WO2018116982A1 - Hydrogen production device and hydrogen production method - Google Patents

Hydrogen production device and hydrogen production method Download PDF

Info

Publication number
WO2018116982A1
WO2018116982A1 PCT/JP2017/045106 JP2017045106W WO2018116982A1 WO 2018116982 A1 WO2018116982 A1 WO 2018116982A1 JP 2017045106 W JP2017045106 W JP 2017045106W WO 2018116982 A1 WO2018116982 A1 WO 2018116982A1
Authority
WO
WIPO (PCT)
Prior art keywords
ammonia
gas
flow path
hydrogen
heating
Prior art date
Application number
PCT/JP2017/045106
Other languages
French (fr)
Japanese (ja)
Inventor
及川 淳
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to JP2018557738A priority Critical patent/JP7006886B2/en
Publication of WO2018116982A1 publication Critical patent/WO2018116982A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/047Decomposition of ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • C01B2203/043Regenerative adsorption process in two or more beds, one for adsorption, the other for regeneration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to a hydrogen production apparatus and a hydrogen production method for producing hydrogen gas from ammonia.
  • Hydrogen gas is expected as the ultimate clean energy source.
  • hydrogen gas is used as a fuel gas for fuel cells.
  • Ammonia is also used as a raw material for this hydrogen gas.
  • Ammonia attracts attention as a chemical substance (hydrogen carrier) that facilitates storage and transport of hydrogen.
  • Ammonia is easily liquefied by compression at room temperature and 1 MPa or less.
  • Liquid ammonia is a very excellent hydrogen carrier having a very high weight hydrogen density of 17.8% by mass and a volume hydrogen density of 1.5 to 2.5 times that of liquid hydrogen.
  • the decomposition gas is introduced into an ammonia adsorber to remove ammonia.
  • Patent Document 1 discloses a technique in which ammonia is supplied to an ammonia decomposition apparatus and decomposed into hydrogen (H 2 ) and nitrogen (N 2 ), and then supplied to an ammonia adsorber to remove unreacted ammonia. ing. Further, Patent Document 1 also describes that it can be used as hydrogen by separating a gas other than hydrogen from the gas after removing unreacted ammonia with an ammonia adsorber. Further, Patent Document 1 also describes that a plurality of ammonia adsorbers are installed in parallel, and when one ammonia adsorber adsorbs ammonia, another ammonia adsorber repeats desorption of ammonia (switching method). Has been.
  • Patent Document 1 describes that hydrogen is produced by separating hydrogen from a gas after removing unreacted ammonia with an ammonia adsorber. However, there is no specific description regarding the method of utilizing off-gas after removing hydrogen.
  • the present invention relates to a hydrogen production apparatus and a hydrogen production method that can effectively use the off-gas.
  • the present inventors have used the off-gas after further removing hydrogen after removing unreacted ammonia from the ammonia decomposition gas for regenerating the ammonia adsorbent stored in the ammonia adsorber and desorbing it. It has been found that the off gas can be effectively used by burning the off gas containing ammonia and utilizing the combustion heat. That is, the present invention relates to the following [1] to [25].
  • Ammonia supply device connected to the ammonia supply device, an ammonia decomposition device that decomposes ammonia to generate a cracked gas containing hydrogen, nitrogen and unreacted ammonia, and connected to the ammonia decomposition device
  • a cracked gas cooling device that cools the cracked gas; and an ammonia adsorber that is connected to the cracked gas cooler, adsorbs and removes unreacted ammonia from the cracked gas, and flows out the gas after removing ammonia.
  • a hydrogen recovery device that is connected to the ammonia adsorption device, separates and flows out hydrogen from the gas after removal of ammonia, and discharges the remaining off-gas; and a heating device that heats the ammonia decomposition device.
  • the ammonia adsorption device has a plurality of ammonia adsorbers arranged in parallel.
  • a hydrogen production device capable of supplying cracked gas from a gas cooling device to any part of the plurality of ammonia adsorbers, the off gas being connected to the hydrogen recovery device and heating the off gas
  • An off-gas capable of regenerating an ammonia adsorber by supplying the off-gas to a used ammonia adsorber, one end of which is connected to the off-gas heating device and the other end connected to the plurality of ammonia adsorbers Connected to the plurality of ammonia adsorbers, and connected to the adsorbent regeneration gas flow path through which the adsorbent regeneration gas flowing out of the used ammonia adsorber flows, and to the adsorbent regeneration gas flow path
  • a combustion reaction device that burns the adsorbent regeneration gas and flows out the combustion gas, one end connected to the combustion reaction device, and the other end connected to the heating device. And a combustion gas
  • hydrogen can be produced from ammonia, and off gas flowing out from the hydrogen recovery apparatus can be effectively used as a regeneration gas for the ammonia adsorbent in the ammonia adsorber.
  • the off gas flowing out of the hydrogen recovery device contains nitrogen and hydrogen, and the adsorbent regeneration gas after the off gas is used for regeneration of the ammonia adsorbent contains nitrogen, hydrogen and ammonia.
  • the cracked gas cooling device and the offgas heating device are the same heat exchanger, and heat exchange is possible between the cracked gas flowing out from the ammonia cracking device and the offgas flowing out from the hydrogen recovery device.
  • the hydrogen production apparatus according to the above [1]. With this heat exchanger, the heat of the cracked gas can be imparted to the off-gas, and the thermal efficiency is improved.
  • the combustion gas is used for heating the ammonia decomposition apparatus, it is used as a circulation gas, mixed with the aforementioned adsorbent regeneration gas, and burned in the combustion reaction apparatus. Thereby, it can adjust so that the gas supplied to a combustion reaction apparatus may not enter into the explosion range of hydrogen.
  • the gas waste flow path includes a first gas waste flow path having one end connected to the annular flow path, an auxiliary ammonia adsorption device connected to the other end of the first gas waste flow path,
  • the hydrogen production according to [9] further comprising an ammonia detoxification facility that is connected to the auxiliary ammonia adsorption device and includes a second gas disposal channel that distributes the gas discharged from the auxiliary ammonia adsorption device. apparatus.
  • the auxiliary ammonia adsorbing device has a plurality of auxiliary ammonia adsorbers arranged in parallel, and the first gas disposal channel has an upstream end connected to the annular channel, and a downstream side.
  • the end branches to form a first branch flow path and is connected to the plurality of auxiliary ammonia adsorbers, and the upstream end of the second gas waste flow path branches to become a second branch flow path.
  • the ammonia abatement equipment is further connected to the plurality of auxiliary ammonia adsorbers, and further includes a regeneration gas supply device for supplying regeneration gas to the plurality of auxiliary ammonia adsorbers, and one end connected to the regeneration gas supply device.
  • a regeneration gas passage connected at the other end and connected to the second branch passage; a regeneration gas heater for heating the regeneration gas; and one end branched. Connected to the first branch flow path.
  • a waste gas combustion reactor that is connected to the other end of the gas flow path and the desorption gas flow path and burns the adsorbent desorption gas discharged from each of the plurality of ammonia adsorbers to flow out the combustion gas;
  • the hydrogen production apparatus according to the above [10] which is an ammonia detoxification facility having a return passage for returning the combustion gas discharged from the waste gas combustion reactor to the second gas disposal passage.
  • the hydrogen production apparatus according to [11] wherein the waste gas combustion reactor is the combustion reaction apparatus.
  • the cracked gas cooling device is installed in the middle of the cracked gas flow path, and the cracked gas flow path and the post-ammonia removal gas flow path do not have a pressurizing device.
  • the hydrogen production apparatus in any one of. Thus, since it does not have a pressurizing apparatus, an installation cost and an operating cost are reduced.
  • the removed gas is allowed to flow through the hydrogen recovery device and hydrogen is separated from the ammonia-removed gas and flows out.
  • a hydrogen recovery step for discharging the remaining off-gas, and the off-gas flowing out from the hydrogen recovery device is circulated through a part or all of the remaining portions of the off-gas heating device and the plurality of ammonia adsorbers.
  • An ammonia adsorber regeneration step for regenerating the adsorbent, and an adsorbent regeneration gas flowing out from the ammonia adsorber is passed through the combustion reaction device, the combustion gas flow path, and the heating device to heat the ammonia decomposition device
  • hydrogen can be produced from ammonia, and off gas flowing out from the hydrogen recovery apparatus can be effectively used as a regeneration gas for the ammonia adsorbent in the ammonia adsorber.
  • the off gas flowing out of the hydrogen recovery device contains nitrogen and hydrogen, and the adsorbent regeneration gas after the off gas is used for regeneration of the ammonia adsorbent contains nitrogen, hydrogen and ammonia.
  • a circulation gas flow path having one end connected to the heating apparatus and the other end connected to the adsorbent regeneration gas flow path, and the combustion gas is converted into the combustion gas flow path and the heating apparatus. And the adsorbent regeneration gas passage through the circulation gas passage to form a mixed gas with the adsorbent regeneration gas, and the mixed gas is passed through the combustion reaction device and burned. ] Or the hydrogen production method according to [19].
  • a part or all of the combustion gas used for heating the ammonia decomposing apparatus is mixed with the adsorbent regeneration gas and burned, and again used for heating the ammonia decomposing apparatus. can do.
  • the flow volume of the combustion gas supplied to an ammonia decomposition apparatus can be increased, and, thereby, thermal efficiency can be improved. Further, since the combustion gas flowing out from the combustion reaction apparatus is already burned, the content of combustible gas such as hydrogen and ammonia is small. Then, after the combustion gas is used for heating the ammonia decomposition apparatus, it is used as a circulation gas, mixed with the aforementioned adsorbent regeneration gas, and burned in the combustion reaction apparatus. Thereby, it can adjust so that the gas supplied to a combustion reaction apparatus may not enter into the explosion range of hydrogen.
  • An oxygen supply device is connected to one or both of the adsorbent regeneration gas flow channel and the circulation gas flow channel, and the oxygen-containing gas supplied from the oxygen supply device is supplied to the circulation gas and the adsorption gas.
  • Combustion reaction apparatus by supplying oxygen-containing gas from the oxygen supply apparatus and mixing the adsorbent regeneration gas, circulation gas, and oxygen-containing gas described above and supplying the mixed gas after adjusting the composition to the combustion reaction apparatus The gas can be burned almost completely inside.
  • the hydrogen recovery device is connected to the hydrogen recovery device, and has a hydrogen flow channel for flowing out hydrogen separated by the hydrogen recovery device, and a pressure control valve installed in the hydrogen flow channel.
  • a pressure control valve installed in the hydrogen flow channel.
  • a hydrogen production apparatus and a hydrogen production method capable of effectively utilizing off-gas generated when hydrogen gas is produced by decomposing ammonia.
  • FIG. 1 is a schematic diagram of a hydrogen production apparatus 1 according to the first embodiment.
  • a hydrogen production apparatus 1 according to the present embodiment is connected to an ammonia supply apparatus 2 and the ammonia supply apparatus 2, and decomposes ammonia to generate a cracked gas containing hydrogen, nitrogen, and unreacted ammonia.
  • Ammonia decomposition device 3 connected to the ammonia decomposition device 3, a decomposition gas cooling device 4 a for cooling the decomposition gas, and connected to the decomposition gas cooling device 4 a to adsorb and remove unreacted ammonia from the decomposition gas Then, the ammonia adsorbing device 5 for flowing out the gas after removing ammonia mainly containing hydrogen gas and nitrogen gas, and connected to the ammonia adsorbing device 5, separating hydrogen from the gas after removing ammonia and flowing out, A hydrogen recovery device 6 for discharging the remaining off-gas containing hydrogen gas and nitrogen gas, and a heating device 8 for heating the ammonia decomposition device, The has.
  • the ammonia adsorbing device 5 includes a plurality of ammonia adsorbers 5a and 5b arranged in parallel, and the cracked gas from the cracked gas cooling device 4a is arbitrarily selected from the ammonia adsorbers 5a and 5b. It is possible to supply to one of these. In the present embodiment, the number of ammonia adsorbers 5a and 5b is two, but may be three or more.
  • the hydrogen production device 1 further includes an off-gas heating device 4b that is connected to the hydrogen recovery device 6 and heats the off-gas.
  • the off-gas heating device 4b and the cracked gas cooling device 4a are the same heat exchanger (heat exchanger for cracking gas cooling) 4, and the cracking flowing out from the ammonia cracking device 3 is performed. Heat exchange is possible between the gas and the off-gas flowing out of the hydrogen recovery device 6. Thereby, thermal efficiency improves.
  • the ammonia supply device 2 and the ammonia decomposition device 3 are connected via an ammonia flow path 11.
  • the ammonia decomposing apparatus 3 and the ammonia adsorbing apparatus 5 are connected via a decomposition gas flow path 12, and the decomposition gas cooling apparatus 4 a is connected in the middle of the decomposition gas flow path 12.
  • the downstream end of the cracked gas channel 12 branches into a plurality of (two in this embodiment) branch channels 12a and 12b and a plurality (two in this embodiment) of ammonia adsorbers 5a. 5b are all connected.
  • the ammonia adsorption device 5 and the hydrogen recovery device 6 are connected via a gas flow path 14 after removing ammonia.
  • the upstream end of the gas flow path 14 after ammonia removal is branched into a plurality of (two in the present embodiment) branch flow paths 14a and 14b and a plurality (two in the present embodiment) of ammonia adsorbers. It is connected to all of 5a and 5b.
  • Each of these branch flow paths 12a and 12b and branch flow paths 14a and 14b has an on-off valve.
  • the hydrogen production apparatus 1 is further connected to the hydrogen recovery apparatus 6, and a hydrogen flow path 15 for flowing out hydrogen separated from the gas after removal of ammonia, and an off-gas remaining after separating hydrogen from the gas after removal of ammonia.
  • a connecting flow channel 21 that flows out.
  • One end (upstream end) of the connection channel 21 is connected to the hydrogen recovery device 6, and the other end (downstream end) is connected to the off-gas heating device 4b (heat exchanger 4 for cracking gas cooling).
  • the hydrogen production apparatus 1 has one end connected to the off-gas heating device 4b (heat exchanger 4 for cooling cracked gas) and the other end connected to the plurality of ammonia adsorbers 5a and 5b.
  • An off-gas flow path 22 that can be supplied to the used ammonia adsorbers 5a and 5b to regenerate the ammonia adsorber and is connected to the plurality of ammonia adsorbers 5a and 5b, and the used ammonia adsorbers 5a, 5b,
  • An adsorbent regeneration gas passage 23 through which an adsorbent regeneration gas (main components are hydrogen gas, nitrogen gas, and ammonia) flowing out from 5b is connected, and is connected to the adsorbent regeneration gas passage 23.
  • the lower end of the off-gas channel 22 is branched into a plurality of (two in this embodiment) branch channels 22a and 22b, and a plurality of (two in this embodiment) branch channels 14a and 14b. Is connected to the upstream side of the on-off valve.
  • the upstream end of the adsorbent regeneration gas channel 23 is branched into a plurality of (two in this embodiment) branch channels 23a and 23b and a plurality of (two in this embodiment) branch channels 12a, 12b is connected to the downstream side of the on-off valve.
  • Each of these branch flow paths 22a and 22b and branch flow paths 23a and 23b has an on-off valve.
  • the cracked gas flow path 12 and the post-ammonia removal gas flow path 14 do not have a pressurizing device. Thereby, equipment cost and operation cost can be reduced.
  • the hydrogen production apparatus 1 does not have a pressurizing apparatus.
  • a pressurizing device may be provided in at least one of the decomposition gas passage 12 and the post-ammonia removal gas passage 14.
  • the pressurizing device it is preferable to provide only the post-ammonia removal gas flow path 14 among the cracked gas flow path 12 and the post-ammonia removal gas flow path 14.
  • ammonia supply device 2 In the present embodiment, the ammonia supply device 2 has a liquid ammonia tank.
  • the ammonia decomposition device 3 contains an ammonia decomposition catalyst.
  • the ammonia decomposition catalyst is not particularly limited as long as it has catalytic activity for ammonia decomposition reaction.
  • base metal transition metals iron, cobalt, nickel, molybdenum, etc.
  • rare earth metals lanthanum, cerium, neodymium, etc.
  • a catalyst containing a noble metal system ruthenium, rhodium, iridium, palladium, platinum, etc.
  • the base metal transition metal can be used as a simple metal, alloy, nitride, carbide, oxide, composite oxide, the rare earth can be used as an oxide, both the base metal transition metal and the rare earth , Alumina, silica, magnesia, zirconia, titania and the like can be supported on a carrier having a high specific surface area.
  • the noble metal system can also be used by being supported on a carrier having a high specific surface area such as alumina, silica, magnesia, zirconia, titania and the like.
  • the transition metal system and / or the rare earth system may be used by containing a small amount of the noble metal system. These catalysts may be used alone or in combination of two or more.
  • ammonia adsorption device 5 The ammonia adsorbers 5a and 5b constituting the ammonia adsorption device 5 contain an ammonia adsorbent.
  • the ammonia adsorbent is not particularly limited as long as it can remove ammonia from the cracked gas and can be regenerated, and is preferably zeolite, activated carbon, alumina, silica, or composite oxide.
  • the hydrogen recovery device 6 is not particularly limited as long as it can fractionate hydrogen from a cracked gas (main components: hydrogen gas and nitrogen gas) obtained by decomposing ammonia.
  • Examples of the hydrogen recovery device 6 include a pressure fluctuation adsorption separation device (PSA device), a temperature fluctuation adsorption separation device (TSA device), a hydrogen separation membrane device having a hydrogen separation membrane, and the like.
  • the combustion reaction device 7 is not particularly limited as long as it can burn the adsorbent regeneration gas flowing out from the ammonia adsorbers 5a and 5b being regenerated.
  • a combustion reaction device containing a combustion catalyst therein direct combustion Examples thereof include an apparatus.
  • the catalyst used in the combustion reaction apparatus include palladium and platinum. From the viewpoint of cost, palladium is preferable.
  • a direct combustion apparatus it is also possible to mix kerosene, natural gas or the like with the adsorbent regeneration gas and burn it.
  • the heating device 8 is a device that heats the ammonia decomposition device 3 by supplying the combustion gas from the combustion reaction device 7 around the ammonia decomposition device 3.
  • Examples of the heating device 8 include a device that supplies combustion gas to a jacket that covers the periphery of the ammonia decomposition device 3, and a device in which a pipe through which the combustion gas passes is wound around the ammonia decomposition device 3.
  • the first operation hydrogen gas is produced using the ammonia adsorber 5a and the ammonia adsorbent in the ammonia adsorber 5b is regenerated. That is, the first operation includes an ammonia decomposition process, an ammonia adsorption process, a hydrogen recovery process, an ammonia adsorber regeneration process, and an ammonia decomposition apparatus heating process, which will be described later.
  • the ammonia decomposition step is a step in which ammonia from the ammonia supply device 2 is circulated to the ammonia decomposition device 3 to decompose the ammonia to generate the decomposition gas containing hydrogen, nitrogen and unreacted ammonia.
  • the temperature in the ammonia decomposing apparatus 3 is preferably 400 to 800 ° C. When the temperature is 400 ° C. or higher, the decomposition of ammonia is promoted, and the content of unreacted ammonia in the decomposition gas decreases. Moreover, when the said temperature is 800 degrees C or less, degradation of an ammonia decomposition catalyst is suppressed and the amount of energy consumption is suppressed. From this viewpoint, the temperature in the ammonia decomposing apparatus 3 is more preferably 430 to 650 ° C., further preferably 450 to 550 ° C., and still more preferably 480 to 520 ° C.
  • the pressure in the ammonia decomposing apparatus 3 is preferably 0.0 to 1.0 MPaG (gauge pressure). If the pressure is 0.0 MPaG or more, atmospheric leakage into the apparatus is prevented. If the pressure is 1.0 MPaG or less, the ammonia decomposition reaction is an equilibrium reaction in which the number of molecules increases, and therefore the content of unreacted ammonia in the decomposition gas can be reduced. From this viewpoint, the pressure in the ammonia decomposing apparatus 3 is more preferably 0.2 to 0.8 MPaG, further preferably 0.3 to 0.7 MPaG, and still more preferably 0.45 to 0.55 MPaG.
  • the decomposition gas flowing out from the ammonia decomposition device 3 is cooled by flowing through the decomposition gas cooling device 4a (the heat exchanger 4 for decomposition gas cooling) by performing the ammonia decomposition step, This is a step of flowing through one of the plurality of ammonia adsorbers 5a and 5b (ammonia adsorber 5a) to adsorb and remove unreacted ammonia from the cracked gas to obtain the ammonia-removed gas.
  • the temperature in the ammonia adsorber 5a is preferably 10 to 100 ° C. When the temperature is 10 ° C.
  • the temperature in the ammonia adsorber 5a is more preferably 15 to 80 ° C, still more preferably 20 to 60 ° C, and still more preferably 25 to 50 ° C.
  • the pressure in the ammonia adsorber 5a is preferably 0.1 to 1.0 MPaG.
  • the pressure in the ammonia adsorber 5a is more preferably 0.15 to 0.8 MPaG, further preferably 0.2 to 0.6 MPaG, and still more preferably 0.25 to 0.5 MPaG.
  • the pressure P1 of the ammonia decomposing apparatus 3 and the pressure P2 in the ammonia adsorber 5a are P1 ⁇ P2 It is good. Thereby, it is not necessary to provide a pressurizing device between the ammonia decomposing apparatus 3 and the ammonia adsorber 5a, and the operating cost and the equipment cost are suppressed.
  • the pressure in the ammonia adsorber 5a is more preferably 0.2 to 0.8 MPaG, Preferably it is 0.25 to 0.6 MPaG, and more preferably 0.3 to 0.5 MPaG.
  • the post-ammonia removal gas flowing out from the one (ammonia adsorber 5a) of the plurality of ammonia adsorbers 5a and 5b is circulated through the hydrogen recovery device 6 to generate hydrogen from the post-ammonia removal gas. Are separated and discharged, and the remaining off-gas is discharged.
  • the temperature in the hydrogen recovery device 6 is preferably 10 to 60 ° C.
  • the pressure in the hydrogen recovery device 6 is preferably 0.1 to 1.0 MPaG.
  • Each of the pressure P1 of the ammonia decomposing apparatus 3, the pressure P2 of the ammonia adsorbing apparatus 5 (ammonia adsorber 5a), and the pressure P3 of the hydrogen recovery apparatus 6 is: P1 ⁇ P2 ⁇ P3 May be satisfied.
  • ammonia adsorber regeneration process In the ammonia adsorber regeneration step, the off gas flowing out of the hydrogen recovery device 6 is converted into the off gas heating device 4b (heat exchanger 4 for cracking gas cooling) and the remaining parts of the ammonia adsorbers 5a and 5b (for example, ammonia).
  • the adsorber 5a When the adsorber 5a is in use, it is a step of circulating the ammonia adsorber 5b) to regenerate the ammonia adsorber (ammonia adsorber 5b).
  • this regeneration step can be applied to at least one of a group of devices that are not performing ammonia adsorption.
  • the ammonia-removed gas supplied to the hydrogen recovery device 6 is removed from the ammonia decomposition gas (hydrogen, nitrogen, and unreacted ammonia) in the ammonia adsorption device 5. Therefore, the ammonia content in the off-gas flowing out from the hydrogen recovery device 6 is small. Therefore, by heating the off gas and then circulating it to the ammonia adsorber 5b, the ammonia adsorbed on the ammonia adsorbing material can be desorbed well and the ammonia adsorbing material can be regenerated. Further, while the ammonia adsorber 5b is being regenerated, ammonia can be adsorbed and removed from the cracked gas using the ammonia adsorber 5a.
  • the temperature in the ammonia adsorber 5b when desorbing ammonia is preferably 100 to 500 ° C.
  • the temperature in the ammonia adsorber 5b is more preferably 200 to 450 ° C., further preferably 300 to 430 ° C., and still more preferably 380 to 420 ° C.
  • the pressure in the ammonia adsorber 5b is preferably 0.0 to 0.5 MPaG.
  • the pressure in the ammonia adsorber 5b is more preferably 0.0 to 0.45 MPaG, further preferably 0.0 to 0.4 MPaG, and still more preferably 0.0 to 0.3 MPaG.
  • the adsorbent regeneration gas flowing out from the ammonia adsorber 5b is burned in the combustion reaction apparatus 7 to generate thermal energy, and this combustion gas is converted into the combustion gas flow path 24.
  • the ammonia decomposing apparatus 3 is heated by circulating it through the heating device 8 via
  • the adsorbent regeneration gas flowing out from the ammonia adsorber 5b contains ammonia desorbed from the ammonia adsorber 5b.
  • hydrogen contained in the off-gas without being recovered by the hydrogen recovery device 6 is also included. Therefore, a high-temperature combustion gas can be obtained by burning the adsorbent regeneration gas in the combustion reaction device 7.
  • the ammonia decomposition device 3 can be sufficiently heated by heating the ammonia decomposition device 3 using this high-temperature combustion gas.
  • an ammonia adsorption process is performed using part or all of the ammonia adsorber regenerated in the first operation (ammonia adsorber 5b), and used in the ammonia adsorption process in the first operation.
  • the ammonia adsorber regeneration step is performed on the ammonia adsorber (ammonia adsorber 5a).
  • the other steps, that is, the ammonia decomposition step, the hydrogen recovery step, and the heating step of the ammonia decomposition apparatus are the same as in the first operation.
  • a continuous operation can be performed by repeating the first operation and the second operation.
  • FIG. 2 is a schematic diagram of a hydrogen production apparatus 30 according to the second embodiment
  • FIG. 3 is a schematic diagram illustrating a first operation using the hydrogen production apparatus 30 of FIG.
  • the hydrogen production device 30 according to the present embodiment includes an ammonia supply device 31, an ammonia decomposition device 32, a decomposition gas cooling device 33a (a heat exchanger 33 for decomposition gas cooling), an ammonia adsorption device 34, a hydrogen recovery device 35, and heating.
  • Device 38 The ammonia adsorption device 34 has a plurality (two in this embodiment) of ammonia adsorbers 34a and 34b arranged in parallel.
  • the cracked gas cooling device 33a is a heat exchanger 33 for cracked gas cooling, and also serves as an off-gas heating device 33b.
  • the hydrogen production apparatus 30 includes an ammonia flow path 41 that connects the ammonia supply apparatus 31 and the ammonia decomposition apparatus 32, a decomposition gas flow path 42 that connects the ammonia decomposition apparatus 32 and the ammonia adsorption apparatus 34, an ammonia adsorption apparatus 34, and the like.
  • a post-ammonia-removed gas flow path 43 connected to the hydrogen recovery apparatus 35 and a hydrogen flow path 44 through which hydrogen separated by the hydrogen recovery apparatus 35 flows out are provided.
  • One end (upstream end) of the cracked gas channel 42 is connected to the ammonia decomposing device 32, the other end is branched to become branched channels 42a and 42b, and the branched channel 42a is connected to the ammonia adsorber 34a and branched.
  • the flow path 42b is connected to the ammonia adsorber 34b.
  • Each of the branch flow paths 42a and 42b has an open / close valve.
  • one end (upstream end) of the post-ammonia removal gas channel 43 is branched into branch channels 43a and 43b.
  • the branch channel 43a is connected to the ammonia adsorber 34a, and the branch channel 43b is an ammonia adsorber. 34b.
  • each of the branch flow paths 43a and 43b has an open / close valve.
  • the ammonia flow path 41 is provided with a flow rate control valve V1.
  • the hydrogen flow path 44 is provided with a pressure control valve V2.
  • An ammonia heating heat exchanger 51 and an ammonia auxiliary heating heat exchanger 52 are sequentially provided from the upstream side (ammonia supply device 31 side) downstream of the flow rate control valve V1 in the ammonia flow path 41. Yes.
  • the cracked gas cooling device 33a (the heat exchanger 33 for cracked gas cooling) and the ammonia are disposed upstream from the branch paths 42a and 42b in order from the upstream side (the ammonia cracking device 32 side).
  • a heat exchanger 51 for heating and a heat exchanger 54 for water heating are provided. That is, the ammonia flow path 41 and the cracked gas flow path 42 intersect, and the ammonia heating heat exchanger 51 is provided at the intersection. Therefore, ammonia flows through one of the tube side and the shell side of the heat exchanger 51 for heating the ammonia, and the cracked gas flows through the other, so that heat can be exchanged between the ammonia and the cracked gas.
  • the hydrogen production apparatus 30 is connected to the hydrogen recovery apparatus 35 via the connection flow path 61 connected to the hydrogen recovery apparatus 35 and the connection flow path 61.
  • an off-gas heating device 33b heat exchanger 33 for cooling the cracked gas.
  • the cracked gas cooling device 33a and the off-gas heating device 33b are the same heat exchanger (heat exchanger 33 for cracking gas cooling), and the cracked gas flowing out from the ammonia cracking device 32 and the hydrogen Heat exchange with the off-gas flowing out from the recovery device 35 is possible.
  • the hydrogen production device 30 has one end connected to an off-gas heating device 33b (cracked gas cooling heat exchanger 33) and the other end branched to be connected to the plurality of ammonia adsorbers 34a and 34b.
  • An off-gas passage 62 is provided that can regenerate the ammonia adsorber by supplying off-gas to the used ammonia adsorber. That is, one end (upstream end) of the off-gas channel 62 is connected to the off-gas heating device 33b (the heat exchanger 33 for cracking gas cooling), and the other end branches to branch channels 62a and 62b.
  • the flow path 62a is connected to the upstream side of the open / close valve in the branch flow path 43a of the post-ammonia removal gas flow path 43, and the branch flow path 62b is opened / closed in the branch flow path 43b of the post-ammonia removal gas flow path 43. It is connected upstream of the valve.
  • Each of these branch flow paths 43a and 43b has an open / close valve.
  • the hydrogen production apparatus 30 is connected to the plurality of ammonia adsorbers 34a and 34b, and an adsorbent regeneration gas flow path 63 through which the adsorbent regeneration gas flowing out from the used ammonia adsorber flows, and an adsorption A combustion reaction device 36 connected to the material regeneration gas flow path 63, combusts the adsorbent regeneration gas and flows out the combustion gas, one end connected to the combustion reaction device 36, and the other end to the heating device 38. And a combustion gas flow path 64 connected to the.
  • one end (upstream end) of the adsorbent regeneration gas flow path 63 is branched into a branch flow path 63a63b, and the branch flow path 63a is included in the branch flow path 42a of the cracked gas flow path 42 described above.
  • the branch channel 63b is connected to the downstream side of the on-off valve in the branch channel 42b of the cracked gas channel 42 described above. That is, the adsorbent regeneration gas channel 63 is connected to the ammonia adsorbers 34a and 34b via the branch channels 42a and 42b of the cracked gas channel 42 described above.
  • the adsorbent regeneration gas channel 63 is connected to the combustion reaction device 36 at the other end.
  • Each of these branch flow paths 63a and 63b has an open / close valve.
  • the oxygen supply device 37 is provided at a position downstream of the branch flow paths 63a and 63b in the adsorbent regeneration gas flow path 63.
  • the hydrogen production apparatus 30 has a circulation gas passage 71 having one end connected to the heating device 38 and the other end connected to the adsorbent regeneration gas passage 63.
  • An oxygen supply device 37 is connected to one or both of the adsorbent regeneration gas channel 63 and the circulation gas channel 71. In the present embodiment, the oxygen supply device 37 is connected to the adsorbent regeneration gas channel 63.
  • the hydrogen production device 30 has a heated water supply device 80.
  • the heating water supply device 80 includes a water flow path 81 that intersects the circulation gas flow path 71, a hot water heating heat exchanger 73 installed at an intersection of the circulation gas flow path 71 and the water flow path 81, And a shower head 82 provided at the downstream end 81 of the water flow path. Therefore, when the circulating gas flows through one of the tube side and the shell side of the hot water heating heat exchanger 73 and the hot water passes through the other, heat exchange between the circulating gas and the hot water is possible.
  • the hot water flowing through the path 81 is heated to become heated water.
  • the internal fluid existing from the water heating heat exchanger 54 to the hot water heating heat exchanger 73 is referred to as “hot water”, and the internal fluid downstream thereof is referred to as “heating water”.
  • the upstream position of the water flow channel 81 from the heat exchanger 73 for heating the hot water is upstream from the branching flow channels 42a and 42b of the cracked gas flow channel 42, and the heat exchange for heating the ammonia. It intersects with a position downstream of the vessel 51 to form an intersection, and a water heating heat exchanger 54 is installed at the intersection.
  • the cracked gas flows through one of the tube side and the shell side of the water heating heat exchanger 54, and water passes through the other, so that heat can be exchanged between the cracked gas and water.
  • a drain pot 74 for removing water in the circulation gas is provided downstream of the heat exchanger 73 for heating hot water in the circulation gas passage 71.
  • the circulating gas flow path 71 is an intersection where a first point located upstream of the hot water heating heat exchanger 73 and a second point located downstream of the drain pot 74 intersect.
  • the portion between the first point and the second point in the circulating gas channel 71 is an annular channel 71a, and a circulating gas heat exchanger 72 is installed at the intersection. Therefore, after the combustion gas (circulation gas) that has flowed from the combustion gas passage 64 into the circulation gas passage 71 via the heating device 38 passes through one of the tube side and the shell side of the circulation gas heat exchanger 72, It circulates through the circular flow path 71a of the circulation gas flow path 71, and then can pass the other of the tube side and the shell side of the circulation gas heat exchanger 72.
  • the annular channel 71a is provided with the above-described heat exchanger 73 for heating hot water, a drain pot 74, and a circulator 75 in this order from the upstream side.
  • a gas waste flow path 76 is branched from a position downstream of the drain pot 74 and upstream of the circulator 75 in the circulation gas flow path 71.
  • the gas disposal channel 76 may be branched from any position in the circulation gas channel 71.
  • bypass flow path 77 One end and the other end of the bypass flow path 77 are connected to a middle position of the combustion gas flow path 64 and a position upstream of the circulation gas heat exchanger 72 in the circulation gas flow path 71, respectively. ing.
  • the bypass passage 77 intersects with the ammonia passage 41 described above, and the ammonia auxiliary heating heat exchanger 52 is provided at the intersection. Therefore, ammonia flows through one of the tube side and the shell side of the ammonia auxiliary heating heat exchanger 52 and the combustion gas passes through the other, whereby the ammonia is heated by heat exchange between the ammonia and the combustion gas. be able to.
  • the cracked gas flow path 42 and the post-ammonia removal gas flow path 43 do not have a pressurizing device.
  • a pressurizing device may be provided in at least one of the cracked gas channel 42 and the gas channel 43 after ammonia removal.
  • the ammonia decomposition efficiency can be improved by lowering the pressure of the ammonia decomposing apparatus 32
  • the hydrogen recovery efficiency can be improved by increasing the pressure of the ammonia-removed gas flowing into the hydrogen recovering apparatus 35.
  • the combustion reaction device 36 is not particularly limited as long as it can combust hydrogen and ammonia, but it is preferable to contain a combustion catalyst from the viewpoint of efficient combustion.
  • a combustion catalyst from the viewpoint of efficient combustion.
  • the catalyst used in the combustion reaction apparatus include palladium and platinum. From the viewpoint of cost, palladium is preferable.
  • the oxygen supply device 37 There is no restriction
  • the oxygen supply device 37 is not particularly limited as long as it can supply oxygen to the adsorbent regeneration gas passage 63, and various compressors can be used.
  • Circulator There is no restriction
  • the heating water supply device 80 includes the water flow path 81, the shower head 82 provided at the tip of the water flow path 81, the water heating heat exchanger 54 provided in the water flow path 81, and the heat exchange for hot water heating. Instrument 73. With this device, heated water can be supplied to the ammonia supply device 31 to heat the internal ammonia.
  • the first operation hydrogen gas is produced using the ammonia adsorber 34a, and the ammonia adsorbent in the ammonia adsorber 34b is regenerated. That is, the first operation includes an ammonia decomposition process, an ammonia adsorption process, a hydrogen recovery process, an ammonia adsorber regeneration process, an ammonia decomposition apparatus heating process, a combustion gas circulation process, and a water heating process, which will be described later.
  • the ammonia decomposition step is a step in which ammonia from the ammonia supply device 31 is circulated to the ammonia decomposition device 32 to decompose the ammonia to generate the decomposition gas containing hydrogen, nitrogen and unreacted ammonia. That is, first, prior to the ammonia decomposition step, heated water is supplied from the shower head 82 of the heated water supply device 80 to the ammonia supply device 31 as described in the water heating step described later. Thereby, the liquid ammonia in the ammonia supply device 31 is vaporized and flows through the ammonia flow path 41.
  • the ammonia in the ammonia flow path 41 is adjusted in flow rate by the flow control valve V ⁇ b> 1, heated in the ammonia heating heat exchanger 51 and the ammonia auxiliary heating heat exchanger 52, and then circulates in the ammonia decomposition device 32.
  • the ammonia decomposition apparatus 32 ammonia is decomposed, and the decomposition gas containing hydrogen, nitrogen and unreacted ammonia is generated.
  • the temperature and pressure in the ammonia decomposition apparatus 32 are as described in the first embodiment.
  • ammonia adsorption process In the ammonia adsorption step, the cracked gas flowing out from the ammonia cracking device 32 is separated from the cracked gas cooling device 33a (heat exchanger 33 for cracked gas cooling) and the heat exchanger 51 for heating ammonia by performing the ammonia cracking step. And after flowing through the water heating heat exchanger 54 and cooling, it is passed through one of the ammonia adsorbers 34a and 34b (ammonia adsorber 34a) to adsorb and remove unreacted ammonia from the cracked gas. And obtaining the gas after removal of ammonia.
  • the temperature and pressure in the ammonia adsorber 34a are as described in the first embodiment.
  • the ammonia-removed gas flowing out from the one (ammonia adsorber 34a) of the plurality of ammonia adsorbers 34a and 34b is circulated to the hydrogen recovery device 35, and hydrogen is removed from the ammonia-removed gas. Are separated and discharged, and the remaining off-gas is discharged.
  • the temperature and pressure in the hydrogen recovery device 35 are as described in the first embodiment.
  • a hydrogen flow path 44 that is connected to the hydrogen recovery apparatus 35 and flows out hydrogen separated by the hydrogen recovery apparatus 35, and a pressure control valve V2 installed in the hydrogen flow path 44, Have.
  • the flow path from the ammonia supply apparatus 31 to the ammonia flow path 41, the ammonia decomposition apparatus 32, the decomposition gas flow path 42, the ammonia adsorption apparatus 34, and the post-ammonia removal gas flow path 43 includes: There are no heating devices other than heat exchangers, ie, energy supply type heaters.
  • each of the pressure P1 of the ammonia decomposing device 32, the pressure P2 of the ammonia adsorbing device 34 (ammonia adsorbing device 34a), and the pressure P3 of the hydrogen recovery device 35 is obtained.
  • P1 ⁇ P2 ⁇ P3 It is possible to control to a predetermined pressure range that satisfies the relationship.
  • ammonia adsorber regeneration process In the ammonia adsorber regeneration step, after the off-gas flowing out from the hydrogen recovery device 35 is heated by flowing through the off-gas heating device 33b (heat exchanger 33 for cracking gas cooling), the plurality of ammonia adsorbers In this step, the remaining part of 34a and 34b (for example, the ammonia adsorber 34b when the ammonia adsorber 34a is in use) is passed through to desorb ammonia to regenerate the ammonia adsorber (ammonia adsorber 34b).
  • the ammonia-removed gas supplied to the hydrogen recovery device 35 has ammonia removed from the ammonia decomposition gas (hydrogen, nitrogen and unreacted ammonia) in the upstream ammonia adsorption device 34. Therefore, the ammonia content in the off-gas flowing out from the hydrogen recovery device 35 is small. Therefore, by heating the off gas and then circulating it through the ammonia adsorber 34b, the ammonia adsorbed on the ammonia adsorbent can be satisfactorily desorbed and regenerated. Further, while the ammonia adsorber 34b is being regenerated, ammonia can be adsorbed and removed from the cracked gas using the ammonia adsorber 34a. The temperature and pressure in the ammonia adsorber 34b are as described in the first embodiment.
  • the adsorbent regeneration gas flowing out from the ammonia adsorber 34b is mixed with the oxygen-containing gas from the oxygen supply apparatus 37 and the circulating gas from the circulating gas passage 71 described later.
  • a mixed gas is used.
  • the mixed gas is supplied to the combustion reaction device 36 and burned to obtain a high-temperature combustion gas.
  • the combustion gas is circulated to the heating device 38 via the combustion gas flow path 64.
  • the mixed gas obtained by mixing the adsorbent regeneration gas, the circulating gas described later, and the oxygen-containing gas is burned by the combustion reaction device 36.
  • the mixed gas can be efficiently burned by adjusting the mixing amount of the circulating gas and the oxygen-containing gas to adjust the composition of the mixed gas.
  • the amount of gas exchanged with the ammonia decomposing device 32 can be increased, thereby improving the energy efficiency.
  • the temperature of the adsorbent regeneration gas supplied to the combustion reaction device 36, the temperature in the combustion reaction device 36, and the pressure in the combustion reaction device 36 are as described in the first embodiment.
  • combustion gas circulation process In the combustion gas circulation step, the combustion gas after heating the ammonia decomposing device 32 is circulated as a circulation gas to the circulation gas heat exchanger 72 and the hot water heating heat exchanger 73, and then cooled. The condensed water is removed by the drain pot 74, and then part or all of the cooled circulating gas is again passed through the circulating gas heat exchanger 72 and heated, together with the adsorbent regeneration gas and the oxygen-containing gas. This is a step of flowing through the combustion reaction device 36 and burning it. By cooling the circulating gas in this way, the volume of the circulating gas can be reduced, and thus the circulator 75 can be reduced in size.
  • circulation gas when a part of the circulating gas after heating the ammonia decomposing device 32 is circulated through the combustion reaction device 36 together with the adsorbent regeneration gas and burned, the remaining portion of the circulating gas is discarded as gas. What is necessary is just to discharge
  • circulation gas after the combustion gas passes through the ammonia decomposing apparatus, the gas flowing through the circulation gas flow path is referred to as circulation gas.
  • the mixed gas When the mixed gas is burned by the combustion reaction device 36, at least one of hydrogen and ammonia in the mixed gas reacts with oxygen to generate water. Therefore, in the present embodiment, after the water is removed by the drain pot 74 provided in the circulation gas flow path 71, the water is passed through the combustion reaction device 36 and burned together with the adsorbent regeneration gas.
  • the water heating step is a step of heating ammonia with heated water, and more specifically, after circulating water into the water heating heat exchanger 54 and the hot water heating heat exchanger 73 to make heated water, In this step, heated water is supplied from the shower head 82 to the ammonia supply device 31 to vaporize ammonia.
  • the temperature of the heated water flowing out from the shower head 82 is preferably 0 to 80 ° C., more preferably 10 to 60 ° C., still more preferably 20 to 50 ° C., and still more preferably 30 to 45 ° C.
  • FIG. 4 is a schematic diagram of a hydrogen production apparatus 30A according to the third embodiment. 4A and 4B, the hydrogen production apparatus 30 in FIGS. 2 and 3 does not circulate and use the combustion gas, that is, the combustion gas that has passed through the heating device 38 that heats the ammonia decomposition apparatus 32 is again subjected to a combustion reaction. It is modified so that it is discarded outside the hydrogen production apparatus without being returned to the apparatus 36, and the mixed gas of the adsorbent regeneration gas and the oxygen-containing gas is supplied to the combustion reaction apparatus 36 for combustion. That is, in the hydrogen production apparatus 30, the hydrogen production apparatus 30 A omits the circulation gas passage 71, the piping and devices installed in the circulation gas passage 71, and the oxygen supply device 37, and will be described later. And equipment.
  • the hydrogen production apparatus 30A in FIG. 4 includes a circulation gas flow path 71, a circulation gas heat exchanger 72, a hot water heating heat exchanger 73, a drain pot 74, a circulation machine 75, and a gas disposal flow path in the hydrogen production apparatus 30. 76 and the oxygen supply device 37 are not provided.
  • the hydrogen production apparatus 30 ⁇ / b> A has a heat recovery flow path 71 ⁇ / b> A having one end connected to the heating device 38 and the other end connected to the drain pot 74 ⁇ / b> A.
  • a gas disposal flow path 76A is connected to the drain pot 74A.
  • the heat recovery channel 71A intersects with the oxygen supply channel 37B, and an oxygen gas heating heat exchanger 72A is installed at the intersection.
  • the gas in the heat recovery passage 71A is passed through one of the tube side and the shell side of the oxygen gas heating heat exchanger 72A, and the gas in the oxygen supply passage 37B is passed through the other.
  • One end of the oxygen supply flow path 37B is connected to the oxygen supply device 37A, and the other end is connected to the downstream side of the branch flow path 63a63b in the adsorbent regeneration gas flow path 63.
  • a location downstream of the oxygen gas heating heat exchanger 72A in the heat recovery flow channel 71A intersects a location downstream of the water heating heat exchanger 54 in the water flow channel 81, A hot water heating heat exchanger 73A is installed at the intersection.
  • the gas in the heat recovery passage 71A is passed through one of the tube side and the shell side of the heat exchanger 73A for heating hot water, and the hot water in the water passage 81 is passed through the other.
  • the downstream end of the water channel 81 is connected to the shower head 82.
  • the internal fluid existing from the water heating heat exchanger 54 to the hot water heating heat exchanger 73A is referred to as “warm water”, and the internal fluid downstream thereof is referred to as “heating water”.
  • the configuration of the hydrogen production apparatus 30A other than the above is the same as that of the hydrogen production apparatus 30, and the same reference sign means the same apparatus or piping.
  • the first operation hydrogen gas is produced using the ammonia adsorber 34a, and the ammonia adsorbent in the ammonia adsorber 34b is regenerated. That is, the first operation includes an ammonia decomposition step, an ammonia adsorption step, a hydrogen recovery step, an ammonia adsorber regeneration step, an ammonia decomposition apparatus heating step, a heat recovery step, and a water heating step, which will be described later.
  • the heating process of the ammonia decomposing apparatus 32 first, the adsorbent regeneration gas flowing out from the ammonia adsorber 34b is mixed with the oxygen-containing gas from the oxygen supply apparatus 37A to form a mixed gas. Next, the mixed gas is supplied to the combustion reaction device 36 and burned to obtain a high-temperature combustion gas. Next, the ammonia decomposition apparatus 32 is heated by circulating the combustion gas through the combustion gas flow path 64 to the heating device 38. Thus, in the present embodiment, the mixed gas obtained by mixing the adsorbent regeneration gas and the oxygen-containing gas is burned by the combustion reaction device 36.
  • the mixed gas can be efficiently burned by adjusting the composition of the mixed gas by adjusting the amount of the oxygen-containing gas.
  • the temperature of the adsorbent regeneration gas supplied to the combustion reaction device 36, the temperature in the combustion reaction device 36, and the pressure in the combustion reaction device 36 are as described in the first embodiment.
  • the combustion gas after heating the ammonia decomposing device 32 is circulated through the oxygen gas heating heat exchanger 72A and the hot water heating heat exchanger 73A to be cooled, and then condensed by cooling. Is removed by the drain pot 74A and then discharged out of the system through the gas disposal flow path 76A.
  • the mixed gas When the mixed gas is burned by the combustion reaction device 36, at least one of hydrogen and ammonia in the mixed gas reacts with oxygen to generate water. Therefore, in the present embodiment, after the water is removed by the drain pot 74A provided in the heat recovery flow path 71A, the water is discharged out of the system.
  • the water heating step is a step of heating ammonia with heated water. More specifically, water is circulated through the water heating heat exchanger 54 and the hot water heating heat exchanger 73A to form heated water. In this step, heated water is supplied from the shower head 82 to the ammonia supply device 31 to vaporize ammonia.
  • the temperature of the heated water flowing out from the shower head 82 is preferably 0 to 80 ° C., more preferably 10 to 60 ° C., still more preferably 20 to 50 ° C., and still more preferably 30 to 45 ° C.
  • FIG. 5 is a schematic view of a hydrogen production apparatus 30B according to the fourth embodiment.
  • a hydrogen production apparatus 30B in FIG. 5 is obtained by providing an ammonia abatement facility 90 in the gas disposal flow path 76 in the hydrogen production apparatus 30 in FIGS.
  • the gas disposal channel 76 includes a first gas disposal channel 91 having one end connected to the annular channel 71a, and an auxiliary ammonia adsorption device 92 connected to the other end of the first gas disposal channel 91.
  • an ammonia detoxification facility 90 that is connected to the auxiliary ammonia adsorbing device 92 and includes a second gas disposal channel 93 through which the gas discharged from the auxiliary ammonia adsorbing device 92 circulates.
  • the auxiliary ammonia adsorption device 92 has a plurality (two) of auxiliary ammonia adsorbers 92a and 92b arranged in parallel.
  • the first gas disposal channel 91 has an upstream end connected to the annular channel 71a and a downstream end branched to form a plurality of (two) first branch channels 91a and 91b.
  • the ammonia adsorbers 92a and 92b are connected.
  • the upstream end of the second gas disposal channel 93 diverges into a plurality (two) of second branch channels 93a and 93b and is connected to the plurality of auxiliary ammonia adsorbers 92a and 92b.
  • the ammonia abatement equipment 90 further includes a regeneration gas supply device 94 for supplying regeneration gas to the plurality of auxiliary ammonia adsorbers 92a and 92b, one end connected to the regeneration gas supply device 94, and a plurality of other ends (2 A regenerative gas flow path 96 (96a, 96b) branched into the main branch) and connected to the second branch flow paths 93a, 93b, and provided in the regenerative gas flow path 96 to heat the regenerative gas.
  • a regenerative gas heater 95 for supplying regeneration gas to the plurality of auxiliary ammonia adsorbers 92a and 92b, one end connected to the regeneration gas supply device 94, and a plurality of other ends (2 A regenerative gas flow path 96 (96a, 96b) branched into the main branch) and connected to the second branch flow paths 93a, 93b, and provided in the regenerative gas flow path 96 to heat the regenerative gas.
  • the ammonia detoxification equipment 90 has a desorption gas flow path 97 (97a, 97b) in which one end is branched into a plurality (two) and connected to the first branch flow paths 91a, 91b, and the desorption gas flow path.
  • a waste gas combustion reactor 98 that is connected to the other end of 97, burns the adsorbent desorption gas discharged from each of the plurality of ammonia adsorbers 92a, 92b, and flows out the combustion gas, and the waste gas A return passage 100 for returning the combustion gas discharged from the combustion reactor 98 to the second gas disposal passage 93;
  • the return flow path 100 is provided with a waste gas cooler 99 that cools the combustion gas flowing out of the waste gas combustion reactor.
  • the ammonia abatement equipment 90 has a bypass channel 101 having one end connected to the first gas disposal channel 91 and the other end connected to the second gas disposal channel 93.
  • the ammonia detoxification step is a step of detoxifying ammonia by supplying the gas flowing through the gas disposal channel 76 to the ammonia detoxification facility 90.
  • ammonia is detoxified using the auxiliary ammonia adsorber 92a
  • ammonia is detoxified using the auxiliary ammonia adsorber 92b.
  • the gas flowing through the gas disposal flow path 76 is supplied to the auxiliary ammonia adsorber 92a through the first gas disposal flow path 91 and the first branch flow path 91a, and after the ammonia is detoxified, the second branch You may discharge
  • the gas flowing through the gas disposal flow path 76 is supplied to the auxiliary ammonia adsorber 92b via the first gas disposal flow path 91 and the first branch flow path 91b, and after detoxifying ammonia, the second branch is made. You may discharge
  • the operating conditions (temperature, pressure, etc.) in the auxiliary ammonia adsorber 92a or 92b are the same as the operating conditions in the ammonia adsorption process by the ammonia adsorbers 5a and 5b described above.
  • the ammonia detoxification step may be performed as necessary at the time of non-steady operation such as operation start operation or operation stop operation of the hydrogen production apparatus 30B. Thereby, the outflow of ammonia to the outside of the system can be reliably prevented.
  • the amount of ammonia in the gas discharged out of the system through the second gas disposal channel 93 is preferably 25 ppm by volume or less. Therefore, when the ammonia amount in the gas in the first gas disposal channel 91 exceeds 25 ppm by volume, it is preferable to perform the ammonia detoxification step.
  • the regeneration process of the auxiliary ammonia adsorber is a process of regenerating the auxiliary ammonia adsorbers 92a and 92b used in the ammonia detoxification process.
  • the oxygen-containing gas from the regeneration gas supply device 94 is heated by the regeneration gas heater 95 and then passed through the regeneration gas passages 96 and 96a and the second branch passage 93a. Then, the auxiliary ammonia adsorber 92a is supplied to regenerate the auxiliary ammonia adsorber 92a.
  • the gas discharged from the auxiliary ammonia adsorber 92a is supplied to the waste gas combustion reactor 98 through the first branch flow path 91a and the desorption gas flow paths 97a and 97, and the combustible gas in the gas is combusted.
  • the burned gas is cooled by the waste gas cooler 99 and then discharged through the return flow path 100 and the second gas waste flow path 93.
  • the oxygen-containing gas from the regeneration gas supply device 94 is heated by the regeneration gas heater 95 and then passed through the regeneration gas passages 96 and 96b and the second branch passage 93b.
  • the auxiliary ammonia adsorber 92b is supplied to regenerate the auxiliary ammonia adsorber 92b.
  • the gas discharged from the auxiliary ammonia adsorber 92b is supplied to the waste gas combustion reactor 98 via the first branch flow path 91b and the desorption gas flow paths 97b and 97, and the combustible gas in the gas is combusted.
  • the burned gas is cooled by the waste gas cooler 99 and then discharged through the return flow path 100 and the second gas waste flow path 93.
  • the regeneration conditions (temperature, pressure, etc.) of the auxiliary ammonia adsorber 92a or 92b are the same as the operating conditions in the ammonia adsorber regeneration process for regenerating the ammonia adsorbers 5a and 5b described above. is there.
  • the operating conditions (temperature, pressure, etc.) of the waste gas combustion reactor 98 are the same as the operating conditions of the combustion reaction device 36 described above.
  • bypass operation process As described above, it is preferable to carry out the ammonia detoxifying step as needed during the non-steady state, and it is preferable to carry out the bypass operation step during the steady state.
  • the gas flowing through the gas disposal channel 76 is supplied to the second gas disposal channel 93 via the first gas disposal channel 91 and the bypass channel 101, and the second gas disposal channel 93 is supplied. Gas is discharged from the passage 93. Thereby, the load to the ammonia abatement equipment 90 is reduced.
  • FIG. 6 is a schematic diagram of a hydrogen production apparatus 30C according to the fifth embodiment.
  • a hydrogen production apparatus 30C in FIG. 6 is different from the hydrogen production apparatus 30B in FIG. 5 in that an ammonia detoxification facility 90A is provided instead of the ammonia detoxification facility 90.
  • the ammonia abatement equipment 90A uses a combustion reaction device 36 instead of the waste gas combustion reactor 98 in the ammonia abatement equipment 90. That is, in the ammonia abatement equipment 90A, one end of the desorption gas pipe 97 is branched into a plurality (two: 97a, 97b) and connected to the first branch flow paths 91a, 91b.
  • the other end of the desorption gas pipe 97 is connected to a position between the connection position of the oxygen supply device 37 and the connection position of the combustion reaction device 36 in the adsorbent regeneration gas flow path 63. Further, the combustion gas passage 64 and the second gas disposal passage 93 are connected via a waste gas passage 104 provided with a waste gas cooler 103.
  • the regeneration process of the auxiliary ammonia adsorber is a process of regenerating the auxiliary ammonia adsorbers 92a and 92b used in the ammonia detoxification process.
  • the oxygen-containing gas from the regeneration gas supply device 94 is heated by the regeneration gas heater 95 and then supplemented via the regeneration gas channels 96 and 96a and the second branch channel 93a.
  • the ammonia adsorber 92a is supplied to regenerate the auxiliary ammonia adsorber 92a.
  • the gas discharged from the auxiliary ammonia adsorber 92a is supplied to the combustion reaction device 36 via the first branch flow path 91a, the desorption gas pipes 97a and 97, and the adsorbent regeneration gas flow path 63, and combustible gas in the gas. Is burned.
  • a part of the gas discharged from the combustion reaction device 36 is cooled by the waste gas cooler 103 and then discharged through the second gas waste flow path 93.
  • the oxygen-containing gas from the regeneration gas supply device 94 is heated by the regeneration gas heater 95 and then passed through the regeneration gas passages 96 and 96b and the second branch passage 93b.
  • the auxiliary ammonia adsorber 92b is supplied to regenerate the auxiliary ammonia adsorber 92b.
  • the gas discharged from the auxiliary ammonia adsorber 92b is supplied to the combustion reaction device 36 via the first branch flow path 91b, the desorption gas pipes 97b and 97, and the adsorbent regeneration gas flow path 63, and combustible gas in the gas. Is burned.
  • a part of the gas discharged from the combustion reaction device 36 is cooled by the waste gas cooler 103 and then discharged through the second gas waste flow path 93.
  • all of the gas discharged from the combustion reaction device 36 may be supplied to the heating device 38 via the combustion gas flow path 64. In that case, the waste gas flow path 104 provided with the waste gas cooler 103 may be omitted.
  • FIG. 7 is a schematic view of a hydrogen production apparatus 30D according to the sixth embodiment.
  • the hydrogen production apparatus 30D of FIG. 7 is provided with an ammonia abatement facility 90B in the hydrogen production apparatus 30A of FIG.
  • the ammonia abatement equipment 90B is the same as the ammonia abatement equipment 90 in the fourth embodiment.
  • ⁇ Hydrogen production method> the same hydrogen production method as in the third embodiment can be performed.
  • an ammonia detoxification step, an auxiliary ammonia adsorber regeneration step, and a bypass operation step can be performed. These steps are the same as those in the fourth embodiment.
  • FIG. 8 is a schematic view of a hydrogen production apparatus 30E according to the seventh embodiment.
  • the hydrogen production apparatus 30E in FIG. 8 is the same as the hydrogen production apparatus 30A in FIG.
  • the ammonia removal equipment 90C is the same as the ammonia removal equipment 90A in the fifth embodiment.
  • ⁇ Hydrogen production method> the same hydrogen production method as in the third embodiment can be performed.
  • an ammonia detoxification step, an auxiliary ammonia adsorber regeneration step, and a bypass operation step can be performed. These steps are the same as those in the fifth embodiment.

Abstract

A hydrogen production device comprising: an off-gas heating device that is connected to a hydrogen recovery device and heats off-gas; an off-gas flow path that has one end thereof connected to the off-gas heating device and the other end thereof connected to a plurality of ammonia adsorbers, said off-gas flow path supplying the off-gas to the used ammonia adsorbers to enable regeneration of said ammonia adsorbers; an adsorption-material regeneration gas flow path that is connected to the plurality of ammonia adsorbers, and through which adsorption-material regeneration gas flowing out from the used ammonia adsorbers flows; a combustion reaction device that is connected to the adsorption-material regeneration gas flow path, and combusts the adsorption-material regeneration gas to output combustion gas; and a combustion gas flow path that has one end thereof connected to the combustion reaction device, and the other end thereof connected to a heater that heats an ammonia decomposition device.

Description

水素製造装置及び水素製造方法Hydrogen production apparatus and hydrogen production method
 本発明は、アンモニアから水素ガスを製造する水素製造装置及び水素製造方法に関する。 The present invention relates to a hydrogen production apparatus and a hydrogen production method for producing hydrogen gas from ammonia.
 水素ガスは、究極のクリーンエネルギー源として期待されている。例えば、水素ガスは燃料電池用の燃料ガスとして用いられる。
 この水素ガスの原料として、アンモニアを用いることも行われている。アンモニアは、水素の貯蔵及び輸送を容易にする化学物質(水素キャリア)として注目されている。アンモニアは室温、1MPa以下で圧縮することで容易に液化する。液体アンモニアは重量水素密度が17.8質量%と極めて高く、体積水素密度が液体水素の1.5~2.5倍という非常に優れた水素キャリアである。
Hydrogen gas is expected as the ultimate clean energy source. For example, hydrogen gas is used as a fuel gas for fuel cells.
Ammonia is also used as a raw material for this hydrogen gas. Ammonia attracts attention as a chemical substance (hydrogen carrier) that facilitates storage and transport of hydrogen. Ammonia is easily liquefied by compression at room temperature and 1 MPa or less. Liquid ammonia is a very excellent hydrogen carrier having a very high weight hydrogen density of 17.8% by mass and a volume hydrogen density of 1.5 to 2.5 times that of liquid hydrogen.
 ところで、水素ガスが不純物として未分解のアンモニアを含有すると、アンモニアが燃料電池内の電解質膜や触媒層に悪影響を与える。そのため、アンモニアを分解してアンモニア分解ガスを得た後、当該分解ガスをアンモニア吸着器へ導入してアンモニアを除去することが行われている。 By the way, when hydrogen gas contains undecomposed ammonia as an impurity, the ammonia adversely affects the electrolyte membrane and the catalyst layer in the fuel cell. Therefore, after ammonia is decomposed to obtain ammonia decomposition gas, the decomposition gas is introduced into an ammonia adsorber to remove ammonia.
 例えば、特許文献1には、アンモニアをアンモニア分解装置に供給して水素(H)と窒素(N)に分解した後、アンモニア吸着器に供給して未反応アンモニアを除去する技術が開示されている。また、特許文献1には、アンモニア吸着器で未反応アンモニアを除去した後のガスから水素以外のガスを分離することで、水素として用いることができることも記載されている。更に特許文献1には、複数のアンモニア吸着器を並列に設置し、一のアンモニア吸着器がアンモニアを吸着する時に他のアンモニア吸着器がアンモニアの脱着を行うことを繰り返すこと(スイッチング方式)も記載されている。 For example, Patent Document 1 discloses a technique in which ammonia is supplied to an ammonia decomposition apparatus and decomposed into hydrogen (H 2 ) and nitrogen (N 2 ), and then supplied to an ammonia adsorber to remove unreacted ammonia. ing. Further, Patent Document 1 also describes that it can be used as hydrogen by separating a gas other than hydrogen from the gas after removing unreacted ammonia with an ammonia adsorber. Further, Patent Document 1 also describes that a plurality of ammonia adsorbers are installed in parallel, and when one ammonia adsorber adsorbs ammonia, another ammonia adsorber repeats desorption of ammonia (switching method). Has been.
特開2015-059075号公報Japanese Patent Laying-Open No. 2015-059075
 特許文献1には、アンモニア吸着器で未反応アンモニアを除去した後のガスから水素を分離することで、水素を製造することが記載されている。しかし、水素を除去した後のオフガスの活用方法に関する具体的な記載はない。
 本発明は、当該オフガスを有効利用し得る水素製造装置及び水素製造方法に関する。
Patent Document 1 describes that hydrogen is produced by separating hydrogen from a gas after removing unreacted ammonia with an ammonia adsorber. However, there is no specific description regarding the method of utilizing off-gas after removing hydrogen.
The present invention relates to a hydrogen production apparatus and a hydrogen production method that can effectively use the off-gas.
 本発明者等は鋭意検討した結果、アンモニア分解ガスから未反応アンモニアを除去した後に更に水素を分離した後のオフガスを、アンモニア吸着器内に収納されたアンモニア吸着剤の再生に用いると共に、脱着したアンモニアを含む当該オフガスを燃焼させて燃焼熱を利用することにより、当該オフガスを有効利用し得ることを見出した。
 すなわち本発明は、以下の[1]~[25]に関する。
As a result of intensive studies, the present inventors have used the off-gas after further removing hydrogen after removing unreacted ammonia from the ammonia decomposition gas for regenerating the ammonia adsorbent stored in the ammonia adsorber and desorbing it. It has been found that the off gas can be effectively used by burning the off gas containing ammonia and utilizing the combustion heat.
That is, the present invention relates to the following [1] to [25].
[1]アンモニア供給装置と、前記アンモニア供給装置に接続されており、アンモニアを分解して、水素、窒素及び未反応アンモニアを含有する分解ガスを生成するアンモニア分解装置と、前記アンモニア分解装置に接続されており、前記分解ガスを冷却する分解ガス冷却装置と、前記分解ガス冷却装置に接続されており、前記分解ガスから未反応アンモニアを吸着除去してアンモニア除去後ガスを流出するアンモニア吸着装置と、前記アンモニア吸着装置に接続されており、前記アンモニア除去後ガスから水素を分離して流出すると共に、残りのオフガスを排出する水素回収装置と、前記アンモニア分解装置を加熱する加熱機器と、を有しており、前記アンモニア吸着装置は、並列に配設された複数のアンモニア吸着器を有しており、前記分解ガス冷却装置からの分解ガスを前記複数のアンモニア吸着器のうち任意の一部に供給可能とされている水素製造装置であって、前記水素回収装置に接続されており、前記オフガスを加熱するオフガス加熱装置と、一端が前記オフガス加熱装置に接続され、他端が前記複数のアンモニア吸着器に接続されており、前記オフガスを使用済みのアンモニア吸着器に供給してアンモニア吸着器を再生可能なオフガス流路と、複数の前記アンモニア吸着器に接続されており、前記使用済みのアンモニア吸着器から流出する吸着材再生ガスを流通する吸着材再生ガス流路と、前記吸着材再生ガス流路に接続されており、前記吸着材再生ガスを燃焼して燃焼ガスを流出する燃焼反応装置と、一端が前記燃焼反応装置に接続され、他端が前記加熱機器に接続された燃焼ガス流路と、を有する水素製造装置。 [1] Ammonia supply device, connected to the ammonia supply device, an ammonia decomposition device that decomposes ammonia to generate a cracked gas containing hydrogen, nitrogen and unreacted ammonia, and connected to the ammonia decomposition device A cracked gas cooling device that cools the cracked gas; and an ammonia adsorber that is connected to the cracked gas cooler, adsorbs and removes unreacted ammonia from the cracked gas, and flows out the gas after removing ammonia. A hydrogen recovery device that is connected to the ammonia adsorption device, separates and flows out hydrogen from the gas after removal of ammonia, and discharges the remaining off-gas; and a heating device that heats the ammonia decomposition device. The ammonia adsorption device has a plurality of ammonia adsorbers arranged in parallel. A hydrogen production device capable of supplying cracked gas from a gas cooling device to any part of the plurality of ammonia adsorbers, the off gas being connected to the hydrogen recovery device and heating the off gas An off-gas capable of regenerating an ammonia adsorber by supplying the off-gas to a used ammonia adsorber, one end of which is connected to the off-gas heating device and the other end connected to the plurality of ammonia adsorbers Connected to the plurality of ammonia adsorbers, and connected to the adsorbent regeneration gas flow path through which the adsorbent regeneration gas flowing out of the used ammonia adsorber flows, and to the adsorbent regeneration gas flow path A combustion reaction device that burns the adsorbent regeneration gas and flows out the combustion gas, one end connected to the combustion reaction device, and the other end connected to the heating device. And a combustion gas flow path.
 当該水素製造装置によると、アンモニアから水素を製造できると共に、水素回収装置から流出するオフガスを、アンモニア吸着器内のアンモニア吸着材の再生用ガスとして有効利用できる。また、水素回収装置から流出するオフガスは、窒素及び水素を含んでおり、また、当該オフガスをアンモニア吸着材の再生に利用した後の吸着材再生ガスは、窒素、水素及びアンモニアを含んでいる。これら窒素、水素及びアンモニアを含む吸着材再生ガスを燃焼反応装置で燃焼させることにより、高温の燃焼ガスを得ることができ、当該高温の燃焼ガスを用いてアンモニア分解装置を十分に加熱することができる。 According to the hydrogen production apparatus, hydrogen can be produced from ammonia, and off gas flowing out from the hydrogen recovery apparatus can be effectively used as a regeneration gas for the ammonia adsorbent in the ammonia adsorber. The off gas flowing out of the hydrogen recovery device contains nitrogen and hydrogen, and the adsorbent regeneration gas after the off gas is used for regeneration of the ammonia adsorbent contains nitrogen, hydrogen and ammonia. By burning the adsorbent regeneration gas containing nitrogen, hydrogen and ammonia in a combustion reactor, a high-temperature combustion gas can be obtained, and the ammonia decomposition apparatus can be sufficiently heated using the high-temperature combustion gas. it can.
[2]前記分解ガス冷却装置と前記オフガス加熱装置とは同一の熱交換器であり、前記アンモニア分解装置から流出する前記分解ガスと前記水素回収装置から流出する前記オフガスとの間で熱交換可能とされている、上記[1]に記載の水素製造装置。
 この熱交換器により、分解ガスの熱をオフガスに授与することができ、熱効率が向上する。
[2] The cracked gas cooling device and the offgas heating device are the same heat exchanger, and heat exchange is possible between the cracked gas flowing out from the ammonia cracking device and the offgas flowing out from the hydrogen recovery device. The hydrogen production apparatus according to the above [1].
With this heat exchanger, the heat of the cracked gas can be imparted to the off-gas, and the thermal efficiency is improved.
[3]一端が前記加熱機器に接続され、他端が前記吸着材再生ガス流路に接続された循環ガス流路を有する、上記[1]又は[2]に記載の水素製造装置。
 当該循環ガス流路を用いることにより、アンモニア分解装置の加熱に用いられた燃焼ガスの一部又は全部を、前述の吸着材再生ガスと混合して燃焼させて、再度アンモニア分解装置の加熱に利用することができる。これにより、アンモニア分解装置に供給する燃焼ガスの流量を多くし、これにより熱効率を向上させることができる。
 また、燃焼反応装置から流出する燃焼ガスは、燃焼済みであるため、水素、アンモニア等の可燃性ガスの含有量は少ない。そして、当該燃焼ガスを、アンモニア分解装置の加熱に使用した後に循環ガスとして利用し、前述の吸着材再生ガスと混合して燃焼反応装置で燃焼させる。これにより、燃焼反応装置に供給されるガスを水素の爆発範囲に入らないように調整することができる。
[3] The hydrogen production apparatus according to the above [1] or [2], which has a circulating gas passage having one end connected to the heating device and the other end connected to the adsorbent regeneration gas passage.
By using the circulation gas flow path, a part or all of the combustion gas used for heating the ammonia decomposing apparatus is mixed with the adsorbent regeneration gas and burned, and again used for heating the ammonia decomposing apparatus. can do. Thereby, the flow volume of the combustion gas supplied to an ammonia decomposition apparatus can be increased, and, thereby, thermal efficiency can be improved.
Further, since the combustion gas flowing out from the combustion reaction apparatus is already burned, the content of combustible gas such as hydrogen and ammonia is small. Then, after the combustion gas is used for heating the ammonia decomposition apparatus, it is used as a circulation gas, mixed with the aforementioned adsorbent regeneration gas, and burned in the combustion reaction apparatus. Thereby, it can adjust so that the gas supplied to a combustion reaction apparatus may not enter into the explosion range of hydrogen.
[4]前記吸着材再生ガス流路及び前記循環ガス流路の一方又は双方に、酸素供給装置が接続されている、上記[3]に記載の水素製造装置。
 当該酸素供給装置から酸素含有ガスを供給し、前述の吸着材再生ガス、循環ガス、及び酸素含有ガスを混合して組成を調整後の混合ガスを燃焼反応装置に供給することにより、燃焼反応装置内においてガスをほぼ完全燃焼させることができる。
[4] The hydrogen production apparatus according to [3], wherein an oxygen supply device is connected to one or both of the adsorbent regeneration gas flow path and the circulation gas flow path.
Combustion reaction apparatus by supplying oxygen-containing gas from the oxygen supply apparatus and mixing the adsorbent regeneration gas, circulation gas, and oxygen-containing gas described above and supplying the mixed gas after adjusting the composition to the combustion reaction apparatus The gas can be burned almost completely inside.
[5]前記循環ガス流路と交差する水流路と、前記循環ガス流路と前記水流路との交差点に設置された温水加熱用熱交換器と、前記水流路の下流端に設けられた加熱水供給装置とを有し、該加熱水供給装置から流出した加熱水を用いて前記アンモニア供給装置を加温する、上記[3]又は[4]に記載の水素製造装置。
 当該加熱水供給装置から前述のアンモニア供給装置に温水を放出することにより、アンモニア供給装置内の液体アンモニアを気化させることができる。
[5] A water channel intersecting with the circulation gas channel, a heat exchanger for warm water heating installed at an intersection of the circulation gas channel and the water channel, and heating provided at a downstream end of the water channel The hydrogen production apparatus according to [3] or [4], wherein the ammonia supply apparatus is heated using heated water that has flowed out of the heated water supply apparatus.
By discharging warm water from the heated water supply device to the above-described ammonia supply device, liquid ammonia in the ammonia supply device can be vaporized.
[6]前記循環ガス流路のうち前記温水加熱用熱交換器よりも下流に、前記循環ガス流路を流通する循環ガス中の水を除去するためのドレンポットを有する、上記[5]に記載の水素製造装置。
 当該ドレンポットで水を除去することで、燃焼反応装置で発生した水分を循環ガス系内から排出できる。
[6] The above [5], further comprising a drain pot for removing water in the circulating gas flowing through the circulating gas flow channel downstream of the hot water heating heat exchanger in the circulating gas flow channel. The hydrogen production apparatus as described.
By removing water with the drain pot, water generated in the combustion reaction device can be discharged from the circulating gas system.
[7]前記循環ガス流路のうち前記温水加熱用熱交換器よりも上流に位置する第1ポイントと前記ドレンポットよりも下流に位置する第2ポイントとが交差して交差点となっており、前記循環ガス流路のうち前記第1ポイントと前記第2ポイントとの間の部分が環状流路となっており、前記交差点に循環ガス用熱交換器が設置されている、上記[6]に記載の水素製造装置。
[8]前記循環ガス流路たとえば環状流路のうち前記ドレンポットよりも下流に、循環ガスの循環機を有する、上記[6]又は[7]に記載の水素製造装置。
[7] The first point located upstream from the heat exchanger for heating hot water and the second point located downstream from the drain pot in the circulating gas flow path intersect to form an intersection. [6] In the above [6], a portion between the first point and the second point in the circulating gas channel is an annular channel, and a circulating gas heat exchanger is installed at the intersection. The hydrogen production apparatus as described.
[8] The hydrogen production apparatus according to [6] or [7], wherein a circulating gas circulator is provided downstream of the drain pot in the circulating gas channel, for example, an annular channel.
[9]前記循環ガス流路たとえば前記環状流路の途中に、前記循環ガスの一部又は全部を排出するためのガス廃棄流路が接続されている、上記[7]又は[8]に記載の水素製造装置。
 当該ガス廃棄流路から、循環ガスの一部又は全部を排出することにより、燃焼反応装置に供給されるガスの組成及び流量を調整することができる。
[9] The above [7] or [8], wherein a gas disposal channel for discharging a part or all of the circulating gas is connected to the circulating gas channel, for example, the annular channel. Hydrogen production equipment.
By discharging part or all of the circulating gas from the gas disposal flow path, the composition and flow rate of the gas supplied to the combustion reaction device can be adjusted.
[10]前記ガス廃棄流路が、一端が前記環状流路に接続された第1のガス廃棄流路と、前記第1のガス廃棄流路の他端に接続された補助アンモニア吸着装置と、前記補助アンモニア吸着装置に接続され、前記補助アンモニア吸着装置から排出されるガスを流通させる第2のガス廃棄流路と、を備えたアンモニア除害設備を有する、上記[9]に記載の水素製造装置。
 アンモニア除害装置でガス中のアンモニアを除害することにより、より環境負荷の少ないガスを系外に排出させることができる。
[10] The gas waste flow path includes a first gas waste flow path having one end connected to the annular flow path, an auxiliary ammonia adsorption device connected to the other end of the first gas waste flow path, The hydrogen production according to [9], further comprising an ammonia detoxification facility that is connected to the auxiliary ammonia adsorption device and includes a second gas disposal channel that distributes the gas discharged from the auxiliary ammonia adsorption device. apparatus.
By detoxifying ammonia in the gas with the ammonia detoxifying device, it is possible to discharge gas with less environmental load out of the system.
[11]前記補助アンモニア吸着装置が、並列に配設された複数の補助アンモニア吸着器を有しており、前記第1のガス廃棄流路は、上流端が前記環状流路に接続され、下流端が分岐して第1分岐流路となって前記複数の補助アンモニア吸着器に接続されており、前記第2のガス廃棄流路の上流端は、分岐して第2分岐流路となって前記複数の補助アンモニア吸着器に接続されており、前記アンモニア除害設備は、更に、前記複数の補助アンモニア吸着器に再生ガスを供給する再生ガス供給装置、一端が前記再生ガス供給装置に接続され、他端が分岐して前記第2分岐流路に接続された再生ガス流路、前記再生ガス流路の途中に設けられており、前記再生ガスを加熱する再生ガス加熱器、一端が分岐して前記第1分岐流路に接続されている脱着ガス流路、前記脱着ガス流路の他端に接続されており、前記複数のアンモニア吸着器の各々から排出された前記吸着材脱着ガスを燃焼して燃焼ガスを流出する廃ガス燃焼反応器、及び前記廃ガス燃焼反応器から排出された燃焼ガスを前記第2のガス廃棄流路に返送する返送流路、を有するアンモニア除害設備である、上記[10]に記載の水素製造装置。
[12]前記廃ガス燃焼反応器が、前記燃焼反応装置である、上記[11]に記載の水素製造装置。
[13]前記返送流路に設けられており、前記廃ガス燃焼反応器から流出された前記燃焼ガスを冷却する、廃ガス冷却器を有する、上記[11]又は[12]に記載の水素製造装置。
[14]前記水素回収装置に接続されており、前記水素回収装置で分離した水素を流出する水素流路と、前記水素流路に設置された圧力制御弁と、を有する、上記[1]~[13]のいずれかに記載の水素製造装置。
 当該圧力制御弁により、水素回収装置、アンモニア吸着装置、及びアンモニア分解装置の圧力を、調整することができる。
[11] The auxiliary ammonia adsorbing device has a plurality of auxiliary ammonia adsorbers arranged in parallel, and the first gas disposal channel has an upstream end connected to the annular channel, and a downstream side. The end branches to form a first branch flow path and is connected to the plurality of auxiliary ammonia adsorbers, and the upstream end of the second gas waste flow path branches to become a second branch flow path. The ammonia abatement equipment is further connected to the plurality of auxiliary ammonia adsorbers, and further includes a regeneration gas supply device for supplying regeneration gas to the plurality of auxiliary ammonia adsorbers, and one end connected to the regeneration gas supply device. A regeneration gas passage connected at the other end and connected to the second branch passage; a regeneration gas heater for heating the regeneration gas; and one end branched. Connected to the first branch flow path. A waste gas combustion reactor that is connected to the other end of the gas flow path and the desorption gas flow path and burns the adsorbent desorption gas discharged from each of the plurality of ammonia adsorbers to flow out the combustion gas; The hydrogen production apparatus according to the above [10], which is an ammonia detoxification facility having a return passage for returning the combustion gas discharged from the waste gas combustion reactor to the second gas disposal passage.
[12] The hydrogen production apparatus according to [11], wherein the waste gas combustion reactor is the combustion reaction apparatus.
[13] The hydrogen production according to [11] or [12], further including a waste gas cooler that is provided in the return flow path and cools the combustion gas flowing out of the waste gas combustion reactor. apparatus.
[14] The above [1] to [1], which are connected to the hydrogen recovery device, and have a hydrogen flow channel for flowing out hydrogen separated by the hydrogen recovery device, and a pressure control valve installed in the hydrogen flow channel. [13] The hydrogen production apparatus according to any one of [13].
The pressure of the hydrogen recovery device, the ammonia adsorption device, and the ammonia decomposition device can be adjusted by the pressure control valve.
[15]前記アンモニア供給装置と前記アンモニア分解装置とを接続するアンモニア流路と、前記アンモニア流路に設置された流量制御弁と、を有する上記[1]~[14]のいずれかに記載の水素製造装置。
 当該流量制御弁により、アンモニア供給装置からアンモニア分解装置に供給するアンモニア流量を制御することができる。
[15] The method according to any one of [1] to [14], further comprising: an ammonia flow channel connecting the ammonia supply device and the ammonia decomposition device; and a flow rate control valve installed in the ammonia flow channel. Hydrogen production equipment.
The flow rate control valve can control the flow rate of ammonia supplied from the ammonia supply device to the ammonia decomposition device.
[16]前記アンモニア流路に設置されたアンモニア加熱用熱交換器と、前記アンモニア分解装置と前記アンモニア吸着装置とを接続する分解ガス流路と、を有しており、前記分解ガス流路の途中が前記アンモニア加熱用熱交換器に流通しており、前記分解ガス流路のうち前記アンモニア加熱用熱交換器の設置位置よりも上流側に、前記分解ガス冷却装置が設置されている、上記[15]に記載の水素製造装置。 [16] An ammonia heating heat exchanger installed in the ammonia flow path, and a decomposition gas flow path connecting the ammonia decomposition apparatus and the ammonia adsorption apparatus, The middle is circulating in the heat exchanger for heating ammonia, the cracked gas cooling device is installed upstream of the installation position of the heat exchanger for heating ammonia in the cracked gas flow path, [15] The hydrogen production apparatus according to [15].
[17]前記アンモニア分解装置と前記複数のアンモニア吸着器とを接続する分解ガス流路と、前記複数のアンモニア吸着器と前記水素回収装置とを接続するアンモニア除去後ガス流路と、を有しており、前記分解ガス流路の途中に前記分解ガス冷却装置が設置されており、前記分解ガス流路及び前記アンモニア除去後ガス流路が加圧装置を有しない、上記[1]~[16]のいずれかに記載の水素製造装置。
 このように、加圧装置を有しないため、設備コスト及び運転コストが低減される。
[17] A decomposition gas flow path connecting the ammonia decomposing apparatus and the plurality of ammonia adsorbers, and a post-ammonia removal gas flow path connecting the plurality of ammonia adsorbers and the hydrogen recovery apparatus. [1] to [16], wherein the cracked gas cooling device is installed in the middle of the cracked gas flow path, and the cracked gas flow path and the post-ammonia removal gas flow path do not have a pressurizing device. ] The hydrogen production apparatus in any one of.
Thus, since it does not have a pressurizing apparatus, an installation cost and an operating cost are reduced.
[18]上記[1]~[17]のいずれかに記載の水素製造装置を用いた水素製造方法であって、前記アンモニア供給装置からの前記アンモニアを前記アンモニア分解装置に流通させ、アンモニアを分解して、水素、窒素及び未反応アンモニアを含有する前記分解ガスを生成するアンモニア分解工程、前記アンモニア分解装置から流出する前記分解ガスを、前記分解ガス冷却装置に流通させて冷却した後、前記複数のアンモニア吸着器の一部に流通させて、前記分解ガスから未反応アンモニアを吸着除去して前記アンモニア除去後ガスを得るアンモニア吸着工程、前記複数のアンモニア吸着器の前記一部から流出する前記アンモニア除去後ガスを、前記水素回収装置に流通させて、前記アンモニア除去後ガスから水素を分離して流出すると共に、残りのオフガスを排出する水素回収工程、前記水素回収装置から流出する前記オフガスを、前記オフガス加熱装置、及び前記複数のアンモニア吸着器の残部のうちの一部又は全部に流通させてアンモニア吸着器を再生させるアンモニア吸着器再生工程、並びに、前記アンモニア吸着器から流出する吸着材再生ガスを、前記燃焼反応装置、前記燃焼ガス流路、及び前記加熱機器に流通させて前記アンモニア分解装置を加熱するアンモニア分解装置の加熱工程、を実施する、水素製造方法。 [18] A hydrogen production method using the hydrogen production apparatus according to any one of [1] to [17], wherein the ammonia from the ammonia supply apparatus is circulated to the ammonia decomposition apparatus to decompose ammonia. An ammonia decomposition step for generating the cracked gas containing hydrogen, nitrogen and unreacted ammonia, the cracked gas flowing out from the ammonia cracking device is circulated through the cracked gas cooling device, and then cooled. An ammonia adsorption step of passing through a part of the ammonia adsorber to adsorb and remove unreacted ammonia from the cracked gas to obtain the ammonia-removed gas, and the ammonia flowing out from the part of the plurality of ammonia adsorbers When the removed gas is allowed to flow through the hydrogen recovery device and hydrogen is separated from the ammonia-removed gas and flows out. A hydrogen recovery step for discharging the remaining off-gas, and the off-gas flowing out from the hydrogen recovery device is circulated through a part or all of the remaining portions of the off-gas heating device and the plurality of ammonia adsorbers. An ammonia adsorber regeneration step for regenerating the adsorbent, and an adsorbent regeneration gas flowing out from the ammonia adsorber is passed through the combustion reaction device, the combustion gas flow path, and the heating device to heat the ammonia decomposition device A method for producing hydrogen, comprising performing a heating step of an ammonia decomposition apparatus.
 当該水素製造装置によると、アンモニアから水素を製造できると共に、水素回収装置から流出するオフガスを、アンモニア吸着器内のアンモニア吸着材の再生用ガスとして有効利用できる。また、水素回収装置から流出するオフガスは、窒素及び水素を含んでおり、また、当該オフガスをアンモニア吸着材の再生に利用した後の吸着材再生ガスは、窒素、水素及びアンモニアを含んでいる。これら窒素、水素及びアンモニアを含む吸着材再生ガスを燃焼反応装置で燃焼させることにより、高温の燃焼ガスを得ることができ、当該高温の燃焼ガスを用いてアンモニア分解装置を十分に加熱することができる。 According to the hydrogen production apparatus, hydrogen can be produced from ammonia, and off gas flowing out from the hydrogen recovery apparatus can be effectively used as a regeneration gas for the ammonia adsorbent in the ammonia adsorber. The off gas flowing out of the hydrogen recovery device contains nitrogen and hydrogen, and the adsorbent regeneration gas after the off gas is used for regeneration of the ammonia adsorbent contains nitrogen, hydrogen and ammonia. By burning the adsorbent regeneration gas containing nitrogen, hydrogen and ammonia in a combustion reactor, a high-temperature combustion gas can be obtained, and the ammonia decomposition apparatus can be sufficiently heated using the high-temperature combustion gas. it can.
[19]前記オフガス加熱装置は、前記分解ガス冷却装置であり、前記分解ガス冷却装置により、前記分解ガスの熱を前記オフガスに授与して前記オフガスを加熱する、上記[18]に記載の水素製造方法。
 この熱交換器により、分解ガスの熱をオフガスに授与することができ、熱効率が向上する。
[19] The hydrogen according to [18], wherein the offgas heating device is the cracked gas cooling device, and the cracked gas cooling device imparts heat of the cracked gas to the offgas to heat the offgas. Production method.
With this heat exchanger, the heat of the cracked gas can be imparted to the off-gas, and the thermal efficiency is improved.
[20]一端が前記加熱機器に接続され、他端が前記吸着材再生ガス流路に接続された循環ガス流路を有しており、前記燃焼ガスを、前記燃焼ガス流路、前記加熱機器及び前記循環ガス流路を介して前記吸着材再生ガス流路に流通させて、前記吸着材再生ガスとの混合ガスとし、前記混合ガスを前記燃焼反応装置に流通させて燃焼させる、上記[18]又は[19]に記載の水素製造方法。
 当該循環ガス流路を用いることにより、アンモニア分解装置の加熱に用いられた燃焼ガスの一部又は全部を、前述の吸着材再生ガスと混合して燃焼させて、再度アンモニア分解装置の加熱に利用することができる。これにより、アンモニア分解装置に供給する燃焼ガスの流量を多くし、これにより熱効率を向上させることができる。
 また、燃焼反応装置から流出する燃焼ガスは、燃焼済みであるため、水素、アンモニア等の可燃性ガスの含有量は少ない。そして、当該燃焼ガスを、アンモニア分解装置の加熱に使用した後に循環ガスとして利用し、前述の吸着材再生ガスと混合して燃焼反応装置で燃焼させる。これにより、燃焼反応装置に供給されるガスを水素の爆発範囲に入らないように調整することができる。
[20] A circulation gas flow path having one end connected to the heating apparatus and the other end connected to the adsorbent regeneration gas flow path, and the combustion gas is converted into the combustion gas flow path and the heating apparatus. And the adsorbent regeneration gas passage through the circulation gas passage to form a mixed gas with the adsorbent regeneration gas, and the mixed gas is passed through the combustion reaction device and burned. ] Or the hydrogen production method according to [19].
By using the circulation gas flow path, a part or all of the combustion gas used for heating the ammonia decomposing apparatus is mixed with the adsorbent regeneration gas and burned, and again used for heating the ammonia decomposing apparatus. can do. Thereby, the flow volume of the combustion gas supplied to an ammonia decomposition apparatus can be increased, and, thereby, thermal efficiency can be improved.
Further, since the combustion gas flowing out from the combustion reaction apparatus is already burned, the content of combustible gas such as hydrogen and ammonia is small. Then, after the combustion gas is used for heating the ammonia decomposition apparatus, it is used as a circulation gas, mixed with the aforementioned adsorbent regeneration gas, and burned in the combustion reaction apparatus. Thereby, it can adjust so that the gas supplied to a combustion reaction apparatus may not enter into the explosion range of hydrogen.
[21]前記吸着材再生ガス流路及び前記循環ガス流路の一方又は双方に、酸素供給装置が接続されており、前記酸素供給装置から供給される酸素含有ガスを、前記循環ガスと前記吸着材再生ガスとの混合ガスとし、前記混合ガスを前記燃焼反応装置に流通させて燃焼させる、上記[20]に記載の水素製造方法。
 当該酸素供給装置から酸素含有ガスを供給し、前述の吸着材再生ガス、循環ガス、及び酸素含有ガスを混合して組成を調整後の混合ガスを燃焼反応装置に供給することにより、燃焼反応装置内においてガスをほぼ完全燃焼させることができる。
[21] An oxygen supply device is connected to one or both of the adsorbent regeneration gas flow channel and the circulation gas flow channel, and the oxygen-containing gas supplied from the oxygen supply device is supplied to the circulation gas and the adsorption gas. The method for producing hydrogen according to the above [20], wherein a mixed gas with a material regeneration gas is used, and the mixed gas is circulated through the combustion reaction device and burned.
Combustion reaction apparatus by supplying oxygen-containing gas from the oxygen supply apparatus and mixing the adsorbent regeneration gas, circulation gas, and oxygen-containing gas described above and supplying the mixed gas after adjusting the composition to the combustion reaction apparatus The gas can be burned almost completely inside.
[22]前記循環ガス流路と交差する水流路と、前記循環ガス流路と前記水流路との交差点に設置された温水加熱用熱交換器と、前記水流路の下流端に設けられた加熱水供給装置とを有しており、水または温水を前記温水加熱用熱交換器に流通して加熱水にした後、前記加熱水供給装置から前記アンモニア供給装置に加熱水を供給して、アンモニアを気化させる、上記[20]又は[21]に記載の水素製造方法。
 当該加熱水供給装置から前述のアンモニア供給装置に加熱水を放出することにより、アンモニア供給装置内の液体アンモニアを気化させることができる。
[22] A water channel intersecting with the circulation gas channel, a heat exchanger for heating hot water installed at an intersection of the circulation gas channel and the water channel, and heating provided at a downstream end of the water channel And supplying water or hot water to the hot water heating heat exchanger to make heated water, and then supplying the heated water from the heated water supply device to the ammonia supply device. The method for producing hydrogen according to the above [20] or [21], wherein gas is vaporized.
By discharging heated water from the heated water supply device to the above-described ammonia supply device, liquid ammonia in the ammonia supply device can be vaporized.
[23]前記循環ガス流路のうち前記温水加熱用熱交換器よりも下流に、前記循環ガス中の水を除去するためのドレンポットを有しており、前記循環ガスを、前記ドレンポットに流通させて水を除去した後に、前記吸着材再生ガスと共に前記燃焼反応装置に流通させて燃焼させる、上記[22]に記載の水素製造方法。
 当該ドレンポットで水を除去することで、燃焼反応装置で発生した水分を循環ガス系内から排出できる。
[23] It has a drain pot for removing water in the circulating gas downstream of the hot water heating heat exchanger in the circulating gas flow path, and the circulating gas is supplied to the drain pot. The method for producing hydrogen according to the above [22], wherein the water is removed by circulation and then is caused to flow through the combustion reaction device together with the adsorbent regeneration gas and burn.
By removing water with the drain pot, water generated in the combustion reaction device can be discharged from the circulating gas system.
[24]前記水素回収装置に接続されており、前記水素回収装置で分離した水素を流出する水素流路と、前記水素流路に設置された圧力制御弁と、を有しており、前記圧力制御弁を制御することにより、前記アンモニア分解装置の圧力P1、前記アンモニア吸着装置の圧力P2、及び前記水素回収装置の圧力P3の各々を、
   P1≧P2≧P3
という関係を満たす所定の圧力範囲に制御する、上記[18]~[23]のいずれかに記載の水素製造方法。
 このように、P1≧P2≧P3とすることにより、加圧装置が不要となり、設備コスト及び運転コストが低減される。
 当該酸素供給装置から酸素含有ガスを供給し、前述の吸着材再生ガス及び酸素含有ガスを混合して組成を調整後の混合ガスを燃焼反応装置に供給することにより、燃焼反応装置内においてガスをほぼ完全燃焼させることができる。
[25]前記水素製造装置は上記[10]~[13]のいずれかに記載の水素製造装置であり、前記ガス廃棄流路を流通するガスを前記アンモニア除害設備に供給してアンモニアを除害するアンモニア除害工程を有する、[18]~[24]のいずれかに記載の水素製造方法。
[24] The hydrogen recovery device is connected to the hydrogen recovery device, and has a hydrogen flow channel for flowing out hydrogen separated by the hydrogen recovery device, and a pressure control valve installed in the hydrogen flow channel. By controlling the control valve, each of the pressure P1 of the ammonia decomposing apparatus, the pressure P2 of the ammonia adsorbing apparatus, and the pressure P3 of the hydrogen recovery apparatus,
P1 ≧ P2 ≧ P3
The method for producing hydrogen according to any one of [18] to [23], wherein the pressure is controlled within a predetermined pressure range satisfying the relationship:
As described above, by setting P1 ≧ P2 ≧ P3, the pressurizing device is not necessary, and the equipment cost and the operation cost are reduced.
By supplying an oxygen-containing gas from the oxygen supply device, mixing the adsorbent regeneration gas and the oxygen-containing gas described above, and supplying the mixed gas after adjusting the composition to the combustion reaction device, the gas is generated in the combustion reaction device. Almost complete combustion is possible.
[25] The hydrogen production apparatus according to any one of [10] to [13], wherein the gas flowing through the gas disposal channel is supplied to the ammonia abatement equipment to remove ammonia. The method for producing hydrogen according to any one of [18] to [24], further comprising a harmful ammonia detoxification step.
 本発明によれば、アンモニアを分解して水素ガスを製造したときに発生するオフガスを有効利用することが可能な、水素製造装置及び水素製造方法が提供される。 According to the present invention, there are provided a hydrogen production apparatus and a hydrogen production method capable of effectively utilizing off-gas generated when hydrogen gas is produced by decomposing ammonia.
第1の実施の形態に係る水素製造装置の概略図である。It is the schematic of the hydrogen production apparatus which concerns on 1st Embodiment. 第2の実施の形態に係る水素製造装置の概略図である。It is the schematic of the hydrogen production apparatus which concerns on 2nd Embodiment. 図2の水素製造装置を用いた第1の運転を説明する概略図である。It is the schematic explaining the 1st driving | operation using the hydrogen production apparatus of FIG. 第3の実施の形態に係る水素製造装置の概略図である。It is the schematic of the hydrogen production apparatus which concerns on 3rd Embodiment. 第4の実施の形態に係る水素製造装置の概略図である。It is the schematic of the hydrogen production apparatus which concerns on 4th Embodiment. 第5の実施の形態に係る水素製造装置の概略図である。It is the schematic of the hydrogen production apparatus which concerns on 5th Embodiment. 第6の実施の形態に係る水素製造装置の概略図である。It is the schematic of the hydrogen production apparatus which concerns on 6th Embodiment. 第7の実施の形態に係る水素製造装置の概略図である。It is the schematic of the hydrogen production apparatus which concerns on 7th Embodiment.
[第1の実施の形態]
<水素製造装置>
 図1は、第1の実施の形態に係る水素製造装置1の概略図である。
 本実施の形態に係る水素製造装置1は、アンモニア供給装置2と、当該アンモニア供給装置2に接続されており、アンモニアを分解して、水素、窒素及び未反応アンモニアを含有する分解ガスを生成するアンモニア分解装置3と、当該アンモニア分解装置3に接続されており、分解ガスを冷却する分解ガス冷却装置4aと、当該分解ガス冷却装置4aに接続されており、分解ガスから未反応アンモニアを吸着除去して水素ガスと窒素ガスを主成分とするアンモニア除去後ガスを流出するアンモニア吸着装置5と、当該アンモニア吸着装置5に接続されており、アンモニア除去後ガスから水素を分離して流出すると共に、水素ガスと窒素ガスを含む残りのオフガスを排出する水素回収装置6と、前記アンモニア分解装置を加熱する加熱機器8と、を有している。
[First Embodiment]
<Hydrogen production equipment>
FIG. 1 is a schematic diagram of a hydrogen production apparatus 1 according to the first embodiment.
A hydrogen production apparatus 1 according to the present embodiment is connected to an ammonia supply apparatus 2 and the ammonia supply apparatus 2, and decomposes ammonia to generate a cracked gas containing hydrogen, nitrogen, and unreacted ammonia. Ammonia decomposition device 3, connected to the ammonia decomposition device 3, a decomposition gas cooling device 4 a for cooling the decomposition gas, and connected to the decomposition gas cooling device 4 a to adsorb and remove unreacted ammonia from the decomposition gas Then, the ammonia adsorbing device 5 for flowing out the gas after removing ammonia mainly containing hydrogen gas and nitrogen gas, and connected to the ammonia adsorbing device 5, separating hydrogen from the gas after removing ammonia and flowing out, A hydrogen recovery device 6 for discharging the remaining off-gas containing hydrogen gas and nitrogen gas, and a heating device 8 for heating the ammonia decomposition device, The has.
 当該アンモニア吸着装置5は、並列に配設された複数のアンモニア吸着器5a、5bを有しており、前記分解ガス冷却装置4aからの分解ガスを当該複数のアンモニア吸着器5a、5bのうち任意の一方に供給可能とされている。
 なお、本実施の形態では、アンモニア吸着器5a、5bの数は2個であるが、3個以上でもよい。
The ammonia adsorbing device 5 includes a plurality of ammonia adsorbers 5a and 5b arranged in parallel, and the cracked gas from the cracked gas cooling device 4a is arbitrarily selected from the ammonia adsorbers 5a and 5b. It is possible to supply to one of these.
In the present embodiment, the number of ammonia adsorbers 5a and 5b is two, but may be three or more.
 水素製造装置1は、更に、前記水素回収装置6に接続されており、前記オフガスを加熱するオフガス加熱装置4bを有する。
 なお、本実施の形態では、当該オフガス加熱装置4bと前記分解ガス冷却装置4aとは同一の熱交換器(分解ガス冷却用熱交換器)4であり、前記アンモニア分解装置3から流出する前記分解ガスと前記水素回収装置6から流出する前記オフガスとの間で熱交換可能とされている。これにより、熱効率が向上する。
The hydrogen production device 1 further includes an off-gas heating device 4b that is connected to the hydrogen recovery device 6 and heats the off-gas.
In the present embodiment, the off-gas heating device 4b and the cracked gas cooling device 4a are the same heat exchanger (heat exchanger for cracking gas cooling) 4, and the cracking flowing out from the ammonia cracking device 3 is performed. Heat exchange is possible between the gas and the off-gas flowing out of the hydrogen recovery device 6. Thereby, thermal efficiency improves.
 前記アンモニア供給装置2と前記アンモニア分解装置3とは、アンモニア流路11を介して接続されている。
 前記アンモニア分解装置3と前記アンモニア吸着装置5とは、分解ガス流路12を介して接続されており、当該分解ガス流路12の途中に前記分解ガス冷却装置4aが接続されている。なお、当該分解ガス流路12の下流端は、複数本(本実施の形態では2本)の分岐流路12a、12bに分岐して複数(本実施の形態では2個)のアンモニア吸着器5a、5bの総てに接続されている。
 前記アンモニア吸着装置5と前記水素回収装置6とは、アンモニア除去後ガス流路14を介して接続されている。なお、アンモニア除去後ガス流路14の上流端は、複数本(本実施の形態では2本)の分岐流路14a、14bに分岐して複数(本実施の形態では2個)のアンモニア吸着器5a、5bの総てに接続されている。これら分岐流路12a、12b及び分岐流路14a、14bのそれぞれは、開閉弁を有している。
 前記水素製造装置1は、更に、前記水素回収装置6に接続されており、アンモニア除去後ガスから分離した水素を流出する水素流路15と、アンモニア除去後ガスから水素を分離した後に残るオフガスを流出する接続流路21とを有する。この接続流路21の一端(上流端)は水素回収装置6に接続され、他端(下流端)は前記オフガス加熱装置4b(分解ガス冷却用熱交換器4)に接続されている。
The ammonia supply device 2 and the ammonia decomposition device 3 are connected via an ammonia flow path 11.
The ammonia decomposing apparatus 3 and the ammonia adsorbing apparatus 5 are connected via a decomposition gas flow path 12, and the decomposition gas cooling apparatus 4 a is connected in the middle of the decomposition gas flow path 12. The downstream end of the cracked gas channel 12 branches into a plurality of (two in this embodiment) branch channels 12a and 12b and a plurality (two in this embodiment) of ammonia adsorbers 5a. 5b are all connected.
The ammonia adsorption device 5 and the hydrogen recovery device 6 are connected via a gas flow path 14 after removing ammonia. In addition, the upstream end of the gas flow path 14 after ammonia removal is branched into a plurality of (two in the present embodiment) branch flow paths 14a and 14b and a plurality (two in the present embodiment) of ammonia adsorbers. It is connected to all of 5a and 5b. Each of these branch flow paths 12a and 12b and branch flow paths 14a and 14b has an on-off valve.
The hydrogen production apparatus 1 is further connected to the hydrogen recovery apparatus 6, and a hydrogen flow path 15 for flowing out hydrogen separated from the gas after removal of ammonia, and an off-gas remaining after separating hydrogen from the gas after removal of ammonia. And a connecting flow channel 21 that flows out. One end (upstream end) of the connection channel 21 is connected to the hydrogen recovery device 6, and the other end (downstream end) is connected to the off-gas heating device 4b (heat exchanger 4 for cracking gas cooling).
 また、水素製造装置1は、一端が当該オフガス加熱装置4b(分解ガス冷却用熱交換器4)に接続され、他端が前記複数のアンモニア吸着器5a、5bに接続されており、前記オフガスを使用済みのアンモニア吸着器5a、5bに供給してアンモニア吸着器を再生可能なオフガス流路22と、複数の前記アンモニア吸着器5a、5bに接続されており、前記使用済みのアンモニア吸着器5a、5bから流出する吸着材再生ガス(主成分は、水素ガス、窒素ガス、及びアンモニア)を流通する吸着材再生ガス流路23と、当該吸着材再生ガス流路23に接続されており、前記吸着材再生ガスを燃焼して燃焼ガスを流出する燃焼反応装置7と、一端が前記燃焼反応装置7に接続され、他端が前記加熱機器8に接続された燃焼ガス流路24と、を有する。
 上記オフガス流路22の下端は、複数本(本実施の形態では2本)の分岐流路22a、22bに分岐して、複数本(本実施の形態では2本)の分岐流路14a、14bのうち開閉弁よりも上流側に接続されている。吸着材再生ガス流路23の上流端は、複数本(本実施の形態では2本)の分岐流路23a、23bに分岐して複数(本実施の形態では2個)の分岐流路12a、12bのうち開閉弁よりも下流側に接続されている。これら分岐流路22a、22b及び分岐流路23a、23bのそれぞれは、開閉弁を有している。
The hydrogen production apparatus 1 has one end connected to the off-gas heating device 4b (heat exchanger 4 for cooling cracked gas) and the other end connected to the plurality of ammonia adsorbers 5a and 5b. An off-gas flow path 22 that can be supplied to the used ammonia adsorbers 5a and 5b to regenerate the ammonia adsorber and is connected to the plurality of ammonia adsorbers 5a and 5b, and the used ammonia adsorbers 5a, 5b, An adsorbent regeneration gas passage 23 through which an adsorbent regeneration gas (main components are hydrogen gas, nitrogen gas, and ammonia) flowing out from 5b is connected, and is connected to the adsorbent regeneration gas passage 23. A combustion reaction device 7 for burning the material regeneration gas and flowing out the combustion gas; and a combustion gas flow path 24 having one end connected to the combustion reaction device 7 and the other end connected to the heating device 8. That.
The lower end of the off-gas channel 22 is branched into a plurality of (two in this embodiment) branch channels 22a and 22b, and a plurality of (two in this embodiment) branch channels 14a and 14b. Is connected to the upstream side of the on-off valve. The upstream end of the adsorbent regeneration gas channel 23 is branched into a plurality of (two in this embodiment) branch channels 23a and 23b and a plurality of (two in this embodiment) branch channels 12a, 12b is connected to the downstream side of the on-off valve. Each of these branch flow paths 22a and 22b and branch flow paths 23a and 23b has an on-off valve.
 なお、本実施の形態では、前記分解ガス流路12及び前記アンモニア除去後ガス流路14が、加圧装置を有しない。これにより、設備コスト及び運転コストを削減できる。なお、本実施の形態では、水素製造装置1が加圧装置を有しない。
 ただし、分解ガス流路12及びアンモニア除去後ガス流路14の少なくとも一方に、加圧装置を設けてもよい。これにより、アンモニア分解装置3の圧力を低くしてアンモニア分解効率を向上させると共に、水素回収装置6に流入するアンモニア除去後ガスの圧力を高くして水素回収効率を向上させることができる。当該加圧装置を設ける場合には、分解ガス流路12及びアンモニア除去後ガス流路14のうちアンモニア除去後ガス流路14のみに設けることが好ましい。
In the present embodiment, the cracked gas flow path 12 and the post-ammonia removal gas flow path 14 do not have a pressurizing device. Thereby, equipment cost and operation cost can be reduced. In the present embodiment, the hydrogen production apparatus 1 does not have a pressurizing apparatus.
However, a pressurizing device may be provided in at least one of the decomposition gas passage 12 and the post-ammonia removal gas passage 14. As a result, the ammonia decomposition efficiency can be improved by lowering the pressure of the ammonia decomposition apparatus 3, and the hydrogen recovery efficiency can be improved by increasing the pressure of the ammonia-removed gas flowing into the hydrogen recovery apparatus 6. When the pressurizing device is provided, it is preferable to provide only the post-ammonia removal gas flow path 14 among the cracked gas flow path 12 and the post-ammonia removal gas flow path 14.
(アンモニア供給装置2)
 本実施の形態において、アンモニア供給装置2は、液体アンモニアタンクを有する。
(Ammonia supply device 2)
In the present embodiment, the ammonia supply device 2 has a liquid ammonia tank.
(アンモニア分解装置3)
 アンモニア分解装置3は、アンモニア分解触媒を収納している。
 アンモニア分解触媒としては、アンモニア分解反応に触媒活性を有するものであれば特に制限はないが、例えば、卑金属系遷移金属(鉄、コバルト、ニッケル、モリブデン等)、希土類系(ランタン、セリウム、ネオジム等)、貴金属系(ルテニウム、ロジウム、イリジウム、パラジウム、白金等)を組成として含む触媒が挙げられる。上記卑金属系遷移金属は金属単体、合金、窒化物、炭化物、酸化物、複合酸化物として用いることができ、上記希土類系は酸化物として用いることができ、当該卑金属系遷移金属及び当該希土類系ともに、アルミナ、シリカ、マグネシア、ジルコニア、チタニア等の高い比表面積を有する担体に担持して用いることができる。また、上記貴金属系も、アルミナ、シリカ、マグネシア、ジルコニア、チタニア等の高い比表面積を有する担体に担持して用いることができる。また、上記遷移金属系及び/又は上記希土類系に、少量の上記貴金属系を含有させて用いることもできる。これらの触媒は単体で用いてもよく、2種以上を併用してもよい。
(Ammonia decomposition device 3)
The ammonia decomposition device 3 contains an ammonia decomposition catalyst.
The ammonia decomposition catalyst is not particularly limited as long as it has catalytic activity for ammonia decomposition reaction. For example, base metal transition metals (iron, cobalt, nickel, molybdenum, etc.), rare earth metals (lanthanum, cerium, neodymium, etc.) ), A catalyst containing a noble metal system (ruthenium, rhodium, iridium, palladium, platinum, etc.) as a composition. The base metal transition metal can be used as a simple metal, alloy, nitride, carbide, oxide, composite oxide, the rare earth can be used as an oxide, both the base metal transition metal and the rare earth , Alumina, silica, magnesia, zirconia, titania and the like can be supported on a carrier having a high specific surface area. The noble metal system can also be used by being supported on a carrier having a high specific surface area such as alumina, silica, magnesia, zirconia, titania and the like. In addition, the transition metal system and / or the rare earth system may be used by containing a small amount of the noble metal system. These catalysts may be used alone or in combination of two or more.
(アンモニア吸着装置5)
 アンモニア吸着装置5を構成するアンモニア吸着器5a、5bは、アンモニア吸着材を収納している。
 アンモニア吸着材としては、分解ガス中のアンモニアを除去でき且つ再生可能であるものであれば特に制限はなく、好ましくは、ゼオライト、活性炭、アルミナ、シリカ、複合酸化物である。
(Ammonia adsorption device 5)
The ammonia adsorbers 5a and 5b constituting the ammonia adsorption device 5 contain an ammonia adsorbent.
The ammonia adsorbent is not particularly limited as long as it can remove ammonia from the cracked gas and can be regenerated, and is preferably zeolite, activated carbon, alumina, silica, or composite oxide.
(水素回収装置6)
 水素回収装置6は、アンモニアを分解してなる分解ガス(主成分:水素ガス及び窒素ガス)から、水素を分取し得るものであれば特に限定はない。例えば、水素回収装置6は、圧力変動吸着分離装置(PSA装置)、温度変動吸着分離装置(TSA装置)、水素分離膜を有する水素分離膜装置等が挙げられる。
(Hydrogen recovery device 6)
The hydrogen recovery device 6 is not particularly limited as long as it can fractionate hydrogen from a cracked gas (main components: hydrogen gas and nitrogen gas) obtained by decomposing ammonia. Examples of the hydrogen recovery device 6 include a pressure fluctuation adsorption separation device (PSA device), a temperature fluctuation adsorption separation device (TSA device), a hydrogen separation membrane device having a hydrogen separation membrane, and the like.
(燃焼反応装置7)
 燃焼反応装置7は、再生中のアンモニア吸着器5a、5bから流出する吸着材再生ガスを燃焼し得るものであれば特に限定はなく、例えば、内部に燃焼触媒を収納する燃焼反応装置、直接燃焼装置等が挙げられる。
 燃焼反応装置で用いられる触媒としては、パラジウム、白金等が挙げられるが、コストの観点から、パラジウムが好ましい。また、直接燃焼装置の場合は、吸着材再生ガスに灯油、天然ガス等を混合し燃焼することも可能である。
(加熱機器8)
 加熱機器8は、燃焼反応装置7からの燃焼ガスをアンモニア分解装置3の周囲に供給してアンモニア分解装置3を加熱する機器である。
 加熱機器8としては、アンモニア分解装置3の周囲を覆うジャケットに燃焼ガスを供給する装置や、燃焼ガスが通る配管をアンモニア分解装置3の周囲に巻きつけたものなどを例示できる。
(Combustion reactor 7)
The combustion reaction device 7 is not particularly limited as long as it can burn the adsorbent regeneration gas flowing out from the ammonia adsorbers 5a and 5b being regenerated. For example, a combustion reaction device containing a combustion catalyst therein, direct combustion Examples thereof include an apparatus.
Examples of the catalyst used in the combustion reaction apparatus include palladium and platinum. From the viewpoint of cost, palladium is preferable. In the case of a direct combustion apparatus, it is also possible to mix kerosene, natural gas or the like with the adsorbent regeneration gas and burn it.
(Heating equipment 8)
The heating device 8 is a device that heats the ammonia decomposition device 3 by supplying the combustion gas from the combustion reaction device 7 around the ammonia decomposition device 3.
Examples of the heating device 8 include a device that supplies combustion gas to a jacket that covers the periphery of the ammonia decomposition device 3, and a device in which a pipe through which the combustion gas passes is wound around the ammonia decomposition device 3.
<水素製造方法>
 次に、前述した水素製造装置1を用いた水素製造方法の一例について説明する。
 本実施の形態に係る水素製造方法では、後述する第1の運転と第2の運転とを繰り返す。
<Hydrogen production method>
Next, an example of a hydrogen production method using the above-described hydrogen production apparatus 1 will be described.
In the hydrogen production method according to the present embodiment, a first operation and a second operation described later are repeated.
(第1の運転)
 第1の運転では、アンモニア吸着器5aを用いて水素ガスの製造を実施すると共に、アンモニア吸着器5b内のアンモニア吸着材の再生を実施する。
 すなわち、第1の運転は、後述するアンモニア分解工程、アンモニア吸着工程、水素回収工程、アンモニア吸着器再生工程、及び、アンモニア分解装置の加熱工程、を有する。
(First operation)
In the first operation, hydrogen gas is produced using the ammonia adsorber 5a and the ammonia adsorbent in the ammonia adsorber 5b is regenerated.
That is, the first operation includes an ammonia decomposition process, an ammonia adsorption process, a hydrogen recovery process, an ammonia adsorber regeneration process, and an ammonia decomposition apparatus heating process, which will be described later.
〔アンモニア分解工程〕
 アンモニア分解工程は、前記アンモニア供給装置2からのアンモニアを前記アンモニア分解装置3に流通させ、アンモニアを分解して、水素、窒素及び未反応アンモニアを含有する前記分解ガスを生成する工程である。
 アンモニア分解装置3内の温度は、好ましくは400~800℃である。当該温度が400℃以上であると、アンモニアの分解が促進され、分解ガス中における未反応アンモニアの含有量が少なくなる。また、当該温度が800℃以下であると、アンモニア分解触媒の劣化が抑制され、また、消費エネルギー量が抑制される。当該観点から、アンモニア分解装置3内の温度は、より好ましくは430~650℃、更に好ましくは450~550℃、より更に好ましくは480~520℃である。
[Ammonia decomposition process]
The ammonia decomposition step is a step in which ammonia from the ammonia supply device 2 is circulated to the ammonia decomposition device 3 to decompose the ammonia to generate the decomposition gas containing hydrogen, nitrogen and unreacted ammonia.
The temperature in the ammonia decomposing apparatus 3 is preferably 400 to 800 ° C. When the temperature is 400 ° C. or higher, the decomposition of ammonia is promoted, and the content of unreacted ammonia in the decomposition gas decreases. Moreover, when the said temperature is 800 degrees C or less, degradation of an ammonia decomposition catalyst is suppressed and the amount of energy consumption is suppressed. From this viewpoint, the temperature in the ammonia decomposing apparatus 3 is more preferably 430 to 650 ° C., further preferably 450 to 550 ° C., and still more preferably 480 to 520 ° C.
 アンモニア分解装置3内の圧力は、好ましくは0.0~1.0MPaG(ゲージ圧)である。当該圧力が0.0MPaG以上であると、装置への大気の漏れ込みが防止される。当該圧力が1.0MPaG以下であると、アンモニア分解反応は分子数が増える平衡反応であるため、分解ガス中における未反応アンモニアの含有量を低減することができる。
当該観点から、アンモニア分解装置3内の圧力は、より好ましくは0.2~0.8MPaG、更に好ましくは0.3~0.7MPaG、より更に好ましくは0.45~0.55MPaGである。
The pressure in the ammonia decomposing apparatus 3 is preferably 0.0 to 1.0 MPaG (gauge pressure). If the pressure is 0.0 MPaG or more, atmospheric leakage into the apparatus is prevented. If the pressure is 1.0 MPaG or less, the ammonia decomposition reaction is an equilibrium reaction in which the number of molecules increases, and therefore the content of unreacted ammonia in the decomposition gas can be reduced.
From this viewpoint, the pressure in the ammonia decomposing apparatus 3 is more preferably 0.2 to 0.8 MPaG, further preferably 0.3 to 0.7 MPaG, and still more preferably 0.45 to 0.55 MPaG.
〔アンモニア吸着工程〕
 アンモニア吸着工程は、前記アンモニア分解工程の実施により、前記アンモニア分解装置3から流出する前記分解ガスを、前記分解ガス冷却装置4a(分解ガス冷却用熱交換器4)に流通させて冷却した後、前記複数のアンモニア吸着器5a、5bの一方(アンモニア吸着器5a)に流通させて、前記分解ガスから未反応アンモニアを吸着除去して前記アンモニア除去後ガスを得る工程である。
 アンモニア吸着器5a内の温度は、好ましくは10~100℃である。当該温度が10℃以上であると、ガスの冷却装置が不要となり、エネルギー消費量を削減できる。また、当該温度が100℃以下であると、アンモニアの吸着量が大きくなる。
当該観点から、アンモニア吸着器5a内の温度は、より好ましくは15~80℃、更に好ましくは20~60℃、より更に好ましくは25~50℃である。
[Ammonia adsorption process]
In the ammonia adsorption step, the decomposition gas flowing out from the ammonia decomposition device 3 is cooled by flowing through the decomposition gas cooling device 4a (the heat exchanger 4 for decomposition gas cooling) by performing the ammonia decomposition step, This is a step of flowing through one of the plurality of ammonia adsorbers 5a and 5b (ammonia adsorber 5a) to adsorb and remove unreacted ammonia from the cracked gas to obtain the ammonia-removed gas.
The temperature in the ammonia adsorber 5a is preferably 10 to 100 ° C. When the temperature is 10 ° C. or higher, a gas cooling device is not necessary, and energy consumption can be reduced. Further, when the temperature is 100 ° C. or lower, the amount of ammonia adsorbed increases.
From this viewpoint, the temperature in the ammonia adsorber 5a is more preferably 15 to 80 ° C, still more preferably 20 to 60 ° C, and still more preferably 25 to 50 ° C.
 アンモニア吸着器5a内の圧力は、好ましくは0.1~1.0MPaGである。当該圧力が0.1MPaG以上であると、アンモニア吸着材の単位量当たりのアンモニア吸着量が大きくなる。また、当該圧力が1.0MPaG以下であると、ガスの昇圧のためのエネルギー消費を削減できる。
当該観点から、アンモニア吸着器5a内の圧力は、より好ましくは0.15~0.8MPaG、更に好ましくは0.2~0.6MPaG、より更に好ましくは0.25~0.5MPaGである。
The pressure in the ammonia adsorber 5a is preferably 0.1 to 1.0 MPaG. When the pressure is 0.1 MPaG or more, the ammonia adsorption amount per unit amount of the ammonia adsorbent becomes large. Further, when the pressure is 1.0 MPaG or less, energy consumption for boosting the gas can be reduced.
From this viewpoint, the pressure in the ammonia adsorber 5a is more preferably 0.15 to 0.8 MPaG, further preferably 0.2 to 0.6 MPaG, and still more preferably 0.25 to 0.5 MPaG.
 また、前記アンモニア分解装置3の圧力P1、及びアンモニア吸着器5a内の圧力P2を、
   P1≧P2
としてもよい。これにより、アンモニア分解装置3とアンモニア吸着器5aとの間に、加圧装置を設ける必要がなくなり、運転コスト及び設備コストが抑制される。
 また、当該アンモニア吸着器5aの圧力を利用して、下流の水素回収装置6において水素回収を行う観点からは、アンモニア吸着器5a内の圧力は、より好ましくは0.2~0.8MPaG、更に好ましくは0.25~0.6MPaG、より更に好ましくは0.3~0.5MPaGである。
The pressure P1 of the ammonia decomposing apparatus 3 and the pressure P2 in the ammonia adsorber 5a are
P1 ≧ P2
It is good. Thereby, it is not necessary to provide a pressurizing device between the ammonia decomposing apparatus 3 and the ammonia adsorber 5a, and the operating cost and the equipment cost are suppressed.
From the viewpoint of recovering hydrogen in the downstream hydrogen recovery device 6 using the pressure of the ammonia adsorber 5a, the pressure in the ammonia adsorber 5a is more preferably 0.2 to 0.8 MPaG, Preferably it is 0.25 to 0.6 MPaG, and more preferably 0.3 to 0.5 MPaG.
〔水素回収工程〕
 水素回収工程は、前記複数のアンモニア吸着器5a、5bの前記一方(アンモニア吸着器5a)から流出する前記アンモニア除去後ガスを、前記水素回収装置6に流通させて、前記アンモニア除去後ガスから水素を分離して流出すると共に、残りのオフガスを排出する工程である。
[Hydrogen recovery process]
In the hydrogen recovery step, the post-ammonia removal gas flowing out from the one (ammonia adsorber 5a) of the plurality of ammonia adsorbers 5a and 5b is circulated through the hydrogen recovery device 6 to generate hydrogen from the post-ammonia removal gas. Are separated and discharged, and the remaining off-gas is discharged.
 水素回収装置6内の温度は、好ましくは10~60℃である。
 水素回収装置6内の圧力は、好ましくは0.1~1.0MPaGである。
 前記アンモニア分解装置3の圧力P1、前記アンモニア吸着装置5(アンモニア吸着器5a)の圧力P2、及び前記水素回収装置6の圧力P3の各々は、
   P1≧P2≧P3
という関係を満たしてもよい。これにより、アンモニア分解装置3とアンモニア吸着器5aとの間、及びアンモニア吸着器5aと水素回収装置6との間に、加圧装置を設ける必要がなくなり、運転コスト及び設備コストが抑制される。
The temperature in the hydrogen recovery device 6 is preferably 10 to 60 ° C.
The pressure in the hydrogen recovery device 6 is preferably 0.1 to 1.0 MPaG.
Each of the pressure P1 of the ammonia decomposing apparatus 3, the pressure P2 of the ammonia adsorbing apparatus 5 (ammonia adsorber 5a), and the pressure P3 of the hydrogen recovery apparatus 6 is:
P1 ≧ P2 ≧ P3
May be satisfied. Thereby, it is not necessary to provide a pressurizing device between the ammonia decomposing device 3 and the ammonia adsorber 5a, and between the ammonia adsorbing device 5a and the hydrogen recovery device 6, and the operating cost and the equipment cost are suppressed.
〔アンモニア吸着器再生工程〕
 アンモニア吸着器再生工程は、前記水素回収装置6から流出する前記オフガスを、前記オフガス加熱装置4b(分解ガス冷却用熱交換器4)、及び前記複数のアンモニア吸着器5a及び5bの残部(たとえばアンモニア吸着器5aを使用中の場合は、アンモニア吸着器5b)に流通させてアンモニア吸着器(アンモニア吸着器5b)を再生させる工程である。アンモニア吸着器5が3個以上存在する場合は、アンモニア吸着中ではない装置群のうちの少なくとも1つにこの再生工程を適用できる。
 前述のとおり、水素回収装置6に供給されるアンモニア除去後ガスは、アンモニア吸着装置5において、アンモニア分解ガス(水素、窒素及び未反応アンモニア)からアンモニアが除去されている。したがって、水素回収装置6から流出するオフガス中におけるアンモニア含有量は少量である。したがって、当該オフガスを加熱した後にアンモニア吸着器5bに流通させることにより、アンモニア吸着材に吸着したアンモニアを良好に脱着させて、アンモニア吸着材を再生させることができる。
 また、アンモニア吸着器5bを再生させている間、アンモニア吸着器5aを用いて分解ガスからアンモニアを吸着除去することができる。
[Ammonia adsorber regeneration process]
In the ammonia adsorber regeneration step, the off gas flowing out of the hydrogen recovery device 6 is converted into the off gas heating device 4b (heat exchanger 4 for cracking gas cooling) and the remaining parts of the ammonia adsorbers 5a and 5b (for example, ammonia). When the adsorber 5a is in use, it is a step of circulating the ammonia adsorber 5b) to regenerate the ammonia adsorber (ammonia adsorber 5b). When three or more ammonia adsorbers 5 are present, this regeneration step can be applied to at least one of a group of devices that are not performing ammonia adsorption.
As described above, the ammonia-removed gas supplied to the hydrogen recovery device 6 is removed from the ammonia decomposition gas (hydrogen, nitrogen, and unreacted ammonia) in the ammonia adsorption device 5. Therefore, the ammonia content in the off-gas flowing out from the hydrogen recovery device 6 is small. Therefore, by heating the off gas and then circulating it to the ammonia adsorber 5b, the ammonia adsorbed on the ammonia adsorbing material can be desorbed well and the ammonia adsorbing material can be regenerated.
Further, while the ammonia adsorber 5b is being regenerated, ammonia can be adsorbed and removed from the cracked gas using the ammonia adsorber 5a.
 アンモニアを脱着させるときのアンモニア吸着器5b内の温度は、好ましくは100~500℃である。当該温度が100℃以上であると、アンモニア吸着材を十分に再生させることができる。また、当該温度が500℃以上であると、吸着材の劣化が懸念される。当該観点から、アンモニア吸着器5b内の温度は、より好ましくは200~450℃、更に好ましくは300~430℃、より更に好ましくは380~420℃である。 The temperature in the ammonia adsorber 5b when desorbing ammonia is preferably 100 to 500 ° C. When the temperature is 100 ° C. or higher, the ammonia adsorbent can be sufficiently regenerated. Moreover, when the said temperature is 500 degreeC or more, there exists a concern about deterioration of an adsorbent. From this viewpoint, the temperature in the ammonia adsorber 5b is more preferably 200 to 450 ° C., further preferably 300 to 430 ° C., and still more preferably 380 to 420 ° C.
 アンモニア吸着器5b内の圧力は、好ましくは0.0~0.5MPaGである。当該圧力が0.0MPaG以上であると、真空引きが不要となりエネルギーを要しない。また、当該圧力が0.5MPaG以下であると、十分にアンモニアを脱着することができる。当該観点から、アンモニア吸着器5b内の圧力は、より好ましくは0.0~0.45MPaG、更に好ましくは0.0~0.4MPaG、より更に好ましくは0.0~0.3MPaGである。 The pressure in the ammonia adsorber 5b is preferably 0.0 to 0.5 MPaG. When the pressure is 0.0 MPaG or more, evacuation is unnecessary and energy is not required. Further, when the pressure is 0.5 MPaG or less, ammonia can be sufficiently desorbed. From this viewpoint, the pressure in the ammonia adsorber 5b is more preferably 0.0 to 0.45 MPaG, further preferably 0.0 to 0.4 MPaG, and still more preferably 0.0 to 0.3 MPaG.
〔アンモニア分解装置の加熱工程〕
 アンモニア分解装置の加熱工程は、前記アンモニア吸着器5bから流出する吸着材再生ガスを、前記燃焼反応装置7にて燃焼させることで熱エネルギーを生じさせ、この燃焼ガスを、前記燃焼ガス流路24を介して前記加熱機器8に流通させて前記アンモニア分解装置3を加熱する工程である。
 前記アンモニア吸着器5bから流出する吸着材再生ガスは、前記アンモニア吸着器5bから脱着されたアンモニアを含んでいる。また、水素回収装置6で回収されずにオフガス中に含有する水素も含んでいる。したがって、当該吸着材再生ガスを燃焼反応装置7で燃焼させることにより、高温の燃焼ガスを得ることができる。また、この高温の燃焼ガスを用いてアンモニア分解装置3を加熱することにより、アンモニア分解装置3を十分に加熱することができる。
[Heating process of ammonia decomposition equipment]
In the heating process of the ammonia decomposing apparatus, the adsorbent regeneration gas flowing out from the ammonia adsorber 5b is burned in the combustion reaction apparatus 7 to generate thermal energy, and this combustion gas is converted into the combustion gas flow path 24. The ammonia decomposing apparatus 3 is heated by circulating it through the heating device 8 via
The adsorbent regeneration gas flowing out from the ammonia adsorber 5b contains ammonia desorbed from the ammonia adsorber 5b. Further, hydrogen contained in the off-gas without being recovered by the hydrogen recovery device 6 is also included. Therefore, a high-temperature combustion gas can be obtained by burning the adsorbent regeneration gas in the combustion reaction device 7. Moreover, the ammonia decomposition device 3 can be sufficiently heated by heating the ammonia decomposition device 3 using this high-temperature combustion gas.
(第2の運転)
 前述の第1の運転を継続した後に、下記の第2の運転を実施する。
 第2の運転では、第1の運転で再生させたアンモニア吸着器の一部又は全部(アンモニア吸着器5b)を用いてアンモニア吸着工程を行い、また、第1の運転で、アンモニア吸着工程で使用していたアンモニア吸着器(アンモニア吸着器5a)に対してアンモニア吸着器再生工程を実施する。なお、その他の工程、すなわち、アンモニア分解工程、水素回収工程、及びアンモニア分解装置の加熱工程は、第1の運転と同様である。
 このように、第1の運転と第2の運転とを繰り返すことにより、連続運転を行うことができる。
(Second operation)
After continuing the first operation described above, the following second operation is performed.
In the second operation, an ammonia adsorption process is performed using part or all of the ammonia adsorber regenerated in the first operation (ammonia adsorber 5b), and used in the ammonia adsorption process in the first operation. The ammonia adsorber regeneration step is performed on the ammonia adsorber (ammonia adsorber 5a). The other steps, that is, the ammonia decomposition step, the hydrogen recovery step, and the heating step of the ammonia decomposition apparatus are the same as in the first operation.
Thus, a continuous operation can be performed by repeating the first operation and the second operation.
[第2の実施の形態]
<水素製造装置>
 図2は、第2の実施の形態に係る水素製造装置30の概略図であり、図3は、図2の水素製造装置30を用いた第1の運転を説明する概略図である。
 本実施の形態に係る水素製造装置30は、アンモニア供給装置31、アンモニア分解装置32、分解ガス冷却装置33a(分解ガス冷却用熱交換器33)、アンモニア吸着装置34、水素回収装置35、及び加熱機器38、を有する。
 当該アンモニア吸着装置34は、並列に配設された複数(本実施の形態では2個)のアンモニア吸着器34a、34bを有している。
 これらの装置31、32、33a(33)、34、35、38の詳細は、第1の実施の形態で説明したとおりである。
 後述するとおり、本実施の形態では、分解ガス冷却装置33aは、分解ガス冷却用熱交換器33であり、オフガス加熱装置33bを兼ねている。
[Second Embodiment]
<Hydrogen production equipment>
FIG. 2 is a schematic diagram of a hydrogen production apparatus 30 according to the second embodiment, and FIG. 3 is a schematic diagram illustrating a first operation using the hydrogen production apparatus 30 of FIG.
The hydrogen production device 30 according to the present embodiment includes an ammonia supply device 31, an ammonia decomposition device 32, a decomposition gas cooling device 33a (a heat exchanger 33 for decomposition gas cooling), an ammonia adsorption device 34, a hydrogen recovery device 35, and heating. Device 38.
The ammonia adsorption device 34 has a plurality (two in this embodiment) of ammonia adsorbers 34a and 34b arranged in parallel.
The details of these devices 31, 32, 33a (33), 34, 35, 38 are as described in the first embodiment.
As will be described later, in the present embodiment, the cracked gas cooling device 33a is a heat exchanger 33 for cracked gas cooling, and also serves as an off-gas heating device 33b.
 また、水素製造装置30は、アンモニア供給装置31とアンモニア分解装置32とを接続するアンモニア流路41、アンモニア分解装置32とアンモニア吸着装置34とを接続する分解ガス流路42、アンモニア吸着装置34と水素回収装置35とを接続するアンモニア除去後ガス流路43、及び水素回収装置35で分離された水素を流出させる水素流路44を有する。
 上記分解ガス流路42は、一端(上流端)がアンモニア分解装置32に接続され、他端側が分岐して分岐流路42a、42bとなり、分岐流路42aがアンモニア吸着器34aに接続され、分岐流路42bがアンモニア吸着器34bに接続されている。分岐流路42a、42bのそれぞれは、開閉弁を有している。
 また、上記アンモニア除去後ガス流路43は、一端(上流端)が分岐して分岐流路43a、43bとなり、分岐流路43aがアンモニア吸着器34aに接続され、分岐流路43bがアンモニア吸着器34bに接続されている。また、アンモニア除去後ガス流路43の他端は、合流して水素回収装置35に接続されている。分岐流路43a、43bのそれぞれは、開閉弁を有している。
 上記アンモニア流路41には、流量制御弁V1が設けられている。また、上記水素流路44には、圧力制御弁V2が設けられている。
In addition, the hydrogen production apparatus 30 includes an ammonia flow path 41 that connects the ammonia supply apparatus 31 and the ammonia decomposition apparatus 32, a decomposition gas flow path 42 that connects the ammonia decomposition apparatus 32 and the ammonia adsorption apparatus 34, an ammonia adsorption apparatus 34, and the like. A post-ammonia-removed gas flow path 43 connected to the hydrogen recovery apparatus 35 and a hydrogen flow path 44 through which hydrogen separated by the hydrogen recovery apparatus 35 flows out are provided.
One end (upstream end) of the cracked gas channel 42 is connected to the ammonia decomposing device 32, the other end is branched to become branched channels 42a and 42b, and the branched channel 42a is connected to the ammonia adsorber 34a and branched. The flow path 42b is connected to the ammonia adsorber 34b. Each of the branch flow paths 42a and 42b has an open / close valve.
Further, one end (upstream end) of the post-ammonia removal gas channel 43 is branched into branch channels 43a and 43b. The branch channel 43a is connected to the ammonia adsorber 34a, and the branch channel 43b is an ammonia adsorber. 34b. Further, the other end of the gas flow path 43 after ammonia removal is joined and connected to the hydrogen recovery device 35. Each of the branch flow paths 43a and 43b has an open / close valve.
The ammonia flow path 41 is provided with a flow rate control valve V1. The hydrogen flow path 44 is provided with a pressure control valve V2.
 上記アンモニア流路41のうち流量制御弁V1よりも下流側には、上流側(アンモニア供給装置31側)から順に、アンモニア加熱用熱交換器51及びアンモニア補助加熱用熱交換器52が設けられている。
 上記分解ガス流路42のうち分岐路42a、42bよりも上流側には、上流側(アンモニア分解装置32側)から順に、分解ガス冷却装置33a(分解ガス冷却用熱交換器33)、上記アンモニア加熱用熱交換器51、及び水加熱用熱交換器54が設けられている。
 すなわち、上記アンモニア流路41と分解ガス流路42とが交差しており、当該交差箇所に、上記アンモニア加熱用熱交換器51が設けられている。したがって、上記アンモニア加熱用熱交換器51のチューブ側及びシェル側の一方にアンモニアが流通し、他方に分解ガスが流通し、アンモニアと分解ガスとの間で熱交換可能とされている。
An ammonia heating heat exchanger 51 and an ammonia auxiliary heating heat exchanger 52 are sequentially provided from the upstream side (ammonia supply device 31 side) downstream of the flow rate control valve V1 in the ammonia flow path 41. Yes.
In the cracked gas flow channel 42, the cracked gas cooling device 33a (the heat exchanger 33 for cracked gas cooling) and the ammonia are disposed upstream from the branch paths 42a and 42b in order from the upstream side (the ammonia cracking device 32 side). A heat exchanger 51 for heating and a heat exchanger 54 for water heating are provided.
That is, the ammonia flow path 41 and the cracked gas flow path 42 intersect, and the ammonia heating heat exchanger 51 is provided at the intersection. Therefore, ammonia flows through one of the tube side and the shell side of the heat exchanger 51 for heating the ammonia, and the cracked gas flows through the other, so that heat can be exchanged between the ammonia and the cracked gas.
 更に、水素製造装置30は、水素回収装置35に接続された接続流路61と、当該接続流路61を介して水素回収装置35に接続されており、水素回収装置35から接続流路61を介して流出するオフガスを加熱するオフガス加熱装置33b(分解ガス冷却用熱交換器33)を有する。
 本実施の形態では、前記分解ガス冷却装置33aと当該オフガス加熱装置33bとは同一の熱交換器(分解ガス冷却用熱交換器33)であり、アンモニア分解装置32から流出する分解ガスと前記水素回収装置35から流出するオフガスとの間で熱交換可能とされている。
Further, the hydrogen production apparatus 30 is connected to the hydrogen recovery apparatus 35 via the connection flow path 61 connected to the hydrogen recovery apparatus 35 and the connection flow path 61. And an off-gas heating device 33b (heat exchanger 33 for cooling the cracked gas).
In the present embodiment, the cracked gas cooling device 33a and the off-gas heating device 33b are the same heat exchanger (heat exchanger 33 for cracking gas cooling), and the cracked gas flowing out from the ammonia cracking device 32 and the hydrogen Heat exchange with the off-gas flowing out from the recovery device 35 is possible.
 また、水素製造装置30は、一端がオフガス加熱装置33b(分解ガス冷却用熱交換器33)に接続され、他端が分岐して前記複数のアンモニア吸着器34a、34bに接続されており、前記オフガスを使用済みのアンモニア吸着器に供給してアンモニア吸着器を再生可能なオフガス流路62を有する。
 すなわち、当該オフガス流路62の一端(上流端)は上記オフガス加熱装置33b(分解ガス冷却用熱交換器33)に接続されており、他端は分岐して分岐流路62a、62bとなり、分岐流路62aが上記アンモニア除去後ガス流路43の分岐流路43aのうち開閉弁よりも上流側に接続され、分岐流路62bが上記アンモニア除去後ガス流路43の分岐流路43bのうち開閉弁よりも上流側に接続されている。これら分岐流路43a、43bのそれぞれは、開閉弁を有している。
The hydrogen production device 30 has one end connected to an off-gas heating device 33b (cracked gas cooling heat exchanger 33) and the other end branched to be connected to the plurality of ammonia adsorbers 34a and 34b. An off-gas passage 62 is provided that can regenerate the ammonia adsorber by supplying off-gas to the used ammonia adsorber.
That is, one end (upstream end) of the off-gas channel 62 is connected to the off-gas heating device 33b (the heat exchanger 33 for cracking gas cooling), and the other end branches to branch channels 62a and 62b. The flow path 62a is connected to the upstream side of the open / close valve in the branch flow path 43a of the post-ammonia removal gas flow path 43, and the branch flow path 62b is opened / closed in the branch flow path 43b of the post-ammonia removal gas flow path 43. It is connected upstream of the valve. Each of these branch flow paths 43a and 43b has an open / close valve.
 また、水素製造装置30は、複数の前記アンモニア吸着器34a、34bに接続されており、前記使用済みのアンモニア吸着器から流出する吸着材再生ガスを流通する吸着材再生ガス流路63と、吸着材再生ガス流路63に接続されており、前記吸着材再生ガスを燃焼して燃焼ガスを流出する燃焼反応装置36と、一端が前記燃焼反応装置36に接続され、他端が前記加熱機器38に接続された燃焼ガス流路64と、を有する。
 詳しくは、当該吸着材再生ガス流路63は、一端(上流端)が分岐して分岐流路63a63bとなっており、分岐流路63aが前述の分解ガス流路42の分岐流路42aのうち開閉弁よりも下流側に接続されており、分岐流路63bが前述の分解ガス流路42の分岐流路42bのうち開閉弁よりも下流側に接続されている。すなわち、吸着材再生ガス流路63は、前述の分解ガス流路42の分岐流路42a、42bを介してアンモニア吸着器34a、34bに接続されている。当該吸着材再生ガス流路63は、他端が合流して燃焼反応装置36に接続されている。これら分岐流路63a、63bのそれぞれは、開閉弁を有している。
Further, the hydrogen production apparatus 30 is connected to the plurality of ammonia adsorbers 34a and 34b, and an adsorbent regeneration gas flow path 63 through which the adsorbent regeneration gas flowing out from the used ammonia adsorber flows, and an adsorption A combustion reaction device 36 connected to the material regeneration gas flow path 63, combusts the adsorbent regeneration gas and flows out the combustion gas, one end connected to the combustion reaction device 36, and the other end to the heating device 38. And a combustion gas flow path 64 connected to the.
Specifically, one end (upstream end) of the adsorbent regeneration gas flow path 63 is branched into a branch flow path 63a63b, and the branch flow path 63a is included in the branch flow path 42a of the cracked gas flow path 42 described above. The branch channel 63b is connected to the downstream side of the on-off valve in the branch channel 42b of the cracked gas channel 42 described above. That is, the adsorbent regeneration gas channel 63 is connected to the ammonia adsorbers 34a and 34b via the branch channels 42a and 42b of the cracked gas channel 42 described above. The adsorbent regeneration gas channel 63 is connected to the combustion reaction device 36 at the other end. Each of these branch flow paths 63a and 63b has an open / close valve.
 本実施の形態では、当該吸着材再生ガス流路63のうち分岐流路63a、63bよりも下流の位置に、酸素供給装置37が設けられている。 In the present embodiment, the oxygen supply device 37 is provided at a position downstream of the branch flow paths 63a and 63b in the adsorbent regeneration gas flow path 63.
 更に水素製造装置30は、一端が前記加熱機器38に接続され、他端が前記吸着材再生ガス流路63に接続された循環ガス流路71を有する。
 前記吸着材再生ガス流路63及び前記循環ガス流路71の一方又は双方に、酸素供給装置37が接続されている。なお、本実施の形態では、吸着材再生ガス流路63に酸素供給装置37が接続されている。
Further, the hydrogen production apparatus 30 has a circulation gas passage 71 having one end connected to the heating device 38 and the other end connected to the adsorbent regeneration gas passage 63.
An oxygen supply device 37 is connected to one or both of the adsorbent regeneration gas channel 63 and the circulation gas channel 71. In the present embodiment, the oxygen supply device 37 is connected to the adsorbent regeneration gas channel 63.
 水素製造装置30は、加熱水供給装置80を有する。当該加熱水供給装置80は、前記循環ガス流路71と交差する水流路81と、当該循環ガス流路71と当該水流路81との交差点に設置された温水加熱用熱交換器73と、当該水流路の81下流端に設けられたシャワーヘッド82とを有する。したがって、この温水加熱用熱交換器73のチューブ側及びシェル側の一方に循環ガスが流通し、他方に温水が通過することにより、循環ガスと温水との間で熱交換可能とされ、当該水流路81を流れる温水が加熱されて加熱水となる。
 なお、水加熱用熱交換器54から温水加熱用熱交換器73までに存在する内部流体を“温水”と呼び、それよりも下流の内部流体を“加熱水”と呼ぶこととする。
The hydrogen production device 30 has a heated water supply device 80. The heating water supply device 80 includes a water flow path 81 that intersects the circulation gas flow path 71, a hot water heating heat exchanger 73 installed at an intersection of the circulation gas flow path 71 and the water flow path 81, And a shower head 82 provided at the downstream end 81 of the water flow path. Therefore, when the circulating gas flows through one of the tube side and the shell side of the hot water heating heat exchanger 73 and the hot water passes through the other, heat exchange between the circulating gas and the hot water is possible. The hot water flowing through the path 81 is heated to become heated water.
The internal fluid existing from the water heating heat exchanger 54 to the hot water heating heat exchanger 73 is referred to as “hot water”, and the internal fluid downstream thereof is referred to as “heating water”.
 また、水流路81のうち当該温水加熱用熱交換器73よりも上流位置が、前述の分解ガス流路42のうち分岐して分岐流路42a、42bになるよりも上流かつアンモニア加熱用熱交換器51よりも下流の位置と交差して交差点となっており、当該交差点に水加熱用熱交換器54が設置されている。この水加熱用熱交換器54のチューブ側及びシェル側の一方に分解ガスが流通し、他方に水が通過することにより、分解ガスと水との間で熱交換可能とされている。
 前記循環ガス流路71のうち前記温水加熱用熱交換器73よりも下流に、前記循環ガス中の水を除去するためのドレンポット74を有する。
Further, the upstream position of the water flow channel 81 from the heat exchanger 73 for heating the hot water is upstream from the branching flow channels 42a and 42b of the cracked gas flow channel 42, and the heat exchange for heating the ammonia. It intersects with a position downstream of the vessel 51 to form an intersection, and a water heating heat exchanger 54 is installed at the intersection. The cracked gas flows through one of the tube side and the shell side of the water heating heat exchanger 54, and water passes through the other, so that heat can be exchanged between the cracked gas and water.
A drain pot 74 for removing water in the circulation gas is provided downstream of the heat exchanger 73 for heating hot water in the circulation gas passage 71.
 前記循環ガス流路71は、その前記温水加熱用熱交換器73よりも上流に位置する第1ポイントと前記ドレンポット74よりも下流に位置する第2ポイントとが交差して交差点となっており、前記循環ガス流路71のうち前記第1ポイントと前記第2ポイントとの間の部分が環状流路71aとなっており、当該交差点に循環ガス用熱交換器72が設置されている。したがって、燃焼ガス流路64から加熱機器38を介して循環ガス流路71に流入した燃焼ガス(循環ガス)は、循環ガス用熱交換器72のチューブ側及びシェル側の一方を通過した後、循環ガス流路71のうちの環状流路71aを流通し、次いで、循環ガス用熱交換器72のチューブ側及びシェル側の他方を通過することが可能とされている。
 この環状流路71aには、前述の温水加熱用熱交換器73、ドレンポット74、及び循環機75が、上流側からこの順に設けられている。
The circulating gas flow path 71 is an intersection where a first point located upstream of the hot water heating heat exchanger 73 and a second point located downstream of the drain pot 74 intersect. The portion between the first point and the second point in the circulating gas channel 71 is an annular channel 71a, and a circulating gas heat exchanger 72 is installed at the intersection. Therefore, after the combustion gas (circulation gas) that has flowed from the combustion gas passage 64 into the circulation gas passage 71 via the heating device 38 passes through one of the tube side and the shell side of the circulation gas heat exchanger 72, It circulates through the circular flow path 71a of the circulation gas flow path 71, and then can pass the other of the tube side and the shell side of the circulation gas heat exchanger 72.
The annular channel 71a is provided with the above-described heat exchanger 73 for heating hot water, a drain pot 74, and a circulator 75 in this order from the upstream side.
 また、当該循環ガス流路71のうちドレンポット74の下流かつ循環機75の上流側の位置からは、ガス廃棄流路76が分岐している。但し、当該ガス廃棄流路76は、当該循環ガス流路71のどの位置から分岐してもよい。 Further, a gas waste flow path 76 is branched from a position downstream of the drain pot 74 and upstream of the circulator 75 in the circulation gas flow path 71. However, the gas disposal channel 76 may be branched from any position in the circulation gas channel 71.
 前述の燃焼ガス流路64の途中箇所と、前述の循環ガス流路71のうち前記循環ガス用熱交換器72よりも上流の箇所に、それぞれ、バイパス流路77の一端及び他端が接続されている。
 当該バイパス流路77は、前述のアンモニア流路41と交差しており、当該交差点に、前述のアンモニア補助加熱用熱交換器52が設けられている。したがって、このアンモニア補助加熱用熱交換器52のチューブ側及びシェル側の一方にアンモニアが流通し、他方に燃焼ガスが通過することにより、アンモニアと燃焼ガスとの間の熱交換によってアンモニアを加熱することができる。
One end and the other end of the bypass flow path 77 are connected to a middle position of the combustion gas flow path 64 and a position upstream of the circulation gas heat exchanger 72 in the circulation gas flow path 71, respectively. ing.
The bypass passage 77 intersects with the ammonia passage 41 described above, and the ammonia auxiliary heating heat exchanger 52 is provided at the intersection. Therefore, ammonia flows through one of the tube side and the shell side of the ammonia auxiliary heating heat exchanger 52 and the combustion gas passes through the other, whereby the ammonia is heated by heat exchange between the ammonia and the combustion gas. be able to.
 なお、本実施の形態では、前記分解ガス流路42及び前記アンモニア除去後ガス流路43が、加圧装置を有しない。これにより、設備コスト及び運転コストを削減できる。
 ただし、分解ガス流路42及びアンモニア除去後ガス流路43の少なくとも一方に、加圧装置を設けてもよい。これにより、アンモニア分解装置32の圧力を低くしてアンモニア分解効率を向上させると共に、水素回収装置35に流入するアンモニア除去後ガスの圧力を高くして水素回収効率を向上させることができる。当該加圧装置を設ける場合には、分解ガス流路42及びアンモニア除去後ガス流路43のうちアンモニア除去後ガス流路43のみに設けることが好ましい。
In the present embodiment, the cracked gas flow path 42 and the post-ammonia removal gas flow path 43 do not have a pressurizing device. Thereby, equipment cost and operation cost can be reduced.
However, a pressurizing device may be provided in at least one of the cracked gas channel 42 and the gas channel 43 after ammonia removal. As a result, the ammonia decomposition efficiency can be improved by lowering the pressure of the ammonia decomposing apparatus 32, and the hydrogen recovery efficiency can be improved by increasing the pressure of the ammonia-removed gas flowing into the hydrogen recovering apparatus 35. In the case of providing the pressurizing device, it is preferable to provide only the post-ammonia removal gas passage 43 among the cracked gas passage 42 and the post-ammonia removal gas passage 43.
(燃焼反応装置)
 燃焼反応装置36は、水素及びアンモニアを燃焼し得るものであれば特に制限されないが、効率よく燃焼させる観点から、燃焼触媒を収納するものであることが好ましい。
 燃焼反応装置で用いられる触媒としては、パラジウム、白金等が挙げられるが、コストの観点から、パラジウムが好ましい。
(Combustion reactor)
The combustion reaction device 36 is not particularly limited as long as it can combust hydrogen and ammonia, but it is preferable to contain a combustion catalyst from the viewpoint of efficient combustion.
Examples of the catalyst used in the combustion reaction apparatus include palladium and platinum. From the viewpoint of cost, palladium is preferable.
(酸素供給装置)
 酸素供給装置37から供給される酸素含有ガスには、特に制限はなく、空気、酸素ボンベ等から供給される酸素等が挙げられるが、安全性及び経済性の観点から、空気が好ましい。
 酸素供給装置37は、吸着材再生ガス流路63に酸素を供給し得るものであれば特に制限はなく、各種圧縮機が挙げられる。
(循環機)
 循環機75には特に制限はなく、ブロア、ファン、各種圧縮機が挙げられる。
(加熱水供給装置)
 加熱水供給装置80は、前述のとおり、水流路81と、水流路81の先端に設けられたシャワーヘッド82と、水流路81に設けられた水加熱用熱交換器54及び温水加熱用熱交換器73とを有している。この装置によって、加熱された水をアンモニア供給装置31に供給して内部のアンモニアを加温することができる。
(Oxygen supply device)
There is no restriction | limiting in particular in the oxygen containing gas supplied from the oxygen supply apparatus 37, Although the oxygen etc. which are supplied from air, an oxygen cylinder, etc. are mentioned, Air is preferable from a safety | security and economical viewpoint.
The oxygen supply device 37 is not particularly limited as long as it can supply oxygen to the adsorbent regeneration gas passage 63, and various compressors can be used.
(Circulator)
There is no restriction | limiting in particular in the circulation machine 75, A blower, a fan, and various compressors are mentioned.
(Heating water supply device)
As described above, the heating water supply device 80 includes the water flow path 81, the shower head 82 provided at the tip of the water flow path 81, the water heating heat exchanger 54 provided in the water flow path 81, and the heat exchange for hot water heating. Instrument 73. With this device, heated water can be supplied to the ammonia supply device 31 to heat the internal ammonia.
<水素製造方法>
 次に、前述した水素製造装置30を用いた水素製造方法の一例について説明する。
 本実施の形態に係る水素製造方法では、後述する第1の運転と第2の運転とを繰り返す。
<Hydrogen production method>
Next, an example of a hydrogen production method using the above-described hydrogen production apparatus 30 will be described.
In the hydrogen production method according to the present embodiment, a first operation and a second operation described later are repeated.
(第1の運転)
 第1の運転では、アンモニア吸着器34aを用いて水素ガスの製造を実施すると共に、アンモニア吸着器34b内のアンモニア吸着材の再生を実施する。
 すなわち、第1の運転は、後述するアンモニア分解工程、アンモニア吸着工程、水素回収工程、アンモニア吸着器再生工程、アンモニア分解装置の加熱工程、燃焼ガス循環工程、及び水加熱工程を有する。
(First operation)
In the first operation, hydrogen gas is produced using the ammonia adsorber 34a, and the ammonia adsorbent in the ammonia adsorber 34b is regenerated.
That is, the first operation includes an ammonia decomposition process, an ammonia adsorption process, a hydrogen recovery process, an ammonia adsorber regeneration process, an ammonia decomposition apparatus heating process, a combustion gas circulation process, and a water heating process, which will be described later.
〔アンモニア分解工程〕
 アンモニア分解工程は、前記アンモニア供給装置31からのアンモニアを前記アンモニア分解装置32に流通させ、アンモニアを分解して、水素、窒素及び未反応アンモニアを含有する前記分解ガスを生成する工程である。
 すなわち、まずアンモニア分解工程に先立って、後述する水加熱工程で説明している通りに、加熱水供給装置80のシャワーヘッド82からアンモニア供給装置31に加熱水を供給する。これにより、アンモニア供給装置31内の液体アンモニアが気化して、アンモニア流路41を流通する。
 アンモニア流路41内のアンモニアは、流量制御弁V1により流量調整された後、アンモニア加熱用熱交換器51及びアンモニア補助加熱用熱交換器52にて加熱され、次いでアンモニア分解装置32に流通する。当該アンモニア分解装置32内で、アンモニアが分解して、水素、窒素及び未反応アンモニアを含有する前記分解ガスが生成される。
 アンモニア分解装置32内の温度及び圧力に関しては、第1の実施の形態で説明したとおりである。
[Ammonia decomposition process]
The ammonia decomposition step is a step in which ammonia from the ammonia supply device 31 is circulated to the ammonia decomposition device 32 to decompose the ammonia to generate the decomposition gas containing hydrogen, nitrogen and unreacted ammonia.
That is, first, prior to the ammonia decomposition step, heated water is supplied from the shower head 82 of the heated water supply device 80 to the ammonia supply device 31 as described in the water heating step described later. Thereby, the liquid ammonia in the ammonia supply device 31 is vaporized and flows through the ammonia flow path 41.
The ammonia in the ammonia flow path 41 is adjusted in flow rate by the flow control valve V <b> 1, heated in the ammonia heating heat exchanger 51 and the ammonia auxiliary heating heat exchanger 52, and then circulates in the ammonia decomposition device 32. In the ammonia decomposition apparatus 32, ammonia is decomposed, and the decomposition gas containing hydrogen, nitrogen and unreacted ammonia is generated.
The temperature and pressure in the ammonia decomposition apparatus 32 are as described in the first embodiment.
〔アンモニア吸着工程〕
 アンモニア吸着工程は、前記アンモニア分解工程の実施により、前記アンモニア分解装置32から流出する前記分解ガスを、前記分解ガス冷却装置33a(分解ガス冷却用熱交換器33)、アンモニア加熱用熱交換器51、及び水加熱用熱交換器54に流通させて冷却した後、前記複数のアンモニア吸着器34a、34bの一方(アンモニア吸着器34a)に流通させて、前記分解ガスから未反応アンモニアを吸着除去して前記アンモニア除去後ガスを得る工程である。
 アンモニア吸着器34a内の温度及び圧力については、前述の第1の実施の形態で説明したとおりである。
[Ammonia adsorption process]
In the ammonia adsorption step, the cracked gas flowing out from the ammonia cracking device 32 is separated from the cracked gas cooling device 33a (heat exchanger 33 for cracked gas cooling) and the heat exchanger 51 for heating ammonia by performing the ammonia cracking step. And after flowing through the water heating heat exchanger 54 and cooling, it is passed through one of the ammonia adsorbers 34a and 34b (ammonia adsorber 34a) to adsorb and remove unreacted ammonia from the cracked gas. And obtaining the gas after removal of ammonia.
The temperature and pressure in the ammonia adsorber 34a are as described in the first embodiment.
〔水素回収工程〕
 水素回収工程は、前記複数のアンモニア吸着器34a、34bの前記一方(アンモニア吸着器34a)から流出する前記アンモニア除去後ガスを、前記水素回収装置35に流通させて、前記アンモニア除去後ガスから水素を分離して流出すると共に、残りのオフガスを排出する工程である。
 水素回収装置35内の温度及び圧力については、前述の第1の実施の形態で説明したとおりである。
[Hydrogen recovery process]
In the hydrogen recovery step, the ammonia-removed gas flowing out from the one (ammonia adsorber 34a) of the plurality of ammonia adsorbers 34a and 34b is circulated to the hydrogen recovery device 35, and hydrogen is removed from the ammonia-removed gas. Are separated and discharged, and the remaining off-gas is discharged.
The temperature and pressure in the hydrogen recovery device 35 are as described in the first embodiment.
 なお、本実施の形態では、前記水素回収装置35に接続されており、前記水素回収装置35で分離した水素を流出する水素流路44と、水素流路44に設置された圧力制御弁V2と、を有する。また、本実施の形態では、アンモニア供給装置31から、アンモニア流路41、アンモニア分解装置32、分解ガス流路42、アンモニア吸着装置34、及びアンモニア除去後ガス流路43までの流路には、熱交換器以外の加熱装置、すなわちエネルギー供給タイプのヒーター類が存在しない。したがって、圧力制御弁V2を制御することにより、前記アンモニア分解装置32の圧力P1、前記アンモニア吸着装置34(アンモニア吸着器34a)の圧力P2、及び前記水素回収装置35の圧力P3の各々を、
   P1≧P2≧P3
という関係を満たす所定の圧力範囲に制御することができる。
In the present embodiment, a hydrogen flow path 44 that is connected to the hydrogen recovery apparatus 35 and flows out hydrogen separated by the hydrogen recovery apparatus 35, and a pressure control valve V2 installed in the hydrogen flow path 44, Have. Further, in the present embodiment, the flow path from the ammonia supply apparatus 31 to the ammonia flow path 41, the ammonia decomposition apparatus 32, the decomposition gas flow path 42, the ammonia adsorption apparatus 34, and the post-ammonia removal gas flow path 43 includes: There are no heating devices other than heat exchangers, ie, energy supply type heaters. Therefore, by controlling the pressure control valve V2, each of the pressure P1 of the ammonia decomposing device 32, the pressure P2 of the ammonia adsorbing device 34 (ammonia adsorbing device 34a), and the pressure P3 of the hydrogen recovery device 35 is obtained.
P1 ≧ P2 ≧ P3
It is possible to control to a predetermined pressure range that satisfies the relationship.
〔アンモニア吸着器再生工程〕
 アンモニア吸着器再生工程は、前記水素回収装置35から流出する前記オフガスを、前述の前記オフガス加熱装置33b(分解ガス冷却用熱交換器33)に流通させて加熱した後、前記複数のアンモニア吸着器34a及び34bの残部(たとえばアンモニア吸着器34aを使用中のときはアンモニア吸着器34b)に流通させてアンモニアを脱着させてアンモニア吸着器(アンモニア吸着器34b)を再生させる工程である。
[Ammonia adsorber regeneration process]
In the ammonia adsorber regeneration step, after the off-gas flowing out from the hydrogen recovery device 35 is heated by flowing through the off-gas heating device 33b (heat exchanger 33 for cracking gas cooling), the plurality of ammonia adsorbers In this step, the remaining part of 34a and 34b (for example, the ammonia adsorber 34b when the ammonia adsorber 34a is in use) is passed through to desorb ammonia to regenerate the ammonia adsorber (ammonia adsorber 34b).
 前述のとおり、水素回収装置35に供給されるアンモニア除去後ガスは、その上流のアンモニア吸着装置34において、アンモニア分解ガス(水素、窒素及び未反応アンモニア)からアンモニアが除去されている。したがって、水素回収装置35から流出するオフガス中におけるアンモニア含有量は少量である。したがって、当該オフガスを加熱した後にアンモニア吸着器34bに流通させることにより、アンモニア吸着材に吸着したアンモニアを良好に脱着させて、再生させることができる。
 また、アンモニア吸着器34bを再生させている間、アンモニア吸着器34aを用いて分解ガスからアンモニアを吸着除去することができる。
 アンモニア吸着器34b内の温度及び圧力については、前述の第1の実施の形態で説明したとおりである。
As described above, the ammonia-removed gas supplied to the hydrogen recovery device 35 has ammonia removed from the ammonia decomposition gas (hydrogen, nitrogen and unreacted ammonia) in the upstream ammonia adsorption device 34. Therefore, the ammonia content in the off-gas flowing out from the hydrogen recovery device 35 is small. Therefore, by heating the off gas and then circulating it through the ammonia adsorber 34b, the ammonia adsorbed on the ammonia adsorbent can be satisfactorily desorbed and regenerated.
Further, while the ammonia adsorber 34b is being regenerated, ammonia can be adsorbed and removed from the cracked gas using the ammonia adsorber 34a.
The temperature and pressure in the ammonia adsorber 34b are as described in the first embodiment.
〔アンモニア分解装置の加熱工程〕
 アンモニア分解装置32の加熱工程においては、まず前記アンモニア吸着器34bから流出する吸着材再生ガスを、酸素供給装置37からの酸素含有ガス及び後述する循環ガス流路71からの循環ガスと混合して混合ガスとする。次いで、当該混合ガスを前記燃焼反応装置36に供給して燃焼し、高温の燃焼ガスを得る。次いで、当該燃焼ガスを、燃焼ガス流路64を介して加熱機器38に流通させる。
 このように、本実施の形態では、吸着材再生ガス、後述する循環ガス、及び酸素含有ガスを混合した混合ガスを、燃焼反応装置36で燃焼させている。したがって、循環ガス、及び酸素含有ガスの混合量を調整して混合ガスの組成を調整することにより、当該混合ガスを効率よく燃焼させることができる。また、循環ガスの一部又は全部を利用することにより、アンモニア分解装置32と熱交換を行うガス量を増量させることができ、これによりエネルギー効率を向上させることができる。
 燃焼反応装置36に供給される吸着材再生ガスの温度、燃焼反応装置36内の温度、及び燃焼反応装置36内の圧力については、前述の第1の実施の形態で説明したとおりである。
[Heating process of ammonia decomposition equipment]
In the heating process of the ammonia decomposing apparatus 32, first, the adsorbent regeneration gas flowing out from the ammonia adsorber 34b is mixed with the oxygen-containing gas from the oxygen supply apparatus 37 and the circulating gas from the circulating gas passage 71 described later. A mixed gas is used. Next, the mixed gas is supplied to the combustion reaction device 36 and burned to obtain a high-temperature combustion gas. Next, the combustion gas is circulated to the heating device 38 via the combustion gas flow path 64.
As described above, in the present embodiment, the mixed gas obtained by mixing the adsorbent regeneration gas, the circulating gas described later, and the oxygen-containing gas is burned by the combustion reaction device 36. Therefore, the mixed gas can be efficiently burned by adjusting the mixing amount of the circulating gas and the oxygen-containing gas to adjust the composition of the mixed gas. In addition, by using a part or all of the circulating gas, the amount of gas exchanged with the ammonia decomposing device 32 can be increased, thereby improving the energy efficiency.
The temperature of the adsorbent regeneration gas supplied to the combustion reaction device 36, the temperature in the combustion reaction device 36, and the pressure in the combustion reaction device 36 are as described in the first embodiment.
〔燃焼ガス循環工程〕
 燃焼ガス循環工程は、前記アンモニア分解装置32を加熱した後の前記燃焼ガスを、循環ガスとして、循環ガス用熱交換器72及び温水加熱用熱交換器73に流通させて冷却させた後、冷却により凝縮した水をドレンポット74で除去し、次いで冷却後の循環ガスの一部又は全部を再度循環ガス用熱交換器72に流通させて加熱し、前記吸着材再生ガス及び酸素含有ガスと共に前記燃焼反応装置36に流通させて燃焼させる工程である。
 このように循環ガスを冷却することにより、循環ガスの体積を低減することができ、これにより、循環機75を小型化することができる。
 なお、当該アンモニア分解装置32を加熱した後の前記循環ガスの一部を、前記吸着材再生ガスと共に前記燃焼反応装置36に流通させて燃焼させる場合には、当該循環ガスの残部を、ガス廃棄流路76を介して系外に排出すればよい。
 ここで、燃焼ガスがアンモニア分解装置を通過した後に、循環ガス流路を流通するガスを循環ガスと呼ぶ。
[Combustion gas circulation process]
In the combustion gas circulation step, the combustion gas after heating the ammonia decomposing device 32 is circulated as a circulation gas to the circulation gas heat exchanger 72 and the hot water heating heat exchanger 73, and then cooled. The condensed water is removed by the drain pot 74, and then part or all of the cooled circulating gas is again passed through the circulating gas heat exchanger 72 and heated, together with the adsorbent regeneration gas and the oxygen-containing gas. This is a step of flowing through the combustion reaction device 36 and burning it.
By cooling the circulating gas in this way, the volume of the circulating gas can be reduced, and thus the circulator 75 can be reduced in size.
In addition, when a part of the circulating gas after heating the ammonia decomposing device 32 is circulated through the combustion reaction device 36 together with the adsorbent regeneration gas and burned, the remaining portion of the circulating gas is discarded as gas. What is necessary is just to discharge | emit out of the system through the flow path 76.
Here, after the combustion gas passes through the ammonia decomposing apparatus, the gas flowing through the circulation gas flow path is referred to as circulation gas.
 前記燃焼反応装置36にて前記混合ガスを燃焼させると、混合ガス中の水素及びアンモニアの少なくとも1種と酸素とが反応して水が生成する。したがって、本実施の形態では、前記循環ガス流路71に設けられたドレンポット74により、当該水を除去した後に、前記吸着材再生ガスと共に前記燃焼反応装置36に流通させて燃焼させる。 When the mixed gas is burned by the combustion reaction device 36, at least one of hydrogen and ammonia in the mixed gas reacts with oxygen to generate water. Therefore, in the present embodiment, after the water is removed by the drain pot 74 provided in the circulation gas flow path 71, the water is passed through the combustion reaction device 36 and burned together with the adsorbent regeneration gas.
〔水加熱工程〕
 水加熱工程は、加熱水でアンモニアを加熱する工程であり、より具体的には、水を前記水加熱用熱交換器54及び温水加熱用熱交換器73に流通して加熱水にした後、前記シャワーヘッド82から前記アンモニア供給装置31に加熱水を供給して、アンモニアを気化させる工程である。
 シャワーヘッド82から流出させる加熱水の温度は、好ましくは0~80℃、より好ましくは10~60℃、更に好ましくは20~50℃、より更に好ましくは30~45℃である。
[Water heating process]
The water heating step is a step of heating ammonia with heated water, and more specifically, after circulating water into the water heating heat exchanger 54 and the hot water heating heat exchanger 73 to make heated water, In this step, heated water is supplied from the shower head 82 to the ammonia supply device 31 to vaporize ammonia.
The temperature of the heated water flowing out from the shower head 82 is preferably 0 to 80 ° C., more preferably 10 to 60 ° C., still more preferably 20 to 50 ° C., and still more preferably 30 to 45 ° C.
(第2の運転)
 前述の第1の運転を継続した後に、下記の第2の運転を実施する。
 第2の運転では、第1の運転で再生させたアンモニア吸着器34bを用いてアンモニア吸着工程を行い、また、第1の運転でアンモニア吸着工程を行っていたアンモニア吸着器34aを用いてアンモニア吸着器再生工程を実施する。なお、その他の工程、すなわち、アンモニア分解工程、水素回収工程、及びアンモニア分解装置の加熱工程は、第1の運転と同様である。
 このように、第1の運転と第2の運転とを繰り返すことにより、連続運転を行うことができる。
(Second operation)
After continuing the first operation described above, the following second operation is performed.
In the second operation, the ammonia adsorption process is performed using the ammonia adsorber 34b regenerated in the first operation, and the ammonia adsorption process is performed using the ammonia adsorber 34a that has been performing the ammonia adsorption process in the first operation. Implement the vessel regeneration process. The other steps, that is, the ammonia decomposition step, the hydrogen recovery step, and the heating step of the ammonia decomposition apparatus are the same as in the first operation.
Thus, a continuous operation can be performed by repeating the first operation and the second operation.
[第3の実施の形態]
<水素製造装置>
 図4は、第3の実施の形態に係る水素製造装置30Aの概略図である。
 図4の水素製造装置30Aは、図2及び図3の水素製造装置30において、燃焼ガスを循環利用することなく、つまりアンモニア分解装置32を加熱する加熱機器38を通過した燃焼ガスを再び燃焼反応装置36に戻すことなく水素製造装置外に廃棄し、かつ吸着剤再生ガス及び酸素含有ガスの混合ガスを燃焼反応装置36に供給して燃焼させるように改造したものである。
 すなわち、水素製造装置30Aは、水素製造装置30において、循環ガス流路71と、当該循環ガス流路71に設置された配管及び装置類と、酸素供給装置37とを省略し、かつ後述する配管及び装置類を設置したものである。
[Third Embodiment]
<Hydrogen production equipment>
FIG. 4 is a schematic diagram of a hydrogen production apparatus 30A according to the third embodiment.
4A and 4B, the hydrogen production apparatus 30 in FIGS. 2 and 3 does not circulate and use the combustion gas, that is, the combustion gas that has passed through the heating device 38 that heats the ammonia decomposition apparatus 32 is again subjected to a combustion reaction. It is modified so that it is discarded outside the hydrogen production apparatus without being returned to the apparatus 36, and the mixed gas of the adsorbent regeneration gas and the oxygen-containing gas is supplied to the combustion reaction apparatus 36 for combustion.
That is, in the hydrogen production apparatus 30, the hydrogen production apparatus 30 A omits the circulation gas passage 71, the piping and devices installed in the circulation gas passage 71, and the oxygen supply device 37, and will be described later. And equipment.
(水素製造装置30Aには無い装置類)
 すなわち、図4の水素製造装置30Aは、水素製造装置30における循環ガス流路71、循環ガス用熱交換器72、温水加熱用熱交換器73、ドレンポット74、循環機75、ガス廃棄流路76、及び酸素供給装置37を有しない。
(Equipment not available in the hydrogen production apparatus 30A)
That is, the hydrogen production apparatus 30A in FIG. 4 includes a circulation gas flow path 71, a circulation gas heat exchanger 72, a hot water heating heat exchanger 73, a drain pot 74, a circulation machine 75, and a gas disposal flow path in the hydrogen production apparatus 30. 76 and the oxygen supply device 37 are not provided.
(水素製造装置30Aで追加された装置類)
 図4に示すとおり、水素製造装置30Aは、一端が加熱機器38に接続され、他端がドレンポット74Aに接続された熱回収流路71Aを有する。また、ドレンポット74Aにはガス廃棄流路76Aが接続されている。
 熱回収流路71Aが、酸素供給流路37Bと交差しており、当該交差点に、酸素ガス加熱用熱交換器72Aが設置されている。当該酸素ガス加熱用熱交換器72Aのチューブ側及びシェル側の一方に熱回収流路71A内のガスが通され、他方に酸素供給流路37B内のガスが通される。当該酸素供給流路37Bの一端は酸素供給装置37Aに接続され、他端は吸着剤再生ガス流路63のうち分岐流路63a63bよりも下流側に接続されている。
 また、熱回収流路71Aのうち前記酸素ガス加熱用熱交換器72Aよりも下流側の箇所が、水流路81のうち水加熱用熱交換器54よりも下流側の箇所と交差しており、当該交差点に、温水加熱用熱交換器73Aが設置されている。当該温水加熱用熱交換器73Aのチューブ側及びシェル側の一方に熱回収流路71A内のガスが通され、他方に水流路81内の温水が通される。当該水流路81の下流端は、シャワーヘッド82に接続されている。
 なお、水加熱用熱交換器54から温水加熱用熱交換器73Aまでに存在する内部流体を“温水”と呼び、それよりも下流の内部流体を“加熱水”と呼ぶこととする。
 水素製造装置30Aの上記以外の構成は水素製造装置30と同様であり、同一符号は同一の装置又は配管類を意味する。
(Devices added in the hydrogen production device 30A)
As shown in FIG. 4, the hydrogen production apparatus 30 </ b> A has a heat recovery flow path 71 </ b> A having one end connected to the heating device 38 and the other end connected to the drain pot 74 </ b> A. A gas disposal flow path 76A is connected to the drain pot 74A.
The heat recovery channel 71A intersects with the oxygen supply channel 37B, and an oxygen gas heating heat exchanger 72A is installed at the intersection. The gas in the heat recovery passage 71A is passed through one of the tube side and the shell side of the oxygen gas heating heat exchanger 72A, and the gas in the oxygen supply passage 37B is passed through the other. One end of the oxygen supply flow path 37B is connected to the oxygen supply device 37A, and the other end is connected to the downstream side of the branch flow path 63a63b in the adsorbent regeneration gas flow path 63.
In addition, a location downstream of the oxygen gas heating heat exchanger 72A in the heat recovery flow channel 71A intersects a location downstream of the water heating heat exchanger 54 in the water flow channel 81, A hot water heating heat exchanger 73A is installed at the intersection. The gas in the heat recovery passage 71A is passed through one of the tube side and the shell side of the heat exchanger 73A for heating hot water, and the hot water in the water passage 81 is passed through the other. The downstream end of the water channel 81 is connected to the shower head 82.
The internal fluid existing from the water heating heat exchanger 54 to the hot water heating heat exchanger 73A is referred to as “warm water”, and the internal fluid downstream thereof is referred to as “heating water”.
The configuration of the hydrogen production apparatus 30A other than the above is the same as that of the hydrogen production apparatus 30, and the same reference sign means the same apparatus or piping.
<水素製造方法>
 次に、前述した水素製造装置30Aを用いた水素製造方法の一例について説明する。
 本実施の形態に係る水素製造方法では、後述する第1の運転と第2の運転とを繰り返す。
<Hydrogen production method>
Next, an example of a hydrogen production method using the above-described hydrogen production apparatus 30A will be described.
In the hydrogen production method according to the present embodiment, a first operation and a second operation described later are repeated.
(第1の運転)
 第1の運転では、アンモニア吸着器34aを用いて水素ガスの製造を実施すると共に、アンモニア吸着器34b内のアンモニア吸着材の再生を実施する。
 すなわち、第1の運転は、後述するアンモニア分解工程、アンモニア吸着工程、水素回収工程、アンモニア吸着器再生工程、アンモニア分解装置の加熱工程、熱回収工程、及び水加熱工程を有する。
(First operation)
In the first operation, hydrogen gas is produced using the ammonia adsorber 34a, and the ammonia adsorbent in the ammonia adsorber 34b is regenerated.
That is, the first operation includes an ammonia decomposition step, an ammonia adsorption step, a hydrogen recovery step, an ammonia adsorber regeneration step, an ammonia decomposition apparatus heating step, a heat recovery step, and a water heating step, which will be described later.
〔アンモニア分解工程〕
 第2の実施の形態と同じである。
〔アンモニア吸着工程〕
 第2の実施の形態と同じである。
〔水素回収工程〕
 第2の実施の形態と同じである。
〔アンモニア吸着器再生工程〕
 第2の実施の形態と同じである。
[Ammonia decomposition process]
This is the same as the second embodiment.
[Ammonia adsorption process]
This is the same as the second embodiment.
[Hydrogen recovery process]
This is the same as the second embodiment.
[Ammonia adsorber regeneration process]
This is the same as the second embodiment.
〔アンモニア分解装置の加熱工程〕
 アンモニア分解装置32の加熱工程においては、まず前記アンモニア吸着器34bから流出する吸着材再生ガスを、酸素供給装置37Aからの酸素含有ガスと混合して混合ガスとする。次いで、当該混合ガスを前記燃焼反応装置36に供給して燃焼し、高温の燃焼ガスを得る。次いで、当該燃焼ガスを、燃焼ガス流路64を介して加熱機器38に流通させることにより、アンモニア分解装置32を加熱する。
 このように、本実施の形態では、吸着材再生ガス及び酸素含有ガスを混合した混合ガスを、燃焼反応装置36で燃焼させている。したがって、酸素含有ガスの量を調整して混合ガスの組成を調整することにより、当該混合ガスを効率よく燃焼させることができる。
 燃焼反応装置36に供給される吸着材再生ガスの温度、燃焼反応装置36内の温度、及び燃焼反応装置36内の圧力については、前述の第1の実施の形態で説明したとおりである。
[Heating process of ammonia decomposition equipment]
In the heating process of the ammonia decomposing apparatus 32, first, the adsorbent regeneration gas flowing out from the ammonia adsorber 34b is mixed with the oxygen-containing gas from the oxygen supply apparatus 37A to form a mixed gas. Next, the mixed gas is supplied to the combustion reaction device 36 and burned to obtain a high-temperature combustion gas. Next, the ammonia decomposition apparatus 32 is heated by circulating the combustion gas through the combustion gas flow path 64 to the heating device 38.
Thus, in the present embodiment, the mixed gas obtained by mixing the adsorbent regeneration gas and the oxygen-containing gas is burned by the combustion reaction device 36. Therefore, the mixed gas can be efficiently burned by adjusting the composition of the mixed gas by adjusting the amount of the oxygen-containing gas.
The temperature of the adsorbent regeneration gas supplied to the combustion reaction device 36, the temperature in the combustion reaction device 36, and the pressure in the combustion reaction device 36 are as described in the first embodiment.
〔熱回収工程〕
 熱回収工程は、前記アンモニア分解装置32を加熱した後の前記燃焼ガスを、酸素ガス加熱用熱交換器72A及び温水加熱用熱交換器73Aに流通させて冷却させた後、冷却により凝縮した水をドレンポット74Aで除去し、次いでガス廃棄流路76Aを介して系外に排出する工程である。
[Heat recovery process]
In the heat recovery step, the combustion gas after heating the ammonia decomposing device 32 is circulated through the oxygen gas heating heat exchanger 72A and the hot water heating heat exchanger 73A to be cooled, and then condensed by cooling. Is removed by the drain pot 74A and then discharged out of the system through the gas disposal flow path 76A.
 前記燃焼反応装置36にて前記混合ガスを燃焼させると、混合ガス中の水素及びアンモニアの少なくとも1種と酸素とが反応して水が生成する。したがって、本実施の形態では、前記熱回収流路71Aに設けられたドレンポット74Aにより、当該水を除去した後に、系外に排出する。 When the mixed gas is burned by the combustion reaction device 36, at least one of hydrogen and ammonia in the mixed gas reacts with oxygen to generate water. Therefore, in the present embodiment, after the water is removed by the drain pot 74A provided in the heat recovery flow path 71A, the water is discharged out of the system.
〔水加熱工程〕
 水加熱工程は、加熱水でアンモニアを加熱する工程であり、より具体的には、水を前記水加熱用熱交換器54及び温水加熱用熱交換器73Aに流通して加熱水にした後、前記シャワーヘッド82から前記アンモニア供給装置31に加熱水を供給して、アンモニアを気化させる工程である。
 シャワーヘッド82から流出させる加熱水の温度は、好ましくは0~80℃、より好ましくは10~60℃、更に好ましくは20~50℃、より更に好ましくは30~45℃である。
[Water heating process]
The water heating step is a step of heating ammonia with heated water. More specifically, water is circulated through the water heating heat exchanger 54 and the hot water heating heat exchanger 73A to form heated water. In this step, heated water is supplied from the shower head 82 to the ammonia supply device 31 to vaporize ammonia.
The temperature of the heated water flowing out from the shower head 82 is preferably 0 to 80 ° C., more preferably 10 to 60 ° C., still more preferably 20 to 50 ° C., and still more preferably 30 to 45 ° C.
(第2の運転)
 前述の第1の運転を継続した後に、下記の第2の運転を実施する。
 第2の運転では、第1の運転で再生させたアンモニア吸着器34bを用いてアンモニア吸着工程を行い、また、第1の運転でアンモニア吸着工程を行っていたアンモニア吸着器34aを用いてアンモニア吸着器再生工程を実施する。なお、その他の工程は、第1の運転と同様である。
 このように、第1の運転と第2の運転とを繰り返すことにより、連続運転を行うことができる。
(Second operation)
After continuing the first operation described above, the following second operation is performed.
In the second operation, the ammonia adsorption process is performed using the ammonia adsorber 34b regenerated in the first operation, and the ammonia adsorption process is performed using the ammonia adsorber 34a that has been performing the ammonia adsorption process in the first operation. Implement the vessel regeneration process. The other steps are the same as in the first operation.
Thus, a continuous operation can be performed by repeating the first operation and the second operation.
[第4の実施の形態]
<水素製造装置>
 図5は、第4の実施の形態に係る水素製造装置30Bの概略図である。
 図5の水素製造装置30Bは、図2及び図3の水素製造装置30において、ガス廃棄流路76に、アンモニア除害設備90を設けたものである。
[Fourth Embodiment]
<Hydrogen production equipment>
FIG. 5 is a schematic view of a hydrogen production apparatus 30B according to the fourth embodiment.
A hydrogen production apparatus 30B in FIG. 5 is obtained by providing an ammonia abatement facility 90 in the gas disposal flow path 76 in the hydrogen production apparatus 30 in FIGS.
 すなわち、ガス廃棄流路76は、一端が環状流路71aに接続された第1のガス廃棄流路91と、第1のガス廃棄流路91の他端に接続された補助アンモニア吸着装置92と、補助アンモニア吸着装置92に接続され、補助アンモニア吸着装置92から排出されるガスを流通させる第2のガス廃棄流路93と、を備えたアンモニア除害設備90を有する。 That is, the gas disposal channel 76 includes a first gas disposal channel 91 having one end connected to the annular channel 71a, and an auxiliary ammonia adsorption device 92 connected to the other end of the first gas disposal channel 91. And an ammonia detoxification facility 90 that is connected to the auxiliary ammonia adsorbing device 92 and includes a second gas disposal channel 93 through which the gas discharged from the auxiliary ammonia adsorbing device 92 circulates.
 本実施の形態では、前記補助アンモニア吸着装置92は、並列に配設された複数(2個)の補助アンモニア吸着器92a、92bを有している。
 前記第1のガス廃棄流路91は、上流端が前記環状流路71aに接続され、下流端が分岐して複数(2本)の第1分岐流路91a、91bとなって前記複数の補助アンモニア吸着器92a、92bに接続されている。
 前記第2のガス廃棄流路93の上流端は、分岐して複数(2本)の第2分岐流路93a、93bとなって前記複数の補助アンモニア吸着器92a、92bに接続されている。
In the present embodiment, the auxiliary ammonia adsorption device 92 has a plurality (two) of auxiliary ammonia adsorbers 92a and 92b arranged in parallel.
The first gas disposal channel 91 has an upstream end connected to the annular channel 71a and a downstream end branched to form a plurality of (two) first branch channels 91a and 91b. The ammonia adsorbers 92a and 92b are connected.
The upstream end of the second gas disposal channel 93 diverges into a plurality (two) of second branch channels 93a and 93b and is connected to the plurality of auxiliary ammonia adsorbers 92a and 92b.
 アンモニア除害設備90は、更に、前記複数の補助アンモニア吸着器92a、92bに再生ガスを供給する再生ガス供給装置94と、一端が前記再生ガス供給装置94に接続され、他端が複数(2本)に分岐して前記第2分岐流路93a、93bに接続された再生ガス流路96(96a、96b)と、前記再生ガス流路96の途中に設けられており、前記再生ガスを加熱する再生ガス加熱器95とを有する。
 また、アンモニア除害設備90は、一端が複数(2本)に分岐して前記第1分岐流路91a、91bに接続されている脱着ガス流路97(97a、97b)、前記脱着ガス流路97の他端に接続されており、前記複数のアンモニア吸着器92a、92bの各々から排出された前記吸着材脱着ガスを燃焼して燃焼ガスを流出する廃ガス燃焼反応器98、及び前記廃ガス燃焼反応器98から排出された燃焼ガスを前記第2のガス廃棄流路93に返送する返送流路100、を有する。
 返送流路100に、前記廃ガス燃焼反応器から流出された前記燃焼ガスを冷却する、廃ガス冷却器99が設けられている。
 また、アンモニア除害設備90は、一端が第1のガス廃棄流路91に接続され、他端が第2のガス廃棄流路93に接続されたバイパス流路101を有している。
The ammonia abatement equipment 90 further includes a regeneration gas supply device 94 for supplying regeneration gas to the plurality of auxiliary ammonia adsorbers 92a and 92b, one end connected to the regeneration gas supply device 94, and a plurality of other ends (2 A regenerative gas flow path 96 (96a, 96b) branched into the main branch) and connected to the second branch flow paths 93a, 93b, and provided in the regenerative gas flow path 96 to heat the regenerative gas. A regenerative gas heater 95.
In addition, the ammonia detoxification equipment 90 has a desorption gas flow path 97 (97a, 97b) in which one end is branched into a plurality (two) and connected to the first branch flow paths 91a, 91b, and the desorption gas flow path. 97, a waste gas combustion reactor 98 that is connected to the other end of 97, burns the adsorbent desorption gas discharged from each of the plurality of ammonia adsorbers 92a, 92b, and flows out the combustion gas, and the waste gas A return passage 100 for returning the combustion gas discharged from the combustion reactor 98 to the second gas disposal passage 93;
The return flow path 100 is provided with a waste gas cooler 99 that cools the combustion gas flowing out of the waste gas combustion reactor.
Further, the ammonia abatement equipment 90 has a bypass channel 101 having one end connected to the first gas disposal channel 91 and the other end connected to the second gas disposal channel 93.
<水素製造方法>
 本実施の形態では、第2の実施の形態と同様の水素製造方法を実施することができることに加え、次のアンモニア除害工程、補助アンモニア吸着器の再生工程、及びバイパス運転工程を実施することができる。
<Hydrogen production method>
In this embodiment, in addition to being able to carry out the same hydrogen production method as in the second embodiment, the following ammonia detoxification step, auxiliary ammonia adsorber regeneration step, and bypass operation step are carried out Can do.
(アンモニア除害工程)
 アンモニア除害工程は、前記ガス廃棄流路76を流通するガスを、アンモニア除害設備90に供給してアンモニアを除害する工程である。本実施の形態では、補助アンモニア吸着器92aを用いてアンモニアを除害する場合と、補助アンモニア吸着器92bを用いてアンモニアを除害する場合とがある。
 例えば、ガス廃棄流路76を流通するガスを、第1のガス廃棄流路91及び第1分岐流路91aを介して補助アンモニア吸着器92aに供給し、アンモニアを除害した後、第2分岐流路93a、第2のガス廃棄流路93を介して排出してもよい。
 また、ガス廃棄流路76を流通するガスを、第1のガス廃棄流路91及び第1分岐流路91bを介して補助アンモニア吸着器92bに供給し、アンモニアを除害した後、第2分岐流路93b、第2のガス廃棄流路93を介して排出してもよい。
(Ammonia removal process)
The ammonia detoxification step is a step of detoxifying ammonia by supplying the gas flowing through the gas disposal channel 76 to the ammonia detoxification facility 90. In the present embodiment, there are cases where ammonia is detoxified using the auxiliary ammonia adsorber 92a, and cases where ammonia is detoxified using the auxiliary ammonia adsorber 92b.
For example, the gas flowing through the gas disposal flow path 76 is supplied to the auxiliary ammonia adsorber 92a through the first gas disposal flow path 91 and the first branch flow path 91a, and after the ammonia is detoxified, the second branch You may discharge | emit via the flow path 93a and the 2nd gas disposal flow path 93. FIG.
Further, the gas flowing through the gas disposal flow path 76 is supplied to the auxiliary ammonia adsorber 92b via the first gas disposal flow path 91 and the first branch flow path 91b, and after detoxifying ammonia, the second branch is made. You may discharge | emit via the flow path 93b and the 2nd gas disposal flow path 93. FIG.
 アンモニア除害工程において、補助アンモニア吸着器92a又は92bにおける運転条件(温度、圧力等)は、前述のアンモニア吸着器5a、5bによるアンモニア吸着工程における運転条件と同様である。 In the ammonia detoxification process, the operating conditions (temperature, pressure, etc.) in the auxiliary ammonia adsorber 92a or 92b are the same as the operating conditions in the ammonia adsorption process by the ammonia adsorbers 5a and 5b described above.
 なお、通常は、ガス廃棄流路76内のガス中におけるアンモニア濃度は、そのまま廃棄しても環境上問題ないレベルである。したがって、水素製造装置30Bの運転開始作業時や運転停止作業時等の非定常時に、必要に応じて、当該アンモニア除害工程が実施されてもよい。これにより、系外へのアンモニアの流出を確実に防止できる。
 第2のガス廃棄流路93を介して系外に排出されるガスにおけるアンモニア量は、25体積ppm以下であることが好ましい。したがって、第1のガス廃棄流路91中におけるガスにおけるアンモニア量が25体積ppmを超えている場合に、当該アンモニア除害工程を実施するのが好ましい。
Normally, the ammonia concentration in the gas in the gas disposal channel 76 is at a level that causes no environmental problems even if discarded as it is. Therefore, the ammonia detoxification step may be performed as necessary at the time of non-steady operation such as operation start operation or operation stop operation of the hydrogen production apparatus 30B. Thereby, the outflow of ammonia to the outside of the system can be reliably prevented.
The amount of ammonia in the gas discharged out of the system through the second gas disposal channel 93 is preferably 25 ppm by volume or less. Therefore, when the ammonia amount in the gas in the first gas disposal channel 91 exceeds 25 ppm by volume, it is preferable to perform the ammonia detoxification step.
(補助アンモニア吸着器の再生工程)
 補助アンモニア吸着器の再生工程は、上記アンモニア除害工程において使用された補助アンモニア吸着器92a、92bを、再生させる工程である。
 例えば、補助アンモニア吸着器92aを再生させる場合、再生ガス供給装置94からの酸素含有ガスを、再生ガス加熱器95によって加熱した後、再生ガス流路96、96a、第2分岐流路93aを介して補助アンモニア吸着器92aに供給し、補助アンモニア吸着器92aを再生させる。当該補助アンモニア吸着器92aから排出したガスは、第1分岐流路91a、脱着ガス流路97a、97を介して廃ガス燃焼反応器98に供給され、ガス中の可燃性ガスが燃焼される。燃焼後のガスは、廃ガス冷却器99によって冷却された後、返送流路100及び第2のガス廃棄流路93を介して排出される。
 また、補助アンモニア吸着器92bを再生させる場合、再生ガス供給装置94からの酸素含有ガスを、再生ガス加熱器95によって加熱した後、再生ガス流路96、96b、第2分岐流路93bを介して補助アンモニア吸着器92bに供給し、補助アンモニア吸着器92bを再生させる。当該補助アンモニア吸着器92bから排出したガスは、第1分岐流路91b、脱着ガス流路97b、97を介して廃ガス燃焼反応器98に供給され、ガス中の可燃性ガスが燃焼される。燃焼後のガスは、廃ガス冷却器99によって冷却された後、返送流路100及び第2のガス廃棄流路93を介して排出される。
(Regeneration process of auxiliary ammonia adsorber)
The regeneration process of the auxiliary ammonia adsorber is a process of regenerating the auxiliary ammonia adsorbers 92a and 92b used in the ammonia detoxification process.
For example, when the auxiliary ammonia adsorber 92a is regenerated, the oxygen-containing gas from the regeneration gas supply device 94 is heated by the regeneration gas heater 95 and then passed through the regeneration gas passages 96 and 96a and the second branch passage 93a. Then, the auxiliary ammonia adsorber 92a is supplied to regenerate the auxiliary ammonia adsorber 92a. The gas discharged from the auxiliary ammonia adsorber 92a is supplied to the waste gas combustion reactor 98 through the first branch flow path 91a and the desorption gas flow paths 97a and 97, and the combustible gas in the gas is combusted. The burned gas is cooled by the waste gas cooler 99 and then discharged through the return flow path 100 and the second gas waste flow path 93.
In addition, when the auxiliary ammonia adsorber 92b is regenerated, the oxygen-containing gas from the regeneration gas supply device 94 is heated by the regeneration gas heater 95 and then passed through the regeneration gas passages 96 and 96b and the second branch passage 93b. The auxiliary ammonia adsorber 92b is supplied to regenerate the auxiliary ammonia adsorber 92b. The gas discharged from the auxiliary ammonia adsorber 92b is supplied to the waste gas combustion reactor 98 via the first branch flow path 91b and the desorption gas flow paths 97b and 97, and the combustible gas in the gas is combusted. The burned gas is cooled by the waste gas cooler 99 and then discharged through the return flow path 100 and the second gas waste flow path 93.
 補助アンモニア吸着器の再生工程において、補助アンモニア吸着器92a又は92bの再生条件(温度、圧力等)は、前述のアンモニア吸着器5a、5bの再生を行うアンモニア吸着器再生工程における運転条件と同様である。
 また、廃ガス燃焼反応器98の運転条件(温度、圧力等)は、前述した燃焼反応装置36の運転条件と同様である。
In the regeneration process of the auxiliary ammonia adsorber, the regeneration conditions (temperature, pressure, etc.) of the auxiliary ammonia adsorber 92a or 92b are the same as the operating conditions in the ammonia adsorber regeneration process for regenerating the ammonia adsorbers 5a and 5b described above. is there.
The operating conditions (temperature, pressure, etc.) of the waste gas combustion reactor 98 are the same as the operating conditions of the combustion reaction device 36 described above.
(バイパス運転工程)
 前述のとおり、非定常時に、必要に応じてアンモニア除害工程を実施するのが好ましく、また、定常時には、バイパス運転工程を実施するのが好ましい。
 バイパス運転工程では、ガス廃棄流路76を流通するガスを、第1のガス廃棄流路91及びバイパス流路101を介して第2のガス廃棄流路93に供給し、第2のガス廃棄流路93からガスを排出させる。
 これにより、アンモニア除害設備90への負荷が低減される。
(Bypass operation process)
As described above, it is preferable to carry out the ammonia detoxifying step as needed during the non-steady state, and it is preferable to carry out the bypass operation step during the steady state.
In the bypass operation step, the gas flowing through the gas disposal channel 76 is supplied to the second gas disposal channel 93 via the first gas disposal channel 91 and the bypass channel 101, and the second gas disposal channel 93 is supplied. Gas is discharged from the passage 93.
Thereby, the load to the ammonia abatement equipment 90 is reduced.
[第5の実施の形態]
<水素製造装置>
 図6は、第5の実施の形態に係る水素製造装置30Cの概略図である。
 図6の水素製造装置30Cは、図5の水素製造装置30Bにおいて、アンモニア除害設備90に代えて、アンモニア除害設備90Aを設けたものである。
 アンモニア除害設備90Aは、アンモニア除害設備90における廃ガス燃焼反応器98に代えて燃焼反応装置36を用いたものである。
 すなわち、アンモニア除害設備90Aにおいて、当該脱着ガス配管97の一端は、複数(2本:97a、97b)に分岐して、第1分岐流路91a、91bに接続されている。また、当該脱着ガス配管97の他端は、吸着材再生ガス流路63のうち酸素供給装置37の接続位置と燃焼反応装置36の接続位置との間の位置に接続されている。
 また、燃焼ガス流路64と第2のガス廃棄流路93とが、廃ガス冷却器103を備えた廃ガス流路104を介して接続されている。
[Fifth Embodiment]
<Hydrogen production equipment>
FIG. 6 is a schematic diagram of a hydrogen production apparatus 30C according to the fifth embodiment.
A hydrogen production apparatus 30C in FIG. 6 is different from the hydrogen production apparatus 30B in FIG. 5 in that an ammonia detoxification facility 90A is provided instead of the ammonia detoxification facility 90.
The ammonia abatement equipment 90A uses a combustion reaction device 36 instead of the waste gas combustion reactor 98 in the ammonia abatement equipment 90.
That is, in the ammonia abatement equipment 90A, one end of the desorption gas pipe 97 is branched into a plurality (two: 97a, 97b) and connected to the first branch flow paths 91a, 91b. The other end of the desorption gas pipe 97 is connected to a position between the connection position of the oxygen supply device 37 and the connection position of the combustion reaction device 36 in the adsorbent regeneration gas flow path 63.
Further, the combustion gas passage 64 and the second gas disposal passage 93 are connected via a waste gas passage 104 provided with a waste gas cooler 103.
<水素製造方法>
 本実施の形態では、第2の実施の形態と同様の水素製造方法を実施することができることに加え、次のアンモニア除害工程、補助アンモニア吸着器の再生工程、及びバイパス運転工程を実施することができる。
<Hydrogen production method>
In this embodiment, in addition to being able to carry out the same hydrogen production method as in the second embodiment, the following ammonia detoxification step, auxiliary ammonia adsorber regeneration step, and bypass operation step are carried out Can do.
(アンモニア除害工程)
 第4の実施の形態と同様である。
(Ammonia removal process)
This is similar to the fourth embodiment.
(補助アンモニア吸着器の再生工程)
 補助アンモニア吸着器の再生工程は、上記アンモニア除害工程において使用された補助アンモニア吸着器92a、92bを、再生させる工程である。
 補助アンモニア吸着器92aを再生させる場合、再生ガス供給装置94からの酸素含有ガスを、再生ガス加熱器95によって加熱した後、再生ガス流路96、96a、第2分岐流路93aを介して補助アンモニア吸着器92aに供給し、補助アンモニア吸着器92aを再生させる。当該補助アンモニア吸着器92aから排出したガスは、第1分岐流路91a、脱着ガス配管97a、97及び吸着材再生ガス流路63を介して燃焼反応装置36に供給され、ガス中の可燃性ガスが燃焼される。燃焼反応装置36から排出されるガスの一部は、廃ガス冷却器103によって冷却された後、第2のガス廃棄流路93を介して排出される。
 また、補助アンモニア吸着器92bを再生させる場合、再生ガス供給装置94からの酸素含有ガスを、再生ガス加熱器95によって加熱した後、再生ガス流路96、96b、第2分岐流路93bを介して補助アンモニア吸着器92bに供給し、補助アンモニア吸着器92bを再生させる。当該補助アンモニア吸着器92bから排出したガスは、第1分岐流路91b、脱着ガス配管97b、97及び吸着材再生ガス流路63を介して燃焼反応装置36に供給され、ガス中の可燃性ガスが燃焼される。燃焼反応装置36から排出されるガスの一部は、廃ガス冷却器103によって冷却された後、第2のガス廃棄流路93を介して排出される。
 ただし、燃焼反応装置36から排出されるガスの全部が、燃焼ガス流路64を介して加熱機器38に供給されてもよい。その場合、廃ガス冷却器103を備えた廃ガス流路104は省略されてもよい。
(Regeneration process of auxiliary ammonia adsorber)
The regeneration process of the auxiliary ammonia adsorber is a process of regenerating the auxiliary ammonia adsorbers 92a and 92b used in the ammonia detoxification process.
When the auxiliary ammonia adsorber 92a is regenerated, the oxygen-containing gas from the regeneration gas supply device 94 is heated by the regeneration gas heater 95 and then supplemented via the regeneration gas channels 96 and 96a and the second branch channel 93a. The ammonia adsorber 92a is supplied to regenerate the auxiliary ammonia adsorber 92a. The gas discharged from the auxiliary ammonia adsorber 92a is supplied to the combustion reaction device 36 via the first branch flow path 91a, the desorption gas pipes 97a and 97, and the adsorbent regeneration gas flow path 63, and combustible gas in the gas. Is burned. A part of the gas discharged from the combustion reaction device 36 is cooled by the waste gas cooler 103 and then discharged through the second gas waste flow path 93.
In addition, when the auxiliary ammonia adsorber 92b is regenerated, the oxygen-containing gas from the regeneration gas supply device 94 is heated by the regeneration gas heater 95 and then passed through the regeneration gas passages 96 and 96b and the second branch passage 93b. The auxiliary ammonia adsorber 92b is supplied to regenerate the auxiliary ammonia adsorber 92b. The gas discharged from the auxiliary ammonia adsorber 92b is supplied to the combustion reaction device 36 via the first branch flow path 91b, the desorption gas pipes 97b and 97, and the adsorbent regeneration gas flow path 63, and combustible gas in the gas. Is burned. A part of the gas discharged from the combustion reaction device 36 is cooled by the waste gas cooler 103 and then discharged through the second gas waste flow path 93.
However, all of the gas discharged from the combustion reaction device 36 may be supplied to the heating device 38 via the combustion gas flow path 64. In that case, the waste gas flow path 104 provided with the waste gas cooler 103 may be omitted.
(バイパス運転工程)
 第4の実施の形態と同様である。
(Bypass operation process)
This is similar to the fourth embodiment.
[第6の実施の形態]
<水素製造装置>
 図7は、第6の実施の形態に係る水素製造装置30Dの概略図である。
 図7の水素製造装置30Dは、図4の水素製造装置30Aにおいて、アンモニア除害設備90Bを設けたものである。
 当該アンモニア除害設備90Bは、第4の実施の形態におけるアンモニア除害設備90と同様である。
[Sixth Embodiment]
<Hydrogen production equipment>
FIG. 7 is a schematic view of a hydrogen production apparatus 30D according to the sixth embodiment.
The hydrogen production apparatus 30D of FIG. 7 is provided with an ammonia abatement facility 90B in the hydrogen production apparatus 30A of FIG.
The ammonia abatement equipment 90B is the same as the ammonia abatement equipment 90 in the fourth embodiment.
<水素製造方法>
 本実施の形態では、第3の実施の形態と同様の水素製造方法を実施することができる。
 また、本実施の形態では、アンモニア除害工程、補助アンモニア吸着器の再生工程、及びバイパス運転工程を実施することができる。なお、これらの工程は、第4の実施の形態と同様である。
<Hydrogen production method>
In the present embodiment, the same hydrogen production method as in the third embodiment can be performed.
In the present embodiment, an ammonia detoxification step, an auxiliary ammonia adsorber regeneration step, and a bypass operation step can be performed. These steps are the same as those in the fourth embodiment.
[第7の実施の形態]
<水素製造装置>
 図8は、第7の実施の形態に係る水素製造装置30Eの概略図である。
 図8の水素製造装置30Eは、図4の水素製造装置30Aにおいて、アンモニア除害設備90Cを設けたものである。
 当該アンモニア除害設備90Cは、第5の実施の形態におけるアンモニア除害設備90Aと同様である。
[Seventh Embodiment]
<Hydrogen production equipment>
FIG. 8 is a schematic view of a hydrogen production apparatus 30E according to the seventh embodiment.
The hydrogen production apparatus 30E in FIG. 8 is the same as the hydrogen production apparatus 30A in FIG.
The ammonia removal equipment 90C is the same as the ammonia removal equipment 90A in the fifth embodiment.
<水素製造方法>
 本実施の形態では、第3の実施の形態と同様の水素製造方法を実施することができる。
 また、本実施の形態では、アンモニア除害工程、補助アンモニア吸着器の再生工程、及びバイパス運転工程を実施することができる。なお、これらの工程は、第5の実施の形態と同様である。
<Hydrogen production method>
In the present embodiment, the same hydrogen production method as in the third embodiment can be performed.
In the present embodiment, an ammonia detoxification step, an auxiliary ammonia adsorber regeneration step, and a bypass operation step can be performed. These steps are the same as those in the fifth embodiment.
  1 水素製造装置
  2 アンモニア供給装置
  3 アンモニア分解装置
  4 分解ガス冷却用熱交換器
  4a 分解ガス冷却装置
  4b オフガス加熱装置
  5 アンモニア吸着装置
  5a、5b アンモニア吸着器
  6 水素回収装置
  7 燃焼反応装置
  8 加熱機器
  11 アンモニア流路
  12 分解ガス流路
  14 アンモニア除去後ガス流路
  15 水素流路
  21 接続流路
  22 オフガス流路
  23 吸着材再生ガス流路
  24 燃焼ガス流路
  30 水素製造装置
  31 アンモニア供給装置
  32 アンモニア分解装置
  33 分解ガス冷却用熱交換器
  33a 分解ガス冷却装置
  33b オフガス加熱装置
  34 アンモニア吸着装置
  34a、34b アンモニア吸着器
  35 水素回収装置
  36 燃焼反応装置
  37 酸素供給装置
  38 加熱機器
  41 アンモニア流路
  42 分解ガス流路
  43 アンモニア除去後ガス流路
  44 水素流路
  51 アンモニア加熱用熱交換器
  52 アンモニア補助加熱用熱交換器
  54 水加熱用熱交換器
  61 接続流路
  62 オフガス流路
  63 吸着材再生ガス流路
  64 燃焼ガス流路
  71 循環ガス流路
  71a 環状流路
  72 循環ガス用熱交換器
  73 温水加熱用熱交換器
  74 ドレンポット
  75 循環機
  76 ガス廃棄流路
  77 バイパス流路
  80 加熱水供給装置
  81 水流路
  82 シャワーヘッド
  V1 流量制御弁
  V2 圧力制御弁
  30A 水素製造装置
  37A 酸素供給装置
  37B 酸素供給流路
  71A 熱回収流路
  72A 酸素ガス加熱用熱交換器
  73A 温水加熱用熱交換器
  74A ドレンポット
  76A ガス廃棄流路
DESCRIPTION OF SYMBOLS 1 Hydrogen production device 2 Ammonia supply device 3 Ammonia decomposition device 4 Heat exchanger for cracking gas cooling 4a Cracking gas cooling device 4b Off-gas heating device 5 Ammonia adsorption device 5a, 5b Ammonia adsorber 6 Hydrogen recovery device 7 Combustion reaction device 8 Heating device DESCRIPTION OF SYMBOLS 11 Ammonia flow path 12 Decomposition gas flow path 14 Gas flow path after ammonia removal 15 Hydrogen flow path 21 Connection flow path 22 Off-gas flow path 23 Adsorbent regeneration gas flow path 24 Combustion gas flow path 30 Hydrogen production apparatus 31 Ammonia supply apparatus 32 Ammonia Cracking device 33 Heat exchanger for cooling cracked gas 33a Cracked gas cooling device 33b Off-gas heating device 34 Ammonia adsorption device 34a, 34b Ammonia adsorber 35 Hydrogen recovery device 36 Combustion reaction device 37 Oxygen supply device 38 Heating device 41 Ammonia flow path 2 Decomposed gas flow path 43 Gas flow path after removal of ammonia 44 Hydrogen flow path 51 Heat exchanger for ammonia heating 52 Heat exchanger for auxiliary ammonia heating 54 Heat exchanger for water heating 61 Connection flow path 62 Off gas flow path 63 Adsorbent regeneration Gas channel 64 Combustion gas channel 71 Circulating gas channel 71a Annular channel 72 Heat exchanger for circulating gas 73 Heat exchanger for heating hot water 74 Drain pot 75 Circulator 76 Gas disposal channel 77 Bypass channel 80 Heating water supply Apparatus 81 Water flow path 82 Shower head V1 Flow control valve V2 Pressure control valve 30A Hydrogen production apparatus 37A Oxygen supply apparatus 37B Oxygen supply flow path 71A Heat recovery flow path 72A Oxygen gas heating heat exchanger 73A Hot water heating heat exchanger 74A Drain Pot 76A Gas waste channel

Claims (20)

  1.  アンモニア供給装置と、
     前記アンモニア供給装置に接続されており、アンモニアを分解して、水素、窒素及び未反応アンモニアを含有する分解ガスを生成するアンモニア分解装置と、
     前記アンモニア分解装置に接続されており、前記分解ガスを冷却する分解ガス冷却装置と、
     前記分解ガス冷却装置に接続されており、前記分解ガスから未反応アンモニアを吸着除去してアンモニア除去後ガスを流出するアンモニア吸着装置と、
     前記アンモニア吸着装置に接続されており、前記アンモニア除去後ガスから水素を分離して流出すると共に、残りのオフガスを排出する水素回収装置と、
     前記アンモニア分解装置を加熱する加熱機器と、
    を有しており、
     前記アンモニア吸着装置は、並列に配設された複数のアンモニア吸着器を有しており、前記分解ガス冷却装置からの分解ガスを前記複数のアンモニア吸着器のうち任意の一部に供給可能とされている水素製造装置であって、
     前記水素回収装置に接続されており、前記オフガスを加熱するオフガス加熱装置と、
     一端が前記オフガス加熱装置に接続され、他端が前記複数のアンモニア吸着器に接続されており、前記オフガスを使用済みのアンモニア吸着器に供給してアンモニア吸着器を再生可能なオフガス流路と、
     複数の前記アンモニア吸着器に接続されており、前記使用済みのアンモニア吸着器から流出する吸着材再生ガスを流通する吸着材再生ガス流路と、
     前記吸着材再生ガス流路に接続されており、前記吸着材再生ガスを燃焼して燃焼ガスを流出する燃焼反応装置と、
      一端が前記燃焼反応装置に接続され、他端が前記加熱機器に接続された燃焼ガス流路と、
    を有する水素製造装置。
    An ammonia supply device;
    An ammonia decomposing apparatus that is connected to the ammonia supplying apparatus and decomposes ammonia to generate a decomposing gas containing hydrogen, nitrogen and unreacted ammonia;
    A cracked gas cooling device connected to the ammonia cracking device for cooling the cracked gas;
    An ammonia adsorbing device connected to the cracked gas cooling device, adsorbing and removing unreacted ammonia from the cracked gas, and flowing out the gas after removing ammonia;
    A hydrogen recovery device that is connected to the ammonia adsorption device, separates and flows out hydrogen from the ammonia-removed gas, and discharges the remaining off-gas;
    A heating device for heating the ammonia decomposition apparatus;
    Have
    The ammonia adsorbing device has a plurality of ammonia adsorbers arranged in parallel, and the cracked gas from the cracked gas cooling device can be supplied to any part of the plurality of ammonia adsorbers. A hydrogen production device,
    An off-gas heating device connected to the hydrogen recovery device and heating the off-gas;
    One end is connected to the off-gas heating device, the other end is connected to the plurality of ammonia adsorbers, an off-gas flow path that can regenerate the ammonia adsorber by supplying the off-gas to a used ammonia adsorber,
    An adsorbent regeneration gas flow path that is connected to the plurality of ammonia adsorbers and circulates the adsorbent regeneration gas flowing out of the used ammonia adsorbers;
    A combustion reaction device connected to the adsorbent regeneration gas flow path, combusting the adsorbent regeneration gas and flowing out the combustion gas;
    A combustion gas flow path having one end connected to the combustion reaction device and the other end connected to the heating device;
    A hydrogen production apparatus.
  2.  前記分解ガス冷却装置と前記オフガス加熱装置とは同一の熱交換器であり、前記アンモニア分解装置から流出する前記分解ガスと前記水素回収装置から流出する前記オフガスとの間で熱交換可能とされている、請求項1に記載の水素製造装置。 The cracked gas cooling device and the offgas heating device are the same heat exchanger, and heat exchange is possible between the cracked gas flowing out from the ammonia cracking device and the offgas flowing out from the hydrogen recovery device. The hydrogen production apparatus according to claim 1.
  3.  一端が前記加熱機器に接続され、他端が前記吸着材再生ガス流路に接続された循環ガス流路を有する、請求項1又は2に記載の水素製造装置。 3. The hydrogen production apparatus according to claim 1, further comprising a circulating gas flow path having one end connected to the heating device and the other end connected to the adsorbent regeneration gas flow path.
  4.  前記吸着材再生ガス流路及び前記循環ガス流路の一方又は双方に、酸素供給装置が接続されている、請求項3に記載の水素製造装置。 The hydrogen production apparatus according to claim 3, wherein an oxygen supply device is connected to one or both of the adsorbent regeneration gas flow path and the circulation gas flow path.
  5.  前記循環ガス流路と交差する水流路と、
     前記循環ガス流路と前記水流路との交差点に設置された温水加熱用熱交換器と、
     前記水流路の下流端に設けられた加熱水供給装置とを有し、該加熱水供給装置から流出した加熱水を用いて前記アンモニア供給装置を加温する、請求項3又は4に記載の水素製造装置。
    A water channel intersecting the circulating gas channel;
    A hot water heating heat exchanger installed at the intersection of the circulating gas flow path and the water flow path;
    5. The hydrogen according to claim 3, further comprising a heating water supply device provided at a downstream end of the water flow path, wherein the ammonia supply device is heated using heating water that has flowed out of the heating water supply device. Manufacturing equipment.
  6.  前記循環ガス流路のうち前記温水加熱用熱交換器よりも下流に、前記循環ガス流路を流通する循環ガス中の水を除去するためのドレンポットを有する、請求項5に記載の水素製造装置。 6. The hydrogen production according to claim 5, further comprising a drain pot for removing water in the circulating gas flowing through the circulating gas flow channel downstream of the heat exchanger for heating hot water in the circulating gas flow channel. apparatus.
  7.  前記循環ガス流路のうち前記温水加熱用熱交換器よりも上流に位置する第1ポイントと前記ドレンポットよりも下流に位置する第2ポイントとが交差して交差点となっており、前記循環ガス流路のうち前記第1ポイントと前記第2ポイントとの間の部分が環状流路となっており、
     前記交差点に循環ガス用熱交換器が設置されている、請求項6に記載の水素製造装置。
    A first point located upstream of the heat exchanger for heating hot water and a second point located downstream of the drain pot in the circulation gas flow path intersect to form an intersection, and the circulation gas A portion between the first point and the second point in the flow path is an annular flow path,
    The hydrogen production apparatus according to claim 6, wherein a heat exchanger for circulating gas is installed at the intersection.
  8.  前記循環ガス流路のうち前記ドレンポットよりも下流に、循環ガスの循環機を有する、請求項6又は7に記載の水素製造装置。 The hydrogen production apparatus according to claim 6 or 7, further comprising a circulating gas circulating machine downstream of the drain pot in the circulating gas flow path.
  9.  前記環状流路の途中に、前記循環ガスの一部又は全部を排出するためのガス廃棄流路が接続されている、請求項7又は8に記載の水素製造装置。 The hydrogen production apparatus according to claim 7 or 8, wherein a gas disposal flow path for discharging part or all of the circulating gas is connected in the middle of the annular flow path.
  10.  前記ガス廃棄流路が、
     一端が前記環状流路に接続された第1のガス廃棄流路と、
     前記第1のガス廃棄流路の他端に接続された補助アンモニア吸着装置と、
     前記補助アンモニア吸着装置に接続され、前記補助アンモニア吸着装置から排出されるガスを流通させる第2のガス廃棄流路と、
    を備えたアンモニア除害設備を有する、請求項9に記載の水素製造装置。
    The gas disposal channel is
    A first gas disposal flow path having one end connected to the annular flow path;
    An auxiliary ammonia adsorption device connected to the other end of the first gas disposal channel;
    A second gas disposal flow path connected to the auxiliary ammonia adsorbing device and for circulating a gas discharged from the auxiliary ammonia adsorbing device;
    The hydrogen production apparatus according to claim 9, comprising an ammonia detoxification facility comprising:
  11.  前記補助アンモニア吸着装置が、並列に配設された複数の補助アンモニア吸着器を有しており、
     前記第1のガス廃棄流路は、上流端が前記環状流路に接続され、下流端が分岐して第1分岐流路となって前記複数の補助アンモニア吸着器に接続されており、
     前記第2のガス廃棄流路の上流端は、分岐して第2分岐流路となって前記複数の補助アンモニア吸着器に接続されており、
     前記アンモニア除害設備は、更に、
      前記複数の補助アンモニア吸着器に再生ガスを供給する再生ガス供給装置、
      一端が前記再生ガス供給装置に接続され、他端が分岐して前記第2分岐流路に接続された再生ガス流路、
      前記再生ガス流路の途中に設けられており、前記再生ガスを加熱する再生ガス加熱器、
      一端が分岐して前記第1分岐流路に接続されている脱着ガス流路、
      前記脱着ガス流路の他端に接続されており、前記複数のアンモニア吸着器の各々から排出された前記吸着材脱着ガスを燃焼して燃焼ガスを流出する廃ガス燃焼反応器、及び
      前記廃ガス燃焼反応器から排出された燃焼ガスを前記第2のガス廃棄流路に返送する返送流路、
    を有するアンモニア除害設備である、請求項10に記載の水素製造装置。
    The auxiliary ammonia adsorption device has a plurality of auxiliary ammonia adsorbers arranged in parallel,
    The first gas disposal flow path has an upstream end connected to the annular flow path, a downstream end branched to become a first branch flow path, and is connected to the plurality of auxiliary ammonia adsorbers,
    The upstream end of the second gas disposal channel is branched and becomes a second branch channel, and is connected to the plurality of auxiliary ammonia adsorbers,
    The ammonia abatement equipment further includes:
    A regeneration gas supply device for supplying regeneration gas to the plurality of auxiliary ammonia adsorbers;
    A regeneration gas flow path having one end connected to the regeneration gas supply device and the other end branched and connected to the second branch flow path;
    A regeneration gas heater provided in the regeneration gas flow path for heating the regeneration gas;
    A desorption gas channel having one end branched and connected to the first branch channel;
    A waste gas combustion reactor that is connected to the other end of the desorption gas flow path, burns the adsorbent desorption gas discharged from each of the plurality of ammonia adsorbers, and flows out the combustion gas; and the waste gas A return flow path for returning the combustion gas discharged from the combustion reactor to the second gas disposal flow path;
    The hydrogen production apparatus according to claim 10, which is an ammonia detoxifying facility.
  12.  前記廃ガス燃焼反応器が、前記燃焼反応装置である、請求項11に記載の水素製造装置。 The hydrogen production apparatus according to claim 11, wherein the waste gas combustion reactor is the combustion reaction apparatus.
  13.  前記返送流路に設けられており、前記廃ガス燃焼反応器から流出された前記燃焼ガスを冷却する、廃ガス冷却器を有する、請求項11又は12に記載の水素製造装置。 The hydrogen production apparatus according to claim 11 or 12, further comprising a waste gas cooler that is provided in the return flow path and cools the combustion gas that has flowed out of the waste gas combustion reactor.
  14.  前記水素回収装置に接続されており、前記水素回収装置で分離した水素を流出する水素流路と、
     前記水素流路に設置された圧力制御弁と、
    を有する、請求項1~13のいずれか1項に記載の水素製造装置。
    A hydrogen flow path connected to the hydrogen recovery device and for flowing out hydrogen separated by the hydrogen recovery device;
    A pressure control valve installed in the hydrogen flow path;
    The hydrogen production apparatus according to any one of claims 1 to 13, comprising:
  15.  前記アンモニア供給装置と前記アンモニア分解装置とを接続するアンモニア流路と、
     前記アンモニア流路に設置された流量制御弁と、
    を有する請求項1~14のいずれか1項に記載の水素製造装置。
    An ammonia flow path connecting the ammonia supply device and the ammonia decomposition device;
    A flow control valve installed in the ammonia flow path;
    The hydrogen production apparatus according to any one of claims 1 to 14, which comprises:
  16.  前記アンモニア流路に設置されたアンモニア加熱用熱交換器と、
     前記アンモニア分解装置と前記アンモニア吸着装置とを接続する分解ガス流路と、を有しており、
     前記分解ガス流路の途中が前記アンモニア加熱用熱交換器に流通しており、
     前記分解ガス流路のうち前記アンモニア加熱用熱交換器の設置位置よりも上流側に、前記分解ガス冷却装置が設置されている、請求項15に記載の水素製造装置。
    A heat exchanger for heating ammonia installed in the ammonia flow path;
    A decomposition gas flow path connecting the ammonia decomposing apparatus and the ammonia adsorbing apparatus,
    The middle of the cracked gas flow path is circulated to the ammonia heating heat exchanger,
    The hydrogen production apparatus according to claim 15, wherein the cracked gas cooling device is installed upstream of the installed position of the heat exchanger for heating ammonia in the cracked gas flow path.
  17.  前記アンモニア分解装置と前記複数のアンモニア吸着器とを接続する分解ガス流路と、
     前記複数のアンモニア吸着器と前記水素回収装置とを接続するアンモニア除去後ガス流路と、
    を有しており、
     前記分解ガス流路の途中に前記分解ガス冷却装置が設置されており、
     前記分解ガス流路及び前記アンモニア除去後ガス流路が加圧装置を有しない、請求項1~16のいずれか1項に記載の水素製造装置。
    A decomposition gas flow path connecting the ammonia decomposition apparatus and the plurality of ammonia adsorbers;
    A gas flow path after ammonia removal connecting the plurality of ammonia adsorbers and the hydrogen recovery device;
    Have
    The cracked gas cooling device is installed in the middle of the cracked gas flow path,
    The hydrogen production apparatus according to any one of claims 1 to 16, wherein the cracked gas flow path and the post-ammonia removal gas flow path do not have a pressurizing device.
  18.  請求項1~17のいずれか1項に記載の水素製造装置を用いた水素製造方法であって、
     前記アンモニア供給装置からの前記アンモニアを前記アンモニア分解装置に流通させ、アンモニアを分解して、水素、窒素及び未反応アンモニアを含有する前記分解ガスを生成するアンモニア分解工程、
     前記アンモニア分解装置から流出する前記分解ガスを、前記分解ガス冷却装置に流通させて冷却した後、前記複数のアンモニア吸着器の一部に流通させて、前記分解ガスから未反応アンモニアを吸着除去して前記アンモニア除去後ガスを得るアンモニア吸着工程、
     前記複数のアンモニア吸着器の前記一部から流出する前記アンモニア除去後ガスを、前記水素回収装置に流通させて、前記アンモニア除去後ガスから水素を分離して流出すると共に、残りのオフガスを排出する水素回収工程、
     前記水素回収装置から流出する前記オフガスを、前記オフガス加熱装置、及び前記複数のアンモニア吸着器の残部のうちの一部又は全部に流通させてアンモニア吸着器を再生させるアンモニア吸着器再生工程、並びに、
     前記アンモニア吸着器から流出する吸着材再生ガスを、前記燃焼反応装置、前記燃焼ガス流路、及び前記加熱機器に流通させて前記アンモニア分解装置を加熱するアンモニア分解装置の加熱工程、
    を実施する、水素製造方法。
    A hydrogen production method using the hydrogen production apparatus according to any one of claims 1 to 17,
    An ammonia decomposing step of circulating the ammonia from the ammonia supply device to the ammonia decomposing device, decomposing ammonia, and generating the decomposition gas containing hydrogen, nitrogen and unreacted ammonia;
    The cracked gas flowing out from the ammonia cracking device is circulated through the cracked gas cooling device and cooled, and then is circulated through a part of the plurality of ammonia adsorbers to adsorb and remove unreacted ammonia from the cracked gas. An ammonia adsorption step for obtaining a gas after removing the ammonia,
    The post-ammonia removal gas flowing out from the part of the plurality of ammonia adsorbers is circulated through the hydrogen recovery device to separate and flow out hydrogen from the post-ammonia removal gas and discharge the remaining off-gas. Hydrogen recovery process,
    An ammonia adsorber regeneration step for regenerating the ammonia adsorber by circulating the off-gas flowing out of the hydrogen recovery device to a part or all of the off-gas heating device and the remaining portions of the plurality of ammonia adsorbers; and
    A heating step of the ammonia decomposing apparatus that heats the ammonia decomposing apparatus by circulating the adsorbent regeneration gas flowing out from the ammonia adsorber to the combustion reaction apparatus, the combustion gas flow path, and the heating device;
    A method for producing hydrogen.
  19.  前記水素回収装置に接続されており、前記水素回収装置で分離した水素を流出する水素流路と、
     前記水素流路に設置された圧力制御弁と、
    を有しており、
     前記圧力制御弁を制御することにより、前記アンモニア分解装置の圧力P1、前記アンモニア吸着装置の圧力P2、及び前記水素回収装置の圧力P3の各々を、
       P1≧P2≧P3
    という関係を満たす所定の圧力範囲に制御する、請求項18に記載の水素製造方法。
    A hydrogen flow path connected to the hydrogen recovery device and for flowing out hydrogen separated by the hydrogen recovery device;
    A pressure control valve installed in the hydrogen flow path;
    Have
    By controlling the pressure control valve, each of the pressure P1 of the ammonia decomposing apparatus, the pressure P2 of the ammonia adsorbing apparatus, and the pressure P3 of the hydrogen recovery apparatus,
    P1 ≧ P2 ≧ P3
    The hydrogen production method according to claim 18, wherein the pressure is controlled within a predetermined pressure range satisfying the relationship:
  20.  前記水素製造装置は請求項10~13のいずれか1項に記載の水素製造装置であり、
     前記ガス廃棄流路を流通するガスを前記アンモニア除害設備に供給してアンモニアを除害するアンモニア除害工程を有する、18又は19に記載の水素製造方法。
    The hydrogen production apparatus is the hydrogen production apparatus according to any one of claims 10 to 13,
    The hydrogen production method according to 18 or 19, further comprising an ammonia detoxification step of detoxifying ammonia by supplying a gas flowing through the gas disposal channel to the ammonia detoxification facility.
PCT/JP2017/045106 2016-12-22 2017-12-15 Hydrogen production device and hydrogen production method WO2018116982A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018557738A JP7006886B2 (en) 2016-12-22 2017-12-15 Hydrogen production equipment and hydrogen production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016249791 2016-12-22
JP2016-249791 2016-12-22

Publications (1)

Publication Number Publication Date
WO2018116982A1 true WO2018116982A1 (en) 2018-06-28

Family

ID=62627341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045106 WO2018116982A1 (en) 2016-12-22 2017-12-15 Hydrogen production device and hydrogen production method

Country Status (3)

Country Link
JP (1) JP7006886B2 (en)
TW (1) TWI665157B (en)
WO (1) WO2018116982A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020095467A1 (en) * 2018-11-09 2020-05-14 好朗 岩井 Hydrogen gas production device
WO2022189560A1 (en) * 2021-03-11 2022-09-15 Topsoe A/S Method and system for producing hydrogen from ammonia cracking
WO2023054964A1 (en) * 2021-09-29 2023-04-06 주식회사 에이이에스텍 Ammonia electrolysis system and control method therefor
WO2023153040A1 (en) * 2022-02-10 2023-08-17 株式会社Ihi Flare stack and system provided with flare stack
KR20230132302A (en) 2022-03-08 2023-09-15 현대자동차주식회사 Preparing method of hydrogen gas

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6934126B1 (en) * 2021-06-15 2021-09-08 三菱重工環境・化学エンジニアリング株式会社 Hydrogen and ammonia production system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5523069A (en) * 1978-08-07 1980-02-19 Daido Steel Co Ltd Ammonia decomposed gas generating apparatus and regeneration exhaust gas utilizing method in said apparatus
CN102910580A (en) * 2012-11-09 2013-02-06 湖南高安新材料有限公司 Energy-saving device and method for decomposing ammonia to prepare high-purity hydrogen-nitrogen mixture gas

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6054882B2 (en) * 1978-08-08 1985-12-02 大同特殊鋼株式会社 Ammonia decomposition gas generator and method for returning recycled exhaust gas in the device
JP5523069B2 (en) 2009-11-19 2014-06-18 日本写真印刷株式会社 Method for manufacturing power receiving housing in wireless charging system
JP6180252B2 (en) * 2013-09-20 2017-08-16 株式会社日本触媒 Hydrogen production system by ammonia decomposition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5523069A (en) * 1978-08-07 1980-02-19 Daido Steel Co Ltd Ammonia decomposed gas generating apparatus and regeneration exhaust gas utilizing method in said apparatus
CN102910580A (en) * 2012-11-09 2013-02-06 湖南高安新材料有限公司 Energy-saving device and method for decomposing ammonia to prepare high-purity hydrogen-nitrogen mixture gas

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020095467A1 (en) * 2018-11-09 2020-05-14 好朗 岩井 Hydrogen gas production device
JP2020075841A (en) * 2018-11-09 2020-05-21 好朗 岩井 Hydrogen gas-producing device
CN112996747A (en) * 2018-11-09 2021-06-18 岩井好朗 Hydrogen production apparatus
JP7226972B2 (en) 2018-11-09 2023-02-21 好朗 岩井 Hydrogen gas production equipment
WO2022189560A1 (en) * 2021-03-11 2022-09-15 Topsoe A/S Method and system for producing hydrogen from ammonia cracking
WO2023054964A1 (en) * 2021-09-29 2023-04-06 주식회사 에이이에스텍 Ammonia electrolysis system and control method therefor
WO2023153040A1 (en) * 2022-02-10 2023-08-17 株式会社Ihi Flare stack and system provided with flare stack
KR20230132302A (en) 2022-03-08 2023-09-15 현대자동차주식회사 Preparing method of hydrogen gas

Also Published As

Publication number Publication date
TW201829295A (en) 2018-08-16
JP7006886B2 (en) 2022-01-24
JPWO2018116982A1 (en) 2019-10-24
TWI665157B (en) 2019-07-11

Similar Documents

Publication Publication Date Title
WO2018116982A1 (en) Hydrogen production device and hydrogen production method
US10597293B2 (en) Operation method for hydrogen production apparatus, and hydrogen production apparatus
JP2013538880A5 (en)
US8466079B2 (en) On-board fuel desulfurization unit
CN105944499B (en) A kind of method that temp.-changing adsorption removes sulfur dioxide in industrial tail gas
KR101310174B1 (en) Method for treatment of drain in hydrogen production and hydrogen production system
JP5053029B2 (en) Fuel cell system
KR101909291B1 (en) Purifying method and purifying apparatus for argon gas
JP5237873B2 (en) Hydrogen purification method and hydrogen storage alloy reaction vessel
JP2016188153A (en) Apparatus and method for purifying helium gas
JP2022097832A (en) Gas separation system, and hydrocarbon manufacturing system
CN108472585B (en) Process exhaust gas pollutant removal apparatus having regeneration device for pollutant oxidation catalyst
JP3349802B2 (en) Method and apparatus for regenerating nitrogen gas for fuel cell sealing
JP6772888B2 (en) Fuel gas supply method
JP4819349B2 (en) Production of hydrogen gas for fuel cells
JP5237870B2 (en) High purity hydrogen production method
KR101767157B1 (en) Co and polluted material removal device with regenerating means of polluted catalyst and co and polluted material removal method with regenerating of polluted catalyst
CN113634085B (en) Heat recovery type catalytic combustion waste gas treatment equipment and working method thereof
JP5255896B2 (en) Hydrogen production method
JP2007131500A (en) Hydrogen production apparatus
JP6994331B2 (en) Heat utilization type gas refining system
JP5802125B2 (en) Gas separation and recovery method
JP2009127788A (en) Hydrogen feeder and fuel cell system
JP2002050371A (en) Fuel cell system
JP2015018758A (en) Treatment method of sulphur compound-containing gas, fuel cell system and operation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17884383

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018557738

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17884383

Country of ref document: EP

Kind code of ref document: A1