WO2018120643A1 - 生理监测结果的反馈方法及装置 - Google Patents

生理监测结果的反馈方法及装置 Download PDF

Info

Publication number
WO2018120643A1
WO2018120643A1 PCT/CN2017/086508 CN2017086508W WO2018120643A1 WO 2018120643 A1 WO2018120643 A1 WO 2018120643A1 CN 2017086508 W CN2017086508 W CN 2017086508W WO 2018120643 A1 WO2018120643 A1 WO 2018120643A1
Authority
WO
WIPO (PCT)
Prior art keywords
physiological
sensor
user
sensor group
monitoring
Prior art date
Application number
PCT/CN2017/086508
Other languages
English (en)
French (fr)
Inventor
包磊
Original Assignee
深圳市善行医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市善行医疗科技有限公司 filed Critical 深圳市善行医疗科技有限公司
Publication of WO2018120643A1 publication Critical patent/WO2018120643A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/746Alarms related to a physiological condition, e.g. details of setting alarm thresholds or avoiding false alarms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/7465Arrangements for interactive communication between patient and care services, e.g. by using a telephone network

Definitions

  • the invention belongs to the technical field of information processing, and in particular relates to a feedback method and device for physiological monitoring results.
  • the prior art records and analyzes a plurality of sleep physiological indexes of a user during a night's sleep through polysomnography (PSG) to obtain monitoring results, thereby causing sleep disorders, sleep disordered breathing, and Diagnosis of sleep apnea, hypopnea syndrome, etc. provides predictable monitoring data.
  • PSG polysomnography
  • the physiological monitoring equipment has the following technical defects in the research and development process: after the monitoring results are obtained, the physiological monitoring equipment lacks the interaction through feedback, screen display, handwriting or dictation.
  • the embodiments of the present invention provide a feedback method and device for physiological monitoring results, so as to solve the problem that the current physiological monitoring device lacks interaction when the feedback is feedback.
  • an embodiment of the present invention provides a feedback method for a physiological monitoring result, where the method includes:
  • the physiological signal collecting device is used to collect a physiological signal matching the physiological monitoring type input by the user;
  • the collected physiological signal is introduced into a physiological data analysis model corresponding to the physiological monitoring type to obtain a monitoring result;
  • Controlling the fabric electrode orientation in the physiological signal acquisition device based on the feedback signal output mode The user outputs a feedback signal.
  • an embodiment of the present invention provides a feedback device for physiological monitoring results, where the device includes:
  • the collecting unit is configured to collect a physiological signal matching the physiological monitoring type input by the user by using the physiological signal collecting device;
  • An analyzing unit configured to introduce the collected physiological signal into a physiological data analysis model corresponding to the physiological monitoring type, to obtain a monitoring result
  • An acquiring unit configured to acquire a feedback signal output mode that matches the monitoring result
  • a feedback unit configured to control a fabric electrode in the physiological signal acquisition device to output a feedback signal to the user based on the feedback signal output mode.
  • various physiological signal sensors are integrated in the wearable physiological signal collection device, and some of the sensors can be activated according to the actual physiological monitoring requirements of the user, and the physiological signals are collected, and the call and the demand are based on the requirements.
  • the matched physiological data analysis model is used for further data analysis to obtain corresponding monitoring results, and the feedback signal output is performed based on the monitoring result, which can actively feedback the monitoring result compared with the prior art, and increases The interactive nature of feedback.
  • FIG. 1 is a flowchart of implementing a feedback method of physiological monitoring results according to an embodiment of the present invention
  • FIG. 2 is a flowchart showing an implementation of a feedback method for physiological monitoring results according to another embodiment of the present invention.
  • FIG. 3 is a flowchart of implementing a feedback method of a physiological monitoring result according to another embodiment of the present invention.
  • FIG. 4 is a structural block diagram of a feedback device for physiological monitoring results according to another embodiment of the present invention.
  • FIG. 1 is a flowchart showing an implementation process of a feedback method for physiological monitoring results provided by an embodiment of the present invention, which is described in detail as follows:
  • the physiological signal matching device is used to collect a physiological signal that matches the physiological monitoring type input by the user.
  • the physiological monitoring refers to collecting one or more types of physiological signals of a user in a certain period of time, and performing data analysis on the collected physiological signals to obtain a corresponding physiological condition. Monitoring the process of monitoring results during the time period, wherein different physiological monitoring needs correspond to different types of physiological monitoring.
  • physiological monitoring types may include the following categories: sleep monitoring, fatigue monitoring, disease warning monitoring, and emotions. Monitoring, and so on.
  • the user can specify the physiological monitoring type by ticking the physiological monitoring type option, inputting the instruction, etc.
  • S101 the physiological monitoring type input by the user is detected, and the physiological monitoring type is determined by the user according to the physiological monitoring requirement.
  • the implementation manner of S101 may be:
  • a first sensor group corresponding to the physiological monitoring type is activated in a sensor located in a brain region of the user, and a second sensor group corresponding to the physiological monitoring type is activated in a sensor located in a chest region of the user, where
  • the first sensor group includes a fabric electroencephalic electrode, and the first sensor group includes a fabric electrocardiographic electrode.
  • a number of sensors are activated in the brain region and the chest region of the user for physiological signal acquisition according to the corresponding physiological monitoring requirements.
  • the sensors to be called are different for different physiological monitoring types, and are used to collect physiological signals in the embodiment of the present invention.
  • the number includes at least an electroencephalogram electrode located in a brain region of the user and an electrocardiographic electrode located in a chest region of the user, that is, at least based on a combination of an electroencephalogram signal and an electrocardiographic signal to perform physiological monitoring.
  • the electroencephalic electrode and the electrocardiographic electrode adopt the fabric electrode to realize the physiological signal acquisition, so as to realize the wearability of the physiological signal collecting device through the flexible material of the fabric electrode.
  • several sensors located in the brain area of the user can be integrated by the product form of the brain electric cap, and several sensors located in the chest area of the user can be integrated by the product form of the electrocardiograph.
  • the first sensor group is activated in a sensor located in a brain region of the user, and the first sensor group further includes at least one of the following types of sensors: a temperature sensor, a blood oxygen sensor, a body position sensor, a nasal air flow sensor, and an acoustic sensor. ;
  • the second sensor group is activated in a sensor located in a chest area of the user, and the second sensor group further includes at least one of the following types of sensors: a leg motion sensor.
  • the brain electrical electrode can be used to collect the user's EEG signal, myoelectric signal and eye movement signal
  • the temperature sensor is used to collect the user's body temperature
  • the blood oxygen sensor is used to collect the user's blood oxygen saturation
  • the body position sensor is used for detection.
  • the user's position, the nose and mouth airflow sensor is used to detect the user's breathing
  • the sound sensor is used to detect the user's snoring
  • the ECG electrode is used to collect the user's ECG signal
  • the leg motion sensor is used to detect the user. Leg movements.
  • these signals are introduced into a physiological data analysis model for performing sleep analysis, and the data is analyzed based on an approximate entropy algorithm in the field of sleep monitoring in the calculation process of the model, thereby obtaining corresponding Sleep monitoring results.
  • a plurality of physiological signals are acquired by the first sensor group and the second sensor group.
  • the collected physiological signal is introduced into the physiological data analysis model corresponding to the physiological monitoring type, and the monitoring result is obtained.
  • the collected physiological signals when the collected physiological signals are processed by data, different physiological monitoring types respectively correspond to different physiological data analysis models. Therefore, after the physiological monitoring type is determined, the corresponding physiological data analysis model is also It can be determined that the physiological data analysis model is called through the corresponding function interface, and the collected multi-path physiological signals are introduced into the physiological data analysis model, thereby obtaining the monitoring result corresponding to the physiological monitoring type.
  • the collected multi-path physiological signals before the collected multi-path physiological signals are introduced into the physiological data analysis model for data processing, the collected multi-path physiological signals may be subjected to pre-processing such as denoising and amplification to make physiological signals Signal characteristics can be better reflected in the data processing process to obtain more accurate monitoring results.
  • a plurality of feedback signal output modes are preset, and each of the feedback signal output modes defines electrodes for performing feedback signal output in the physiological signal acquisition device, and the electrical stimulation frequencies of the electrodes are defined. Therefore, after the monitoring result is obtained, the monitoring result is matched with the corresponding feedback signal output mode.
  • S103 can also be implemented by the method shown in FIG. 3:
  • the warning chip corresponding to various physiological monitoring types is preset in the storage chip of the physiological signal collecting device, and the physiological signal collecting device performs the physiological signal collected. Data analysis, the monitoring result is obtained, and the monitoring result is compared with the corresponding early warning level of the physiological monitoring type to determine whether the monitoring result reaches the early warning level, and if the warning level is reached, the monitoring result is matched.
  • the feedback signal output mode is used for the feedback signal output, which further clarifies the conditions for the feedback signal output to ensure the necessity of the feedback signal output.
  • related early warning information is generated, for example, a description of the warning level, an improvement suggestion, and the like, and the warning information is sent to the mobile terminal, so that the user can timely and through the mobile terminal. Learn about their current physiological monitoring status and the possible dangerous consequences.
  • the fabric electrode in the physiological signal acquisition device is controlled to output a feedback signal to the user.
  • the feedback signal can be output to the user based on the feedback signal output mode. For example, an induced wave can be generated and compared with a normal waveform in the memory, and then the induced wave can be synthesized according to the waveform lookup table, and then digitally converted by the DA module, the amplification filter circuit is stepped down, and finally passed through the EEG electrode located in the brain region of the user. The induced wave is output on the forehead.
  • various physiological signal sensors are integrated in the wearable physiological signal collection device, and some of the sensors can be activated according to the actual physiological monitoring requirements of the user, and the physiological signals are collected, and the call and the demand are based on the requirements.
  • the matched physiological data analysis model is used for further data analysis to obtain corresponding monitoring results, and the feedback signal output is performed based on the monitoring result, which can actively feedback the monitoring result compared with the prior art, and increases The interactive nature of feedback.
  • FIG. 4 is a structural block diagram of the feedback device of the physiological monitoring result provided by the embodiment of the present invention. For the convenience of description, only the embodiment is shown. part.
  • the apparatus includes:
  • the collecting unit 41 collects a physiological signal matching the physiological monitoring type input by the user by using the physiological signal collecting device;
  • the analyzing unit 42 is configured to introduce the collected physiological signal into a physiological data analysis model corresponding to the physiological monitoring type to obtain a monitoring result;
  • the obtaining unit 43 is configured to obtain a feedback signal output mode that matches the monitoring result
  • the feedback unit 44 controls the fabric electrode in the physiological signal acquisition device to output a feedback signal to the user based on the feedback signal output mode.
  • the collecting unit 41 includes:
  • Detecting a subunit detecting the type of physiological monitoring input by the user
  • Activating a subunit activating a first sensor group corresponding to the physiological monitoring type in a sensor located in a brain region of the user, and activating a second sensor group corresponding to the physiological monitoring type in a sensor located in a chest region of the user, wherein
  • the first sensor group includes a fabric electroencephalic electrode, and the first sensor group includes a fabric electrocardiographic electrode;
  • the obtaining unit 43 includes:
  • Determining the subunit determining whether the monitoring result has reached an early warning level
  • Obtaining a subunit if the monitoring result reaches an early warning level, obtaining a feedback signal output mode that matches the monitoring result.
  • the feedback unit 44 includes:
  • the control subunit controls the output of each of the positioned fabric electrode feedback signals according to the obtained electrical stimulation frequency.
  • the physiological monitoring type includes sleep monitoring,
  • the activation subunit is specifically used to:
  • the first sensor group is activated in a sensor located in a brain region of the user, and the first sensor group further includes at least one of the following types of sensors: a temperature sensor, a blood oxygen sensor, a body position sensor, Nasal air flow sensor and sound sensor;
  • the second sensor group is activated in a sensor located in a chest area of the user, and the second sensor group further includes at least one of the following types of sensors: a leg motion sensor.
  • each functional unit in the embodiment may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit, and the integrated unit may be implemented in the form of hardware. It can also be implemented in the form of a software functional unit.
  • the specific names of the respective functional units are only for the purpose of facilitating mutual differentiation, and are not intended to limit the scope of protection of the present application.
  • the disclosed apparatus and apparatus may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of modules or units is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in electrical, mechanical or other form.
  • the units described as separate parts may or may not be physically separated, and the parts displayed as units may or may not be physical units, ie may be located in one place, or may be Distributed to multiple network elements. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • An integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, can be stored in a computer readable storage medium.
  • the medium includes a number of instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to perform all or part of the steps of various embodiments of the embodiments of the present invention.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a read only memory, a random access memory, a magnetic disk, or an optical disk.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Physiology (AREA)
  • Nursing (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种生理监测结果的反馈方法及装置,方法包括:利用生理信号采集装置采集与用户输入的生理监测类型匹配的生理信号(S101);将采集到的生理信号导入与生理监测类型对应的生理数据分析模型,得到监测结果(S102);获取与监测结果相匹配的反馈信号输出模式(S103);基于反馈信号输出模式,控制生理信号采集装置中的织物电极向用户输出反馈信号(S104)。能够对监测结果进行主动反馈,增加了反馈方式的互动性。

Description

生理监测结果的反馈方法及装置 技术领域
本发明属于信息处理技术领域,尤其涉及生理监测结果的反馈方法及装置。
背景技术
随着科学技术的发展及生活质量的提高,人类对健康问题也越来越重视,越来越多的生理监测设备被投入使用,用于对用户的生理数据进行监测,从而为用户的健康状况提供可参考的数据来源。以睡眠分析为例,现有技术通过多导睡眠监测(PSG)来记录和分析用户在全夜睡眠过程中的多项睡眠生理学指标,以获取到监测结果,从而为睡眠障碍、睡眠呼吸紊乱和睡眠呼吸暂停、低通气综合征等的诊断提供可参考的监测数据。
现阶段,发明人在研发过程中发现生理监测设备存在以下技术缺陷:生理监测设备在得到监测结果之后,均是通过打印、屏显、手写或口述等方式反馈方式缺乏互动性。
发明内容
有鉴于此,本发明实施例提供了生理监测结果的反馈方法及装置,以解决目前生理监测设备在对监测结果进行反馈时,其反馈方式缺乏互动性的问题。
第一方面,本发明实施例提供了一种生理监测结果的反馈方法,所述方法包括:
利用生理信号采集装置采集与用户输入的生理监测类型匹配的生理信号;
将采集到的生理信号导入与所述生理监测类型对应的生理数据分析模型,得到监测结果;
获取与所述监测结果相匹配的反馈信号输出模式;
基于所述反馈信号输出模式,控制所述生理信号采集装置中的织物电极向 所述用户输出反馈信号。
第二方面,本发明实施例提供了一种生理监测结果的反馈装置,所述装置包括:
采集单元,用于利用生理信号采集装置采集与用户输入的生理监测类型匹配的生理信号;
分析单元,用于将采集到的生理信号导入与所述生理监测类型对应的生理数据分析模型,得到监测结果;
获取单元,用于获取与所述监测结果相匹配的反馈信号输出模式;
反馈单元,用于基于所述反馈信号输出模式,控制所述生理信号采集装置中的织物电极向所述用户输出反馈信号。
本发明实施例中,可穿戴的生理信号采集装置中集成了各类生理信号传感器,可以根据用户的实际生理监测需求来激活其中的若干传感器对生理信号进行采集,并在此基础上调用与需求相匹配的生理数据分析模型来进行进一步的数据分析,以得到对应的监测结果,并基于该监测结果来进行反馈信号输出,相比于现有技术,其能够对监测结果进行主动反馈,增加了反馈方式的互动性。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的生理监测结果的反馈方法的实现流程图;
图2是本发明另一实施例提供的生理监测结果的反馈方法的实现流程图;
图3是本发明另一实施例提供的生理监测结果的反馈方法的实现流程图;
图4是本发明另一实施例提供的生理监测结果的反馈装置的结构框图。
具体实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定***结构、技术之类的具体细节,以便透彻理解本发明实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本发明。在其它情况中,省略对众所周知的***、装置、电路以及方法的详细说明,以免不必要的细节妨碍本发明的描述。
图1示出了本发明实施例提供的生理监测结果的反馈方法的实现流程,详述如下:
在S101中,利用生理信号采集装置采集与用户输入的生理监测类型匹配的生理信号。
在本发明实施例中,所述生理监测,是指对用户在某时间段内的一类或多类生理信号进行采集,并对采集到的生理信号进行数据分析,以得出对应于特定生理监测需求在该时间段内的监测结果的过程,其中,不同的生理监测需求对应不同的生理监测类型,例如,生理监测类型可以包括如下几类:睡眠监测、疲劳度监测、疾病预警监测和情绪监测,等等。用户可以通过勾选生理监测类型选项、输入指令等方式来指定生理监测类型,在S101中,对用户输入的生理监测类型进行检测,该生理监测类型由用户根据其生理监测需求确定。
具体地,如图2所示,S101的实现方式可以为:
在S201中,检测所述用户输入的所述生理监测类型。
在S202中,在位于用户脑部区域的传感器中激活所述生理监测类型对应的第一传感器组,并在位于用户胸部区域的传感器中激活所述生理监测类型对应的第二传感器组,其中,所述第一传感器组中包括织物脑电电极,所述第一传感器组中包括织物心电电极。
在确定了生理监测类型之后,根据对应的生理监测需求,同时在用户的脑部区域和胸部区域激活若干传感器,用于进行生理信号采集。针对不同的生理监测类型,所需调用的传感器是不同的,在本发明实施例中,用于采集生理信 号的至少包括位于用户脑部区域的脑电电极以及位于用户胸部区域的心电电极,即,至少以脑电信号和心电信号的结合为基础来完成生理监测。同时,该脑电电极和心电电极均采用织物电极的方式来实现生理信号采集,以通过织物电极的柔性材质来实现生理信号采集装置的可穿戴性。示例性地,可以通过脑电帽的产品形态来集成位于用户脑部区域的若干传感器,可以通过心电衣的产品形态来集成位于用户胸部区域的若干传感器。
进一步地,接下来对睡眠监测场景下本方案的实现进行详细说明:
当用户的实际生理监测需求为睡眠监测时,相比于现有的可穿戴睡眠监测装置只能采集心率、心电、呼吸等生理信号的情况,本方案中,一方面可以对用户的心电信号和脑电信号进行采集,另一方面,还会对用户的眼动信号、肌电信号、温度、血氧、口鼻气流、鼾声、***等生理信号也进行采集,以结合上述生理信号全方位地对用户进行睡眠监测。因此,当S201中检测到用户输入的生理监测类型为睡眠监测时,S202具体通过如下方式实现:
在位于用户脑部区域的传感器中激活所述第一传感器组,所述第一传感器组中还至少包括以下任意一类传感器:温度传感器、血氧传感器、***传感器、口鼻气流传感器和声音传感器;
在位于用户胸部区域的传感器中激活所述第二传感器组,所述第二传感器组中还至少包括以下任意一类传感器:腿动传感器。
其中,脑电电极可以用于采集用户的脑电信号、肌电信号及眼动信号,温度传感器用于采集用户的体温,血氧传感器用于采集用户的血氧饱和度、***传感器用于检测用户的***,口鼻气流传感器用于检测用户的呼吸,声音传感器用于检测用户的鼾声,心电电极用于采集用户的心电信号、心率并检测胸腹呼吸,腿动传感器用于检测用户的腿动情况。基于上述采集到的多种生理信号,将这些信号导入到用于进行睡眠分析的生理数据分析模型,在该模型的计算过程中基于睡眠监测领域的近似熵算法来完成数据分析,从而得到相应的睡眠监测结果。
在S203中,通过所述第一传感器组和所述第二传感器组采集得到多路生理信号。
在完成了上述第一传感器组和第二传感器组的激活之后,随即开始通过这两个传感器组中的传感器进行生理信号采集。
在S102中,将采集到的生理信号导入所述生理监测类型对应的生理数据分析模型,得到监测结果。
在本发明实施例中,在对采集到的生理信号进行数据处理时,不同的生理监测类型分别对应不同的生理数据分析模型,因此,在确定了生理监测类型之后,对应的生理数据分析模型也可以确定,该生理数据分析模型通过对应的函数接口被调用,并将采集得到的多路生理信号导入该生理数据分析模型,从而得到该生理监测类型所对应的监测结果。在具体的实现过程中,将采集到的多路生理信号导入生理数据分析模型进行数据处理之前,可以对采集到的多路生理信号均进行去噪、放大等预处理,以使得生理信号中的信号特征能够更好地在数据处理过程中被体现出来,以得到更为准确的监测结果。
在S103中,获取与所述监测结果相匹配的反馈信号输出模式。
在本发明实施例中,预先设置了若干反馈信号输出模式,每种反馈信号输出模式中均定义了生理信号采集装置中用于进行反馈信号输出的电极,并定义了这些电极的电刺激频率,因此,在获取到监测结果之后,便为该监测结果匹配相应的反馈信号输出模式。
在图1对应的实施例的基础之上,作为本发明的一个实施例,S103还可以通过如图3所示的方式实现:
S301,判断所述监测结果是否达到了预警等级。
S302,若所述监测结果达到了预警等级,获取与所述监测结果相匹配的反馈信号输出模式。
即,在本发明实施例中,生理信号采集装置的存储芯片中预置了各类生理监测类型所对应的预警等级,生理信号采集装置除了对采集到的生理信号进行 数据分析,得到监测结果,还会将监测结果与对应的生理监测类型的预警等级进行比对,以判断该监测结果是否达到预警等级,若达到了预警等级,才会获取与该监测结果相匹配的反馈信号输出模式,以进行反馈信号输出,这样进一步地明确了进行反馈信号输出的条件,以确保反馈信号输出的必要性。此外,在本发明实施例中,还会生成相关的预警信息,例如关于该预警等级的情况说明、改善建议等等,并将该预警信息发送至移动终端,以使得用户可以通过移动终端及时地了解到其当前的生理监测状况及可能发生的危险后果。
在S104中,基于所述反馈信号输出模式,控制所述生理信号采集装置中的织物电极向所述用户输出反馈信号。
在确定了反馈信号输出模式之后,便可基于该反馈信号输出模式对用户输出反馈信号。例如,可以产生诱导波并通过对比存储器中的正常波形,再根据波形查找表,合成诱导波,然后通过DA模块数模转换、放大滤波电路降压,最后通过位于用户脑部区域的脑电电极在前额输出该诱导波。
本发明实施例中,可穿戴的生理信号采集装置中集成了各类生理信号传感器,可以根据用户的实际生理监测需求来激活其中的若干传感器对生理信号进行采集,并在此基础上调用与需求相匹配的生理数据分析模型来进行进一步的数据分析,以得到对应的监测结果,并基于该监测结果来进行反馈信号输出,相比于现有技术,其能够对监测结果进行主动反馈,增加了反馈方式的互动性。
对应于上文实施例所述的生理监测结果的反馈方法,图4示出了本发明实施例提供的生理监测结果的反馈装置的结构框图,为了便于说明,仅示出了与本实施例相关的部分。
参照图4,该装置包括:
采集单元41,利用生理信号采集装置采集与用户输入的生理监测类型匹配的生理信号;
分析单元42,将采集到的生理信号导入与所述生理监测类型对应的生理数据分析模型,得到监测结果;
获取单元43,获取与所述监测结果相匹配的反馈信号输出模式;
反馈单元44,基于所述反馈信号输出模式,控制所述生理信号采集装置中的织物电极向所述用户输出反馈信号。
可选地,所述采集单元41包括:
检测子单元,检测所述用户输入的所述生理监测类型;
激活子单元,在位于用户脑部区域的传感器中激活所述生理监测类型对应的第一传感器组,并在位于用户胸部区域的传感器中激活所述生理监测类型对应的第二传感器组,其中,所述第一传感器组中包括织物脑电电极,所述第一传感器组中包括织物心电电极;
采集子单元,通过所述第一传感器组和所述第二传感器组采集得到多路生理信号。
可选地,所述获取单元43包括:
判断子单元,判断所述监测结果是否达到了预警等级;
获取子单元,若所述监测结果达到了预警等级,获取与所述监测结果相匹配的反馈信号输出模式。
可选地,所述反馈单元44包括:
定位子单元,在所述生理信号采集装置中定位与所述反馈信号输出模式对应的织物电极;
获取子单元,从所述反馈信号输出模式中,分别获取定位出的每个织物电极的电刺激频率;
控制子单元,根据获取到的电刺激频率控制定位出的每个织物电极输出反馈信号。
可选地,所述生理监测类型包括睡眠监测,
所述激活子单元具体用于:
在位于用户脑部区域的传感器中激活所述第一传感器组,所述第一传感器组中还至少包括以下任意一类传感器:温度传感器、血氧传感器、***传感器、 口鼻气流传感器和声音传感器;
在位于用户胸部区域的传感器中激活所述第二传感器组,所述第二传感器组中还至少包括以下任意一类传感器:腿动传感器。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元完成,即将装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述装置中单元的具体工作过程,可以参考前述装置实施例中的对应过程,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同装置来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
在本发明所提供的实施例中,应该理解到,所揭露的装置和装置,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通讯连接可以是通过一些接口,装置或单元的间接耦合或通讯连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可 以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器执行本发明实施例各个实施例装置的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明实施例各实施例技术方案的精神和范围。
以上仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种生理监测结果的反馈方法,其特征在于,所述方法包括:
    利用生理信号采集装置采集与用户输入的生理监测类型匹配的生理信号;
    将采集到的生理信号导入与所述生理监测类型对应的生理数据分析模型,得到监测结果;
    获取与所述监测结果相匹配的反馈信号输出模式;
    基于所述反馈信号输出模式,控制所述生理信号采集装置中的织物电极向所述用户输出反馈信号。
  2. 如权利要求1所述的方法,其特征在于,所述利用生理信号采集装置采集与用户输入的生理监测类型匹配的生理信号包括:
    检测所述用户输入的所述生理监测类型;
    在位于用户脑部区域的传感器中激活所述生理监测类型对应的第一传感器组,并在位于用户胸部区域的传感器中激活所述生理监测类型对应的第二传感器组,其中,所述第一传感器组中包括织物脑电电极,所述第一传感器组中包括织物心电电极;
    通过所述第一传感器组和所述第二传感器组采集得到多路生理信号。
  3. 如权利要求1所述的方法,其特征在于,所述获取与所述监测结果相匹配的反馈信号输出模式包括:
    判断所述监测结果是否达到了预警等级;
    若所述监测结果达到了预警等级,获取与所述监测结果相匹配的反馈信号输出模式。
  4. 如权利要求1所述的方法,其特征在于,所述基于所述反馈信号输出模式,控制所述生理信号采集装置中的织物电极向所述用户输出反馈信号包括:
    在所述生理信号采集装置中定位与所述反馈信号输出模式对应的织物电极;
    从所述反馈信号输出模式中,分别获取定位出的每个织物电极的电刺激频 率;
    根据获取到的电刺激频率控制定位出的每个织物电极输出反馈信号。
  5. 如权利要求2所述的方法,其特征在于,所述生理监测类型包括睡眠监测,所述在位于用户脑部区域的传感器中激活所述生理监测类型对应的第一传感器组,并在位于用户胸部区域的传感器中激活所述生理监测类型对应的第二传感器组,包括:
    在位于用户脑部区域的传感器中激活所述第一传感器组,所述第一传感器组中还至少包括以下任意一类传感器:温度传感器、血氧传感器、***传感器、口鼻气流传感器和声音传感器;
    在位于用户胸部区域的传感器中激活所述第二传感器组,所述第二传感器组中还至少包括以下任意一类传感器:腿动传感器。
  6. 一种生理监测结果的反馈装置,其特征在于,所述装置包括:
    采集单元,用于利用生理信号采集装置采集与用户输入的生理监测类型匹配的生理信号;
    分析单元,用于将采集到的生理信号导入与所述生理监测类型对应的生理数据分析模型,得到监测结果;
    获取单元,用于获取与所述监测结果相匹配的反馈信号输出模式;
    反馈单元,用于基于所述反馈信号输出模式,控制所述生理信号采集装置中的织物电极向所述用户输出反馈信号。
  7. 如权利要求6所述的装置,其特征在于,所述采集单元包括:
    检测子单元,用于检测所述用户输入的所述生理监测类型;
    激活子单元,用于在位于用户脑部区域的传感器中激活所述生理监测类型对应的第一传感器组,并在位于用户胸部区域的传感器中激活所述生理监测类型对应的第二传感器组,其中,所述第一传感器组中包括织物脑电电极,所述第一传感器组中包括织物心电电极;
    采集子单元,用于通过所述第一传感器组和所述第二传感器组采集得到多 路生理信号。
  8. 如权利要求6所述的装置,其特征在于,所述获取单元包括:
    判断子单元,用于判断所述监测结果是否达到了预警等级;
    获取子单元,用于若所述监测结果达到了预警等级,获取与所述监测结果相匹配的反馈信号输出模式。
  9. 如权利要求6所述的装置,其特征在于,所述反馈单元包括:
    定位子单元,用于在所述生理信号采集装置中定位与所述反馈信号输出模式对应的织物电极;
    获取子单元,用于从所述反馈信号输出模式中,分别获取定位出的每个织物电极的电刺激频率;
    控制子单元,用于根据获取到的电刺激频率控制定位出的每个织物电极输出反馈信号。
  10. 如权利要求7所述的装置,其特征在于,所述生理监测类型包括睡眠监测,所述激活子单元具体用于:
    在位于用户脑部区域的传感器中激活所述第一传感器组,所述第一传感器组中还至少包括以下任意一类传感器:温度传感器、血氧传感器、***传感器、口鼻气流传感器和声音传感器;
    在位于用户胸部区域的传感器中激活所述第二传感器组,所述第二传感器组中还至少包括以下任意一类传感器:腿动传感器。
PCT/CN2017/086508 2016-12-30 2017-05-29 生理监测结果的反馈方法及装置 WO2018120643A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611269835.2 2016-12-30
CN201611269835.2A CN106667441A (zh) 2016-12-30 2016-12-30 生理监测结果的反馈方法及装置

Publications (1)

Publication Number Publication Date
WO2018120643A1 true WO2018120643A1 (zh) 2018-07-05

Family

ID=58850628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/086508 WO2018120643A1 (zh) 2016-12-30 2017-05-29 生理监测结果的反馈方法及装置

Country Status (2)

Country Link
CN (1) CN106667441A (zh)
WO (1) WO2018120643A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112057075A (zh) * 2020-08-17 2020-12-11 数智医疗(深圳)有限公司 监护***及监护方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106667441A (zh) * 2016-12-30 2017-05-17 包磊 生理监测结果的反馈方法及装置
CN106725456A (zh) * 2016-12-30 2017-05-31 包磊 生理数据的监测方法及装置
CN108209912B (zh) * 2017-05-25 2020-06-05 深圳市前海未来无限投资管理有限公司 一种肌电信号采集方法及装置
CN108229283B (zh) * 2017-05-25 2020-09-22 深圳市前海未来无限投资管理有限公司 肌电信号采集方法及装置
CN110236524B (zh) * 2019-06-17 2021-12-28 深圳市善行医疗科技有限公司 一种女性生理周期的监测方法、装置及终端
CN110584601B (zh) * 2019-08-26 2022-05-17 首都医科大学 一种老人认知功能监测和评估***
CN114334158B (zh) * 2022-03-07 2022-06-21 广州帝隆科技股份有限公司 一种基于物联网的监护管理方法及***

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102783948A (zh) * 2011-05-20 2012-11-21 索尼公司 脑电图激发装置
CN104027111A (zh) * 2014-06-27 2014-09-10 哈尔滨工业大学 一种两用电极及采用两用电极实现表面肌电提取及经皮电刺激的装置及方法
US20140336473A1 (en) * 2013-01-24 2014-11-13 Devon Greco Method and Apparatus for Encouraging Physiological Change Through Physiological Control of Wearable Auditory and Visual Interruption Device
CN104523253A (zh) * 2015-01-15 2015-04-22 北京大众益康科技有限公司 生理参数采集装置及监测***
CN105125186A (zh) * 2015-06-29 2015-12-09 王丽婷 一种确定干预治疗方式的方法及***
CN105578954A (zh) * 2013-09-25 2016-05-11 迈恩德玛泽股份有限公司 生理参数测量和反馈***
CN106175752A (zh) * 2015-04-30 2016-12-07 深圳市前海览岳科技有限公司 脑电波信号获取设备及方法、状态评估***及方法
CN106667441A (zh) * 2016-12-30 2017-05-17 包磊 生理监测结果的反馈方法及装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102783948A (zh) * 2011-05-20 2012-11-21 索尼公司 脑电图激发装置
US20140336473A1 (en) * 2013-01-24 2014-11-13 Devon Greco Method and Apparatus for Encouraging Physiological Change Through Physiological Control of Wearable Auditory and Visual Interruption Device
CN105578954A (zh) * 2013-09-25 2016-05-11 迈恩德玛泽股份有限公司 生理参数测量和反馈***
CN104027111A (zh) * 2014-06-27 2014-09-10 哈尔滨工业大学 一种两用电极及采用两用电极实现表面肌电提取及经皮电刺激的装置及方法
CN104523253A (zh) * 2015-01-15 2015-04-22 北京大众益康科技有限公司 生理参数采集装置及监测***
CN106175752A (zh) * 2015-04-30 2016-12-07 深圳市前海览岳科技有限公司 脑电波信号获取设备及方法、状态评估***及方法
CN105125186A (zh) * 2015-06-29 2015-12-09 王丽婷 一种确定干预治疗方式的方法及***
CN106667441A (zh) * 2016-12-30 2017-05-17 包磊 生理监测结果的反馈方法及装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112057075A (zh) * 2020-08-17 2020-12-11 数智医疗(深圳)有限公司 监护***及监护方法

Also Published As

Publication number Publication date
CN106667441A (zh) 2017-05-17

Similar Documents

Publication Publication Date Title
WO2018120643A1 (zh) 生理监测结果的反馈方法及装置
US11071493B2 (en) Multicomponent brain-based electromagnetic biosignal detection system
Behar et al. A review of current sleep screening applications for smartphones
CN111867475A (zh) 次声生物传感器***和方法
JP2016517324A (ja) 健康監視、調査、および異常検出
KR20160055103A (ko) 뇌 건강의 다중-모드 생리적 자극 및 평가를 위한 시스템 및 시그너처
WO2018120635A1 (zh) 生理数据的监测方法及装置
KR20150077684A (ko) 생체 신호 기반 기능 운용 방법 및 이를 지원하는 전자 장치
US11793453B2 (en) Detecting and measuring snoring
US20210202094A1 (en) User interface for navigating through physiological data
CN101868176A (zh) 自动化的睡眠表型
KR20180046354A (ko) 저전력 모션 센서를 이용한 코골이 검출 방법
CN113633260B (zh) 多导睡眠监测方法、监测仪、计算机设备及可读存储介质
US20220022809A1 (en) Systems and methods to detect and treat obstructive sleep apnea and upper airway obstruction
US11311220B1 (en) Deep learning model-based identification of stress resilience using electroencephalograph (EEG)
KR20210027033A (ko) 사용자 맞춤형 수면 관리 방법 및 시스템
US20220248967A1 (en) Detecting and Measuring Snoring
Rostaminia et al. Phymask: Robust sensing of brain activity and physiological signals during sleep with an all-textile eye mask
Jiang et al. Automatic sleep monitoring system for home healthcare
CN107569212B (zh) 一种基于心率检测呼吸睡眠暂停综合征的设备和***
US20220151582A1 (en) System and method for assessing pulmonary health
JP7369702B2 (ja) 高周波胸壁オシレータ
WO2022155391A1 (en) System and method for noninvasive sleep monitoring and reporting
Guul et al. Portable prescreening system for sleep apnea
KR102569058B1 (ko) 패치형 수면다원검사 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17887756

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17887756

Country of ref document: EP

Kind code of ref document: A1