WO2018120130A1 - 滑动轴承 - Google Patents

滑动轴承 Download PDF

Info

Publication number
WO2018120130A1
WO2018120130A1 PCT/CN2016/113759 CN2016113759W WO2018120130A1 WO 2018120130 A1 WO2018120130 A1 WO 2018120130A1 CN 2016113759 W CN2016113759 W CN 2016113759W WO 2018120130 A1 WO2018120130 A1 WO 2018120130A1
Authority
WO
WIPO (PCT)
Prior art keywords
axial
groove
support portion
oil
side wall
Prior art date
Application number
PCT/CN2016/113759
Other languages
English (en)
French (fr)
Inventor
李春辉
潘晓聪
Original Assignee
深圳智慧能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳智慧能源技术有限公司 filed Critical 深圳智慧能源技术有限公司
Priority to PCT/CN2016/113759 priority Critical patent/WO2018120130A1/zh
Publication of WO2018120130A1 publication Critical patent/WO2018120130A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/10Sliding-contact bearings for exclusively rotary movement for both radial and axial load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings

Definitions

  • the present invention relates to a bearing structure, and more particularly to a sliding bearing that can be used at an ultra high speed.
  • a plain bearing is a bearing that operates under sliding friction. Sliding bearings work smoothly, reliably, and without noise, so they are widely used in rotating machinery. Under liquid lubrication conditions, the sliding surface is divided by the lubricating oil without direct contact, and the friction loss and surface wear can be greatly reduced. The oil film between the bearing and the rotating body also has a certain vibration absorbing capability. The industry has been improving the sliding bearings and hopes to reduce the loss of the sliding bearings, oil temperature and resistance to adapt to ultra-high speed applications.
  • the present invention proposes a solution to the problem of a sliding bearing capable of reducing the loss of the sliding bearing, oil temperature and resistance.
  • the present invention provides a sliding bearing having a shaft hole through which a rotating shaft is bored.
  • the sliding bearing has an axial bearing portion for engaging with a thrust plate fixed on the rotating shaft, so that when the rotating shaft rotates in a rotating direction, the axial bearing portion An oil film is formed between the thrust disk and the rotating shaft to support the rotating shaft in the axial direction.
  • the axial support portion is provided with a plurality of oil drain grooves, and each of the oil drain grooves comprises a groove bottom surface, a first side wall surface and a second side wall surface. The first side wall surface is located on a side of the bottom surface of the groove in the rotation direction, and the second side wall surface is located on a side of the groove bottom surface opposite to the rotation direction.
  • the first side wall surface has a bottom edge that is in contact with the bottom surface of the groove and a top edge that is in contact with the axial support portion, and the first side wall surface is in a direction from the bottom edge to the top edge
  • the upper side extends obliquely along a curved surface along the rotating direction.
  • each oil drain groove extends from an inner edge of the axial support portion toward an outer edge of the axial support portion such that the plurality of oil drain grooves are on the axial support portion Radial and evenly spaced in the circumferential direction of the axial support.
  • each drain groove extends from an inner edge of the axial support portion toward an outer edge of the axial support portion, and each drain groove includes a first section near the inner edge The oil groove and the second oil drain groove near the outer edge, the bottom surface of the second oil drain groove gradually increases in a direction toward the outer edge.
  • the sliding bearing is provided with a radial oil inlet hole.
  • the radial oil inlet communicates with an outer peripheral surface of the sliding bearing and the shaft hole such that lubricating oil can enter the shaft hole through the radial oil inlet hole.
  • the inner wall surface of the shaft hole is provided with at least one oil guiding groove, the axial bearing portion is provided with an annular groove at an edge of the shaft hole, the oil guiding groove is in communication with the annular groove, and the plurality of oil draining grooves and Ring groove connection
  • an outer peripheral surface of the axial support portion forms a plane, and the plane is configured to form a drain hole with a fixing member that fixes the sliding bearing, and the drain hole and the drain hole
  • the plurality of drain tanks are in fluid communication such that lubricating oil in the plurality of drain tanks can flow back to the oil return tank through the drain holes.
  • the axial support portion forms a slope portion and a flat portion between adjacent two drain grooves.
  • a circumferential side of the inclined surface portion is in contact with a first side wall surface of one of the adjacent oil drain grooves
  • another circumferential side of the inclined surface portion is in contact with a circumferential side of the planar portion
  • the planar portion is further One side of the one-way side is in contact with the second side wall surface of another adjacent drain groove.
  • the height of the inclined surface portion with respect to the bottom surface of the groove increases in the circumferential direction toward the flat portion, and the height of the inclined surface increases in the radially outward direction.
  • a difference in height between the circumferential sides of the inclined surface portion with respect to the bottom surface of the groove is greater than or equal to 0.04 mm, but less than or equal to 0.1 mm. In a preferred embodiment, the height difference is greater than or equal to 0.05 mm, but less than or equal to 0.06 mm. In a more preferred embodiment, the height difference is 0.06 mm.
  • the sliding bearing has opposite axial end faces, the axial bearing portion is disposed on one of the axial end faces, and the sliding bearing further comprises a second axial end face. a second axial support.
  • the second axial support portion is configured to cooperate with a second thrust plate fixed on the rotating shaft, such that when the rotating shaft rotates in the rotating direction, the second axial bearing portion and the first An oil film is formed between the two thrust plates to support the rotating shaft in the axial direction.
  • the second axial support portion is provided with a plurality of second oil drain grooves, and each of the second oil drain grooves extends from an inner edge of the second axial support portion toward an outer edge of the second axial support portion.
  • Each of the second oil drain grooves includes a groove bottom surface, a first side wall surface, and a second side wall surface.
  • a first side wall surface of the second oil drain groove is located on a side of the bottom surface of the groove along the rotation direction
  • the second a second side wall surface of the oil drain groove is located on a side opposite to the rotation direction of the bottom surface of the groove
  • a first side wall surface of the second oil drain groove has a bottom edge that is in contact with the bottom surface of the groove and The top edge of the two axial support portions meets.
  • the first side wall surface of the second oil drain groove extends obliquely along a curved surface in a direction from the bottom edge of the second oil drain groove toward the top edge along the rotation direction.
  • the sliding bearing has opposite axial end faces, the axial bearing portion is disposed on one of the axial end faces, and the sliding bearing further comprises a second axial end face. a second axial support.
  • the second axial support portion is configured to cooperate with a second thrust plate fixed on the rotating shaft, such that when the rotating shaft rotates in the rotating direction, the second axial bearing portion and the first An oil film is formed between the two thrust plates to support the rotating shaft in the axial direction.
  • the axial support portion has a circular bearing surface
  • the second axial bearing portion has a circular bearing surface
  • the circular bearing faces have different diameters.
  • embodiments of the present invention provide a sliding bearing that can withstand axial and radial forces of rotation of a rotating shaft.
  • the wall surface of the oil drain groove on the axial bearing portion of the sliding bearing is optimized by the curvature, so that the sliding bearing loss is smaller, the oil temperature is lower, and the resistance is smaller, which is particularly suitable for use in bearings with severe requirements or ultra-high speed conditions.
  • FIG. 1 is a schematic view of a rotating assembly using a sliding bearing according to an embodiment of the present invention.
  • FIG. 2 is a perspective view of a sliding bearing of the rotating assembly of FIG. 1.
  • FIG. 3 is a perspective view of another angle of the sliding bearing of the rotating assembly of FIG. 1.
  • FIG. 4 is a plan view of an axial bearing portion of the sliding bearing of FIG. 1.
  • a rotating assembly includes a sliding bearing 10 and a rotating shaft 12 rotatable relative to the sliding bearing 10.
  • the sliding bearing 10 supports the rotating shaft 12 in the axial direction and the radial direction.
  • the sliding bearing 10 has opposite end faces 14, and the shaft hole 16 penetrates the sliding bearing 10 in the axial direction to communicate the both end faces 14.
  • the shaft hole 16 is provided for the shaft 12 to be rotated, and supports the rotation of the shaft 12. Therefore, the portion where the shaft hole 16 is located constitutes a radial support portion.
  • the sliding bearing 10 forms at least one axial support portion on both end faces.
  • the sliding bearing 10 is provided with a first axial bearing portion 18 and a second axial bearing portion 20, respectively, on both end faces.
  • the first thrust disc 22 and the second thrust disc 24 are fixedly connected to the rotating shaft 12.
  • the first axial support portion 18 is configured to cooperate with the first thrust plate 22 such that when the rotary shaft 12 is rotated in a rotational direction, an oil film is formed between the first axial support portion 18 and the first thrust plate 22, thereby The rotating shaft 12 is supported in the axial direction.
  • the second axial bearing portion 20 is configured to cooperate with the second thrust plate 24 such that when the rotating shaft 12 is rotated in the rotating direction, an oil film is formed between the second axial bearing portion 20 and the second thrust plate 24 to The shaft 12 is axially supported.
  • the first axial bearing portion 18 and the second axial bearing portion 20 each have a circular bearing surface projecting from the axial end face, the two bearing surfaces having different diameters, such that the first axis
  • the support portion 18 and the second axial support portion 20 have different supporting forces in two directions in the axial direction.
  • the diameter of the bearing surface of the first axial bearing portion 18 is greater than the diameter of the bearing surface of the second axial bearing portion 20, and thus has a greater supporting force.
  • the diameter of the bearing surface of the first axial bearing portion 18 may be smaller than the diameter of the bearing surface of the second axial bearing portion 20, and thus has a small supporting force.
  • the first axial bearing portion 18 is provided with a plurality of first oil drain grooves 26.
  • Each of the first oil drain grooves 26 extends from the inner edge of the first axial bearing portion 18 toward the outer edge of the first axial bearing portion 18 such that the first oil drain grooves 26 are radially radiated on the first axial bearing portion 18. And evenly spaced in the circumferential direction of the first axial support portion 18.
  • each of the first drain grooves 26 extends in a straight line, i.e., along a radius of the first axial support portion 18.
  • the first drain grooves may also be arranged in other shapes, such as each first drain groove extending along a curve.
  • Each of the first oil drain grooves 26 includes a groove bottom surface 28, a first side wall surface 30 and a second side wall surface 32, or is formed by a groove bottom surface 28, a first side wall surface 30, and a second side wall surface 32.
  • each of the first oil drain grooves 26 extends from the inner edge of the first axial bearing portion 18 toward the outer edge of the first axial bearing portion 18, and each of the first oil drain grooves 26 A first section draining groove 26A adjacent the inner edge and a second section draining groove 26B adjacent the outer edge are included.
  • the groove bottom surface of the second section drain groove 26B is gradually raised in the direction toward the outer edge, and the first section drain groove 26A may be of equal height.
  • the bottom surface of the first section of the drain groove 26A is also raised in a radially outward direction, but is relatively flat with respect to the rise of the bottom surface of the second drain groove 26B.
  • the first side wall surface 30 is located on one side of the groove bottom surface 28 in the direction of rotation, and the second side wall surface 32 is located on the side of the groove bottom surface 28 opposite to the direction of rotation.
  • the first side wall surface 30 and the second side wall surface 32 each have a bottom edge 34 that abuts the groove bottom surface 28 and a top edge 36 that interfaces with the first axial support portion 18.
  • the first side wall surface 30 extends obliquely along a curved surface in a direction from its bottom edge 34 toward its top edge 36 along the direction of rotation.
  • the sliding bearing optimized by the arc of the drain groove has less loss, lower oil temperature and less resistance, and is particularly suitable for use in demanding bearings or ultra-high speed conditions.
  • the second axial bearing portion 20 also has a similar oil drain groove.
  • the second axial bearing portion 20 is provided with a plurality of second oil drain grooves 38.
  • These second oil drain grooves 38 extend radially on the second axial support portion 20 and are evenly spaced in the circumferential direction of the second axial support portion 20.
  • each of the oil drain grooves 38 extends in a straight line, i.e., along a radius of the second axial support portion 20.
  • the drains may also be arranged in other shapes, such as each drain extending along a curve.
  • Each of the second drain grooves 38 also includes a groove bottom surface, a first side wall surface, and a second side wall surface.
  • the first side wall surface of the second drain groove is located on one side of the bottom surface of the groove in the direction of rotation, and the second side wall surface is located on a side of the bottom surface of the groove opposite to the direction of rotation.
  • the first side wall surface and the second side wall surface of the second oil drain groove 38 each have a bottom edge that is in contact with the bottom surface of the groove and a top edge that is in contact with the second axial support portion.
  • the first side wall surface extends obliquely along a curved surface in a direction from the bottom edge toward the top side thereof along the rotational direction.
  • the sliding bearing 10 is provided with a radial oil inlet hole 40.
  • the radial oil inlet bore 40 is disposed between the two axial bearing portions.
  • the radial oil inlet hole 40 communicates with the outer peripheral surface of the sliding bearing 10 and the shaft hole 16 so that the lubricating oil can enter the shaft hole 16 through the radial oil inlet hole 40 to lubricate the radial bearing portion.
  • the inner wall surface of the shaft hole 16 is provided with at least one oil guiding groove 44, and the oil guiding groove 44 communicates with the first oil drain groove 26 on the first axial bearing portion 18, so that the lubricating oil can flow to the first oil drain groove 26 via the oil guiding groove 44.
  • the first axial bearing portion 18 is provided with an annular groove 46 at the edge of the shaft hole 16, and the oil guiding groove 44 communicates with the annular groove 46, and the first oil drain groove 26 is also connected to the annular groove. 46 is connected, so that lubricating oil can flow from the shaft hole 16 to the first axial support portion 18.
  • the sliding bearing 10 is also provided with a second radial oil inlet for transferring the lubricating oil to the second oil drain groove 38 of the second axial support portion 20, a second oil guiding groove for the inner wall surface of the shaft hole 16, and a corresponding first portion.
  • the second annular oil inlet, the second oil guiding groove and the second annular groove have the same structure and function as the radial oil inlet 40, the oil guiding groove 44 and the annular groove 46, and therefore will not be described herein. .
  • the sliding bearing 10 is further provided with a drain hole for returning the lubricating oil on the axial bearing portion to a return oil groove.
  • the outer peripheral surface of the axial support portion forms a flat surface 50.
  • the plane 50 is formed, for example, by removing a portion of a complete circle.
  • the plane 50 is configured to form a drain hole with a fixing member (not shown) of the fixed sliding bearing 10, and the drain hole is in fluid communication with the oil film on the axial support portion, so that the lubricating oil on the axial support portion can Flow back through the drain hole to the oil return tank.
  • first axial support portion 18 There may be a slope between adjacent drains.
  • first axial support portion 18 will be described as an example. It should be understood that a similar bevel may also be provided on the second axial support portion 20.
  • the first axial support portion 18 forms a slope portion 54 and a flat surface portion 56 between the adjacent two first oil drain grooves 26.
  • the inclined surface portion 54 and the flat surface portion 56 have two sides in the circumferential direction.
  • the circumferential side of the inclined surface portion 54 is in contact with the first side wall surface 30 of one of the adjacent first oil drain grooves 26, and the other circumferential side of the inclined surface portion 54 is in contact with the circumferential side of the flat surface portion 56, and the flat portion 56 The other circumferential side is in contact with the second side wall surface 32 of another adjacent first drain groove 26.
  • the height of the inclined surface portion 54 on the axial end surface increases in the circumferential direction toward the flat portion, and the height of the inclined surface portion 54 also increases in the radially outward direction.
  • An outer edge portion 55 is provided on the radially outer side of the inclined surface portion 54, and the outer edge portion 55 is connected to the flat portion 56 and is equal in height, that is, both are coplanar.
  • the inclined surface portion 54 is generally lower than the outer edge portion 55 and the flat surface portion 56, and is flush only at a position in contact with the outer edge portion 55 and the flat surface portion 56.
  • the above-mentioned inclined surface portion can better guide the lubricating oil of the oil guiding groove to the end surface, and is more favorable for covering the entire end surface to form an oil film.
  • the oil film is continuously compressed, and the oil is continuously replenished at a high speed to form a high speed condition.
  • Dynamic balance which is more conducive to lubrication and reduce losses.
  • the difference in height between the circumferential sides of the inclined surface portion with respect to the bottom surface of the groove is greater than or equal to 0.04 mm, but less than or equal to 0.1 mm.
  • the height difference is greater than or equal to 0.05 mm, but less than or equal to 0.06 mm. More preferably, the height difference is 0.06 mm.
  • a similar inclined surface portion may also be disposed on the second axial support portion 20, and details are not described herein.
  • embodiments of the present invention provide a sliding bearing that can withstand axial and radial forces of rotation of a rotating shaft.
  • the wall surface of the oil drain groove on the axial bearing portion of the sliding bearing is optimized by the curvature, so that the sliding bearing has less loss, lower oil temperature and less resistance, and is particularly suitable for use in demanding bearings or ultra-high speed conditions.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

一种滑动轴承(10),所述滑动轴承(10)具有供一转轴穿设的轴孔(16)。所述滑动轴承(10)具有一轴向支承部(18,20),所述轴向支承部(18,20)用以与一固定在所述转轴(12)上的推力盘(22,24)配合,使得当所述转轴(12)沿一转动方向旋转时,所述轴向支承部(18,20)和所述推力盘(22,24)之间形成油膜从而在轴向上支承所述转轴(12)。所述轴向支承部(18,20)上设有若干泄油槽(26,38),每一泄油槽(26,38)包括槽底面(28)、第一侧壁面(30)和第二侧壁面(32)。所述第一侧壁面(30)位于所述槽底面(28)的沿所述转动方向的一侧,所述第二侧壁面(32)位于所述槽底面(28)的相反于所述转动方向的一侧。所述第一侧壁面(30)具有与所述槽底面(28)相接的底边(34)和与所述轴向支承部(18,20)相接的顶边(36),所述第一侧壁面(30)在从所述底边(34)向所述顶边(36)的方向上顺着所述转动方向沿一弧面倾斜延伸。该滑动轴承损耗小,油温更低,阻力更小,特别适合对轴承有苛刻要求或者超高速情况使用。

Description

说明书 发明名称: 滑动轴承
技术领域
[0001] 本发明涉及一种轴承结构, 特别是涉及一种能够超高速使用的滑动轴承。
背景技术
[0002] 滑动轴承是在滑动摩擦下工作的轴承。 滑动轴承工作平稳、 可靠、 无噪声, 因 此在转动机械中被广泛采用。 在液体润滑条件下, 滑动表面被润滑油分幵而不 发生直接接触, 还可以大大减小摩擦损失和表面磨损, 轴承与转动体之间的油 膜还具有一定的吸振能力。 业界一直对滑动轴承进行改进, 希望降低滑动轴承 的损耗、 油温和阻力, 以适应超高速应用。
技术问题
[0003] 有鉴于此, 本发明提出一种能够降低滑动轴承的损耗、 油温和阻力的滑动轴承 问题的解决方案
技术解决方案
[0004] 本发明提供一种滑动轴承, 所述滑动轴承具有供一转轴穿设的轴孔。 所述滑动 轴承具有一轴向支承部, 所述轴向支承部用以与一固定在所述转轴上的推力盘 配合, 使得当所述转轴沿一转动方向旋转吋, 所述轴向支承部和所述推力盘之 间形成油膜从而在轴向上支承所述转轴。 所述轴向支承部上设有若干泄油槽, 每一泄油槽包括槽底面、 第一侧壁面和第二侧壁面。 所述第一侧壁面位于所述 槽底面的沿所述旋转方向的一侧, 所述第二侧壁面位于所述槽底面的相反于所 述旋转方向的一侧。 所述第一侧壁面具有与所述槽底面相接的底边和与所述轴 向支承部相接的顶边, 所述第一侧壁面在从所述底边向所述顶边的方向上顺着 所述旋转方向沿一弧面倾斜延伸。
[0005] 在一实施例中, 每一泄油槽从所述轴向支承部的内缘向所述轴向支承部的外缘 延伸, 使得所述若干泄油槽在所述轴向支承部上呈辐射状, 并在所述轴向支承 部的周向上均匀间隔。 [0006] 在一实施例中, 每一泄油槽从所述轴向支承部的内缘向所述轴向支承部的外缘 延伸, 每一泄油槽包括靠近所述内缘的第一段泄油槽和靠近所述外缘的第二段 泄油槽, 所述第二段泄油槽的槽底面在朝向所述外缘的方向上逐渐升高。
[0007] 在一实施例中, 所述滑动轴承设有径向进油孔。 所述径向进油孔连通所述滑动 轴承的外周面与所述轴孔, 使得润滑油能通过所述径向进油孔进入所述轴孔。 所述轴孔的内壁面设有至少一个导油槽, 所述轴向支承部在所述轴孔的边缘设 有环形槽, 所述导油槽与所述环形槽连通, 所述若干泄油槽与所述环形槽连通
[0008] 在一实施例中, 所述轴向支承部的外周面形成一平面, 所述平面用以与固定所 述滑动轴承的固定件之间形成泄油孔, 所述泄油孔与所述若干泄油槽流体相通 , 使得所述若干泄油槽内的润滑油能通过所述泄油孔流回至一回油槽。
[0009] 在一实施例中, 所述轴向支承部在相邻的两个泄油槽之间形成一斜面部和平面 部。 所述斜面部的一周向侧与其中一相邻泄油槽的第一侧壁面相接, 所述斜面 部的另一周向侧与所述平面部的一周向侧相接, 所述平面部的另一周向侧与另 一相邻泄油槽的第二侧壁面相接。 所述斜面部相对于所述槽底面的高度在周向 上朝向所述平面部的方向上增加, 同吋所述倾斜面的高度在径向向外的方向上 也是增加的。
[0010] 在一实施例中, 所述斜面部的周向两侧相对于所述槽底面的高度差大于等于 0.0 4毫米, 但小于等于 0.1毫米。 在一优选实施例中, 所述高度差大于等于 0.05毫米 , 但小于等于 0.06毫米。 更优选地实施例中, 所述高度差为 0.06毫米。
[0011] 在一实施例中, 所述滑动轴承具有相反的两轴向端面, 所述轴向支承部设置在 其中一轴向端面上, 所述滑动轴承还包括设置在另一轴向端面上的第二轴向支 承部。 所述第二轴向支承部用以与一固定在所述转轴上的第二推力盘配合, 使 得当所述转轴沿所述转动方向旋转吋, 所述第二轴向支承部和所述第二推力盘 之间形成油膜从而在轴向上支承所述转轴。 所述第二轴向支承部上设有若干第 二泄油槽, 每一第二泄油槽从所述第二轴向支承部的内缘向所述第二轴向支承 部的外缘延伸。 每一第二泄油槽包括槽底面、 第一侧壁面和第二侧壁面。 所述 第二泄油槽的第一侧壁面位于所述槽底面的沿所述旋转方向的一侧, 所述第二 泄油槽的第二侧壁面位于所述槽底面的相反于所述旋转方向的一侧, 所述第二 泄油槽的第一侧壁面具有与所述槽底面相接的底边和与所述第二轴向支承部相 接的顶边。 所述第二泄油槽的第一侧壁面在从所述第二泄油槽的底边向所述顶 边的方向上顺着所述旋转方向沿一弧面倾斜延伸。
[0012] 在一实施例中, 所述滑动轴承具有相反的两轴向端面, 所述轴向支承部设置在 其中一轴向端面上, 所述滑动轴承还包括设置在另一轴向端面上的第二轴向支 承部。 所述第二轴向支承部用以与一固定在所述转轴上的第二推力盘配合, 使 得当所述转轴沿所述转动方向旋转吋, 所述第二轴向支承部和所述第二推力盘 之间形成油膜从而在轴向上支承所述转轴。 所述轴向支承部具有一圆形支承面 , 所述第二轴向支承部具有一圆形支承面, 所述轴向支承部的圆形支承面的直 径与所述第二轴向支承部的圆形支承面的直径不同。
发明的有益效果
有益效果
[0013] 综上所述, 本发明的实施例提供一种能承受转轴旋转的轴向力和径向力的滑动 轴承。 该滑动轴承的轴向支承部上的泄油槽的壁面经过弧度优化后, 使滑动轴 承损耗更小, 油温更低, 阻力更小, 特别适合用于对轴承有苛刻要求或者超高 速情况使用。
对附图的简要说明
附图说明
[0014] 图 1为转动组件的示意图, 该转动组件使用根据本发明一实施例的滑动轴承。
[0015] 图 2为图 1的转动组件的滑动轴承的立体示意图。
[0016] 图 3是图 1的转动组件的滑动轴承的另一角度的立体示意图。
[0017] 图 4是图 1的滑动轴承的一轴向支承部的平面图。
本发明的实施方式
[0018] 在详细描述实施例之前, 应该理解的是, 本发明不限于本申请中下文或附图中 所描述的详细结构或元件排布。 本发明可为其它方式实现的实施例。 而且, 应 当理解, 本文所使用的措辞及术语仅仅用作描述用途, 不应作限定性解释。 本 文所使用的"包括"、 "包含"、 "具有"等类似措辞意为包含其后所列出之事项、 其 等同物及其它附加事项。 特别是, 当描述 "一个某元件 "吋, 本发明并不限定该元 件的数量为一个, 也可以包括多个。
[0019] 如图 1至图 4, 一转动组件包括滑动轴承 10和相对于滑动轴承 10可转动的转轴 12 。 滑动轴承 10在轴向和径向上支承转轴 12。
[0020] 滑动轴承 10具有相反的两端面 14, 轴孔 16沿轴向贯穿滑动轴承 10, 连通两端面 14。 轴孔 16供转轴 12穿设, 并支承转轴 12旋转。 因此, 轴孔 16所在部位构成径 向支承部。 滑动轴承 10在两端面形成至少一轴向支承部。 在所示的实施例中, 滑动轴承 10在两端面分别设置第一轴向支承部 18和第二轴向支承部 20。 对应的 , 转轴 12上固定连接第一推力盘 22和第二推力盘 24。 第一轴向支承部 18用以与 第一推力盘 22配合, 使得当所述转轴 12沿一转动方向旋转吋, 所述第一轴向支 承部 18和第一推力盘 22之间形成油膜从而在轴向上支承所述转轴 12。 第二轴向 支承部 20用以与第二推力盘 24配合, 使得当所述转轴 12沿所述转动方向旋转吋 , 第二轴向支承部 20和第二推力盘 24之间形成油膜从而在轴向上支承所述转轴 1 2。
[0021] 第一轴向支承部 18和第二轴向支承部 20各具有一圆形的凸出于轴向端面的支承 面, 该两个支承面可具有不同大小的直径, 使得第一轴向支承部 18和第二轴向 支承部 20在轴向的两个方向上具有不同的支承力。 在所示的实施例中, 第一轴 向支承部 18的支承面的直径大于第二轴向支承部 20的支承面的直径, 因此具有 更大的支承力。 但在其他实施例中, 第一轴向支承部 18的支承面的直径也可小 于第二轴向支承部 20的支承面的直径, 因此具有较小的支承力。
[0022] 第一轴向支承部 18设有若干第一泄油槽 26。 每一第一泄油槽 26从第一轴向支承 部 18的内缘向第一轴向支承部 18的外缘延伸, 使得这些第一泄油槽 26在第一轴 向支承部 18上呈辐射状, 并在第一轴向支承部 18的周向上均匀间隔。 在所示的 实施例中, 每一第一泄油槽 26沿直线延伸, 即沿着第一轴向支承部 18的半径延 伸。 在其他实施例中, 这些第一泄油槽也可以排列成其它形状, 例如每一第一 泄油槽沿曲线延伸。 [0023] 每一第一泄油槽 26包括槽底面 28、 第一侧壁面 30和第二侧壁面 32, 或者由槽底 面 28、 第一侧壁面 30和第二侧壁面 32共同形成。 在所述的实施例中, 每一第一 泄油槽 26从所述第一轴向支承部 18的内缘向所述第一轴向支承部 18的外缘延伸 , 每一第一泄油槽 26包括靠近所述内缘的第一段泄油槽 26A和靠近所述外缘的第 二段泄油槽 26B。 第二段泄油槽 26B的槽底面在朝向所述外缘的方向上逐渐升高 , 而第一段泄油槽 26A可以是等高的。 在另一实施例中, 第一段泄油槽 26A的槽 底面也在径向向外的方向上升高, 但相对于第二泄油槽 26B槽底面的上升而言较 为平坦。 第一侧壁面 30位于槽底面 28的沿所述旋转方向的一侧, 而第二侧壁面 3 2位于槽底面 28的相反于所述旋转方向的一侧。 第一侧壁面 30和第二侧壁面 32各 具有与所述槽底面 28相接的底边 34和与第一轴向支承部 18相接的顶边 36。 第一 侧壁面 30在从其底边 34向其顶边 36的方向上顺着所述旋转方向沿一弧面倾斜延 伸。 泄油槽壁面经弧度优化的滑动轴承的损耗更小, 油温更低, 阻力更小, 特 别适合用于对轴承有苛刻要求或者超高速情况使用。
[0024] 类似的, 第二轴向支承部 20上也具有类似的泄油槽。 具体而言, 第二轴向支承 部 20设有若干第二泄油槽 38。 这些第二泄油槽 38在第二轴向支承部 20上呈辐射 状延伸, 并在第二轴向支承部 20的周向上均匀间隔。 在所示的实施例中, 每一 泄油槽 38沿直线延伸, 即沿着第二轴向支承部 20的半径延伸。 在其他实施例中 , 这些泄油槽也可以排列成其它形状, 例如每一泄油槽沿曲线延伸。 每一第二 泄油槽 38也包括槽底面、 第一侧壁面和第二侧壁面。 第二泄油槽的第一侧壁面 位于槽底面的沿所述旋转方向的一侧, 而第二侧壁面位于槽底面的相反于所述 旋转方向的一侧。 第二泄油槽 38的第一侧壁面和第二侧壁面各具有与所述槽底 面相接的底边和与第二轴向支承部相接的顶边。 第一侧壁面在从其底边向其顶 边的方向上顺着所述旋转方向沿一弧面倾斜延伸。
[0025] 滑动轴承 10设有径向进油孔 40。 在所示的实施例中, 径向进油孔 40设置在两个 轴向轴承部之间。 具体而言, 径向进油孔 40连通滑动轴承 10的外周面与轴孔 16 , 使得润滑油能通过径向进油孔 40进入轴孔 16对径向支承部进行润滑。 轴孔 16 的内壁面设有至少一个导油槽 44, 该导油槽 44与第一轴向支承部 18上的第一泄 油槽 26连通, 如此润滑油可经由导油槽 44流通至第一泄油槽 26, 从而在第一轴 向支承部上形成润滑和轴向支承。 在所示的实施例中, 第一轴向支承部 18在所 述轴孔 16的边缘设有环形槽 46, 导油槽 44与环形槽 46连通, 而这些第一泄油槽 2 6也与环形槽 46连通, 因此润滑油可以从轴孔 16内流通至第一轴向支承部 18。 类 似地, 滑动轴承 10也设有将润滑油输向第二轴向支撑部 20的第二泄油槽 38的第 二径向进油孔、 轴孔 16内壁面的第二导油槽和对应的第二环形槽, 这些第二径 向进油孔、 第二导油槽和第二环形槽与上述径向进油孔 40、 导油槽 44和环形槽 4 6结构和功能相同, 因此在此不再赘述。
[0026] 滑动轴承 10还设有泄油孔, 以使轴向支承部上的润滑油回流至一回油槽。 在所 示的实施例中, 轴向支承部的外周面形成一平面 50。 该平面 50例如是去除一完 整圆的一部分而形成。 平面 50用以与固定滑动轴承 10的固定件 (图未示) 之间 形成泄油孔, 所述泄油孔与轴向支承部上的油膜流体相通, 使得轴向支承部上 的润滑油能通过所述泄油孔流回至回油槽。
[0027] 相邻泄油槽之间可以具有斜面。 下面以第一轴向支承部 18为例来说明。 应当理 解的是, 第二轴向支撑部 20上也可以设置类似的斜面。 第一轴向支承部 18在相 邻的两个第一泄油槽 26之间形成一斜面部 54和平面部 56。 斜面部 54和平面部 56 在周向上各具有两侧。 斜面部 54的一周向侧与其中一相邻第一泄油槽 26的第一 侧壁面 30相接, 斜面部 54的另一周向侧与平面部 56的一周向侧相接, 且平面部 5 6的另一周向侧与另一相邻第一泄油槽 26的第二侧壁面 32相接。 斜面部 54在所述 轴向端面上的高度在周向上朝向所述平面部的方向上增加, 同吋所述斜面部 54 的高度在径向向外的方向上也是增加的。 在斜面部 54的径向外侧设有外缘部 55 , 该外缘部 55与平面部 56相连且等高, 即两者共面。 斜面部 54总体上低于外缘 部 55和平面部 56, 只有在与外缘部 55和平面部 56相接的位置才平齐。 上述斜面 部的设置, 可以更好地把导油槽的润滑油引向端面, 更利于覆盖整个端面, 形 成油膜, 引流过程中, 不断压缩油膜大小, 后面不断补充油, 在高速情况下, 形成一个动态平衡, 从而更有利于润滑, 减少损耗。 所述斜面部的周向两侧相 对于所述槽底面的高度差大于等于 0.04毫米, 但小于等于 0.1毫米。 优选的是, 所述高度差大于等于 0.05毫米, 但小于等于 0.06毫米。 更优选的是, 所述高度差 为 0.06毫米。 第二轴向支承部 20上也可以设置类似的斜面部, 在此不再赘述。 [0028] 综上所述, 本发明的实施例提供一种能承受转轴旋转的轴向力和径向力的滑动 轴承。 该滑动轴承的轴向支承部上的泄油槽的壁面经过弧度优化后, 使滑动轴 承损耗更小, 油温更低, 阻力更小, 特别适合用于对轴承有苛刻要求或者超高 速情况使用。
[0029] 本文所描述的概念在不偏离其精神和特性的情况下可以实施成其它形式。 所公 幵的具体实施例应被视为例示性而不是限制性的。 因此, 本发明的范围是由所 附的权利要求, 而不是根据之前的这些描述进行确定。 在权利要求的字面意义 及等同范围内的任何改变都应属于这些权利要求的范围。

Claims

权利要求书
[权利要求 1] 一种滑动轴承, 所述滑动轴承具有供一转轴穿设的轴孔, 所述滑动轴 承具有一轴向支承部, 所述轴向支承部用以与一固定在所述转轴上的 推力盘配合, 使得当所述转轴沿一转动方向旋转吋, 所述轴向支承部 和所述推力盘之间形成油膜从而在轴向上支承所述转轴, 其特征在于 , 所述轴向支承部上设有若干泄油槽, 每一泄油槽包括槽底面、 第一 侧壁面和第二侧壁面, 所述第一侧壁面位于所述槽底面的沿所述旋转 方向的一侧, 所述第二侧壁面位于所述槽底面的相反于所述旋转方向 的一侧, 所述第一侧壁面具有与所述槽底面相接的底边和与所述轴向 支承部相接的顶边, 所述第一侧壁面在从所述底边向所述顶边的方向 上顺着所述旋转方向沿一弧面倾斜延伸。
[权利要求 2] 如权利要去 1所述的滑动轴承, 其特征在于, 每一泄油槽从所述轴向 支承部的内缘向所述轴向支承部的外缘延伸, 使得所述若干泄油槽在 所述轴向支承部上呈辐射状, 并在所述轴向支承部的周向上均匀间隔 如权利要求 1所述的滑动轴承, 其特征在于, 每一泄油槽从所述轴向 支承部的内缘向所述轴向支承部的外缘延伸, 每一泄油槽包括靠近所 述内缘的第一段泄油槽和靠近所述外缘的第二段泄油槽, 所述第二段 泄油槽的槽底面在朝向所述外缘的方向上逐渐升高。
如权利要求 1所述的滑动轴承, 其特征在于, 所述滑动轴承设有径向 进油孔, 所述径向进油孔连通所述滑动轴承的外周面与所述轴孔, 使 得润滑油能通过所述径向进油孔进入所述轴孔, 所述轴孔的内壁面设 有至少一个导油槽, 所述轴向支承部在所述轴孔的边缘设有环形槽, 所述导油槽与所述环形槽连通, 所述若干泄油槽与所述环形槽连通。 如权利要求 1或 4所述的滑动轴承, 其特征在于, 所述轴向支承部的外 周面形成一平面, 所述平面用以与固定所述滑动轴承的固定件之间形 成泄油孔, 所述泄油孔与所述若干泄油槽流体相通, 使得所述若干泄 油槽内的润滑油能通过所述泄油孔流回至一回油槽。 如权利要求 1所述的滑动轴承, 其特征在于, 所述轴向支承部在相邻 的两个泄油槽之间形成一斜面部和平面部, 所述斜面部的一周向侧与 其中一相邻泄油槽的第一侧壁面相接, 所述斜面部的另一周向侧与所 述平面部的一周向侧相接, 所述平面部的另一周向侧与另一相邻泄油 槽的第二侧壁面相接, 所述斜面部相对于所述槽底面的高度在周向上 朝向所述平面部的方向上增加, 同吋所述倾斜面的高度在径向向外的 方向上也是增加的。
如权利要求 1所述的滑动轴承, 其特征在于, 所述斜面部的周向两侧 相对于所述槽底面的高度差大于等于 0.04毫米, 但小于等于 0.1毫米。 如权利要求 7所述的滑动轴承, 其特征在于, 所述高度差大于等于 0.0 5毫米, 但小于等于 0.06毫米。
如权利要求 1所述的滑动轴承, 其特征在于, 所述滑动轴承具有相反 的两轴向端面, 所述轴向支承部设置在其中一轴向端面上, 所述滑动 轴承还包括设置在另一轴向端面上的第二轴向支承部, 所述第二轴向 支承部用以与一固定在所述转轴上的第二推力盘配合, 使得当所述转 轴沿所述转动方向旋转吋, 所述第二轴向支承部和所述第二推力盘之 间形成油膜从而在轴向上支承所述转轴, 所述第二轴向支承部上设有 若干第二泄油槽, 每一第二泄油槽从所述第二轴向支承部的内缘向所 述第二轴向支承部的外缘延伸, 每一第二泄油槽包括槽底面、 第一侧 壁面和第二侧壁面, 所述第二泄油槽的第一侧壁面位于所述槽底面的 沿所述旋转方向的一侧, 所述第二泄油槽的第二侧壁面位于所述槽底 面的相反于所述旋转方向的一侧, 所述第二泄油槽的第一侧壁面具有 与所述槽底面相接的底边和与所述第二轴向支承部相接的顶边, 所述 第二泄油槽的第一侧壁面在从所述第二泄油槽的底边向所述顶边的方 向上顺着所述旋转方向沿一弧面倾斜延伸。
如权利要求 1所述的滑动轴承, 其特征在于, 所述滑动轴承具有相反 的两轴向端面, 所述轴向支承部设置在其中一轴向端面上, 所述滑动 轴承还包括设置在另一轴向端面上的第二轴向支承部, 所述第二轴向 支承部用以与一固定在所述转轴上的第二推力盘配合, 使得当所述转 轴沿所述转动方向旋转吋, 所述第二轴向支承部和所述第二推力盘之 间形成油膜从而在轴向上支承所述转轴, 所述轴向支承部具有一圆形 支承面, 所述第二轴向支承部具有一圆形支承面, 所述轴向支承部的 圆形支承面的直径与所述第二轴向支承部的圆形支承面的直径不同。
PCT/CN2016/113759 2016-12-30 2016-12-30 滑动轴承 WO2018120130A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/113759 WO2018120130A1 (zh) 2016-12-30 2016-12-30 滑动轴承

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/113759 WO2018120130A1 (zh) 2016-12-30 2016-12-30 滑动轴承

Publications (1)

Publication Number Publication Date
WO2018120130A1 true WO2018120130A1 (zh) 2018-07-05

Family

ID=62706741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/113759 WO2018120130A1 (zh) 2016-12-30 2016-12-30 滑动轴承

Country Status (1)

Country Link
WO (1) WO2018120130A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020038655A1 (de) * 2018-08-21 2020-02-27 Zf Friedrichshafen Ag Anlaufelement für ein hydrodynamisches axiallager und hydrodynamisches axiallager

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1188192A (zh) * 1996-10-11 1998-07-22 亚瑞亚·勃朗勃威力有限公司 轴向滑动轴承
JP2002106551A (ja) * 2001-08-29 2002-04-10 Daido Metal Co Ltd 半割スラスト軸受
CN1802515A (zh) * 2003-07-05 2006-07-12 曼·B及W柴油机公开股份有限公司 推力滑动轴承
CN200982309Y (zh) * 2006-09-15 2007-11-28 华东理工大学 新型磁力泵推力滑动轴承
CN101603566A (zh) * 2008-06-10 2009-12-16 株式会社日立制作所 横轴式旋转机
CN101705963A (zh) * 2009-11-27 2010-05-12 中国北车集团大连机车研究所有限公司 东风系列内燃机车增压器推力轴承
DE102010023475A1 (de) * 2010-06-11 2011-12-15 Daimler Ag Axiallager, Abgasturbolader mit einem Axiallager und Verfahren zur Herstellung eines Axiallagers

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1188192A (zh) * 1996-10-11 1998-07-22 亚瑞亚·勃朗勃威力有限公司 轴向滑动轴承
JP2002106551A (ja) * 2001-08-29 2002-04-10 Daido Metal Co Ltd 半割スラスト軸受
CN1802515A (zh) * 2003-07-05 2006-07-12 曼·B及W柴油机公开股份有限公司 推力滑动轴承
CN200982309Y (zh) * 2006-09-15 2007-11-28 华东理工大学 新型磁力泵推力滑动轴承
CN101603566A (zh) * 2008-06-10 2009-12-16 株式会社日立制作所 横轴式旋转机
CN101705963A (zh) * 2009-11-27 2010-05-12 中国北车集团大连机车研究所有限公司 东风系列内燃机车增压器推力轴承
DE102010023475A1 (de) * 2010-06-11 2011-12-15 Daimler Ag Axiallager, Abgasturbolader mit einem Axiallager und Verfahren zur Herstellung eines Axiallagers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020038655A1 (de) * 2018-08-21 2020-02-27 Zf Friedrichshafen Ag Anlaufelement für ein hydrodynamisches axiallager und hydrodynamisches axiallager

Similar Documents

Publication Publication Date Title
TW201704651A (zh) 混合式動壓氣體止推軸承
US10612595B2 (en) Lubrication groove for deep groove ball bearing
US8657501B2 (en) Bearing device, oil distribution mechanism and method
KR20180018575A (ko) 홈 타입 동압력 기체 저널 베어링
US8281912B2 (en) Stampable thrust washer with flow cutouts
KR20180017044A (ko) 혼합식 동압력 기체 저널 베어링
KR20190077237A (ko) 반할 스러스트 베어링
US8105170B2 (en) Cross shaft joint
US20200191256A1 (en) Planet wheel shaft for a planetary gear
US20170314620A1 (en) Thrust roller bearing cage and method for manufacturing the same
WO2018120130A1 (zh) 滑动轴承
WO2018016268A1 (ja) フォイル軸受
EP2107261B1 (en) Roller bearings and gas turbine engine systems involving such bearings
JP2019002417A (ja) 半割スラスト軸受
CN201106625Y (zh) 一种高速铝箔轧机用止推轴承
CN106499723A (zh) 滑动轴承
US5881556A (en) Stator and stator support structure for torque convertor
US7625122B2 (en) Fluid dynamic bearing
WO2015072407A1 (ja) すべり軸受
US20140314353A1 (en) Axial sliding bearing
WO2019087890A1 (ja) ティルティングパッド軸受
US6276834B1 (en) Axial bearing element
CN208919089U (zh) 一种轴瓦
JPS6216767Y2 (zh)
CN216278982U (zh) 一种增强载重副轨轴承结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16925330

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16925330

Country of ref document: EP

Kind code of ref document: A1