JP2019071350A - Heater unit for wafer heating - Google Patents

Heater unit for wafer heating Download PDF

Info

Publication number
JP2019071350A
JP2019071350A JP2017196684A JP2017196684A JP2019071350A JP 2019071350 A JP2019071350 A JP 2019071350A JP 2017196684 A JP2017196684 A JP 2017196684A JP 2017196684 A JP2017196684 A JP 2017196684A JP 2019071350 A JP2019071350 A JP 2019071350A
Authority
JP
Japan
Prior art keywords
wafer
wafer mounting
heating
mounting surface
heating zones
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017196684A
Other languages
Japanese (ja)
Other versions
JP6593414B2 (en
Inventor
桂児 北林
Keiji Kitabayashi
桂児 北林
晃 三雲
Akira Mikumo
晃 三雲
成伸 先田
Shigenobu Sakita
成伸 先田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2017196684A priority Critical patent/JP6593414B2/en
Priority to KR1020197011870A priority patent/KR20190053941A/en
Priority to PCT/JP2018/037503 priority patent/WO2019073941A1/en
Publication of JP2019071350A publication Critical patent/JP2019071350A/en
Application granted granted Critical
Publication of JP6593414B2 publication Critical patent/JP6593414B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Resistance Heating (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

To provide a heater unit for wafer heating capable of improving thermal uniformity of wafer mounting surface.SOLUTION: In a heater unit 10 for wafer heating having discoid wafer mounting table 11 including a wafer mounting surface 11a, a discoid support plate 12 for supporting the wafer mounting table 11, and a circular thin film heat generation module 13 sandwiched therebetween, the heat generation module 13 has multiple heating circuits 13a extending in parallel with the wafer mounting surface 11a, multiple heating zones defined on the wafer mounting surface 11a by the multiple heating circuits 13a has a classification pattern where a circular central part A, an annular intermediate part B, and an annular peripheral part C are further divided uniformly in the hoop direction, and the area of each of the multiple heating zones has a deviation from the average area of the multiple heating zones within ±30%.SELECTED DRAWING: Figure 2

Description

本発明は、半導体ウエハを載せた状態で下面側から加熱するヒータユニットに関する。   The present invention relates to a heater unit that heats from the lower surface side with a semiconductor wafer mounted thereon.

LSIやメモリなどの半導体デバイスを製造する半導体製造装置では、半導体ウエハに対してCVDやスパッタリング等による成膜、レジストの塗布、露光及び現像等のフォトリソグラフィ―、パターニングのためのエッチング等の一連の工程からなる薄膜処理が施される。これらの薄膜処理では、一般に半導体ウエハを所定の温度に加熱した状態で処理を行うため、例えばフォトリソグラフィ―が行われるコータデベロッパ装置では、被処理物の半導体ウエハを載置してその下面から加熱するサセプタとも称するウエハ加熱用ヒータユニットが用いられている。   In a semiconductor manufacturing apparatus for manufacturing semiconductor devices such as LSIs and memories, a series of film formation such as CVD or sputtering on a semiconductor wafer, coating of a resist, photolithography such as exposure and development, etching for patterning, etc. A thin film process consisting of steps is performed. In these thin film processes, since the process is generally performed with the semiconductor wafer heated to a predetermined temperature, for example, in a coater development apparatus in which photolithography is performed, the semiconductor wafer of the object to be processed is placed and heated from its lower surface. A wafer heating heater unit also referred to as a susceptor is used.

上記ウエハ加熱用ヒータユニットは、例えば特許文献1に示されるように、上面に平坦なウエハ載置面を備えたセラミックス製の円板状部材からなるウエハ載置台と、これを下面側から支持する筒状支持体とから構成されており、該ウエハ載置台の内部には電熱コイルやパターニングされた金属薄膜等の発熱回路がウエハ載置面に平行に埋設されている。該発熱回路の両端部にはウエハ載置台の下面側に設けた1対の電極端子が電気的に接続しており、この1対の電極端子及びその引出線を介して外部電源から該発熱回路に給電が行われる。   For example, as disclosed in Patent Document 1, the above-mentioned heater unit for wafer heating supports a wafer mounting table made of a ceramic disk-shaped member having a flat wafer mounting surface on the upper surface, and this from the lower surface side. A heating circuit such as an electric heating coil or a patterned metal thin film is embedded in parallel to the wafer mounting surface in the interior of the wafer mounting table. A pair of electrode terminals provided on the lower surface side of the wafer mounting table is electrically connected to both ends of the heating circuit, and the heating circuit is connected from an external power supply through the pair of electrode terminals and the lead wire thereof. Power is supplied.

上記したウエハ加熱用ヒータユニットでは、製品となる半導体デバイスの品質にばらつきが生じないように、ウエハ載置面での均熱性を高めて半導体ウエハを全面に亘って均一に加熱することが求められている。そのため、該発熱回路の回路パターンを緻密にして温度ムラが生じないようにしたり、ウエハ載置面に画定した複数の加熱ゾーン(マルチゾーン)の各々に対して個別に温度制御を行うべく、当該複数の加熱ゾーンの各々にウエハ載置面に平行に延在する発熱回路を配して個別に給電したりすることが行われている。   In the above-described heater unit for wafer heating, it is required to uniformly heat the semiconductor wafer over the entire surface by enhancing the heat uniformity on the wafer mounting surface so that the quality of the semiconductor device as a product does not vary. ing. Therefore, in order to make the circuit pattern of the heat generating circuit dense and prevent temperature unevenness from occurring or individually perform temperature control for each of a plurality of heating zones (multi-zones) defined on the wafer mounting surface, In each of the plurality of heating zones, a heating circuit extending parallel to the wafer mounting surface is disposed to feed power separately.

特開2003−17224号公報Japanese Patent Application Laid-Open No. 2003-17224

上記のようにウエハ載置面に平行な面に複数の発熱回路を延在させることで該ウエハ載置面上に画定される複数の加熱ゾーンを個別に温度制御することが可能になるものの、各加熱ゾーンに配した発熱回路の発熱量を電圧や電流で制御する制御系では、一般に温度検出器として各加熱ゾーンごとに1個の温度センサーが設けられるため、複数の加熱ゾーンの其々の面積にばらつきがあるとこれら複数の加熱ゾーンの温度をバランスよく制御するのが困難になり、良好に温度制御できないことがあった。   Although extending the plurality of heating circuits to a plane parallel to the wafer mounting surface as described above makes it possible to individually control the temperature of the plurality of heating zones defined on the wafer mounting surface, In a control system that controls the amount of heat generation of the heating circuit disposed in each heating zone with voltage or current, one temperature sensor is generally provided for each heating zone as a temperature detector. If the area varies, it may be difficult to control the temperatures of the plurality of heating zones in a well-balanced manner, and temperature control may not be performed well.

従来は上記の温度制御上の問題に起因するウエハ載置面の均熱性への悪影響は無視できる程度に小さかったため問題視されることはほとんどなかったが、近年の半導体デバイスの微細化に伴い、半導体ウエハが載置されるウエハ載置面の温度はより精密な制御が求められるようになってきている。そのため、これまで問題視されていなかった上記の問題が顕在化しつつある。本発明は、このような事情に鑑みてなされたものであり、ウエハ載置面上に画定される複数の加熱ゾーンをバランスよく温度制御することでウエハ載置面の均熱性を高めることが可能なウエハ加熱用ヒータユニットを提供することを目的とする。   In the past, the adverse effect on the temperature uniformity of the wafer mounting surface caused by the above-mentioned problems with temperature control was negligible because it was negligible, but with the recent miniaturization of semiconductor devices, As for the temperature of the wafer mounting surface on which the semiconductor wafer is mounted, more precise control is required. Therefore, the above-mentioned problem which has not been regarded as a problem is emerging. The present invention has been made in view of such circumstances, and it is possible to improve the heat uniformity of the wafer mounting surface by controlling the temperature of the plurality of heating zones defined on the wafer mounting surface in a well-balanced manner. It is an object of the present invention to provide a wafer heating heater unit.

上記目的を達成するため、本発明に係るウエハ加熱用ヒータユニットは、半導体ウエハが載置されるウエハ載置面を備えた円板状のウエハ載置台と、前記ウエハ載置台を支持する円板状の支持板と、前記ウエハ載置台と前記支持板との間に挟持された円形薄膜状の発熱モジュールとを有するウエハ加熱用ヒータユニットであって、前記発熱モジュールは前記ウエハ載置面に平行に延在する複数の発熱回路を有しており、前記複数の発熱回路によって前記ウエハ載置面に画定される複数の加熱ゾーンは、同心円状に区画されている円形中央部、前記円形中央部の外周側の環状中間部、及び環状周縁部の各々が更に周方向に均等に分割された区分パターンを有しており、前記複数の加熱ゾーンの各々の面積は、前記複数の加熱ゾーンの平均面積からの偏倚が±30%以内であることを特徴としている。   In order to achieve the above object, a wafer heating heater unit according to the present invention comprises a disk-shaped wafer mounting table having a wafer mounting surface on which a semiconductor wafer is mounted, and a disk supporting the wafer mounting table. A heater unit for heating a wafer, comprising: a support plate in the shape of a circle, and a heat generating module in the form of a circular thin film sandwiched between the wafer mounting table and the support plate, the heat generating module being parallel to the wafer mounting surface A plurality of heating circuits extending to the plurality of heating zones, and a plurality of heating zones defined on the wafer mounting surface by the plurality of heating circuits are concentrically divided into a circular central portion, the circular central portion The annular intermediate portion on the outer circumferential side of the outer circumferential edge portion and the annular peripheral edge portion each have a segment pattern equally divided in the circumferential direction, and the area of each of the plurality of heating zones is the average of the plurality of heating zones. Area It is characterized in that the bias of is within 30% ±.

本発明によれば、ウエハ載置面に画定される複数の加熱ゾーンをバランスよく温度制御することができるので、該ウエハ載置面の均熱性を高めることが可能になる。   According to the present invention, temperature control of the plurality of heating zones defined on the wafer mounting surface can be performed in a well-balanced manner, so that it is possible to improve the heat uniformity of the wafer mounting surface.

本発明に係るウエハ加熱用ヒータユニットの一具体例の縦断面図である。FIG. 7 is a longitudinal sectional view of a specific example of a wafer heating heater unit according to the present invention. 図1のウエハ加熱用ヒータユニットが有する複数の発熱回路によって画定されるウエハ載置面上の複数の加熱ゾーンの区分パターンを示す平面図である。It is a top view which shows the division pattern of several heating zones on the wafer mounting surface defined by several heating circuit which the heater unit for wafer heating of FIG. 1 has. 本発明の比較例1及び2のウエハ加熱用ヒータユニットのウエハ載置面上に画定される複数の加熱ゾーンの区分パターンを示す平面図である。It is a top view which shows the division pattern of the several heating zone defined on the wafer mounting surface of the heater unit for wafer heating of Comparative example 1 and 2 of this invention.

最初に本発明の実施形態を列記して説明する。本発明のウエハ加熱用ヒータユニットの実施形態は、半導体ウエハが載置されるウエハ載置面を備えた円板状のウエハ載置台と、前記ウエハ載置台を支持する円板状の支持板と、前記ウエハ載置台と前記支持板との間に挟持された円形薄膜状の発熱モジュールとを有するウエハ加熱用ヒータユニットであって、前記発熱モジュールは前記ウエハ載置面に平行に延在する複数の発熱回路を有しており、前記複数の発熱回路によって前記ウエハ載置面に画定される複数の加熱ゾーンは、同心円状に区画されている円形中央部、前記円形中央部の外周側の環状中間部、及び環状周縁部の各々が更に周方向に均等に分割された区分パターンを有しており、前記複数の加熱ゾーンの各々の面積は、前記複数の加熱ゾーンの平均面積からの偏倚が±30%以内であることを特徴としている。これにより、ウエハ載置面上に画定される複数の加熱ゾーンをバランスよく温度制御することができるので、該ウエハ載置面の均熱性を高めることが可能になる。   First, embodiments of the present invention will be listed and described. The embodiment of the heater unit for heating a wafer according to the present invention comprises a disk-shaped wafer mounting table provided with a wafer mounting surface on which a semiconductor wafer is mounted, a disk-shaped support plate for supporting the wafer mounting table, and A heater unit for heating a wafer, comprising: a circular thin film heat generating module held between the wafer mounting table and the support plate, wherein the heat generating modules extend in parallel to the wafer mounting surface. A plurality of heating zones defined on the wafer mounting surface by the plurality of heating circuits, the circular central portion being concentrically partitioned, and an annular shape on the outer peripheral side of the circular central portion Each of the middle portion and the annular peripheral portion further has a divided pattern equally divided in the circumferential direction, and the area of each of the plurality of heating zones is a deviation from the average area of the plurality of heating zones. ± 30% It is characterized in that it is within. As a result, the temperature control of the plurality of heating zones defined on the wafer mounting surface can be performed in a well-balanced manner, so that it is possible to improve the heat uniformity of the wafer mounting surface.

上記本発明のウエハ加熱用ヒータユニットの実施形態においては、前記円形中央部は周方向に3等分されており、前記環状中間部は周方向に6等分されており、前記環状周縁部は周方向に6等分されているのが好ましい。これにより半導体ウエハが載置される載置面の均熱性をより一層高めることができる。また、上記本発明のウエハ加熱用ヒータユニットの実施形態においては、前記複数の加熱ゾーンのうち周方向に隣接する加熱ゾーン同士の間及び/又は半径方向に隣接する加熱ゾーン同士の間に前記半導体ウエハのリフトピン用の挿通孔が設けられているのが好ましい。これにより、リフトピン用の挿通孔による載置面の均熱性への悪影響を抑えることができる。   In the embodiment of the wafer heating heater unit according to the present invention, the circular central portion is equally divided into three in the circumferential direction, the annular intermediate portion is equally divided into six in the circumferential direction, and the annular peripheral portion is Preferably, it is equally divided into six in the circumferential direction. This makes it possible to further improve the heat uniformity of the mounting surface on which the semiconductor wafer is mounted. Further, in the embodiment of the wafer heating heater unit according to the present invention, the semiconductor may be disposed between heating zones adjacent in the circumferential direction among the plurality of heating zones and / or between heating zones adjacent in the radial direction. Preferably, an insertion hole for the lift pin of the wafer is provided. Thereby, the bad influence to the thermal uniformity of the mounting surface by the penetration hole for lift pins can be suppressed.

次に、本発明のウエハ加熱用ヒータユニットの一具体例について説明する。図1に示すように、この本発明の一具体例のウエハ加熱用ヒータユニット10は、半導体ウエハWを載置するウエハ載置面11aを上面に備えた円板形状のウエハ載置台11と、このウエハ載置台11とほぼ同等の外径を有する円板形状からなり、該ウエハ載置台11をその下面側から全面に亘って支持する支持板12と、これらウエハ載置台11と支持板12との間に電気的絶縁状態で挟持され、このウエハ載置台11とほぼ同等の外径を有する円形薄膜状の発熱モジュール13とを有している。このウエハ加熱用ヒータユニット10は、支持板12の下面側に設けられた複数の柱状の脚部20によって支持されている。   Next, a specific example of the wafer heating heater unit of the present invention will be described. As shown in FIG. 1, the wafer heating heater unit 10 according to one specific example of the present invention is a disk-shaped wafer mounting table 11 having a wafer mounting surface 11a on which the semiconductor wafer W is mounted. A support plate 12 is formed in a disk shape having an outer diameter substantially equal to that of the wafer mounting table 11 and supports the wafer mounting table 11 from the lower surface side over the entire surface, and the wafer mounting table 11 and the support plate 12 And a circular thin-film heat generating module 13 having an outer diameter substantially equal to that of the wafer mounting table 11. The wafer heating heater unit 10 is supported by a plurality of columnar legs 20 provided on the lower surface side of the support plate 12.

上記のウエハ載置台11は、ウエハ載置面11aの全面に亘って極めて高い温度均一性、すなわち高い均熱性を実現すべく熱伝導率の高い材質からなるのが好ましく、例えば銅やアルミニウムなどの金属がより好ましい。ウエハ載置台11の材質は、炭化珪素、窒化アルミニウム、Si−SiC、Al−SiCなどの剛性(ヤング率)の高いセラミックスやセラミックス複合体でもよく、これによりウエハ載置面11aの平坦性を常時維持することが可能になるうえ、ウエハ載置面11aの反り防止を目的としてウエハ載置台11を分厚くする必要がなくなるので熱容量を小さくでき、よって昇降温速度を速めることが可能になる。   The wafer mounting table 11 is preferably made of a material having a high thermal conductivity so as to achieve extremely high temperature uniformity, that is, high heat uniformity over the entire surface of the wafer mounting surface 11a. For example, copper, aluminum, etc. Metal is more preferred. The material of the wafer mounting table 11 may be a ceramic or ceramic complex having high rigidity (Young's modulus) such as silicon carbide, aluminum nitride, Si-SiC, Al-SiC, etc., whereby the flatness of the wafer mounting surface 11a is always obtained. It is possible to maintain the temperature, and it is not necessary to increase the thickness of the wafer mounting table 11 for the purpose of preventing warpage of the wafer mounting surface 11a, so it is possible to reduce the heat capacity and to increase the temperature rising and lowering speed.

支持板12の材質も、剛性(ヤング率)の高い炭化珪素、窒化アルミニウム、Si−SiC、Al−SiCなどのセラミックスやセラミックス複合体を用いることが好ましい。特に、ウエハ載置台11の材質が金属の場合、後述するように発熱モジュール13を挟んでウエハ載置台11と支持板12とを重ね合わせて機械的に結合することで、ウエハ載置面11aの反りを抑えることができるので、ウエハ載置面11aにおいて高い均熱性と平坦性を兼ね備えたヒータユニット10を実現することができる。   The material of the support plate 12 is also preferably a ceramic or ceramic composite such as silicon carbide having high rigidity (Young's modulus), aluminum nitride, Si-SiC, or Al-SiC. In particular, when the material of the wafer mounting table 11 is metal, as described later, the wafer mounting surface 11 and the support plate 12 are overlaid and mechanically coupled to each other with the heat generating module 13 interposed therebetween. Since warpage can be suppressed, it is possible to realize the heater unit 10 having both high thermal uniformity and flatness on the wafer mounting surface 11a.

これらウエハ載置台11と支持板12とはネジ止めになどによって互いに機械的に結合することが好ましい。特に、ウエハ載置台11と支持板12とが互いに異なる材質からなる場合は、ウエハ載置台11及び支持板12が其々の温度に応じてウエハ載置面11aの方向に自由に熱膨張できるように、例えば支持板12に厚み方向に貫通したネジ孔(図示せず)に下側から雄ネジ(図示せず)を挿通し、ウエハ載置台11の下面側に設けた雌ネジ部(図示せず)に螺合させると共に、該雄ネジの座面とその当接部となる支持板12の下面との間に例えばベアリング(図示せず)を介在させることが好ましい。なお、この場合は発熱モジュール13においても、上記支持板12のネジ孔に対応する位置に上記雌ネジ部の挿通孔が設けられることになる。   It is preferable that the wafer mounting table 11 and the support plate 12 be mechanically coupled to each other by screwing or the like. In particular, when the wafer mounting table 11 and the support plate 12 are made of different materials, the wafer mounting table 11 and the support plate 12 can be thermally expanded freely in the direction of the wafer mounting surface 11 a according to the respective temperatures. For example, a female screw (not shown) is provided on the lower surface side of the wafer mounting table 11 by inserting a male screw (not shown) from below into a screw hole (not shown) which penetrates through the support plate 12 in the thickness direction. Preferably, for example, a bearing (not shown) is interposed between the bearing surface of the male screw and the lower surface of the support plate 12 which is the contact portion. In this case, also in the heat generating module 13, the insertion holes of the female screw portion are provided at positions corresponding to the screw holes of the support plate 12.

ここで、上記ネジ止め部は後述の発熱回路の有効径外に配置することが好ましい。このようにすることで、局所的なクールスポットがほとんど生じない温度均一性の高い載置台を実現することができる。また、上記ネジ止め部を発熱回路の有効径内に配置する場合は、複数の加熱ゾーンのうち周方向に隣接する加熱ゾーン同士の間及び/又は半径方向に隣接する加熱ゾーン同士の間に配置し、且つこの配置位置を通るウエハ載置面の半径方向の線分に関して上記区分パターンが線対称となるようにすることが好ましく、これにより上記ネジ止め部による温度均一性の悪化を抑えることができる。上記のネジ止め部は、前述のリフトピン挿通孔と同一の該半径方向の線分上に位置し且つ該線分に関して上記区分パターンが線対称であるのが更に好ましい。上記のように、載置台、発熱ユニット、支持板のいずれか又は全てに干渉する機械部品や電装部品などの特異点が存在する場合は、これら特異点を、発熱回路の有効径外に配置するか、あるいは有効径内の場合は隣接する加熱ゾーンの間であって且つ区分パターンの対称線となる位置に配することで、温度均一性を損なうことなく所望の機能を発揮させることができる。なお、発熱回路の有効径とは、ウエハ載置面11aのうち、後述する発熱回路13aが真下に配されている円形領域の直径である。   Here, the screwing portion is preferably disposed outside the effective diameter of the heating circuit described later. By doing this, it is possible to realize a mounting table with high temperature uniformity in which local cool spots hardly occur. When the screwing portion is disposed within the effective diameter of the heating circuit, the plurality of heating zones are disposed between the heating zones adjacent in the circumferential direction and / or between the heating zones adjacent in the radial direction. It is preferable that the division pattern be axisymmetric with respect to a radial line segment of the wafer mounting surface passing through the arrangement position, thereby suppressing the deterioration in temperature uniformity due to the screwing portion. it can. More preferably, the screwing portion is located on the same radial line segment as the lift pin insertion hole described above, and the division pattern is line symmetrical with respect to the line segment. As described above, when there are singular points such as mechanical parts and electrical parts that interfere with any or all of the mounting table, the heating unit, and the support plate, these singular points are disposed outside the effective diameter of the heating circuit. Alternatively, by arranging the heating zones between the adjacent heating zones within the effective diameter and at the position of the symmetry line of the sectional pattern, the desired function can be exhibited without compromising the temperature uniformity. The effective diameter of the heat generating circuit is the diameter of a circular area of the wafer mounting surface 11a where the heat generating circuit 13a described later is disposed immediately below.

上記のウエハ載置台11と支持板12との間に挟持される発熱モジュール13は、上記のウエハ載置面11aに平行な面上に延在する複数の発熱回路13aを有している。これら複数の発熱回路13aは、上記のウエハ載置台11及び支持板12から電気的に絶縁状態となるように絶縁体で覆われており、このような形態の発熱モジュール13は、例えばステンレス箔等の導電性金属箔にエッチングやレーザー加工でパターニング加工を施すことで複数の発熱回路13aを形成した後、これを上下から例えばポリイミドシート等の耐熱性絶縁シートで挟み込むことで作製することができる。   The heat generating module 13 held between the wafer mounting table 11 and the support plate 12 has a plurality of heat generating circuits 13 a extending on a surface parallel to the wafer mounting surface 11 a. The plurality of heating circuits 13a are covered with an insulator so as to be in an electrically insulated state from the wafer mounting table 11 and the support plate 12 described above. The conductive metal foil is patterned by etching or laser processing to form a plurality of heat generating circuits 13a, which can then be fabricated by sandwiching it from above and below with a heat resistant insulating sheet such as a polyimide sheet.

あるいは、発熱回路13aの回路パターンのライン幅が細かったり、発熱回路13aに用いる導電性金属箔の厚みが薄かったり等の理由により発熱回路13aを取り扱うのが困難な場合は、パターニング加工前の導電性金属箔と電気絶縁のためのポリイミドシート等の耐熱絶縁シートとを予め重ね合わせて熱圧着し、この熱圧着後に導電性金属箔のみをエッチングなどでパターニング加工することで、ベースとなる全面ポリイミドフィルムとパターン箔(すなわち箔状の発熱回路13a)とを一体化させ、この一体化された箔状の発熱回路13aの上から更にポリイミドフィルムを重ね合わせて熱圧着することで上記の発熱モジュール13を作製してもよい。   Alternatively, when it is difficult to handle the heat generating circuit 13a because the line width of the circuit pattern of the heat generating circuit 13a is narrow, the thickness of the conductive metal foil used for the heat generating circuit 13a is thin, etc. Heat-resistant insulation sheet such as conductive metal foil and polyimide sheet for electrical insulation in advance and thermo-compression bonding, and after this thermo-compression bonding, only conductive metal foil is patterned by etching etc. The heat generating module 13 is integrated by integrating the film and the pattern foil (that is, the heat generating circuit 13a in the form of a foil) and further laminating a polyimide film on the integrated heat generating circuit 13a in the form of a foil. May be produced.

このように、ウエハ載置面11aに平行に延在する複数の発熱回路13aを発熱モジュール13内に設けることによって、ウエハ載置面11aを複数の加熱ゾーンに区分することができる。これら複数の発熱回路13aによって画定される複数の加熱ゾーンの区分パターンには特に限定はないが、円板形状のウエハ載置台11は一般的に中央部よりも表面積の広い周縁部からの放熱が多いため、定常状態では当該周縁部が局所的に低温になりやすい。一方で、半導体ウエハが載置台に載置されると、一般にウエハ径よりも載置台の外径が大きいため、載置台には中央部が外周部よりも低温の同心円状のセンタークール型の温度分布が生じる。その後、載置台の温度は制御系の働きにより所定の温度まで昇温するが、上記の温度分布の影響を受けるので半導体ウエハの過渡的な温度分布も同心円状のセンタークールとなる。このようなセンタークール型の温度分布を補正するため、加熱ゾーンの区分パターンは半径方向に同心円状に分割することが好ましい。また、ヒータユニット10が搭載される真空チャンバーの壁面にはロードロック等が設けられているためウエハ載置台11の周囲の環境は周方向に均等ではない。そこで図2に示すように、ウエハ載置面11aを同心円状に分割したうえで更に周方向に均等に分割した区分パターンが好ましい。   As described above, by providing the plurality of heating circuits 13a extending in parallel with the wafer mounting surface 11a in the heating module 13, the wafer mounting surface 11a can be divided into a plurality of heating zones. The division pattern of the plurality of heating zones defined by the plurality of heating circuits 13a is not particularly limited, but the disk-shaped wafer mounting table 11 generally dissipates heat from the peripheral portion having a larger surface area than the central portion. Because there are many, in the steady state, the peripheral portion is likely to be locally low in temperature. On the other hand, when the semiconductor wafer is mounted on the mounting table, the outer diameter of the mounting table is generally larger than the diameter of the wafer. Distribution occurs. Thereafter, the temperature of the mounting table is raised to a predetermined temperature by the operation of the control system. However, since the temperature distribution is affected, the transition temperature distribution of the semiconductor wafer also becomes concentric center cooling. In order to correct such a center-cool type temperature distribution, it is preferable that the division pattern of the heating zone be concentrically divided in the radial direction. Further, since a load lock or the like is provided on the wall surface of the vacuum chamber on which the heater unit 10 is mounted, the environment around the wafer mounting table 11 is not uniform in the circumferential direction. Therefore, as shown in FIG. 2, it is preferable to use a division pattern in which the wafer mounting surface 11a is divided concentrically and further divided equally in the circumferential direction.

すなわち、この図2に示す複数の加熱ゾーンの区分パターンでは、ウエハ載置面11aが円形中央部Aと、該円形中央部Aの外側の環状中間部Bと、該環状中間部Bの外側の環状周縁部Cとに同心円状に区分されており、更に、該円形中央部Aは中央部扇状加熱ゾーンA1〜A3として周方向に3等分されており、該環状中間部Bは中間部扇状加熱ゾーンB1〜B6として周方向に6等分されており、該環状周縁部Cは周縁部扇状加熱ゾーンC1〜C6として周方向に6等分されている。   That is, in the divided patterns of the plurality of heating zones shown in FIG. 2, the wafer mounting surface 11a has a circular central portion A, an annular intermediate portion B outside the circular central portion A, and an outer side of the annular intermediate portion B. It is divided concentrically into an annular peripheral portion C, and the circular central portion A is equally divided into three in the circumferential direction as central fan-shaped heating zones A1 to A3, and the annular intermediate portion B is an intermediate portion fan-shaped The heating zones B1 to B6 are equally divided into six in the circumferential direction, and the annular peripheral portion C is equally divided into six circumferentially equal areas as the heating zones C1 to C6.

更に、本発明の一具体例のヒータユニット10において、上記のようにして区分された15個の加熱ゾーンの各々の面積は、これら15個の加熱ゾーンの平均面積からの偏倚が±30%以内である。すなわち、ウエハ載置面11aに画定された複数の加熱ゾーンの数をn、これら複数の加熱ゾーンの面積を其々S1、S2、S3、・・・、及びSnとしたとき、いずれのSx(但し、x=1、2、3、・・・、n)においても下記式1が成立する。   Furthermore, in the heater unit 10 according to one embodiment of the present invention, the area of each of the 15 heating zones divided as described above is within ± 30% of the deviation from the average area of these 15 heating zones. It is. That is, when the number of the plurality of heating zones defined on the wafer mounting surface 11a is n, and the areas of the plurality of heating zones are S1, S2, S3,. However, the following equation 1 holds also for x = 1, 2, 3,..., N).

[式1]
−30≦{Sx−(S1+S2+・・・+Sn)/n}×100≦30
[Equation 1]
−30 ≦ {Sx− (S1 + S2 +... + Sn) / n} × 100 ≦ 30

これにより、ウエハ載置面11aに画定された複数の加熱ゾーンの其々の面積が大きくばらつくのを抑えることができるので、これら複数の加熱ゾーンをバランスよく温度制御することができる。その結果、該ウエハ載置面11aの均熱性を高めることが可能になる。   Thus, large variations in the area of the plurality of heating zones defined on the wafer mounting surface 11a can be suppressed, so that the temperature control of the plurality of heating zones can be performed in a balanced manner. As a result, it becomes possible to improve the temperature uniformity of the wafer mounting surface 11a.

なお、本発明の一具体例のウエハ加熱用ヒータユニット10は、上記の複数の加熱ゾーンのうち周方向に隣接する加熱ゾーン同士の間に半導体ウエハのリフトピン用の挿通孔が設けられていてもよい。例えば図2には、中央部扇状加熱ゾーンA1とA2との間、A2とA3との間、及びA3とA1との間に3個のリフトピン用挿通孔Q1〜Q3が其々設けられた例が示されている。このように周方向に隣接する加熱ゾーン同士の間にリフトピン用挿通孔を設けることで、当該挿通孔による載置面11aへの均熱性の悪影響を抑えることができる。あるいは、リフトピン用挿通孔は半径方向に隣接する加熱ゾーン同士の間に設けても良いし、周方向に隣接する加熱ゾーン同士の間であって且つ半径方向に隣接する加熱ゾーン同士の間に設けても良い。   In the wafer heating heater unit 10 according to a specific example of the present invention, an insertion hole for lift pins of a semiconductor wafer is provided between heating zones adjacent in the circumferential direction among the plurality of heating zones described above. Good. For example, FIG. 2 shows an example in which three lift pin insertion holes Q1 to Q3 are respectively provided between the central fan-shaped heating zones A1 and A2, between A2 and A3, and between A3 and A1. It is shown. By providing the lift pin insertion holes between the heating zones adjacent in the circumferential direction as described above, it is possible to suppress the adverse effect of the heat uniformity on the placement surface 11 a by the insertion holes. Alternatively, the lift pin insertion holes may be provided between the radially adjacent heating zones, or between the circumferentially adjacent heating zones and between the radially adjacent heating zones. It is good.

各加熱ゾーン内に設けられている図示しない発熱回路の回路パターンについては特に限定はなく、様々な回路パターンを有することができる。例えば、同心円状の複数の湾曲導電部と、これら湾曲導電部の隣接するもの同士を接続する直線導電部とで一筆書き状に形成された回路パターンにすることができる。この場合、発熱回路の両端部に其々2つの電極端子(図示せず)が接続されることになる。   There is no particular limitation on the circuit pattern of the heating circuit (not shown) provided in each heating zone, and various circuit patterns can be provided. For example, it is possible to form a circuit pattern formed in a one-stroke writing shape with a plurality of concentrically curved conductive portions and a linear conductive portion connecting adjacent ones of the curved conductive portions. In this case, two electrode terminals (not shown) are connected to both ends of the heat generating circuit.

なお、複数の発熱回路は、加熱ゾーンごとに発熱密度が異なるようにしてもよい。例えば前述したように、一般にウエハ径よりも載置台の外径が大きいため、半導体ウエハが載置台に載置されると当該載置台には中央部が外周部よりも低温の同心円状のセンタークール型の温度分布が生じる。その後、載置台の温度は制御系の働きにより所定の温度まで昇温するが、上記の温度分布の影響を受けるので半導体ウエハの過渡的な温度分布も同心円状のセンタークールとなる。このようなセンタークール型の温度分布を補正するため、中央部扇状加熱ゾーンA1〜A3の発熱密度を高く設計することで、ウエハ載置時の過渡的な温度均一性を一層向上することができる。発熱密度を高くする方法としては、発熱回路の回路パターンのピッチを狭くしたり発熱体回路を構成する導電線の幅を細くしたりすることで実現できる。   The heating density of the plurality of heating circuits may be different for each heating zone. For example, as described above, since the outside diameter of the mounting table is generally larger than the diameter of the wafer, when the semiconductor wafer is mounted on the mounting table, the center of the mounting table is concentrically cooled at a center portion whose temperature is lower than that of the outer peripheral portion. A mold temperature distribution results. Thereafter, the temperature of the mounting table is raised to a predetermined temperature by the operation of the control system. However, since the temperature distribution is affected, the transition temperature distribution of the semiconductor wafer also becomes concentric center cooling. In order to correct such a center-cool type temperature distribution, by designing the heat density of the central fan-shaped heating zones A1 to A3 high, it is possible to further improve the transient temperature uniformity at the time of wafer placement. . The method of increasing the heat generation density can be realized by narrowing the pitch of the circuit pattern of the heat generating circuit or narrowing the width of the conductive wire constituting the heat generating circuit.

なお、発熱モジュール13においては、ウエハ載置面11aに平行な全面積に対して発熱回路の有効面積(すなわち、発熱モジュール13の上記全面積から、互いに隣接する加熱ゾーン同士の離間スペース、ネジ孔やリフトピンの挿通孔、測温センサー設置部位等の発熱がないスペースを引いたもの)の比率、すなわち有効発熱領域の比率が80%以上であるのが好ましい。   In the heat generating module 13, the effective area of the heat generating circuit with respect to the entire area parallel to the wafer mounting surface 11a (that is, the separated space between the heating zones adjacent to each other from the above total area of the heat generating module 13) And the ratio of the effective heat generation area, i.e., the ratio of the effective heat generation area is preferably 80% or more.

本発明の一具体例のウエハ加熱用ヒータユニット10は、複数の加熱ゾーンの各々において例えば抵抗値が調整された測温素子からなる測温センサー(図示せず)を加熱ゾーンの中心位置に設けると共に、各測温センサーの検出値に基づいて当該加熱ゾーン内の発熱回路を個別に制御するのが好ましい。ここで加熱ゾーンの中心位置とは、円形や三角形等の一般的な形状の場合は幾何学的な中心点と定義することができ、線対称な形状の場合はその対称軸となる対称線分の中間点と定義することができる。例えば図2に示すような扇状の加熱ゾーンの場合は、その周方向の中間角度位置であって且つ半径方向の中間地点が中心位置となる。   The wafer heating heater unit 10 according to one embodiment of the present invention is provided with a temperature measuring sensor (not shown) consisting of a temperature measuring element whose resistance value is adjusted, for example, in each of a plurality of heating zones at the center position of the heating zone. In addition, it is preferable to individually control the heating circuit in the heating zone based on the detection value of each temperature measurement sensor. Here, the central position of the heating zone can be defined as a geometrical central point in the case of a general shape such as a circle or a triangle, and in the case of a line symmetrical shape, a symmetrical line segment which is the axis of symmetry It can be defined as the middle point of For example, in the case of a fan-shaped heating zone as shown in FIG. 2, the center position is at the middle angular position in the circumferential direction and at the middle position in the radial direction.

上記のように制御系を構成することによって、ウエハ載置面11aを局所的に加熱することができるので、例えばロードロックの開閉等により載置面11aが部分的に冷却されるような場合であっても均熱性を良好に維持することが可能になる。上記の測温センサーは例えばウエハ載置台11の下面側に測温センサーが収まる大きさのザグリ穴を設け、その底面に接着剤を塗布して測温センサーを接着固定することで各加熱ゾーンの温度を良好に検知することができる。   Since the wafer mounting surface 11a can be locally heated by configuring the control system as described above, for example, in a case where the mounting surface 11a is partially cooled by opening and closing of a load lock or the like. Even if there is, it becomes possible to maintain good thermal uniformity. The temperature measuring sensor described above is, for example, provided with a counterbore hole of a size that the temperature measuring sensor fits on the lower surface side of the wafer mounting table 11, and an adhesive is applied to the bottom surface to fix the temperature measuring sensor. The temperature can be detected well.

再度図1に戻ると、本発明の一具体例のウエハ加熱用ヒータユニット10は、支持板12の下方に冷却ユニット30が設けられている。この冷却ユニット30は、一点鎖線で示すように支持板12の下面側に当接する当接位置と、実線で示すように支持板12から離間する離間位置との間で往復動可能な可動式冷却板31と、この可動式冷却板31が上記離間位置にある時に当接する固定式冷却ステージ32とを有している。これら可動式冷却板31及び固定式冷却ステージ32の材質は、熱伝導性が高い銅、アルミニウム、ニッケル、マグネシウム、チタン、若しくはこれらの少なくともいずれかを主成分とする合金又はステンレスからなる群から選択することが好ましい。   Referring back to FIG. 1 again, the wafer heating heater unit 10 according to the embodiment of the present invention is provided with a cooling unit 30 below the support plate 12. The cooling unit 30 is movable cooling that can reciprocate between an abutting position abutted against the lower surface side of the support plate 12 as indicated by an alternate long and short dash line and a separated position separating from the support plate 12 as indicated by a solid line. It has a plate 31 and a stationary cooling stage 32 that abuts when the movable cooling plate 31 is in the separated position. The material of the movable cooling plate 31 and the fixed cooling stage 32 is selected from the group consisting of copper, aluminum, nickel, magnesium, titanium having high thermal conductivity, or an alloy or stainless steel mainly containing at least one of them. It is preferable to do.

この固定式冷却ステージ32は、図示しないチラーなどの冷却装置で冷却されたフッ素系冷媒等の不凍液、空気、汎用的な水等の冷媒が循環する冷媒流路32aを有している。この冷媒流路の形態は特に限定はなく、例えば金属製の板状部材の下面側に冷媒流路としてCuなどの金属製のパイプを沿わせ、この金属製パイプの両端にステンレス製の継ぎ手を取り付けると共に、金属製パイプを押さえ板で板状部材に押さえつけた状態で該押さえ板と板状部材とをネジなどにより機械的に結合する構造にすることができる。   The stationary cooling stage 32 has a refrigerant flow path 32a in which an antifreeze liquid such as a fluorine-based refrigerant cooled by a cooling device such as a chiller (not shown), air, or a general-purpose refrigerant such as water circulates. The form of the refrigerant flow path is not particularly limited. For example, a metal pipe such as Cu is placed along the lower surface side of the metal plate member as a refrigerant flow path, and stainless steel joints are provided at both ends of the metal pipe. While being attached, in a state where the metal pipe is pressed against the plate-like member by the pressing plate, the pressing plate and the plate-like member can be mechanically coupled with each other by a screw or the like.

あるいは、より高い熱効率を得るため、金属製の板状部材の下面側に例えば渦巻き状のザグリ溝を設け、このザグリ溝中に渦巻き状に成形した冷媒流通用の金属製パイプを設置した構造でもよい。この場合、金属製パイプと冷却板との良好な熱伝達を保つため、コーキング材、シーラント、接着剤などにより金属製パイプの表面とザグリ溝の内面とを接着固定するのが好ましい。あるいは、同じ材質の略同形状の2枚の板状部材を用意し、それらの一方又は両方の片面に機械加工で流路となる溝を形成し、この流路側の面が対向するように2枚の板状部材を重ね合わせて例えばロウ付けなどの結合法で一体化した構造でもよい。   Alternatively, in order to obtain higher thermal efficiency, for example, a spiral counterbore groove is provided on the lower surface side of the metal plate-like member, and a metallic pipe for circulating refrigerant formed in a spiral shape is installed in the counterbore groove. Good. In this case, in order to maintain a good heat transfer between the metal pipe and the cooling plate, it is preferable to bond and fix the surface of the metal pipe and the inner surface of the counterbore with a caulking material, a sealant, an adhesive or the like. Alternatively, prepare two plate-like members of substantially the same shape and made of the same material, and form a groove serving as a flow path by machining on one side or both sides of the two, so that the side of the flow side faces each other The sheet members may be stacked and integrated by a bonding method such as brazing.

可動式冷却板31は、エアシリンダなどからなる昇降機構33に取り付けられている。これにより、昇降機構33を作動させることで固定式冷却板31を前述した当接位置と、離間位置との間で往復動させることが可能になる。なお、可動式冷却板31を使用せずに冷媒流路を有する冷却ステージ32自体を支持板12の下面側に当接する位置と該下面側から離間する位置との間で往復動させてもよい。   The movable cooling plate 31 is attached to an elevating mechanism 33 composed of an air cylinder or the like. As a result, by operating the elevating mechanism 33, it becomes possible to reciprocate the stationary cooling plate 31 between the contact position and the separated position described above. It should be noted that the cooling stage 32 having the refrigerant flow path itself may be reciprocated between a position contacting the lower surface side of the support plate 12 and a position separating from the lower surface side without using the movable cooling plate 31 .

上記の可動式冷却板31の上面や固定式冷却ステージ32の上面、及び/又は支持板12の下面には介在層(図示せず)を設けてもよい。この介在層は、厚み方向にクッション性(柔軟性)を有しているのが好ましく、また耐熱性を有しているのが好ましい。更に、例えば1W/m・K以上の高い熱伝導率を有していることが好ましい。このような材質としては、発泡金属、金属メッシュ、グラファイトシート、又はフッ素樹脂、ポリイミド樹脂、若しくはシリコーン樹脂等の樹脂シートを挙げることができる。なお、上記の樹脂シートにカーボンなどの熱伝導性フィラーを含有することで、熱抵抗をより小さくすることが可能になる。なお、本発明の一具体例のウエハ加熱用ヒータユニット10及び冷却ユニット30は好適にはステンレスからなる容器40内に収められているのが好ましい。   An intervening layer (not shown) may be provided on the upper surface of the movable cooling plate 31, the upper surface of the fixed cooling stage 32, and / or the lower surface of the support plate 12. The intervening layer preferably has cushioning properties (flexibility) in the thickness direction, and preferably has heat resistance. Furthermore, it is preferable to have high thermal conductivity, for example, of 1 W / m · K or more. Examples of such a material include a foam metal, a metal mesh, a graphite sheet, or a resin sheet such as a fluorine resin, a polyimide resin, or a silicone resin. In addition, it becomes possible to make thermal resistance smaller by containing heat conductive fillers, such as carbon, in said resin sheet. The wafer heating heater unit 10 and the cooling unit 30 according to one embodiment of the present invention are preferably housed in a container 40 made of stainless steel.

以上、本発明のウエハ加熱用ヒータユニットについて一実施形態を挙げて説明したが、本発明は係る実施形態に限定されるものではなく、本発明の主旨から逸脱しない範囲の種々の態様で実施することが可能である。すなわち、本発明の技術的範囲は、特許請求の範囲及びその均等物に及ぶものである。   Although the wafer heating heater unit of the present invention has been described above with reference to one embodiment, the present invention is not limited to the embodiment, and various modifications can be made without departing from the scope of the present invention. It is possible. That is, the technical scope of the present invention is the scope of the claims and the equivalents thereof.

[実施例1]
図1に示すような下方に冷却ユニット30が設けられたウエハ加熱用ヒータユニット10を作製してそのウエハ載置面11aの均熱性を評価した。具体的には、先ずウエハ載置台11として直径320mm×厚み3mmの円板状の銅板を準備した。この銅板のウエハ載置面11aとなる面とは反対側の面の後述する中心位置に15個のザグリ穴を形成し、これらザグリ穴の各々に、セラミックス製(W2mm×D2mm×H1mm)の測温素子をシリコーン接着剤を用いて接着固定した。
Example 1
A wafer heating heater unit 10 provided with a cooling unit 30 below as shown in FIG. 1 was manufactured, and the heat uniformity of the wafer mounting surface 11a was evaluated. Specifically, first, a disk-shaped copper plate having a diameter of 320 mm and a thickness of 3 mm was prepared as the wafer mounting table 11. Fifteen counterbore holes are formed at the center position of the surface opposite to the wafer mounting surface 11a of this copper plate, which will be described later, and each of the counterbore holes is made of ceramic (W2 mm × D2 mm × H1 mm) The temperature element was adhesively fixed using a silicone adhesive.

次に支持板12として直径320mm×厚み3mmの円板状のSi−SiC板を準備した。このSi−SiC板には、上記測温素子のリード線や、後述するネジなどの挿通用の貫通孔を設けた。次に発熱モジュール13の複数の発熱回路13aとなる抵抗発熱体として、厚さ20μmのステンレス箔に該複数の発熱回路13aの回路パターンをエッチングで形成し、それらの各々の両終端部に給電ケーブルを取り付けた後、この抵抗発熱体を上下両面から厚み50μmのポリイミドシートで覆って熱圧着し、直径320mmの円形フィルム状の発熱モジュール13を準備した。   Next, a disk-shaped Si-SiC plate with a diameter of 320 mm and a thickness of 3 mm was prepared as the support plate 12. The Si-SiC plate was provided with lead wires of the temperature measuring element and through holes for insertion of screws and the like described later. Next, a circuit pattern of the plurality of heating circuits 13a is formed by etching on a stainless steel foil having a thickness of 20 μm as a resistance heating element to be the plurality of heating circuits 13a of the heating module 13. Then, the resistance heating element was covered from both upper and lower sides with a 50 μm thick polyimide sheet and thermocompression bonded to prepare a circular film-like heat generating module 13 having a diameter of 320 mm.

ここで、上記の発熱モジュール13の複数の発熱回路13aが其々設けられる複数の加熱ゾーンは、図2の区分パターンとなるようにした。具体的には、円形の発熱モジュール13の中心点に対してφ120mm、φ246mm、φ302mmの3つの同心円で円形の中央部Aと、環状の中間部Bと、環状の周縁部Cとに3区分し、更にφ120mmの円形中央部Aを周方向に3等分して中央部扇状加熱ゾーンA1〜A3とし、外径φ246mm、内径φ120mmの環状中間部Bを周方向に6等分して中間部扇状加熱ゾーンB1〜B6とし、外径φ302mm、内径φ246mmの環状周縁部Cを周方向に6等分して周縁部扇状加熱ゾーンC1〜C6とした。これら合計15区画の加熱ゾーンの其々に設けた15個の発熱回路13aが個別に制御されるように、上記測温素子は各区画の中心位置に配置した。なお、発熱回路の上記給電ケーブルも各区画ごとに引き出されることになる。   Here, the plurality of heating zones in which the plurality of heating circuits 13a of the above-described heating module 13 are provided are made to have the division pattern of FIG. Specifically, three concentric circles of φ 120 mm, φ 246 mm, and φ 302 mm with respect to the center point of the circular heat generating module 13 are divided into three: a central portion A of circular shape, an intermediate portion B of annular shape, and a peripheral portion C of annular shape. Further, the circular central portion A of φ 120 mm is equally divided into three in the circumferential direction to form central fan-shaped heating zones A1 to A3, and the annular intermediate portion B of outer diameter φ 246 mm and inner diameter φ 120 mm is equally divided into six in the circumferential direction. As the heating zones B1 to B6, the annular peripheral portion C having an outer diameter of 302 mm and an inner diameter of 246 mm is equally divided into six in the circumferential direction to form peripheral fan shaped heating zones C1 to C6. The above-mentioned temperature measurement element was arranged at the central position of each section so that the 15 heating circuits 13a provided in each of the heating zones of these 15 sections in total were individually controlled. In addition, the said feed cable of a heat generating circuit will also be pulled out for every division.

このようにして作製した発熱モジュール13を上記のウエハ載置台11と支持板12との間に挟み込み、支持板12に予め設けておいた貫通孔にネジを挿通してウエハ載置台11に螺合した。これにより、発熱モジュール13を挟んでウエハ載置台11と支持板12とが互いに機械的に結合されたウエハ加熱用ヒータユニット10を作製した。なお、上記のネジには、熱膨張量差でウエハ載置台11や支持板12が変形しないように、座面にベアリングを備えた締結ネジを用いた。この締結ねじを、PCD120mmに3本、PCD310mmに6本設けた。また、測温素子のリード線からの熱逃げを抑制するため、支持板12から取り出した測温素子のリード線を支持板12に30mmの長さに渡り接触させた状態でシリコーン樹脂で接着固定した。   The heat generating module 13 manufactured in this manner is sandwiched between the wafer mounting table 11 and the support plate 12, and a screw is inserted into a through hole previously provided in the support plate 12 and screwed onto the wafer mounting table 11. did. Thus, a wafer heating heater unit 10 was produced, in which the wafer mounting table 11 and the support plate 12 were mechanically coupled to each other with the heat generating module 13 interposed therebetween. As the above-mentioned screw, a fastening screw having a bearing on the bearing surface was used so that the wafer mounting table 11 and the support plate 12 would not be deformed due to the thermal expansion difference. Three fastening screws were provided for PCD 120 mm, and six fastening screws were provided for PCD 310 mm. Also, in order to suppress heat escape from the lead wires of the temperature measuring element, the lead wires of the temperature measuring element taken out from the support plate 12 are adhered and fixed with silicone resin in a state of being in contact with the support plate 12 over a length of 30 mm. did.

次に、このウエハ加熱用ヒータユニット10の下方に設ける冷却ユニット30として、可動式冷却板31用の直径320mm×厚み12mmの円板状のアルミニウム合金板と、固定式冷却ステージ32用の直径320mm×厚み12mm の円板状のアルミニウム合金板とを準備した。可動式冷却板31用のアルミニウム合金板には、上記支持板12に当接する上面側に、支持板12と可動式冷却板31の全面が接触するように柔軟性を有したシリコーンシートを配置した。一方、固定式冷却ステージ32用のアルミニウム合金板の下面に、ねじを用いて冷媒流路32a用の外径6mm×肉厚1mmのリン脱酸銅パイプを取り付けた。そして、この銅パイプの両端に、冷媒を供給・排出するための継ぎ手を取り付けた。   Next, as the cooling unit 30 provided below the wafer heating heater unit 10, a disc-shaped aluminum alloy plate of 320 mm in diameter × 12 mm in thickness for the movable cooling plate 31 and 320 mm in diameter for the stationary cooling stage 32. A disk-shaped aluminum alloy plate having a thickness of 12 mm was prepared. A flexible silicone sheet is disposed on the aluminum alloy plate for the movable cooling plate 31 so that the entire surface of the supporting plate 12 and the movable cooling plate 31 is in contact with the upper surface side in contact with the support plate 12. . On the other hand, on the lower surface of the aluminum alloy plate for stationary cooling stage 32, a phosphorus-deoxidized copper pipe having an outer diameter of 6 mm and a thickness of 1 mm for refrigerant channel 32a was attached using a screw. Then, joints for supplying and discharging the refrigerant were attached to both ends of the copper pipe.

このようにして作製した冷却ユニット30としての両アルミニウム合金板に、上記給電ケーブル、測温素子のリード線、及び後述する容器40の底部から立設する脚部20が挿通する貫通孔を設けた。更に固定式冷却ステージ32用のアルミニウム合金板には、可動式冷却板31のエアシリンダからなる昇降機構33のロッドが挿通する貫通孔を設けた。上記の冷却ユニット30を肉厚1.5mmの側壁を有し且つ上部が開放されたステンレス製の容器40内に設置した。固定式冷却ステージ32の下側に昇降機構33を取り付け、そのロッドを上記したロッド挿通用の貫通孔に挿通させてその先端に可動式冷却板31を取り付けた。このようにして、冷却ユニット30を備えた試料1のウエハ加熱用ヒータユニット10を作製した。なお、昇降機構33のロッドが退避している時の支持板12の下面と可動式冷却板31の上面との離間距離は10mmであった。   The aluminum alloy plates as the cooling unit 30 manufactured in this manner are provided with through holes through which the feeding cable, the lead wire of the temperature measuring element, and the leg 20 erected from the bottom of the container 40 described later are inserted. . Further, the aluminum alloy plate for the stationary cooling stage 32 was provided with a through hole through which the rod of the elevating mechanism 33 consisting of the air cylinder of the movable cooling plate 31 is inserted. The above-mentioned cooling unit 30 was placed in a stainless steel container 40 having a side wall of 1.5 mm thick and opened at the top. The elevating mechanism 33 was attached to the lower side of the fixed cooling stage 32, and the rod was inserted through the above-mentioned through hole for rod insertion, and the movable cooling plate 31 was attached to the tip thereof. Thus, the wafer heating heater unit 10 of the sample 1 provided with the cooling unit 30 was manufactured. The distance between the lower surface of the support plate 12 and the upper surface of the movable cooling plate 31 when the rod of the elevating mechanism 33 was retracted was 10 mm.

比較のため、ウエハ載置台11と支持板12との間に挟持させる発熱モジュールの区分パターンを図2に代えて図3(a)及び(b)の区分パターンにした以外は上記試料1と同様にして冷却ユニットを備えた試料2及び3のウエハ加熱用ヒータユニット作製した。すなわち、試料2のウエハ加熱用ヒータユニットの発熱モジュールにおいてはその中心点に対してφ95mm、φ246mm、φ302mmの3つの同心円で円形の中央部Dと、環状の中間部Eと、環状の周縁部Fとに3分割し、円形中央部D及び環状中間部Eについては周方向に分割せずに其々そのまま円形加熱ゾーン及び環状加熱ゾーンとし、外径φ302mm、内径φ246mmの環状周縁部Fのみ周方向に4等分して周縁部扇状加熱ゾーンF1〜F4とした。これら合計6区画の加熱ゾーンの各々の中心位置に測温素子を設けた。但し、環状中間部Eについては、発熱モジュールの中心点に対してφ151mmの周上の1か所に測温素子を設けた。   For comparison, the same as the sample 1 except that the division pattern of the heat generating module held between the wafer mounting table 11 and the support plate 12 is changed to the division patterns of FIGS. 3 (a) and 3 (b) instead of FIG. The heater units for wafer heating of Samples 2 and 3 equipped with a cooling unit were manufactured. That is, in the heat generating module of the heater unit for wafer heating of sample 2, three concentric parts of φ 95 mm, φ 246 mm, and φ 302 mm with respect to the center point have a circular central portion D, an annular intermediate portion E, and an annular peripheral portion F Divided into three, and the circular central part D and the annular middle part E are not divided in the circumferential direction, but are respectively made into the circular heating zone and the annular heating zone, and only the annular peripheral part F with the outer diameter φ 302 mm and the inner diameter φ 246 mm Divided into four to make peripheral fan-shaped heating zones F1 to F4. A temperature measuring element was provided at the center position of each of the six heating zones in total. However, for the annular intermediate portion E, a temperature measuring element was provided at one position on the circumference of φ 151 mm with respect to the center point of the heat generating module.

一方、試料3のウエハ加熱用ヒータユニットの発熱モジュールにおいては、その中心点に対してφ95mm、φ171.5mm、φ246mm、φ302mmの4つの同心円で円形の中央部Gと、環状の中間部Hと、環状の外側中間部Iと、環状周縁部Jとに4分割し、更に外径φ171.5mm、内径φ95mmの内側環状中間部Hを周方向に2等分して内側中間部扇状加熱ゾーンH1〜H2とし、外形φ246mm、内径φ171.5mmの外側環状中間部Iを周方向に4等分して外側中間部扇状加熱ゾーンI1〜I4とし、外径φ302mm、内径φ246mmの環状周縁部Jを周方向に8等分して周縁部扇状加熱ゾーンJ1〜J8とした。これら合計15区画の加熱ゾーンの各々の中心位置に測温素子を設けた。上記試料1〜3のヒータユニットにおける複数の加熱ゾーンの区分パターンをまとめたものを表1に示す。   On the other hand, in the heat generating module of the heater unit for wafer heating of sample 3, four concentric concentric circular central portions G of φ 95 mm, φ 171.5 mm, φ 246 mm and φ 302 mm with respect to the center point thereof, and annular middle portion H The inner intermediate fan-shaped heating zone H1 to H4 is divided into four into an annular outer intermediate portion I and an annular peripheral portion J, and further an inner annular intermediate portion H having an outer diameter of 171.5 mm and an inner diameter of 95 mm is equally divided into two. An outer annular intermediate portion I having an outer diameter of 246 mm and an inner diameter of 171.5 mm is equally divided into four in the circumferential direction to form an outer intermediate fan-shaped heating zone I1 to I4, and an annular peripheral portion J having an outer diameter of 302 mm and an inner diameter of 246 mm in the circumferential direction. Divided into eight equal parts to form peripheral fan-shaped heating zones J1 to J8. A temperature measuring element was provided at the center position of each of these 15 zones of heating zones. What summarized the division pattern of a plurality of heating zones in the heater unit of the above-mentioned samples 1-3 is shown in Table 1.

Figure 2019071350
Figure 2019071350

上記にて作製した試料1〜3のヒータユニットに対して、先ずウエハ載置面11aの平面度を市販の三次元測定器にて測定した。次に、これら試料1〜3のヒータユニットの各々に対して複数の発熱回路13aに給電して常温から110℃まで昇温させた後、設定温度110℃で温度制御しながら1時間保持した。その後、測温センサーが埋設された市販のウエハ温度計をウエハ載置面11aに設置し、ウエハ載置面11a内の最大温度と最小温度の差である均熱レンジを計測した。その結果を下記表2に示す。   With respect to the heater units of Samples 1 to 3 prepared above, first, the flatness of the wafer mounting surface 11 a was measured by a commercially available three-dimensional measuring device. Next, power was supplied to the plurality of heating circuits 13a for each of the heater units of Samples 1 to 3 to raise the temperature from normal temperature to 110 ° C., and then held for 1 hour while controlling temperature at 110 ° C. Thereafter, a commercially available wafer thermometer in which a temperature measuring sensor is embedded was installed on the wafer mounting surface 11a, and the soaking range, which is the difference between the maximum temperature and the minimum temperature in the wafer mounting surface 11a, was measured. The results are shown in Table 2 below.

Figure 2019071350
Figure 2019071350

上記表2の結果から分かるように、試料2のヒータユニットでは均熱レンジが0.17℃であった。詳細な温度分布によると、環状中間部Eの中で最大温度と最小温度が存在しており、ウエハ載置台11と支持板12とを締結しているボルト近傍が低温域となっていた。これは、環状中間部Eは1個の加熱ゾーンのみで構成されているため、全加熱ゾーンの平均面積からの偏倚が242%と極めて大きく、また、温度制御系を構成する測温センサーは、上記の広い加熱ゾーンの中で1か所だけに設置されているため、環状中間部Eの領域内に配置された締結ボルトからの放熱を測温センサーが検知しきれなかったことが原因と考えられる。   As understood from the results in Table 2 above, the soaking range was 0.17 ° C. in the heater unit of Sample 2. According to the detailed temperature distribution, the maximum temperature and the minimum temperature exist in the annular intermediate portion E, and the vicinity of the bolt fastening the wafer mounting table 11 and the support plate 12 is in the low temperature range. This is because the annular intermediate portion E is constituted by only one heating zone, the deviation from the average area of all the heating zones is extremely large at 242%, and the temperature sensor constituting the temperature control system is Since it is installed at only one place in the above wide heating zone, it is considered that the temperature measurement sensor could not detect the heat radiation from the fastening bolt placed in the area of the annular intermediate part E Be

試料3のヒータユニットではでは均熱レンジが0.21℃であり、詳細な温度分布によると、周方向に8等分した周縁部扇状加熱ゾーンJ1〜J8の各々において、測温センサーを配置している中心位置に比較して、周方向に隣接する加熱ゾーン同士のゾーン境界部の温度が高くなっていた。これは、環状周縁部Jは1個の加熱ゾーンあたりの面積が小さいため、測温センサーの設置のために発熱回路を配置できない部位、すなわち発熱のない部位の占める比率が相対的に大きくなったことに起因するもの考えられる。更に、測温センサーの設置部位の温度に基づいて温度制御が行われるため、例えばこの測温センサーの設置部位以外の領域では設定温度を超えているにもかかわらず、測温センサーの設置部位では温度が設定温度未満になることがあり、その結果、発熱回路に過度に給電がなされて更に高温になったことが原因と考えられる。   In the heater unit of sample 3, the soaking range is 0.21 ° C, and according to the detailed temperature distribution, a temperature measuring sensor is arranged in each of peripheral fan-shaped heating zones J1 to J8 equally divided into eight in the circumferential direction. The temperature at the zone boundary between adjacent heating zones in the circumferential direction is higher than that at the central position. This is because the area around one heating zone is small in the annular peripheral portion J, so the ratio of the portion where the heat generating circuit can not be disposed for the installation of the temperature measuring sensor, that is, the portion without heat generation is relatively large. It is thought that it originates in things. Furthermore, since temperature control is performed based on the temperature of the installation site of the temperature measurement sensor, for example, in the area other than the installation site of the temperature measurement sensor, although the set temperature is exceeded, The temperature may be lower than the set temperature, and as a result, it is considered that the heating circuit is excessively supplied with power to further increase the temperature.

一方、試料1のヒータユニットでは、各加熱ゾーンの面積の全加熱ゾーンの平均面積からの偏倚が±30%以内であったため、試料2や3のヒータユニットに比べてウエハ載置面11aをバランスよく温度制御することができ、その結果、均熱レンジは0.06℃となった。また、温度分布においても、特異点は確認されなかった。これは締結ねじの配置位置をゾーン境界としたことで、当該部の放熱の影響を複数の区画で分配できたことによるものと考えられる。   On the other hand, in the heater unit of sample 1, the deviation of the area of each heating zone from the average area of all the heating zones is within ± 30%, so the wafer mounting surface 11a is balanced compared to the heater units of samples 2 and 3. The temperature could be well controlled, resulting in a soaking range of 0.06 ° C. In addition, no singular point was confirmed in the temperature distribution. This is considered to be attributable to the fact that the heat radiation effect of the relevant part can be distributed to a plurality of sections by setting the arrangement position of the fastening screw to a zone boundary.

[実施例2]
ウエハ載置台11の材質を銅に代えてSi−SiCにした以外は上記の実施例1の試料1〜3と同様にして其々試料4〜6のヒータユニットを製作し、実施例1と同様の評価を行った。その結果をウエハ載置台11の平面度と併せて下記表3に示す。
Example 2
The heater units of Samples 4 to 6 are manufactured in the same manner as Samples 1 to 3 in Example 1 except that the material of wafer mounting table 11 is changed to copper and Si-SiC is used, and the same as Example 1 The evaluation of The results are shown in Table 3 below together with the flatness of the wafer mounting table 11.

Figure 2019071350
Figure 2019071350

上記表3から実施例1と同様の傾向があることが分かる。また、実施例1に比べて試料4〜6のヒータユニットはいずれも若干の均熱性の向上が認められた。これは、ウエハ載置台11の材質を剛性の高いSi−SiCに代えたことで、ウエハ載置台11の平面度が安定し、よってウエハ載置面11aとウエハとの距離が全面に亘って均等になったことによるものと推察される。   It can be seen from Table 3 that the same tendency as in Example 1 is present. In addition, as compared with Example 1, the heater units of Samples 4 to 6 all showed a slight improvement in thermal uniformity. This is because the flatness of the wafer mounting table 11 is stabilized by replacing the material of the wafer mounting table 11 with Si-SiC with high rigidity, whereby the distance between the wafer mounting surface 11 a and the wafer is uniform over the entire surface. It is guessed that it is because it became.

10 ウエハ加熱用ヒータユニット
11 ウエハ載置台
11a ウエハ載置面
12 支持板
13 発熱モジュール
13a 発熱回路
20 脚部
30 冷却ユニット
31 可動式冷却板
32 固定式冷却ステージ
32a 冷媒流路
33 昇降機構
40 容器
A 円形中央部
A1〜A3 中央部扇状加熱ゾーン
B 環状中間部
B1〜B6 中間部扇状加熱ゾーン
C 環状周縁部
C1〜C6 周縁部扇状加熱ゾーン
Q1〜Q3 リフトピン用挿通孔
D 円形中央部
E 環状中間部
F 環状周縁部
F1〜F4 周縁部扇状加熱ゾーン
G 円形中央部
H 内側環状中間部
H1〜H2 内側中間部扇状加熱ゾーン
I 外側環状中間部
I1〜I4 外側中間部扇状加熱ゾーン
J 環状周縁部
J1〜J8 周縁部扇状加熱ゾーン
W 半導体ウエハ
DESCRIPTION OF REFERENCE NUMERALS 10 wafer heating heater unit 11 wafer mounting table 11 a wafer mounting surface 12 support plate 13 heat generation module 13 a heat generation circuit 20 legs 30 cooling unit 31 movable cooling plate 32 fixed cooling stage 32 a refrigerant flow path 33 elevating mechanism 40 container A Circular central area A1 to A3 central area fan-shaped heating zone B annular intermediate area B1 to B6 intermediate area fan-shaped heating zone C annular peripheral area C1 to C6 peripheral area fan-shaped heating zone Q1 to Q3 lift pin insertion hole D circular central area E annular intermediate area F annular peripheral portion F1 to F4 peripheral portion fan-shaped heating zone G circular central portion H inner annular intermediate portion H1 to H2 inner intermediate portion fan-shaped heating zone I outer annular intermediate portion I1 to I4 outer intermediate portion fan-shaped heating zone J annular peripheral portion J1 J8 Peripheral fan-shaped heating zone W Semiconductor wafer

Claims (3)

半導体ウエハが載置されるウエハ載置面を備えた円板状のウエハ載置台と、前記ウエハ載置台を支持する円板状の支持板と、前記ウエハ載置台と前記支持板との間に挟持された円形薄膜状の発熱モジュールとを有するウエハ加熱用ヒータユニットであって、
前記発熱モジュールは前記ウエハ載置面に平行に延在する複数の発熱回路を有しており、前記複数の発熱回路によって前記ウエハ載置面に画定される複数の加熱ゾーンは、同心円状に区画されている円形中央部、前記円形中央部の外周側の環状中間部、及び環状周縁部の各々が更に周方向に均等に分割された区分パターンを有しており、前記複数の加熱ゾーンの各々の面積は、前記複数の加熱ゾーンの平均面積からの偏倚が±30%以内であるウエハ加熱用ヒータユニット。
A disk-shaped wafer mounting table provided with a wafer mounting surface on which a semiconductor wafer is mounted, a disk-shaped supporting plate for supporting the wafer mounting table, and a space between the wafer mounting table and the support plate A wafer heating heater unit having a circular thin film-like heat generating module sandwiched between
The heat generating module has a plurality of heat generating circuits extending in parallel to the wafer mounting surface, and a plurality of heating zones defined on the wafer mounting surface by the plurality of heat generating circuits are concentrically divided. Each of the circular central portion, the annular intermediate portion on the outer peripheral side of the circular central portion, and the annular peripheral portion further have a division pattern equally divided in the circumferential direction, and each of the plurality of heating zones The wafer heater unit having an area of ± 30% or less from an average area of the plurality of heating zones.
前記円形中央部は周方向に3等分されており、前記環状中間部は周方向に6等分されており、前記環状周縁部は周方向に6等分されている、請求項1に記載のウエハ加熱用ヒータユニット。   The circular central portion is equally divided into three in the circumferential direction, the annular intermediate portion is equally divided into six in the circumferential direction, and the annular peripheral portion is equally divided into six in the circumferential direction. Wafer heating heater unit. 前記複数の加熱ゾーンのうち周方向に隣接する加熱ゾーン同士の間及び/又は半径方向に隣接する加熱ゾーン同士の間に前記半導体ウエハのリフトピン用の挿通孔が設けられている、請求項1又は請求項2に記載のウエハ加熱用ヒータユニット。   An insertion hole for lift pins of the semiconductor wafer is provided between the heating zones adjacent in the circumferential direction among the plurality of heating zones and / or between the heating zones adjacent in the radial direction. The wafer heating heater unit according to claim 2.
JP2017196684A 2017-10-10 2017-10-10 Heater unit for wafer heating Active JP6593414B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017196684A JP6593414B2 (en) 2017-10-10 2017-10-10 Heater unit for wafer heating
KR1020197011870A KR20190053941A (en) 2017-10-10 2018-10-09 Heater unit for wafer heating
PCT/JP2018/037503 WO2019073941A1 (en) 2017-10-10 2018-10-09 Wafer-heating heater unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017196684A JP6593414B2 (en) 2017-10-10 2017-10-10 Heater unit for wafer heating

Publications (2)

Publication Number Publication Date
JP2019071350A true JP2019071350A (en) 2019-05-09
JP6593414B2 JP6593414B2 (en) 2019-10-23

Family

ID=66441212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017196684A Active JP6593414B2 (en) 2017-10-10 2017-10-10 Heater unit for wafer heating

Country Status (1)

Country Link
JP (1) JP6593414B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114959654A (en) * 2021-02-26 2022-08-30 鑫天虹(厦门)科技有限公司 Wafer bearing disc and thin film deposition device applying same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004031593A (en) * 2002-06-25 2004-01-29 Kyocera Corp Wafer supporting member
JP2008066295A (en) * 2006-08-08 2008-03-21 Sumitomo Electric Ind Ltd Heating element circuit pattern, susceptor mounting it, and semiconductor manufacturing device
JP2011077147A (en) * 2009-09-29 2011-04-14 Dainippon Screen Mfg Co Ltd Heat treatment apparatus
JP2016001638A (en) * 2014-06-11 2016-01-07 東京エレクトロン株式会社 Plasma processing apparatus, plasma processing apparatus application method and power supply device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004031593A (en) * 2002-06-25 2004-01-29 Kyocera Corp Wafer supporting member
JP2008066295A (en) * 2006-08-08 2008-03-21 Sumitomo Electric Ind Ltd Heating element circuit pattern, susceptor mounting it, and semiconductor manufacturing device
JP2011077147A (en) * 2009-09-29 2011-04-14 Dainippon Screen Mfg Co Ltd Heat treatment apparatus
JP2016001638A (en) * 2014-06-11 2016-01-07 東京エレクトロン株式会社 Plasma processing apparatus, plasma processing apparatus application method and power supply device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114959654A (en) * 2021-02-26 2022-08-30 鑫天虹(厦门)科技有限公司 Wafer bearing disc and thin film deposition device applying same
CN114959654B (en) * 2021-02-26 2024-01-09 鑫天虹(厦门)科技有限公司 Wafer bearing disc and thin film deposition device using same

Also Published As

Publication number Publication date
JP6593414B2 (en) 2019-10-23

Similar Documents

Publication Publication Date Title
JP6364244B2 (en) Temperature controlled substrate support assembly
JP4950688B2 (en) Mounting device
JP6593413B2 (en) Heater unit for wafer heating
CN103999545A (en) Method of manufacturing a high definition heater system
US7044399B2 (en) Heating systems
JP6215104B2 (en) Temperature control device
JP5381878B2 (en) Wafer heating heater unit and semiconductor manufacturing apparatus equipped with the same
JP6060889B2 (en) Heater unit for wafer heating
TWI816949B (en) Mounting table and method of making the mounting table
TW200541378A (en) Heating device
JP2011159684A (en) Electrostatic chuck device
JP6593414B2 (en) Heater unit for wafer heating
JP6593415B2 (en) Heater unit for wafer heating
JP6288480B2 (en) Heating / cooling module
JP6760242B2 (en) Heater module
WO2019073941A1 (en) Wafer-heating heater unit
WO2004019658A1 (en) Metal heater
JP2015039507A (en) Heating cooker
JP5381879B2 (en) Wafer heating heater unit and semiconductor manufacturing apparatus equipped with the same
JP2011081932A (en) Heater and device mounting the same
WO2004049762A1 (en) Metal heater
JP6260645B2 (en) Heater unit
JP2004193114A (en) Metal heater
US20170278738A1 (en) Electrostatic chuck device
JP5338720B2 (en) Heater and equipment equipped with it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190509

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190509

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190909

R150 Certificate of patent or registration of utility model

Ref document number: 6593414

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250