WO2018123792A1 - 二次電池 - Google Patents

二次電池 Download PDF

Info

Publication number
WO2018123792A1
WO2018123792A1 PCT/JP2017/045870 JP2017045870W WO2018123792A1 WO 2018123792 A1 WO2018123792 A1 WO 2018123792A1 JP 2017045870 W JP2017045870 W JP 2017045870W WO 2018123792 A1 WO2018123792 A1 WO 2018123792A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
positive electrode
battery
negative electrode
discharge curve
Prior art date
Application number
PCT/JP2017/045870
Other languages
English (en)
French (fr)
Inventor
佐々木 寛文
稔之 有賀
三木 健
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to EP17885784.3A priority Critical patent/EP3565051A4/en
Priority to US16/333,851 priority patent/US20190267624A1/en
Priority to JP2018559111A priority patent/JP6806796B2/ja
Priority to CN201780057286.9A priority patent/CN110100345B/zh
Publication of WO2018123792A1 publication Critical patent/WO2018123792A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0583Construction or manufacture of accumulators with folded construction elements except wound ones, i.e. folded positive or negative electrodes or separators, e.g. with "Z"-shaped electrodes or separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M2010/4292Aspects relating to capacity ratio of electrodes/electrolyte or anode/cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane

Definitions

  • the present invention relates to a secondary battery including a positive electrode and a negative electrode.
  • Patent Document 1 JP-A-2015-11930.
  • This publication provides a non-aqueous electrolyte secondary battery that can achieve both high-level input / output characteristics and durability in a wide SOC region (particularly, a low SOC region).
  • a negative electrode unit irreversible capacity per 1 g of the negative electrode active material in a configuration in which an electrode body including a positive electrode having a positive electrode active material and a negative electrode having a negative electrode active material and a non-aqueous electrolyte are housed in a battery case.
  • the negative electrode unit irreversible capacity (mAh / g) per 1 g of the negative electrode active material which is greater than or equal to mAh / g and less than or equal to 35 mAh / g.
  • the positive electrode unit irreversible capacity per 1 g of the positive electrode active material (mAh / g) and the mass of the negative electrode active material It is described that the positive electrode irreversible capacity Uc (mAh) calculated by the product of g) satisfies the relationship of Uc ⁇ Ua.
  • the lithium secondary battery when starting an engine, it is often assumed that a large current is discharged in a low state of charge (State of Charge: SOC).
  • SOC state of Charge
  • the lithium secondary battery has a very high internal resistance in a low SOC region (for example, a region where the SOC is 20% to 30%), and there is a possibility that necessary output characteristics cannot be obtained.
  • Patent Document 1 the main factor of the increase in internal resistance in the low SOC region is the positive electrode, and the positive electrode potential rapidly decreases in the low SOC region (the end of discharge). There is. Therefore, by shifting the potential range (operating potential) of the positive electrode used as a battery to the high potential side, the positive electrode potential can be kept high even in the low SOC region, so that the internal resistance can be reduced.
  • a secondary battery is proposed in which the irreversible capacity of the negative electrode is made larger than the irreversible capacity of the positive electrode.
  • Patent Document 1 it is said that the effect can be obtained by making the negative electrode irreversible capacity Ua larger than the positive electrode irreversible capacity Uc, but if the difference between Ua and Uc is small, the effect is hardly obtained, and the effect is large. However, since the secondary battery capacity decreases, it is considered that there is an appropriate value.
  • the present application includes a plurality of means for solving the above problems.
  • the secondary potential is determined from the terminal potential of the positive electrode discharge curve with respect to the discharge capacity of the secondary battery.
  • the secondary battery is characterized in that the capacity difference to the terminal voltage of the battery discharge curve of the secondary battery is 14% to 26%.
  • the positive electrode potential range (operating potential) is increased so that the capacity difference from the terminal potential of the positive electrode discharge curve to the terminal voltage of the battery discharge curve of the secondary battery is 14% to 26% with respect to the discharge capacity of the secondary battery.
  • the internal resistance in the low SOC region of the secondary battery can be reduced without impairing the secondary battery capacity. Accordingly, since the SOC range of the secondary battery can be expanded, the energy density of the secondary battery can be improved.
  • FIG. 1 is an external perspective view of a flat wound secondary battery.
  • a flat wound secondary battery 100 includes a battery can 1 and a lid (battery lid) 6.
  • the battery can 1 has a side surface and a bottom surface 1d having a pair of opposed wide side surfaces 1b having a relatively large area and a pair of opposed narrow side surfaces 1c having a relatively small area, and an opening 1a above the side surface 1d.
  • Have A wound group 3 is accommodated in the battery can 1, and an opening 1 a of the battery can 1 is sealed by a battery lid 6.
  • the battery lid 6 has a substantially rectangular flat plate shape and is welded so as to close the upper opening 1 a of the battery can 1 to seal the battery can 1.
  • the battery lid 6 is provided with a positive external terminal 14 and a negative external terminal 12.
  • the wound group 3 is charged through the positive external terminal 14 and the negative external terminal 12, and power is supplied to the external load.
  • the battery cover 6 is integrally provided with a gas discharge valve 10, and when the pressure in the battery container rises, the gas discharge valve 10 opens to discharge gas from the inside, and the pressure in the battery container is reduced. Thereby, the safety of the flat wound secondary battery 100 is ensured.
  • FIG. 2 is an exploded perspective view of the prismatic secondary battery.
  • the battery can 1 of the flat wound secondary battery 100 includes a rectangular bottom surface 1d, square cylindrical side surfaces 1b and 1c rising from the bottom surface 1d, and an opening opened upward at the upper ends of the side surfaces 1b and 1c. 1a.
  • a wound group 3 is accommodated in the battery can 1 via an insulating protective film 2.
  • the wound group 3 Since the wound group 3 is wound in a flat shape, the wound group 3 has a pair of opposed curved portions having a semicircular cross section and a flat portion formed continuously between the pair of curved portions. ing.
  • the winding group 3 is inserted into the battery can 1 from one curved portion side so that the winding axis direction is along the lateral width direction of the battery can 1, and the other curved portion side is disposed on the upper opening side.
  • the positive electrode foil exposed portion 34 c of the winding group 3 is electrically connected to the positive external terminal 14 provided on the battery lid 6 via a positive current collector plate (current collector terminal) 44.
  • the negative electrode foil exposed portion 32 c of the wound group 3 is electrically connected to the negative external terminal 12 provided on the battery lid 6 via a negative current collector (current collector terminal) 24.
  • a gasket 5 and an insulating plate 7 are provided on the battery lid 6. It has been. Moreover, after injecting electrolyte solution into the battery can 1 from the injection hole 9, the injection stopper 11 is joined to the battery cover 6 by laser welding to seal the injection hole 9, and the flat wound secondary battery 100 is sealed.
  • the forming material of the positive electrode external terminal 14 and the positive electrode current collector plate 44 includes, for example, an aluminum alloy
  • the forming material of the negative electrode external terminal 12 and the negative electrode current collector plate 24 includes, for example, a copper alloy.
  • the material for forming the insulating plate 7 and the gasket 5 include resin materials having insulating properties such as polybutylene terephthalate, polyphenylene sulfide, and perfluoroalkoxy fluororesin.
  • the battery lid 6 is provided with a liquid injection hole 9 for injecting the electrolytic solution into the battery container.
  • the liquid injection hole 9 is injected by the liquid injection plug 11 after the electrolytic solution is injected into the battery container. Sealed.
  • a non-aqueous electrolytic solution in which a lithium salt such as lithium hexafluorophosphate (LiPF6) is dissolved in a carbonate ester organic solvent such as ethylene carbonate is applied. can do.
  • the positive external terminal 14 and the negative external terminal 12 have a weld joint that is welded to a bus bar or the like.
  • the weld joint has a rectangular parallelepiped block shape protruding upward from the battery lid 6, and has a configuration in which the lower surface faces the surface of the battery lid 6 and the upper surface is parallel to the battery lid 6 at a predetermined height position. Have.
  • the positive electrode connecting portion 14 a and the negative electrode connecting portion 12 a have a cylindrical shape that protrudes from the lower surface of the positive electrode external terminal 14 and the negative electrode external terminal 12 and can be inserted into the positive electrode side through hole 46 and the negative electrode side through hole 26 of the battery lid 6. Have.
  • the positive electrode connecting portion 14 a and the negative electrode connecting portion 12 a penetrate the battery lid 6 and are more inside the battery can 1 than the positive electrode current collector plate 44, the positive electrode current collector plate base 41 of the negative electrode current collector plate 24, and the negative electrode current collector plate base 21.
  • the positive electrode external terminal 14, the negative electrode external terminal 12, the positive electrode current collector plate 44, and the negative electrode current collector plate 24 are integrally fixed to the battery lid 6.
  • a gasket 5 is interposed between the positive electrode external terminal 14 and the negative electrode external terminal 12 and the battery cover 6, and an insulating plate is interposed between the positive electrode current collector plate 44, the negative electrode current collector plate 24 and the battery cover 6. 7 is interposed.
  • the positive electrode current collector plate 44 and the negative electrode current collector plate 24 are a rectangular plate-shaped positive electrode current collector plate base 41, a negative electrode current collector plate base 21, and a positive electrode current collector plate base 41 that are arranged to face the lower surface of the battery lid 6.
  • the negative electrode current collector plate 21 is bent at the side end and extends toward the bottom surface along the wide surface of the battery can 1 to form the positive electrode foil exposed portion 34c and the negative electrode foil exposed portion 32c of the wound group 3. It has a positive electrode side connection end portion 42 and a negative electrode side connection end portion 22 which are connected in a state of being opposed to each other.
  • the positive electrode current collector plate base 41 and the negative electrode current collector plate base 21 are respectively formed with a positive electrode side opening hole 43 and a negative electrode side opening hole 23 through which the positive electrode connection part 14a and the negative electrode connection part 12a are inserted.
  • the insulating protective film 2 is wound around the winding group 3 with the direction along the flat plane of the winding group 3 and the direction orthogonal to the winding axis direction of the winding group 3 as the central axis direction.
  • the insulating protective film 2 is made of a single sheet or a plurality of film members made of synthetic resin such as PP (polypropylene), for example, and is a direction parallel to the flat surface of the wound group 3 and perpendicular to the winding axis direction. Has a length that can be wound around the winding center.
  • FIG. 3 is an exploded perspective view showing a state in which a part of the electrode winding group is developed.
  • the winding group 3 is configured by winding the negative electrode 32 and the positive electrode 34 in a flat shape with separators 33 and 35 interposed therebetween.
  • the outermost electrode is the negative electrode 32, and the separators 33 and 35 are wound outside thereof.
  • the separators 33 and 35 have an insulating function for preventing a short circuit between the positive electrode 34 and the negative electrode 32 and a function of holding a non-aqueous electrolyte.
  • Preferable examples include porous sheets made of resin such as polyethylene (PE), polypropylene (PP), polyester, cellulose, and polyamide.
  • the resin-made porous sheet may have a single-layer structure or a plurality of layers (for example, a three-layer structure of PP / PE / PP).
  • the lithium secondary battery has a layer composed of an inorganic material (such as alumina particles) and a binder on one or both sides of the separators 33 and 35.
  • an inorganic material such as alumina particles
  • a binder on one or both sides of the separators 33 and 35.
  • the portion where the negative electrode mixture layer 32b of the negative electrode 32 is applied is larger in the width direction than the portion of the positive electrode 34 where the positive electrode mixture layer 34b is applied, so that the portion where the positive electrode mixture layer 34b is applied is
  • the negative electrode mixture layer 32b is always sandwiched between the coated portions.
  • the positive foil exposed portion 34c and the negative foil exposed portion 32c are bundled at a plane portion and connected by welding or the like.
  • the separators 33 and 35 are wider than the portion where the negative electrode mixture layer 32b is applied in the width direction, but are wound at positions where the metal foil surface at the end is exposed at the positive electrode foil exposed portion 34c and the negative electrode foil exposed portion 32c. Therefore, it does not hinder bundle welding.
  • the negative electrode mixture layer 32b applied to the negative electrode 32 is prepared by dispersing and kneading a negative electrode active material and a binder as a binder in an appropriate solvent (for example, water or N-methyl-2-pyrrolidone). A slurry is applied.
  • the negative electrode 32 to which the slurry is applied can be made to an appropriate thickness with a press after removing the solvent by drying.
  • the negative electrode active material examples include carbon materials such as natural graphite, artificial graphite, non-graphitizable carbon (hard carbon), and graphitizable carbon (soft carbon).
  • carbon materials such as natural graphite, artificial graphite, non-graphitizable carbon (hard carbon), and graphitizable carbon (soft carbon).
  • hard carbon non-graphitizable carbon
  • soft carbon graphitizable carbon
  • the amorphous carbon is coated on the graphite surface to prevent the reaction with the electrolyte more than necessary.
  • a graphite material for example, a graphite material
  • a method of mixing a coated and composite material, graphite, and non-graphitizable carbon (hard carbon), graphitizable carbon (soft carbon), and metal oxides (iron oxide, copper oxide, etc.) can be considered.
  • the positive electrode 34 has a positive electrode active material mixture on both sides of a positive electrode foil that is a positive electrode current collector, and a positive electrode foil in which the positive electrode active material mixture is not applied to one end in the width direction of the positive electrode foil An exposed portion 34c is provided.
  • the positive electrode active material is not particularly limited, and a material obtained by mixing one or more materials known to be applicable as a positive electrode material of a lithium secondary battery can be used.
  • Preferred examples include spinel systems (for example, LiMn 2 O 4 ), layered systems (for example, LiCoO 2 , LiNiO 2 ), and olivine systems (for example, LiFePO 4 ).
  • a layered lithium nickel cobalt manganese composite oxide for example, LiNi 0.33 Co 0.33 Mn 0.33 O 2 ) containing Li, Ni, Co, and Mn as constituent elements has a lithium ion desorption amount.
  • LiNi 0.33 Co 0.33 Mn 0.33 O 2 containing Li, Ni, Co, and Mn as constituent elements has a lithium ion desorption amount.
  • it since there is almost no change in the lattice volume accompanying charging / discharging up to 2/3, it is excellent in durability and is a more preferable example.
  • the negative electrode 32 has a negative electrode active material mixture on both sides of a negative electrode foil that is a negative electrode current collector, and the negative electrode foil in which the negative electrode active material mixture is not applied to the other end in the width direction of the positive electrode foil An exposed portion 32c is provided.
  • the positive electrode foil exposed portion 34c and the negative electrode foil exposed portion 32c are regions where the metal surface of the electrode foil is exposed, and are wound so as to be disposed on one side and the other side in the winding axis direction.
  • a shaft core what was comprised by winding the resin sheet whose bending rigidity is higher than any of the positive electrode foil 31a, the negative electrode foil 32a, and the separator 33 can be used, for example.
  • FIG. 4 is an explanatory diagram showing the relationship between the battery voltage and the positive / negative potential and the respective capacities.
  • the discharge curve of the battery voltage generally shows the potential difference between the discharge curve of the positive electrode potential (vs. Li / Li + ) and the discharge curve of the negative electrode potential (vs. Li / Li + ), and FIG. FIG.
  • the positive electrode potential shows a discharge curve when discharging from 4.3 V (vs. Li / Li + ) to 2.9 V (vs. Li / Li + ) with respect to the Li reference potential.
  • the discharge current is 0.02 CA based on the battery capacity.
  • the negative electrode potential shows a discharge curve when discharging from 0.01 V (vs. Li / Li + ) to 1.5 V (vs. Li / Li + ) with respect to the Li reference potential.
  • the discharge current is 0.02 CA based on the battery capacity.
  • Cap. a the battery capacity of the battery voltage from 4.2 V to 3.0 V is shown in Cap. a , and the capacity difference between the positive electrode potential of 3.0 V (vs. Li / Li + ) and the battery voltage of 3.0 V is expressed as Cap.
  • Cap. b the capacity difference between the positive electrode potential of 3.0 V (vs. Li / Li + ) and the battery voltage of 3.0 V is expressed as Cap.
  • Cap. b / Cap By controlling the ratio of a to an appropriate value, the resistance in the low SOC region of the lithium secondary battery can be lowered.
  • FIG. 5 shows the relationship between the battery voltage and the battery voltage change rate ( ⁇ battery voltage / ⁇ SOC) with respect to the SOC change rate and the SOC.
  • the SOC was 3.0 V
  • the ⁇ battery voltage / ⁇ SOC at that time was 0.13. That is, the terminal voltage can be defined as ⁇ battery voltage / ⁇ SOC being 0.13 or more
  • the terminal potential of the positive electrode potential can be defined as a region where ⁇ positive electrode potential / ⁇ SOC is 0.13 or more.
  • LiNi 0.33 Co 0.33 Mn 0.33 powder, acetylene black as a conductive additive, graphite, and polyvinylidene fluoride (PVdF) as a binder are 90: 4: 3: 3.
  • the viscosity was adjusted so as to form a slurry with N-methyl-2-pyrrolidone (NMP).
  • NMP N-methyl-2-pyrrolidone
  • the comparative example in Table 1 shows natural graphite with a spheroidized and amorphous carbon coating, styrene butadiene rubber (SBR) as a binder, and carboxymethyl cellulose (CMC) as a dispersant.
  • SBR styrene butadiene rubber
  • CMC carboxymethyl cellulose
  • the negative electrode active materials of Examples 1 to 6 in Table 1 were prepared by mixing spherical composite graphite and carbon black at 98% by weight: 2% by weight and combining them, and then applying amorphous carbon coating. Carbon black composite-treated natural graphite, SBR, and CMC were mixed at a weight ratio of 98: 1: 1, and the viscosity was adjusted to form a slurry with ion-exchanged water. The negative electrode slurry was applied to both sides of a 10 ⁇ m thick copper foil, dried and pressed to prepare a negative electrode.
  • the separators 33 and 35 are sandwiched between the produced positive electrode 34 and the negative electrode 32 to produce the electrode winding group 3 with the configuration as shown in FIG. 1 to FIG.
  • the plate and the uncoated portion of the electrode winding group 3 were welded, the electrode winding group 3 was covered with the insulating protective film 2, sealed in the battery can 1, and the battery lid 6 and the battery can 1 were welded.
  • LiPF 6 was added as a supporting salt to a solvent obtained by mixing ethylene carbonate (EC) and ethyl methyl carbonate (EMC) dimethyl carbonate (DMC) at a volume ratio of 30:30:40.
  • An electrolytic solution dissolved at a concentration of 1 mol / L was prepared. The prepared electrolytic solution was injected from the injection port 9 and then sealed with an injection plug 11 to produce a lithium secondary battery.
  • the battery capacity and the direct current resistance (DCR) in each SOC were measured.
  • CC-CV charging constant voltage-constant current charging
  • CC discharge constant current discharge
  • the battery capacity was discharged from 4.2 V in increments of 5% and the voltage after resting for 2 hours was taken as OCV, and the relationship with SOC was obtained.
  • the DCR of SOC 20% which is a low SOC region, is 5CA by CC discharge after being charged with CC-CV (CC: Constant Voltage, CV: Constant Voltage) with a charging current of 1C from SOC 0% to SOC 20% from the relationship of SOC-OCV.
  • CC-CV Constant Voltage
  • CV Constant Voltage
  • Example 6 shows Examples 1 to 6 of the present invention and Cap. b / Cap. a ratio of, DCR, shows the results of the battery capacity.
  • Comparative Example 1 and Example 1 in FIG. 6 are the results measured after the initialization, and Examples 2 to 6 are 7 days, 15 days, 40 days, 70 days, and 100 days, respectively, in an SOC 80% and 65 ° C. environment. The result of having measured battery capacity and SOC20% DCR after leaving it to stand is shown.
  • Cap. b / Cap It can be seen that the SOC 20% DCR is reduced by 26% because the ratio of a is 12% of the comparative example to 14% of the example 1, and further increased to 17% of the example 2 to increase the SOC 20% DCR. Is reduced by 53% (vs. comparative example). From this, Cap. b / Cap. it is possible to reduce SOC 20% DCR low SOC region by increasing the proportion of a.
  • Cap. b / Cap By increasing the ratio of a to that of Example 3 and Example 4, it is possible to reduce the SOC 20% DCR to 55% (vs. comparative example) and 57% (vs. comparative example).
  • Example 5 the SOC 20% DCR was 58% (vs. Comparative Example), and the reduction range was almost saturated, but the battery capacity was on the decline, so Cap. b / Cap. There is no need to increase the ratio of a .
  • the internal resistance in the low SOC region of the secondary battery can be reduced without impairing the secondary battery capacity. Accordingly, since the SOC range of the secondary battery can be expanded, the energy density of the secondary battery can be improved.
  • the capacity difference from the terminal potential of the positive electrode discharge curve to the terminal voltage of the battery discharge curve of the secondary battery with respect to the discharge capacity of the secondary battery was 14% to 26%. With such a configuration, the DCR at 20% SOC can be greatly reduced. As described above, when the capacity difference from the terminal potential of the positive electrode discharge curve to the terminal voltage of the battery discharge curve of the secondary battery with respect to the discharge capacity of the secondary battery is larger than 26%, the decrease in DCR is saturated, This is not preferable because the battery capacity is reduced. *
  • the capacity difference from the terminal potential of the positive electrode discharge curve to the terminal voltage of the battery discharge curve of the secondary battery with respect to the discharge capacity of the secondary battery is 14% to 17%.
  • the capacity difference from the terminal potential of the positive electrode discharge curve to the terminal voltage of the battery discharge curve of the secondary battery is 17% to 26% with respect to the discharge capacity of the secondary battery.
  • the battery discharge curve and the positive electrode discharge curve of the secondary battery of the present invention have a discharge current of 0.02 CA or less. It is preferable that the capacity difference is measured by the discharge current because the battery characteristics are sufficiently reliable with few errors.
  • the negative electrode uses graphite carrying a conductive additive as an active material, or uses a mixture of graphite and amorphous carbon as an active material.
  • Various methods can be used, such as the amount of the auxiliary agent supported is 2% by weight or less with respect to the graphite, and the auxiliary agent is at least one of carbon black, acetylene black, and ketjen black.
  • any method without departing from the principle of the present invention described in FIG. 4 can be obtained from the terminal potential of the positive electrode discharge curve with respect to the discharge capacity of the secondary battery.
  • the capacity difference up to the terminal voltage may be 14% to 26%.
  • Cap. b / Cap Although attention is paid to the ratio of a , the terminal voltage of the battery discharge curve and the terminal potential of the positive electrode discharge curve may be focused. In this case, it is preferable that the voltage change rate of the battery discharge curve and the potential change rate of the discharge curve are 0.13 or more with respect to the change rate of the state of charge (SOC) of the secondary battery.
  • SOC state of charge
  • the capacity difference from the terminal potential of the positive electrode discharge curve to the terminal voltage of the battery discharge curve of the secondary battery is preferably 0.82 to 1.28 Ah.
  • the present invention is not limited to the above-described embodiments, and various designs can be made without departing from the spirit of the present invention described in the claims. It can be changed.
  • the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described.
  • a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment.
  • negative electrode foil exposed portion 32d ... negative electrode mixture layer 32e facing the positive electrode mixture layer ... opposed to the positive electrode mixture layer
  • No negative electrode mixture layer 33 ... Separator 34 ... Positive electrode 34a ... Positive electrode foil 34b . Positive electrode mixture layer 34c ... Positive foil exposed portion 35 ... Separator 41 ... Positive current collector base 42 ... Positive side connecting end 43 ... Positive side opening Hole 44 ... Positive electrode current collector plate 46 ... Positive electrode side through hole 100 ... Secondary Pond

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

従来の二次電池は低SOC領域において、内部抵抗が非常に高くなり、必要な出力が取り出せないという課題がある。正極と負極とを有する二次電池において、 前記二次電池の放電容量に対する正極放電曲線の末端電位から当該二次電池の電池放電曲線の末端電圧までの容量差が14%~26%であることを特徴とする二次電池。

Description

二次電池
 本発明は、正極、及び負極電極を備えた二次電池に関する。
 本技術分野の背景技術として、特開2015-11930号公報(特許文献1)がある。この公報には、幅広いSOC領域(特には低SOC領域)における入出力特性と、耐久性とを高いレベルで両立可能な非水電解質二次電池を提供されている。具体的には、正極活物質を有する正極と負極活物質を有する負極とを備える電極体と、非水電解質とを電池ケース内に収容した構成で、前記負極活物質1gあたりの負極単位不可逆容量mAh/g以上、35mAh/g以下であり、前記負極活物質1gあたりの負極単位不可逆容量(mAh/g)。と前記負極活物質の質量(g)との積で算出される負極不可逆容量Ua(mAh)と、上記正極活物質1gあたりの正極単位不可逆容量(mAh/g)と前記負極活物質の質量(g)との積で算出される正極不可逆容量Uc(mAh)とは、Uc<Uaの関係を満たしている、と記載されている。
特開2015-11930号公報
 例えば、リチウム二次電池を搭載したハイブリッド自動車では、エンジンをスタートする際に、しばしば充電状態(State of Charge:SOC)の低い領域で大電流放電する場合が想定される。しかしながら、リチウム二次電池は低SOC領域(例えばSOC20%~30%の領域)において、内部抵抗が非常に高くなり、必要な出力特性が取り出せない可能性がある。
 このような課題に対して、特許文献1では、低SOC領域における内部抵抗増大の主要因は正極であり、低SOC領域(放電末期)おいて、正極電位が急激に低下することに起因しているとある。従って電池として使用する正極の電位範囲(作動電位)を高電位側にシフトさせることで、低SOC領域でも正極電位を高く保持することができるので、内部抵抗を低減することができるとしている。具体的には負極の不可逆容量を正極不可逆容量より、大きくすることを特徴とした二次電池を提案している。
 しかしながら、特許文献1では、負極不可逆容量Uaを正極不可逆容量Ucより大きくすることで効果が得られるとされるが、UaとUcの差が小さいと、効果がほとんど得られず、また、大きくても、二次電池容量が低下してしまうため、適切な値があると考えられる。
 本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、正極と負極とを有する二次電池において、前記二次電池の放電容量に対する正極放電曲線の末端電位から当該二次電池の電池放電曲線の末端電圧までの容量差が14%~26%であることを特徴とする二次電池である。
 二次電池の放電容量に対する正極放電曲線の末端電位から当該二次電池の電池放電曲線の末端電圧までの容量差が14%~26%となるように、正極の電位範囲(作動電位)を高電位側にシフトさせることで、二次電池容量を損なわずに、二次電池の低SOC領域の内部抵抗を低減することができる。従って、二次電池の使用SOC範囲を広げることができるので、二次電池のエネルギー密度を向上させることができる。
角形二次電池の外観斜視図 角形二次電池の分解斜視図 捲回電極群の分解斜視図 電池電圧、及び正/負極電位と、それぞれの容量との関係を示す説明図 電池電圧、及びSOC変化率に対する電池電圧変化率(Δ電池電圧/ΔSOC)と、SOCとの関係を示す説明図 本発明の実施例及び比較例の結果を示す図
 以下、図面等を用いて、本発明の実施形態について説明する。以下の説明は本発明の内容の具体例を示すものであり、本発明がこれらの説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。また、本発明を説明するための全図において、同一の機能を有するものは、同一の符号を付け、その繰り返しの説明は省略する場合がある。
 図1は、扁平捲回形二次電池の外観斜視図である。
扁平捲回形二次電池100は、電池缶1および蓋(電池蓋)6を備える。電池缶1は、相対的に面積の大きい一対の対向する幅広側面1bと相対的に面積の小さい一対の対向する幅狭側面1cとを有する側面と底面1dを有し、その上方に開口部1aを有する。
電池缶1内には、捲回群3が収納され、電池缶1の開口部1aが電池蓋6によって封止されている。電池蓋6は略矩形平板状であって、電池缶1の上方開口部1aを塞ぐように溶接されて電池缶1が封止されている。電池蓋6には、正極外部端子14と、負極外部端子12が設けられている。正極外部端子14と負極外部端子12を介して捲回群3に充電され、また外部負荷に電力が供給される。電池蓋6には、ガス排出弁10が一体的に設けられ、電池容器内の圧力が上昇すると、ガス排出弁10が開いて内部からガスが排出され、電池容器内の圧力が低減される。これによって、扁平捲回形二次電池100の安全性が確保される。
 図2は、角形二次電池の分解斜視図である。
扁平捲回形二次電池100の電池缶1は、矩形の底面1dと、底面1dから立ち上がる角筒状の側面1b、1cと、側面1b、1cの上端で上方に向かって開放された開口部1aとを有している。電池缶1内には、絶縁保護フィルム2を介して捲回群3が収容されている。
 捲回群3は、扁平形状に捲回されているため、断面半円形状の互いに対向する一対の湾曲部と、これら一対の湾曲部の間に連続して形成される平面部とを有している。捲回群3は、捲回軸方向が電池缶1の横幅方向に沿うように、一方の湾曲部側から電池缶1内に挿入され、他方の湾曲部側が上部開口側に配置される。
 捲回群3の正極電極箔露出部34cは、正極集電板(集電端子)44を介して電池蓋6に設けられた正極外部端子14と電気的に接続されている。また、捲回群3の負極電極箔露出部32cは、負極集電板(集電端子)24を介して電池蓋6に設けられた負極外部端子12と電気的に接続されている。これにより、正極集電板44および負極集電板24を介して捲回群3から外部負荷へ電力が供給され、正極集電板44および負極集電板24を介して捲回群3へ外部発電電力が供給され充電される。
 正極集電板44と負極集電板24、及び、正極外部端子14と負極外部端子12を、それぞれ電池蓋6から電気的に絶縁するために、ガスケット5および絶縁板7が電池蓋6に設けられている。また、注液口9から電池缶1内に電解液を注入した後、電池蓋6に注液栓11をレーザ溶接により接合して注液口9を封止し、扁平捲回形二次電池100を密閉する。
 ここで、正極外部端子14および正極集電板44の形成素材としては、例えばアルミニウム合金が挙げられ、負極外部端子12および負極集電板24の形成素材としては、例えば銅合金が挙げられる。また、絶縁板7およびガスケット5の形成素材としては、例えばポリブチレンテレフタレートやポリフェニレンサルファイド、ペルフルオロアルコキシフッ素樹脂等の絶縁性を有する樹脂材が挙げられる。
 電池蓋6には、電池容器内に電解液を注入するための注液孔9が穿設されており、この注液孔9は、電解液を電池容器内に注入した後に注液栓11によって封止される。ここで、電池容器内に注入される電解液としては、例えばエチレンカーボネート等の炭酸エステル系の有機溶媒に6フッ化リン酸リチウム(LiPF6)等のリチウム塩が溶解された非水電解液を適用することができる。
 正極外部端子14、負極外部端子12は、バスバー等に溶接接合される溶接接合部を有している。溶接接合部は、電池蓋6から上方に突出する直方体のブロック形状を有しており、下面が電池蓋6の表面に対向し、上面が所定高さ位置で電池蓋6と平行になる構成を有している。
 正極接続部14a、負極接続部12aは、正極外部端子14、負極外部端子12の下面からそれぞれ突出して先端が電池蓋6の正極側貫通孔46、負極側貫通孔26に挿入可能な円柱形状を有している。正極接続部14a、負極接続部12aは、電池蓋6を貫通して正極集電板44、負極集電板24の正極集電板基部41、負極集電板基部21よりも電池缶1の内部側に突出しており、先端がかしめられて、正極外部端子14、負極外部端子12と、正極集電板44、負極集電板24を電池蓋6に一体に固定している。正極外部端子14、負極外部端子12と電池蓋6との間には、ガスケット5が介在されており、正極集電板44、負極集電板24と電池蓋6との間には、絶縁板7が介在されている。
 正極集電板44、負極集電板24は、電池蓋6の下面に対向して配置される矩形板状の正極集電板基部41、負極集電板基部21と、正極集電板基部41、負極集電板基部21の側端で折曲されて、電池缶1の幅広面に沿って底面側に向かって延出し、捲回群3の正極箔露出部34c、負極箔露出部32cに対向して重ね合わされた状態で接続される正極側接続端部42、負極側接続端部22を有している。正極集電板基部41、負極集電板基部21には、正極接続部14a、負極接続部12aが挿通される正極側開口穴43、負極側開口穴23がそれぞれ形成されている。
 捲回群3の扁平面に沿う方向でかつ捲回群3の捲回軸方向に直交する方向を中心軸方向として前記捲回群3の周囲には絶縁保護フィルム2が巻き付けられている。絶縁保護フィルム2は、例えばPP(ポリプロピレン)などの合成樹脂製の一枚のシートまたは複数のフィルム部材からなり、捲回群3の扁平面と平行な方向でかつ捲回軸方向に直交する方向を巻き付け中心として巻き付けることができる長さを有している。
 図3は、電極捲回群の一部を展開した状態を示す分解斜視図である。
捲回群3は、負極電極32と正極電極34を間にセパレータ33、35を介して扁平状に捲回することによって構成されている。捲回群3は、最外周の電極が負極電極32であり、さらにその外側にセパレータ33、35が捲回される。
 セパレータ33、35は、正極電極34、及び負極電極32の短絡を防止する絶縁機能を有し、かつ非水電解液の保持機能を有している。好ましい例として、ポリエチレン(PE)、ポリプロピレン(PP)、ポリエステル、セルロース、及びポリアミド等の樹脂製の多孔質シートが挙げられる。樹脂製の多孔質シートは、単層構成でもよく、また複数層(例えば、PP/PE/PPの三層構成等)であっても良い。
 更に好ましくはセパレータ33、35の片側もしくは両側に無機材料(例えばアルミナ粒子等)とバインダとで構成される層を有する。これにより、リチウム二次電池が異常な状態で使用された場合(例えば、過充電や圧壊等で二次電池の温度が160℃以上まで上昇した場合)であっても溶融せず絶縁機能を保持することができ、安全性を確保することができる。
 負極電極32の負極合剤層32bが塗布された部分は、正極電極34の正極合剤層34bが塗布された部分よりも幅方向に大きく、これにより正極合剤層34bが塗布された部分は、必ず負極合剤層32bが塗布された部分に挟まれるように構成されている。正極箔露出部34c、負極箔露出部32cは、平面部分で束ねられて溶接等により接続される。尚、セパレータ33、35は幅方向で負極合剤層32bが塗布された部分よりも広いが、正極箔露出部34c、負極箔露出部32cで端部の金属箔面が露出する位置に捲回されるため、束ねて溶接する場合の支障にはならない。
 負極電極32に塗布されている負極合剤層32bは、負極活物質と結着剤であるバインダを適切な溶媒(例として水、もしくはN-メチル-2-ピロリドン)に分散、混練して、スラリー状にしたものを塗布している。スラリーを塗布された負極電極32は乾燥することで溶媒を除去した後、プレス機で適切な厚みにして作製することができる。
 負極活物質としては、天然黒鉛、人造黒鉛、難黒鉛化炭素(ハードカーボン)、易黒鉛化炭素(ソフトカーボン)、等の炭素材料が挙げられる。黒鉛に関しては、黒鉛表面に非晶質炭素を被覆することで、必要以上に電解液との反応を防ぐ。
 また、二次電池の放電容量に対する正極放電曲線の末端電位から当該二次電池の電池放電曲線の末端電圧までの容量差を14%~26%の範囲にするために、例えば、黒鉛材料に、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカーボンブラックを導電助剤として混合させた材料、及びそれらの導電助剤を黒鉛材料と混合した後に非晶質炭素で被覆し、複合化させた材料、黒鉛に難黒鉛化炭素(ハードカーボン)、易黒鉛化炭素(ソフトカーボン)、及び金属酸化物(酸化鉄、酸化銅、など)を混合する方法が考えられる。
 正極電極34は、正極集電体である正極電極箔の両面に正極活物質合剤を有し、正極電極箔の幅方向一方側の端部には、正極活物質合剤を塗布しない正極箔露出部34cが設けられている。
 正極活物質としては、特に限定されず、リチウム二次電池の正極材料として適用できることが知られている材料を、1種もしくは複数混合した材料を用いることができる。好ましい例として、スピネル系(例えば、LiMnなど)、層状系(例えば、LiCoO、LiNiO)、オリビン系(例えば、LiFePOなど)が挙げられる。また、構成元素として、Li、Ni、Co、及びMnを含む層状系のリチウムニッケルコバルトマンガン複合酸化物(例えば、LiNi0.33Co0.33Mn0.33)はリチウムイオン脱離量が2/3までは充放電に伴う格子体積の変化がほとんどないことから、耐久性にも優れており、より好ましい例として挙げられる。
 負極電極32は、負極集電体である負極電極箔の両面に負極活物質合剤を有し、正極電極箔の幅方向他方側の端部には、負極活物質合剤を塗布しない負極箔露出部32cが設けられている。正極箔露出部34cと負極箔露出部32cは、電極箔の金属面が露出した領域であり、捲回軸方向の一方側と他方側の位置に配置されるように捲回される。
また、軸芯としては例えば、正極箔31a、負極箔32a、セパレータ33のいずれよりも曲げ剛性の高い樹脂シートを捲回して構成したものを用いることができる。
 続いて本発明の特徴となる点の原理について説明する。図4は、電池電圧、及び正/負極電位と、それぞれの容量との関係を示す説明図である。
 電池電圧の放電曲線は、一般的に正極電位(vs. Li/Li+)の放電曲線と負極電位(vs. Li/Li+)の放電曲線との電位差を示し、図4はその関係性を示した図である。
 逆説的に説明すると、電池電圧の放電曲線から正極電位の放電曲線と負極電位の放電曲線を推定することが可能である。
 正極電位はLi基準電位に対して、4.3V(vs. Li/Li+)から2.9V(vs. Li/Li+)まで放電した際の放電曲線を示す。放電電流は電池容量基準で0.02CAである。
 負極電位はLi基準電位に対して0.01V(vs. Li/Li+)から1.5V(vs. Li/Li+)まで放電した際の放電曲線を示す。放電電流は電池容量基準で0.02CAである。
 正極電位と負極電位の放電曲線を取得した後、電池電圧の4.2Vから2.9Vの0.02CA放電曲線を取得し、電池電圧の放電曲線を正極電位と負極電位の放電曲線でフィッティングすることで図4のような関係性を得ることができる。
 図4より、電池電圧が4.2Vから3.0Vまでの電池容量をCap.、そして正極電位3.0V(vs. Li/Li+)と電池電圧3.0Vの容量差をCap.とした場合、Cap./Cap.の比率を適切な値に制御することで、リチウム二次電池の低SOC領域の抵抗を下げることができる。
 図5は電池電圧、及びSOC変化率に対する電池電圧変化率(Δ電池電圧/ΔSOC)と、SOCとの関係を示したものである。電池電圧の末端電圧として、3.0VとなるSOCと、そのときのΔ電池電圧/ΔSOCが0.13となった。すなわち、末端電圧はΔ電池電圧/ΔSOCが0.13以上であり、同様に正極電位の末端電位はΔ正極電位/ΔSOCが0.13以上と領域であると定義することができる。
(リチウム二次電池の構成)
 まず、正極活物質として、LiNi0.33Co0.33Mn0.33粉末と、導電助剤としてアセチレンブラック、及びグラファイト、バインダとして、ポリフッ化ビニリデン(PVdF)とを90:4:3:3となる重量比率で混合し、N-メチル-2-ピロリドン(NMP)でスラリー状となるように粘度調整した。正極スラリーを暑さ15μmのアルミニウム箔の両面に塗布して、乾燥、プレスして、正極電極を作製した。
 続いて、負極活物質として、表1の比較例は球径化、及び非晶質炭素被覆を施した天然黒鉛と、バインダとしてスチレンブタジエンゴム(SBR)と、分散材としてカルボキシメチルセルロース(CMC)とを98:1:1となる比率で混合し、イオン交換水でスラリー状となるように粘度調整した。負極スラリーは厚さ10μmの銅箔の両面に塗布して、乾燥、プレスして負極電極を作製した。
 また、表1の実施例1~6の負極活物質は球径化天然黒鉛と、カーボンブラックとを98重量%:2重量%で混合、複合化処理した後、非晶質炭素被覆を施した、カーボンブラック複合化処理天然黒鉛とSBRとCMCとを98:1:1となる重量比率で混合し、イオン交換水でスラリー状となるよう粘度調整した。負極スラリーは厚さ10μmの銅箔の両面に塗布して、乾燥、プレスして負極電極を作製した。
 続いて、上記作製した正極電極34と、負極電極32との間にセパレータ33,35を挟み、図1から図3のような構成で電極捲回郡3を作製し、電池蓋6の集電板と電極捲回郡3の未塗工部を溶接し、絶縁保護フィルム2で電極捲回郡3を覆い、電池缶1に封入し、電池蓋6と電池缶1とを溶接した。
 続いて非水電解液として、エチレンカーボネー(EC)とエチルメチルカーボネート(EMC)ジメチルカーボネート(DMC)とを30:30:40の体積比率で混合した溶媒に、支持塩としてLiPFを1.1mol/Lの濃度で溶解させた電解液を調整した。調整した電解液を注液口9から注液後、注液栓11で封止して、リチウム二次電池を作製した。
 作製したリチウム二次電池を充放電することで初期化成した後、電池容量と、各SOCにおける直流抵抗(DCR)を測定した。
 電池容量は、電池電圧が4.2Vとなるまで定電圧-定電流充電(CC-CV充電)を充電電流1CAにて合計2.5時間実施した。そして30分間休止した後、電池電圧2.9Vまで放電電流0.02CAにて定電流放電(CC放電)し、初期容量を得た。
 SOC-開回路電圧(OCV)の関係は、電池容量を4.2Vから電池容量5%刻みで放電し、2時間休止した後の電圧をOCVとして、SOCとの関係を得た。
 低SOC領域であるSOC20%のDCRは、SOC-OCVの関係からSOC0%からSOC20%まで充電電流1CにてCC-CV(CC:Constant Current、CV:Constant Voltage)充電した後、CC放電で5CA、10CA、及び15CAで10秒放電し、OCVから10秒間で降下した電圧との差と、電流値とのプロットし、その傾きからDCRを算出した。
 図6は本発明の実施例1から6及び比較例のCap./Cap.の比率、DCR、電池容量の結果を示したものである。図6の比較例1と実施例1は初期化成後に測定した結果であり、実施例2~6はSOC80%、65℃環境下で、それぞれ7日、15日、40日、70日、100日間放置した後に電池容量とSOC20%DCRを測定した結果を示す。
 表1より、Cap./Cap.の比率が比較例の12%から実施例1の14%となることでSOC20%DCRが26%低減していることがわかり、更に実施例2の17%まで増加させることで、SOC20%DCRが53%低減(vs.比較例)している。このことからCap./Cap.の比率を増加させることで低SOC領域であるSOC20%DCRを低減させることが可能である。
 さらにCap./Cap.の比率を実施例3、及び実施例4と増加させることで、SOC20%DCRを55%(vs.比較例)、及び57%(vs.比較例)と低減させることが可能である。
 しかしながら実施例5、及び実施例6では、SOC20%DCRは58%(vs.比較例)と低減幅がほぼ飽和傾向であるが、電池容量は低下傾向にあるため、これ以上Cap./Cap.の比率を増加させる必要は無い。
 以上のようなリチウム二次電池の構成とすることで、二次電池容量を損なわずに、二次電池の低SOC領域の内部抵抗を低減することができる。従って、二次電池の使用SOC範囲を広げることができるので、二次電池のエネルギー密度を向上させることができる。
 本発明について簡単にまとめる。本発明の二次電池では、二次電池の放電容量に対する正極放電曲線の末端電位から当該二次電池の電池放電曲線の末端電圧までの容量差が14%~26%とした。このような構成にすることによって、SOC20%におけるDCRを大きく低減することが出来る。なお、上述したように、二次電池の放電容量に対する正極放電曲線の末端電位から当該二次電池の電池放電曲線の末端電圧までの容量差が26%よりも大きくなるとDCRの減少は飽和し、電池容量が減少してしまうので好ましくない。 
 また、本発明の二次電池では、二次電池の放電容量に対する正極放電曲線の末端電位から当該二次電池の電池放電曲線の末端電圧までの容量差が14%~17%である。このような構成にすることによって、DCRを十分に低減しつつも、電池容量を比較例と比較しても95%以上に保つことができ、Cap./Cap.の比率を大きくすることによる容量の減少を最大限に抑制しつつ、出力特性を向上させることが出来る。
 また、本発明の二次電池では、二次電池の放電容量に対する正極放電曲線の末端電位から当該二次電池の電池放電曲線の末端電圧までの容量差が17%~26%である。このような構成にすることによって、比較例と比してDCRを50%以上も低減することができ、電池の出力特性を大幅に向上させることが出来る。
 また、本発明の二次電池の電池放電曲線と前記正極放電曲線は、放電電流0.02CA以下である。誤差の少ない、十分信頼性に足る電池特性であるため、上記容量差は当該放電電流で測定したものであることが好ましい。
 また、本発明では上記容量差になるように制御するための一方式として、負極は活物質として導電助剤が担持された黒鉛を用いたり、活物質として黒鉛と非晶質炭素の混合物を用いたり、助剤の担持量を黒鉛に対して2重量%以下としたり、助剤をカーボンブラック、アセチレンブラック、ケッチェンブラックの少なくともいずれか1種類としたり、様々な方法を取ることが出来る。つまり、図4で説明した本発明の原理を逸脱しなければ、どのような方法であったとしても、二次電池の放電容量に対する正極放電曲線の末端電位から当該二次電池の電池放電曲線の末端電圧までの容量差が14%~26%となれば良い。
 また、本発明ではCap./Cap.の比率に着目したが、電池放電曲線の末端電圧、及び前記正極放電曲線の末端電位に着目しても良い。この場合には、二次電池の充電状態(SOC)の変化率に対して前記電池放電曲線の電圧変化率、及び前記放電曲線の電位変化率が0.13以上であることが好ましい。
 また、当然のことながら、単純な容量差で見ても良い。その場合には正極放電曲線の末端電位から二次電池の電池放電曲線の末端電圧までの容量差が0.82~1.28Ahであることが好ましい。
 以上、本発明の実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。例えば、前記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。さらに、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
1…電池缶
1a…開口部
1b…幅広側面
1c…幅狭側面
1d…底面
2…絶縁保護フィルム
3…捲回群
6…電池蓋
7…絶縁板
9…注液口
10…ガス排出弁
11…注液栓
12…負極外部端子
12a…負極接続部
14…正極外部端子
14a…正極接続部
21…負極集電板基部
22…負極側接続端部
23…負極側開口穴
24…負極集電板
26…負極側貫通孔
32…負極電極
32a…負極箔
32b…負極合剤層
32c…負極箔露出部
32d…正極合剤層と対向している負極合剤層
32e…正極合剤層と対向していない負極合剤層
33…セパレータ
34…正極電極
34a…正極箔
34b…正極合剤層
34c…正極箔露出部
35…セパレータ
41…正極集電板基部
42…正極側接続端部
43…正極側開口穴
44…正極集電板
46…正極側貫通孔
100…二次電池

Claims (10)

  1.  正極と負極とを有する二次電池において、
     前記二次電池の放電容量に対する正極放電曲線の末端電位から当該二次電池の電池放電曲線の末端電圧までの容量差が14%~26%であることを特徴とする二次電池。
  2.  請求項1に記載の二次電池において、
     前記二次電池の放電容量に対する正極放電曲線の末端電位から当該二次電池の電池放電曲線の末端電圧までの容量差が14%~17%であることを特徴とする二次電池。
  3. 請求項1に記載の二次電池において、
     前記二次電池の放電容量に対する正極放電曲線の末端電位から当該二次電池の電池放電曲線の末端電圧までの容量差が17%~26%であることを特徴とする二次電池。
  4.  請求項1乃至3のいずれかに記載の二次電池において、前記二次電池の電池放電曲線と前記正極放電曲線が放電電流0.02CA以下であることを特徴とする二次電池。
  5.  請求項1乃至4のいずれかに記載の二次電池において、
     前記負極は活物質として導電助剤が担持された黒鉛が用いられることを特徴とする二次電池。
  6.  請求項5に記載の二次電池において、前記助剤の担持量は前記黒鉛に対して2重量%以下であることを特徴とする二次電池。
  7.  請求項6に記載の二次電池において、
     前記助剤はカーボンブラック、アセチレンブラック、ケッチェンブラックの少なくともいずれか1種類を含むことを特徴とする二次電池。
  8.  請求項1乃至4のいずれかに記載の二次電池おいて、
     前記負極は黒鉛と非晶質炭素の混合物であることを特徴とする二次電池。
  9.  請求項1乃至4のいずれかに記載の二次電池おいて、
    前記電池放電曲線の末端電圧、及び前記正極放電曲線の末端電位は、
    前記二次電池の充電状態(SOC)の変化率に対して前記電池放電曲線の電圧変化率、及び前記放電曲線の電位変化率が0.13以上であることを特徴とする二次電池。
  10.  正極と負極とを有する二次電池において、
     前記正極放電曲線の末端電位から当該二次電池の電池放電曲線の末端電圧までの容量差が0.82~1.28Ahであることを特徴とする二次電池。
PCT/JP2017/045870 2016-12-28 2017-12-21 二次電池 WO2018123792A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17885784.3A EP3565051A4 (en) 2016-12-28 2017-12-21 RECHARGEABLE BATTERY
US16/333,851 US20190267624A1 (en) 2016-12-28 2017-12-21 Secondary Battery
JP2018559111A JP6806796B2 (ja) 2016-12-28 2017-12-21 二次電池
CN201780057286.9A CN110100345B (zh) 2016-12-28 2017-12-21 二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-254649 2016-12-28
JP2016254649 2016-12-28

Publications (1)

Publication Number Publication Date
WO2018123792A1 true WO2018123792A1 (ja) 2018-07-05

Family

ID=62710601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045870 WO2018123792A1 (ja) 2016-12-28 2017-12-21 二次電池

Country Status (5)

Country Link
US (1) US20190267624A1 (ja)
EP (1) EP3565051A4 (ja)
JP (1) JP6806796B2 (ja)
CN (1) CN110100345B (ja)
WO (1) WO2018123792A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014035922A (ja) * 2012-08-09 2014-02-24 Sanyo Electric Co Ltd 非水電解質二次電池
JP2015011930A (ja) * 2013-07-01 2015-01-19 トヨタ自動車株式会社 非水電解質二次電池
JP2016528706A (ja) * 2014-06-26 2016-09-15 エルジー・ケム・リミテッド リチウム二次電池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150064559A1 (en) * 2012-03-30 2015-03-05 Sumitomo Osaka Cement Co., Ltd. Electrode-active material, lithium-ion battery, method for detecting discharge state of electrode-active material, and method for manufacturing electrode-active material
KR101551523B1 (ko) * 2012-08-02 2015-09-08 주식회사 엘지화학 출력 특성과 안전성이 향상된 혼합 양극활물질 및 이를 포함하는 리튬이차전지
CN104377328B (zh) * 2013-08-14 2019-09-13 三星Sdi株式会社 可再充电锂电池
JP6164503B2 (ja) * 2015-06-25 2017-07-19 トヨタ自動車株式会社 二次電池の内部抵抗推定方法および出力制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014035922A (ja) * 2012-08-09 2014-02-24 Sanyo Electric Co Ltd 非水電解質二次電池
JP2015011930A (ja) * 2013-07-01 2015-01-19 トヨタ自動車株式会社 非水電解質二次電池
JP2016528706A (ja) * 2014-06-26 2016-09-15 エルジー・ケム・リミテッド リチウム二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3565051A4 *

Also Published As

Publication number Publication date
EP3565051A1 (en) 2019-11-06
JPWO2018123792A1 (ja) 2019-06-27
CN110100345B (zh) 2022-07-19
CN110100345A (zh) 2019-08-06
EP3565051A4 (en) 2020-09-30
JP6806796B2 (ja) 2021-01-06
US20190267624A1 (en) 2019-08-29

Similar Documents

Publication Publication Date Title
JP4439456B2 (ja) 電池パック及び自動車
JP6606144B2 (ja) 非水電解質電池用電極群
JP6776291B2 (ja) 組電池、電池パック、車両、及び、定置用電源
JP6479984B2 (ja) 非水電解質電池及び電池パック
JP2005108477A (ja) 組電池及び電気自動車
JP2011192476A (ja) リチウムイオン二次電池
JP7476936B2 (ja) フィルム外装電池、組電池および前記フィルム外装電池の製造方法
JP2013105704A (ja) 電極、非水電解質電池および電池パック
JP5232751B2 (ja) リチウムイオン二次電池
JP2011054334A (ja) リチウム二次電池
JP2024075723A (ja) リチウムイオン二次電池用正極、リチウムイオン二次電池及び方法
JP2009266706A (ja) リチウムイオン二次電池
JP6697687B2 (ja) 非水電解液二次電池
JP5708510B2 (ja) 非水電解液二次電池
JP6493766B2 (ja) リチウムイオン二次電池
JP7045395B2 (ja) リチウムイオン二次電池用電解液
JP6735036B2 (ja) リチウムイオン二次電池
JP6806796B2 (ja) 二次電池
WO2015040685A1 (ja) リチウムイオン二次電池用セパレータ、リチウムイオン二次電池用セパレータを用いたリチウムイオン二次電池、および、リチウムイオン二次電池モジュール
WO2013168585A1 (ja) 角形電池
JP7484011B2 (ja) リチウムイオン二次電池及びその製造方法
JP2018125216A (ja) リチウムイオン二次電池
WO2022163061A1 (ja) 蓄電素子及び蓄電素子の使用方法
JP2005158627A (ja) リチウムイオン電池
JP4644936B2 (ja) リチウム二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17885784

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018559111

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017885784

Country of ref document: EP

Effective date: 20190729