강판의 물성이 저하될 수 있다. 소둔 열처리가 완료된 후에, 상기 소둔 열처리된 강판을 마르텐사이트 온도 영역까지 냉각한다. 구체적인 일 예로서, 상기 소둔 열처리가 완료된 강판을 250℃ 내지 350℃의 온도까지, 평균 냉각 속도 5℃/초 내지 20℃/초로 냉각한다.
과시효
과시효 단계(S150)에서는, 상기 냉각된 강판을 마르텐사이트 온도영역, 즉 250℃ 내지 350℃의 온도에서 오스템퍼링(austempering) 처리한다. 상기 오스템퍼링을 통해 잔류 오스테나이트 내로 탄소(C) 농축을 단시간에 진행시켜, 제조되는 강판의 최종 미세조직에 베이나이트상이 형성되도록 할 수 있다. 여기서, 과시효 처리는 정해진 시간동안 온도를 일정하게 유지하는 것뿐만 아니라, 정해진 시간동안 공냉하는 것도 포함할 수 있다. 상기 과시효 처리 온도가 상기한 온도 범위를 벗어날 경우 베이나이트 상의 형성 및 제어가 어려울 수 있다.
상기 과시효 처리는 200초 내지 400초 동안 실시될 수 있다. 과시효 처리 시간이 200초 미만일 경우, 그 효과가 불충분하고, 반면에 과시효 처리 시간이 400초를 초과하는 경우, 더 이상의 효과 없이 생산성을 저하시킬 수 있다. 상기 과시효 처리된 강판은 약 100℃까지 냉각될 수 있다.
상술한 공정을 통하여 본 발명의 일 실시 예에 따르는 고강도 냉연 강판을 제조할 수 있다. 상기 냉연 강판은 최종적으로 페라이트, 마르텐사이트 및 베이나이트의 복합 조직을 가질 수 있다. 이때, 상기 페라이트 및 상기 마르텐사이트의 면적 분율의 합이 90% 이상 100% 미만일 수 있다.
실시예
이하, 본 발명의 바람직한 실시예 및 비교예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 예시 중 일부로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다.
여기에 기재되지 않은 내용은 이 기술 분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것이므로 그 설명을 생략하기로 한다.
1. 시편의 제조
표 2에 기재된 합금조성으로 비교예 및 실시예 시편의 조성을 결정하였다. 단, 표 2에서는 강재에 불가피하게 첨가되는 합금 원소는 표기를 생략하였다. 실시예 시편의 경우, 안티몬(Sb)을 합금 원소로 포함할 수 있다. 상기 조성으로 주조된 비교예 및 실시예의 중간재를 1200℃로 재가열하고, 마무리 압연 온도 850℃로 열간 압연하였다. 이후에, 냉각하여 640℃의 온도에서 권취하였다. 이후에, 상기 열연 강판들을 산세 후에 냉간 압연하여 냉연 강판들을 각각 제조하였다. 상기 냉연 강판들을 표 3의 소둔 공정 조건 및 과시효 공정 조건에 따라 열처리하여 최종적으로, 비교예 1 내지 5의 시편과 실시예 1 내지 9의 시편을 제조하였다.
비교예 1 내지 5의 시편의 경우, 실시예 1 내지 9의 시편과 대비하여, 소둔 공정 온도가 낮게 설정되었다. 실시예 1 내지 9의 시편의 경우, 본 발명의 실시 예에 따르는 소둔 공정 온도 및 과시효 공정 온도 범위를 만족하도록 설정되었다.
화학 조성(중량%)
C Si Mn Cr Mo Sb
비교예 0.110 1.03 2.23 0.376 0.043 -
실시예 0.114 0.968 2.177 0.39 0.05 0.026
소둔 열처리 온도(℃) 과시효 처리 온도(℃)
비교예1 800 420
비교예2 500
비교예3 250
비교예4 300
비교예5 350
실시예1 810 250
실시예2 300
실시예3 350
실시예4 830 250
실시예5 300
실시예6 350
실시예7 850 250
실시예8 300
실시예9 350
2. 물성평가
비교예 1 내지 5 및 실시예 1 내지 9의 냉연 강판 시편들에 대해 항복강도, 인장강도, 연신율 및 굽힘성을 측정하여 표 4 나타내었다. 아울러, 비교예 1 내지 5 및 실시예 1 내지 9의 냉연 강판 시편들을 관찰하여 색차 발생여부를 표 4에 나타내었다.
항복강도(MPa) 인장강도(MPa) 연신율(%) 굽힘성(R/t) 색차발생여부
비교예1 642 1077 17 2.33 발생
비교예2 668 1066 18 2.16 발생
비교예3 680 1102 17 2.33 발생
비교예4 645 1047 18 2.33 발생
비교예5 616 1022 17 2.16 발생
실시예1 623 1066 17 1.83 미발생
실시예2 619 1043 18 1.66 미발생
실시예3 600 1022 19 1.33 미발생
실시예4 637 1032 18 1.33 미발생
실시예5 621 1055 18 1.17 미발생
실시예6 633 1070 17 1.40 미발생
실시예7 666 1100 17 1.33 미발생
실시예8 645 1085 17 1.17 미발생
실시예9 660 1075 17 1.40 미발생
먼저, 냉연 강판 시편들에 대한 색차 발생 여부를 관찰한 결과, 안티몬(Sb)이 합금 원소로 포함되지 않은 비교예 1 내지 5의 시편의 경우, 국부적인 색차 발생이 관찰되었다. 안티몬(Sb)이 합금 원소로 포함된 실시예 1 내지 9의 시편의 경우, 색차가 발생하지 않은 것으로 관찰되었다.
항복강도, 인장강도, 연신율의 경우, 비교예 1 내지 5 및 실시예 1 내지 9의 시편 모두 목표치인 항복강도 600MPa 이상, 인장강도 980MPa 이상, 연신율 17% 이상을 만족시켰다. 다만, 굽힘성(R/t)의 경우, 비교예 1 내지 5의 경우, 2 이상을 나타내어 목표치를 만족시키지 못하였으며, 실시예 1 내지 9의 경우, 목표치인 2.0 이하를 만족시켰다.
한편, 도 6은 본 발명의 일 실시 예에 따르는 냉연 강판의 미세 조직을 관찰한 사진이다. 도 6은 상기 실시예 1의 시편에 대한 미세 조직 사진이며, 도시되는 바와 같이, 페라이트 및 마르텐사이트를 주상으로 하고, 베이나이트가 소량 첨가된 복합 조직임을 알 수 있다.
이상에서는 도면 및 실시 예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허청구범위에 기재된 본 발명의 기술적 사상으로부터 벗어나지 않는 범위 내에서 본 발명에 개시된 실시예들을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.

Claims (8)

  1. (a) 탄소(C): 0.10 중량% 내지 0.13 중량%, 실리콘(Si): 0.9 중량% 내지 1.1 중량%, 망간(Mn): 2.2 중량% 내지 2.3 중량%, 크롬(Cr): 0.35 중량% 내지 0.45 중량%, 몰리브덴(Mo) : 0.04 중량% 내지 0.07 중량%, 안티몬(Sb) : 0.02 중량% 내지 0.05 중량%, 및 나머지 철(Fe)과 불가피한 불순물로 이루어진 슬라브 판재를 1150℃ 내지1250℃의 온도로 재가열하는 단계;
    (b) 상기 재가열된 판재를 마무리 압연 온도가 800℃ 내지 900℃가 되도록 열간 압연하는 단계;
    (c) 상기 열간 압연된 판재를 600℃ 내지 700℃로 냉각하여 권취하여 열연 강판을 제조하는 단계;
    (d) 상기 열연 강판을 산세 후 냉간 압연하는 단계;
    (e) 상기 냉간 압연된 강판을 α상과 γ상의 이상역에서 소둔 열처리하는 단계;
    (f) 상기 소둔 열처리된 강판을 마르텐사이트 온도 영역까지 냉각시킨 후 과시효 처리하는 단계를 포함하는
    고강도 냉연 강판의 제조 방법.
  2. 제1 항에 있어서,
    상기 슬라브 판재는 알루미늄(Al): 0.35 중량% 내지 0.45 중량%, 인(P): 0 초과 0.02 중량% 이하, 황(S): 0 초과 0.003 중량% 이하 중 적어도 하나를 더 포함하는
    고강도 냉연 강판의 제조 방법.
  3. 제1 항에 있어서,
    (c) 단계 후, 상기 열연 강판은 펄라이트 및 페라이트로 이루어지는 미세 조직을 가지는
    고강도 냉연 강판의 제조 방법.
  4. 제1 항에 있어서,
    상기 열연 강판은
    중심부와 폭 방향의 에지부 사이의 인장 강도의 편차가 50 MPa 이하인
    고강도 냉연 강판의 제조 방법.
  5. 제1 항에 있어서,
    (e) 단계의 상기 소둔 열처리는 810℃ 내지 850℃에서 진행되며,
    (f) 단계의 상기 과시효 처리는 250℃ 내지 350℃에서 진행되는
    고강도 냉연 강판의 제조 방법.
  6. 탄소(C): 0.10 중량% 내지 0.13 중량%, 실리콘(Si): 0.9 중량% 내지 1.1 중량%, 망간(Mn): 2.2 중량% 내지 2.3 중량%, 크롬(Cr): 0.35 중량% 내지 0.45 중량%, 몰리브덴(Mo) : 0.04 중량% 내지 0.07 중량%, 안티몬(Sb) : 0.02 중량% 내지 0.05 중량%, 및 나머지 철(Fe)과 불가피한 불순물로 이루어지며,
    미세 조직이 페라이트, 마르텐사이트, 및 베이나이트의 복합 조직을 가지되, 상기 페라이트 및 상기 마르텐사이트의 면적 분율의 합이 90% 이상 100% 미만인
    고강도 냉연 강판.
  7. 제6 항에 있어서,
    상기 고강도 냉연 강판은 알루미늄(Al): 0.35 중량% 내지 0.45 중량%, 인(P): 0 초과 0.02 중량% 이하, 황(S): 0 초과 0.003 중량% 이하 중 적어도 하나를 더 포함하는
    고강도 냉연 강판.
  8. 제6 항에 있어서,
    상기 고강도 냉연 강판은
    인장강도 980 MPa 이상, 항복강도 600 MPa 이상, 연신율 17% 이상 및 굽힘 가공성(R/t) 2.0 이하를 가지는
    고강도 냉연 강판.
PCT/KR2017/004294 2016-06-21 2017-04-21 가공성이 우수한 고강도 냉연강판 및 그 제조 방법 WO2017222159A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780038744.4A CN109312440B (zh) 2016-06-21 2017-04-21 具有优异可加工性的高强度冷轧钢板及其制造方法
DE112017003173.7T DE112017003173T5 (de) 2016-06-21 2017-04-21 Hochfestes kaltgewalztes stahlblech mit ausgezeichneter bearbeitbarkeit und herstellungsverfahren dafür
JP2018564315A JP6804566B2 (ja) 2016-06-21 2017-04-21 加工性に優れた高強度冷延鋼板およびその製造方法
US16/311,610 US10968498B2 (en) 2016-06-21 2017-04-21 High-strength cold-rolled steel sheet with excellent workability and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160077453A KR101808431B1 (ko) 2016-06-21 2016-06-21 가공성이 우수한 고강도 냉연강판 및 그 제조 방법
KR10-2016-0077453 2016-06-21

Publications (1)

Publication Number Publication Date
WO2017222159A1 true WO2017222159A1 (ko) 2017-12-28

Family

ID=60784829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/004294 WO2017222159A1 (ko) 2016-06-21 2017-04-21 가공성이 우수한 고강도 냉연강판 및 그 제조 방법

Country Status (6)

Country Link
US (1) US10968498B2 (ko)
JP (1) JP6804566B2 (ko)
KR (1) KR101808431B1 (ko)
CN (1) CN109312440B (ko)
DE (1) DE112017003173T5 (ko)
WO (1) WO2017222159A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102326324B1 (ko) * 2019-12-20 2021-11-12 주식회사 포스코 고강도 주석 도금원판 및 그 제조방법
KR102487306B1 (ko) * 2020-12-21 2023-01-13 현대제철 주식회사 점용접성 및 성형성이 우수한 초고장력 냉연강판, 초고장력 도금강판 및 그 제조방법
CN113106223A (zh) * 2021-04-15 2021-07-13 天津市新天钢钢铁集团有限公司 一种普碳钢坯轧制低合金高强度q355b薄钢带的方法
CN114427023B (zh) * 2022-01-13 2023-08-25 武汉钢铁有限公司 一种提升常规流程中低牌号无取向硅钢性能均匀性的方法
CN115094216B (zh) * 2022-06-23 2023-11-17 本钢板材股份有限公司 一种消除trip高强钢色差缺陷的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006083403A (ja) * 2004-09-14 2006-03-30 Jfe Steel Kk 延性および化成処理性に優れる高強度冷延鋼板およびその製造方法
JP2009518541A (ja) * 2005-12-09 2009-05-07 ポスコ 成形性及びメッキ特性に優れた高強度冷延鋼板、これを用いた亜鉛系メッキ鋼板及びその製造方法
KR20140002279A (ko) * 2012-06-28 2014-01-08 현대제철 주식회사 고강도 냉연강판 및 그 제조 방법
KR20140130492A (ko) * 2012-03-29 2014-11-10 가부시키가이샤 고베 세이코쇼 가공성이 우수한 고강도 냉연 강판의 제조 방법
KR20150130612A (ko) * 2014-05-13 2015-11-24 주식회사 포스코 연성이 우수한 고강도 냉연강판, 용융아연도금강판 및 이들의 제조방법

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100711358B1 (ko) * 2005-12-09 2007-04-27 주식회사 포스코 성형성, 소부경화성 및 도금특성이 우수한 고강도 냉연강판및 용융아연도금강판, 그리고 이들의 제조방법
JP5655338B2 (ja) * 2009-08-24 2015-01-21 Jfeスチール株式会社 部分焼戻し軟化鋼板およびその鋼板を用いたプレス成形部品
JP5397437B2 (ja) 2011-08-31 2014-01-22 Jfeスチール株式会社 加工性と材質安定性に優れた冷延鋼板用熱延鋼板、溶融亜鉛めっき鋼板用熱延鋼板およびその製造方法
JP6056745B2 (ja) 2013-12-12 2017-01-11 Jfeスチール株式会社 化成処理性に優れた高加工性高強度冷延鋼板およびその製造方法
KR101630976B1 (ko) 2014-12-08 2016-06-16 주식회사 포스코 표면품질 및 도금 밀착성이 우수한 초고강도 용융아연도금강판 및 그 제조방법
KR101561007B1 (ko) * 2014-12-19 2015-10-16 주식회사 포스코 재질 불균일이 작고 성형성이 우수한 고강도 냉연강판, 용융아연도금강판, 및 그 제조 방법
EP3284841A4 (en) 2015-04-15 2018-12-19 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet and method for manufacturing same
WO2017002883A1 (ja) * 2015-06-30 2017-01-05 新日鐵住金株式会社 高強度冷延鋼板、高強度溶融亜鉛めっき鋼板、および高強度合金化溶融亜鉛めっき鋼板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006083403A (ja) * 2004-09-14 2006-03-30 Jfe Steel Kk 延性および化成処理性に優れる高強度冷延鋼板およびその製造方法
JP2009518541A (ja) * 2005-12-09 2009-05-07 ポスコ 成形性及びメッキ特性に優れた高強度冷延鋼板、これを用いた亜鉛系メッキ鋼板及びその製造方法
KR20140130492A (ko) * 2012-03-29 2014-11-10 가부시키가이샤 고베 세이코쇼 가공성이 우수한 고강도 냉연 강판의 제조 방법
KR20140002279A (ko) * 2012-06-28 2014-01-08 현대제철 주식회사 고강도 냉연강판 및 그 제조 방법
KR20150130612A (ko) * 2014-05-13 2015-11-24 주식회사 포스코 연성이 우수한 고강도 냉연강판, 용융아연도금강판 및 이들의 제조방법

Also Published As

Publication number Publication date
CN109312440A (zh) 2019-02-05
JP2019521251A (ja) 2019-07-25
JP6804566B2 (ja) 2020-12-23
KR101808431B1 (ko) 2017-12-13
US10968498B2 (en) 2021-04-06
US20190203310A1 (en) 2019-07-04
CN109312440B (zh) 2021-04-13
DE112017003173T5 (de) 2019-04-18

Similar Documents

Publication Publication Date Title
WO2015174605A1 (ko) 연성이 우수한 고강도 냉연강판, 용융아연도금강판 및 이들의 제조방법
WO2017222159A1 (ko) 가공성이 우수한 고강도 냉연강판 및 그 제조 방법
WO2013069937A1 (ko) 온간프레스 성형용 강판, 온간프레스 성형 부재 및 이들의 제조방법
WO2018074887A1 (ko) 고강도 철근 및 이의 제조 방법
WO2009145563A2 (ko) 열처리성이 우수한 초고강도 열간성형 가공용 강판, 열처리 경화형 부재 및 이들의 제조방법
WO2018110867A1 (ko) 항복강도, 연성 및 구멍확장성이 우수한 고강도 냉연강판, 용융아연도금강판 및 이들의 제조방법
WO2010074370A1 (ko) 고강도 고연신 강판 및 열연강판, 냉연강판, 아연도금강판 및 아연도금합금화강판의 제조방법
WO2012064129A2 (ko) 인장강도 590MPa급의 가공성 및 재질편차가 우수한 고강도 냉연/열연 TRIP강의 제조방법
WO2017188654A1 (ko) 항복비가 우수한 초고강도 고연성 강판 및 이의 제조방법
WO2015099222A1 (ko) 용접성 및 버링성이 우수한 열연강판 및 그 제조방법
WO2020060051A1 (ko) 충격 인성이 우수한 페라이트계 스테인리스 열연 무소둔 강판 및 그 제조방법
WO2017051998A1 (ko) 도금 강판 및 이의 제조방법
WO2016182098A1 (ko) 굽힘 가공성이 우수한 초고강도 열연강판 및 그 제조 방법
WO2021117989A1 (ko) 초고강도 냉연강판 및 이의 제조방법
WO2013154254A1 (ko) 재질 균일성이 우수한 고탄소 열연강판 및 이의 제조방법
WO2020111857A1 (ko) 크리프 강도가 우수한 크롬-몰리브덴 강판 및 그 제조방법
WO2019088552A1 (ko) 냉간압연성이 우수한 초고강도 냉연강판 및 이의 제조방법
WO2019125018A1 (ko) 초고강도 냉연강판 및 그 제조방법
WO2010074458A2 (ko) 딥드로잉성이 우수하고 고항복비를 갖는 고강도 냉연강판, 이를 이용한 용융아연도금강판, 합금화 용융아연도금강판 및 이들의 제조방법
WO2022119253A1 (ko) 굽힘가공성이 우수한 초고강도 냉연강판 및 그 제조방법
WO2020130614A2 (ko) 구멍확장성이 우수한 고강도 열연강판 및 그 제조방법
WO2022255587A1 (ko) 핫스탬핑용 강판 및 그 제조방법
WO2023214634A1 (ko) 냉연 강판 및 그 제조방법
WO2024144040A1 (ko) 초고장력 냉연강판 및 그 제조방법
WO2023068763A1 (ko) 친환경 고강도 고성형성 강판 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17815573

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018564315

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17815573

Country of ref document: EP

Kind code of ref document: A1