CN102783948A - 脑电图激发装置 - Google Patents

脑电图激发装置 Download PDF

Info

Publication number
CN102783948A
CN102783948A CN201210147604XA CN201210147604A CN102783948A CN 102783948 A CN102783948 A CN 102783948A CN 201210147604X A CN201210147604X A CN 201210147604XA CN 201210147604 A CN201210147604 A CN 201210147604A CN 102783948 A CN102783948 A CN 102783948A
Authority
CN
China
Prior art keywords
electroencephalogram
electrode
unit
user
electricity irritation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201210147604XA
Other languages
English (en)
Inventor
中岛悠策
和田成司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Publication of CN102783948A publication Critical patent/CN102783948A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • A61B5/377Electroencephalography [EEG] using evoked responses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • A61B5/372Analysis of electroencephalograms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4806Sleep evaluation
    • A61B5/4812Detecting sleep stages or cycles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6814Head
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/0526Head electrodes
    • A61N1/0529Electrodes for brain stimulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36014External stimulators, e.g. with patch electrodes
    • A61N1/36025External stimulators, e.g. with patch electrodes for treating a mental or cerebral condition

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Psychology (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Psychiatry (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Neurology (AREA)
  • Developmental Disabilities (AREA)
  • Social Psychology (AREA)
  • Hospice & Palliative Care (AREA)
  • Child & Adolescent Psychology (AREA)
  • Neurosurgery (AREA)
  • Cardiology (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

本发明提供了一种脑电图激发装置,包括:脑电图获取单元,被配置为获得用户的脑电波;电刺激单元,被配置为将经颅电刺激施加于用户的头皮;以及控制单元,被配置为基于脑电图获取单元获得的脑电波控制电刺激单元。

Description

脑电图激发装置
技术领域
本技术涉及脑电图激发装置,其被配置为通过经颅电刺激激发脑电波。
背景技术
脑电图(EEG)是电的活动的记录,其发生于活体(包括人类的动物)的大脑中,并且根据大脑活动状态出现诸如α波、慢波或睡眠纺锤波的各种波形。换言之,通过脑电波的测量,能够判断大脑的活动状态。
近年来,不仅对于脑电波的测量而且对于“激发”,即,通过对参与者的头部施加电刺激来诱发脑电波,已经进行深入研究。这样的电刺激称为经颅电刺激(TES)。通过激发从而诱发所期望的脑电波,大脑活动能被促进或抑制。例如,激发能够用于记忆增强和精神疾病的治疗。
例如,非专利文献1(Roumen Kirov,Carsten Weiss,Hartwig R.Siebner,Jan Born,Lisa Marshall(2009),“清醒期间慢振荡电子脑刺激促进EEGθ活动和记忆编码”(“Slow oscillation electrical brain stimulation duringwaking promotes EEG theta activity and memory encoding”),Proc.Natl.Acad.Sci.USA,106(36)15460-15465)描述了,通过在清醒期间将经颅慢振荡刺激(频率为0.75Hz的tSOS)施加于大脑,能够放大θ波(4Hz到8Hz),从而增强记忆。而且,非专利文献2(Marshall L,Helgadottir H,Molle M,Born J(2006),“在睡眠期间催进慢振荡以增强记忆”(“Boostingslow oscillations during sleep potentiates memory”),Nature 444:610-613.)描述了,在睡眠期间将0.75Hz的频率的振荡电位经颅施加至大脑,能够放大睡眠纺锤波,从而在睡眠期间增强长期记忆。
发明内容
然而,在上述现有技术文献所描述的技术中,操作员测量脑电波,并根据由此测量的脑电波将经颅电刺激施加于参与者的头部。这是因为,为了有效地使经颅电刺激生效,需要根据出现在脑电波中的大脑活动状态,以适当的强度或适当的定时施加经颅电刺激。因此,难以由个人或家庭执行脑电波激发。
考虑到上述情况,需要能够根据大脑活动状态施加经颅电刺激的脑电图激发装置。
根据本技术实施方式,提供了一种脑电图激发装置,其包括脑电图获取单元、电刺激单元和控制单元。
脑电图获取单元被配置为获得用户的脑电波。
电刺激单元被配置为将经颅电刺激施加于用户的头皮。
控制单元被配置为基于脑电图获取单元所获得的脑电波,控制电刺激单元。
由脑电图获取单元所获得的脑电波包括由电刺激单元施加的经颅电刺激所激发的脑电波。因此,在根据本技术实施方式的脑电图激发装置中,控制单元基于脑电图获取单元获得的脑电波,控制电刺激单元。这样,能够根据用户的大脑活动状态施加经颅电刺激。
电刺激单元可以将特定频率的经颅电刺激施加到用户的头皮,并且控制单元可以根据特定频率的经颅电刺激所激发的脑电波频率范围中的电位密度而控制电刺激单元。
据发现,经颅电刺激的频率以及要被经颅电刺激所激发的脑电波的频率彼此不同。因此,经颅电刺激(脑电波功率(power))所激发的脑电波的频率范围内的电位密度直接反映所激发的影响。因此,在根据本技术实施方式的脑电图激发装置中,控制单元参考频率范围内的电位密度控制电刺激单元。这样,能够施加更有效的经颅电刺激。
控制单元可以基于出现在脑电波中的特征波形,判断用户的多个睡眠阶段之一,并且根据睡眠阶段控制电刺激单元。
睡眠阶段表明用户的睡眠的深度,并且能够由脑电波的特征波形来判断。在这种背景下,已知,在经颅电刺激施加于睡眠的用户时,经颅电刺激的效果根据用户的睡眠阶段彼此不同。因此,在根据本技术实施方式的脑电图激发装置中,控制单元根据用户的睡眠阶段控制电刺激单元。这样,能够在有效的定时施加经颅电刺激。
脑电图获取单元可以包括
第一电极,与用户的头皮保持接触,
第一放大器,具有与第一电极相连接的输入端子,以及
第二电极,连接至地电位并与用户的头部保持接触。
电刺激单元可以包括
电压源,
电阻,连接至电压源,
第二放大器,其具有与电阻相连接的反相输入端子以及与地电位相连接的非反相输入端子,以及
第三电极,连接至第二放大器的输出端子并与用户的头部保持接触的。
控制单元可以连接至第一放大器的输出端子并基于脑电波控制电刺激单元,其中,该脑电波是第一放大器的输出与地电位之间的电位差。
根据该构造,在电刺激单元中形成反相放大器电路,因此能够防止电刺激单元中的经颅电刺激对脑电图获取单元所要获得的脑电波产生影响。因此,根据本技术实施方式的脑电图激发装置,能够获得脑电波并且与此同时施加经颅电刺激。
脑电图获取单元可以包括
第一电极,与用户的头皮保持接触,
放大器,具有与第一电极相连接的输入端子,以及
第二电极,连接至地电位并与用户的头部保持接触。
电刺激单元可以包括
电流源,
第三电极,连接至电流源并与用户的头皮保持接触,以及
第四电极,连接至电流源并与用户的头皮保持接触。
控制单元可以连接至放大器的输出端子,并基于脑电波控制电刺激单元,其中,该脑电波是放大器的输出与地电位之间的电位差。
根据该构造,存在这样的风险,即脑电图获取单元不仅检测到脑电波而且检测到电刺激单元所施加的经颅电刺激自身。然而,控制单元能够参考由经颅电刺激所激发的频率范围内的脑电波的电位密度,并且该电位密度不包括经颅电刺激自身的电位密度。因此,控制单元能够基于脑电波控制电刺激单元而免于经颅电刺激自身的影响。
电刺激单元可以施加慢振荡作为经颅电刺激,并且控制单元可以基于θ波频率范围内的脑电波的电位密度,控制电刺激单元。
已知,在慢振荡(0.75Hz)作为经颅电刺激被施加时,激发4Hz到8Hz的频率的脑电波,即θ波。因此,在根据本技术实施方式的脑电图激发装置中,在电刺激单元施加慢振荡时,控制单元在进行控制时使用θ波频率范围内的脑电波的电位密度。这样,经颅电刺激(慢振荡)能被有效地施加。
控制单元可以在睡眠阶段是阶段2时将经颅电刺激施加于电刺激单元,并且在睡眠阶段是阶段2之外的阶段时,可以不将经颅电刺激施加于电刺激单元。
已知,在用户的睡眠阶段是阶段2的情况下施加经颅电刺激时,能够促进从短期记忆到长期记忆的转变。因此,在根据本技术实施方式的脑电图激发装置中,只有在已经判断用户的睡眠阶段是阶段2时,控制单元才施加经颅电刺激。这样,能够在有效的定时施加经颅电刺激。
如上所述,根据本技术实施方式,能够提供根据大脑活动状态施加经颅电刺激的脑电图激发装置。
在下文如附图所示的最佳模式的实施方式的详细描述中,本发明的这些和其他的目的、特征和优点将变得表现得更为明显。
附图说明
图1是示出了根据第一实施方式的脑电图激发装置的功能构造的框图;
图2是示出了脑电波的电位密度的示例的示图;
图3是示出了用户的头皮位置处的脑电波的电位密度的变化的示例的示图;
图4是示出了用户的头皮位置处的脑电波的电位密度的变化的另一示例的示图;
图5是示出了根据第一实施方式的脑电图激发装置的电路构造的示意图;
图6是示出了根据第一实施方式的脑电图激发装置操作和电极功能的列表;
图7是示出了根据第一实施方式的脑电图激发装置的外观的透视图;
图8是示出了根据第二实施方式的脑电图激发装置的电路构造的示意图;以及
图9是示出了根据第二实施方式的脑电图激发装置的外观的透视图。
具体实施方式
(第一实施方式)
将描述根据第一实施方式的脑电图激发装置。
<脑电图激发装置的功能构造>
图1是示出了根据第一实施方式的脑电图激发装置1的功能构造的框图。
如图1所示,脑电图激发装置1包括脑电图获取单元11、控制单元12以及电刺激单元13。脑电图获取单元11连接至控制单元12,控制单元12连接至电刺激单元13。
脑电图获取单元11,以与用户的头皮(头的表面)接触的电极为媒介,获得用户的脑电波作为对于时间的电位波形。脑电图获取单元11将获得的脑电波输出到控制单元12。
控制单元12基于从脑电图获取单元11提供的脑电波控制电刺激单元13。具体地,控制单元12能够对脑电波执行预定的分析处理(在以下描述),从而基于分析的结果控制电刺激单元13。
电刺激单元13以与用户的头皮接触的电极为媒介,将经颅电刺激(TES)施加于用户的头皮。TES是通过颅(颅骨)从用户的头皮导入至用户的大脑的弱电流(几mA)。TES包括使用直流电流的经颅直流电流刺激(tDCS)和使用交流电流的经颅交流电流刺激(tACS)。根据该实施方式的脑电图激发装置适用于tDCS或者tACS。
从电刺激单元13施加至用户的头皮的TES被设置为预定的频率。该频率根据希望被激发(希望被诱发的脑电波)的脑电波的频率而确定。例如,已证明,通过施加(0.75Hz)慢振荡的TES,激发了4Hz到8Hz频率的脑电波,即θ波。同样,在发现TES的频率和所要激发的脑电波的频率之间的关系时,电刺激单元13能够被设置为能够施加具有该频率的TES。应注意,关于TES的频率,在tACS情况下TES能够以交流脉冲频率执行,并且在tDCS情况下TES能够以直流脉冲频率执行。
控制单元电12控制刺激单元13如何施加TES,例如,控制TES的电流值和刺激定时。控制单元12如上所述基于脑电图获取单元11所获得的脑电波控制电刺激单元13,因此,使得脑电图激发装置1能够根据用户的大脑活动的状态施加TES。
<控制单元如何执行控制>
如上所述,控制单元12能够对由脑电图获取单元11获得的脑电波执行预定的分析处理,并且基于分析结果控制电刺激单元13。具体地,控制单元12能够计算脑电波的“电位密度”,并使用电位密度控制电刺激单元13。
电位密度能够通过对脑电波执行快速傅里叶变换所获得,其表明预定的频率范围内的脑电波的功率(脑电波功率)。图2是示出了控制单元12计算的预定频率范围的脑电波的电位密度(μV2)的示例的示图。如图2所示,在不施加TES的状态下特定的频率范围内的脑电波的电位密度由P1表示,并且在施加TES的状态下同样频率范围内的脑电波的电位密度由P2表示时,P2-P1的差对应于TES所激发的脑电波的电位密度。
控制单元12能够计算由电刺激单元13施加至用户的头皮的TES所激发的脑电波的频率范围内的脑电波的电位密度。例如,如在上述示例中,在电刺激单元13施加0.75Hz频率的TES时,能够计算4Hz到8Hz频率的脑电波的电位密度。这使控制单元12能够直接掌握TES所激发的效果,并向电刺激单元13提供该效果的反馈。
图3和图4分别是示出了用户头皮上的位置处的脑电波的电位密度变化的示例的示图。图3和图4分别示出了不施加TES(TES未施加)状态下的电位密度,以及施加0.75Hz频率的TES(TES施加)状态下的电位密度。图3示出了0.75Hz(慢振荡)的频率的脑电波的电位密度,图4示出了4Hz到8Hz频率的(θ波)的脑电波的电位密度。
如图3所示,在计算出电位密度的频率等于TES的频率,即等于0.75Hz时,施加TES的情况下的电位密度和不施加TES的情况下的电位密度之间的差异是小的。这表明,在0.75Hz频率的TES所激发的脑电波中,具有0.75Hz的频率的成分很小(或不包含)。而且,计算出电位密度的频率等于TES的频率,即等于0.75Hz,因此,存在TES自身被检测到的风险。
相反,如图4所示,在计算出电位密度的频率范围为4Hz到8Hz时,施加TES的情况下的电位密度和不施加TES的情况下的电位密度之间存在差异。这表明,4Hz到8Hz频率的脑电波被0.75Hz频率的TES所激发。而且,作为TES的频率的0.75Hz频率不落入计算出电位密度的频率范围内,因此,该电位密度不包括TES自身。
换言之,在控制单元12计算TES所激发的脑电波的频率范围内的电位密度时,能够判断电位密度的变化起因于该激发。因此,控制单元12能够设置电位密度的阈值,从而控制电刺激单元13;具体地,在计算出的电位密度差异(P2-P1)小于阈值时增加TES,并且在计算出的差异大于阈值时减少或停止TES。
如上所述,脑电图激发装置1能够参考TES所激发的脑电波的频率范围内的电位密度,将更有效的TES施加于用户。
而且,控制单元12也能够基于脑电波判断“睡眠阶段”,从而根据睡眠阶段控制电刺激单元13。睡眠阶段是人类睡眠程度的指标,其通常用于睡眠领域。定义了“REM(快速眼球运动)睡眠”、“非REM睡眠阶段1”、“非REM睡眠阶段2”、“非REM睡眠阶段3”、“非REM睡眠阶段4”。睡眠阶段能够基于脑电波或在必要时基于眼电图(EOG)、肌电图(EMG)等进行判断。
通过当用户处于上述的阶段2的睡眠状态时施加TES,能够激发“睡眠纺锤波”。睡眠纺锤波是脑电波的波形之一,并且已知,记忆与睡眠纺锤波的数量成正比例地更有效地增强(促进从短期记忆到长期记忆的转变)。因此,在控制单元12基于脑电波判断睡眠阶段是阶段2并使电刺激单元13施加TES时,能够在有效的定时执行激发。
此外,控制单元12能够控制电刺激单元13,从而在预定的睡眠阶段施加或不施加TES,以用于除记忆增强之外的诸如睡眠稳定的目的。这样,脑电图激发装置1能够根据睡眠阶段调整TES的施加定时,因此,能够向用户施加更有效的TES。
<脑电图激发装置的电路构造>
将描述脑电图激发装置1的电路构造。图5是示出了脑电图激发装置1的电路构造的示意图。
脑电图获取单元11包括第一电极111、第二电极112以及第一放大器113。第一电极111连接至第一放大器113的输入端子,并且第一放大器113的输出端子连接至控制单元12。第二电极112连接至脑电图激发装置1的地电位(以下,简称为地电位)。
第一电极111电连接至用户的头皮。第一电极111是用作测量脑电波的参考电极的电极,并且可以与用户的头皮上能够有效地测量脑电波的位置(诸如顶骨区域)保持接触。
第二电极112电连接至用户的头皮。第二电极112是测量脑电波时作为比较电极的电极,并且能与用户的头皮上的具有高传导性的位置(诸如前额)保持接触。
第一放大器113将输入到第一放大器113的输入端子的第一电极111的输出(相对于地电位的电位差)进行放大,然后从第一放大器113的输出端子输出放大后的输出。第一放大器113可以包括诸如晶体管的任何类型的放大器。
脑电图获取单元11按如上所述进行构造,从而使用第一放大器113放大第一电极111与第二电极112之间的电位差,然后将放大后的电位差输出到控制单元12。应注意,第一电极111和第二电极112的数量不局限于一个,而可以配置多个第一电极111和多个第二电极112。
电刺激单元13包括第三电极131、电压源132、电阻133、第二放大器134以及切换(change-over)开关135。第三电极131连接至第二放大器134的输出端子。电压源132连接至电阻133,电阻133连接至第二放大器134的反相输入端子(负极)。第二放大器134的非反相输入端子(正极)连接至地电位。切换开关135连接在电阻133和第二放大器134之间、以及脑电图获取单元11的第一电极111和第一放大器113之间。
第三电极131电连接至用户的头皮。第三电极131是用作TES的参考电极的电极,并且能与用户的头皮上适于施加TES的位置处保持接触。
电压源132是被配置为产生激发电压的电压源。电压源132可以包括交流电压源或直流电压源。
虽然以下详细地描述电阻133,但在电阻的电阻值足够高时,能够防止电刺激单元13对脑电图获取单元11的影响。例如,电阻133的电阻值例如能够设置为100MΩ以上。
第二放大器134是运算放大器,并且在切换开关135接通的时候,构成反相放大器电路。反相放大器电路的具体情况将在下面详细说明。
切换开关135以接通断开(on-off)的方式将电阻133与第二放大器134之间的节点和第一电极111与第一放大器113之间的节点彼此成对地连接。在切换开关135被接通时,第二放大器134如上所述构成反相放大器电路,在切换开关135被关闭时,电刺激单元13与脑电图获取单元11断开连接。
电刺激单元13如上所述构造,从而在第三电极131和第一电极111之间导入电流,即将TES施加于用户的头皮。应注意,第三电极131的数量不局限于一个,而可以配置多个第三电极131。
控制单元12连接至脑电图获取单元11的第一放大器113的输出端子,从而根据脑电图获取单元11所获得的脑电波控制切换开关135的接通/断开。控制单元12可以包括微处理器。
脑电图激发装置1可以被配置为具有如上所述的电路构造。接下来,将描述具有上述电路构造的脑电图激发装置1的操作。图6是示出了脑电图激发装置1的操作和电极功能的列表。
首先,在切换开关135被断开时,第一电极111以及第二电极112分别用作参考电极和比较电极,并且将第一电极111和第二电极112之间的电位差提供至第一放大器113。第一放大器113将该电位差放大并输出至控制单元12。换言之,脑电图获取单元11获得脑电波。在此时,切换开关135断开。因此,电刺激单元13未被导入电流,因此未产生TES。
接下来,在切换开关135被接通时,脑电图获取单元11获得如上所述的脑电波。在电刺激单元13中,电压源132、电阻133、第二放大器134、和第三电极131、第一电极111构成反相放大器电路。
在反相放大器电路中,第二放大器134操作从而使得非反相输入端子(正)和反相输入端子(负)之间的电位差变成零。这样,连接至反相输入端子的第一电极111维持在地电位。由电压源132提供的电流通过电阻133,然后从第一电极111(比较电极,具有地电位)流至第三电极131(参考电极,具有负电位)。第一电极111和第三电极131各自连接至用户的头皮,因此电流是流过用户的大脑的电流,即TES。该电流由电压源132产生的电压和电阻133的电阻值确定,并且不论用户头部的电阻(第一电极111和第三电极131之间的电阻)如何,都维持固定值。
如上所述,不论用户的头部的电阻如何,反相放大器电路都维持第一电极111的地电位,并将固定电流从第一电极111导入至第三电极131。因此,根据该电路构造,能够施加具有预设强度的TES(第一电极111和第三电极131之间的电流),而不会对要测量的脑电波(第一电极111和第二电极112之间的电位差)产生影响。
而且,在上述电路构造中,在切换开关135接通的状态下,第一电极111(参考电极)和第二电极112(比较电极)之间的电位差可以用于电阻测量,并其结果表明电极是否可靠地连接至用户的头皮。
脑电图激发装置1可以被配置为具有如上所述的电路构造。在上述电路构造中,例如,控制单元12能够基于经由脑电图获取单元11所获得的脑电波使用如上所述的分析处理和睡眠阶段判断来接通/断开切换开关135,从而调整TES的施加定时。而且,除切换开关135之外,控制单元12可以被配置为还控制电压源132,从而调整TES的强度和频率。
<脑电图激发装置的装置结构>
将描述脑电图激发装置1的装置结构。图7是示出了脑电图激发装置1的外观的透视图。如图7所示,脑电图激发装置1是可附接至用户头部的头帽,并且可以由支撑部14和壳体15组成。应注意,脑电图激发装置1不局限于此处所描述的结构。
支撑部14是被配置为将脑电图激发装置1固定于用户的头部的构件,并且设置有上述第一电极111和第二电极112。第一电极111和第二电极112各自设置在预定位置。例如,第一电极111设置于与用户的顶骨区域保持接触的位置,第二电极112设置于与用户的前额保持接触的位置。而且,第三电极131使用软电线(cord)连接至支撑部14,从而用户能够在他/她自己的头皮的任意位置配置第三电极131。
壳体15容纳脑电图激发装置1的各种电子部件,即第一放大器113、控制单元12、第二放大器134以及电压源132。如图5所示,这些电子部件通过设置至支撑部14的配线连接至电极(未示出)。壳体15可以容纳被配置为存储脑电波测量结果、TES施加记录等的存储设备以及被配置为与外部装置进行通信的无线通信装置等。应注意,控制单元12可以附接至外部装置。在该情况下,控制单元12能够使用无线通信装置连接至脑电图获取单元11和电刺激单元13。
而且,脑电图激发装置1可以包括眼球运动电极16。眼球运动电极16是被配置为获得眼球运动(EOG)以在控制单元12判断睡眠阶段时与脑电图一起进行参考的电极,并且其能够设置于用户的左右太阳穴。眼球运动电极16使用导线(未示出)连接至控制单元12,并将眼球运动的测量结果提供至控制单元12。
如上所述,根据该实施方式的脑电图激发装置1能够被安装到一个头帽上。通过戴头帽,用户可以使用脑电图激发装置1。
<根据本实施方式的脑电图激发装置的效果>
在根据该实施方式脑电图激发装置1中,控制单元12基于脑电图获取单元11所获得的脑电波控制电刺激单元13,因此,能够根据用户的大脑活动施加有效的TES。
特别地,在脑电图激发装置1中,控制单元12参考TES所激发的脑电波的频率范围的电位密度,因此能够直接掌握TES的效果。结果,能够施加更有效的TES。
而且,在脑电图激发装置1中,控制单元12基于脑电波判断睡眠阶段,并且根据该睡眠阶段控制电刺激单元13。这样,能够在有效的定时施加TES。
如上所述构造的脑电图激发装置1可以通过上述电路构造获得。根据该电路构造,能够施加具有预设强度的TES,而不会对要测量的脑电波产生影响。
如上所述,根据该实施方式的脑电图激发装置1能够根据用户大脑的活动状态施加TES。
(第二实施方式)
将描述根据第二实施方式的脑电图激发装置。在该实施方式中,与在第一实施方式中相同的组成部分的描述将被省略。根据该实施方式的脑电图激发装置与根据第一实施方式的脑电图激发装置1的不同之处在于电路构造和装置结构。
<脑电图激发装置的电路构造>
图8是示出了根据第二实施方式的脑电图激发装置2的电路构造的示意图。如图8所示,脑电图激发装置2由脑电图获取单元21、控制单元22以及电刺激单元23组成。脑电图获取单元21、控制单元22以及电刺激单元23的功能构造与第一实施方式中描述的相同。
脑电图获取单元21包括第一电极211、第二电极212和放大器213。第一电极211连接至放大器213的输入端子,并且放大器213的输出端子连接至控制单元22。第二电极212连接至脑电图激发装置2的地电位。
第一电极211电连接至用户的头皮。第一电极211是脑电波测量时用作参考电极的电极,并且其能与用户的头皮上能够有效地测量脑电波的位置(诸如顶骨区域)保持接触。
第二电极212电连接至用户的头皮。第二电极212是测量脑电波时用作比较电极的电极,并且其能与用户的头皮上具有高传导性的位置(诸如前额)保持接触。
放大器213将输入到放大器213的输入端子的第一电极211的输出(相对于地电位的电位差)进行放大,然后从放大器213的输出端子输出放大后的输出。放大器213可以包括诸如晶体管的任何类型的放大器。
脑电图获取单元21按如上所述进行构造,从而使用放大器213放大第一电极211和第二电极212之间的电位差,然后将放大后的电位差输出到控制单元22。应注意,第一电极211和第二电极212的数量不局限于一个,而可以设置配置第一电极211和多个第二电极212。
电刺激单元23包括第三电极231、第四电极232以及电流源233。第三电极231和第四电极232连接至电流源233。
第三电极231电连接至用户的头皮。第三电极231是被配置为导入要被导入为第三电极231和第四电极232之间的TES的电流的电极,其能够与用户的头皮上适于施加TES的位置保持接触。
第四电极232电连接至用户的头皮。第四电极232是被配置为导入要被导入为第四电极232和第三电极231之间的TES的电流的电极,其能够与用户的头皮上适于施加TES的位置保持接触。
电流源233施加电流,该电流被导入以作为第三电极231和第四电极232之间的TES。电流源233可以包括交流电压源或直流电压源。
电刺激单元23如上所述进行构造从而在第三电极231和第四电极232之间导入电流,即,将TES施加于用户的头皮。第三电极231和第四电极232的数量不局限于一个,而可以配置多个第三电极231和多个第四电极232。
控制单元22连接至脑电图获取单元21的放大器213的输出端子,从而根据脑电图获取单元21获得的脑电波来控制电流源233。
在如上所述的电路构造中,在脑电图获取单元21获得脑电波、并且与此同时电刺激单元23施加TES时,存在脑电图获取单元21不仅检测到脑电波而且检测到TES自身的风险。然而,控制单元22能够参考TES所激发的脑电波的频率范围(不包括TES的频率)内的电位密度,并且该电位密度不包括TES资深的电位密度。因此,控制单元22能够基于脑电波控制电刺激单元23,而不受TES自身的影响。
<脑电图激发装置的装置结构>
将描述脑电图激发装置2的装置结构。图9是示出了脑电图激发装置2的外观的透视图。如图9所示,脑电图激发装置2是可附于用户的头部的头帽,并且可以由支撑部24和壳体25形成。注意,脑电图激发装置2的结构不局限于此处描述的结构。
支撑部24是被配置为将脑电图激发装置2固定于用户的头部的构件,并且设置有上述的第一电极211和第二电极212。第一电极211和第二电极212在各自的预定的位置设置。例如,第一电极211设置于与用户的顶骨区域保持接触的位置,第二电极212设置于与用户的前额保持接触的位置。而且,第三电极231以及第四电极232使用软电线连接至支撑部24,从而使得用户能够在他/她自己的头皮上的任意位置处配置第三电极231和第四电极232。
壳体25容纳脑电图激发装置2的各种电子部件,即放大器213、电流源233和控制单元22。如图8所示,该电子部件通过设置至支撑部24的配线(未示出)连接至电极。壳体25可以容纳被配置为存储脑电波测量结果、TES施加记录等的存储设备,以及被配置为与外部装置进行通信的无线通信装置等。应注意,控制单元22可以附接至外部装置。在该情况下,控制单元22能够使用无线通信装置连接至脑电图获取单元21和电刺激单元23。
而且,脑电图激发装置2可以包括眼球运动电极26。眼球运动电极26是被配置为获得眼球运动(EOG)以在控制单元22判断睡眠阶段时与脑电图一起进行参考的电极,并且其能够配置在用户的左右太阳穴。眼球运动电极26使用配线(未示出)连接至控制单元22,并将眼球运动的测量结果提供至控制单元22。
如上所述,根据该实施方式的脑电图激发装置2能够被安装到一个头帽上。通过戴头帽,用户可以使用脑电图激发装置2。
<根据该实施方式的脑电图激发装置的效果>
在根据该实施方式脑电图激发装置2中,控制单元22基于脑电图获取单元21所获得的脑电波控制电刺激单元23,因此,能够根据用户的大脑活动施加有效的TES。
特别地,在脑电图激发装置2中,控制单元22参考TES所激发的脑电波的频率范围内的电位密度,由此直接掌握TES的效果。因此,能够施加更有效的TES。而且,即使当脑电图获取单元21不仅检测到脑电波而且检测到TES自身时,脑电图激发装置2也能够基于脑电波来控制电刺激单元23,而不受TES自身的影响。
如上所述,根据该实施方式的脑电图激发装置2能够根据用户的大脑活动状态施加TES。
本技术不局限于上述实施方式,并且在不背离本技术要旨的情况下,可以做出改变。
应注意,本技术可以采用以下构造。
(1)一种脑电图激发装置,包括:
脑电图获取单元,被配置为获得用户的脑电波;
电刺激单元,被配置为将经颅电刺激施加于用户的头皮;以及
控制单元,被配置为基于脑电图获取单元获得的脑电波控制电刺激单元。
(2)根据第(1)项所述的脑电图激发装置,其中,
电刺激单元将特定频率的经颅电刺激施加至用户的头皮,并且
控制单元根据由特定频率的经颅电刺激所激发的脑电波的频率范围内的电位密度来控制电刺激单元。
(3)根据第(1)或(2)项所述的脑电图激发装置,其中,控制单元基于出现在脑电波中的特征波形判断用户的多个睡眠阶段之一,并且根据该睡眠阶段控制电刺激单元。
(4)根据第(1)至(3)项中的任一项所述的脑电图激发装置,其中,
脑电图获取单元包括:
第一电极,与用户的头皮保持接触,
第一放大器,具有与第一电极相连接的输入端子,以及
第二电极,连接至地电位并与用户的头部保持接触,
电刺激单元包括:
电压源,
电阻,连接至电压源,
第二放大器,具有与电阻相连接的反相输入端子以及与地电位相连接的非反相输入端子,以及
第三电极,连接至第二放大器的输出端子并与用户的头部保持接触,并且
控制单元连接至第一放大器的输出端子,并基于作为第一放大器的输出与地电位之间的电位差的脑电波来控制电刺激单元。
(5)根据第(1)至(4)项中的任一项所述的脑电图激发装置,其中,
脑电图获取单元包括:
第一电极,与用户的头皮保持接触,
放大器,具有与第一电极相连接的输入端子,以及
第二电极,连接至地电位并与用户的头部保持接触,电刺激单元包括:
电流源,
第三电极,连接至电流源并与用户的头皮保持接触,以及
第四电极,连接至电流源并与用户的头皮保持接触,并且
控制单元连接至放大器的输出端子,并基于作为放大器的输出和地电位之间的电位差的脑电波来控制电刺激单元。
(6)根据第(1)至(5)项中的任一项所述的脑电图激发装置,其中,
电刺激单元施加慢振荡作为经颅电刺激,并且
控制单元基于θ波频率范围内的脑电波的电位密度控制电刺激单元。
(7)根据第(1)至(6)项中的任一项所述的脑电图激发装置,其中,控制单元在睡眠阶段是阶段2时将经颅电刺激施加于电刺激单元,并且在睡眠阶段是除阶段2之外的阶段时不将经颅电刺激施加于电刺激单元。
本发明包含于2011年5月20日向日本专利局提交的日本在先专利申请JP2011-113452中所披露的相关主题,将其全部内容结合于此作为参考。
本领域的技术人员应该理解,根据设计要求和其他因素,可以有多种修改、组合、子组合和改进,均应包含在本发明的权利要求或等同物的范围之内。

Claims (8)

1.一种脑电图激发装置,包括:
脑电图获取单元,被配置为获得用户的脑电波;
电刺激单元,被配置为将经颅电刺激施加于用户的头皮;以及
控制单元,被配置为基于所述脑电图获取单元获得的脑电波控制所述电刺激单元。
2.根据权利要求1所述的脑电图激发装置,其中,
所述电刺激单元将特定频率的经颅电刺激施加至所述用户的头皮,并且
所述控制单元根据由所述特定频率的经颅电刺激所激发的脑电波的频率范围内的电位密度来控制所述电刺激单元。
3.根据权利要求2所述的脑电图激发装置,其中,所述控制单元基于出现在所述脑电波中的特征波形判断用户的多个睡眠阶段之一,并且根据该睡眠阶段控制所述电刺激单元。
4.根据权利要求3所述的脑电图激发装置,其中,
所述脑电图获取单元包括:
第一电极,与所述用户的头皮保持接触,
第一放大器,具有与所述第一电极相连接的输入端子,以及
第二电极,连接至地电位并与所述用户的头部保持接触,所述电刺激单元包括:
电压源,
电阻,连接至所述电压源,
第二放大器,具有与所述电阻相连接的反相输入端子以及与所述地电位相连接的非反相输入端子,以及
第三电极,连接至所述第二放大器的输出端子并与所述用户的头部保持接触,并且
所述控制单元连接至所述第一放大器的输出端子,并基于作为所述第一放大器的输出与所述地电位之间的电位差的脑电波来控制所述电刺激单元。
5.根据权利要求3所述的脑电图激发装置,其中,
所述脑电图获取单元包括:
第一电极,与所述用户的头皮保持接触,
放大器,具有与所述第一电极相连接的输入端子,以及
第二电极,连接至地电位并与所述用户的头部保持接触,所述电刺激单元包括:
电流源,
第三电极,连接至所述电流源并与所述用户的头皮保持接触,以及
第四电极,连接至所述电流源并与所述用户的头皮保持接触,并且
所述控制单元连接至所述放大器的输出端子,并基于作为所述放大器的输出和所述地电位之间的电位差的脑电波来控制所述电刺激单元。
6.根据权利要求2所述的脑电图激发装置,其中,
所述电刺激单元施加慢振荡作为所述经颅电刺激,并且
所述控制单元基于θ波频率范围内的脑电波的电位密度控制所述电刺激单元。
7.根据权利要求3所述的脑电图激发装置,其中,所述控制单元在所述睡眠阶段是阶段2时将所述经颅电刺激施加于所述电刺激单元,并且在所述睡眠阶段是除阶段2之外的阶段时不将所述经颅电刺激施加于所述电刺激单元。
8.根据权利要求1所述的脑电图激发装置,其中,所述控制单元控制由所述电刺激单元施加的所述经颅电刺激的电流值和刺激定时。
CN201210147604XA 2011-05-20 2012-05-11 脑电图激发装置 Pending CN102783948A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011113452A JP2012239696A (ja) 2011-05-20 2011-05-20 脳波賦活装置
JP2011-113452 2011-05-20

Publications (1)

Publication Number Publication Date
CN102783948A true CN102783948A (zh) 2012-11-21

Family

ID=45992009

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210147604XA Pending CN102783948A (zh) 2011-05-20 2012-05-11 脑电图激发装置

Country Status (4)

Country Link
US (1) US8660650B2 (zh)
EP (1) EP2524649A3 (zh)
JP (1) JP2012239696A (zh)
CN (1) CN102783948A (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105013080A (zh) * 2015-07-28 2015-11-04 燕山大学 一种闭环式经颅直流电刺激装置
CN105813547A (zh) * 2013-12-12 2016-07-27 皇家飞利浦有限公司 用于方便睡眠阶段转换的***和方法
CN105899255A (zh) * 2013-11-25 2016-08-24 Y-波瑞株式会社 脑波测量及头脑刺激***
CN106175690A (zh) * 2016-08-24 2016-12-07 中国科学院深圳先进技术研究院 慢波睡眠增强***及慢波睡眠监测方法
CN106344260A (zh) * 2016-08-25 2017-01-25 宁波力芯科信息科技有限公司 一种具有生物唤醒功能的智能眼罩及应用方法
CN106502410A (zh) * 2016-10-27 2017-03-15 天津大学 提高脑‑机接口中运动想象能力的经颅电刺激装置和方法
CN106667441A (zh) * 2016-12-30 2017-05-17 包磊 生理监测结果的反馈方法及装置
CN106714678A (zh) * 2014-09-22 2017-05-24 波士顿科学神经调制公司 使用功率谱或信号关联性进行疼痛管理的设备和方法
CN109846478A (zh) * 2019-04-15 2019-06-07 天津市人民医院 一种评估经颅直流电刺激后大脑皮层兴奋性的方法
CN109963609A (zh) * 2016-09-23 2019-07-02 基础科学研究院 脑刺激装置及其用途
WO2020192132A1 (zh) * 2019-03-22 2020-10-01 杭州兆观传感科技有限公司 一种睡眠监测装置及***

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10946196B2 (en) * 2012-11-16 2021-03-16 Stimscience Inc. System for variably configurable, adaptable electrode arrays and effectuating software
US11033731B2 (en) 2015-05-29 2021-06-15 Thync Global, Inc. Methods and apparatuses for transdermal electrical stimulation
US10814131B2 (en) 2012-11-26 2020-10-27 Thync Global, Inc. Apparatuses and methods for neuromodulation
US10537703B2 (en) 2012-11-26 2020-01-21 Thync Global, Inc. Systems and methods for transdermal electrical stimulation to improve sleep
ES2464690R1 (es) * 2012-12-03 2014-12-09 María Del Pilar SÁNCHEZ JAIME Equipo de sincronismo biológico para la inducción de cambios del estado de conciencia
BR112015017766A2 (pt) * 2013-01-29 2017-07-11 Koninklijke Philips Nv sistema para aprimorar a consolidação de conhecimento em um indivíduo durante o sono, e, método para aprimorar a consolidação de conhecimento em um indivíduo durante o sono com um sistema de aprimoramento de consolidação de conhecimento
JP6146706B2 (ja) * 2013-02-07 2017-06-14 国立大学法人 東京大学 経頭蓋電流刺激装置
AU2014218626B2 (en) * 2013-02-22 2017-05-11 Cerevast Medical Inc. Methods and apparatuses for networking neuromodulation of a group of individuals
US10293161B2 (en) 2013-06-29 2019-05-21 Thync Global, Inc. Apparatuses and methods for transdermal electrical stimulation of nerves to modify or induce a cognitive state
KR101507446B1 (ko) * 2013-10-17 2015-03-31 천민규 뇌파 조절 장치
US10076279B2 (en) * 2013-10-22 2018-09-18 Neba Health, Llc System and method for a compact EEG headset
WO2015118415A1 (en) * 2014-02-04 2015-08-13 Koninklijke Philips N.V. System and method for determining timing of sensory stimulation delivered to a subject during a sleep session
KR101473443B1 (ko) 2014-02-07 2014-12-18 (주)와이브레인 전기자극 시스템
US9943698B2 (en) 2014-04-22 2018-04-17 Lockheed Martin Corporation Cognitive enhancement using feedback
US9320885B2 (en) * 2014-05-28 2016-04-26 Curzio Vasapollo Dual-purpose sleep-wearable headgear for monitoring and stimulating the brain of a sleeping person
CN104524689A (zh) * 2014-12-03 2015-04-22 上海交通大学 一种通过脑-脑接口实现异体生物控制的***及方法
WO2016102602A1 (en) * 2014-12-22 2016-06-30 Icm (Institut Du Cerveau Et De La Moelle Épinière) Method and device for enhancing memory consolidation
CN204411500U (zh) * 2014-12-23 2015-06-24 先進電子醫療工業有限公司 头戴式无线控制经颅电刺激仪
US10426945B2 (en) 2015-01-04 2019-10-01 Thync Global, Inc. Methods and apparatuses for transdermal stimulation of the outer ear
US11534608B2 (en) 2015-01-04 2022-12-27 Ist, Llc Methods and apparatuses for transdermal stimulation of the outer ear
US10258788B2 (en) 2015-01-05 2019-04-16 Thync Global, Inc. Electrodes having surface exclusions
DE102015106366B4 (de) 2015-04-24 2019-05-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Vorrichtung zur Bestimmung einer Position von Fehlstellen oder Schädigungen an Rotorblättern einer Windkraftanlage in eingebautem Zustand
WO2016179407A1 (en) * 2015-05-07 2016-11-10 The University Of North Carolina At Chapel Hill Feedback brain stimulation to enhance sleep spindles, modulate memory and cognitive function, and treat psychiatric and neurological symptoms
CN107847744A (zh) 2015-06-01 2018-03-27 赛威医疗公司 用于神经调节的装置和方法
WO2017106878A1 (en) 2015-12-18 2017-06-22 Thync Global, Inc. Apparatuses and methods for transdermal electrical stimulation of nerves to modify or induce a cognitive state
US11065445B2 (en) 2016-04-11 2021-07-20 Monash University Transcranial stimulation with real-time monitoring
US10646708B2 (en) 2016-05-20 2020-05-12 Thync Global, Inc. Transdermal electrical stimulation at the neck
WO2018056733A1 (ko) * 2016-09-23 2018-03-29 기초과학연구원 뇌 자극 장치 및 이의 용도
WO2018071915A1 (en) * 2016-10-14 2018-04-19 Santa Fe Neurosciences, Llc Concurrent transmitting and receiving electroencephalograph electrodes
WO2019209969A1 (en) 2018-04-24 2019-10-31 Thync Global, Inc. Streamlined and pre-set neuromodulators
JPWO2020026880A1 (ja) * 2018-08-02 2021-08-05 パナソニックIpマネジメント株式会社 アクティブ電極、脳波計、制御装置、及び、制御方法
KR20210095638A (ko) * 2018-10-26 2021-08-02 모나쉬 유니버시티 신경 활동을 모니터링하기위한 시스템 및 방법
WO2020236866A1 (en) 2019-05-21 2020-11-26 Brain State Technologies, Llc Brain rebalancing through acoustic and electric mirroring
CN110585595B (zh) * 2019-09-24 2024-02-06 喜临门家具股份有限公司 基于诱导α脑波的经颅微电流刺激的控制***
US20240050688A1 (en) * 2020-12-18 2024-02-15 Neuroconnect S.R.L. Device, system and method to induce falling asleep

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2645609Y (zh) * 2003-10-14 2004-10-06 北京新科永创科技有限公司 脑电心理测试仪
CN1736327A (zh) * 2005-07-21 2006-02-22 高春平 脑电信号控制的健康及治疗装置
US20060173510A1 (en) * 2003-10-16 2006-08-03 Besio Walter G Medical devices for the detection, prevention and/or treatment of neurological disorders, and methods related thereto
WO2007106343A2 (en) * 2006-03-10 2007-09-20 Medtronic, Inc. Probabilistic neurological disorder treatment
WO2008005478A2 (en) * 2006-07-05 2008-01-10 Brainvital Corporation Treatment of neurological disorders via electrical stimulation, and methods related thereto
US7551956B2 (en) * 2002-07-20 2009-06-23 Flint Hills Scientific, Llc Stimulation methodologies and apparatus for control of brain states
JP2009297059A (ja) * 2008-06-10 2009-12-24 Toyota Central R&D Labs Inc 脳訓練支援装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007138598A2 (en) * 2006-06-01 2007-12-06 Tylerton International Inc. Brain stimulation and rehabilitation
US9149599B2 (en) * 2008-04-09 2015-10-06 Lotus Magnus, Llc Brain stimulation systems and methods
JP5375561B2 (ja) 2009-11-30 2013-12-25 凸版印刷株式会社 Rfidタグ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7551956B2 (en) * 2002-07-20 2009-06-23 Flint Hills Scientific, Llc Stimulation methodologies and apparatus for control of brain states
CN2645609Y (zh) * 2003-10-14 2004-10-06 北京新科永创科技有限公司 脑电心理测试仪
US20060173510A1 (en) * 2003-10-16 2006-08-03 Besio Walter G Medical devices for the detection, prevention and/or treatment of neurological disorders, and methods related thereto
CN1736327A (zh) * 2005-07-21 2006-02-22 高春平 脑电信号控制的健康及治疗装置
WO2007106343A2 (en) * 2006-03-10 2007-09-20 Medtronic, Inc. Probabilistic neurological disorder treatment
WO2008005478A2 (en) * 2006-07-05 2008-01-10 Brainvital Corporation Treatment of neurological disorders via electrical stimulation, and methods related thereto
JP2009297059A (ja) * 2008-06-10 2009-12-24 Toyota Central R&D Labs Inc 脳訓練支援装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MARSHALL L ET AL: "Boosting slow oscillations during sleep potentiates memory", 《NATURE》 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105899255A (zh) * 2013-11-25 2016-08-24 Y-波瑞株式会社 脑波测量及头脑刺激***
CN105899255B (zh) * 2013-11-25 2018-08-24 Y-波瑞株式会社 脑波测量及头脑刺激***
CN105813547A (zh) * 2013-12-12 2016-07-27 皇家飞利浦有限公司 用于方便睡眠阶段转换的***和方法
CN106714678A (zh) * 2014-09-22 2017-05-24 波士顿科学神经调制公司 使用功率谱或信号关联性进行疼痛管理的设备和方法
CN105013080A (zh) * 2015-07-28 2015-11-04 燕山大学 一种闭环式经颅直流电刺激装置
CN106175690A (zh) * 2016-08-24 2016-12-07 中国科学院深圳先进技术研究院 慢波睡眠增强***及慢波睡眠监测方法
CN106344260A (zh) * 2016-08-25 2017-01-25 宁波力芯科信息科技有限公司 一种具有生物唤醒功能的智能眼罩及应用方法
CN109963609A (zh) * 2016-09-23 2019-07-02 基础科学研究院 脑刺激装置及其用途
US11369770B2 (en) 2016-09-23 2022-06-28 Institute For Basic Science Brain stimulating device and use thereof
CN109963609B (zh) * 2016-09-23 2022-06-07 基础科学研究院 脑刺激装置及其用途
CN106502410A (zh) * 2016-10-27 2017-03-15 天津大学 提高脑‑机接口中运动想象能力的经颅电刺激装置和方法
WO2018120643A1 (zh) * 2016-12-30 2018-07-05 深圳市善行医疗科技有限公司 生理监测结果的反馈方法及装置
CN106667441A (zh) * 2016-12-30 2017-05-17 包磊 生理监测结果的反馈方法及装置
WO2020192132A1 (zh) * 2019-03-22 2020-10-01 杭州兆观传感科技有限公司 一种睡眠监测装置及***
CN109846478B (zh) * 2019-04-15 2021-07-09 天津市人民医院 一种评估经颅直流电刺激后大脑皮层兴奋性的方法
CN109846478A (zh) * 2019-04-15 2019-06-07 天津市人民医院 一种评估经颅直流电刺激后大脑皮层兴奋性的方法

Also Published As

Publication number Publication date
EP2524649A3 (en) 2017-01-04
JP2012239696A (ja) 2012-12-10
EP2524649A2 (en) 2012-11-21
US8660650B2 (en) 2014-02-25
US20120296390A1 (en) 2012-11-22

Similar Documents

Publication Publication Date Title
CN102783948A (zh) 脑电图激发装置
CN204411500U (zh) 头戴式无线控制经颅电刺激仪
CN109963609B (zh) 脑刺激装置及其用途
KR102092583B1 (ko) 수술용 도구에 의한 환자 신경 조직의 전방향 바이폴라 자극 시스템
Ferrucci et al. Cerebellar tDCS: how to do it
US20210290155A1 (en) Neuromodulation method and system for sleep disorders
KR101566786B1 (ko) 전기 자극 및 생체 전위 측정 장치
KR100866378B1 (ko) 뇌파를 주요치료정보로 사용하는 저주파 자기물리치료장치
JP6254281B2 (ja) 脳波測定及び脳刺激システム
US20100036191A1 (en) Brain stimulation systems and methods
JP2018510032A (ja) 双極刺激プローブを用いた患者の神経組織の全方向性双極刺激のためのシステムおよび方法
Arfin et al. Wireless neural stimulation in freely behaving small animals
KR101569362B1 (ko) 뇌파 측정 및 두뇌 자극 시스템
CN107427253A (zh) 用电磁波透视和调制脑活动
CN105251141A (zh) 一种闭环式经颅磁声刺激装置
CN203556061U (zh) 经颅刺激装置
EP3639883A1 (en) Kilohertz e-tns stimulation
AU2019394862B2 (en) Apparatus and method for treatment of mental and behavioral conditions and disorders with electromagnetic fields
KR101733589B1 (ko) 경두개 자기자극 장치
KR20140102879A (ko) 전기 침술 시스템
CN204767043U (zh) 一种生物电刺激治疗仪
CN203710544U (zh) 一种生物反馈式头痛治疗仪
CN105013080A (zh) 一种闭环式经颅直流电刺激装置
Pedron et al. Open-tES: an open-source stimulator for transcranial electrical stimulation designed for rodent research
US20230310848A1 (en) Using Interleaved Cooling Periods to Increase the Peak Intensity of Tumor Treating Fields

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20121121