WO2018117250A1 - 油圧式射出成形機の制御方法及び駆動制御装置 - Google Patents

油圧式射出成形機の制御方法及び駆動制御装置 Download PDF

Info

Publication number
WO2018117250A1
WO2018117250A1 PCT/JP2017/046083 JP2017046083W WO2018117250A1 WO 2018117250 A1 WO2018117250 A1 WO 2018117250A1 JP 2017046083 W JP2017046083 W JP 2017046083W WO 2018117250 A1 WO2018117250 A1 WO 2018117250A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic
control
mold
meter
speed
Prior art date
Application number
PCT/JP2017/046083
Other languages
English (en)
French (fr)
Inventor
宮崎啓行
榊里美
林謙一
駒村勇
Original Assignee
日精樹脂工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日精樹脂工業株式会社 filed Critical 日精樹脂工業株式会社
Priority to JP2018533843A priority Critical patent/JP6779296B2/ja
Priority to US16/071,151 priority patent/US10882105B2/en
Priority to CN201780042894.2A priority patent/CN109414859B/zh
Publication of WO2018117250A1 publication Critical patent/WO2018117250A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/26Mechanisms or devices for locking or opening dies
    • B22D17/266Mechanisms or devices for locking or opening dies hydraulically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/26Mechanisms or devices for locking or opening dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/20Opening, closing or clamping
    • B29C33/22Opening, closing or clamping by rectilinear movement
    • B29C33/24Opening, closing or clamping by rectilinear movement using hydraulic or pneumatic means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/64Mould opening, closing or clamping devices
    • B29C45/67Mould opening, closing or clamping devices hydraulic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/82Hydraulic or pneumatic circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/58Measuring, controlling or regulating
    • B29C2043/5808Measuring, controlling or regulating pressure or compressing force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76003Measured parameter
    • B29C2945/76083Position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76177Location of measurement
    • B29C2945/76224Closure or clamping unit
    • B29C2945/76227Closure or clamping unit mould platen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76177Location of measurement
    • B29C2945/76224Closure or clamping unit
    • B29C2945/7623Closure or clamping unit clamping or closing drive means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76344Phase or stage of measurement
    • B29C2945/76387Mould closing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76344Phase or stage of measurement
    • B29C2945/76394Mould opening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76344Phase or stage of measurement
    • B29C2945/76397Switch-over
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76494Controlled parameter
    • B29C2945/76595Velocity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76655Location of control
    • B29C2945/76702Closure or clamping device
    • B29C2945/76705Closure or clamping device mould platen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/80Measuring, controlling or regulating of relative position of mould parts

Definitions

  • the present invention relates to a control method and a drive control device of a hydraulic injection molding machine suitable for use in control when moving a movable part by driving a hydraulic drive actuator by a hydraulic pump.
  • a hydraulic injection molding machine has a side where it is difficult to perform accurate position control and speed control compared to an electric injection molding machine. That is, in the case of a hydraulic injection molding machine, hydraulic oil and hydraulic drive actuators are used, so the viscosity and volume of the hydraulic oil fluctuate depending on the temperature, and inertial force is generated in the hydraulic drive actuator, and these physical behaviors are controlled. It directly affects accuracy and responsiveness.
  • a variable discharge hydraulic pump that can control the discharge flow rate by changing the number of rotations of the pump motor is used as the hydraulic pump, the length of the hydraulic circuit from the hydraulic pump to the hydraulic drive actuator tends to be long. There is a large influence on fluid viscosity and volume fluctuation.
  • Patent Document 1 prevents the collision of molds even when speeding up the mold clamping process, and at the same time, eliminates the cause of lowering the molding quality (homogenization) and the factor of fluctuation in productivity, and reduces the cost of the hydraulic circuit.
  • the purpose is to provide a method for controlling the mold clamping device that contributes to the simplification and miniaturization of the circuit configuration. Specifically, a predetermined speed control pattern is set and the mold closing section is set during the mold clamping process.
  • the mold closing control is performed by the mold closing speed, and the deceleration start position of the deceleration zone where the current mold closing speed becomes zero at the virtual stop position based on the detected current mold closing speed and the current mold closing position is set at predetermined time intervals.
  • Prediction is sequentially performed by calculation, and when this deceleration start position is reached, a deceleration section is started.
  • Speed command value Ri performs deceleration control, it has been reached clamping migration rates, in which to perform the predetermined mold clamping process through the low-pressure low-speed section.
  • Patent Document 2 reduces the variation of the mold opening position for each shot, reliably avoids unnecessary overrun of the mold, etc., and at the same time, secures a constant molding cycle time and speeds up the mold.
  • the purpose is to provide a device control method. Specifically, a predetermined speed control pattern is set, and during mold opening control, mold opening control is performed by mold opening speed in the mold opening section, and detection is performed.
  • the deceleration start position of the deceleration zone where the current mold opening speed becomes zero at the virtual stop position is sequentially predicted by calculation every predetermined time interval, and if this deceleration start position is reached.
  • the speed command value corresponding to the speed control pattern is sequentially calculated based on the detected current mold opening position, and the deceleration control is performed based on this speed command value, and the final transition speed If reached was that which was to perform the predetermined stop control process.
  • the conventional method for controlling the mold clamping device described above still has the following problems to be solved.
  • the movable platen that supports the movable die in the mold clamping device has a structure that is supported by four tie bars, but the tie bar is given a considerable weight including the movable die and the movable platen. , Bending down. Therefore, in order to cause a problem that the movable plate cannot be smoothly slid and displaced, the lower surface of the movable plate is usually supported by the upper surface of the base. Moreover, in the deceleration section where the mold opening process for moving the movable platen and the stop process in the mold closing step are performed, a speed control pattern is set, and the deceleration process is performed along this speed control pattern.
  • the flow rate of the meter-in circuit is reduced from the start position Xs, and the deceleration control is performed so as to trace the deceleration pattern Ps shown in FIG. 7, but when the load is reduced with respect to the movement of the movable platen, it is movable because the brake function does not work.
  • the target position Xo is overrun to the position Xor as shown by the phantom line Pr shown in FIG. 7, and the deceleration time Tdx is exceeded. As shown by, the time to reach becomes longer. As a result, the entire molding cycle has to be lengthened, resulting in a decrease in productivity and mass productivity, and an adverse effect on molding quality due to a decrease in control accuracy and a variation in target position due to unstable control.
  • An object of the present invention is to provide a control method and a drive control device of a hydraulic injection molding machine that solves the problems existing in the background art.
  • the control method of the hydraulic injection molding machine 1 drives the hydraulic drive actuator 3 by the hydraulic pump 2 to move the movable part 4 and to move the movable part 4 while the movable part 4 is moving.
  • a deceleration control process for stopping at the set stop position Xe is performed, and when the set target position Xo is reached, the deceleration end process is performed.
  • the hydraulic drive is performed.
  • Deceleration control processing is started by controlling the flow rate on the meter-in side of the actuator 3, the moving position of the movable portion 4 is detected, meter-in control is performed on the hydraulic drive actuator 3 by a speed command corresponding to the moving position, and the movable portion 4 is detected, the moving speed of the movable part 4 is obtained, and the hydraulic drive actuator is matched with the speed command for the moving speed. Characterized in that to perform the feedback control by the meter-out control for Yueta 3.
  • the drive control device C of the hydraulic injection molding machine 1 drives the hydraulic drive actuator 3 by the hydraulic pump 2 to move the movable portion 4 and solves the above-described problems.
  • a drive control device having a function of performing a deceleration control process for stopping at the set stop position Xe when reaching the deceleration start point Xs during the movement, and performing a deceleration end process when reaching the set target position Xo is configured.
  • the deceleration start point Xs includes a constant speed movement section Zc that moves the movable part 4 at a preset movement speed, a deceleration movement section Zd that gradually decelerates from the end point (Xs) of the constant speed movement section Zc, and A predetermined speed control pattern Dp including the target position Xo at which the deceleration movement section Zd ends is set, and in the actual constant speed movement section Zc, the movable unit 4 is moved at the set movement speed, and the detected movement speed and Based on the moving position, the end point (Xs) of the constant speed moving section Zc at which the moving speed becomes zero at the virtual stop position Xes sequentially predicted by calculation every predetermined time interval can be set as the deceleration start point Xs. . Thereby, the speed command can be obtained based on the speed control pattern Dp from the detected movement position of the movable part 4.
  • the hydraulic pressure Pf in the front oil chamber 3cf in the mold closing direction Fc of the mold opening / closing cylinder 3c ... and the hydraulic pressure Pr in the rear oil chamber 3cr in the mold opening direction Fo of the mold opening / closing cylinder 3c ... are monitored.
  • the hydraulic pressure Pr of the rear oil chamber 3cr is larger than the hydraulic pressure Pf of the front oil chamber 3cf, the hydraulic pressure Pr of the rear oil chamber 3cr and the front oil chamber 3cf are sent to the feedback control speed command by meter-out control.
  • the hydraulic pressure Pr of the rear oil chamber 3cr in the mold opening direction Fo and the discharge pressure Pp of the hydraulic pump 2 are monitored, and during the mold closing operation, the hydraulic pressure Pf of the front oil chamber 3cf is changed to the hydraulic pressure Pr of the rear oil chamber 3cr.
  • the pressure command in the pressure control loop of the meter-in control is switched to the magnitude of the hydraulic pressure Pf in the front oil chamber 3cf. It can be performed.
  • the hydraulic pressure Pf of the front oil chamber 3cf in the mold closing direction Fc of the mold opening / closing cylinder 3c is monitored.
  • the hydraulic pressure Pf is negative, the flow rate in the meter-in control is increased and the opening in the meter-in control is increased. Control can be performed.
  • the movable part 4 is applied to a mold clamping apparatus provided with a movable part support mechanism 11 that supports a load state in which the magnitude of the load based on the movement resistance related to the movement is equal to or less than a certain magnitude.
  • the movable part support mechanism 11 may have a configuration in which a support surface 11f that supports the movable part 4 so as to be directly slidable in a contact state is provided, or the movable part 4 is slidably supported.
  • the structure which provided the linear guide mechanism part 11r to perform may be sufficient.
  • the deceleration control process is started by controlling the flow rate on the meter-in side of the hydraulic drive actuator 3, the moving position of the movable part 4 is detected, and the speed command corresponding to the moving position is detected.
  • the meter-in control for the hydraulic drive actuator 3 is performed, the moving speed of the movable portion 4 is obtained, and the feedback control by the meter-out control for the hydraulic drive actuator 3 is performed so that the moving speed matches the speed command.
  • the molding quality can be improved by improving the control accuracy and stability of the target position Xo related to the movement of the movable part 4, and the molding cycle can be shortened by speeding up the deceleration process when the movable part 4 moves.
  • productivity and mass productivity can be improved, and in particular, it relates to the movement of the movable part 4. To reduce the load becomes optimal use in enhancing energy saving by.
  • the mold opening / closing cylinder 3c... Of the mold clamping device 1c is applied as the hydraulic drive actuator 3, and the movable part 4 includes a movable platen 4m that supports the movable mold 4cm in the mold clamping device 1c.
  • the control method according to the present invention can be applied to the mold clamping device 1c that repeatedly moves the movable part 4m including the movable platen 4m and the movable mold 4cm, which are heavy each time the mold is opened and closed. It can be implemented as an optimum form from the viewpoint of obtaining the effect. *
  • a constant speed moving section Zc in which the movable portion 4 is moved at a preset moving speed and an end point (Xs) of the constant speed moving section Zc are gradually set.
  • a predetermined speed control pattern Dp including a decelerating movement section Zd to be decelerated and a target position Xo at which this decelerating movement section Zd ends is set, and in the actual constant speed moving section Zc, the movable part 4 is moved at the set moving speed.
  • the speed control pattern Dp is accurately traced during movement control including deceleration. Since the speed command can be set, an accurate speed command with little variation can always be secured.
  • the hydraulic pressure Pf of the front oil chamber 3cf in the mold closing direction Fc of the mold opening / closing cylinder 3c, the hydraulic pressure Pr of the rear oil chamber 3cr in the mold opening direction Fo of the mold opening / closing cylinder 3c, and the hydraulic pump. 2 is monitored, and during the mold closing operation, the hydraulic pressure Pf in the front oil chamber 3cf is greater than the hydraulic pressure Pr in the rear oil chamber 3cr, and the hydraulic pressure Pf in the front oil chamber 3cf is the hydraulic pump 2. If the pressure command in the meter-in control pressure control loop is controlled to be switched to the magnitude of the hydraulic pressure Pf of the front oil chamber 3cf, the front oil chamber 3cf when the mold is closed. Since the speed command can be narrowed down with respect to the unnecessary differential pressure generated in the above, the problem that the driving force is insufficient due to the excessive load can be solved.
  • the hydraulic pressure Pf of the front oil chamber 3cf in the mold closing direction Fc of the mold opening and closing cylinder 3c is monitored, and when the hydraulic pressure Pf is negative, the flow rate in meter-in control is increased, By performing the control to reduce the opening degree in the meter-in control, the temporary increase / decrease in the flow rate due to the negative pressure can be eliminated, so that it is possible to avoid problems such as the moving movable platen 4m stopping.
  • the mold clamping device 1c includes the movable part support mechanism 11 that supports the movable part 4 in a load state in which the magnitude of the load based on the movement resistance related to movement is equal to or less than a certain magnitude. If it is applied to the mold clamping device, it is possible to mount the movable part support mechanism 11 that moves the movable part 4 in a low load state, thereby improving the energy saving and the movable platen 4m that supports the movable mold 4cm.
  • the mold opening and closing control when moving can be performed with high accuracy and stability.
  • a flow control valve 13 capable of variably controlling the flow rate by meter-out control is used in the meter-out circuit 6 according to a preferred embodiment, a proportional solenoid valve, servo valve, or the like that can perform highly accurate flow control can be provided. Since it can be used, control with high responsiveness and accuracy can be realized.
  • variable discharge hydraulic pump 2 s capable of controlling the discharge flow rate by changing the rotation speed of the pump motor 12 is used for the hydraulic pump 2 according to a preferred embodiment
  • meter-in control is performed by inverter control for the hydraulic pump 2. Therefore, a separate meter-in circuit can be dispensed with.
  • the control method according to the present invention is particularly variable discharge hydraulic pump that is greatly affected by physical fluctuations such as temperature in such hydraulic oil. By applying to the mold clamping device 1c equipped with 2s, a greater effect can be obtained.
  • reference numeral 1 denotes a hydraulic injection molding machine, which includes a mold clamping device 1c and an injection device 1i partially indicated by a virtual line.
  • 3 and 4 show two types of mold clamping apparatuses 1c and 1c each including a suitable mold clamping apparatus 1c..., Particularly, different movable part support mechanisms 11... Using the control method according to the present embodiment.
  • the mold clamping device 1c shown in FIG. 3 has, as a basic configuration, a stationary platen 22 fixed to the molding machine bed 21 and a mold opening direction Fo and a mold closing direction Fc on the upper surface of the molding machine bed 21 by the movable part support mechanism 11.
  • the pressure receiving plate 23 and the movable plate 4m supported and guided in a freely displaceable manner are installed between the fixed plate 22 and the pressure receiving plate 23, one end is fixed to the fixed plate 22 and the other end is inserted into the pressure receiving plate 23.
  • a plurality of (four examples) tie bars 24 are installed between the fixed plate 22 and the pressure receiving plate 23, one end is fixed to the fixed plate 22 and the other end is inserted into the pressure receiving plate 23.
  • a plurality of (four examples) tie bars 24 are installed between the fixed plate 22 and the pressure receiving plate 23, one end is fixed to the fixed plate 22 and the other end is inserted into the pressure receiving plate 23.
  • a plurality of (four examples) tie bars 24 are installed between the fixed plate 22 and the pressure receiving
  • a mold 4c is constituted by the fixed mold 4cc and the movable mold 4cm.
  • the movable platen 4m that supports the movable mold 4cm functions as the movable part 4 in the present invention.
  • the pressure receiving plate 23 is provided with a mold clamping cylinder 25, and a drive ram 25r built in the mold clamping cylinder 25 is coupled to the movable platen 4m.
  • first lock mechanism portion 26 is provided for each tie bar 24 between the pressure receiving plate 23 and the tie bar 24.
  • Arbitrary first locking mechanism part 26 (the same applies to other first locking mechanism parts 267) Is provided on a locked part 26 s formed in a predetermined range in the axial direction from the other end of the tie bar 24 and the pressure receiving plate 23.
  • a plurality of second lock mechanism portions 27 are arranged between the pressure receiving plate 23 and the movable platen 4m.
  • An arbitrary second locking mechanism 27 illustrated (the same applies to the other second locking mechanisms 277) Has one end fixed to the movable platen 4 m and a locked portion formed in a predetermined range in the axial direction from the other end.
  • the locked rod 27r having 27rs and the locking portion 27c provided on the pressure receiving plate 23 are provided.
  • an arbitrary position of the locked portion 27rs is provided. That is, the arbitrary position of the movable platen 4m and the position of the pressure receiving plate 23 can be locked or unlocked.
  • the movable portion support mechanism 11 disposed on the upper surface of the molding machine bed 21 has a function of supporting a load state in which the load due to the movement resistance related to the movement of the movable platen 4m is a certain size or less.
  • the movable platen 4m that supports the movable mold 4cm which is a heavy object, can be moved in a low load state, energy loss due to frictional resistance or the like can be reduced, and energy saving performance can be further improved.
  • the movable part support mechanism 11 shown in FIG. 3 uses a linear guide mechanism part 11r, and is composed of a combination of a relatively large main linear guide 31 and a relatively small sub linear guide 31.
  • a main guide rail portion 31r composed of a pair of left and right rail members disposed on the upper surface of the molding machine bed 21, and a lower surface of the main mount 33 supported slidably along the main guide rail portion 31r.
  • a pair of left and right sliders disposed on the mold closing direction Fc side on the upper surface of the main mount 33.
  • the main linear guide 31 includes a main front slider 31sf and a main rear slider 31sr.
  • a sub-guide rail portion 32r composed of a rail member, a sub-front slider portion 32sf composed of a pair of left and right slider members supported slidably along the sub-guide rail portion 32r and attached to the lower surface of the sub-base 34, and a sub-rear portion
  • the sub linear guide 32 comprised by the slider part 32sr is provided.
  • the pressure receiving plate 23 is placed and fixed on the mold opening direction Fo side on the upper surface of the main frame 33, and the movable plate 4m is mounted and fixed on the upper surface of the sub frame 34.
  • the movable portion support mechanism 11 is configured, if the linear guide mechanism portion 11r that supports the movable portion 4 so as to be slidably displaceable is provided, the load that is hardly caused by the linear guide mechanism portion 11r is particularly low. Since it can cope with a load state, it is possible to use this type of linear guide mechanism 11r and to obtain the most desirable energy saving effect.
  • a pair of left and right mold opening / closing cylinders 3c, 3c (see FIG. 2) is fixed to the stationary platen 22, and the tips of the piston rods 3p projecting from the mold opening / closing cylinders 3c, 3c are coupled to the main mount 33. And fix.
  • the mold opening / closing cylinders 3c ... constitute the hydraulic drive actuator 3 of the present invention.
  • the mold opening / closing cylinder 3c As described above, if the mold opening / closing cylinder 3c... Of the mold clamping device 1c is applied to the hydraulic drive actuator 3 and the movable platen 4m supporting the movable mold 4cm is applied to the movable part 4, the mold opening / closing cylinder 3c. Since the control method according to the present invention can be applied to the mold clamping device 1c that repeatedly moves the movable part 4m including the movable platen 4m and the movable mold 4cm that are heavy in weight, the control method according to the present invention is optimal from the viewpoint of obtaining the desired operational effects. It can be implemented as a form.
  • the first lock mechanism 26 is switched to the unlock mode
  • the second lock mechanism 27 is switched to the lock mode
  • the mold opening / closing cylinders 3c, 3c are driven in the mold opening direction Fo.
  • the high-speed mold opening in which the movable platen 4m and the pressure receiving plate 23 are integrally slid in the mold opening direction Fo can be performed.
  • the mold opening / closing cylinders 3c and 3c are moved in the mold closing direction while the first locking mechanism 26 is maintained in the unlocking mode and the second locking mechanism 27 is maintained in the locking mode.
  • high-speed mold closing can be performed by sliding the movable platen 4m and the pressure receiving plate 23 together in the mold closing direction Fc.
  • stop processing deceleration processing
  • the first lock mechanism portion 26 is switched to the lock mode
  • the second lock mechanism portion 27 is switched to the unlock mode.
  • the mold clamping cylinder 25 is driven, the position of the pressure receiving plate 23 is fixed, and the movable platen 4m is allowed to slide, so that high pressure mold clamping can be performed.
  • the mold clamping device 1c shown in FIG. 4 has the same basic configuration as the mold clamping device 1c shown in FIG. 3, but the movable part support mechanism 11 has a low friction on the upper surface of the molding machine bed 21. The difference is that a low friction plate 35 having a support surface 11f is laid and the movable platen 4m is supported and guided by the tie bars 24. Therefore, the same parts in FIG. 4 as those in FIG. 3 are denoted by the same reference numerals to clarify the configuration, and detailed description thereof is omitted.
  • the lower surface of the movable platen 4m is supported by the upper surface of the support surface 11f so as to be directly slidable in contact with the lower surface of the pressure receiving plate 23.
  • the upper surface is supported so as to be directly slidable depending on the contact state.
  • the ends of the piston rods 3p projecting from the pair of left and right mold opening / closing cylinders 3c, 3c fixed to the stationary platen 22 are inserted through openings provided in the movable platen 4m and coupled to the pressure receiving plate 23 to be fixed. Thereby, the operation
  • 36 and 36 denote auxiliary cylinders
  • 37v denotes a prefill valve provided in the sub tank 37t.
  • the injection device 1i has a function of injecting and filling molten resin into the cavity of the mold 4c by touching the injection nozzle 1in with the mold 4c (fixed mold 4cc).
  • the drive control device C is roughly composed of a hydraulic drive unit Cd shown in FIG. 2 that drives the mold clamping device 1c and a control unit 7 (molding machine controller Cc) shown in FIG. 5 that controls the hydraulic drive unit Cd.
  • the hydraulic drive unit Cd includes a hydraulic pump 2 serving as a hydraulic drive source, and a hydraulic circuit 51 to which hydraulic oil discharged from the hydraulic pump 2 is supplied.
  • the hydraulic pump 2 to be used is a variable discharge hydraulic pump 2s (hereinafter abbreviated as a hydraulic pump 2s).
  • the hydraulic pump 2 s includes a pump main body 41 and a servo motor 12 s (pump motor 12) that rotationally drives the pump main body 41.
  • a servo motor 12 s As the servo motor 12s, an AC servo motor connected to the output port of the molding machine controller Cc is used.
  • the servo motor 12s is provided with a rotary encoder 12e that detects the rotation speed of the servo motor 12s, and the rotary encoder 12e is connected to an input port of the molding machine controller Cc.
  • the pump body 41 is constituted by a swash plate type piston pump. Therefore, the pump body 41 includes the swash plate 42. If the inclination angle (swash plate angle) of the swash plate 42 is increased, the stroke of the pump piston in the pump body 41 increases, the discharge flow rate increases, and the swash plate increases. If the angle is made smaller, the stroke of the pump piston becomes smaller and the discharge flow rate decreases. Therefore, by setting the swash plate angle to a predetermined angle, it is possible to set a fixed discharge flow rate at which the discharge flow rate is fixed to a predetermined size.
  • a control cylinder 43 and a return spring 44 are attached to the swash plate 42, and the control cylinder 43 is connected to a discharge port of the pump body 41 via a switching valve (electromagnetic valve) 45, a throttle 46 and a check valve 47. Connecting.
  • a switching valve electromagnettic valve
  • a throttle 46 a throttle 46
  • a check valve 47 Connecting.
  • the angle of the swash plate 42 (swash plate angle) can be changed by controlling the control cylinder 43.
  • Reference numeral 48 denotes a pump pressure sensor (discharge pressure sensor).
  • the suction port of the pump body 41 is connected to the oil tank 49, and the discharge port of the pump body 41 is connected to a hydraulic circuit 51 described later.
  • a variable discharge hydraulic pump 2s can control the discharge flow rate by changing the rotation speed of the servo motor 12s, that is, it can substantially control the flow rate of hydraulic oil flowing into the mold opening / closing cylinders 3c, 3c. Functions as a simple meter-in circuit 5.
  • the hydraulic pump 2s that can control the discharge flow rate by changing the rotation speed of the pump motor 12 (servo motor 12s) is used for the hydraulic pump 2, meter-in control is performed by inverter control for the hydraulic pump 2. Therefore, a separate meter-in circuit can be dispensed with.
  • the control method according to the present invention is particularly effective for such a hydraulic pump 2s that is greatly affected by physical fluctuations such as temperature in hydraulic oil. When applied to the mounted mold clamping device 1c, a greater effect can be obtained.
  • the hydraulic circuit 51 includes an electromagnetic direction switching valve M1, an electromagnetic check valve M2, a flow control valve 13 with a built-in throttle, an oil tank To, and so on, which are connected as shown in FIG. To do.
  • the flow control valve 13 functions as the meter-out circuit 6 because the flow rate of the hydraulic oil flowing out from the mold opening / closing cylinders 3c, 3c can be variably controlled.
  • the flow control valve 13 shown in FIG. 2 exemplifies a proportional solenoid valve, but may be a servo valve or the like that can perform control with higher accuracy.
  • the molding machine controller Cc has a function of controlling the entire hydraulic injection molding machine 1 and, in particular, functions as the control unit 7 in relation to the drive control device C according to the present embodiment. Therefore, as shown in FIG. 5, the electromagnetic direction switching valve M1, the electromagnetic check valve M2, and the flow rate control valve 13 constituting the hydraulic circuit 51 are each connected to the output port of the molding machine controller Cc. As described above, the servo motor 12s included in the hydraulic pump 2s is connected to the output port of the molding machine controller Cc, and the rotary encoder 12e is connected to the input port of the molding machine controller Cc.
  • a constant speed moving section Zc for moving the movable platen 4m at a predetermined moving speed set in advance, and a deceleration moving section Zd for gradually decelerating from the end point (Xs) of the constant speed moving section Zc.
  • a speed control pattern Dp including a virtual stop position Xes at which the deceleration movement section Zd ends is set as shown in FIG. 7 as an example.
  • a detection unit necessary for control of a position sensor, a timer, and the like for detecting a moving position and a moving time of the movable platen 4m are provided.
  • FIG. 5 shows the switching state of the hydraulic circuit 51 in the mold opening process
  • FIG. 6 shows the switching state of the hydraulic circuit 51 in the mold closing process.
  • the flow control valve 13 is set to symbol a
  • the electromagnetic direction switching valve M1 is set to symbol a
  • the electromagnetic check valve M2 is set by a valve switching signal given from the molding machine controller Cc. Is switched to symbol a.
  • the hydraulic oil discharged from the hydraulic pump 2s flows in the arrow direction Ko in FIG. 5, and flows into the front oil chambers 3cf and 3cf of the mold opening and closing cylinders 3c and 3c via the symbol a of the electromagnetic direction switching valve M1.
  • the drive piston rod is moved in the mold opening direction Fo.
  • the flow rate control valve 13 is changed to the symbol b
  • the electromagnetic direction switching valve M1 is changed to the symbol b
  • the electromagnetic check valve M2 is changed by the valve switching signal given from the molding machine controller Cc. Is switched to symbol b.
  • the hydraulic oil discharged from the hydraulic pump 2s flows in the direction of the arrow Ko in FIG. 6, and the mold opening / closing cylinders 3c and 3c are respectively connected via the symbol b of the electromagnetic direction switching valve M1 and the symbol b of the electromagnetic check valve M2.
  • the oil flows into the rear oil chambers 3cr, 3cr and moves the drive piston rod in the mold closing direction Fc.
  • the hydraulic oil flowing out from the front oil chambers 3cf and 3cf of the mold opening and closing cylinders 3c and 3c flows in the direction of the arrow Kr in FIG. 6 and serves as a first path.
  • the oil is discharged to the oil tank To through the symbol b of the valve 13 and is discharged to the oil tank To through the symbol b of the flow control valve 13 serving as the second path. Accordingly, in the constant speed movement section Zc, feedback control is performed on the movement speed so as to achieve the set mold closing speed.
  • the process proceeds to the deceleration zone Zd, and first, suppression (throttle) of the flow rate is started by the meter-in circuit 5 (steps S4 and S5).
  • the moving position of the movable platen 4m movable type 4cm
  • the moving speed is obtained based on the detected moving position (steps S6 and S7).
  • the target moving speed (speed command value) at the detected moving position is obtained by calculation based on the speed control pattern Dp described above, and the meter-in is performed so that the actual moving speed at the moving position becomes the target moving speed.
  • the circuit 5 is meter-in controlled (step S8).
  • the moving speed is controlled by controlling the flow rate of the hydraulic pump 2s.
  • the speed command (speed command value) is obtained from the detected moving position of the movable platen 4m based on the speed control pattern Dp, the speed control pattern Dp is accurately traced during movement control including deceleration. An accurate speed command with little variation can always be set.
  • the speed command value Dm in this case can be obtained by the following [Equation 1].
  • Xrs is the deceleration switching position (Xc in FIG. 7)
  • Xd is the detected movement position
  • Vds is the movement speed at the deceleration start position Xs
  • Td is the movement time in the deceleration section
  • Vm is before the deceleration. It is the moving speed (speed command value).
  • a deviation between the actual movement speed at the movement position and the target movement speed (speed command) is detected, and feedback control (PID control) is performed on the flow control valve 13 based on this deviation.
  • PID control feedback control
  • a control command based on the deviation is given to the flow control valve 13 constituting the meter-out circuit 6, and particularly, suppression control is performed when the moving speed is too high (step S9).
  • the control output (operation amount) Do given to the flow control valve 13 is obtained by the equation [2].
  • SV is a set value (target speed)
  • PVt is a detected moving speed
  • et is a deviation (SV-PVt)
  • Kp is a proportional gain
  • Ti is an integration time
  • Td is a differentiation time.
  • the flow rate control (open loop control) based on the speed control pattern Dp by the meter-in circuit 5 on the inflow side of the mold opening / closing cylinder 3c ... and the outflow side of the mold opening / closing cylinder 3c ...
  • the so-called feedback control (closed loop control) by the meter-out circuit 6 in FIG. 7 is so-called bi-directional composite control, and deceleration processing is performed in such a manner that the deceleration movement zone Zc in the speed control pattern Dp shown in FIG. become.
  • the speed is reduced to a moving speed that is approximately 10 to 60% of the moving speed of the constant speed moving section Zc, that is, when the switching position indicated by Xc in FIG.
  • the process proceeds to a mold clamping process as a process (steps S10, S11, S12).
  • the virtual stop position Xes is set as the stop position Xe
  • the switching position Xc at which the deceleration movement section Zd ends is set as the target position Xo, but this switching position Xc is set as the regular stop position Xe that actually stops. May be.
  • the regular stop position Xe or the virtual stop position Xes can be included as the stop position Xe. Therefore, when applied to a normal stop process, the stop position Xe can be used for versatile stop control, and the virtual stop position Xes. Is applied, it is possible to predict the accurate target position Xo in real time at the time of movement, and to apply to a variety of deceleration control, such as being able to reach the more accurate target position Xo.
  • a predetermined speed control pattern Dp including a target position Xo at which the deceleration movement section Zd ends is set.
  • the actual constant speed movement section Zc is movable according to the set movement speed.
  • the end point (Xs) of the constant speed moving section Zc at which the moving speed becomes zero at the virtual stop position Xes that is sequentially predicted by calculation at predetermined time intervals based on the moving speed and moving position detected by moving the unit 4 Is set as the deceleration start point Xs, the control accuracy with respect to the target position Xo can be improved, and variations in the position and time of the moving movable part 4 can be drastically reduced. Even when speeding, with the can avoid troubles overrun or the like of the movable unit 4, can enjoy basic effect that can be eliminated reduction factors and productivity of the variation factors of the forming quality (homogenization) at the same time.
  • additional hardware such as a brake valve and related circuit elements necessary for brake operation are not required, which contributes to cost reduction of the hydraulic circuit and circuit configuration. There is an advantage that it can contribute to simplification and miniaturization.
  • FIG. 8 is a hydraulic circuit diagram showing an extracted main part of the drive control device C according to the modified example.
  • the drive control device C according to the modified example detects a hydraulic pressure Pf of the front oil chamber 3cf in the mold opening / closing cylinders 3c, 3c with respect to the hydraulic circuit 51 of the drive control device C of the basic form shown in FIG.
  • a hydraulic pressure sensor 71r for detecting the hydraulic pressure Pr of the rear oil chambers 3cr in the mold opening / closing cylinders 3c, 3c is connected together with 71f.
  • Each hydraulic sensor 71f, 71r is connected to the control unit 7 (molding machine controller Cc).
  • Reference numeral 48 denotes the above-described pump pressure sensor (discharge pressure sensor), which has a function of detecting the hydraulic pump 2s discharge pressure Pp and applying it to the controller 7.
  • control is performed by monitoring the hydraulic pressures Pf and Pr and the discharge Pp. Therefore, the configuration of the hydraulic circuit 51 in the other drive control device C omitted in FIG. 8 is the same as that in FIG.
  • the same reference numerals in FIG. 8 denote the same parts as in FIG. 2 to clarify the configuration, and a detailed description thereof will be omitted.
  • FIG. 9 shows a flowchart for explaining the processing procedure of the control method of the drive control apparatus C according to the modified example.
  • step S27 the mold closing process is performed and the mold closing process is performed (step S27).
  • the control process based on the flowchart shown in FIG. 1 is performed.
  • the hydraulic pressure Pr and the discharge pressure Pp of the hydraulic pump 2 are detected, and the control unit 7 monitors the sizes of the hydraulic pressures Pf and Pr and the discharge pressure Pp of the hydraulic pump 2 (step S28).
  • step S35 If the above pressure difference does not occur or is eliminated, the molding process is continued according to the flowchart shown in FIG. 1 described above (step S35).
  • the mold opening / closing cylinders 3c, 3c (hydraulic drive actuator 3) are on the meter-in side.
  • the flow rate control is performed to start the deceleration control process, the moving position of the movable platen 4m (movable part 4) supporting the movable mold 4cm is detected, and the mold opening / closing cylinders 3c and 3c are detected by the speed command corresponding to the moving position.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

減速開始点Xsに達したなら油圧駆動アクチュエータ3のメータイン側を流量制御することにより減速制御処理を開始し、可動部4の移動位置を検出して当該移動位置に対応した速度指令により油圧駆動アクチュエータ3に対するメータイン制御を行うとともに、可動部4の移動位置を検出して当該可動部4の移動速度を求め、当該移動速度に対して速度指令に一致するように油圧駆動アクチュエータ3に対するメータアウト制御によるフィードバック制御を行う。

Description

油圧式射出成形機の制御方法及び駆動制御装置
 本発明は、油圧ポンプにより油圧駆動アクチュエータを駆動して可動部を移動させる際の制御に用いて好適な油圧式射出成形機の制御方法及び駆動制御装置に関する。
 一般に、油圧式射出成形機は電動式射出成形機に比べて正確な位置制御や速度制御を行いにくい側面を有している。即ち、油圧式射出成形機の場合、作動油及び油圧駆動アクチュエータを用いるため、温度により作動油の粘性や体積等が変動したり、油圧駆動アクチュエータに慣性力が生じ、これらの物理的挙動が制御精度や応答性に直接影響する。また、油圧ポンプに、ポンプモータの回転数を可変して吐出流量を制御可能な可変吐出型油圧ポンプを用いた場合には、油圧ポンプから油圧駆動アクチュータに至る油圧回路の長さが長くなる傾向があり、作動油の粘性や体積の変動等が大きく影響する。例えば、油圧駆動アクチュータとして、型締装置に搭載する型開閉シリンダを想定した場合、位置に対するフィードバック制御を行ったとしても、型締位置(金型閉鎖位置)或いは型閉じ時間のショット毎のバラツキが大きくなり、可動型が固定型に衝突して破損や損傷を招くトラブルなども発生する。そして、この問題は、生産性を高めるため、型閉速度を高速化して型閉じ時間(成形サイクル時間)を短縮しようとする際に、より大きな問題となる。
 従来、この問題に対応するため、本出願人は、既に、特許文献1及び2により、油圧式の型締装置に用いて好適な制御方法を提案した。特許文献1は、型締工程の高速化を図る場合でも金型の衝突を防止し、同時に成形品質(均質化)の低下要因及び生産性の変動要因を排除するとともに、油圧系回路のコストダウン,回路構成の単純化及び小型化に寄与する型締装置の制御方法の提供を目的としたものであり、具体的には、所定の速度制御パターンを設定し、型締工程時に、型閉区間では、型閉速度により型閉制御を行い、かつ検出した現型閉速度及び現型閉位置に基づき仮想停止位置で現型閉速度がゼロになる減速区間の減速開始位置を所定時間間隔毎に演算により順次予測し、この減速開始位置に達したなら減速区間を開始するとともに、この減速区間では、検出した現型閉位置に基づき速度制御パターンに対応する速度指令値を順次演算により求め、この速度指令値により減速制御を行い、型締移行速度に達したなら、低圧低速区間を経て所定の型締処理を行うようにしたものである。
 また、特許文献2は、型開位置のショット毎のバラツキを低減し、型の無用なオーバランの発生等を確実に回避するとともに、同時に、一定の成形サイクル時間の確保と高速化を図れる型締装置の制御方法の提供を目的としたものであり、具体的には、所定の速度制御パターンを設定し、型開制御時に、型開区間では、型開速度により型開制御を行い、かつ検出した現型開速度及び現型開位置に基づき仮想停止位置で現型開速度がゼロになる減速区間の減速開始位置を所定時間間隔毎に演算により順次予測し、この減速開始位置に達したなら減速区間を開始するとともに、この減速区間では、検出した現型開位置に基づき速度制御パターンに対応する速度指令値を順次演算により求め、この速度指令値により減速制御を行い、終期移行速度に達したなら所定の停止制御処理を行うようにしたものである。
特開2009-202365号公報 特開2009-202366号公報
 ところで、上述した従来における型締装置の制御方法は、次のような解決すべき課題も残されていた。
 即ち、型締装置における可動型を支持する可動盤は、四本のタイバーに支持される構造を有しているが、タイバーには、可動型及び可動盤を含むかなりの重量が付与されるため、下方へ撓みを生じる。したがって、可動盤が円滑にスライド変位できない問題を生じるため、通常は、可動盤の下面を基台の上面等により支持する構造を有している。また、可動盤を移動させる型開工程及び型閉工程おける停止処理を行う減速区間では、速度制御パターンを設定し、この速度制御パターンに沿って減速処理を行なっているが、上述した可動盤の下面は基台の上面等に接触しているため、この状態(接触摩擦)がある程度のブレーキ機能として作用している。したがって、特許文献1及び2のように、可動盤を移動させる油圧駆動アクチュエータに対してメータイン制御を行ったとしても、正常な減速処理を行うことができる。
 しかし、型締装置の場合、ショット毎に可動盤の反復移動を行う型開閉動作を繰り返すとともに、可動盤の下面が基台の上面等に接触している状態(摩擦接触状態)では、稼働時におけるエネルギーロスが無視できないとともに、制御精度の低下により成形品質にも悪影響が生じる。このため、これらの不具合を排除する観点からは、当該摩擦接触状態を低減し、より低負荷化することが望ましいが、反面、上述したブレーキ機能が無くなるため、慣性力により的確な減速処理ができなくなり、制御の不安定化を招いてしまう。
 具体的には、図7に示すように、油圧駆動アクチュエータの場合、設定した目標位置Xoまでに可動盤の移動が減速するように、速度制御パターンにより、予め設定した減速時間Tdにより求められる減速開始位置Xsからメータイン回路の流量を絞り、図7に示す減速パターンPsをトレースするように減速制御を行うが、可動盤の移動に対する低負荷化を図った場合、ブレーキ機能が働かないことによる可動盤の慣性力により、減速区間Zdにおいて十分な減速を行うことができず、図7に示す仮想線Prのように、目標位置XoをオーバランしてXorの位置まで行き過ぎてしまうとともに、減速時間Tdxで示すように、到達するまでの時間は長くなる。この結果、全体の成形サイクルを長くせざるを得ず、生産性及び量産性の低下を招くとともに、制御精度の低下及び制御の不安定化による目標位置のバラツキにより成形品質にも悪影響を生じる。
 なお、メータアウト回路により油圧駆動アクチュエータから流出する流量を絞ることにより、ブレーキ機能と同様の作用を付加することも考えられるが、この場合、切換時に、圧縮された油圧力による急減速及び油圧解放時における飛び出し等が発生しやすいとともに、機械的な振動が発生する虞れもあるため、十分な解決策とはいえない。
 本発明は、このような背景技術に存在する課題を解決した油圧式射出成形機の制御方法及び駆動制御装置の提供を目的とするものである。
 本発明に係る油圧式射出成形機1の制御方法は、上述した課題を解決するため、油圧ポンプ2により油圧駆動アクチュエータ3を駆動して可動部4を移動させるとともに、可動部4の移動中に、減速開始点Xsに達したなら設定した停止位置Xeに停止させる減速制御処理を行い、かつ設定した目標位置Xoに達したなら減速終了処理を行うに際し、減速開始点Xsに達したなら油圧駆動アクチュエータ3のメータイン側を流量制御することにより減速制御処理を開始し、可動部4の移動位置を検出して当該移動位置に対応した速度指令により油圧駆動アクチュエータ3に対するメータイン制御を行うとともに、可動部4の移動位置を検出して当該可動部4の移動速度を求め、当該移動速度に対して速度指令に一致するように油圧駆動アクチュエータ3に対するメータアウト制御によるフィードバック制御を行うようにしたことを特徴とする。
 一方、本発明に係る油圧式射出成形機1の駆動制御装置Cは、上述した課題を解決するため、油圧ポンプ2により油圧駆動アクチュエータ3を駆動して可動部4を移動させるとともに、可動部4の移動中に、減速開始点Xsに達したなら設定した停止位置Xeに停止させる減速制御処理を行い、かつ設定した目標位置Xoに達したなら減速終了処理を行う機能を備える駆動制御装置を構成するに際して、油圧駆動アクチュエータ3に接続したメータイン回路5と、当該油圧駆動アクチュエータ3に接続したメータアウト回路6と、少なくとも、減速開始点Xsに達したなら油圧駆動アクチュエータ3に対するメータイン回路5を流量制御することにより減速制御処理を開始し、可動部4の移動位置を検出して当該移動位置に対応した速度指令によりメータイン回路5に対するメータイン制御を行うとともに、可動部4の移動位置を検出して当該可動部4の移動速度を求め、当該移動速度が速度指令に一致するようにメータアウト回路6に対するメータアウト制御によるフィードバック制御を行う制御部7とを具備してなることを特徴とする。
 また、本発明は好適な実施の態様により、油圧駆動アクチュエータ3には、型締装置1cの型開閉シリンダ3c…を適用することができるとともに、可動部4には、型締装置1cにおける可動型4cmを支持する可動盤4mを含ませることができる。なお、停止位置Xeには、正規停止位置Xe又は仮想停止位置Xesを含ませることができる。したがって、減速開始点Xsは、予め、設定した移動速度により可動部4を移動させる定速移動区間Zcと、この定速移動区間Zcの終了点(Xs)から漸次減速させる減速移動区間Zdと、この減速移動区間Zdが終了する目標位置Xoを含む所定の速度制御パターンDpを設定し、実際の定速移動区間Zcでは、設定した移動速度により可動部4を移動させ、かつ検出した移動速度と移動位置に基づき、所定の時間間隔毎に演算により順次予測した仮想停止位置Xesで移動速度がゼロになる定速移動区間Zcの終了点(Xs)を、減速開始点Xsとして設定することができる。これにより、速度指令は、検出した可動部4の移動位置から速度制御パターンDpに基づいて求めることができる。
 さらに、型開閉シリンダ3c…の型閉方向Fcにおける前油室3cf…の油圧Pf及び型開閉シリンダ3c…の型開方向Foにおける後油室3cr…の油圧Prを監視し、型開動作の際に、後油室3cr…の油圧Prが前油室3cf…の油圧Pfよりも大きいときは、メータアウト制御によるフィードバック制御の速度指令に、後油室3cr…の油圧Prと前油室3cf…の油圧Pfの差圧に対応する大きさの速度指令を加算する制御を行うことができるとともに、型開閉シリンダ3c…の型閉方向Fcにおける前油室3cf…の油圧Pf,型開閉シリンダ3c…の型開方向Foにおける後油室3cr…の油圧Pr及び油圧ポンプ2の吐出圧Ppを監視し、型閉動作の際に、前油室3cf…の油圧Pfが後油室3cr…の油圧Prよりも大きく、かつ前油室3cf…の油圧Pfが油圧ポンプ2の吐出圧Ppよりも大きいときは、メータイン制御の圧力制御ループにおける圧力指令を、前油室3cf…の油圧Pfの大きさに切換える制御を行うことができる。加えて、型開閉シリンダ3c…の型閉方向Fcにおける前油室3cf…の油圧Pfを監視し、当該油圧Pfが負圧のときは、メータイン制御における流量を増加させるとともに、メータイン制御における開度を絞る制御を行うことができる。一方、型締装置1cとして、可動部4を、移動に係わる移動抵抗に基づく負荷の大きさが一定の大きさ以下の負荷状態に支持する可動部支持機構11を備えた型締装置に適用して好適であり、可動部支持機構11としては、可動部4を接触状態により直接摺動可能に支持する支持面11fを設けた構成であってもよいし、可動部4をスライド変位自在に支持するリニアガイド機構部11rを設けた構成であってもよい。なお、メータアウト回路6には、メータアウト制御により流量を可変制御可能な流量制御弁13を用いるとともに、油圧ポンプ2には、ポンプモータ12の回転数を可変することにより吐出流量を制御可能な可変吐出型油圧ポンプ2sを用いることが望ましい。
 このような本発明に係る油圧式射出成形機1の制御方法及び駆動制御装置Cによれば、次のような顕著な効果を奏する。
 (1) 減速開始点Xsに達したなら油圧駆動アクチュエータ3のメータイン側を流量制御することにより減速制御処理を開始し、可動部4の移動位置を検出して、当該移動位置に対応した速度指令により油圧駆動アクチュエータ3に対するメータイン制御を行うとともに、可動部4の移動速度を求め、当該移動速度に対して速度指令に一致するように油圧駆動アクチュエータ3に対するメータアウト制御によるフィードバック制御を行うようにしたため、可動部4の移動に係わる目標位置Xoに対する制御精度及び安定性を高めることにより成形品質の向上を図れるとともに、可動部4が移動する際における減速処理の高速化による成形サイクルの短縮化を実現し、生産性及び量産性を高めることができ、特に、可動部4の移動に係わる負荷を小さくして省エネルギー性を高める際に用いて最適となる。
 (2) 好適な態様により、油圧駆動アクチュエータ3として、型締装置1cの型開閉シリンダ3c…を適用するとともに、可動部4に、型締装置1cにおける可動型4cmを支持する可動盤4mを含ませれば、型開閉毎に重量の大きい可動盤4m及び可動型4cmを含む可動部4を反復移動させる型締装置1cに対して、本発明に係る制御方法を適用できるため、本発明の望ましい作用効果を得る観点から最適な形態として実施できる。   
 (3) 好適な態様により、停止位置Xeに、正規停止位置Xe又は仮想停止位置Xesを含ませれば、通常の停止処理に適用することにより汎用性のある停止制御に利用できることに加え、仮想停止位置Xesを適用すれば、移動時に、正確な目標位置Xoをリアルタイムで予測でき、より正確な目標位置Xoに到達させることができるなど、多様性のある減速制御に利用できる。
 (4) 好適な態様により、減速開始点Xs設定するに際し、予め、設定した移動速度により可動部4を移動させる定速移動区間Zcと、この定速移動区間Zcの終了点(Xs)から漸次減速させる減速移動区間Zdと、この減速移動区間Zdが終了する目標位置Xoを含む所定の速度制御パターンDpを設定し、実際の定速移動区間Zcでは、設定した移動速度により可動部4を移動させ、かつ検出した移動速度と移動位置に基づき、所定の時間間隔毎に演算により順次予測した仮想停止位置Xesで移動速度がゼロになる定速移動区間Zcの終了点(Xs)を、減速開始点Xsとして設定すれば、目標位置Xoに対する制御精度を高め、移動する可動部4の位置や時間のバラツキを飛躍的に低減できるため、可動部4の高速化を図る場合でも、可動部4のオーバラン等のトラブルを回避できるととともに、同時に成形品質(均質化)の低下要因及び生産性の変動要因を排除できるという基本的な作用効果を享受できる。しかも、ソフトウェア処理により実現できるため、追加的なハードウェア、例えば、ブレーキ動作に必要なブレーキバルブや関連する回路要素などが不要となるため、油圧系回路のコストダウンに寄与できるとともに、回路構成の単純化及び小型化にも寄与できる。
 (5) 好適な態様により、速度指令を、検出した可動部4の移動位置から速度制御パターンDpに基づいて求めるようにすれば、減速を含む移動制御時には、速度制御パターンDpを正確にトレースする速度指令を設定できるため、常にバラツキの少ない正確な速度指令を確保できる。
 (6) 好適な態様により、型開閉シリンダ3c…の型閉方向Fcにおける前油室3cf…の油圧Pf及び型開閉シリンダ3c…の型開方向Foにおける後油室3cr…の油圧Prを監視し、型開動作の際に、後油室3cr…の油圧Prが前油室3cf…の油圧Pfよりも大きいときは、メータアウト制御によるフィードバック制御の速度指令に、後油室3cr…の油圧Prと前油室3cf…の油圧Pfの差圧に対応する大きさの速度指令を加算する制御を行うようにすれば、型開時に後油室3cr…に生じる無用な差圧を解消できるため、型開閉シリンダ3c…の破損等のトラブルを回避できるとともに、急激な挙動変化を抑制できる。
 (7) 好適な態様により、型開閉シリンダ3c…の型閉方向Fcにおける前油室3cf…の油圧Pf,型開閉シリンダ3c…の型開方向Foにおける後油室3cr…の油圧Pr及び油圧ポンプ2の吐出圧Ppを監視し、型閉動作の際に、前油室3cf…の油圧Pfが後油室3cr…の油圧Prよりも大きく、かつ前油室3cf…の油圧Pfが油圧ポンプ2の吐出圧Ppよりも大きいときは、メータイン制御の圧力制御ループにおける圧力指令を、前油室3cf…の油圧Pfの大きさに切換える制御を行うようにすれば、型閉時に前油室3cf…に生じる無用な差圧に対して速度指令を絞ることができるため、負荷が大きすぎることにより駆動力が不足する不具合を解消できる。
 (8) 好適な態様により、型開閉シリンダ3c…の型閉方向Fcにおける前油室3cf…の油圧Pfを監視し、当該油圧Pfが負圧のときは、メータイン制御における流量を増加させるとともに、メータイン制御における開度を絞る制御を行うようにすれば、負圧による流量の一時的増減を解消できるため、移動中の可動盤4mが停止してしまうなどの不具合を回避できる。
 (9) 好適な態様により、型締装置1cとして、可動部4を、移動に係わる移動抵抗に基づく負荷の大きさが一定の大きさ以下の負荷状態に支持する可動部支持機構11を備えた型締装置に適用すれば、可動部4を低負荷状態で移動させる可動部支持機構11の搭載を可能にして、省エネルギー性を向上させることができるとともに、可動型4cmを支持する可動盤4mを移動させる際における型開閉制御を高精度かつ安定に行うことができる。
 (10) 好適な態様により、可動部支持機構11を構成するに際し、可動部4を接触状態により直接摺動可能に支持する支持面11fを設けて構成すれば、特に、構成の簡易化及びコスト面を考慮した汎用的な可動部支持機構11として構成できる。
 (11) 好適な態様により、可動部支持機構11を構成するに際し、可動部4をスライド変位自在に支持するリニアガイド機構部11rを設けて構成すれば、リニアガイド機構部11rによるほとんど負荷が生じない低負荷状態にも対応できるため、この種のリニアガイド機構部11rの使用を可能にするとともに、最も望ましい省エネルギー効果を得ることができる。
 (12) 好適な態様により、メータアウト回路6に、メータアウト制御により流量を可変制御可能な流量制御弁13を用いれば、精度の高い流量制御を行うことができる比例電磁弁やサーボ弁等を使用できるため、応答性及び精度の高い制御を実現できる。
 (13) 好適な態様により、油圧ポンプ2に、ポンプモータ12の回転数を可変することにより吐出流量を制御可能な可変吐出型油圧ポンプ2sを用いれば、油圧ポンプ2に対するインバータ制御により、メータイン制御を行うことができるため、別途のメータイン回路を不要にできる。これにより、コスト低減及び更なる省エネルギー性の向上に寄与できるとともに、特に、本発明に係る制御方法は、このような作動油における温度等の物理的な変動が大きく影響を受ける可変吐出型油圧ポンプ2sを搭載した型締装置1cに適用して、より大きな効果を得ることができる。
本発明の好適実施形態に係る油圧式射出成形機の制御方法の処理手順を説明するためのフローチャート、 本発明の好適実施形態に係る油圧式射出成形機に備える駆動制御装置の油圧回路図、 同油圧式射出成形機における可動部支持機構を備える型締装置の機械的構成図、 同油圧式射出成形機における他の可動部支持機構を備える型締装置の機械的構成図、 同油圧式射出成形機の駆動制御装置の型開動作時におけるバルブ切換状態を示す油圧回路図、 同油圧式射出成形機の駆動制御装置の型閉動作時におけるバルブ切換状態を示す油圧回路図、 同油圧式射出成形機の制御方法に用いる速度制御パターン図、 同油圧式射出成形機の変更例に係る駆動制御装置の要部を抽出して示す油圧回路図、 同変更例に係る駆動制御装置の制御方法の処理手順を説明するためのフローチャート、
 1:油圧式射出成形機,1c:型締装置,2:油圧ポンプ,2s:可変吐出型油圧ポンプ,3:油圧駆動アクチュエータ,3c…:型開閉シリンダ,3cf…:型開閉シリンダにおける前油室,3cr…:型開閉シリンダにおける後油室,4:可動部,4m:可動盤,4cm:可動型,5:メータイン回路,6:メータアウト回路,7:制御部,11:可動部支持機構,11f:支持面,11r:リニアガイド機構部,12:ポンプモータ,13:流量制御弁,C:駆動制御装置,Xs:減速開始点,(Xs):定速移動区間の終了点,Xe:停止位置,Xes:仮想停止位置,Xo:目標位置,Zc:定速移動区間,Zd:減速移動区間,Dp:速度制御パターン,Fc:型閉方向,Fo:型開方向
 次に、本発明に係る最良実施形態を挙げ、図面に基づき詳細に説明する。
 まず、本実施形態に係る制御方法を用いて好適な油圧式射出成形機1に備える型締装置1cの構成について、図2~図4を参照して説明する。
 図2中、1は油圧式射出成形機であり、型締装置1cと仮想線で一部を示す射出装置1iを備える。図3及び図4に、本実施形態に係る制御方法を用いて好適な型締装置1c…、特に、異なる可動部支持機構11…を備える二つのタイプの型締装置1c,1cをそれぞれ示す。
 図3に示す型締装置1cは、基本構成として、成形機ベッド21に固定した固定盤22と、成形機ベッド21の上面上に、可動部支持機構11により型開方向Fo及び型閉方向Fcに変位自在に支持及びガイドされる受圧盤23及び可動盤4mと、固定盤22と受圧盤23間に架設し、一端を固定盤22に固定するとともに、他端側を受圧盤23に挿通させた複数(例示は4本)のタイバー24…とを備える。そして、固定盤22により仮想線で示す固定型4ccを支持するとともに、可動盤4mにより仮想線で示す可動型4cmを支持する。この固定型4ccと可動型4cmにより金型4cが構成される。これにより、可動型4cmを支持する可動盤4mは、本発明における可動部4として機能する。さらに、図2に示すように、受圧盤23には型締シリンダ25を設け、この型締シリンダ25に内蔵する駆動ラム25rは可動盤4mに結合する。
 また、受圧盤23とタイバー24…間には各タイバー24…毎に第一ロック機構部26…をそれぞれ備える。任意の第一ロック機構部26(他の第一ロック機構部26…も同じ)は、タイバー24の他端から軸方向の所定範囲に形成した被係止部26sと、受圧盤23に設けた係止部26cを備え、この係止部26cをロックモード又はロック解除モードに切換えることにより、被係止部26sの任意の位置と受圧盤23の位置をロックし、又はロック解除することができる。
 さらに、受圧盤23と可動盤4m間には、複数の第二ロック機構部27…を配設する。例示する任意の第二ロック機構部27(他の第二ロック機構部27…も同じ)は、一端を可動盤4mに固定し、かつ他端から軸方向の所定範囲に形成した被係止部27rsを有する被係止ロッド27rと、受圧盤23に設けた係止部27cとを備え、この係止部27cをロックモード又はロック解除モードに切換えることにより、被係止部27rsの任意の位置、即ち、可動盤4mの任意の位置と受圧盤23の位置をロックし、又はロック解除することができる。
 一方、成形機ベッド21の上面に配設する可動部支持機構11は、可動盤4mの移動に係わる移動抵抗による負荷の大きさが一定の大きさ以下の負荷状態に支持する機能を備える。これにより、特に、重量物となる可動型4cmを支持する可動盤4mを、低負荷状態で移動させることができるため、摩擦抵抗等によるエネルギーロスを低減し、省エネルギー性をより向上させることができる。
 図3に示す可動部支持機構11は、リニアガイド機構部11rを用いたものであり、比較的大型の主リニアガイド31と比較的小型の副リニアガイド31の組合わせからなる。具体的には、成形機ベッド21の上面に配設した左右一対のレールメンバからなる主ガイドレール部31rと、この主ガイドレール部31rに沿ってスライド自在に支持され、かつ主架台33の下面に取付けた左右一対のスライダメンバからなる主前スライダ部31sf及び主後スライダ部31srにより構成した主リニアガイド31を備えるとともに、主架台33の上面における型閉方向Fc側に配設した左右一対のレールメンバからなる副ガイドレール部32rと、この副ガイドレール部32rに沿ってスライド自在に支持され、かつ副架台34の下面に取付けた左右一対のスライダメンバからなる副前スライダ部32sf及び副後スライダ部32srにより構成した副リニアガイド32を備える。
 そして、主架台33の上面における型開方向Fo側に受圧盤23を載置して固定するとともに、副架台34の上面に可動盤4mを載置して固定する。このように、可動部支持機構11を構成するに際し、可動部4をスライド変位自在に支持するリニアガイド機構部11rを設けて構成すれば、特に、リニアガイド機構部11rによるほとんど負荷が生じない低負荷状態にも対応できるため、この種のリニアガイド機構部11rの使用を可能にするとともに、最も望ましい省エネルギー効果を得れる利点がある。
 また、固定盤22には、左右一対の型開閉シリンダ3c,3c(図2参照)を固定するとともに、各型開閉シリンダ3c,3cから突出するピストンロッド3p…の先端は、主架台33に結合して固定する。この型開閉シリンダ3c…は、本発明の油圧駆動アクチュエータ3を構成する。
 このように、油圧駆動アクチュエータ3に、型締装置1cの型開閉シリンダ3c…を適用するとともに、可動部4に、上述した可動型4cmを支持する可動盤4mを適用すれば、型開閉毎に重量の大きい可動盤4m及び可動型4cmを含む可動部4を反復移動させる型締装置1cに対して、本発明に係る制御方法を適用できるため、本発明の望ましい作用効果を得る観点から最適な形態として実施できる。
 これにより、型開工程では、第一ロック機構部26をロック解除モードに切換え、かつ第二ロック機構部27をロックモードに切換えるとともに、型開閉シリンダ3c,3cを型開方向Foに駆動すれば、可動盤4m及び受圧盤23を一体として型開方向Foにスライド移動させる高速型開を行なうことができる。
 これに対して、型閉工程では、第一ロック機構部26をロック解除モードに維持し、かつ第二ロック機構部27をロックモードに維持したままで、型開閉シリンダ3c,3cを型閉方向Fcに駆動すれば、可動盤4m及び受圧盤23を一体として型閉方向Fcにスライド移動させる高速型閉を行なうことができる。そして、所定の型閉位置に移動したなら、停止処理(減速処理)を行うとともに、型締工程では、第一ロック機構部26をロックモードに切換え、かつ第二ロック機構部27をロック解除モードに切換えるとともに、型締シリンダ25を駆動すれば、受圧盤23は位置が固定され、可動盤4mはスライド変位が許容されるため、高圧型締を行うことができる。
 他方、図4に示す型締装置1cは、図3に示した型締装置1cに対して基本構成は同じであるが、可動部支持機構11として、成形機ベッド21の上面に、低摩擦の支持面11fを有する低摩擦プレート35を敷設し、タイバー24…により可動盤4mを支持及びガイドする構成とした点が異なる。したがって、図4における図3と同一部分には同一符号を付して、その構成を明確にするとともに、その詳細な説明は省略する。
 図3に示す可動部支持機構11では、可動盤4mの下面が、支持面11fの上面に接触状態により直接摺動可能に支持されるとともに、受圧盤23の下面も同様に、支持面11fの上面に接触状態により直接摺動可能に支持される。一方、固定盤22に固定した左右一対の型開閉シリンダ3c,3cから突出するピストンロッド3p…の先端は、可動盤4mに設けた開口部を挿通させ、受圧盤23に結合して固定する。これにより、図4に示した型締装置1cと同様の動作を行なわせることができる。このように、可動部支持機構11を構成するに際し、可動部4を接触状態により直接摺動可能に支持する支持面11fを設けて構成すれば、特に、構成の簡易化及びコスト面を考慮した汎用的な可動部支持機構11として構成できる利点がある。
 その他、図2に示す型締装置1cにおいて、36,36は補助シリンダ、37vはサブタンク37tに備えるプレフィルバルブをそれぞれ示す。なお、射出装置1iは、射出ノズル1inを金型4c(固定型4cc)にノズルタッチすることにより金型4cのキャビティ内に溶融樹脂を射出充填する機能を備える。
 次に、型締装置1cに用いる本実施形態に係る駆動制御装置Cの構成について、図2及び図5を参照して説明する。
 駆動制御装置Cは、大別して、型締装置1cを駆動する図2に示す油圧駆動部Cdとこの油圧駆動部Cdを制御する図5に示す制御部7(成形機コントローラCc)により構成する。
 最初に、油圧駆動部Cdの構成について説明する。油圧駆動部Cdは、油圧駆動源となる油圧ポンプ2と、この油圧ポンプ2から吐出する作動油が供給される油圧回路51とを備える。
 まず、油圧ポンプ2の構成について説明する。使用する油圧ポンプ2は可変吐出型油圧ポンプ2s(以下、油圧ポンプ2sと略記する)である。油圧ポンプ2sは、図2に示すように、ポンプ本体41とこのポンプ本体41を回転駆動するサーボモータ12s(ポンプモータ12)を備える。サーボモータ12sは、成形機コントローラCcの出力ポートに接続した交流サーボモータを用いる。サーボモータ12sには、このサーボモータ12sの回転数を検出するロータリエンコーダ12eが付設され、このロータリエンコーダ12eは成形機コントローラCcの入力ポートに接続する。
 また、ポンプ本体41は斜板型ピストンポンプにより構成する。したがって、ポンプ本体41は、斜板42を備え、斜板42の傾斜角(斜板角)を大きくすれば、ポンプ本体41におけるポンプピストンのストロークが大きくなり、吐出流量が増加するとともに、斜板角を小さくすれば、同ポンプピストンのストロークが小さくなり、吐出流量が減少する。よって、斜板角を所定の角度に設定することにより、吐出流量が所定の大きさに固定される固定吐出流量を設定することができる。さらに、斜板42には、コントロールシリンダ43及び戻しスプリング44を付設するとともに、コントロールシリンダ43は、切換弁(電磁弁)45、絞り46、逆止弁47を介してポンプ本体41の吐出口に接続する。これにより、斜板42の角度(斜板角)は、コントロールシリンダ43を制御することにより変更することができる。なお、48はポンプ圧センサ(吐出圧センサ)を示す。
 そして、ポンプ本体41の吸入口は、オイルタンク49に接続するとともに、ポンプ本体41の吐出口は、後述する油圧回路51に接続する。このような可変吐出型油圧ポンプ2sは、サーボモータ12sの回転数を可変して吐出流量を制御可能、即ち、型開閉シリンダ3c,3cに流入させる作動油の流量を可変制御できるため、実質的なメータイン回路5として機能する。
 このように、油圧ポンプ2に、ポンプモータ12(サーボモータ12s)の回転数を可変することにより吐出流量を制御可能な油圧ポンプ2sを用いれば、油圧ポンプ2に対するインバータ制御により、メータイン制御を行うことができるため、別途のメータイン回路を不要にできる。これにより、コスト低減及び更なる省エネルギー性の向上に寄与できるとともに、特に、本発明に係る制御方法は、作動油における温度等の物理的な変動により大きく影響を受ける、このような油圧ポンプ2sを搭載した型締装置1cに適用して、より大きな効果を得ることができる。
 次に、油圧ポンプ2sから吐出する作動油が供給される油圧回路51の構成について説明する。
 油圧回路51は、主要動作を切換える電磁方向切換弁M1、電磁チェック弁M2、絞りを内蔵する流量制御弁13、オイルタンクTo…を備え、図2に示すように接続して油圧回路51を構成する。この場合、流量制御弁13は、型開閉シリンダ3c,3cから流出する作動油の流量を可変制御可能となるため、メータアウト回路6として機能する。なお、図2に示す流量制御弁13は比例電磁弁を例示するが、より精度の高い制御を行うことができるサーボ弁等であってもよい。このように、メータアウト回路6を構成するに際し、メータアウト制御により流量を可変制御可能な流量制御弁13を用いれば、精度の高い流量制御を行うことができる比例電磁弁やサーボ弁等を使用できるため、応答性及び精度の高い制御を実現できる利点がある。
 次に、このような構成を有する油圧ポンプ2及び油圧回路51を制御する制御部7を構成する成形機コントローラCcについて、図5を参照して説明する。
 成形機コントローラCcは油圧式射出成形機1の全体の制御を司る機能を備えるとともに、特に、本実施形態に係る駆動制御装置Cとの関係では制御部7として機能する。したがって、図5に示すように、油圧回路51を構成する、電磁方向切換弁M1、電磁チェック弁M2、流量制御弁13は、それぞれ成形機コントローラCcの出力ポートに接続する。また、前述したように、油圧ポンプ2sに備えるサーボモータ12sは、成形機コントローラCcの出力ポートに接続するとともに、ロータリエンコーダ12eは、成形機コントローラCcの入力ポートに接続する。
 次に、このような構成を有する型締装置1cにおける型開閉動作を含む本実施形態に係る制御方法について、図5及び図6を参照しつつ図1に示すフローチャートに従って説明する。
 なお、型開閉動作に際しては、予め、設定した所定の移動速度により可動盤4mを移動させる定速移動区間Zcと、この定速移動区間Zcの終了点(Xs)から漸次減速させる減速移動区間Zdと、この減速移動区間Zdが終了する仮想停止位置Xesを含む速度制御パターンDpが、一例として示す図7のように設定されているものとする。また、図示を省略したが、可動盤4mの移動位置及び移動時間等を検出する位置センサ及びタイマー等の制御に必要な検出手段を備えている。
 最初に、型開工程及び型閉工程における図7に示す定速移動区間Zcの動作について、図5及び図6を参照して説明する。図5は型開工程における油圧回路51の切換状態を示すとともに、図6は型閉工程における油圧回路51の切換状態を示す。
 まず、型開工程では、図5に示すように、成形機コントローラCcから付与される弁切換信号により、流量制御弁13はシンボルaに、電磁方向切換弁M1はシンボルaに、電磁チェック弁M2はシンボルaに、それぞれ切換えられる。これにより、油圧ポンプ2sから吐出した作動油は、図5中、矢印方向Koに流れ、電磁方向切換弁M1のシンボルaを介して型開閉シリンダ3c,3cの前油室3cf,3cfに流入して駆動ピストンロッドを型開方向Foに移動させる。また、型開閉シリンダ3c,3cの後油室3cr,3crから流出する作動油は、図5中、矢印方向Krに流れ、電磁チェック弁M2のシンボルa,電磁方向切換弁M1のシンボルa,流量制御弁13のシンボルaを介して型開閉シリンダ3c,3cの前油室3cf,3cfに流入する作動油の供給ラインに合流する。したがって、定速移動区間Zcでは、設定された型開速度となるように、移動速度に対するフィードバック制御が行われる。
 一方、型閉工程では、図6に示すように、成形機コントローラCcから付与される弁切換信号により、流量制御弁13はシンボルbに、電磁方向切換弁M1はシンボルbに、電磁チェック弁M2はシンボルbに、それぞれ切換えられる。これにより、油圧ポンプ2sから吐出した作動油は、図6中、矢印方向Koに流れ、電磁方向切換弁M1のシンボルb,電磁チェック弁M2のシンボルbをそれぞれ介して型開閉シリンダ3c,3cの後油室3cr,3crに流入して駆動ピストンロッドを型閉方向Fcに移動させる。
 また、型開閉シリンダ3c,3cの前油室3cf,3cfから流出する作動油は、図6中、矢印方向Krに流れ、第一の経路となる、電磁方向切換弁M1はシンボルb、流量制御弁13のシンボルbを介してオイルタンクToに排出されるとともに、第二の経路となる、流量制御弁13のシンボルbを介してオイルタンクToに排出される。したがって、定速移動区間Zcでは、設定された型閉速度となるように、移動速度に対するフィードバック制御が行われる。
 次に、本発明の要部となる減速移動区間Zdの制御方法について、図1に示すフローチャートに従って具体的に説明する。
 今、油圧式射出成形機1では、所定の製品に対する成形工程が継続して行われているものとする(ステップS1)。そして、型開工程又は型閉工程に移行し、型開指令又は型閉指令が出力した場合を想定する(ステップS2)。これにより、型開閉シリンダ3c,3cが駆動され、可動型4cmを支持する可動盤4mが型開方向Fo又は型閉方向Fcに移動を開始するとともに、上述した定速移動区間Zcにより、予め設定された移動速度となるように定速制御される(ステップS3)。
 また、この定速移動区間Zcでは、可動盤4mの移動速度と移動位置を検出するとともに、検出した移動速度と移動位置に基づき、所定の時間間隔毎に演算により順次予測した、仮想停止位置Xesで移動速度がゼロになる定速移動区間の終了点(Xs)を求め、この定速移動区間Zcの終了点(Xs)を減速開始点Xsとして設定する。即ち、減速区間Zdの距離Ldは、Ld=(移動速度・移動時間)/2と推定されるため、(Xes-Ld)≦移動位置の条件に達したなら、減速開始点(減速開始位置)Xsに達したものと判断する。
 減速開始位置Xsに達したなら減速区間Zdに移行し、まず、メータイン回路5により流量の抑制(絞り)を開始する(ステップS4,S5)。この減速区間Zdでは、可動盤4m(可動型4cm)の移動位置を一定のサンプリング間隔により順次検出し、検出した移動位置に基づき、移動速度を求める(ステップS6,S7)。そして、検出した移動位置における目標となる移動速度(速度指令値)を前述した速度制御パターンDpに基づき演算により求め、この移動位置における実際の移動速度が目標となる移動速度になるように、メータイン回路5をメータイン制御する(ステップS8)。即ち、油圧ポンプ2sの流量制御を行うことにより移動速度の制御を行う。このように、速度指令(速度指令値)を、検出した可動盤4mの移動位置から速度制御パターンDpに基づいて求めれば、減速を含む移動制御時には、速度制御パターンDpを正確にトレースするため、常にバラツキの少ない正確な速度指令を設定できる。
 この場合の速度指令値Dmは、次の〔数1〕式により求めることができる。なお、〔数1〕中、Xrsは減速切換位置(図7ではXc)、Xdは検出した移動位置、Vdsは減速開始位置Xsにおける移動速度、Tdは減速区間の移動時間、Vmは減速前の移動速度(速度指令値)である。
Figure JPOXMLDOC01-appb-M000001
 また、減速区間Zdでは、移動位置における実際の移動速度と目標となる移動速度(速度指令)の偏差を検出し、この偏差に基づき流量制御弁13に対するフィードバック制御(PID制御)を行う。具体的には、偏差に基づく制御指令をメータアウト回路6を構成する流量制御弁13に付与し、特に、移動速度が速すぎる場合における抑制制御を行う(ステップS9)。
 この場合の流量制御弁13に付与される制御出力(操作量)Doは、〔数2〕式により得られる。なお、〔数2〕中、SVは設定値(目標速度)、PVtは検出した移動速度、etは偏差(SV-PVt)、Kpは比例ゲイン、Tiは積分時間、Tdは微分時間である。
Figure JPOXMLDOC01-appb-M000002
 これにより、可動盤4mの移動速度に対しては、型開閉シリンダ3c…の流入側におけるメータイン回路5による速度制御パターンDpに基づく流量制御(オープンループ制御)と、型開閉シリンダ3c…の流出側におけるメータアウト回路6によるフィードバック制御(クローズドループ制御)のいわば双方向による複合制御が行われ、図7に示す速度制御パターンDpにおける減速移動区間Zcを正確にトレースする形で減速処理が行われることになる。
 そして、定速移動区間Zcの移動速度の概ね10~60〔%〕の低速となる移動速度まで低下、即ち、図7にXcで示す切換位置に到達したなら減速移動区間Zdを終了して後続工程となる型締工程に移行する(ステップS10,S11,S12)。なお、例示は、停止位置Xeとして仮想停止位置Xesを設定し、減速移動区間Zdが終了する切換位置Xcを目標位置Xoとしたが、この切換位置Xcを実際に停止させる正規停止位置Xeとして設定してもよい。したがって、停止位置Xeを、仮想停止位置Xesとして設定した場合、目標位置Xoと停止位置Xeは異なるが、停止位置Xeを、実際の正規停止位置Xeとして設定する場合、目標位置Xoと停止位置Xeは同じになる。この目標位置Xeが、本実施形態における型開位置又は型閉位置となる。
 このように、停止位置Xeとして、正規停止位置Xe又は仮想停止位置Xesを含ませることができるため、通常の停止処理に適用すれば、汎用性のある停止制御に利用できるとともに、仮想停止位置Xesを適用すれば、移動時に、正確な目標位置Xoをリアルタイムで予測でき、より正確な目標位置Xoに到達可能になるなど、多様性のある減速制御に適用できる。
 特に、仮想停止位置Xesを適用すれば、減速開始点Xs設定するに際し、予め、設定した移動速度により可動部4を移動させる定速移動区間Zcと、この定速移動区間Zcの終了点(Xs)から漸次減速させる減速移動区間Zdと、この減速移動区間Zdが終了する目標位置Xoを含む所定の速度制御パターンDpを設定し、実際の定速移動区間Zcでは、前記設定した移動速度により可動部4を移動させ、かつ検出した移動速度と移動位置に基づき、所定の時間間隔毎に演算により順次予測した仮想停止位置Xesで移動速度がゼロになる定速移動区間Zcの終了点(Xs)を、減速開始点Xsとして設定すれば、目標位置Xoに対する制御精度を高め、移動する可動部4の位置や時間のバラツキを飛躍的に低減できるため、可動部4の高速化を図る場合でも、可動部4のオーバラン等のトラブルを回避できるととともに、同時に成形品質(均質化)の低下要因及び生産性の変動要因を排除できるという基本的な作用効果を享受できる。しかも、ソフトウェア処理により実現できるため、追加的なハードウェア、例えば、ブレーキ動作に必要なブレーキバルブや関連する回路要素などが不要となるため、油圧系回路のコストダウンに寄与できるとともに、回路構成の単純化及び小型化にも寄与できる利点がある。
 次に、本実施形態の変更例に係る制御方法及び駆動制御装置Cについて、図8及び図9を参照して説明する。
 図8は、変更例に係る駆動制御装置Cの要部を抽出して示す油圧回路図を示す。変更例に係る駆動制御装置Cは、図2に示した基本形態の駆動制御装置Cの油圧回路51に対して、型開閉シリンダ3c,3cにおける前油室3cf…の油圧Pfを検出する油圧センサ71fを接続するとともに、型開閉シリンダ3c,3cにおける後油室3cr…の油圧Prを検出する油圧センサ71rを接続したものである。各油圧センサ71f,71rは制御部7(成形機コントローラCc)に接続する。48は前述したポンプ圧センサ(吐出圧センサ)であり、油圧ポンプ2s吐出圧Ppを検出して制御部7に付与する機能を備える。変更例は、以上の油圧Pf,Pr及び吐出Ppを監視した制御を行うものである。したがって、図8において省略した他の駆動制御装置Cにおける油圧回路51の構成は、図2と同じとなる。このため、図8における図2と同一部分には同一符号を付してその構成を明確にするとともに、その詳細な説明は省略する。
 図9は、変更例に係る駆動制御装置Cの制御方法の処理手順を説明するためのフローチャートを示す。
 油圧式射出成形機1では、所定の製品に対する成形工程が継続して行われているものとする(ステップS21)。そして、今、型開工程に移行し、型開工程が行われている場合を想定する(ステップS22)。なお、型開工程では、前述した図1に示すフローチャートに基づく制御処理が行われる。また、型開工程では、変更例に係る制御方法に従って、型開閉シリンダ3c…の型閉方向Fcにおける前油室3cf…の油圧Pf及び型開閉シリンダ3c…の型開方向Foにおける後油室3cr…の油圧Prを検出し、制御部7により油圧PfとPrの大きさを監視する(ステップS23)。そして、型開動作の際に、後油室3cr…の油圧Prが前油室3cf…の油圧Pfよりも大きいとき、即ち、Pr>Pfのときは、油圧PrとPfの差圧を算出する(ステップS24,S25)。そして、算出した油圧PrとPfの差圧に対応する大きさの速度指令をメータアウト制御によるフィードバック制御の速度指令に加算する制御を行う(ステップS6)。これにより、型開時に後油室3cr…に生じる無用な差圧を解消できるため、型開閉シリンダ3c…の破損等のトラブルを回避できるとともに、急激な挙動変化を抑制できる。
 一方、型閉工程に移行し、型閉工程が行われている場合を想定する(ステップS27)。なお、型閉工程でも、前述した図1に示すフローチャートに基づく制御処理が行われる。また、型開工程では、変更例に係る制御方法に従って、型開閉シリンダ3c…の型閉方向Fcにおける前油室3cf…の油圧Pf,型開閉シリンダ3c…の型開方向Foにおける後油室3cr…の油圧Pr及び油圧ポンプ2の吐出圧Ppを検出し、制御部7により油圧PfとPrの大きさ及び油圧ポンプ2の吐出圧Ppの大きさを監視する(ステップS28)。そして、型閉動作の際に、前油室3cf…の油圧Pfが負圧のとき、即ち、Pf<0のときは、メータイン制御における流量を増加させるとともに、メータイン制御における開度を絞る制御を行う(ステップS29,S30)。これにより、負圧による流量の一時的増減を解消できるため、移動中の可動盤4mが停止してしまう不具合を回避できる。
 また、型閉動作の際に、前油室3cf…の油圧Pfが後油室3cr…の油圧Prよりも大きいとき、即ち、Pr<Pfのとき(ステップS31)であって、前油室3cf…の油圧Pfが油圧ポンプ2の吐出圧Ppよりも大きいとき、即ち、Pf>Ppのとき(ステップS32)は、メータイン制御の圧力制御ループにおける圧力指令を、前油室3cf…の油圧Pfの大きさに切換え、型閉時に前油室3cf…に生じる無用な差圧に対して速度指令を絞る制御を行う(ステップS33,S34)。これにより、負荷が大きすぎることにより駆動力が不足する不具合を解消できる。
 そして、以上の圧力差が生じない場合又は解消した場合は、前述した図1に示したフローチャートに従って成形工程が継続して行われる(ステップS35)。
 このように、本実施形態に係る油圧式射出成形機の制御方法によれば、基本的な手法として、減速開始点Xsに達したなら型開閉シリンダ3c,3c(油圧駆動アクチュエータ3)のメータイン側を流量制御することにより減速制御処理を開始し、可動型4cmを支持する可動盤4m(可動部4)の移動位置を検出して当該移動位置に対応した速度指令により型開閉シリンダ3c,3cに対するメータイン制御を行うとともに、可動盤4mの移動位置を検出して当該可動盤4mの移動速度を求め、当該移動速度に対して速度指令に一致するように型開閉シリンダ3c,3cに対するメータアウト制御によるフィードバック制御を行うようにしたため、可動盤4mの移動に係わる目標位置Xoに対する制御精度及び安定性を高めることにより成形品の向上を図れるとともに、可動盤4mが移動する際の減速処理の高速化による成形サイクルの短縮化を実現し、生産性及び量産性を高めることができ、特に、可動盤4mの移動に係わる負荷を小さくして省エネルギー性を高める際に用いて最適となる。
 以上、変更例を含む好適実施形態について詳細に説明したが、本発明は、このような実施形態に限定されるものではなく、細部の構成,形状,素材,数量,数値等において、本発明の要旨を逸脱しない範囲で、任意に変更,追加,削除することができる。
 例えば、可動部支持機構11として、可動部4を接触状態により直接摺動可能に支持する支持面11f及び可動部4をスライド変位自在に支持するリニアガイド機構部11rを例示したが、ローラ用いた構成など、同様の機能を有する他の構成を用いた可動部支持機構11であってもよい。また、メータアウト回路6として流量制御弁13を例示したが、同様のメータアウト制御を実現できる他の油圧回路部品等により置換できる。さらに、油圧ポンプ2として可変吐出型油圧ポンプ2sを例示したが、他型式の油圧ポンプ2を排除するものではない。したがって、この場合、メータイン回路5は別途の油圧回路として構成できる。一方、速度制御パターンDpは、理解を容易にするため、最もシンプルなパターンを一例として挙げたが、複雑なパターンを含む各種パターンを適用できる。
 本発明は、油圧式射出成形機における型締装置をはじめ、射出装置やエジェクタ装置等の各種油圧駆動アクチュエータの制御方法及び駆動制御装置として利用できる。

Claims (16)

  1.  油圧ポンプにより油圧駆動アクチュエータを駆動して可動部を移動させるとともに、可動部の移動中に、減速開始点に達したなら設定した停止位置に停止させる減速制御処理を行い、かつ設定した目標位置に達したなら減速終了処理を行う油圧式射出成形機の制御方法において、前記減速開始点に達したなら前記油圧駆動アクチュエータのメータイン側を流量制御することにより減速制御処理を開始し、前記可動部の移動位置を検出して、当該移動位置に対応した速度指令により前記油圧駆動アクチュエータに対するメータイン制御を行うとともに、前記可動部の移動速度を求め、当該移動速度に対して前記速度指令に一致するように前記油圧駆動アクチュエータに対するメータアウト制御によるフィードバック制御を行うことを特徴とする油圧式射出成形機の制御方法。
  2.  前記油圧駆動アクチュエータには、型締装置の型開閉シリンダを適用するとともに、前記可動部には、前記型締装置における可動型を支持する可動盤を適用することを特徴とする請求項1記載の油圧式射出成形機の制御方法。
  3.  前記可動部は、移動に係わる移動抵抗に基づく負荷の大きさが一定の大きさ以下の負荷状態であることを特徴とする請求項1又は2記載の油圧式射出成形機の制御方法。
  4.  前記停止位置は、正規停止位置又は仮想停止位置を含むことを特徴とする請求項1記載の油圧式射出成形機の制御方法。
  5.  前記減速開始点は、予め、設定した移動速度により前記可動部を移動させる定速移動区間と、この定速移動区間の終了点から漸次減速させる減速移動区間と、この減速移動区間が終了する目標位置を含む所定の速度制御パターンを設定し、実際の定速移動区間では、前記設定した移動速度により前記可動部を移動させ、かつ検出した移動速度と移動位置に基づき、所定の時間間隔毎に演算により順次予測した仮想停止位置で移動速度がゼロになる前記定速移動区間の終了点を、前記減速開始点として設定することを特徴とする請求項4記載の油圧式射出成形機の制御方法。
  6.  前記速度指令は、検出した前記可動部の移動位置から前記速度制御パターンに基づいて求めることを特徴とする請求項5記載の油圧式射出成形機の制御方法。
  7.  前記型開閉シリンダの型閉方向における前油室の油圧及び前記型開閉シリンダの型開方向における後油室の油圧を監視し、型開動作の際に、前記後油室の油圧が前記前油室の油圧よりも大きいときは、前記メータアウト制御によるフィードバック制御の速度指令に、前記後油室の油圧と前記前油室の油圧の差圧に対応する大きさの速度指令を加算する制御を行うことを特徴とする請求項2記載の油圧式射出成形機の制御方法。
  8.  前記型開閉シリンダの型閉方向における前油室の油圧,前記型開閉シリンダの型開方向における後油室の油圧及び前記油圧ポンプの吐出圧を監視し、型閉動作の際に、前記前油室の油圧が前記後油室の油圧よりも大きく、かつ前記前油室の油圧が前記油圧ポンプの吐出圧よりも大きいときは、前記メータイン制御の圧力制御ループにおける圧力指令を、前記前油室の油圧の大きさに切換える制御を行うことを特徴とする請求項2記載の油圧式射出成形機の制御方法。
  9.  前記型開閉シリンダの型閉方向における前油室の油圧を監視し、当該油圧が負圧のときは、メータイン制御における流量を増加させるとともに、メータイン制御における開度を絞る制御を行うことを特徴とする請求項2記載の油圧式射出成形機の制御方法。
  10.  油圧ポンプにより油圧駆動アクチュエータを駆動して可動部を移動させるとともに、可動部の移動中に、減速開始点に達したなら設定した停止位置に停止させる減速制御処理を行い、かつ設定した目標位置に達したなら減速終了処理を行う機能を備える油圧式射出成形機の駆動制御装置において、前記油圧駆動アクチュエータに接続したメータイン回路と、当該油圧駆動アクチュエータに接続したメータアウト回路と、前記減速開始点に達したなら前記油圧駆動アクチュエータに対するメータイン回路を流量制御することにより減速制御処理を開始し、前記可動部の移動位置を検出して、当該移動位置に対応した速度指令により前記メータイン回路に対するメータイン制御を行うとともに、前記可動部の移動速度を求め、当該移動速度が前記速度指令に一致するように前記メータアウト回路に対するメータアウト制御によるフィードバック制御を行う制御部とを具備してなることを特徴とする油圧式射出成形機の駆動制御装置。
  11.  前記油圧駆動アクチュエータには、型締装置の型開閉シリンダを適用するとともに、前記可動部には、型締装置における可動型を支持する可動盤を適用することを特徴とする請求項10記載の油圧式射出成形機の駆動制御装置。
  12.  前記型締装置は、前記可動部を、移動に係わる移動抵抗に基づく負荷の大きさが一定の大きさ以下の負荷状態に支持する可動部支持機構を備えることを特徴とする請求項11記載の油圧式射出成形機の駆動制御装置。
  13.  前記可動部支持機構は、前記可動部を接触状態により直接摺動可能に支持する支持面を備えることを特徴とする請求項12記載の油圧式射出成形機の駆動制御装置。
  14.  前記可動部支持機構は、前記可動部をスライド変位自在に支持するリニアガイド機構部を備えることを特徴とする請求項12記載の油圧式射出成形機の駆動制御装置。
  15.  前記メータアウト回路は、メータアウト制御により流量を可変制御可能な流量制御弁を備えることを特徴とする請求項10記載の油圧式射出成形機の駆動制御装置。
  16.  前記油圧ポンプは、ポンプモータの回転数を可変することにより吐出流量を制御可能な可変吐出型油圧ポンプであることを特徴とする請求項10記載の油圧式射出成形機の駆動制御装置。
PCT/JP2017/046083 2016-12-22 2017-12-22 油圧式射出成形機の制御方法及び駆動制御装置 WO2018117250A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018533843A JP6779296B2 (ja) 2016-12-22 2017-12-22 油圧式射出成形機の制御方法及び駆動制御装置
US16/071,151 US10882105B2 (en) 2016-12-22 2017-12-22 Control method and drive control apparatus of hydraulic injection molding machine
CN201780042894.2A CN109414859B (zh) 2016-12-22 2017-12-22 油压式注塑成型机的控制方法及驱动控制装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016249907 2016-12-22
JP2016-249907 2016-12-22

Publications (1)

Publication Number Publication Date
WO2018117250A1 true WO2018117250A1 (ja) 2018-06-28

Family

ID=62626589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/046083 WO2018117250A1 (ja) 2016-12-22 2017-12-22 油圧式射出成形機の制御方法及び駆動制御装置

Country Status (4)

Country Link
US (1) US10882105B2 (ja)
JP (1) JP6779296B2 (ja)
CN (1) CN109414859B (ja)
WO (1) WO2018117250A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022117246A (ja) * 2021-01-29 2022-08-10 住友重機械工業株式会社 射出成形機
CN114801021B (zh) * 2022-04-24 2024-02-02 巨宝馨机械(苏州)有限公司 一种泡塑成型机闭模时间的智能校正***及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05285956A (ja) * 1992-04-15 1993-11-02 Komatsu Ltd 型締装置およびその制御方法
JPH08114203A (ja) * 1994-10-14 1996-05-07 Kobe Steel Ltd シリンダの制御方法並びに油圧回路
JPH11235741A (ja) * 1998-02-23 1999-08-31 Mitsubishi Heavy Ind Ltd 射出成形機の型締装置
JP2009202365A (ja) * 2008-02-26 2009-09-10 Nissei Plastics Ind Co 型締装置の制御方法
JP2011110700A (ja) * 2009-11-23 2011-06-09 Meiki Co Ltd 型締装置および型締装置の制御方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3628901A (en) * 1969-07-15 1971-12-21 New Britain Machine Co Means for monitoring product quality in a plastics injection-molding machine
CN1013032B (zh) * 1986-08-09 1991-07-03 东芝机械株式会社 用于控制具有可动部件和静止部件的方法和设备
JP2788675B2 (ja) * 1990-11-06 1998-08-20 住友重機械工業株式会社 型開閉制御装置
DE4303760C2 (de) * 1993-02-09 1995-12-14 Procontrol Ag Verfahren und Vorrichtung zum hydraulischen Massenantrieb insbesondere von Spritzgiessmaschinen
US5582782A (en) * 1995-03-01 1996-12-10 Kato; Kazuo Method of stopping a die of an injection molding machine and a die clamping apparatus
JP4629747B2 (ja) 2008-02-26 2011-02-09 日精樹脂工業株式会社 型締装置の制御方法
JP5645822B2 (ja) * 2010-06-25 2014-12-24 日精樹脂工業株式会社 射出成形機の成形方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05285956A (ja) * 1992-04-15 1993-11-02 Komatsu Ltd 型締装置およびその制御方法
JPH08114203A (ja) * 1994-10-14 1996-05-07 Kobe Steel Ltd シリンダの制御方法並びに油圧回路
JPH11235741A (ja) * 1998-02-23 1999-08-31 Mitsubishi Heavy Ind Ltd 射出成形機の型締装置
JP2009202365A (ja) * 2008-02-26 2009-09-10 Nissei Plastics Ind Co 型締装置の制御方法
JP2011110700A (ja) * 2009-11-23 2011-06-09 Meiki Co Ltd 型締装置および型締装置の制御方法

Also Published As

Publication number Publication date
US20200164430A1 (en) 2020-05-28
JPWO2018117250A1 (ja) 2019-10-31
CN109414859A (zh) 2019-03-01
JP6779296B2 (ja) 2020-11-04
CN109414859B (zh) 2021-08-31
US10882105B2 (en) 2021-01-05

Similar Documents

Publication Publication Date Title
JP4629747B2 (ja) 型締装置の制御方法
US9038526B2 (en) Kinematic control in a hydraulic system
JP5426833B2 (ja) 成形機
JP6560628B2 (ja) 射出装置及び成形機
WO2018117250A1 (ja) 油圧式射出成形機の制御方法及び駆動制御装置
JP4629746B2 (ja) 型締装置の制御方法
JP5095317B2 (ja) 型締装置
JP5832409B2 (ja) 型締装置、射出成形装置、および、型開閉方法
WO2022176899A1 (ja) 射出装置、成形機、及び成形機の制御方法
JP5491264B2 (ja) 成形機の射出装置
JP7168706B2 (ja) 射出装置、成形機、及び成形機の制御方法
JP2015044392A (ja) スタックモールドが取り付けられた射出成形機の運転方法
WO2023210701A1 (ja) 射出装置、成形機及び成形品の製造方法
WO2022210921A1 (ja) 射出成形機
JP2941470B2 (ja) 型開閉制御装置
JP5996521B2 (ja) 成形装置および製造方法
JP6222740B2 (ja) 射出装置およびその射出制御方法
JP2019081190A (ja) プレス装置
JPH08156057A (ja) 射出成形機の制御方法及び制御装置
JPH04239608A (ja) 樹脂成形機の型開閉制御方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018533843

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17883659

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17883659

Country of ref document: EP

Kind code of ref document: A1