WO2018123762A1 - Diamond-based electrically conducting structure, diamond-based electric component, and method for manufacturing diamond-based electrically conducting structure - Google Patents

Diamond-based electrically conducting structure, diamond-based electric component, and method for manufacturing diamond-based electrically conducting structure Download PDF

Info

Publication number
WO2018123762A1
WO2018123762A1 PCT/JP2017/045703 JP2017045703W WO2018123762A1 WO 2018123762 A1 WO2018123762 A1 WO 2018123762A1 JP 2017045703 W JP2017045703 W JP 2017045703W WO 2018123762 A1 WO2018123762 A1 WO 2018123762A1
Authority
WO
WIPO (PCT)
Prior art keywords
diamond
region
layer
structure according
conductive region
Prior art date
Application number
PCT/JP2017/045703
Other languages
French (fr)
Japanese (ja)
Inventor
裕 道脇
Original Assignee
Next Innovation合同会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017231271A external-priority patent/JP6699827B2/en
Application filed by Next Innovation合同会社 filed Critical Next Innovation合同会社
Publication of WO2018123762A1 publication Critical patent/WO2018123762A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern

Definitions

  • elements and wirings are formed on a semiconductor substrate (wafer) such as silicon. Specifically, a thin film layer to be a future element or wiring is formed on a substrate, a circuit pattern is transferred to the thin film layer with a photoresist, and the thin film is wired by etching using the photoresist as a mask. (See Patent Document 2).
  • the diamond-based layer has a second diamond-based layer mainly composed of a diamond-based material that becomes diamond and / or amorphous carbon on the side opposite to the base material.
  • the conductive region is formed in a band shape.
  • DLC layer 30 is a film composed mainly of amorphous carbon, but has a sp 3 bonds corresponding to the diamond structure, in part, other sp 2 bonds corresponding to the graphite structure, optionally including hydrogen bonding Therefore, it does not have a fixed crystal structure in a long-range order.
  • the thickness of the stratification is not limited to this, but may be submicron or less, for example, about several tens of atomic units, or may be on the order of several hundred ⁇ m or more.
  • the hardness of the DLC layer 30 may be lowered and flexibility may be exhibited, and the layer thickness may be increased.
  • the DLC layer 30 can be replaced with a diamond layer mainly composed of diamond, or can be combined with the diamond layer by a multilayer structure.
  • the diamond layer has a crystal structure mainly composed of sp 3 bonds corresponding to the diamond structure.
  • the diamond layer here is a non-conductor with high electrical resistivity.
  • the DLC layer 30 is laminated
  • the amorphous carbon is partially modified into graphite only in the heated portion, and the occupation ratio of graphite is increased. Accordingly, the conductive region 40 becomes a current path.
  • the heating method, heating temperature, heating time, etc. it becomes possible to adjust the depth, width, and graphite content ratio of the conductive region 40.
  • the electrical resistivity of the conductive region 40 is also improved. , And can be freely adjusted in whole or in part. Therefore, if the electric resistivity is set to a predetermined value, the conductive region 40 can be used as an electric resistance.
  • region 40 can be freely changed according to the objective. For example, it is formed in a line shape (see FIG.
  • FIG. 11A including one or a plurality of straight lines or curves, branch lines or merge lines, or a line shape including a spiral shape or a loop line shape (see FIG. 11B).
  • these lines may intersect and have intersections or a lattice shape (see FIG. 11C).
  • dots including small or minute circles, polygons, minute lines, etc. that is, dots or a group of dots composed of a plurality of dots, or an intermittent arrangement of dots.
  • FIG. 11D Of course, it is also possible to form a planar shape, a curved surface shape, or a planar shape along the surface of the base material. It can also be configured.
  • these conductive regions are formed so as to spread over the entire surface of the substrate and / or a desired region. In this way, it is possible to sense displacements, deformations, changes in physical properties, etc. at any location on the substrate.
  • the film formation method can use a well-known technique suitably.
  • various methods such as various CVD methods such as hot filament CVD and plasma CVD, and a combustion flame method using a combustion flame can be used.
  • the surface of the DLC layer 30 is heated to form a conductive region 40 inside the DLC layer 30 (conductive portion forming step).
  • the DLC layer 30 may be partially heated by irradiation with a laser beam M in an oxygen atmosphere.
  • the irradiation angle with respect to the surface of the laser beam M may be changed, and irradiation may be performed individually or simultaneously from a plurality of angles. This makes it easier to control the depth and the like of the conductive region 40.
  • the intersection is locally heated.
  • the conductive region 40 can be formed not in the surface but in the DLC layer 30.
  • only the focal position can be locally heated by focusing the focus of the laser beam M or the like inside the DLC layer 30 using an optical element such as a lens.
  • a lower cooling plate 80 is disposed on the back surface (bottom surface) side of the base material 10, and the DLC layer 30 is disposed via the base material 10 and the intermediate layer 20. Cool indirectly.
  • the DLC layer 30 may be directly cooled by bringing the upper cooling plate 90 into contact with the surface (upper surface) opposite to the substrate 10 side of the DLC layer 30.
  • the upper cooling plate 90 is provided with an opening pattern 92 having the same shape as that of the conductive region 40. As shown in FIG. 4B, the transfer pattern of the heating mold 70 is passed through the opening pattern 92. 72 is brought into contact with the DLC layer 30.
  • the upper cooling plate 90 actively absorbs the heat of the DLC layer 30 by using a material having higher thermal conductivity than the DLC layer 30, and further releases the heat to the outside by a heat sink or the like.
  • the DLC layer 30 itself becomes an insulating film and has a structure in which the conductive region 40 is formed in a part thereof, the electronic component 1 can be thinned. Therefore, it is possible to form a current-carrying structure at a site, member, or place where it is difficult to form the electronic component 1 conventionally, and the site can be the electronic component 1.
  • the electronic component 101 includes a base material (base material) 110, an intermediate layer 120, a DLC layer 130, a conductive region 140, and a cover layer 150.
  • the conductive region 140 is formed in a part of the thickness H1 in the thickness direction T of the DLC layer 130, and here is formed with a thickness H2 that is biased toward the surface opposite to the substrate 110.
  • the conductive region 140 is formed in the entire direction S along the surface of the DLC layer 130. Accordingly, the entire surface of the DLC layer 130 becomes the conductive region 140, which is a wiring having a predetermined resistance value. As a result, the electronic component 101 can be used as a resistance component.
  • the conductive region 140 is deformed in conjunction with the deformation of the base material 110, it becomes a sensor that senses the deformation amount of the base material 110 by the change in the resistance value. If the base material 110 is formed into a film and stuck to another member, it can be used as a so-called strain gauge. Of course, it is possible to detect the distortion of the base material (base material) 110 itself by forming the DLC layer 30 directly on the surface of the base material (base material) 110 and forming the desired conductive region 140. Therefore, it becomes possible to convert any object and the object itself into a sensor, and it is possible to directly measure the temperature of the substrate (base material) 110 or to measure its own strain.
  • the first conductive region 240 has a thick section 240B in which the occupation ratio in the thickness direction in the first DLC layer 230 is large and a shallow section 240A in which the occupation ratio in the thickness direction is small.
  • the shallow wall section 240A is formed in a part of the thickness H1 in the thickness direction T of the first DLC layer 230, and here is formed with a thickness H2 that is biased toward the surface opposite to the substrate 210.
  • the thick section 240B is formed in the entire thickness H1 of the first DLC layer 230 in the thickness direction T. Therefore, the intermediate layer 220 and the base material 210 are electrically connected, and power can be supplied to the first conductive region 240 via the power supply terminal X of the base material 210.
  • the first conductive region 240 is formed in the entire direction S along the surface of the first DLC layer 230.
  • the second conductive region 242 is formed in a part of the thickness H1 in the thickness direction T of the second DLC layer 232, and here, the second conductive region 242 is formed with a thickness H2 that is biased toward the surface opposite to the substrate 210.
  • the second conductive region 242 is formed in the entire direction S along the surface of the second DLC layer 232. Therefore, by providing the power supply terminal Y for the second conductive region 242, power can be supplied to the second conductive region 242.
  • the electronic component 201 can be used as an electrode of a capacitor because the first conductive region 240 and the second conductive region 242 are arranged in parallel with a certain interval through the second DLC layer 232.
  • region 242 is not limited to a present Example, You may make it a comb-tooth shape or a radial shape.
  • the electronic component 301 includes a base material (base material) 310, an intermediate layer 320, a DLC layer 330, a conductive region 340, and a cover layer 350.
  • the conductive region 340 has a strip shape having a width W.
  • the conductive region 340 further includes a thick section 340B in which the occupation ratio in the thickness direction in the DLC layer 230 is increased and a shallow section 340A in which the occupation ratio in the thickness direction is decreased.
  • the shallow section 340A is formed in a part of the thickness H1 in the thickness direction T of the DLC layer 330, and here is formed with a thickness H2 that is biased toward the surface opposite to the substrate 310.
  • the thick section 340 ⁇ / b> B is formed in a part of the thickness H ⁇ b> 1 in the thickness direction T of the DLC layer 230, and is formed with a thickness H ⁇ b> 3 that is biased toward the surface opposite to the base material 310.
  • This thickness H3 is larger than the thickness H2 of the shallow section 340A.
  • a plurality of thick sections 340B are formed at predetermined intervals along the band direction. Here, the case where the thicknesses H3 of the plurality of thick sections 340B coincide with each other is illustrated, but the thickness of each thick section 340B may be different from each other.
  • the thick section 340B and the thin section 340A can be formed by different heating means, heating temperature, heating time, number of heating, and heating method. Note that the thick section 340B may have a higher heating temperature, a longer heating time, or a higher number of heating times than the thin section 340A. Since the thick section 340B has a larger volume (cross-sectional area) than the thin section 340A, the electrical resistance decreases. The thick section 340B has a higher graphite content than the thin section 340A, so the electrical resistivity is also lowered.
  • a resistance component having a predetermined resistance value is obtained.
  • the resistance value changes when the DLC layer 330 and the conductive region 340 are deformed due to the deformation of the base material 310, it can be applied to an electronic component such as a strain sensor or a vibration sensor.
  • the thick section 340B and the thin section 340A having different resistance values are alternately repeated, the amount of change in the resistance value due to the deformation of the base material 310 can be increased.
  • 340G can also be formed.
  • the heating temperature and the heating method it is preferable to make the heating temperature and the heating method different from each other.
  • dope non-carbon components into the DLC layer 330 For example, local modification of the DLC layer 330 is possible by ion doping, and an additional function can be given to the local part by doping ions.
  • the electronic component 401 includes a base material (base material) 410, an intermediate layer 420, a DLC layer 430, a plurality of conductive regions 440, and a cover layer 450.
  • the plurality of conductive regions 440 are in an electrically independent state (electrically floating island state) only within the DLC layer 430.
  • Each conductive region 440 is formed in a part of the thickness H1 in the thickness direction T of the DLC layer 430, and here is formed with a thickness H2 that is biased toward the surface opposite to the substrate 410. Further, the conductive region 440 is formed in a part of the direction S along the surface of the DLC layer 430.
  • the resistance value of the DLC layer 430 remaining in the gap is reduced.
  • the power supply terminal X is provided in the conductive region 440 at one end
  • the electrode supply terminal Y is provided in the conductive region 440 at the other end. If a voltage is applied between them, a current flows through the plurality of conductive regions 440 and the DLC layer 430 remaining therebetween, thereby forming a high resistance component. Further, when the DLC layer 430 and the conductive region 440 are deformed due to the deformation of the base material 510, the resistance value is changed, so that it can be applied to electronic components such as a strain sensor and a vibration sensor.
  • an electronic component 501 according to a sixth embodiment of the present invention will be described with reference to FIG. Since the sixth embodiment is a modification of the electronic component 401 of the fifth embodiment, members having the same name and the same reference numerals as the electronic component 401 described in the fourth embodiment are the last two digits. The detailed description of each is omitted.
  • This electronic component 501 has a base material (base material) 510, an intermediate layer 520, a first DLC layer 530, a plurality of first conductive regions 540, a second DLC layer 432, and a plurality of second conductive regions 542.
  • the plurality of first conductive regions 540 are in an electrically independent state (electrically floating island state) only within the first DLC layer 530.
  • the plurality of second conductive regions 542 are in an electrically independent state (electrically floating island state) only within the second DLC layer 532.
  • the plurality of first conductive regions 540 and the plurality of second conductive regions 542 are alternately arranged when seen in a plan view. It becomes wiring. That is, the second conductive regions 542 are arranged so as to bridge between a pair of adjacent first conductive regions 540. Since the edge of each first conductive region 540 and the edge of each second conductive region 542 are close to each other via the second DLC layer 532, a high voltage is applied when a high voltage is applied between both ends. A minute current flows in the second DLC layer 532.
  • a power supply terminal X is provided in the second conductive region 542 at one end among the plurality of second conductive regions 542, and an electrode is supplied to the second conductive region 542 at the other end. If a terminal Y is provided and a voltage is applied between them, a relatively high resistance component is obtained. According to this structure, when the first and second DLC layers 530 and 532 and the first and second conductive regions 540 and 542 are deformed due to the deformation of the base material 510, the resistance value changes. It can be applied to electronic parts such as vibration sensors.
  • the electronic component 601 includes a base material (base material) 610, an intermediate layer 620, a DLC layer 630, a conductive region 640, and a cover layer 650.
  • the conductive region 640 is formed in a part of the thickness H1 in the thickness direction T of the DLC layer 630, and here is formed with a thickness H2 that is biased toward the surface of the substrate 610 side.
  • the conductive region 640 is formed in the entire direction S along the surface of the DLC layer 630. In this case, since the conductive region 640 is covered with the DLC layer 630, the DLC layer 630 itself can also serve as the cover layer. Note that when the conductive region 640 is formed, the base material (base material) 610 or the intermediate layer 620 may be heated.
  • the DLC layer laminated on the base material is employed as the diamond-based region mainly composed of diamond and / or the diamond-based material to be amorphous carbon is exemplified. It is not limited.
  • This electronic component 701 has a three-dimensional diamond-based region 735 and conductive regions 740A and 740B partially formed in the diamond-based region 735 as a current-carrying structure.
  • the diamond-based region 735 has a crystal structure mainly composed of diamond.
  • the diamond-based region 735 is a natural diamond or an artificially synthesized synthetic diamond.
  • synthetic diamond conventionally known synthetic methods such as high-temperature and high-pressure vapor deposition or CVD can be employed.
  • the conductive regions 740A and 740B have a higher graphite content ratio than the diamond-based material in the diamond-based region 735 and a lower electrical resistivity than the diamond-based material. Accordingly, the conductive regions 740 ⁇ / b> A and 740 ⁇ / b> B constitute an energization path in the electronic component 701.
  • the conductive regions 740A and 740B are formed at least on the surface or inside of the diamond-based region 735.
  • the case where the conductive regions 740A and 740B are formed in a planar shape inside the three-dimensional diamond-based region 735 is illustrated. Yes.
  • one conductive region 740A is formed in a predetermined plane in the XY direction inside the diamond-based region 735.
  • the conductive region 740A may be formed over the entire area in this plane, and forms such as those shown in the first to seventh embodiments can be applied.
  • the other conductive region 740B is formed in a predetermined plane in the YZ direction inside the diamond-based region 735.
  • the conductive region 740B may be formed in the entire area in this plane, and forms such as those shown in the first to seventh embodiments can be applied.
  • a portion (intersection or intersection line) where the conductive region 740A and the conductive region 740B intersect with each other is a place where the two are electrically connected to each other.
  • the conductive regions 740A and 740B have a current path structure extending in the three-dimensional direction as a whole.
  • the conductive regions 740A and 740B may be formed, for example, by irradiating the diamond region 735 with a laser beam M and partially heating it. At this time, it is also possible to perform control so as to suppress the transfer of heat to the outside of the target area by irradiating an extremely short pulse laser such as a femtosecond laser.
  • an extremely short pulse laser such as a femtosecond laser.
  • the focal point of the laser beam M may be set so as to be positioned inside the diamond-based region 735. That is, the laser beam M may be condensed at a specific location inside the diamond-based region 735.
  • a channel element such as a slit shape or a pinhole shape may be arranged in the middle of the optical path of the laser beam M to control the focal shape of the laser beam M. Further, by arranging a wavefront control element such as a hologram, the laser beam M may be focused so as to form a specific image in the diamond-based region 735.
  • This electronic component 801 has a three-dimensional diamond-based region 835 and a conductive region 840 partially formed in the diamond-based region 835 as a current-carrying structure.
  • the conductive region 840 has a higher graphite content ratio than the diamond-based material in the diamond-based region 835 and has a lower electrical resistivity than the diamond-based material. Therefore, the conductive region 840 forms a current path in the electronic component 801.
  • the conductive region 840 is an energization path that freely extends in a three-dimensional direction, and has a branch point (confluence) on the way, so that it is branched inside. Each energization path becomes an external contact at a portion reaching the outer surface of the diamond-based region 835. As a result, a three-dimensional wiring structure can be freely constructed inside the diamond-based region 835. Accordingly, in the middle of the current path, for example, a conductive region 840A having a sensor function, a conductive region 840B having a resistance function, a conductive region 840C having a capacitor function, a conductive region 840D having a switching function, etc. It is also possible to build in.
  • This electronic component 901 has a three-dimensional diamond-type region 935 and a conductive region 940 partially formed in the diamond-type region 935 as a current-carrying structure.
  • the diamond-type region 935 having a three-dimensional shape has a complicated outer shape by forming notches 935A and the like that can be applied to various shapes such as slits and holes.
  • the notched portion 935A is obtained by irradiating the diamond-based region 935 with a laser beam M or the like and locally heating the diamond-based region 935 to 800 ° C. or more to eliminate the irradiated diamond as carbon dioxide. Should be formed. That is, by controlling the laser beam M, a notch 935A having an arbitrary shape can be formed, and a target three-dimensional diamond region 935 can be obtained.
  • the conductive region 940 is formed on the surface of the notch 935A or in the vicinity thereof.
  • the surface of the notch 935 or the like may be irradiated with a laser beam M or the like.
  • the conductive region 940 can be simultaneously formed on the processed surface of the notch 935 in the process of forming the notch 935A in FIG.
  • the etched diamond region 935 itself can be used as a substrate or an element of a vibrator or a sensing device. Further, by applying a voltage to the diamond region 935 using the conductive region 940 formed in the diamond region 935, a mechanical element component, a sensor, a vibrator, an actuator, or the like can be formed as the electronic component 901. It can function as a MEMS element.
  • the laser beam M is absorbed so as to be in close contact with or close to the diamond-based region 1030 at a position opposite to the irradiation position of the laser beam M of the diamond-based region 1030 having high light transmittance.
  • the temperature rising layer 1060 is provided.
  • the intermediate layer and / or the base material are omitted.
  • the laser beam passes through the diamond-based region and the diamond-based region is not heated or difficult to be heated.
  • the conductive region can be generated by indirectly heating the diamond-based region through the temperature layer.
  • the laser beam M irradiated in the arrow direction in an oxygen atmosphere is absorbed by the surface 1060a of the temperature rising layer 1060 on the diamond-based region 1030 side through the diamond-based region 1030. Then, the surface 1060a of the temperature raising layer 1060 is partially heated to raise the temperature. The heat due to the temperature rise is transferred by heat conduction to the opposing surface of the diamond-based region 1030 facing the temperature-raising portion, whereby the diamond-based region 1030 is locally heated and denatured into the conductive region 1040.
  • the laser beam M may be scanned in a desired pattern on the surface 1060a of the temperature rising layer 1060.
  • any visible light such as a gas flow laser can be used.
  • ceramics such as silicon nitride, silicon carbide, zirconia, silica, and titanium oxide can be used, as long as they absorb visible light such as a laser beam and generate heat efficiently. It is preferable that it has a light shielding property against visible light irradiated with a laser beam or the like and has a low reflectance. Although it does not specifically limit as a color, Black is preferable and in the case of other colors, the color with low brightness, such as dark brown and dark green, is preferable. Moreover, since the temperature which denatures a diamond-type area
  • the temperature raising layer may be a material having low thermal conductivity such as a porous material.
  • a material having low thermal conductivity such as a porous material.
  • Methods for forming the temperature rising layer in close contact with the diamond-based region include coating, plating, coating, etc., attaching a sheet-like temperature rising layer with an adhesive, or attaching a seal-like temperature rising layer. It is possible.
  • the temperature raising layer is arranged on the front side of the diamond-based region as viewed from the irradiation position of the laser beam.
  • the electronic component 1101 has a laser beam in close contact with or close to the irradiation region of the laser beam M of the diamond-based region 1130 with high light transmittance.
  • a temperature rising layer 1160 that absorbs M is included.
  • the intermediate layer and / or the base material are omitted. With this configuration, since the laser beam is directly irradiated onto the temperature rising layer, the temperature rising layer can be efficiently heated as compared with the eleventh embodiment.
  • the laser beam M irradiated in the arrow direction in an oxygen atmosphere is absorbed by the surface 1160a of the temperature rising layer 1160, and the surface 1160a of the temperature rising layer 1160 is partially heated. Then raise the temperature.
  • the atmosphere is oxygen, but it may be in the air or an inert gas atmosphere.
  • the heat of the surface 1160a of the temperature rising layer 1160 is transmitted through the temperature rising layer 1160 to partially heat the back surface 1160b corresponding to the surface portion. Heat due to the temperature rise on the back surface of the temperature raising layer is transferred by heat conduction to the opposing surface of the diamond-based region 1130 facing the back-side temperature-raising portion, whereby the diamond-based region 1130 is locally heated. Denatured into a conductive region 1140.
  • the laser beam M is absorbed so as to be in close contact with or close to the diamond-based region 1230 at a position opposite to the irradiation position of the laser beam M of the diamond-based region 1230 having high light transmittance.
  • a linear temperature rising layer 1260 is provided.
  • the linear heating layer may be directly applied to or pasted on the diamond-based region 1230, or as shown in FIG. 18B of the third modification, the linear heating layer may be applied to the planar sheet 1361.
  • the temperature rising layer 1362 may be integrally formed, and a planar transparent sheet 1361 may be attached to the diamond-based region 1330.
  • the temperature rising layer is irradiated with a laser beam that is visible light to raise the temperature.
  • a laser beam that is visible light
  • electromagnetic waves other than visible light may be used.
  • the color of the temperature raising layer does not necessarily need to be a color with low brightness, and any material that can easily absorb electromagnetic waves or the like may be used.
  • the intermediate layer or the base material adjacent to the diamond-based region described in the first embodiment or the like may be added with a function as a heating layer, and the intermediate layer or the base material may be heated, or You may make it heat up a heating type
  • the diamond-based region is placed in a high-temperature field atmosphere, and the diamond-based region is heated in advance to a temperature range slightly less than the amount of heat required for modification to the conductive region.
  • the diamond-based region is heated in advance to a temperature range slightly less than the amount of heat required for modification to the conductive region.
  • the electronic component and the like of the present invention are not limited to the above-described embodiments, and it is needless to say that various changes can be made without departing from the gist of the present invention. Further, the energization structure shown in the above embodiment can be applied to other parts and members that require energization in addition to so-called electronic components.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

[Problem] To make it possible to form an electrically conducting structure at various locations or in various members through a simple manufacturing process. [Solution] An electrically conducting structure of the present invention is provided with: a diamond-based region 20 based on diamond and/or a diamond-based material that becomes amorphous carbon; and an electrically conductive region 30 which is formed partially in the diamond-based region 20, has a higher graphite content than does the diamond-based material, and has a smaller electric resistivity than does the diamond-based material.

Description

ダイヤモンド系通電構造、ダイヤモンド系電子部品、及びダイヤモンド系通電構造の製造方法DIAMOND CONDUCTIVE STRUCTURE, DIAMOND ELECTRONIC COMPONENT, AND DIAMOND TYPE ELECTRONIC STRUCTURE
 本発明は、抵抗、半導体、コンデンサ、各種センサ、電子回路、回路基板、集積回路等の各種の電子部品に適用される通電構造、及びその製造方法に関する。 The present invention relates to a current-carrying structure applied to various electronic components such as resistors, semiconductors, capacitors, various sensors, electronic circuits, circuit boards, and integrated circuits, and a manufacturing method thereof.
 従来、抵抗、半導体、コンデンサ、各種センサ、電子回路、回路基板、集積回路等の各種の電子部品は、様々な手法によって製造される。これらの電子部品は、電気伝導性の良い金属などの良導体によって構成される通電部と、電気抵抗率が大きく電気を通さない(或いは、ほとんど通さない)絶縁部とを組み合わせて構成される。更に、良導体と絶縁体の中間的な抵抗率を持つ半導体を含む電子部品も存在する。 Conventionally, various electronic components such as resistors, semiconductors, capacitors, various sensors, electronic circuits, circuit boards, and integrated circuits are manufactured by various methods. These electronic components are configured by combining a current-carrying portion made of a good conductor such as a metal having good electrical conductivity and an insulating portion having a large electrical resistivity and not conducting electricity (or hardly conducting electricity). In addition, there are electronic components including a semiconductor having an intermediate resistivity between a good conductor and an insulator.
 例えば、電気回路は、基板上に金属配線を形成し、この金属配線上にコンデンサや抵抗等の他の電気的素子(これらも電子部品の一種である)、半導体部品等を実装して、全体として電子部品となる。電子回路の用途は様々であり、信号を増幅したり、計算したり、データを取得したりする。電子回路で用いられる回路基板は、一般的にプリント基板にフォトリソグラフィ等でプリント配線を作り込む(特許文献1参照)。 For example, an electric circuit is formed by forming a metal wiring on a substrate and mounting other electrical elements such as capacitors and resistors (which are also a kind of electronic components), semiconductor components, etc. on the metal wiring. As an electronic component. There are various uses for electronic circuits, which amplify signals, calculate, and acquire data. A circuit board used in an electronic circuit generally forms printed wiring on a printed board by photolithography or the like (see Patent Document 1).
 集積回路では、ケイ素などの半導体基板(ウェハ)上に、素子や配線を形成する。具体的には、基板上に将来の素子や配線となる薄膜層を形成し、この薄膜層に対してフォトレジスト等によって回路パターンを転写し、フォトレジストをマスクにして、エッチングによって、薄膜を配線等に加工する(特許文献2参照)。 In an integrated circuit, elements and wirings are formed on a semiconductor substrate (wafer) such as silicon. Specifically, a thin film layer to be a future element or wiring is formed on a substrate, a circuit pattern is transferred to the thin film layer with a photoresist, and the thin film is wired by etching using the photoresist as a mask. (See Patent Document 2).
特開2003-152020JP2003-152020 特開平10-209166JP-A-10-209166
 従来の電子部品の通電構造では、絶縁体又は半導体となる基板上に薄膜層を形成し、エッチング加工で配線を形成することから、残渣が生じたり、製造工程が複雑化したりする。また、基板には、良導体となる金属を用いることが難しく、仮に、良導体の基板を採用する場合は、予め、表面に絶縁被膜を施さない限り、その上に回路を形成することが難しい。また、従来の通電構造は、外力に対する耐久性が低いため、セラミックパッケージなどのように、剛性の高い筐体で覆う必要があった。 In the current-carrying structure of an electronic component, a thin film layer is formed on a substrate serving as an insulator or a semiconductor, and a wiring is formed by etching. Therefore, a residue is generated and a manufacturing process is complicated. In addition, it is difficult to use a metal that is a good conductor for the substrate. If a substrate with a good conductor is adopted, it is difficult to form a circuit on the surface unless an insulating coating is applied to the surface in advance. Further, since the conventional energization structure has low durability against external force, it is necessary to cover it with a highly rigid housing such as a ceramic package.
 本発明は上記問題点に鑑みてなされたものであり、耐久性の高い通電構造、該通電構造を用いた電子部品等を提供することを目的とし、また、この通電構造を様々な部位に容易に形成することを付加目的とする。 The present invention has been made in view of the above problems, and has an object to provide a highly durable current-carrying structure, an electronic component using the current-carrying structure, and the like. It is an additional purpose to form.
 上記目的を達成する本発明は、ダイヤモンド及び/又はアモルファスカーボンとなるダイヤモンド系材料を主成分とするダイヤモンド系領域と、上記ダイヤモンド系領域中に部分的に形成され、上記ダイヤモンド系材料よりもグラファイトの含有比率が高く、且つ、上記ダイヤモンド系材料よりも電気抵抗率が小さい導電性領域と、を備える事を特徴とする、ダイヤモンド系通電構造である。 The present invention that achieves the above object is characterized in that a diamond-based region mainly composed of a diamond-based material that becomes diamond and / or amorphous carbon, and a diamond-based region partially formed in the diamond-based region. A diamond-based energization structure comprising a conductive region having a high content ratio and a lower electrical resistivity than the diamond-based material.
 上記ダイヤモンド系通電構造に関連して、前記ダイヤモンド系領域が立体形状となっており、前記導電性領域が、前記ダイヤモンド系領域の表面又は内部に形成されることを特徴とする。 In relation to the diamond-based energization structure, the diamond-based region has a three-dimensional shape, and the conductive region is formed on or inside the diamond-based region.
 上記ダイヤモンド系通電構造に関連して、前記導電性領域が、前記ダイヤモンド系領域の内部において三次元方向に延材することを特徴とする。 In connection with the diamond-based current-carrying structure, the conductive region extends in a three-dimensional direction inside the diamond-based region.
 上記ダイヤモンド系通電構造に関連して、更に基材を備え、前記ダイヤモンド系統領域は、上記基材に対して直接的又は間接的に成層される前記ダイヤモンド系材料を主成分とするダイヤモンド系層を含み、前記導電性領域は、上記ダイヤモンド系層の中に部分的に形成される領域である事を特徴とする。 In relation to the diamond-based energization structure, the substrate further comprises a base material, and the diamond system region comprises a diamond-based layer mainly composed of the diamond-based material formed directly or indirectly on the base material. In addition, the conductive region is a region partially formed in the diamond-based layer.
 上記ダイヤモンド系通電構造に関連して、前記導電性領域は、前記ダイヤモンド系層の面に沿う方向における一部において、厚み方向の一部又は全部に形成されることを特徴とする。 In connection with the diamond-based energization structure, the conductive region is formed in a part or all of the thickness direction in a part in a direction along the surface of the diamond-based layer.
 上記ダイヤモンド系通電構造に関連して、前記導電性領域は、前記ダイヤモンド系層の厚み方向における一部において、面方向の一部又は全部に形成されることを特徴とする。 In connection with the diamond-based energization structure, the conductive region is formed in a part or all of the surface direction in a part of the diamond-based layer in the thickness direction.
 上記ダイヤモンド系通電構造に関連して、前記導電性領域は、前記ダイヤモンド系層における前記基材側と反対側の表面に形成されることを特徴とする。 In connection with the diamond-based energization structure, the conductive region is formed on the surface of the diamond-based layer on the side opposite to the substrate side.
 上記ダイヤモンド系通電構造に関連して、前記導電性領域は、前記ダイヤモンド系層における前記基材側の表面に形成されることを特徴とする。 In connection with the diamond-based energization structure, the conductive region is formed on the surface of the diamond-based layer on the substrate side.
 上記ダイヤモンド系通電構造に関連して、前記基材と前記ダイヤモンド系層の間に、中間層を有することを特徴とする。 In connection with the diamond-based energizing structure, an intermediate layer is provided between the base material and the diamond-based layer.
 上記ダイヤモンド系通電構造に関連して、前記ダイヤモンド系層における前記基材と反対側に、第二の層を有することを特徴とする。 In connection with the diamond-based energization structure, the diamond-based layer has a second layer on the side opposite to the base material.
 上記ダイヤモンド系通電構造に関連して、前記第二の層は、電気絶縁性を有する絶縁層であることを特徴とする。 In connection with the diamond-based energization structure, the second layer is an insulating layer having electrical insulation.
 上記ダイヤモンド系通電構造に関連して、前記ダイヤモンド系層における前記基材と反対側に、ダイヤモンド及び/又はアモルファスカーボンとなるダイヤモンド系材料を主成分とする第二のダイヤモンド系層を有することを特徴とする。 In relation to the diamond-based energization structure, the diamond-based layer has a second diamond-based layer mainly composed of a diamond-based material that becomes diamond and / or amorphous carbon on the side opposite to the base material. And
 上記ダイヤモンド系通電構造に関連して、前記導電性領域を有する前記ダイヤモンド系層が、複数積層されることを特徴とする。 In relation to the diamond-based energization structure, a plurality of the diamond-based layers having the conductive region are stacked.
 上記ダイヤモンド系通電構造に関連して、前記導電性領域が、点群状或いはドット群状に形成されることを特徴とする。 In connection with the diamond-based energization structure, the conductive region is formed in a point group shape or a dot group shape.
 上記ダイヤモンド系通電構造に関連して、前記点群状或いは前記ドット群状に形成される前記導電性領域が、断続配列して形成されることを特徴とする。 In relation to the diamond-based energization structure, the conductive regions formed in the shape of the point group or the dot group are formed in an intermittent arrangement.
 上記ダイヤモンド系通電構造に関連して、前記導電性領域が、直線状又は曲線状又はジグザグ線状等を含む線状に形成されることを特徴とする。 In connection with the diamond-based energization structure, the conductive region is formed in a linear shape including a linear shape, a curved shape, a zigzag shape, or the like.
 上記ダイヤモンド系通電構造に関連して、前記導電性領域が、帯状に形成されることを特徴とする。 In connection with the diamond-based energization structure, the conductive region is formed in a band shape.
 上記ダイヤモンド系通電構造に関連して、二つ以上の前記線状及び/又は帯状を成す前記導電性領域が、互いに交点を有して形成されることを特徴とする。 In connection with the diamond-based energization structure, two or more of the linear and / or strip-like conductive regions are formed so as to have intersections with each other.
 上記ダイヤモンド系通電構造に関連して、前記導電性領域が、平面状又は曲面状等を含む面状に形成されることを特徴とする。 In connection with the diamond-based energization structure, the conductive region is formed in a planar shape including a planar shape or a curved shape.
 上記ダイヤモンド系通電構造に関連して、前記導電性領域が、前記ダイヤモンド系領域の中に複数形成されることを特徴とする。 In connection with the diamond-based energization structure, a plurality of the conductive regions are formed in the diamond-based region.
 上記ダイヤモンド系通電構造に関連して、前記導電性領域は、前記ダイヤモンド系領域の中の所定方向の占有率が大きくなる厚肉区画と、上記所定方向の占有率が小きくなる浅肉区画とを有することを特徴とする。 In relation to the diamond-based energization structure, the conductive region includes a thick-walled section in which the occupation ratio in the predetermined direction in the diamond-based area is increased, and a shallow-walled section in which the occupation ratio in the predetermined direction is decreased. It is characterized by having.
 上記ダイヤモンド系通電構造に関連して、前記ダイヤモンド系領域は、一部又は全部にわたって、水素を含有することを特徴とする。 In relation to the diamond-based current-carrying structure, the diamond-based region contains hydrogen partially or entirely.
 上記ダイヤモンド系通電構造に関連して、前記ダイヤモンド系領域は、非炭素の元素若しくは分子、或いはそれらのイオン等の成分のドープにより、部分的に微量な非炭素成分を有して構成されることを特徴とする。 In relation to the diamond-based current-carrying structure, the diamond-based region is configured to partially include a small amount of non-carbon components by doping with components such as non-carbon elements or molecules, or ions thereof. It is characterized by.
 上記ダイヤモンド系通電構造に関連して、前記非炭素成分が、三価の原子又は分子であることを特徴とする。 In connection with the diamond-based energizing structure, the non-carbon component is a trivalent atom or molecule.
 上記ダイヤモンド系通電構造に関連して、前記非炭素成分が、五価の原子又は分子であることを特徴とする。 In connection with the diamond-based energizing structure, the non-carbon component is a pentavalent atom or molecule.
 上記目的を達成する本発明は、上記のいずれかに記載のダイヤモンド系通電構造を有することを特徴とするダイヤモンド系電子部品である。 The present invention for achieving the above object is a diamond-based electronic component characterized by having the diamond-based energizing structure described above.
 上記目的を達成する本発明は、ダイヤモンド及び/又はアモルファスカーボンとなるダイヤモンド系材料を主成分とするダイヤモンド系領域を加熱して、該ダイヤモンド系材料のグラファイト成分を増加させることで、上記ダイヤモンド系領域の中に上記ダイヤモンド系材料よりも電気抵抗率が小さくなる導電性領域を部分的に形成する事を特徴とする、ダイヤモンド系通電構造の製造方法である。 The present invention that achieves the above object is to heat the diamond-based region mainly composed of a diamond-based material to be diamond and / or amorphous carbon, thereby increasing the graphite component of the diamond-based material. A method for producing a diamond-based energizing structure is characterized in that a conductive region having a lower electrical resistivity than the diamond-based material is partially formed therein.
 上記ダイヤモンド系通電構造の製造方法に関連して、前記ダイヤモンド系領域を冷却する冷却工程を有することを特徴とする。 In connection with the method for manufacturing the diamond-based current-carrying structure, the method has a cooling step of cooling the diamond-based region.
 上記目的を達成する本発明は、基材に対して直接的又は間接的に、ダイヤモンド及び/又はアモルファスカーボンとなるダイヤモンド系材料を主成分とするダイヤモンド系層を設けるカーボン成層工程と、上記ダイヤモンド系層を加熱して該ダイヤモンド系材料のグラファイト成分を増加させることで、上記ダイヤモンド系層の中に上記ダイヤモンド系材料よりも電気抵抗率が小さくなる導電性領域を部分的に形成する導電部形成工程と、を備える事を特徴とする、ダイヤモンド系通電構造の製造方法である。 The present invention that achieves the above object includes a carbon stratification step in which a diamond-based layer mainly composed of a diamond-based material that becomes diamond and / or amorphous carbon is directly or indirectly formed on a substrate, and the diamond-based layer A conductive part forming step of partially forming a conductive region having a lower electrical resistivity than the diamond material by heating the layer to increase the graphite component of the diamond material. And a method for manufacturing a diamond-based energizing structure.
 上記ダイヤモンド系通電構造の製造方法に関連して、前記ダイヤモンド系層を冷却する冷却工程を有することを特徴とする。 In connection with the method for manufacturing the diamond-based current-carrying structure, the method has a cooling step for cooling the diamond-based layer.
 上記ダイヤモンド系通電構造の製造方法に関連して、前記導電部形成工程と前記冷却工程を同時に行うことを特徴とする。 In connection with the method for manufacturing the diamond-based energization structure, the conductive part forming step and the cooling step are performed simultaneously.
 上記ダイヤモンド系通電構造の製造方法に関連して、前記ダイヤモンドライクカーボン層に対して非炭素成分をドープするドーピング工程を有することを特徴とする。 In connection with the method for manufacturing the diamond-based energizing structure, the diamond-like carbon layer may be doped with a non-carbon component.
 本発明の通電構造等によれば、耐摩耗性や耐熱性に優れた電気・電子部品を形成することが可能となる。また、対象物体に対して通電構造を形成すれば、その対象物体の耐久性を高度に向上せしめることができるという優れた効果を奏する。また、本発明の通電構造等によれば、多様な対象物体の多様な部位を容易にセンサ化することができるという優れた効果を奏する。 According to the current-carrying structure and the like of the present invention, it is possible to form an electrical / electronic component having excellent wear resistance and heat resistance. In addition, if an energization structure is formed on the target object, there is an excellent effect that the durability of the target object can be improved to a high degree. Further, according to the energization structure of the present invention, there is an excellent effect that various parts of various target objects can be easily made into sensors.
本発明の第一実施形態に係る電子部品を示す(A)正面断面図、(B)平面図である。It is (A) front sectional view and (B) top view showing electronic parts concerning a first embodiment of the present invention. (A)乃至(C)は同電子部品の製造工程を示す正面断面図である。(A) thru | or (C) is front sectional drawing which shows the manufacturing process of the same electronic component. (A)及び(B)は同電子部品の製造工程を示す正面断面図である。(A) And (B) is front sectional drawing which shows the manufacturing process of the same electronic component. (A)及び(B)は同電子部品の製造工程を示す正面断面図である。(A) And (B) is front sectional drawing which shows the manufacturing process of the same electronic component. 本発明の第二実施形態に係る電子部品を示す正面断面図である。It is front sectional drawing which shows the electronic component which concerns on 2nd embodiment of this invention. 本発明の第三実施形態に係る電子部品を示す正面断面図である。It is front sectional drawing which shows the electronic component which concerns on 3rd embodiment of this invention. 本発明の第四実施形態に係る電子部品を示す(A)正面断面図、(B)平面図、(C)変形例の正面断面図である。It is (A) front sectional view, (B) top view, and (C) front sectional view of a modification showing electronic parts concerning a fourth embodiment of the present invention. 本発明の第五実施形態に係る電子部品を示す(A)正面断面図、(B)平面図である。It is (A) front sectional view and (B) top view showing electronic parts concerning a fifth embodiment of the present invention. 本発明の第六実施形態に係る電子部品を示す正面断面図である。It is front sectional drawing which shows the electronic component which concerns on 6th embodiment of this invention. 本発明の第七実施形態に係る電子部品を示す正面断面図である。It is front sectional drawing which shows the electronic component which concerns on 7th embodiment of this invention. (A)乃至(D)は本発明の実施形態に係る電子部品の回路構成を示す平面図である。(A) thru | or (D) is a top view which shows the circuit structure of the electronic component which concerns on embodiment of this invention. 本発明の実施形態に係る電子部品の回路構成を示す平面図である。It is a top view which shows the circuit structure of the electronic component which concerns on embodiment of this invention. 本発明の第八実施形態に係る電子部品を示す斜視図である。It is a perspective view which shows the electronic component which concerns on 8th embodiment of this invention. 本発明の第九実施形態に係る電子部品を示す斜視図である。It is a perspective view which shows the electronic component which concerns on 9th embodiment of this invention. (A)(B)共に、本発明の第十実施形態に係る電子部品を示す斜視図である。(A) (B) is a perspective view which shows the electronic component which concerns on 10th embodiment of this invention. 本発明の第十一実施形態に係る電子部品を示す(A)斜視図、(B)電子部品の製造工程を示す正断面図である。It is (A) perspective view which shows the electronic component which concerns on 11th embodiment of this invention, (B) Front sectional drawing which shows the manufacturing process of an electronic component. 本発明の第十一実施形態の第一変形例に係る電子部品を示す(A)斜視図、(B)電子部品の製造工程を示す正断面図である。It is (A) perspective view which shows the electronic component which concerns on the 1st modification of 11th embodiment of this invention, (B) The front sectional view which shows the manufacturing process of an electronic component. 本発明の第十一実施形態の変形例に係る電子部品を示す(A)第二変形例の斜視図、(B)第三変形例の製造工程である。It is the perspective view of the (A) 2nd modification which shows the electronic component which concerns on the modification of 11th embodiment of this invention, (B) It is a manufacturing process of a 3rd modification.
 以下、本発明の実施の形態について添付図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
 なお、第一実施形態から第七実施形態の電子部品では、ダイヤモンド及び/又はアモルファスカーボンとなるダイヤモンド系材料を主成分とするダイヤモンド系領域として、アモルファスカーボンを主成分とするダイヤモンドライクカーボン層を適用する場合を例示するが、本発明はこれに限定されず、このダイヤモンドライクカーボン層に変えて、ダイヤモンドを主成分とするダイヤモンド層としても良い。また、ダイヤモンド系領域は、基板に対する積層構造に限定されず、ダイヤモンド系領域自体が立体構造であっても良い。即ち、以下の第一実施形態から第七実施形態の電子部品のダイヤモンドライクカーボン層は、全て、ダイヤモンド層、又は、基板を省略した立体的なダイヤモンド系領域に置換できるものである。 In the electronic components of the first to seventh embodiments, a diamond-like carbon layer mainly composed of amorphous carbon is applied as a diamond-based region mainly composed of diamond-based material that becomes diamond and / or amorphous carbon. However, the present invention is not limited to this, and the diamond-like carbon layer may be replaced with a diamond layer mainly composed of diamond. Further, the diamond-based region is not limited to the laminated structure with respect to the substrate, and the diamond-based region itself may have a three-dimensional structure. That is, all of the diamond-like carbon layers of the electronic components of the following first to seventh embodiments can be replaced with a diamond layer or a three-dimensional diamond-based region in which the substrate is omitted.
 図1に、本発明の第一実施形態に係る電子部品1を示す。この電子部品1は、通電構造として、基材(母材)10、中間層20、ダイヤモンドライクカーボン層(以下DLC層)30、導電性領域40、カバー層50を有する。基材10は、例えば、導電性を有する材料で構成されていても良く、ここでは金属となっている。なお、基材10の材料や形状は特に限定されず、セラミック、ガラス、石材、コンクリート、アスファルト、合成木を含む木材、合成紙を含む紙、樹脂、天然ゴムや合成ゴムやシリコーンを含むゴム、シリコン、半導体(ウェハ)、動植物等由来のバイオ材料等、若しくはこれらの複合材等、様々な材料を選択できる。 FIG. 1 shows an electronic component 1 according to the first embodiment of the present invention. The electronic component 1 includes a base material (base material) 10, an intermediate layer 20, a diamond-like carbon layer (hereinafter referred to as DLC layer) 30, a conductive region 40, and a cover layer 50 as a current-carrying structure. The substrate 10 may be made of, for example, a conductive material, and is a metal here. The material and shape of the base material 10 are not particularly limited, and ceramic, glass, stone, concrete, asphalt, wood including synthetic wood, paper including synthetic paper, resin, rubber including natural rubber, synthetic rubber, and silicone, Various materials such as silicon, semiconductors (wafers), biomaterials derived from animals and plants, or composite materials thereof can be selected.
 中間層20は、基材10及びDLC層30に対する双方の密着性が高い材料によって構成されており、例えば、ラジカル窒化層や、金属/炭素の混合傾斜組成層、クロムやチタン等の金属膜、シリコン膜等が好ましい。金属/炭素の混合傾斜組成層の場合、基材10側は金属の組成比率が大きく、DLC層30側は炭素の組成比率が大きくなるようにする。この金属/炭素の混合傾斜組成層は、スパッタ等によって堆積及び/又は積層若しくは付着等によって成層される。なお、この中間層は、基材10の表面を改質することで得られる表面改質層の概念も含む。例えば、浸炭層や、基材10の表面粗さを改質して得られるショットピーニング層や、基材10の表面に窒素を浸透拡散させて得られる窒化層若しくはポーラス層、基材10の表面にイオン物質等をドーピングして得られるドープ層、基材10の表面を変性させることで得られる変性層等も中間層20の一部である。基材10の表面改質方法も様々であり、プラズマ処理等によって行っても良い。 The intermediate layer 20 is made of a material having high adhesion to both the base material 10 and the DLC layer 30. For example, a radical nitride layer, a mixed metal / carbon gradient composition layer, a metal film such as chromium or titanium, A silicon film or the like is preferable. In the case of a metal / carbon mixed gradient composition layer, the metal composition ratio is large on the substrate 10 side, and the carbon composition ratio is large on the DLC layer 30 side. The mixed gradient composition layer of metal / carbon is formed by deposition and / or lamination or adhesion by sputtering or the like. This intermediate layer also includes the concept of a surface modified layer obtained by modifying the surface of the substrate 10. For example, a carburized layer, a shot peening layer obtained by modifying the surface roughness of the substrate 10, a nitride layer or porous layer obtained by infiltrating and diffusing nitrogen into the surface of the substrate 10, and the surface of the substrate 10 A doped layer obtained by doping an ionic substance or the like, a modified layer obtained by modifying the surface of the substrate 10, etc. are also part of the intermediate layer 20. There are various surface modification methods for the substrate 10, and plasma treatment or the like may be used.
 DLC層30は、アモルファスカーボンを主成分とする被膜であり、ダイヤモンド構造に対応するsp結合をもっているが、部分的に、グラファイト構造に対応するsp結合の他、場合によっては水素結合を含むために、長距離秩序的には決まった結晶構造を持たない。 DLC layer 30 is a film composed mainly of amorphous carbon, but has a sp 3 bonds corresponding to the diamond structure, in part, other sp 2 bonds corresponding to the graphite structure, optionally including hydrogen bonding Therefore, it does not have a fixed crystal structure in a long-range order.
 特に本DLC層30は、電気抵抗率が高い不導体となる。DLC層30を不導体とするためには、アモルファスカーボン中において、短距離秩序的に、電気抵抗率が極めて高いダイヤモンド構造に対応するsp結合の比率を高め、グラファイト構造に対応するsp結合の比率を低くする。なお、DLC層30の堆積及び/又は積層若しくは付着による成層方向Tの厚みH1は、例えば、1~10μmとすることが出来る。勿論、成層の厚みはこれに限定されるものではなく、サブミクロン以下、例えば、数十原子単位程度等であってもよく、或いは数百μmオーダー以上であってもよい。特に、DLC層30の中に、水素結合をより多く含む場合には、このDLC層30の硬度が低下し、柔軟性が発現することもあり、層厚を厚く形成することも可能である。 In particular, the DLC layer 30 is a nonconductor having a high electrical resistivity. In order to make the DLC layer 30 non-conductive, in the amorphous carbon, the ratio of sp 3 bonds corresponding to a diamond structure having an extremely high electrical resistivity is increased in a short order and sp 2 bonds corresponding to a graphite structure. Reduce the ratio of. It should be noted that the thickness H1 in the layering direction T due to the deposition and / or lamination or adhesion of the DLC layer 30 can be set to 1 to 10 μm, for example. Of course, the thickness of the stratification is not limited to this, but may be submicron or less, for example, about several tens of atomic units, or may be on the order of several hundred μm or more. In particular, when the DLC layer 30 contains more hydrogen bonds, the hardness of the DLC layer 30 may be lowered and flexibility may be exhibited, and the layer thickness may be increased.
 なお、繰り返しになるが、DLC層30は、ダイヤモンドを主成分とするダイヤモンド層に置き換えたり、又は、多層構造によってダイヤモンド層と組み合わせたりすることができる。ダイヤモンド層は、ダイヤモンド構造に対応するsp結合を主成分とした結晶構造となる。ここでのダイヤモンド層は、電気抵抗率が高い不導体となる。 Note that, again, the DLC layer 30 can be replaced with a diamond layer mainly composed of diamond, or can be combined with the diamond layer by a multilayer structure. The diamond layer has a crystal structure mainly composed of sp 3 bonds corresponding to the diamond structure. The diamond layer here is a non-conductor with high electrical resistivity.
 なお、本実施形態では、基材10に対して中間層20を介して間接的にDLC層30を成層する場合を例示しているが、基材10に対して直接的にDLC層30を成層しても良い。 In addition, in this embodiment, although the case where the DLC layer 30 is laminated | stacked indirectly via the intermediate | middle layer 20 with respect to the base material 10 is illustrated, the DLC layer 30 is directly laminated | stacked with respect to the base material 10. You may do it.
 導電性領域40は、DLC層30の中に部分的に形成される領域となる。これは、予め成膜、或いは成層されたDLC層30のアモルファスカーボンを、部分的にグラファイトへ変性させることで得られる。グラファイトは、アモルファスカーボンよりも電気抵抗率が小さい。導電性領域40は、グラファイトの含有比率が高められることになり、所謂半導体や良導体となる。ここでは良導体としている。 The conductive region 40 is a region partially formed in the DLC layer 30. This can be obtained by partially modifying the amorphous carbon of the DLC layer 30 previously formed or stratified into graphite. Graphite has a lower electrical resistivity than amorphous carbon. In the conductive region 40, the content ratio of graphite is increased, so that it becomes a so-called semiconductor or good conductor. Here, a good conductor is used.
 導電性領域40は、DLC層30の厚みH1の一部に形成され、ここでは基材10と反対側の表面に偏って厚みH2で形成される。また、導電性領域40は、DLC層30の面に沿う方向Sの一部に形成される。具体的に導電性領域40は、図1(B)に示すように、面に沿う方向Sに対して幅W2となる帯状に形成され、更に、この帯がL字又はU字状に複数回屈曲した蛇行状となる。この導電性領域40の形成は、DLC層30を所定の温度域、例えば、200℃~600℃で加熱すればよい。加熱部分に限ってアモルファスカーボンが部分的にグラファイトへ変性して、グラファイトの占有率が高くなる。従って、この導電性領域40は通電路となる。また、加熱方法や加熱温度、加熱時間等を調整することで、導電性領域40の深さや、幅、グラファイトの含有比率を調整することが可能となり、結果、導電性領域40の電気抵抗率も、全体又は一部において自在に調整できる。従って、所定の電気抵抗率に設定すれば、導電性領域40を電気抵抗として用いることが出来る。なお、導電性領域40の形状は目的に応じて自在に変更できる。例えば、単数又は複数の直線や曲線、分岐線や合流線を含む線状(図11(A)参照)や、渦巻線状、ループ線状を含む線状(図11(B)参照)に形成しても良く、また、これらの線が交差して交点を有する状態又は格子状にしても良い(図11(C)参照)。更に、小さな若しくは微小な円形や多角形、微小線等を含む点状、即ち、ドット状や複数のドットで構成されるドット群状或いはドットが断続的な配列を成すように形成しても良く(図11(D)参照)、勿論、平面状や曲面状、或いは、母材の表面に沿った面状に形成することも可能であり、積層して多層化することやこれらの複合形態に構成することも出来る。また、図11に示すように、これらの導電性領域は、基材の表面全体及び/又は所望の領域に全体を被覆するように広がる様に形成することが好ましい。このようにすると基材のあらゆる場所の変位・変形・物理的性質の変化等をセンシングすることが可能となる。 The conductive region 40 is formed in a part of the thickness H1 of the DLC layer 30, and here is formed with a thickness H2 that is biased toward the surface opposite to the substrate 10. In addition, the conductive region 40 is formed in a part of the direction S along the surface of the DLC layer 30. Specifically, as shown in FIG. 1B, the conductive region 40 is formed in a band shape having a width W2 with respect to the direction S along the surface, and this band is further formed in an L shape or a U shape multiple times. It becomes a bent meandering shape. The conductive region 40 may be formed by heating the DLC layer 30 in a predetermined temperature range, for example, 200 ° C. to 600 ° C. The amorphous carbon is partially modified into graphite only in the heated portion, and the occupation ratio of graphite is increased. Accordingly, the conductive region 40 becomes a current path. In addition, by adjusting the heating method, heating temperature, heating time, etc., it becomes possible to adjust the depth, width, and graphite content ratio of the conductive region 40. As a result, the electrical resistivity of the conductive region 40 is also improved. , And can be freely adjusted in whole or in part. Therefore, if the electric resistivity is set to a predetermined value, the conductive region 40 can be used as an electric resistance. In addition, the shape of the electroconductive area | region 40 can be freely changed according to the objective. For example, it is formed in a line shape (see FIG. 11A) including one or a plurality of straight lines or curves, branch lines or merge lines, or a line shape including a spiral shape or a loop line shape (see FIG. 11B). Alternatively, these lines may intersect and have intersections or a lattice shape (see FIG. 11C). Furthermore, it may be formed so that dots including small or minute circles, polygons, minute lines, etc., that is, dots or a group of dots composed of a plurality of dots, or an intermittent arrangement of dots. (Refer to FIG. 11D) Of course, it is also possible to form a planar shape, a curved surface shape, or a planar shape along the surface of the base material. It can also be configured. Moreover, as shown in FIG. 11, it is preferable that these conductive regions are formed so as to spread over the entire surface of the substrate and / or a desired region. In this way, it is possible to sense displacements, deformations, changes in physical properties, etc. at any location on the substrate.
 また、本発明は、基材の全体が単一種類(単一機能)の導電性領域となる場合に限られず、基材中の複数の領域で異なる機能を発揮するように構成しても良い。例えば図12に示す電子部品1の導電構造のように、センサ機能を有する導電性領域40A、抵抗機能を有する導電性領域40B、コンデンサ機能を有する導電性領域40C、スイッチング機能を有する導電性領域40D、その他のバス等の配線機能を有する導電性領域40E等のように、異なる機能を単一基材内に作り込むことも可能である。また、このような電子部品1に対しては、電力を供給する電源が接続されたり、信号の入出力を行う外部装置が接続されたりしても良い。また、図示省略するが、外部からの熱や光、振動、圧力等の種々の形態のエネルギーを受けて発電可能な発電領域を電子部品1上に形成して必要な電力を供給するように構成してもよい。 Moreover, this invention is not restricted to the case where the whole base material becomes a single kind (single function) conductive region, and may be configured to exhibit different functions in a plurality of regions in the base material. . For example, like the conductive structure of the electronic component 1 shown in FIG. 12, a conductive region 40A having a sensor function, a conductive region 40B having a resistance function, a conductive region 40C having a capacitor function, and a conductive region 40D having a switching function. It is also possible to build different functions in a single substrate, such as the conductive region 40E having a wiring function such as other buses. In addition, such an electronic component 1 may be connected to a power supply that supplies electric power or an external device that inputs and outputs signals. Although not shown in the drawing, a power generation region capable of generating power by receiving various forms of energy such as heat, light, vibration, and pressure from the outside is formed on the electronic component 1 to supply necessary power. May be.
 カバー層50は、ここでは電気絶縁材による電気絶縁層となる。例えば、アルミナ被膜、シリカ膜等が好ましい。カバー層50は、塗装、スパッタ、PVD、CVD等の各種手法を用いることができる。勿論、カバー層を、第二アモルファスカーボン膜(第二DLC層)としても良い。また、カバー層50は、単層でも二層以上或いは多層であってもよく、更に、付加機能を有する物であってもよい。 Here, the cover layer 50 is an electric insulating layer made of an electric insulating material. For example, an alumina coating or a silica membrane is preferable. Various methods such as painting, sputtering, PVD, and CVD can be used for the cover layer 50. Of course, the cover layer may be a second amorphous carbon film (second DLC layer). Further, the cover layer 50 may be a single layer, two or more layers, or a multilayer, and may further have an additional function.
 本電子部品1は、例えば、導電性領域40を電気抵抗体とする抵抗、導電性領域40を電極とするコンデンサ、導電性領域40の抵抗値の変化を利用するセンサ、導電性領域40を電気供給配線とする電子回路や回路基板、導電性領域40を利用して配線や各種素子を形成する集積回路等となる。従って、電子部品1の目的に合わせて、導電性領域40の形状や膜厚を変更したり、導電性領域40を多層化したり、多層の導電性領域40を立体的に接続したり、導電性領域40を含むDLC層30を多層化したりすることが可能である。 The electronic component 1 includes, for example, a resistor that uses the conductive region 40 as an electric resistor, a capacitor that uses the conductive region 40 as an electrode, a sensor that uses a change in the resistance value of the conductive region 40, An electronic circuit or circuit board serving as a supply wiring, an integrated circuit in which wiring or various elements are formed using the conductive region 40, or the like. Therefore, according to the purpose of the electronic component 1, the shape and film thickness of the conductive region 40 can be changed, the conductive region 40 can be multi-layered, the multi-layer conductive regions 40 can be connected in three dimensions, The DLC layer 30 including the region 40 can be multilayered.
 次に図2及び図3を参照して、電子部品1の通電構造の製造手順について説明する。 Next, with reference to FIG. 2 and FIG. 3, the manufacturing procedure of the energization structure of the electronic component 1 will be described.
 図2(A)に示すように、まず、基材10に対して中間層20を成膜し、更に、その中間層20の上に、DLC層30を成膜する。なお、中間層20をラジカル窒化層とする場合は、真空雰囲気中のプラズマ放電により、窒素イオンを基材10の表面への衝突させることで成膜される。中間層20を、金属/炭素の混合傾斜組成層とする場合は、スパッタ等によって積層される。その他、塗装やプリント、フィルムの接着等によって中間層20を堆積及び/又は積層或いは付着させて成層することもできる。 As shown in FIG. 2A, first, the intermediate layer 20 is formed on the base material 10, and further, the DLC layer 30 is formed on the intermediate layer 20. When the intermediate layer 20 is a radical nitride layer, it is formed by causing nitrogen ions to collide with the surface of the substrate 10 by plasma discharge in a vacuum atmosphere. When the intermediate layer 20 is a metal / carbon mixed gradient composition layer, it is laminated by sputtering or the like. In addition, the intermediate layer 20 can be deposited and / or laminated or adhered by painting, printing, film adhesion, or the like.
 DLC層30の成膜は、公知の技術を適宜用いることが可能である。例えば、イオン化蒸着法、陰極アーム法、PVD法やプラズマCVD法等によって成膜される。DLC層30におけるアモルファスカーボン膜は、例えば、0.5~10μm程度或いはそれ未満の膜厚とし、電気抵抗率は10~1014(オーム・cm)とする。 A known technique can be appropriately used for forming the DLC layer 30. For example, the film is formed by an ionized vapor deposition method, a cathode arm method, a PVD method, a plasma CVD method, or the like. The amorphous carbon film in the DLC layer 30 has a thickness of, for example, about 0.5 to 10 μm or less and an electrical resistivity of 10 9 to 10 14 (ohm · cm).
 なお、DLC層30の代わりにダイヤモンド層を用いる場合、その成膜方法は公知技術を適宜用いることが可能である。例えば、熱フィラメントCVD、プラズマCVDなどの各種CVD法、燃焼炎を用いた燃焼炎法等の様々な方法を用いることが出来る。 In addition, when using a diamond layer instead of the DLC layer 30, the film formation method can use a well-known technique suitably. For example, various methods such as various CVD methods such as hot filament CVD and plasma CVD, and a combustion flame method using a combustion flame can be used.
 次に図2(B)に示すように、DLC層30の表面を加熱して、DLC層30の内部に導電性領域40を形成する(導電部形成工程)。この際、例えば図3(A)に示すように、酸素雰囲気中において、レーザービームMを照射してDLC層30を部分的に加熱しても良い。この際、フェムト秒レーザーのように極めて短時間のパルスレーザーを照射することで、ターゲットエリア外への熱の伝達を抑制するように制御することも可能である。 Next, as shown in FIG. 2B, the surface of the DLC layer 30 is heated to form a conductive region 40 inside the DLC layer 30 (conductive portion forming step). At this time, for example, as shown in FIG. 3A, the DLC layer 30 may be partially heated by irradiation with a laser beam M in an oxygen atmosphere. At this time, it is also possible to perform control so as to suppress the transfer of heat to the outside of the target area by irradiating an extremely short pulse laser such as a femtosecond laser.
 また、図3(A)の点線に示すように、レーザービームMの表面に対する照射角度を変えて、複数の角度から個別又は同時に照射しても良い。このようにすると、導電性領域40の深さ等を制御しやすくなる。例えば、互いに異なる照射角となる複数のレーザービームMを同時に照射して、DLC層30の内部で交差させるようにすると、その交差点が局所的に加熱される。結果、表面ではなくDLC層30の内部に限定して導電性領域40を形成することができる。また、特に図示しないが、レンズ等の光学素子を利用して、レーザービームM等の焦点をDLC層30の内部にフォーカスすることで、焦点位置のみを局所的に加熱することもできる。なお、レーザービーム以外にも、ガスフローレーザー、超音波振動、高周波等、様々な加熱手法を用いることが出来る。勿論、必ずしも酸素雰囲気中での加熱でなければならないというものではなく、真空中や不活性ガス雰囲気中であってもよいが、酸素雰囲気中での加熱であればダイヤモンド構造に対応するSP結合からグラファイト構造に対応するSP結合への転換が比較的低温であっても生じ易くなるという効果を得ることが出来る。また、図3(B)に示すように、表面に、導電性領域40と同じ形状となる転写パターン72を有する加熱型70を用い、この加熱型70を、ヒータ等によって例えば、200℃~600℃に調温し、この加熱型70の転写パターン72を、DLC層30に当接させることで、DLC層30を部分的に加熱することもできる。 Further, as shown by the dotted line in FIG. 3A, the irradiation angle with respect to the surface of the laser beam M may be changed, and irradiation may be performed individually or simultaneously from a plurality of angles. This makes it easier to control the depth and the like of the conductive region 40. For example, when a plurality of laser beams M having different irradiation angles are irradiated at the same time so as to intersect within the DLC layer 30, the intersection is locally heated. As a result, the conductive region 40 can be formed not in the surface but in the DLC layer 30. Although not particularly illustrated, only the focal position can be locally heated by focusing the focus of the laser beam M or the like inside the DLC layer 30 using an optical element such as a lens. In addition to the laser beam, various heating methods such as a gas flow laser, ultrasonic vibration, and high frequency can be used. Of course, the heating is not necessarily performed in an oxygen atmosphere, and may be in a vacuum or an inert gas atmosphere. If heating is performed in an oxygen atmosphere, SP 3 bonding corresponding to the diamond structure is possible. Thus, the effect that the conversion from SP to the SP 2 bond corresponding to the graphite structure is likely to occur even at a relatively low temperature can be obtained. Further, as shown in FIG. 3B, a heating die 70 having a transfer pattern 72 having the same shape as that of the conductive region 40 is used on the surface, and this heating die 70 is, for example, 200 ° C. to 600 ° C. with a heater or the like. The DLC layer 30 can be partially heated by adjusting the temperature to 0 ° C. and bringing the transfer pattern 72 of the heating mold 70 into contact with the DLC layer 30.
 DLC層30を加熱する場合、DLC層30を直接又は間接的に冷却(放熱)することが好ましい。DLC層30は熱伝導率が高いため、DLC層30を部分的に加熱しても、その熱がDLC層30の全体に拡散して、全体が導電性領域40となってしまうからである。具体的には図4(A)に示すように、基材10の背面(底面)側に、下側冷却プレート80を配置して、基材10及び中間層20を介して、DLC層30を間接的に冷却する。この下側冷却プレート80は、ヒートシンクを備えていても良く、また、冷却媒体(冷却水やフロリナート(商標)等の如くのフルオロカーボンを基にした液相冷媒等の冷却液)を循環させたり、ペルチェ素子を備えたりして強制的に放熱することが好ましい。 When heating the DLC layer 30, it is preferable to cool (heat radiation) the DLC layer 30 directly or indirectly. This is because the DLC layer 30 has a high thermal conductivity, so that even if the DLC layer 30 is partially heated, the heat diffuses throughout the DLC layer 30 and the whole becomes the conductive region 40. Specifically, as shown in FIG. 4A, a lower cooling plate 80 is disposed on the back surface (bottom surface) side of the base material 10, and the DLC layer 30 is disposed via the base material 10 and the intermediate layer 20. Cool indirectly. The lower cooling plate 80 may include a heat sink, and circulate a cooling medium (cooling liquid such as a liquid phase refrigerant based on a fluorocarbon such as cooling water or Fluorinert (trademark)), It is preferable to forcibly dissipate heat by providing a Peltier element.
 また、DLC層30の基材10側と反対側の表面(上面)に対して、上側冷却プレート90を当接させて、DLC層30を直接的に冷却しても良い。この上側冷却プレート90には、導電性領域40と同じ形状で開口する開口パターン92を備えるようにし、図4(B)に示すように、この開口パターン92を介して、加熱型70の転写パターン72をDLC層30に当接させる。上側冷却プレート90は、DLC層30よりも熱伝導率の高い材料を用いることにより、DLC層30の熱を積極的に吸収し、更にヒートシンク等によってその熱を外部に放出する。勿論、上側冷却プレート90に、冷却媒体(冷却水やフロリナート(商標)等の如くのフルオロカーボンを基にした液相冷媒等の冷却液)を循環させたり、ペルチェ素子を設けたりして強制的に放熱させることができる。 Further, the DLC layer 30 may be directly cooled by bringing the upper cooling plate 90 into contact with the surface (upper surface) opposite to the substrate 10 side of the DLC layer 30. The upper cooling plate 90 is provided with an opening pattern 92 having the same shape as that of the conductive region 40. As shown in FIG. 4B, the transfer pattern of the heating mold 70 is passed through the opening pattern 92. 72 is brought into contact with the DLC layer 30. The upper cooling plate 90 actively absorbs the heat of the DLC layer 30 by using a material having higher thermal conductivity than the DLC layer 30, and further releases the heat to the outside by a heat sink or the like. Of course, the upper cooling plate 90 is forced to circulate a cooling medium (cooling liquid such as a liquid-phase refrigerant based on a fluorocarbon such as cooling water or Florinart (trademark)) or by providing a Peltier element. Heat can be dissipated.
 なお、加熱型70を用いずに、開口パターン92を介してレーザー等をDLC層30に照射して加熱しても良い。また、ここでは、DLC層30の冷却工程と、DLC層30の加熱工程(導電部形成工程)を同時に行う場合を例示したが、本発明はこれに限定されず、例えば、液体窒素ややフロリナート(商標)等の如くのフルオロカーボンを基にした液相冷媒等の低温冷却液等への直接浸漬等様々な手法でDLC層30を予め冷却しておき、その後、冷却済みのDLC層30を加熱して導電性領域40を形成しても良い。また、冷却手法は上記に限定されず、例えば、冷風等の冷却雰囲気によって冷却することも可能である。 The DLC layer 30 may be heated by irradiating the laser or the like through the opening pattern 92 without using the heating die 70. Moreover, although the case where the cooling process of the DLC layer 30 and the heating process (conductive part forming process) of the DLC layer 30 are performed at the same time is illustrated here, the present invention is not limited to this, for example, liquid nitrogen or slightly fluorinate ( The DLC layer 30 is cooled in advance by various techniques such as direct immersion in a low-temperature cooling liquid such as a liquid phase refrigerant based on a fluorocarbon such as a trademark, and then the cooled DLC layer 30 is heated. Thus, the conductive region 40 may be formed. Further, the cooling method is not limited to the above, and it is also possible to cool in a cooling atmosphere such as cold air.
 図2(C)に戻って、DLC層30の内部に導電性領域40を形成した後は、その表面にカバー層50を成膜してもよい。カバー層50は、塗装、スパッタ、PVD、CVD等の各種手法を用いることができる。その他にも、プリント、絶縁フィルムの接着等によって積層しても良い。 2C, after forming the conductive region 40 inside the DLC layer 30, the cover layer 50 may be formed on the surface thereof. Various methods such as painting, sputtering, PVD, and CVD can be used for the cover layer 50. In addition, it may be laminated by printing, adhesion of an insulating film, or the like.
 本実施形態の電子部品1は、以下の利点を有する。 The electronic component 1 of the present embodiment has the following advantages.
 (1)DLC層30自体が絶縁被膜となり、その中の一部に導電性領域40が形成される構造となることから、電子部品1の薄肉化が実現される。従って、従来、電子部品1の形成が困難とされるような部位・部材・場所に通電構造を形成することができ、その部位を電子部品1とすることが可能となる。 (1) Since the DLC layer 30 itself becomes an insulating film and has a structure in which the conductive region 40 is formed in a part thereof, the electronic component 1 can be thinned. Therefore, it is possible to form a current-carrying structure at a site, member, or place where it is difficult to form the electronic component 1 conventionally, and the site can be the electronic component 1.
 (2)DLC層30は多種多様な基材に形成できる。結果、金属等の導電性の基材に限られず、樹脂フィルム、ゴム、紙、木材、石、セラミック、ガラス、シリコン等、様々な基材に通電構造を形成できる。換言すると、世の中に存在するあらゆる各種製品の表面に、一体的に、電子部品1を作り込むことが可能となる。 (2) The DLC layer 30 can be formed on a wide variety of substrates. As a result, the conductive structure can be formed on various substrates such as a resin film, rubber, paper, wood, stone, ceramic, glass, silicon, etc. without being limited to a conductive substrate such as metal. In other words, the electronic component 1 can be integrally formed on the surfaces of all kinds of products existing in the world.
 (3)DLC層30の成膜工程と、DLC層30に対する熱処理で導電性領域40を形成する工程で、様々な回路パターンを自在にデザインできる。結果、製造工程が大幅に簡素化される。 (3) Various circuit patterns can be freely designed in the step of forming the DLC layer 30 and the step of forming the conductive region 40 by heat treatment on the DLC layer 30. As a result, the manufacturing process is greatly simplified.
 (4)DLC層30は、耐摩耗性が極めて高いことから、耐久性や耐摩耗性、平滑性等が要求される部位においても、通電構造を形成できる。例えば、各種産業用ローラの表面に電子部品を形成したり、加工工具・加工治具の表面に電子部品を形成したりすることも可能となる。 (4) Since the DLC layer 30 has extremely high wear resistance, a current-carrying structure can be formed even in parts where durability, wear resistance, smoothness, and the like are required. For example, an electronic component can be formed on the surface of various industrial rollers, or an electronic component can be formed on the surface of a processing tool / processing jig.
 次に、本発明の第二実施形態に係る電子部品101について、図5を参照して説明する。なお、第一実施形態で説明した電子部品1と同一・類似する部材については、名称と符号の下二桁を一致させることで、個々の詳細な説明を省略する。 Next, the electronic component 101 according to the second embodiment of the present invention will be described with reference to FIG. In addition, about the member which is the same as that of the electronic component 1 demonstrated in 1st embodiment, and the last two digits of a code | symbol are made to correspond, individual detailed description is abbreviate | omitted.
 この電子部品101は、基材(母材)110、中間層120、DLC層130、導電性領域140、カバー層150を有する。導電性領域140は、DLC層130の厚み方向Tの厚みH1の一部に形成され、ここでは基材110と反対側の表面に偏って厚みH2で形成される。また、導電性領域140は、DLC層130の面に沿う方向Sの全部に形成される。従って、DLC層130の表面の全体が導電性領域140となり、所定の抵抗値を有する配線となる。結果、電子部品101は、抵抗部品として用いることが出来る。また、基材110の変形と連動して導電性領域140を変形させれば、その抵抗値変化によって基材110の変形量をセンシングするセンサとなる。この基材110をフィルム状として、他の部材に張り付けるようにすれば、所謂歪みゲージとして用いることも可能になる。勿論、基材(母材)110その物の表面に直接的にDLC層30を成層し、所望の導電性領域140を形成することで、基材(母材)110自体の歪みを検出可能となるため、あらゆる物、その物自体をセンサ化することが可能となり、基材(母材)110その物の温度を直接測定したり、自身の歪みを測定したりすることが可能となる。 The electronic component 101 includes a base material (base material) 110, an intermediate layer 120, a DLC layer 130, a conductive region 140, and a cover layer 150. The conductive region 140 is formed in a part of the thickness H1 in the thickness direction T of the DLC layer 130, and here is formed with a thickness H2 that is biased toward the surface opposite to the substrate 110. In addition, the conductive region 140 is formed in the entire direction S along the surface of the DLC layer 130. Accordingly, the entire surface of the DLC layer 130 becomes the conductive region 140, which is a wiring having a predetermined resistance value. As a result, the electronic component 101 can be used as a resistance component. Further, if the conductive region 140 is deformed in conjunction with the deformation of the base material 110, it becomes a sensor that senses the deformation amount of the base material 110 by the change in the resistance value. If the base material 110 is formed into a film and stuck to another member, it can be used as a so-called strain gauge. Of course, it is possible to detect the distortion of the base material (base material) 110 itself by forming the DLC layer 30 directly on the surface of the base material (base material) 110 and forming the desired conductive region 140. Therefore, it becomes possible to convert any object and the object itself into a sensor, and it is possible to directly measure the temperature of the substrate (base material) 110 or to measure its own strain.
 次に、本発明の第三実施形態に係る電子部品201について、図5を参照して説明する。なお、第一実施形態で説明した電子部品1と同一・類似する部材については、名称と符号の下二桁を一致させることで、個々の詳細な説明を省略する。 Next, an electronic component 201 according to the third embodiment of the present invention will be described with reference to FIG. In addition, about the member which is the same as that of the electronic component 1 demonstrated in 1st embodiment, and the last two digits of a code | symbol are made to correspond, individual detailed description is abbreviate | omitted.
 この電子部品201は、基材(母材)210、中間層220、第一DLC層230、第一導電性領域240、第二DLC層232、第二導電性領域242を有する。即ち、DLC層と導電性領域が多層構造となっている。 The electronic component 201 includes a base material (base material) 210, an intermediate layer 220, a first DLC layer 230, a first conductive region 240, a second DLC layer 232, and a second conductive region 242. That is, the DLC layer and the conductive region have a multilayer structure.
 第一導電性領域240は、第一DLC層230の中の厚み方向の占有率が大きくなる厚肉区画240Bと、同厚み方向の占有率が小きくなる浅肉区画240Aを有する。浅肉区画240Aは第一DLC層230の厚み方向Tの厚みH1の一部に形成され、ここでは基材210と反対側の表面に偏って厚みH2で形成される。厚肉区画240Bは、第一DLC層230の厚み方向Tの厚みH1の全部に形成される。従って、中間層220及び基材210と導通しており、基材210の電力供給端子Xを介して、第一導電性領域240に電力を供給できる。なお、第一導電性領域240は、第一DLC層230の面に沿う方向Sの全部に形成される。 The first conductive region 240 has a thick section 240B in which the occupation ratio in the thickness direction in the first DLC layer 230 is large and a shallow section 240A in which the occupation ratio in the thickness direction is small. The shallow wall section 240A is formed in a part of the thickness H1 in the thickness direction T of the first DLC layer 230, and here is formed with a thickness H2 that is biased toward the surface opposite to the substrate 210. The thick section 240B is formed in the entire thickness H1 of the first DLC layer 230 in the thickness direction T. Therefore, the intermediate layer 220 and the base material 210 are electrically connected, and power can be supplied to the first conductive region 240 via the power supply terminal X of the base material 210. The first conductive region 240 is formed in the entire direction S along the surface of the first DLC layer 230.
 更に第二導電性領域242は、第二DLC層232の厚み方向Tの厚みH1の一部に形成され、ここでは基材210と反対側の表面に偏って厚みH2で形成される。また、第二導電性領域242は、第二DLC層232の面に沿う方向Sの全部に形成される。従って、第二導電性領域242に対して電力供給端子Yを設けることで、第二導電性領域242に電力を供給できる。 Further, the second conductive region 242 is formed in a part of the thickness H1 in the thickness direction T of the second DLC layer 232, and here, the second conductive region 242 is formed with a thickness H2 that is biased toward the surface opposite to the substrate 210. The second conductive region 242 is formed in the entire direction S along the surface of the second DLC layer 232. Therefore, by providing the power supply terminal Y for the second conductive region 242, power can be supplied to the second conductive region 242.
 本電子部品201は、第一導電性領域240と第二導電性領域242が、第二DLC層232を介して一定の間隔を空けて平行に配置されるので、コンデンサの電極として用いることが出来る。なお、第一導電性領域240と第二導電性領域242の形状は本実施例に限定されず、櫛歯形状としたり、放射形状としたりしても良い。 The electronic component 201 can be used as an electrode of a capacitor because the first conductive region 240 and the second conductive region 242 are arranged in parallel with a certain interval through the second DLC layer 232. . In addition, the shape of the 1st electroconductive area | region 240 and the 2nd electroconductive area | region 242 is not limited to a present Example, You may make it a comb-tooth shape or a radial shape.
 次に、本発明の第四実施形態に係る電子部品301について、図7を参照して説明する。なお、第一実施形態で説明した電子部品1と同一・類似する部材については、名称と符号の下二桁を一致させることで、個々の詳細な説明を省略する。 Next, an electronic component 301 according to a fourth embodiment of the present invention will be described with reference to FIG. In addition, about the member which is the same as that of the electronic component 1 demonstrated in 1st embodiment, and the last two digits of a code | symbol are made to correspond, individual detailed description is abbreviate | omitted.
 この電子部品301は、基材(母材)310、中間層320、DLC層330、導電性領域340、カバー層350を有する。図7(B)に示すように、導電性領域340は、幅Wを有する帯状となる。導電性領域340は、更に、DLC層230の中の厚み方向の占有率が大きくなる厚肉区画340Bと、同厚み方向の占有率が小きくなる浅肉区画340Aを有する。浅肉区画340Aは、DLC層330の厚み方向Tの厚みH1の一部に形成され、ここでは基材310と反対側の表面に偏って厚みH2で形成される。厚肉区画340Bは、DLC層230の厚み方向Tの厚みH1の一部に形成され、基材310と反対側の表面に偏って厚みH3で形成される。この厚みH3は、浅肉区画340Aの厚みH2よりも大きい。厚肉区画340Bは、帯方向に沿って所定の間隔を空けて複数形成される。なお、ここでは、複数の厚肉区画340Bの厚みH3が互いに一致する場合を例示したが、各厚肉区画340Bの厚みを互いに異ならせても良い。 The electronic component 301 includes a base material (base material) 310, an intermediate layer 320, a DLC layer 330, a conductive region 340, and a cover layer 350. As shown in FIG. 7B, the conductive region 340 has a strip shape having a width W. The conductive region 340 further includes a thick section 340B in which the occupation ratio in the thickness direction in the DLC layer 230 is increased and a shallow section 340A in which the occupation ratio in the thickness direction is decreased. The shallow section 340A is formed in a part of the thickness H1 in the thickness direction T of the DLC layer 330, and here is formed with a thickness H2 that is biased toward the surface opposite to the substrate 310. The thick section 340 </ b> B is formed in a part of the thickness H <b> 1 in the thickness direction T of the DLC layer 230, and is formed with a thickness H <b> 3 that is biased toward the surface opposite to the base material 310. This thickness H3 is larger than the thickness H2 of the shallow section 340A. A plurality of thick sections 340B are formed at predetermined intervals along the band direction. Here, the case where the thicknesses H3 of the plurality of thick sections 340B coincide with each other is illustrated, but the thickness of each thick section 340B may be different from each other.
 なお、厚肉区画340Bと薄肉区画340Aは、加熱手段、加熱温度や加熱時間、加熱回数、加熱手法を異ならせることで形成できる。なお、厚肉区画340Bの方が、薄肉区画340Aと比較して、加熱温度を高くしたり、加熱時間を長くしたり、加熱回数を多くしたりすれば良い。厚肉区画340Bの方が、薄肉区画340Aと比較して体積(断面積)が大きくなるので、電気抵抗が低下する。なお、厚肉区画340Bの方が、薄肉区画340Aと比較してグラファイトの含有量が多くなることから、電気抵抗率も低下する。 The thick section 340B and the thin section 340A can be formed by different heating means, heating temperature, heating time, number of heating, and heating method. Note that the thick section 340B may have a higher heating temperature, a longer heating time, or a higher number of heating times than the thin section 340A. Since the thick section 340B has a larger volume (cross-sectional area) than the thin section 340A, the electrical resistance decreases. The thick section 340B has a higher graphite content than the thin section 340A, so the electrical resistivity is also lowered.
 導電性領域340の両端間に電圧を印加すれば、所定の抵抗値を示す抵抗部品となる。また、基材310の変形によって、DLC層330及び導電性領域340が変形すると抵抗値が変化するので、歪みセンサや振動センサ等の電子部品に応用できる。特に、本実施形態のように、抵抗値が異なる厚肉区画340Bと薄肉区画340Aが交互に繰り返されると、基材310の変形による抵抗値の変化量を増大させることができる。 When a voltage is applied between both ends of the conductive region 340, a resistance component having a predetermined resistance value is obtained. In addition, since the resistance value changes when the DLC layer 330 and the conductive region 340 are deformed due to the deformation of the base material 310, it can be applied to an electronic component such as a strain sensor or a vibration sensor. In particular, as in the present embodiment, when the thick section 340B and the thin section 340A having different resistance values are alternately repeated, the amount of change in the resistance value due to the deformation of the base material 310 can be increased.
 なお、図7(C)に示す電子部品301のように、導電性領域340において、電気抵抗率が高い高抵抗率区画340Fと、高抵抗率区画340Fよりも電気抵抗率が低い低抵抗率区画340Gを形成することもできる。例えば、物理的な厚みを変化させることなく、高抵抗率区画340Fと低抵抗率区画340Gを作り分けるためには、加熱温度や加熱手法を互いに異ならせることが好ましい。また、DLC層330に対して非炭素成分のドーピングを行うことも可能である。例えばイオンドーピングにより、DLC層330の局所的な改質も可能であり、ドープするイオンによって、付加的な機能を当該局部に与えることが出来る。例えば、三価の元素であるホウ素やホウ素化合物、アルミニウムやアルミニウム化合物、或いは、五価の元素であるリンやリン化合物、又は砒素や砒素化合物のイオンを注入してもよく、三価の元素添加によればP型半導体領域を、五価の元素添加によればN型半導体領域をそれぞれDLC層330の所望の部位に形成することが可能となる。なお、DLC層330に対して各種のイオンドープを行う際には、従来公知の適宜のイオンドーピング装置を用いることが出来る。 Note that, as in the electronic component 301 illustrated in FIG. 7C, in the conductive region 340, a high resistivity section 340F having a high electrical resistivity and a low resistivity section having a lower electrical resistivity than the high resistivity section 340F. 340G can also be formed. For example, in order to make the high resistivity section 340F and the low resistivity section 340G separately without changing the physical thickness, it is preferable to make the heating temperature and the heating method different from each other. It is also possible to dope non-carbon components into the DLC layer 330. For example, local modification of the DLC layer 330 is possible by ion doping, and an additional function can be given to the local part by doping ions. For example, ions of trivalent elements such as boron or boron compounds, aluminum or aluminum compounds, pentavalent elements such as phosphorus or phosphorus compounds, or arsenic or arsenic compounds may be implanted. According to the above, it is possible to form the P-type semiconductor region and the N-type semiconductor region according to the addition of the pentavalent element at a desired portion of the DLC layer 330, respectively. In addition, when performing various ion doping with respect to the DLC layer 330, a conventionally well-known appropriate ion doping apparatus can be used.
 次に、本発明の第五実施形態に係る電子部品401について、図8を参照して説明する。なお、第一実施形態で説明した電子部品1と同一・類似する部材については、名称と符号の下二桁を一致させることで、個々の詳細な説明を省略する。 Next, an electronic component 401 according to a fifth embodiment of the present invention will be described with reference to FIG. In addition, about the member which is the same as that of the electronic component 1 demonstrated in 1st embodiment, and the last two digits of a code | symbol are made to correspond, individual detailed description is abbreviate | omitted.
 この電子部品401は、基材(母材)410、中間層420、DLC層430、複数の導電性領域440、カバー層450を有する。複数の導電性領域440は、DLC層430の内部に限って、互いに電気的に独立した状態(電気的な浮島状態)となる。各導電性領域440は、DLC層430の厚み方向Tの厚みH1の一部に形成され、ここでは基材410と反対側の表面に偏って厚みH2で形成される。また、導電性領域440は、DLC層430の面に沿う方向Sの一部に形成される。 The electronic component 401 includes a base material (base material) 410, an intermediate layer 420, a DLC layer 430, a plurality of conductive regions 440, and a cover layer 450. The plurality of conductive regions 440 are in an electrically independent state (electrically floating island state) only within the DLC layer 430. Each conductive region 440 is formed in a part of the thickness H1 in the thickness direction T of the DLC layer 430, and here is formed with a thickness H2 that is biased toward the surface opposite to the substrate 410. Further, the conductive region 440 is formed in a part of the direction S along the surface of the DLC layer 430.
 本実施形態のように、複数の導電性領域440の間隔を狭くすれば、この隙間に残存するDLC層430の抵抗値が小さくなる。例えば、複数の導電性領域440の中で一方の端にある導電性領域440に電力供給用端子Xを設け、他方の端にある導電性領域440に電極供給用端子Yを設けて、両者の間に電圧を印加すれば、複数の導電性領域440と、その間に残存するDLC層430を電流が流れることで高抵抗部品となる。また、基材510の変形によって、DLC層430及び導電性領域440が変形すると、抵抗値が変化するので、歪みセンサや振動センサ等の電子部品に応用できる。 If the interval between the plurality of conductive regions 440 is reduced as in the present embodiment, the resistance value of the DLC layer 430 remaining in the gap is reduced. For example, among the plurality of conductive regions 440, the power supply terminal X is provided in the conductive region 440 at one end, and the electrode supply terminal Y is provided in the conductive region 440 at the other end. If a voltage is applied between them, a current flows through the plurality of conductive regions 440 and the DLC layer 430 remaining therebetween, thereby forming a high resistance component. Further, when the DLC layer 430 and the conductive region 440 are deformed due to the deformation of the base material 510, the resistance value is changed, so that it can be applied to electronic components such as a strain sensor and a vibration sensor.
 次に、本発明の第六実施形態に係る電子部品501について、図9を参照して説明する。なお、この第六実施形態は、第五実施形態の電子部品401の変形例となるため、第四実施形態で説明した電子部品401と同一・類似する部材については、名称と符号の下二桁を一致させることで、個々の詳細な説明を省略する。 Next, an electronic component 501 according to a sixth embodiment of the present invention will be described with reference to FIG. Since the sixth embodiment is a modification of the electronic component 401 of the fifth embodiment, members having the same name and the same reference numerals as the electronic component 401 described in the fourth embodiment are the last two digits. The detailed description of each is omitted.
 この電子部品501は、基材(母材)510、中間層520、第一DLC層530、複数の第一導電性領域540、第二DLC層432、複数の第二導電性領域542を有する。複数の第一導電性領域540は、第一DLC層530の内部に限っては、互いに電気的に独立した状態(電気的な浮島状態)となる。また、複数の第二導電性領域542は、第二DLC層532の内部に限っては、互いに電気的に独立した状態(電気的な浮島状態)となる。 This electronic component 501 has a base material (base material) 510, an intermediate layer 520, a first DLC layer 530, a plurality of first conductive regions 540, a second DLC layer 432, and a plurality of second conductive regions 542. The plurality of first conductive regions 540 are in an electrically independent state (electrically floating island state) only within the first DLC layer 530. The plurality of second conductive regions 542 are in an electrically independent state (electrically floating island state) only within the second DLC layer 532.
 更に、図9(B)に示すように、複数の第一導電性領域540と、複数の第二導電性領域542は、平面視すると交互に配置される状態となり、両者を併せると一つの帯状配線となる。つまり、隣接する一対の第一導電性領域540の間に、各第二導電性領域542が架け渡すように配置される。各第一導電性領域540の端縁と、各第二導電性領域542の端縁が、第二DLC層532を介して接近するので、両端縁間に高電圧を印加すると、高抵抗となる第二DLC層532内を微小電流が流れる。従って、例えば、複数の第二導電性領域542の中で一方の端にある第二導電性領域542に電力供給用端子Xを設け、他方の端にある第二導電性領域542に電極供給用端子Yを設け、両者の間に電圧を印加すれば、比較的高い抵抗部品となる。この構造によると、基材510の変形によって、第一及び第二DLC層530、532、並びに、第一及び第二導電性領域540、542が変形すると、抵抗値が変化するので、歪みセンサや振動センサ等の電子部品に応用できる。 Further, as shown in FIG. 9B, the plurality of first conductive regions 540 and the plurality of second conductive regions 542 are alternately arranged when seen in a plan view. It becomes wiring. That is, the second conductive regions 542 are arranged so as to bridge between a pair of adjacent first conductive regions 540. Since the edge of each first conductive region 540 and the edge of each second conductive region 542 are close to each other via the second DLC layer 532, a high voltage is applied when a high voltage is applied between both ends. A minute current flows in the second DLC layer 532. Therefore, for example, a power supply terminal X is provided in the second conductive region 542 at one end among the plurality of second conductive regions 542, and an electrode is supplied to the second conductive region 542 at the other end. If a terminal Y is provided and a voltage is applied between them, a relatively high resistance component is obtained. According to this structure, when the first and second DLC layers 530 and 532 and the first and second conductive regions 540 and 542 are deformed due to the deformation of the base material 510, the resistance value changes. It can be applied to electronic parts such as vibration sensors.
 次に、本発明の第七実施形態に係る電子部品601について、図10を参照して説明する。なお、第一実施形態で説明した電子部品1と同一・類似する部材については、名称と符号の下二桁を一致させることで、個々の詳細な説明を省略する。 Next, an electronic component 601 according to the seventh embodiment of the present invention will be described with reference to FIG. In addition, about the member which is the same as that of the electronic component 1 demonstrated in 1st embodiment, and the last two digits of a code | symbol are made to correspond, individual detailed description is abbreviate | omitted.
 この電子部品601は、基材(母材)610、中間層620、DLC層630、導電性領域640、カバー層650を有する。導電性領域640は、DLC層630の厚み方向Tの厚みH1の一部に形成され、ここでは基材610側の表面に偏って厚みH2で形成される。また、導電性領域640は、DLC層630の面に沿う方向Sの全部に形成される。このようにすると、導電性領域640が、DLC層630によって覆われるため、DLC層630自体をカバー層と兼ねることも可能である。なお、導電性領域640を成層する場合、基材(母材)610又は中間層620を加熱すれば良い。 The electronic component 601 includes a base material (base material) 610, an intermediate layer 620, a DLC layer 630, a conductive region 640, and a cover layer 650. The conductive region 640 is formed in a part of the thickness H1 in the thickness direction T of the DLC layer 630, and here is formed with a thickness H2 that is biased toward the surface of the substrate 610 side. In addition, the conductive region 640 is formed in the entire direction S along the surface of the DLC layer 630. In this case, since the conductive region 640 is covered with the DLC layer 630, the DLC layer 630 itself can also serve as the cover layer. Note that when the conductive region 640 is formed, the base material (base material) 610 or the intermediate layer 620 may be heated.
 なお、上記実施形態では、ダイヤモンド及び/又はアモルファスカーボンとなるダイヤモンド系材料を主成分としたダイヤモンド系領域として、基材に積層されるDLC層を採用する場合を例示したが、本発明はこれに限定されない。 In the above-described embodiment, the case where the DLC layer laminated on the base material is employed as the diamond-based region mainly composed of diamond and / or the diamond-based material to be amorphous carbon is exemplified. It is not limited.
 次に、図13を参照して、本発明の第八実施形態に係る電子部品701について説明する。この電子部品701は、通電構造として、立体形状となるダイヤモンド系領域735と、このダイヤモンド系領域735に部分的に形成される導電性領域740A、740Bを有する。 Next, an electronic component 701 according to an eighth embodiment of the present invention will be described with reference to FIG. This electronic component 701 has a three-dimensional diamond-based region 735 and conductive regions 740A and 740B partially formed in the diamond-based region 735 as a current-carrying structure.
 ダイヤモンド系領域735は、ここではダイヤモンドを主成分とした結晶構造となっている。具体的にダイヤモンド系領域735は、天然ダイヤモンド又は人工的に合成した合成ダイヤモンドとなる。合成ダイヤモンドの製造は、従来から公知の合成法、例えば、高温高圧蒸着法やCVD法等を採用することができる。 Here, the diamond-based region 735 has a crystal structure mainly composed of diamond. Specifically, the diamond-based region 735 is a natural diamond or an artificially synthesized synthetic diamond. For the production of synthetic diamond, conventionally known synthetic methods such as high-temperature and high-pressure vapor deposition or CVD can be employed.
 導電性領域740A、740Bは、ダイヤモンド系領域735のダイヤモンド系材料よりもグラファイトの含有比率が高く、且つ、上記ダイヤモンド系材料よりも電気抵抗率が小さくなる。従って、導電性領域740A、740Bは電子部品701における通電路を構成する。この導電性領域740A、740Bは、少なくとも、ダイヤモンド系領域735の表面又は内部に形成されるが、ここでは、立体形状のダイヤモンド系領域735の内部において、面状に形成される場合を例示している。 The conductive regions 740A and 740B have a higher graphite content ratio than the diamond-based material in the diamond-based region 735 and a lower electrical resistivity than the diamond-based material. Accordingly, the conductive regions 740 </ b> A and 740 </ b> B constitute an energization path in the electronic component 701. The conductive regions 740A and 740B are formed at least on the surface or inside of the diamond-based region 735. Here, the case where the conductive regions 740A and 740B are formed in a planar shape inside the three-dimensional diamond-based region 735 is illustrated. Yes.
 例えば、一方の導電性領域740Aは、ダイヤモンド系領域735の内部において、X-Y方向の所定の平面内に形成される。導電性領域740Aは、この平面内の全域に形成しても良く、また、第一実施形態から第七実施形態等で示したような形態を適用できる。他方の導電性領域740Bは、ダイヤモンド系領域735の内部において、Y-Z方向の所定の平面内に形成される。この導電性領域740Bは、この平面内の全域に形成しても良く、また、第一実施形態から第七実施形態等で示したような形態を適用できる。導電性領域740Aと導電性領域740Bが交わる個所(交点又は交線)は、両者が互いに導通する場所となる。この結果、導電性領域740A、740Bは、全体として、三次元方向に延在する通電路構造となる。 For example, one conductive region 740A is formed in a predetermined plane in the XY direction inside the diamond-based region 735. The conductive region 740A may be formed over the entire area in this plane, and forms such as those shown in the first to seventh embodiments can be applied. The other conductive region 740B is formed in a predetermined plane in the YZ direction inside the diamond-based region 735. The conductive region 740B may be formed in the entire area in this plane, and forms such as those shown in the first to seventh embodiments can be applied. A portion (intersection or intersection line) where the conductive region 740A and the conductive region 740B intersect with each other is a place where the two are electrically connected to each other. As a result, the conductive regions 740A and 740B have a current path structure extending in the three-dimensional direction as a whole.
 導電性領域740A、740Bの形成は、例えば、ダイヤモンド系領域735に対して、レーザービームMを照射し、部分的に加熱することで行えばよい。この際、フェムト秒レーザーのように極めて短時間のパルスレーザーを照射することで、ターゲットエリア外への熱の伝達を抑制するように制御することも可能である。また、ダイヤモンド系領域735の内部に導電性領域740A、740Bを形成するには、レーザービームMの焦点が、ダイヤモンド系領域735の内部に位置するように設定すればよい。つまり、レーザービームMをダイヤモンド系領域735の内部の特定の箇所に集光させればよい。この際、レーザービームMの光路の途中に、スリット形状やピンホール形状等のチャネル素子(フィルタ)を配置して、レーザービームMの焦点形状を制御しても良い。また、ホログラム等の波面制御素子を配置することで、レーザービームMがダイヤモンド系領域735内で特定の像を形成するように集光さても良い。 The conductive regions 740A and 740B may be formed, for example, by irradiating the diamond region 735 with a laser beam M and partially heating it. At this time, it is also possible to perform control so as to suppress the transfer of heat to the outside of the target area by irradiating an extremely short pulse laser such as a femtosecond laser. In order to form the conductive regions 740A and 740B inside the diamond-based region 735, the focal point of the laser beam M may be set so as to be positioned inside the diamond-based region 735. That is, the laser beam M may be condensed at a specific location inside the diamond-based region 735. At this time, a channel element (filter) such as a slit shape or a pinhole shape may be arranged in the middle of the optical path of the laser beam M to control the focal shape of the laser beam M. Further, by arranging a wavefront control element such as a hologram, the laser beam M may be focused so as to form a specific image in the diamond-based region 735.
 次に、図14を参照して、本発明の第九実施形態に係る電子部品801について説明する。この電子部品801は、通電構造として、立体形状となるダイヤモンド系領域835と、このダイヤモンド系領域835に部分的に形成される導電性領域840を有する。 Next, an electronic component 801 according to the ninth embodiment of the present invention will be described with reference to FIG. This electronic component 801 has a three-dimensional diamond-based region 835 and a conductive region 840 partially formed in the diamond-based region 835 as a current-carrying structure.
 導電性領域840は、ダイヤモンド系領域835のダイヤモンド系材料よりもグラファイトの含有比率が高く、且つ、上記ダイヤモンド系材料よりも電気抵抗率が小さくなる。従って、導電性領域840は電子部品801における通電路を構成する。 The conductive region 840 has a higher graphite content ratio than the diamond-based material in the diamond-based region 835 and has a lower electrical resistivity than the diamond-based material. Therefore, the conductive region 840 forms a current path in the electronic component 801.
 導電性領域840は、三次元方向に自在に伸びる通電路となっており、途中に分岐点(合流点)を有することで、内部で枝分かれしている。また、この各通電路は、ダイヤモンド系領域835の外表面に達する部分において外部接点となる。結果、ダイヤモンド系領域835の内部に、立体的な配線構造を自在に構築できる。従って、この通電路の途中には、例えば、センサ機能を有する導電性領域840A、抵抗機能を有する導電性領域840B、コンデンサ機能を有する導電性領域840C、スイッチング機能を有する導電性領域840D等を立体的に作り込むことも可能である。 The conductive region 840 is an energization path that freely extends in a three-dimensional direction, and has a branch point (confluence) on the way, so that it is branched inside. Each energization path becomes an external contact at a portion reaching the outer surface of the diamond-based region 835. As a result, a three-dimensional wiring structure can be freely constructed inside the diamond-based region 835. Accordingly, in the middle of the current path, for example, a conductive region 840A having a sensor function, a conductive region 840B having a resistance function, a conductive region 840C having a capacitor function, a conductive region 840D having a switching function, etc. It is also possible to build in.
 次に、図15を参照して、本発明の第十実施形態に係る電子部品901について説明する。この電子部品901は、通電構造として、立体形状となるダイヤモンド系領域935と、このダイヤモンド系領域935に部分的に形成される導電性領域940を有する。 Next, an electronic component 901 according to the tenth embodiment of the present invention will be described with reference to FIG. This electronic component 901 has a three-dimensional diamond-type region 935 and a conductive region 940 partially formed in the diamond-type region 935 as a current-carrying structure.
 立体形状となるダイヤモンド系領域935は、図15(A)に示すように、スリットや孔等の様々な形状に適用され得る切欠き部935A等が形成されることで、複雑な外形となっている。例えば、酸素雰囲気中において、ダイヤモンド系領域935に対してレーザービームM等を照射して局所的に800℃以上に加熱し、照射部分のダイヤモンドを二酸化炭素として消失させることで、この切欠き部935Aを形成すれば良い。即ち、レーザービームMを制御すれば、任意形状の切欠き部935Aを形成することができ、目的とする立体形状のダイヤモンド領域935を得ることが出来る。 As shown in FIG. 15A, the diamond-type region 935 having a three-dimensional shape has a complicated outer shape by forming notches 935A and the like that can be applied to various shapes such as slits and holes. Yes. For example, in the oxygen atmosphere, the notched portion 935A is obtained by irradiating the diamond-based region 935 with a laser beam M or the like and locally heating the diamond-based region 935 to 800 ° C. or more to eliminate the irradiated diamond as carbon dioxide. Should be formed. That is, by controlling the laser beam M, a notch 935A having an arbitrary shape can be formed, and a target three-dimensional diamond region 935 can be obtained.
 図15(B)に示すように、導電性領域940は、この切欠き部935Aの表面又はその近傍に形成される。導電性領域940を形成するには、レーザービームM等を切欠き部935の表面等に照射すればよい。一方で、図15(A)における切欠き部935Aを形成行程において、切欠き部935の加工表面に、導電性領域940が同時に形成することも可能と考え得る。 As shown in FIG. 15B, the conductive region 940 is formed on the surface of the notch 935A or in the vicinity thereof. In order to form the conductive region 940, the surface of the notch 935 or the like may be irradiated with a laser beam M or the like. On the other hand, it can be considered that the conductive region 940 can be simultaneously formed on the processed surface of the notch 935 in the process of forming the notch 935A in FIG.
 この電子部品901によれば、エッチング加工されたダイヤモンド領域935自体を、振動子やセンシングデバイスの基板や素子とすることができる。また、このダイヤモンド領域935に形成される導電性領域940を利用して、ダイヤモンド領域935に電圧を印加することにより、電子部品901を、機械要素部品、センサ、振動子、アクチュエータ等が作りこまれるMEMS素子として機能させることができる。 According to this electronic component 901, the etched diamond region 935 itself can be used as a substrate or an element of a vibrator or a sensing device. Further, by applying a voltage to the diamond region 935 using the conductive region 940 formed in the diamond region 935, a mechanical element component, a sensor, a vibrator, an actuator, or the like can be formed as the electronic component 901. It can function as a MEMS element.
 次に、図16を参照して、本発明の第十一実施形態に係る電子部品1001について説明する。なお、第一実施形態で説明した電子部品1と同一・類似する部材については、名称と符号の下二桁を一致させることで、個々の詳細な説明を省略する。 Next, an electronic component 1001 according to the eleventh embodiment of the present invention will be described with reference to FIG. In addition, about the member which is the same as that of the electronic component 1 demonstrated in 1st embodiment, and the last two digits of a code | symbol are made to correspond, individual detailed description is abbreviate | omitted.
 図16(A)に示すように、光透過性の高いダイヤモンド系領域1030のレーザビームMの照射位置と反対の位置に、ダイヤモンド系領域1030に密着するか或いは近接するようにレーザービームMを吸収する昇温層1060を有している。なお、図面では中間層及び/又は基材を省略している。 As shown in FIG. 16A, the laser beam M is absorbed so as to be in close contact with or close to the diamond-based region 1030 at a position opposite to the irradiation position of the laser beam M of the diamond-based region 1030 having high light transmittance. The temperature rising layer 1060 is provided. In the drawings, the intermediate layer and / or the base material are omitted.
 このように構成することで、ダイヤモンド系領域が特に結晶性の高い構造体であることによりレーザービームがダイヤモンド系領域を通過してダイヤモンド系領域が加熱されない或いは加熱され難い場合であっても、昇温層を介して間接的にダイヤモンド系領域を加熱して、導電性領域を生成することができる。 With this configuration, even if the diamond-based region is a structure having particularly high crystallinity, the laser beam passes through the diamond-based region and the diamond-based region is not heated or difficult to be heated. The conductive region can be generated by indirectly heating the diamond-based region through the temperature layer.
 具体的には、図16(B)に示すように、酸素雰囲気中において矢印方向に照射されたレーザービームMは、ダイヤモンド系領域1030を通して昇温層1060のダイヤモンド系領域1030側の表面1060aに吸収され、昇温層1060の表面1060aを部分的に発熱して昇温する。昇温による熱は、昇温部分に対向するダイヤモンド系領域1030の対向面に熱伝導により熱伝達され、これによって、ダイヤモンド系領域1030が局所的に昇温して導電性領域1040に変性する。ダイヤモンド系領域1030に所望のパターンの導電性領域1040を形成する場合、レーザービームMを昇温層1060の表面1060a上で、所望のパターンに走査させればよい。 Specifically, as shown in FIG. 16B, the laser beam M irradiated in the arrow direction in an oxygen atmosphere is absorbed by the surface 1060a of the temperature rising layer 1060 on the diamond-based region 1030 side through the diamond-based region 1030. Then, the surface 1060a of the temperature raising layer 1060 is partially heated to raise the temperature. The heat due to the temperature rise is transferred by heat conduction to the opposing surface of the diamond-based region 1030 facing the temperature-raising portion, whereby the diamond-based region 1030 is locally heated and denatured into the conductive region 1040. When the conductive region 1040 having a desired pattern is formed in the diamond-based region 1030, the laser beam M may be scanned in a desired pattern on the surface 1060a of the temperature rising layer 1060.
 レーザービーム以外にも、ガスフローレーザー等可視光のものであれば用いることができる。
 昇温層としては、窒化珪素、炭化珪素、ジルコニア、シリカ、酸化チタン等のセラミック等を使用することが出来、レーザービームなど照射される可視光を吸収して効率的に発熱するものであれば良く、レーザービームなど照射される可視光に対しての遮光性を有し、且つ、低反射率であることが好ましい。色としては、特に限定されないが、黒色が好ましく、その他の色の場合は、濃い茶色や濃い緑色いなどの明度が低い色が好ましい。また、ダイヤモンド系領域が導電性領域へと変性する温度が高温であることから耐熱性を有することが好ましい。
In addition to the laser beam, any visible light such as a gas flow laser can be used.
As the heating layer, ceramics such as silicon nitride, silicon carbide, zirconia, silica, and titanium oxide can be used, as long as they absorb visible light such as a laser beam and generate heat efficiently. It is preferable that it has a light shielding property against visible light irradiated with a laser beam or the like and has a low reflectance. Although it does not specifically limit as a color, Black is preferable and in the case of other colors, the color with low brightness, such as dark brown and dark green, is preferable. Moreover, since the temperature which denatures a diamond-type area | region to an electroconductive area | region is high temperature, it is preferable to have heat resistance.
 また、昇温層は、多孔質材のように熱伝導率が低い材料としてもよい。このような材料を適用することで、昇温層における、レーザービームを照射した部分とその極近傍だけを発熱して、局所的に昇温することが可能になるため、導電性領域のパターンを近接して描画することができ、緻密なパターンを形成することができる。なお、局所的な昇温を実現する手段としては、図4に示すような昇温部の周辺を冷却する冷却プレートを適用することもできる。 Further, the temperature raising layer may be a material having low thermal conductivity such as a porous material. By applying such a material, it becomes possible to heat only the portion irradiated with the laser beam in the temperature rising layer and the vicinity thereof, and the temperature can be locally increased. Drawing can be performed close to each other, and a dense pattern can be formed. In addition, as a means to implement | achieve local temperature rising, the cooling plate which cools the periphery of a temperature rising part as shown in FIG. 4 can also be applied.
 昇温層をダイヤモンド系領域に密着して形成する方法としては、塗布或いはメッキやコーティング等であったり、シート状の昇温層を接着剤で貼り付けたり、シール状の昇温層を貼り付けることが考えられる。 Methods for forming the temperature rising layer in close contact with the diamond-based region include coating, plating, coating, etc., attaching a sheet-like temperature rising layer with an adhesive, or attaching a seal-like temperature rising layer. It is possible.
 次に、図17を参照して、第十一実施形態の第一変形例を説明する。第十一実施形態との主な相違点は、昇温層が、レーザビームの照射位置から見てダイヤモンド系領域の手前側に配置されている点にある。 Next, a first modification of the eleventh embodiment will be described with reference to FIG. The main difference from the eleventh embodiment is that the temperature raising layer is arranged on the front side of the diamond-based region as viewed from the irradiation position of the laser beam.
 図17(A)に示すように、電子部品1101は、光透過性の高いダイヤモンド系領域1130のレーザビームMの照射位置の側に、ダイヤモンド系領域1130に密着するか或いは近接するようにレーザービームMを吸収する昇温層1160を有している。なお、図面では中間層及び/又は基材を省略している。
 このように構成することで、レーザービームが直接昇温層に照射されるため、第十一実施形態に比べて昇温層を効率よく昇温することができる。
As shown in FIG. 17A, the electronic component 1101 has a laser beam in close contact with or close to the irradiation region of the laser beam M of the diamond-based region 1130 with high light transmittance. A temperature rising layer 1160 that absorbs M is included. In the drawings, the intermediate layer and / or the base material are omitted.
With this configuration, since the laser beam is directly irradiated onto the temperature rising layer, the temperature rising layer can be efficiently heated as compared with the eleventh embodiment.
 図17(B)に示すように、例えば、酸素雰囲気中において矢印方向に照射されたレーザービームMは、昇温層1160の表面1160aに吸収され、昇温層1160の表面1160aを部分的に発熱して昇温する。ここで、雰囲気を酸素としているが、大気中としたり、不活性ガス雰囲気としても良い。昇温層1160の表面1160aの熱は昇温層1160の内部を伝わって表面の部位に対応する裏面1160bを部分的に昇温する。昇温層の裏面の昇温による熱は、裏面側昇温部分に対向するダイヤモンド系領域1130の対向面に熱伝導により熱伝達され、これによって、ダイヤモンド系領域1130が局所的に昇温して導電性領域1140に変性する。 As shown in FIG. 17B, for example, the laser beam M irradiated in the arrow direction in an oxygen atmosphere is absorbed by the surface 1160a of the temperature rising layer 1160, and the surface 1160a of the temperature rising layer 1160 is partially heated. Then raise the temperature. Here, the atmosphere is oxygen, but it may be in the air or an inert gas atmosphere. The heat of the surface 1160a of the temperature rising layer 1160 is transmitted through the temperature rising layer 1160 to partially heat the back surface 1160b corresponding to the surface portion. Heat due to the temperature rise on the back surface of the temperature raising layer is transferred by heat conduction to the opposing surface of the diamond-based region 1130 facing the back-side temperature-raising portion, whereby the diamond-based region 1130 is locally heated. Denatured into a conductive region 1140.
 さらに、図18を参照して、第十一実施形態の第二変形例を説明する。第十一実施形態との主な相違点は、昇温層が、面状でなく線状である点である。 Further, a second modification of the eleventh embodiment will be described with reference to FIG. The main difference from the eleventh embodiment is that the temperature rising layer is not linear but linear.
 図18(A)に示すように、光透過性の高いダイヤモンド系領域1230のレーザビームMの照射位置と反対の位置に、ダイヤモンド系領域1230に密着するか或いは近接するようにレーザービームMを吸収する線状の昇温層1260を有している。 As shown in FIG. 18A, the laser beam M is absorbed so as to be in close contact with or close to the diamond-based region 1230 at a position opposite to the irradiation position of the laser beam M of the diamond-based region 1230 having high light transmittance. A linear temperature rising layer 1260 is provided.
 線状の昇温層は、ダイヤモンド系領域1230に直接塗布されたり、或いは貼り付けされても良いし、或いは第三変形例の図18(B)に示すように、面状のシート1361に線状の昇温層1362を一体的に形成して、面状の透明なシート1361をダイヤモンド系領域1330に貼り付けるようにしても良い。 The linear heating layer may be directly applied to or pasted on the diamond-based region 1230, or as shown in FIG. 18B of the third modification, the linear heating layer may be applied to the planar sheet 1361. The temperature rising layer 1362 may be integrally formed, and a planar transparent sheet 1361 may be attached to the diamond-based region 1330.
 第十一実施形態では、昇温層に可視光であるレーザービームを照射して昇温するようにしたが、可視光以外の例えば電磁波などであってもよい。その場合、昇温層の色は必ずしも明度の低い色にする必要はなく、電磁波などを吸収し易い材料であれば良い。 In the eleventh embodiment, the temperature rising layer is irradiated with a laser beam that is visible light to raise the temperature. However, for example, electromagnetic waves other than visible light may be used. In that case, the color of the temperature raising layer does not necessarily need to be a color with low brightness, and any material that can easily absorb electromagnetic waves or the like may be used.
 また、第一実施形態などで説明したダイヤモンド系領域に隣接する中間層や基材に昇温層としての機能を付加して、中間層や基材を昇温させるようにしても良し、或いは、図3(B)に記載されるような加熱型を昇温させるようにしても良い。 Further, the intermediate layer or the base material adjacent to the diamond-based region described in the first embodiment or the like may be added with a function as a heating layer, and the intermediate layer or the base material may be heated, or You may make it heat up a heating type | mold as described in FIG.3 (B).
 次に、照射されるレーザービームの熱量を抑制する方法を説明する。ダイヤモンド系領域を高温場雰囲気下に配置して、導電性領域への変性に必要な熱量に若干満たない温度域にダイヤモンド系領域を予め昇温する。このように昇温状態とされたダイヤモンド系領域に対して所望の部位にレーザービームを照射して変性に必要とされる熱量の印加をすることによって、常温状態にあるダイヤモンド系領域を昇温するよりも著しく小さな入熱量でダイヤモンド系領域を導電性領域へと変性することができる。そのため、変性に係るエネルギーを著しく抑制することができ、例えば、フェムト秒レーザーなどを利用してパルス的な極短時間の照射によってダイヤモンド系領域を導電領域へと変性することができる。 Next, a method for suppressing the amount of heat of the irradiated laser beam will be described. The diamond-based region is placed in a high-temperature field atmosphere, and the diamond-based region is heated in advance to a temperature range slightly less than the amount of heat required for modification to the conductive region. By irradiating a desired region with a laser beam and applying a heat amount necessary for modification to the diamond-based region thus heated, the diamond-based region in a normal temperature state is heated. It is possible to modify the diamond-based region into a conductive region with a significantly smaller heat input. Therefore, the energy related to the modification can be remarkably suppressed. For example, the diamond-based region can be modified into the conductive region by pulsed ultrashort irradiation using a femtosecond laser or the like.
 尚、本発明の電子部品等は、上記した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。また、上記実施形態で示す通電構造は、所謂電子部品以外にも、通電を要する他の部品・部材等に適用することができる。 It should be noted that the electronic component and the like of the present invention are not limited to the above-described embodiments, and it is needless to say that various changes can be made without departing from the gist of the present invention. Further, the energization structure shown in the above embodiment can be applied to other parts and members that require energization in addition to so-called electronic components.
1     電子部品
10   基材
20   中間層
30   層
40   導電性領域
50   カバー層
50   層
50   カバー層
70   加熱型
72   転写パターン
80   下側冷却プレート
90   上側冷却プレート
92   開口パターン
101 電子部品
110 基材
120 中間層
130 層
140 導電性領域
150 カバー層
DESCRIPTION OF SYMBOLS 1 Electronic component 10 Base material 20 Intermediate layer 30 Layer 40 Conductive area 50 Cover layer 50 Layer 50 Cover layer 70 Heating type 72 Transfer pattern 80 Lower cooling plate 90 Upper cooling plate 92 Opening pattern 101 Electronic component 110 Base material 120 Intermediate layer 130 layer 140 conductive region 150 cover layer

Claims (32)

  1.  ダイヤモンド及び/又はアモルファスカーボンとなるダイヤモンド系材料を主成分とするダイヤモンド系領域と、
     上記ダイヤモンド系領域中に部分的に形成され、上記ダイヤモンド系材料よりもグラファイトの含有比率が高く、且つ、上記ダイヤモンド系材料よりも電気抵抗率が小さい導電性領域と、
     を備える事を特徴とする、
     ダイヤモンド系通電構造。
    A diamond-based region mainly composed of a diamond-based material to be diamond and / or amorphous carbon;
    A conductive region that is partially formed in the diamond-based region, has a higher graphite content than the diamond-based material, and has a lower electrical resistivity than the diamond-based material;
    It is characterized by having
    Diamond energization structure.
  2.  前記ダイヤモンド系領域が立体形状となっており、
     前記導電性領域が、前記ダイヤモンド系領域の表面又は内部に形成されることを特徴とする、
     請求項1に記載のダイヤモンド系通電構造。
    The diamond-based region has a three-dimensional shape,
    The conductive region is formed on or inside the diamond-based region,
    The diamond-based energization structure according to claim 1.
  3.  前記導電性領域が、前記ダイヤモンド系領域の内部において三次元方向に延材することを特徴とする、
     請求項2に記載のダイヤモンド系通電構造。
    The conductive region extends in the three-dimensional direction inside the diamond-based region,
    The diamond-type current carrying structure according to claim 2.
  4.  更に基材を備え、
     前記ダイヤモンド系統領域は、
     上記基材に対して直接的又は間接的に成層される前記ダイヤモンド系材料を主成分とするダイヤモンド系層を含み、
     前記導電性領域は、
     上記ダイヤモンド系層の中に部分的に形成される領域である事を特徴とする、
     請求項1に記載のダイヤモンド系通電構造。
    Furthermore, a base material is provided,
    The diamond lineage region is
    Including a diamond-based layer mainly composed of the diamond-based material formed directly or indirectly on the base material;
    The conductive region is
    It is a region that is partially formed in the diamond-based layer,
    The diamond-based energization structure according to claim 1.
  5.  前記導電性領域は、前記ダイヤモンド系層の面に沿う方向における一部において、厚み方向の一部又は全部に形成されることを特徴とする、
     請求項4に記載のダイヤモンド系通電構造。
    The conductive region is formed in a part or all of the thickness direction in a part in the direction along the surface of the diamond-based layer,
    The diamond-type current carrying structure according to claim 4.
  6.  前記導電性領域は、前記ダイヤモンド系層の厚み方向における一部において、面方向の一部又は全部に形成されることを特徴とする、
     請求項4又は5に記載のダイヤモンド系通電構造。
    The conductive region is formed in a part or all of the surface direction in a part in the thickness direction of the diamond-based layer,
    The diamond-type electricity supply structure according to claim 4 or 5.
  7.  前記導電性領域は、前記ダイヤモンド系層における前記基材側と反対側の表面に形成されることを特徴とする、
     請求項4乃至6のいずれかに記載のダイヤモンド系通電構造。
    The conductive region is formed on a surface of the diamond-based layer on the side opposite to the substrate side,
    The diamond-type energization structure according to any one of claims 4 to 6.
  8.  前記導電性領域は、前記ダイヤモンド系層における前記基材側の表面に形成されることを特徴とする、
     請求項4乃至7のいずれかに記載のダイヤモンド系通電構造。
    The conductive region is formed on a surface of the diamond-based layer on the substrate side,
    The diamond-based energizing structure according to any one of claims 4 to 7.
  9.  前記基材と前記ダイヤモンド系層の間に、中間層を有することを特徴とする、
     請求項4乃至8のいずれかに記載のダイヤモンド系通電構造。
    It has an intermediate layer between the base material and the diamond-based layer,
    A diamond-based energization structure according to any one of claims 4 to 8.
  10.  前記ダイヤモンド系層における前記基材と反対側に、第二の層を有することを特徴とする、
     請求項4乃至8のいずれかに記載のダイヤモンド系通電構造。
    The diamond-based layer has a second layer on the side opposite to the base material,
    A diamond-based energization structure according to any one of claims 4 to 8.
  11.  前記第二の層は、電気絶縁性を有する絶縁層であることを特徴とする、
     請求項10に記載のダイヤモンド系通電構造。
    The second layer is an insulating layer having electrical insulation,
    The diamond-type current carrying structure according to claim 10.
  12.  前記ダイヤモンド系層における前記基材と反対側に、ダイヤモンド及び/又はアモルファスカーボンとなるダイヤモンド系材料を主成分とする第二のダイヤモンド系層を有することを特徴とする、
     請求項1乃至11のいずれかに記載のダイヤモンド系通電構造。
    On the opposite side to the base material in the diamond-based layer, it has a second diamond-based layer mainly composed of a diamond-based material that becomes diamond and / or amorphous carbon,
    The diamond-type electricity supply structure in any one of Claims 1 thru | or 11.
  13.  前記導電性領域を有する前記ダイヤモンド系層が、複数積層されることを特徴とする、
     請求項1乃至12のいずれかに記載のダイヤモンド系通電構造。
    A plurality of the diamond-based layers having the conductive region are laminated,
    The diamond energization structure according to any one of claims 1 to 12.
  14.  前記導電性領域が、点群状或いはドット群状に形成されることを特徴とする、
     請求項1乃至13のいずれかに記載のダイヤモンド系通電構造。
    The conductive region is formed in a point group shape or a dot group shape,
    A diamond-based energization structure according to any one of claims 1 to 13.
  15.  前記点群状或いは前記ドット群状に形成される前記導電性領域が、断続配列して形成されることを特徴とする、
     請求項14に記載のダイヤモンド系通電構造。
    The conductive region formed in the dot group shape or the dot group shape is formed in an intermittent arrangement,
    The diamond-type electricity supply structure according to claim 14.
  16.  前記導電性領域が、直線状又は曲線状又はジグザグ線状等を含む線状に形成されることを特徴とする、
     請求項1乃至15のいずれかに記載のダイヤモンド系通電構造。
    The conductive region is formed in a linear shape including a linear shape, a curved shape, or a zigzag line shape,
    The diamond-based energizing structure according to any one of claims 1 to 15.
  17.  前記導電性領域が、帯状に形成されることを特徴とする、
     請求項1乃至16のいずれかに記載のダイヤモンド系通電構造。
    The conductive region is formed in a band shape,
    The diamond-type electricity supply structure according to any one of claims 1 to 16.
  18.  二つ以上の前記線状及び/又は帯状を成す前記導電性領域が、互いに交点を有して形成されることを特徴とする、
     請求項16又は17に記載のダイヤモンド系通電構造。
    The conductive regions having two or more linear and / or belt-like shapes are formed having intersections with each other,
    The diamond-based energization structure according to claim 16 or 17.
  19.  前記導電性領域が、平面状又は曲面状等を含む面状に形成されることを特徴とする、
     請求項1乃至18のいずれかに記載のダイヤモンド系通電構造。
    The conductive region is formed in a planar shape including a planar shape or a curved shape,
    The diamond-based energizing structure according to any one of claims 1 to 18.
  20.  前記導電性領域が、前記ダイヤモンド系領域の中に複数形成されることを特徴とする、
     請求項1乃至19のいずれかに記載のダイヤモンド系通電構造。
    A plurality of the conductive regions are formed in the diamond-based region,
    The diamond-based energization structure according to any one of claims 1 to 19.
  21.  前記導電性領域は、前記ダイヤモンド系領域の中の所定方向の占有率が大きくなる厚肉区画と、上記所定方向の占有率が小きくなる浅肉区画とを有することを特徴とする、
     請求項1乃至20のいずれかに記載のダイヤモンド系通電構造。
    The conductive region has a thick section where an occupation ratio in a predetermined direction in the diamond-based region is increased, and a shallow section where the occupation ratio in the predetermined direction is decreased.
    The diamond-based energization structure according to any one of claims 1 to 20.
  22.  前記ダイヤモンド系領域は、一部又は全部にわたって、水素を含有することを特徴とする、
     請求項1乃至21のいずれかに記載のダイヤモンド系通電構造。
    The diamond-based region contains hydrogen over part or all of the region,
    The diamond-based energization structure according to any one of claims 1 to 21.
  23.  前記ダイヤモンド系領域は、非炭素の元素若しくは分子、或いはそれらのイオン等の成分のドープにより、部分的に微量な非炭素成分を有して構成されることを特徴とする、
     請求項1乃至22のいずれかに記載のダイヤモンド系通電構造。
    The diamond-based region is characterized in that it is configured to have a small amount of non-carbon components partially by doping with components such as non-carbon elements or molecules, or ions thereof,
    The diamond-based energization structure according to any one of claims 1 to 22.
  24.  前記非炭素成分が、三価の原子又は分子であることを特徴とする、
     請求項23に記載のダイヤモンド系通電構造。
    The non-carbon component is a trivalent atom or molecule,
    The diamond-based energization structure according to claim 23.
  25.  前記非炭素成分が、五価の原子又は分子であることを特徴とする、
     請求項23に記載のダイヤモンド系通電構造。
    The non-carbon component is a pentavalent atom or molecule,
    The diamond-based energization structure according to claim 23.
  26.  請求項1乃至25のいずれかに記載のダイヤモンド系通電構造を有することを特徴とするダイヤモンド系電子部品。 A diamond-based electronic component having the diamond-based conducting structure according to any one of claims 1 to 25.
  27.  ダイヤモンド及び/又はアモルファスカーボンとなるダイヤモンド系材料を主成分とするダイヤモンド系領域を加熱して、該ダイヤモンド系材料のグラファイト成分を増加させることで、上記ダイヤモンド系領域の中に上記ダイヤモンド系材料よりも電気抵抗率が小さくなる導電性領域を部分的に形成する事を特徴とする、
     ダイヤモンド系通電構造の製造方法。
    By heating a diamond-based region mainly composed of a diamond-based material that becomes diamond and / or amorphous carbon and increasing the graphite component of the diamond-based material, the diamond-based region is more than the diamond-based material. It is characterized by partially forming a conductive region with a low electrical resistivity,
    A method for producing a diamond-based current-carrying structure.
  28.  前記ダイヤモンド系領域を冷却する冷却工程を有することを特徴とする、
     請求項27に記載のダイヤモンド系通電構造の製造方法。
    It has a cooling process for cooling the diamond-based region,
    The manufacturing method of the diamond-type electricity supply structure of Claim 27.
  29.  基材に対して直接的又は間接的に、ダイヤモンド及び/又はアモルファスカーボンとなるダイヤモンド系材料を主成分とするダイヤモンド系層を設けるカーボン成層工程と、
     上記ダイヤモンド系層を加熱して該ダイヤモンド系材料のグラファイト成分を増加させることで、上記ダイヤモンド系層の中に上記ダイヤモンド系材料よりも電気抵抗率が小さくなる導電性領域を部分的に形成する導電部形成工程と、を備える事を特徴とする、
     ダイヤモンド系通電構造の製造方法。
    A carbon stratification process in which a diamond-based layer mainly composed of a diamond-based material to be diamond and / or amorphous carbon is directly or indirectly applied to a substrate;
    The diamond-based layer is heated to increase the graphite component of the diamond-based material, thereby partially forming a conductive region having a lower electrical resistivity than the diamond-based material in the diamond-based layer. A part forming step,
    A method for producing a diamond-based current-carrying structure.
  30.  前記ダイヤモンド系層を冷却する冷却工程を有することを特徴とする、
     請求項29に記載のダイヤモンド系通電構造の製造方法。
    It has a cooling step for cooling the diamond-based layer,
    The manufacturing method of the diamond-type electricity supply structure of Claim 29.
  31.  前記導電部形成工程と前記冷却工程を同時に行うことを特徴とする、
     請求項30に記載のダイヤモンド系通電構造の製造方法。
    The conductive part forming step and the cooling step are performed simultaneously,
    The manufacturing method of the diamond-type electricity supply structure of Claim 30.
  32.  前記ダイヤモンドライクカーボン層に対して非炭素成分をドープするドーピング工程を有することを特徴とする、
     請求項29乃至31のいずれかに記載のダイヤモンド系通電構造の製造方法。
    It has a doping step of doping a non-carbon component to the diamond-like carbon layer,
    32. A method for producing a diamond-based energizing structure according to claim 29.
PCT/JP2017/045703 2016-12-27 2017-12-20 Diamond-based electrically conducting structure, diamond-based electric component, and method for manufacturing diamond-based electrically conducting structure WO2018123762A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2016-253759 2016-12-27
JP2016253759 2016-12-27
JP2017-035175 2017-02-27
JP2017035175 2017-02-27
JP2017231271A JP6699827B2 (en) 2016-12-27 2017-11-30 Method for manufacturing diamond-based conducting structure
JP2017-231271 2017-11-30

Publications (1)

Publication Number Publication Date
WO2018123762A1 true WO2018123762A1 (en) 2018-07-05

Family

ID=62708117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045703 WO2018123762A1 (en) 2016-12-27 2017-12-20 Diamond-based electrically conducting structure, diamond-based electric component, and method for manufacturing diamond-based electrically conducting structure

Country Status (1)

Country Link
WO (1) WO2018123762A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03254144A (en) * 1990-02-23 1991-11-13 A M Dreschhoff Jisera Formation of conductive region on diamond grid board and electric device provided with diamond grid layer having conductive region
JPH05117088A (en) * 1991-10-25 1993-05-14 Sumitomo Electric Ind Ltd Method for forming n-type and p-type diamond
JPH0737835A (en) * 1993-06-28 1995-02-07 Matsushita Electric Ind Co Ltd Diamond semiconductor element and formation of electrode thereof
JPH10261712A (en) * 1997-03-19 1998-09-29 Sanyo Electric Co Ltd Formation of conductive region and thin film element
JP2005228852A (en) * 2004-02-12 2005-08-25 Seiko Epson Corp Ferroelectric capacitor, its forming method and ferroelectric memory
JP2005294413A (en) * 2004-03-31 2005-10-20 Namiki Precision Jewel Co Ltd Diamond electronic circuit board and its manufacturing method
JP2008252107A (en) * 2001-01-19 2008-10-16 Chevron Usa Inc Diamond-containing material in microelectronics
JP2009009718A (en) * 2007-06-26 2009-01-15 Panasonic Electric Works Co Ltd Processing method of dlc film, and electrical contact structure
JP2016134597A (en) * 2015-01-22 2016-07-25 アルプス電気株式会社 Wiring board and method for manufacturing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03254144A (en) * 1990-02-23 1991-11-13 A M Dreschhoff Jisera Formation of conductive region on diamond grid board and electric device provided with diamond grid layer having conductive region
JPH05117088A (en) * 1991-10-25 1993-05-14 Sumitomo Electric Ind Ltd Method for forming n-type and p-type diamond
JPH0737835A (en) * 1993-06-28 1995-02-07 Matsushita Electric Ind Co Ltd Diamond semiconductor element and formation of electrode thereof
JPH10261712A (en) * 1997-03-19 1998-09-29 Sanyo Electric Co Ltd Formation of conductive region and thin film element
JP2008252107A (en) * 2001-01-19 2008-10-16 Chevron Usa Inc Diamond-containing material in microelectronics
JP2005228852A (en) * 2004-02-12 2005-08-25 Seiko Epson Corp Ferroelectric capacitor, its forming method and ferroelectric memory
JP2005294413A (en) * 2004-03-31 2005-10-20 Namiki Precision Jewel Co Ltd Diamond electronic circuit board and its manufacturing method
JP2009009718A (en) * 2007-06-26 2009-01-15 Panasonic Electric Works Co Ltd Processing method of dlc film, and electrical contact structure
JP2016134597A (en) * 2015-01-22 2016-07-25 アルプス電気株式会社 Wiring board and method for manufacturing the same

Similar Documents

Publication Publication Date Title
KR101905158B1 (en) Locally heated multi-zone substrate support
CN103547955B (en) Reflection mirror array
US7999172B2 (en) Flexible thermoelectric device
JP6017781B2 (en) Substrate temperature adjustment fixing device and manufacturing method thereof
KR20080041114A (en) Substrate heating device
US20040232109A1 (en) Mask unit and film deposition apparatus using the same
CN103999545A (en) Method of manufacturing a high definition heater system
US10361110B2 (en) Substrate holding apparatus
US11201076B2 (en) Electrostatic chuck device
KR20100015461A (en) Stage for substrate temperature control unit
US20160014848A1 (en) High power-density plane-surface heating element
WO2018123762A1 (en) Diamond-based electrically conducting structure, diamond-based electric component, and method for manufacturing diamond-based electrically conducting structure
JP6699827B2 (en) Method for manufacturing diamond-based conducting structure
CN110819938B (en) Vapor deposition mask, vapor deposition mask device, method for manufacturing vapor deposition mask device, and vapor deposition method
JP6174246B2 (en) Thermoelectric conversion element, thermoelectric conversion module, and method of manufacturing thermoelectric conversion element
JP7164959B2 (en) HOLDING DEVICE AND HOLDING DEVICE MANUFACTURING METHOD
GB2489105A (en) Transforming an embedded metal film into an insulator
US11098955B2 (en) Micro-scale wireless heater and fabrication method and applications thereof
JP2019071350A (en) Heater unit for wafer heating
RU2496286C1 (en) Manufacturing method of flexible relief printed-circuit boards for electronic and electrotechnical equipment
KR102255449B1 (en) Heater
JP2019075219A (en) Heater module
JP2008062485A (en) Molding stamper and molding apparatus
CN103426993A (en) Electronic module, illuminating device and method for manufacturing electronic module
WO2002098173A2 (en) Ceramic heat-generating element and method for manufacturing thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17886819

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17886819

Country of ref document: EP

Kind code of ref document: A1