WO2018113388A1 - 电机驱动保护装置、过压保护方法及变频空调器 - Google Patents

电机驱动保护装置、过压保护方法及变频空调器 Download PDF

Info

Publication number
WO2018113388A1
WO2018113388A1 PCT/CN2017/105418 CN2017105418W WO2018113388A1 WO 2018113388 A1 WO2018113388 A1 WO 2018113388A1 CN 2017105418 W CN2017105418 W CN 2017105418W WO 2018113388 A1 WO2018113388 A1 WO 2018113388A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
voltage
inverter
bus
motor
Prior art date
Application number
PCT/CN2017/105418
Other languages
English (en)
French (fr)
Inventor
霍军亚
张国柱
Original Assignee
广东美的制冷设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的制冷设备有限公司 filed Critical 广东美的制冷设备有限公司
Publication of WO2018113388A1 publication Critical patent/WO2018113388A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/08Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors
    • H02H7/09Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors against over-voltage; against reduction of voltage; against phase interruption

Definitions

  • the invention relates to the technical field of motor control, in particular to a motor drive protection device, an overvoltage protection method and an inverter air conditioner.
  • the DC bus voltage of the conventional variable frequency drive is in a stable state, and the inverter part is relatively independent from the input AC voltage, so that the control of the inverter part does not need to consider the instantaneous change of the input voltage, which is convenient for the realization of the control method.
  • this design method requires an electrolytic capacitor having a large capacitance value, so that the size of the driver becomes large and the cost is increased.
  • the life of electrolytic capacitors is limited, and its effective working time is often the bottleneck of the life of the drive.
  • the related scheme proposes a strategy of replacing electrolytic capacitors with small-capacity film capacitors or ceramic capacitors.
  • the PFC part is omitted, and the miniaturized capacitor can achieve cost reduction. It can eliminate the bottleneck of service life caused by electrolytic capacitors.
  • the capacitance of the film capacitor or ceramic capacitor on the DC bus voltage is very small, usually only 1%-2% of the capacity of the conventional high-voltage electrolytic capacitor.
  • the motor will Reverse power generation causes high voltage fluctuations in the DC bus voltage. Since the miniaturized capacitor cannot absorb high voltage fluctuations, the DC bus voltage exceeds the withstand voltage of the motor inverter module and the capacitor, and it is easy to overvoltage damage.
  • the main object of the present invention is to provide a motor drive protection device, an overvoltage protection method and an inverter air conditioner.
  • the purpose of the invention is to solve the problem that the DC bus voltage is excessive when a DC bus has a high voltage fluctuation in the motor drive device for miniaturization of the capacitor. High causes motor inverter module and capacitor overvoltage damage.
  • the present invention provides a motor drive protection device, and the motor drive protection device includes:
  • the rectifier performs full-wave rectification on an AC input voltage of an AC power source, and the two output ends of the rectifier are connected to a DC bus; a smoothing circuit and an inverter are sequentially connected in parallel with the DC bus, and the DC smoothing circuit includes a capacitor connected in parallel with the DC bus, and the AC input voltage outputs a pulsed DC bus voltage through the rectifier and the DC smoothing circuit.
  • the inverter is provided with a power supply; the arithmetic control unit controls the inverter to drive the motor to operate;
  • An overvoltage protection circuit located between the rectifier and the inverter and in parallel with the DC bus, comprising a controllable switch and a load in series with the controllable switch; a control end of the controllable switch and the operation
  • the control unit is connected, the operation control unit acquires the DC bus voltage value in real time, and when the DC bus voltage value exceeds a first preset value, the operation control unit controls the controllable switch to be turned on, so that the The load is connected to the overvoltage protection circuit to reduce the DC bus voltage value; when the DC bus voltage is lower than a second preset value, the operation control unit controls the controllable switch to be disconnected, so that the The load is disconnected from the overvoltage protection circuit;
  • the first preset value is greater than the second preset value.
  • the arithmetic control unit controls the controllable switch to be turned on by the PWM signal.
  • the capacitor of the DC smoothing circuit is a film capacitor or a ceramic capacitor with a capacitance of 10-30 uF.
  • the controllable switch comprises a first transistor
  • the load comprises a first resistor
  • a base of the first transistor is connected to the operation control part
  • an emitter of the first transistor is connected to the DC bus anode
  • One end of the first resistor is connected to the collector of the first transistor, and the other end is connected to the positive pole of the DC bus.
  • the operation control unit includes:
  • the input voltage phase detection phase-locked loop module is configured to obtain an instantaneous value of the voltage of the input AC power source, and calculate an input voltage phase estimation value according to the instantaneous value of the voltage of the AC power source;
  • a position/speed estimator for estimating a rotor position of the motor to obtain a rotor angle estimate and a motor speed estimate
  • a Q-axis given current value calculation module configured to calculate a Q-axis given current value according to the motor target speed value, the motor speed estimated value, and the input voltage phase estimated value;
  • a D-axis given current value calculation module configured to calculate a D-axis given current value according to a maximum output voltage of the inverter and an output voltage amplitude of the inverter
  • a current controller configured to obtain a Q-axis given voltage value and a D-axis given voltage value according to the Q-axis given current value, the D-axis given current value, and the Q-axis actual current and the D-axis actual current, And generating a duty control signal according to the Q axis given voltage value and the D axis given voltage value and the rotor angle estimation value, and controlling the motor by controlling the inverter.
  • the Q-axis given current value calculation module comprises:
  • a second PI regulator configured to perform PI adjustment on a difference between the motor target speed value and the motor speed estimated value to output a torque amplitude reference value
  • a waveform generator for generating an output variable according to the input voltage phase estimate
  • An initial current calculation unit configured to multiply the output variable by the torque amplitude reference value and divide by the motor torque coefficient to obtain an initial value of the Q axis given current value
  • a capacitor current compensation unit configured to generate a compensation current according to the input voltage phase estimation value
  • a superimposing unit configured to superimpose the compensation current to the Q-axis given current value initial value to obtain the Q-axis given current value.
  • the D-axis given current value calculation module comprises:
  • a field weakening controller configured to calculate a maximum output voltage of the inverter and an output voltage amplitude of the inverter to obtain an initial value of a D-axis given current value
  • a limiting unit configured to perform a limiting process on the initial value of the D-axis given current value to obtain the D-axis given current value.
  • the present invention also provides an inverter air conditioner including the above-described motor drive protection device.
  • the present invention also provides an overvoltage protection method for an inverter air conditioner, and the overvoltage protection method of the inverter air conditioner includes the following steps:
  • the arithmetic control unit controls the controllable switch to be turned on by the PWM signal.
  • the motor drive protection device of the motor drive system provided by the invention increases the overvoltage protection circuit by the motor drive protection device, and the overvoltage protection circuit is connected in parallel on the DC bus, and the arithmetic control unit obtains the DC bus voltage value by the DC bus voltage.
  • the operation control unit controls the controllable switch to be turned on so that the load is connected to the overvoltage protection circuit to reduce the DC bus voltage value; when the DC bus voltage is lower than the second preset value, the operation control unit controls The controllable switch is disconnected such that the load is disconnected from the overvoltage protection circuit, wherein the first preset value is greater than the second preset value, such that for the miniaturized motor drive device, for high voltage fluctuations on the DC bus,
  • the real-time access of the overvoltage protection circuit causes the high voltage fluctuation of the DC bus to be absorbed by the overvoltage protection circuit, so that the DC ripple voltage is kept below the safe voltage value, avoiding overvoltage on the DC ripple voltage and causing the inverter and DC
  • the filter capacitor in the smoothing circuit is damaged, thereby improving the operational reliability of the entire motor drive circuit.
  • FIG. 1 is a schematic structural view of a motor drive protection device according to the present invention.
  • FIG. 2 is a schematic structural view of an operation control unit of a motor drive protection device according to the present invention
  • FIG. 3 is a schematic structural view of a voltage phase detection phase-locked loop module of a motor drive protection device according to the present invention
  • FIG. 4 is a flow chart of an overvoltage protection method for an inverter air conditioner of the present invention.
  • FIG. 1 is a schematic structural view of a motor drive protection device provided by the present invention. For convenience of description, only parts related to the embodiment are shown, as shown in the figure:
  • a motor drive protection device includes an AC input power source 1, a rectifier 2, a DC smoothing circuit 3, an overvoltage protection circuit 4, an inverter 5, an arithmetic control unit 7, and a motor 6.
  • the motor driving device wherein the rectifier 2 is connected to the AC input power source 1, the full bridge rectification consisting of the diodes D1-D4, rectifying the AC input voltage 1, the two output ends of the rectifier are connected to the DC bus, the DC smoothing circuit 3, the inverter 5
  • the DC smoothing circuit 3 is sequentially connected in parallel with the DC bus; the DC smoothing circuit 3 includes a capacitor C1 connected in parallel with the DC bus.
  • the DC voltage outputted by the rectifier is filtered by the DC smoothing circuit and is a pulsating DC bus voltage, which cannot be filtered to be stable.
  • the DC bus voltage, the pulsating DC bus voltage supplies the working power of the inverter 5, and the inverter 5 controls the six switching tubes S1-S6 through the arithmetic control unit 7, and outputs the three-phase current driving motor 6 to operate.
  • the inverter 5 is composed of an inverter module, that is, an IPM (Intelligent Power Module).
  • the capacitor in the DC smoothing circuit 3 of the above motor driving device is much smaller than the capacitor in the DC smoothing circuit of other motor driving devices, generally only 1% to 2% of the capacitance value, and the capacitance is 10-30 uF, such as 20uF, because its capacitance value is small, it can be selected as film capacitor or ceramic capacitor, while the total capacity of capacitors in other DC smoothing circuits can generally reach 800uF, generally large-capacity electrolytic capacitors, so it is simply referred to as capacitor miniaturized driving device.
  • the motor drive device based on the miniaturization of the capacitor has the main difference compared with other motor drive devices having a large capacitance.
  • the DC bus voltage in the capacitor miniaturized motor drive device is a ripple voltage, and the voltage is periodically fluctuating. Large capacity
  • the DC bus voltage in the motor drive unit is a stable voltage, and there is no periodic fluctuation corresponding to the ripple voltage.
  • the overvoltage protection circuit 4 of the motor drive protection device is connected in parallel to the DC bus, before the inverter 5, after the DC smoothing circuit 3, or after the rectifier 2, and the overvoltage protection circuit 4 can control the switch 402 and
  • the load 401 of the controllable switch 402 is connected in series, and the control end of the controllable switch 402 is connected to the operation control unit 7.
  • the controllable switch 402 is a high-power transistor such as a MOS tube or an IGBT, and the load 401 can be a resistive device, such as a high-power device. resistance.
  • the controllable switch includes a first transistor S7
  • the load 402 includes a first resistor R2
  • the base of the first transistor S7 is connected to the operation control unit
  • the first transistor The emitter is connected to the negative electrode of the DC bus
  • one end of the first resistor R2 is connected to the collector of the first transistor S7
  • the other end is connected to the positive pole of the DC bus.
  • the first resistor R2 is connected to the overvoltage protection circuit 4. Since the first resistor R2 is a high-power resistor, it can bear a part of the load corresponding to the power supply provided by the DC bus, and then share a part of the operating current. When the voltage on the busbar is excessively high, the access of the first resistor R2 can share the current caused by the excessive voltage fluctuation of the DC bus, thereby reducing the fluctuation voltage of the excessive portion.
  • the calculation control unit 7 obtains the DC bus voltage value through the voltage detection circuit.
  • the voltage detection circuit is a prior art, and is not described herein.
  • the operation control unit 7 controls the controllable switch.
  • the conduction of 402 causes the load 401 to be connected to the overvoltage protection circuit 4. Since the overvoltage protection circuit 4 assumes a part of the DC bus voltage supplied to the inverter, the DC bus voltage can be lowered; when the DC bus voltage is lower than the second
  • the operation control unit controls the controllable switch to be disconnected such that the load is disconnected from the overvoltage protection circuit, wherein the first preset value is greater than the second preset value.
  • the first preset value and the second preset value may be determined according to a specific experiment. For example, the first preset value is set to 480V, and the second preset value is set to 460V, and the over-voltage protection circuit 4 can perform real-time DC ripple.
  • the overvoltage of the presence of voltage acts as a regulator.
  • the capacitor in the DC smoothing circuit is small, and the high voltage peak appearing on the DC bus can not be smoothly stabilized. For example, when the motor runs at a high speed due to power failure or other abnormality, the motor continues to run under the stop. Reverse power generation causes the DC bus voltage to rise and high voltage fluctuations occur, and this high voltage fluctuation cannot be
  • the capacitor of the smoothing circuit is absorbed, so when the DC ripple voltage has a high voltage value, the DC bus is connected through the voltage protection circuit 4, so that the high voltage fluctuation of the DC bus is absorbed by the overvoltage protection circuit, so that the DC ripple voltage is kept safe. Below the voltage value, the overvoltage at the DC ripple voltage is prevented from causing damage to the filter capacitor C1 in the inverter and the DC smoothing circuit 3, thereby improving the operational reliability of the entire motor drive circuit.
  • the arithmetic control unit 7 controls the controllable switch 402 to be turned on so that the load 401 is connected to the overvoltage protection circuit 4, the arithmetic control unit 7 can control the switch 402 to be turned on by the PWM signal, for example, with a high-level duty ratio. 50%, the PWM signal with a period of 10KHz controls the conduction of the switch 402. Since the switch 402 is in the intermittent switching state when the PWM is controlled, the average current passing through the switch is smaller than that with a constant conduction state, such as high power.
  • the PWM control switch 402 with a flat duty ratio of 50% passes the current theory to control the current of the switch 402 to be turned on at a constant high level, and the current through the 402 is relatively high, so that the PWM is relatively high.
  • Control switch 402 can reduce the average current through the switch at a time, thereby reducing the size of the device used to control switch 402, and using a relatively small current power tube to reduce cost.
  • the overvoltage protection circuit is connected in parallel on the DC busbar by the motor drive protection device, and the operation control unit obtains the DC bus voltage value by the DC bus voltage value.
  • the operation control unit controls the controllable switch to be turned on so that the load is connected to the overvoltage protection circuit to reduce the DC bus voltage value;
  • the operation control unit controls Disconnecting the control switch causes the load to be disconnected from the overvoltage protection circuit, wherein the first predetermined value is greater than the second predetermined value, such that in the miniaturized motor drive device, for high voltage fluctuations on the pulsating DC bus voltage
  • the overvoltage protection circuit Through the real-time access of the overvoltage protection circuit, the high voltage fluctuation of the pulsating DC bus voltage is absorbed by the overvoltage protection circuit, so that the pulsating DC bus voltage is kept below the safe voltage value, avoiding the pulsating DC bus voltage. Overvoltage causes damage to the filter
  • FIG. 2 A schematic diagram of the structure of the operation control unit of the second embodiment of the motor drive protection device.
  • the operation control unit 7 includes:
  • the input voltage phase detecting phase-locked loop module 71 is configured to obtain an instantaneous value of the voltage of the input AC power source, and calculate an input voltage phase estimated value according to the instantaneous value of the voltage of the AC power source;
  • a position/speed estimator 74 for estimating a rotor position of the motor to obtain a rotor angle estimate and a motor speed estimate;
  • the Q-axis given current value calculation module 72 is configured to calculate a Q-axis given current value according to the motor target speed value, the motor speed estimated value, and the input voltage phase estimated value;
  • a D-axis given current value calculation module 73 configured to calculate a D-axis given current value according to the maximum output voltage of the inverter and the output voltage amplitude of the inverter;
  • the current controller 75 is configured to obtain a Q-axis given voltage value and a D-axis given voltage value according to the Q-axis given current value, the D-axis given current value, and the Q-axis actual current and the D-axis actual current, according to the Q-axis.
  • a duty control signal is generated for a given voltage value and a given voltage value of the D axis, and an estimated value of the rotor angle, and the motor is controlled by controlling the inverter.
  • the input voltage phase detection phase locked loop module 71 may include a cosine calculator 714, a first multiplier 711, a low pass filter 712, a first PI regulator 713, and an integrator 715.
  • the cosine calculator 714 The cosine calculation is performed on the input voltage phase estimation value ⁇ ge of the previous calculation period to obtain a first calculation value
  • the first multiplier 711 is configured to multiply the voltage instantaneous value Vac of the AC power source by the first calculation value to obtain a second Calculated.
  • the low pass filter 712 is configured to low pass filter the second calculated value to obtain a third calculated value, wherein the bandwidth of the low pass filter 712 is lower than the voltage frequency of the alternating current power source, in an embodiment of the invention, The bandwidth of the low pass filter 712 is lower than 1/5 of the voltage frequency ⁇ g of the AC power source.
  • the first PI regulator 713 is configured to perform PI adjustment on the third calculated value to output a fourth calculated value, and the integrator 715 is configured to perform integral calculation on the sum of the fourth calculated value and the voltage frequency ⁇ g of the alternating current power source to obtain a current calculation period.
  • the input voltage phase estimate ⁇ ge is configured to perform integral calculation on the sum of the fourth calculated value and the voltage frequency ⁇ g of the alternating current power source to obtain a current calculation period.
  • the position/speed estimator 74 is used to estimate the rotor position of the motor to obtain a rotor angle estimate ⁇ est and a motor speed estimate ⁇ est .
  • the motor of the embodiment of the present invention may be a motor without a position sensor.
  • the above-described functions of the position/speed estimator 74 may be implemented by flux linkage observation.
  • an estimated value of the effective magnetic flux of the compressor motor in the directions of the two-phase stationary coordinate system ⁇ and ⁇ axes can be calculated according to the voltages V ⁇ , V ⁇ and the currents I ⁇ and I ⁇ on the two-phase stationary coordinate system. Specifically, it is calculated as follows according to the following formula (1):
  • V ⁇ and V ⁇ are the voltages in the ⁇ and ⁇ axis directions, respectively
  • I ⁇ and I ⁇ are the currents in the ⁇ and ⁇ axis directions, respectively.
  • L q is the q-axis flux linkage of the motor.
  • K p_pll and K i_pll are proportional integration parameters
  • ⁇ err is the deviation angle estimation value
  • ⁇ f is the bandwidth of the speed low-pass filter.
  • the Q-axis given current value calculation module 72 is configured to calculate the Q-axis given current value Iqref from the motor target rotational speed value ⁇ ref, the motor speed estimated value ⁇ est, and the input voltage phase estimated value ⁇ ge.
  • the Q-axis given current value calculation module 72 includes a second PI regulator, a waveform generator, an initial current calculation unit, a capacitance current compensation unit, and a superposition unit.
  • the second PI regulator is configured to perform PI adjustment on the difference between the motor target rotational speed value ⁇ ref and the motor speed estimated value ⁇ est to output a torque amplitude reference value T0
  • the waveform generator is configured to generate an output variable according to the input voltage phase estimated value ⁇ ge Wf.
  • the initial current calculation unit is configured to multiply the output variable Wf by the torque amplitude reference value T0 and divide it by the motor torque coefficient Kt to obtain a Q-axis given current value initial value Iq0.
  • Capacitance current compensation unit for The compensation current Iqcom is generated according to the input voltage phase estimation value ⁇ ge, and the superimposing unit is configured to superimpose the compensation current Iqcom on the Q-axis given current value initial value Iq0 to obtain the Q-axis given current value Iqref.
  • the waveform generator can calculate an output variable according to the following formula:
  • W f ( ⁇ ge ) is an output variable generated from the input voltage phase estimated value ⁇ ge
  • ⁇ ge is an input voltage phase estimated value
  • ⁇ d is a set phase parameter
  • the capacitor current compensation unit can calculate the compensation current according to the following formula:
  • I qcom is the compensation current
  • ⁇ ge is the input voltage phase estimation value
  • ⁇ d is the set phase parameter
  • C is the capacitance value connected in parallel between the input terminals of the inverter
  • V acmag is the voltage amplitude of the AC power source.
  • ⁇ g is the voltage frequency of the AC power source
  • K t is the motor torque factor
  • ⁇ e is the motor rotor speed.
  • the set phase parameter ⁇ d may be a phase corresponding to the current dead zone, and specifically may be 0.1 to 0.2 rad.
  • the D-axis given current value calculation module 73 is configured to calculate the D-axis given current value Idref according to the maximum output voltage Vmax of the inverter and the output voltage amplitude V1 of the inverter.
  • the D-axis given current value calculation module 73 includes a field weakening controller and a limiting unit, wherein the field weakening controller is used for the maximum output voltage Vmax of the inverter and the output of the inverter.
  • the voltage amplitude V1 is calculated to obtain a D-axis given current value initial value Id0, and the limiting unit is used to limit the D-axis given current value initial value Id0. To obtain the D-axis given current value Idref.
  • the field weakening controller may calculate the D-axis given current value initial value Id0 according to the following formula:
  • V 1 is the output voltage amplitude of the inverter
  • v d is the D-axis voltage
  • v q is the Q-axis voltage
  • V max is the maximum output voltage of the inverter
  • V dc is the DC bus voltage of the motor.
  • the limiting unit obtains the D-axis given current value according to the following formula:
  • I dref is the given current value of the D axis
  • I demag is the motor demagnetization current limit value
  • the current controller 75 is configured to obtain a Q-axis given voltage value Vq and a D-axis given voltage value Vd according to the Q-axis given current value Iqref, the D-axis given current value Idref, and the Q-axis actual current Iq and the D-axis actual current Id.
  • the duty control signal is generated based on the Q-axis given voltage value Vq and the D-axis given voltage value Vd and the rotor angle estimated value ⁇ est, and the motor is controlled by controlling the inverter 5.
  • the three-phase current is coordinate-transformed to obtain the actual current values of the d-axis and the q-axis, as follows:
  • the motor is obtained in the two-phase stationary coordinate system ⁇ and ⁇ axis directions Current I ⁇ and I ⁇
  • the Park transformation is performed based on the rotor angle estimated value ⁇ est , and the actual current values I q and I d of the d-axis and the q-axis in the two-phase rotating coordinate system are calculated by the following formula.
  • I d I ⁇ cos ⁇ est +I ⁇ sin ⁇ est
  • the current controller 75 can calculate the Q axis given voltage value and the D axis given voltage value according to the following formula:
  • Vq is the given voltage value of the Q axis
  • Vd is the given voltage value of the D axis
  • Iqref is the given current value of the Q axis
  • Idref is the given current value of the D axis
  • Iq is the actual current of the Q axis
  • Id is the actual axis of the D axis.
  • the current, Kpd and Kid are the D-axis current control proportional gain and integral gain respectively
  • Kpq and Kiq are the Q-axis current control proportional gain and integral gain, respectively
  • is the motor speed
  • Ke is the motor back-emissivity coefficient
  • Ld and Lq are respectively D Axis and Q-axis inductance
  • the Park inverse transformation of Vq and Vd according to the motor rotor angle estimation value ⁇ est can be performed to obtain the voltage values V ⁇ and V ⁇ on the fixed coordinate system.
  • the specific transformation formula is as follows:
  • Clark inverse transform can be performed according to the voltage values V ⁇ and V ⁇ on the fixed coordinate system to obtain the three-phase voltages Vu, Vv, and Vw, and the specific conversion formula is as follows:
  • the duty ratio calculation unit can calculate the duty ratio according to the DC bus voltage and the three-phase voltage, and obtain the duty control signal, that is, the three-phase duty ratios Du, Dv, and Dw, and the specific calculation formula is as follows:
  • Vdc is the DC bus voltage
  • the switching tube of the inverter is controlled according to the three-phase duty ratios D u , D v , D w to realize the control of the motor.
  • the present invention also provides an inverter air conditioner, including the above-mentioned motor drive protection device, and the motor of the inverter air conditioner may be a DC fan or a compressor.
  • the motor of the inverter air conditioner may be a DC fan or a compressor.
  • the inverter air conditioner provided by the embodiment of the invention increases the overvoltage protection circuit by connecting the overvoltage protection circuit to the DC bus.
  • the calculation control unit obtains the DC bus voltage value when the DC bus voltage value exceeds the first preset value.
  • the operation control unit controls the controllable switch to be turned on so that the load is connected to the overvoltage protection circuit to reduce the DC bus voltage value; when the DC bus voltage is lower than the second preset value, the operation control unit controls the controllable switch to be disconnected so that the load is from The overvoltage protection circuit is disconnected, wherein the first preset value is greater than the second preset value, so that the inverter air conditioner for miniaturizing the motor drive device for the application capacitor is protected against overvoltage by a high voltage fluctuation on the DC bus.
  • the real-time access of the circuit causes the high-voltage fluctuation of the DC bus to be absorbed by the over-voltage protection circuit, so that the pulsating DC bus voltage is kept below the safe voltage value, avoiding overvoltage on the pulsating DC bus voltage and causing the inverter and The filter capacitor in the DC smoothing circuit is damaged, which improves the operational reliability of the entire inverter air conditioner.
  • FIG. 4 is a flowchart of an overvoltage protection method for an inverter air conditioner according to an embodiment of the present invention, and the overvoltage protection method of the inverter air conditioner includes the following steps:
  • the DC bus voltage value is detected in real time, and when the DC bus voltage value exceeds the first preset value, the controllable switch is controlled to be turned on so that the load is connected to the overvoltage protection circuit.
  • the control controllable switch is disconnected to disconnect the load from the overvoltage protection circuit, wherein the first preset value is greater than the second preset
  • the value causes the high-voltage fluctuation of the pulsating DC bus voltage to be overvoltaged by the real-time access of the overvoltage protection circuit when the high voltage fluctuation occurs on the DC bus for the inverter air conditioner of the application capacitor miniaturized motor drive device.
  • the protection circuit absorbs, so that the pulsating DC bus voltage is kept below the safe voltage value, avoiding overvoltage on the pulsating DC bus voltage, causing damage to the filter capacitor in the inverter and the DC smoothing circuit, improving the operation of the entire inverter air conditioner. reliability.

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)

Abstract

一种电机驱动保护装置、过压保护方法和变频空调器,通过在电机驱动保护装置增加过压保护电路(4),其过压保护电路(4)并联在直流母线上,运算控制部(7)通过获取直流母线电压值,当直流母线电压值超过第一预设值时,运算控制部(7)控制可控开关导通使得负载接入过压保护电路(4)以降低直流母线电压值;当直流母线电压低于第二预设值时,运算控制部(7)控制可控开关断开使得负载从过压保护电路(4)中断开。使得脉动的直流母线电压的高电压波动被过压保护电路(4)吸收,避免脉动的直流母线电压上出现过压导致逆变器(5)和直流平滑电路(3)中的滤波电容器损坏。

Description

电机驱动保护装置、过压保护方法及变频空调器 技术领域
本发明涉及电机控制技术领域,尤其涉及一种电机驱动保护装置、过压保护方法和变频空调器。
背景技术
随着消费者对机电产品节能性要求的提升,效率更高的变频电机驱动器得到了越来越广泛的应用。常规变频驱动器的直流母线电压处于稳定状态,逆变部分与输入交流电压相对独立,从而使逆变部分的控制无需考虑输入电压的瞬时变化,便于控制方法的实现。然而,这种设计方法需要配备容值较大的电解电容,使得驱动器体积变大,成本提升。此外,电解电容的寿命有限,其有效工作时间往往是驱动器寿命的瓶颈。
针对上述问题,相关方案提出了以小容值的薄膜电容或陶瓷电容取代电解电容的策略,与常规的交直交驱动电路相比,省去了PFC部分,而且小型化的电容既能实现降成本,又能消除电解电容引起的使用寿命瓶颈。但是,由于直流母线电压上的薄膜电容或陶瓷电容容值很小,通常只有常规高压电解电容容值的1%-2%,在电机高速运转时,如果发生停电或者其它异常停机,则电机会反向发电使直流母线电压出现高电压波动,由于小型化的电容不能吸收高电压波动,导致直流母线电压超出电机逆变模块和电容的耐压值时,容易过压损坏。
上述内容仅用于辅助理解本发明的技术方案,并不代表承认上述内容是现有技术。
发明内容
本发明的主要目的在于提供一种电机驱动保护装置、过压保护方法和变频空调器,目的在于解决针对电容小型化的电机驱动装置中,当直流母线出现高电压波动时,导致直流母线电压过高引起电机逆变模块和电容过压损坏问题。
为实现上述目的,本发明提供的一种电机驱动保护装置,所述电机驱动保护装置包括:
整流器、直流平滑电路、过压保护电路、逆变器、运算控制部及电机;所述整流器对交流电源的交流输入电压进行全波整流,所述整流器的两输出端连接直流母线;所述直流平滑电路、逆变器依次与所述直流母线并联,且所述直流平滑电路包括与所述直流母线并联的电容器,所述交流输入电压通过所述整流器、直流平滑电路输出脉动的直流母线电压,以为所述逆变器提供电源;所述运算控制部对逆变器进行控制以驱动电机运行;
过压保护电路,位于所述整流器和逆变器之间且与所述直流母线并联,包括可控开关和与所述可控开关串联的负载;所述可控开关的控制端与所述运算控制部连接,所述运算控制部实时获取所述直流母线电压值,当所述直流母线电压值超过第一预设值时,所述运算控制部控制所述可控开关导通,使得所述负载接入所述过压保护电路以降低所述直流母线电压值;当所述直流母线电压低于第二预设值时,所述运算控制部控制所述可控开关断开,使得所述负载从过压保护电路中断开;
其中,所述第一预设值大于第二预设值。
优选的,所述运算控制部通过PWM信号控制可控开关导通。
优选的,所述直流平滑电路的电容器为薄膜电容或陶瓷电容,电容量为10-30uF。
优选的,所述可控开关包括第一晶体管,所述负载包括第一电阻,所述第一晶体管的基极连接所述运算控制部,所述第一晶体管的发射极连接所述直流母线负极,所述第一电阻的一端连接所述第一晶体管的集电极,另一端连接所述直流母线正极。
优选的,所述运算控制部包括:
输入电压相位检测锁相环模块,用于获取输入的交流电源的电压瞬时值,并根据所述交流电源的电压瞬时值计算输入电压相位估计值;
位置/速度估计器,用于对所述电机的转子位置进行估计以获得转子角度估计值和电机速度估计值;
Q轴给定电流值计算模块,用于根据电机目标转速值、所述电机速度估计值和所述输入电压相位估计值计算Q轴给定电流值;
D轴给定电流值计算模块,用于根据所述逆变器的最大输出电压和所述逆变器的输出电压幅值计算D轴给定电流值;
电流控制器,用于根据所述Q轴给定电流值、所述D轴给定电流值以及Q轴实际电流和D轴实际电流获取Q轴给定电压值和D轴给定电压值,以根据所述Q轴给定电压值和D轴给定电压值、所述转子角度估计值生成占空比控制信号,并通过控制所述逆变器以对所述电机进行控制。
优选的,所述Q轴给定电流值计算模块包括:
第二PI调节器,用于对所述电机目标转速值与所述电机速度估计值之差进行PI调节以输出转矩幅值给定值;
波形发生器,用于根据所述输入电压相位估计值生成输出变量;
初始电流计算单元,用于将所述输出变量与所述转矩幅值给定值相乘后除以电机转矩系数以获得Q轴给定电流值初始值;
电容电流补偿单元,用于根据所述输入电压相位估计值生成补偿电流;
叠加单元,用于将所述补偿电流叠加到所述Q轴给定电流值初始值以获得所述Q轴给定电流值。
优选的,所述D轴给定电流值计算模块包括:
弱磁控制器,用于对所述逆变器的最大输出电压与所述逆变器的输出电压幅值进行计算以获得D轴给定电流值初始值;
限幅单元,用于对所述D轴给定电流值初始值进行限幅处理以获得所述D轴给定电流值。
为实现上述目的,本发明还提供一种变频空调器,所述变频空调器包括上述电机驱动保护装置。
为实现上述目的,本发明还提供一种变频空调器的过压保护方法,所述变频空调器的过压保护方法包括以下步骤:
实时检测直流母线电压值;
当所述直流母线电压值超过第一预设值时,控制所述可控开关导通使得所述负载接入所述过压保护电路以降低所述直流母线电压值;当所述直流母线电压低于第二预设值时,控制所述可控开关断开使得所述负载从过压保护电路中断开,其中所述第一预设值大于第二预设值。
优选的,所述运算控制部通过PWM信号控制可控开关导通。
本发明提供的电机驱动***的电机驱动保护装置,通过在电机驱动保护装置增加过压保护电路,其过压保护电路并联在直流母线上,运算控制部通过获取直流母线电压值,当直流母线电压值超过第一预设值时,运算控制部控制可控开关导通使得负载接入过压保护电路以降低直流母线电压值;当直流母线电压低于第二预设值时,运算控制部控制可控开关断开使得负载从过压保护电路中断开,其中第一预设值大于第二预设值,使得针对电容小型化电机驱动装置中,针对直流母线上出现高电压波动时,通过过压保护电路的实时接入,使得直流母线的高电压波动被过压保护电路吸收,进而使得直流脉动电压保持在安全的电压值以下,避免直流脉动电压上出现过压导致逆变器和直流平滑电路中的滤波电容器损坏,进而提高了整个电机驱动电路的工作可靠性。
附图说明
图1为本发明电机驱动保护装置结构示意图;
图2为本发明电机驱动保护装置的运算控制部的结构示意图;
图3为本发明电机驱动保护装置的电压相位检测锁相环模块的结构示意图;
图4为本发明变频空调的过压保护方法流程图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
图1为本发明提供的电机驱动保护装置结构示意图,为了便于说明,仅示出了与本实施例相关的部分,如图所示:
本发明第一实施例提供的一种电机驱动保护装置,包括由交流输入电源1、整流器2、直流平滑电路3、过压保护电路4、逆变器5、运算控制部7及电机6组成的电机驱动装置,其中整流器2连接交流输入电源1,由二极管D1-D4组成的全桥整流,对交流输入电压1进行整流,整流器的两输出端连接直流母线,直流平滑电路3、逆变器5依次与直流母线并联;直流平滑电路3包括与直流母线并联的电容器C1,由于电容器C1电容量相对较小,因此整流器输出的直流电压经直流平滑电路滤波后是脉动直流母线电压,不能滤波成稳定的直流母线电压,此脉动直流母线电压为逆变器5提供工作的电源,逆变器5的通过运算控制部7对其六个开关管S1-S6进行控制,输出三相电流驱动电机6运行,逆变器5由逆变模块即IPM(智能功率模块)构成。由于上述电机驱动装置中直流平滑电路3中的电容器比其他的电机驱动装置的直流平滑电路中的电容器要小很多,一般只有其电容值的1%-2%,电容量为10-30uF如只有20uF,因为其电容值小,可以选择为薄膜电容或陶瓷电容,而其他直流平滑电路中的电容器总容量一般可达到800uF,一般都是大容量的电解电容,因此简称为电容小型化的驱动装置,基于此电容小型化的电机驱动装置,相比其他电容量大的电机驱动装置,其主要区别是电容小型化电机驱动装置中的直流母线电压是脉动电压,其电压时刻处于周期性波动状态,而电容量大 的电机驱动装置中直流母线电压是稳定电压,不存在脉动电压对应的周期性波动。
上述电机驱动保护装置的过压保护电路4并联于直流母线上,位于逆变器5之前,可以位于直流平滑电路3之后,也可以位于整流器2之后,过压保护电路4可控开关402和与可控开关402串联的负载401,可控开关402的控制端与运算控制部7连接,可控开关402为大功率的晶体管如MOS管或者IGBT,负载401可以是电阻性器件,如大功率的电阻。具体的如图1所示的过压保护电路4的具体电路,可控开关包括第一晶体管S7,负载402包括第一电阻R2,第一晶体管S7的基极连接运算控制部,第一晶体管的发射极连接所述直流母线负极,第一电阻R2的一端连接第一晶体管S7的集电极,另一端连接所述直流母线正极。当晶体管导通时,第一电阻R2接入过压保护电路4中,由于第一电阻R2为大功率电阻,因此可以承担直流母线所提供电源对应的一部分负载,进而分担一部分工作电流,当直流母线上出现电压过高的波动时,第一电阻R2的接入就能分担直流母线过高电压波动带来的电流,进而降低其过高部分的波动电压。
具体的,运算控制部7通过电压检测电路获取直流母线电压值,此电压检测电路为现有技术,不在赘述,当直流母线电压值超过第一预设值时,运算控制部7控制可控开关402导通使得负载401接入过压保护电路4,由于过压保护电路4承担了一部分直流母线电压供给逆变器的电流,因此能使得直流母线电压降低,;当直流母线电压低于第二预设值时,所述运算控制部控制所述可控开关断开使得所述负载从过压保护电路中断开,其中第一预设值大于第二预设值。第一预设值和第二预设值可根据具体的实验确定,如第一预设值设置为480V,第二预设值设置为460V,通过过压保护电路4,能实时的对直流脉动电压的出现的过压起到调节作用。
由于电容小型化电机驱动装置中,直流平滑电路中的电容器小,不能平滑稳定直流母线上出现的高电压峰值,如在电机高速运转由于停电或者其他异常导致突然停机,电机在停机下继续运转时会反向发电使得直流母线电压升高,出现高电压波动,而此高电压波动不能被 平滑电路的电容器吸收,因此当直流脉动电压出现高的电压值时,通过压保护电路4接入直流母线,使得直流母线的高电压波动被过压保护电路吸收,进而使得直流脉动电压保持在安全的电压值以下,避免直流脉动电压上出现过压导致逆变器和直流平滑电路3中的滤波电容器C1损坏,进而提高了整个电机驱动电路的工作可靠性。
进一步的,在运算控制部7控制可控开关402导通使得负载401接入过压保护电路4时,运算控制部7可通过PWM信号控制开关402导通,如以高电平占空比为50%,周期为10KHz的PWM信号控制开关402的导通,由于用PWM控制时开关402出于断续开关状态,其通过开关的平均电流要比用恒定的导通状态小,如以高电平占空比为50%的PWM控制开关402,则其通过的电流理论为以恒定高电平控制开关402导通时电流的50%,由于402导通时通过电流相对较高,这样以PWM控制开关402就时就能减少通过开关的平均电流,进而可以降低控制开关402所使用的器件规格,可以使用相对小电流的功率管,降低成本。
根据本发明实施例提供的电机驱动保护装置,通过在电机驱动保护装置增加过压保护电路,其过压保护电路并联在直流母线上,运算控制部通过获取直流母线电压值,当直流母线电压值超过第一预设值时,运算控制部控制可控开关导通使得负载接入过压保护电路以降低直流母线电压值;当直流母线电压低于第二预设值时,运算控制部控制可控开关断开使得负载从过压保护电路中断开,其中第一预设值大于第二预设值,使得针对电容小型化电机驱动装置中,针对脉动的直流母线电压上出现高电压波动时,通过过压保护电路的实时接入,使得脉动的直流母线电压的高电压波动被过压保护电路吸收,进而使得脉动的直流母线电压保持在安全的电压值以下,避免脉动的直流母线电压上出现过压导致逆变器和直流平滑电路中的滤波电容器损坏,进而提高了整个电机驱动电路的工作可靠性。
进一步的,做为本发明提供的电机驱动保护装置的第二实施例,基于本发明的电机驱动保护装置的第一实施例,图2为本发明提供的 电机驱动保护装置的第二实施例的运算控制部的结构示意图,在本实施例中,运算控制部7包括:
输入电压相位检测锁相环模块71,用于获取输入的交流电源的电压瞬时值,并根据交流电源的电压瞬时值计算输入电压相位估计值;
位置/速度估计器74,用于对电机的转子位置进行估计以获得转子角度估计值和电机速度估计值;
Q轴给定电流值计算模块72,用于根据电机目标转速值、电机速度估计值和输入电压相位估计值计算Q轴给定电流值;
D轴给定电流值计算模块73,用于根据逆变器的最大输出电压和逆变器的输出电压幅值计算D轴给定电流值;
电流控制器75,用于根据Q轴给定电流值、D轴给定电流值以及Q轴实际电流和D轴实际电流获取Q轴给定电压值和D轴给定电压值,以根据Q轴给定电压值和D轴给定电压值、转子角度估计值生成占空比控制信号,并通过控制逆变器以对电机进行控制。
其中输入电压相位检测锁相环模块71可包括余弦计算器714、第一乘法器711、低通滤波器712、第一PI调节器713和积分器715,如图3所示,余弦计算器714用于对上一计算周期的输入电压相位估计值θge进行余弦计算以获得第一计算值,第一乘法器711用于将交流电源的电压瞬时值Vac与第一计算值相乘以获得第二计算值。低通滤波器712用于对第二计算值进行低通滤波以获得第三计算值,其中,该低通滤波器712的带宽低于交流电源的电压频率,在本发明的一个实施例中,该低通滤波器712的带宽低于交流电源的电压频率ωg的1/5。第一PI调节器713用于对第三计算值进行PI调节以输出第四计算值,积分器715用于对第四计算值与交流电源的电压频率ωg之和进行积分计算以获得当前计算周期的输入电压相位估计值θge。
位置/速度估计器74用于对电机的转子位置进行估计以获得转子角度估计值θest和电机速度估计值ωest。本发明实施例的电机可为无位置传感器的电机,在本发明的一个实施例中,可通过磁链观测法实现位置/速度估计器74的上述功能。
具体而言,首先可根据两相静止坐标系上的电压Vα、Vβ和电流Iα、Iβ计算压缩机电机在两相静止坐标系α和β轴方向上有效磁通的估计值,具体根据以下公式(1)计算如下:
Figure PCTCN2017105418-appb-000001
其中,
Figure PCTCN2017105418-appb-000002
Figure PCTCN2017105418-appb-000003
分别为电机在α和β轴方向上有效磁通的估计值,Vα和Vβ分别为α和β轴方向上的电压,Iα和Iβ分别为α和β轴方向上的电流,R为定子电阻,Lq为电机的q轴磁链。
然后,根据下述公式(2)计算压缩机电机的转子角度估计值θest和电机实际转速值值ωest
Figure PCTCN2017105418-appb-000004
其中,Kp_pll和Ki_pll分别为比例积分参数,θerr为偏差角度估计值,ωf为速度低通滤波器的带宽。
Q轴给定电流值计算模块72用于根据电机目标转速值ωref、电机速度估计值ωest和输入电压相位估计值θge计算Q轴给定电流值Iqref。
具体的,如图2所示,Q轴给定电流值计算模块72包括第二PI调节器、波形发生器、初始电流计算单元、电容电流补偿单元和叠加单元。其中,第二PI调节器用于对电机目标转速值ωref与电机速度估计值ωest之差进行PI调节以输出转矩幅值给定值T0,波形发生器用于根据输入电压相位估计值θge生成输出变量Wf。初始电流计算单元用于将输出变量Wf与转矩幅值给定值T0相乘后除以电机转矩系数Kt以获得Q轴给定电流值初始值Iq0。电容电流补偿单元用于 根据输入电压相位估计值θge生成补偿电流Iqcom,叠加单元用于将补偿电流Iqcom叠加到Q轴给定电流值初始值Iq0以获得Q轴给定电流值Iqref。
在本发明的实施例中,波形发生器可根据以下公式计算输出变量:
Figure PCTCN2017105418-appb-000005
其中,Wfge)为根据输入电压相位估计值θge生成的输出变量,θge为输入电压相位估计值,θd为设定相位参数。
在本发明的实施例中,电容电流补偿单元可根据以下公式计算补偿电流:
Figure PCTCN2017105418-appb-000006
其中,Iqcom为补偿电流,θge为输入电压相位估计值,θd为设定相位参数,C为并联在逆变器的输入端之间的电容容值,Vacmag为交流电源的电压幅值,ωg为交流电源的电压频率,Kt为电机转矩系数,ωe为电机转子速度。
在本发明的一个实施例中,设定相位参数θd可为电流死区所对应的相位,具体可取0.1~0.2rad。
D轴给定电流值计算模块73用于根据逆变器的最大输出电压Vmax和逆变器的输出电压幅值V1计算D轴给定电流值Idref。
具体地,如图2所示,D轴给定电流值计算模块73包括弱磁控制器和限幅单元,其中,弱磁控制器用于对逆变器的最大输出电压Vmax与逆变器的输出电压幅值V1进行计算以获得D轴给定电流值初始值Id0,限幅单元用于对D轴给定电流值初始值Id0进行限幅处 理以获得D轴给定电流值Idref。
在本发明的实施例中,弱磁控制器可根据以下公式计算D轴给定电流值初始值Id0:
Figure PCTCN2017105418-appb-000007
其中,Id0为D轴给定电流值初始值,Ki为积分控制系数,
Figure PCTCN2017105418-appb-000008
V1为逆变器的输出电压幅值,vd为D轴电压,vq为Q轴电压,Vmax为逆变器的最大输出电压,Vdc为电机的直流母线电压。
在本发明的实施例中,限幅单元根据以下公式获得D轴给定电流值:
Figure PCTCN2017105418-appb-000009
其中,Idref为D轴给定电流值,Idemag为电机退磁电流限制值。
电流控制器75用于根据Q轴给定电流值Iqref、D轴给定电流值Idref以及Q轴实际电流Iq和D轴实际电流Id获取Q轴给定电压值Vq和D轴给定电压值Vd,以根据Q轴给定电压值Vq和D轴给定电压值Vd、转子角度估计值θest生成占空比控制信号,并通过控制逆变器5以对电机进行控制。
其中,三相电流进行坐标变换获得d轴和q轴实际电流值,具体如下:
根据检测获得的永磁同步电机U、V、W三相电流值Iu、Iv、Iw,并通过进行Clark变换,基于下述公式,得到电机在两相静止坐标系α和β轴方向上的电流Iα和Iβ
Figure PCTCN2017105418-appb-000010
再根据转子角度估计值θest进行Park变换,通过下述公式计算得到两相旋转坐标系下的d轴和q轴的实际电流值Iq、Id
Id=Iαcosθest+Iβsinθest
Iq=-Iαsinθest+Iβcosθest
进一步的,电流控制器75可根据以下公式计算Q轴给定电压值和D轴给定电压值:
Figure PCTCN2017105418-appb-000011
其中,Vq为Q轴给定电压值,Vd为D轴给定电压值,Iqref为Q轴给定电流值、Idref为D轴给定电流值,Iq为Q轴实际电流,Id为D轴实际电流,Kpd和Kid分别为D轴电流控制比例增益与积分增益,Kpq和Kiq分别为Q轴电流控制比例增益与积分增益,ω为电机转速,Ke为电机反电势系数,Ld和Lq分别为D轴和Q轴电感,
Figure PCTCN2017105418-appb-000012
表示x(τ)在时间上的积分。
在获取到Q轴给定电压值Vq和D轴给定电压值Vd后,可根据电机转子角度估计值θest对Vq和Vd进行Park逆变换,得到固定坐标系上的电压值Vα和Vβ,具体变换公式如下:
Figure PCTCN2017105418-appb-000013
其中,θ为电机转子角度,在此可取上述的转子角度估计值θest。
进一步地,可根据固定坐标系上的电压值Vα和Vβ进行Clark逆变换,得到三相电压Vu、Vv和Vw,具体变换公式如下:
Figure PCTCN2017105418-appb-000014
然后占空比计算单元可根据直流母线电压和三相电压进行占空比计算,得到占空比控制信号,即三相占空比Du、Dv和Dw,具体计算公式如下:
Du=(Vu+0.5Vdc)/Vdc
Dv=(Vv+0.5Vdc)/Vdc
Dw=(Vw+0.5Vdc)/Vdc    (11)
其中,Vdc为直流母线电压。
最后,根据三相占空比Du、Dv、Dw对逆变器的开关管进行控制,以实现对电机的控制。
此外,本发明还提供一种变频空调器,包括上述电机驱动保护装置,其变频空调器的电机可以是直流风机或者压缩机,其具体的实施方式可参考上述电机驱动保护装置实施例,在此不再赘述。
本发明实施例提供的变频空调器,通过增加过压保护电路,其过压保护电路并联在直流母线上,运算控制部通过获取直流母线电压值,当直流母线电压值超过第一预设值时,运算控制部控制可控开关导通使得负载接入过压保护电路以降低直流母线电压值;当直流母线电压低于第二预设值时,运算控制部控制可控开关断开使得负载从过压保护电路中断开,其中第一预设值大于第二预设值,使得针对应用电容小型化电机驱动装置的变频空调器中,针对直流母线上出现高电压波动时,通过过压保护电路的实时接入,使得直流母线的高电压波动被过压保护电路吸收,进而使得脉动的直流母线电压保持在安全的电压值以下,避免脉动的直流母线电压上出现过压导致逆变器和直流平滑电路中的滤波电容器损坏,提高了整个变频空调的工作可靠性。
进一步的,基于本发明实施例的变频空调器,本发明实施例还提 供一种变频空调的过压保护方法,图4为本发明实施例提供的变频空调的过压保护方法的流程图,该变频空调的过压保护方法包括以下步骤:
S10,实时检测直流母线电压值;
S20,当直流母线电压值超过第一预设值时,控制可控开关导通使得负载接入过压保护电路以降低直流母线电压值;当直流母线电压低于第二预设值时,控制可控开关断开使得所述负载从过压保护电路中断开,其中第一预设值大于第二预设值。
其变频空调的过压保护方法的具体实施例见电机驱动保护装置实施例,在此不再赘述。
根据本发明实施例提供的变频空调的过压保护方法,通过实时检测直流母线电压值,当直流母线电压值超过第一预设值时,控制可控开关导通使得负载接入过压保护电路以降低直流母线电压值;当直流母线电压低于第二预设值时,控制可控开关断开使得所述负载从过压保护电路中断开,其中第一预设值大于第二预设值,使得针对应用电容小型化电机驱动装置的变频空调器中,针对直流母线上出现高电压波动时,通过过压保护电路的实时接入,使得脉动的直流母线电压的高电压波动被过压保护电路吸收,进而使得脉动的直流母线电压保持在安全的电压值以下,避免脉动的直流母线电压上出现过压导致逆变器和直流平滑电路中的滤波电容器损坏,提高了整个变频空调的工作可靠性。
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

  1. 一种电机驱动保护装置,其特征在于,所述电机驱动保护装置包括:
    整流器、直流平滑电路、过压保护电路、逆变器、运算控制部及电机;所述整流器对交流电源的交流输入电压进行全波整流,所述整流器的两输出端连接直流母线;所述直流平滑电路、逆变器依次与所述直流母线并联,且所述直流平滑电路包括与所述直流母线并联的电容器,所述交流输入电压通过所述整流器、直流平滑电路输出脉动的直流母线电压,以为所述逆变器提供电源;所述运算控制部对逆变器进行控制以驱动电机运行;
    过压保护电路,位于所述整流器和逆变器之间且与所述直流母线并联,包括可控开关和与所述可控开关串联的负载;所述可控开关的控制端与所述运算控制部连接,所述运算控制部实时获取所述直流母线电压值,当所述直流母线电压值超过第一预设值时,所述运算控制部控制所述可控开关导通,使得所述负载接入所述过压保护电路以降低所述直流母线电压值;当所述直流母线电压低于第二预设值时,所述运算控制部控制所述可控开关断开,使得所述负载从过压保护电路中断开;
    其中,所述第一预设值大于第二预设值。
  2. 如权利要求1所述的电机驱动保护装置,其特征在于,所述运算控制部通过PWM信号控制可控开关导通。
  3. 如权利要求1所述的电机驱动保护装置,其特征在于,所述直流平滑电路的电容器为薄膜电容或陶瓷电容,电容量为10-30uF。
  4. 如权利要求1所述的电机驱动保护装置,其特征在于,所述可控开关包括第一晶体管,所述负载包括第一电阻,所述第一晶体管的基极连接所述运算控制部,所述第一晶体管的发射极连接所述直流母线负极,所述第一电阻的一端连接所述第一晶体管的集电极,另一 端连接所述直流母线正极。
  5. 如权利要求1所述的电机驱动保护装置,其特征在于,所述运算控制部包括:
    输入电压相位检测锁相环模块,用于获取输入的交流电源的电压瞬时值,并根据所述交流电源的电压瞬时值计算输入电压相位估计值;
    位置/速度估计器,用于对所述电机的转子位置进行估计以获得转子角度估计值和电机速度估计值;
    Q轴给定电流值计算模块,用于根据电机目标转速值、所述电机速度估计值和所述输入电压相位估计值计算Q轴给定电流值;
    D轴给定电流值计算模块,用于根据所述逆变器的最大输出电压和所述逆变器的输出电压幅值计算D轴给定电流值;
    电流控制器,用于根据所述Q轴给定电流值、所述D轴给定电流值以及Q轴实际电流和D轴实际电流获取Q轴给定电压值和D轴给定电压值,以根据所述Q轴给定电压值和D轴给定电压值、所述转子角度估计值生成占空比控制信号,并通过控制所述逆变器以对所述电机进行控制。
  6. 如权利要求5所述的电机驱动保护装置,其特征在于,所述Q轴给定电流值计算模块包括:
    第二PI调节器,用于对所述电机目标转速值与所述电机速度估计值之差进行PI调节以输出转矩幅值给定值;
    波形发生器,用于根据所述输入电压相位估计值生成输出变量;
    初始电流计算单元,用于将所述输出变量与所述转矩幅值给定值相乘后除以电机转矩系数以获得Q轴给定电流值初始值;
    电容电流补偿单元,用于根据所述输入电压相位估计值生成补偿电流;
    叠加单元,用于将所述补偿电流叠加到所述Q轴给定电流值初始值以获得所述Q轴给定电流值。
  7. 如权利要求5所述的电机驱动保护装置,其特征在于,所述D轴给定电流值计算模块包括:
    弱磁控制器,用于对所述逆变器的最大输出电压与所述逆变器的输出电压幅值进行计算以获得D轴给定电流值初始值;
    限幅单元,用于对所述D轴给定电流值初始值进行限幅处理以获得所述D轴给定电流值。
  8. 一种变频空调器,其特征在于,所述变频空调器包括如权利要求1至7任一所述电机驱动保护装置。
  9. 一种如权利要求8所述的变频空调器的过压保护方法,其特征在于,所述变频空调器的过压保护方法包括以下步骤:
    实时检测直流母线电压值;
    当所述直流母线电压值超过第一预设值时,控制所述可控开关导通使得所述负载接入所述过压保护电路以降低所述直流母线电压值;当所述直流母线电压低于第二预设值时,控制所述可控开关断开使得所述负载从过压保护电路中断开,其中所述第一预设值大于第二预设值。
  10. 如权利要求8所述的变频空调器的过压保护方法,其特征在于,所述运算控制部通过PWM信号控制可控开关导通。
PCT/CN2017/105418 2016-12-19 2017-10-09 电机驱动保护装置、过压保护方法及变频空调器 WO2018113388A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611181749.6 2016-12-19
CN201611181749.6A CN106505527A (zh) 2016-12-19 2016-12-19 电机驱动保护装置、过压保护方法及变频空调器

Publications (1)

Publication Number Publication Date
WO2018113388A1 true WO2018113388A1 (zh) 2018-06-28

Family

ID=58333284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/105418 WO2018113388A1 (zh) 2016-12-19 2017-10-09 电机驱动保护装置、过压保护方法及变频空调器

Country Status (2)

Country Link
CN (1) CN106505527A (zh)
WO (1) WO2018113388A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109856536A (zh) * 2018-12-26 2019-06-07 湖南福德电气有限公司 一种中压负载柜
CN111308159A (zh) * 2019-12-02 2020-06-19 广东美的制冷设备有限公司 空调器的电流估算方法、装置、空调器及存储介质
CN112838751A (zh) * 2019-11-22 2021-05-25 比亚迪股份有限公司 一种电机控制器的主动泄放电路及其泄放控制方法
CN113054887A (zh) * 2019-12-28 2021-06-29 南京德朔实业有限公司 一种电动工具的过压保护电路、方法以及电动工具
CN113366752A (zh) * 2019-01-30 2021-09-07 大金工业株式会社 功率转换装置
CN113726230A (zh) * 2021-05-24 2021-11-30 核工业理化工程研究院 一种基于瞬时功率反馈的闭环i/f控制方法及其变频器控制***
CN114070133A (zh) * 2020-08-04 2022-02-18 美的威灵电机技术(上海)有限公司 驱动装置、控制方法、电器设备和存储介质

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106505527A (zh) * 2016-12-19 2017-03-15 广东美的制冷设备有限公司 电机驱动保护装置、过压保护方法及变频空调器
CN107086544B (zh) * 2017-05-10 2019-03-08 广东美的暖通设备有限公司 过压保护电路、三相驱动电机和空调器
CN107101345B (zh) * 2017-06-02 2020-09-11 广东美的制冷设备有限公司 空调器及其压缩机停机控制方法和计算机可读存储介质
CN107196633A (zh) * 2017-06-23 2017-09-22 广东美的制冷设备有限公司 交流负载的开关控制装置、交流控制***和制冷设备
CN109291913B (zh) * 2017-07-25 2022-06-07 宇通客车股份有限公司 一种混合动力汽车超速状态下的电压保护方法
CN107681939B (zh) * 2017-10-30 2024-04-26 广东美的制冷设备有限公司 电机控制***、变频空调器
CN107681929B (zh) * 2017-10-30 2023-11-28 广东美的制冷设备有限公司 电机控制***、变频空调器
CN107947120B (zh) * 2017-11-24 2024-07-02 珠海格力节能环保制冷技术研究中心有限公司 一种过压保护装置、方法、电源模块及电力拖动控制***
CN109951126B (zh) 2017-12-20 2020-12-11 广州汽车集团股份有限公司 控制直流母线放电方法、***、计算机设备及存储介质
CN108054914A (zh) * 2018-01-29 2018-05-18 广东美的制冷设备有限公司 Pfc电路、电机控制***及变频空调器
CN108054913B (zh) * 2018-01-29 2023-11-28 广东美的制冷设备有限公司 Pfc电路、电机控制***及变频空调器
CN108123593B (zh) * 2018-01-29 2023-11-28 广东美的制冷设备有限公司 Pfc电路、电机控制***及变频空调器
CN108023473B (zh) * 2018-01-29 2023-10-31 广东美的制冷设备有限公司 Pfc电路、电机控制***及变频空调器
CN108199576B (zh) * 2018-01-29 2023-11-28 广东美的制冷设备有限公司 Pfc电路、电机控制***及变频空调器
CN108322128A (zh) * 2018-03-09 2018-07-24 奥克斯空调股份有限公司 一种电机驱动保护装置、过压保护方法、装置及空调器
CN110966172B (zh) * 2018-09-30 2021-05-11 广东威灵汽车部件有限公司 电动汽车、压缩机及压缩机的控制方法、装置
CN110970871A (zh) * 2018-09-30 2020-04-07 广东威灵汽车部件有限公司 逆变器断电保护电路、方法和车辆
CN111256281B (zh) * 2018-11-30 2021-10-22 广东美的制冷设备有限公司 运行控制方法及***、压缩机和空调器
CN109660183B (zh) * 2018-12-24 2021-03-12 哈尔滨工业大学 一种电容小型化电机驱动装置
CN110207341B (zh) * 2019-01-16 2024-04-19 广东美的制冷设备有限公司 驱动控制电路和空调器
CN111463768A (zh) * 2019-01-21 2020-07-28 广东美的制冷设备有限公司 供电保护电路板及空调器
CN111463766A (zh) * 2019-01-21 2020-07-28 广东美的制冷设备有限公司 供电保护电路板和空调器
CN111463767B (zh) * 2019-01-21 2022-10-21 广东美的制冷设备有限公司 供电保护电路板和空调器
CN111697812B (zh) * 2019-03-13 2022-03-04 青岛海尔智能技术研发有限公司 变频设备及其pfc电路的控制方法和装置、存储介质
CN110594953A (zh) 2019-09-09 2019-12-20 广东美的暖通设备有限公司 压缩机驱动装置、压缩机压力保护方法及空调器
CN110572023B (zh) * 2019-09-29 2021-06-22 英麦科(厦门)微电子科技有限公司 Pfc电路及其输入电容的电流补偿方法和电源转换电路
CN111049118A (zh) * 2020-01-07 2020-04-21 珠海格力电器股份有限公司 用电电路的过压保护装置、方法和具有过压保护的电路
CN111277198B (zh) * 2020-02-25 2023-06-06 广东三华钒音科技有限公司 用于变频电机驱动的控制装置和家电设备
CN113346804B (zh) * 2020-03-02 2023-06-13 广东威灵电机制造有限公司 电机控制方法、电机控制装置、电机***和存储介质
CN112524854B (zh) * 2020-12-09 2022-09-06 青岛海尔空调器有限总公司 变频空调器中压缩机的控制方法与变频空调器
CN114696664B (zh) * 2020-12-25 2024-06-07 宁波奥克斯电气股份有限公司 一种电机驱动***及其控制方法
CN112670956B (zh) * 2021-01-18 2023-08-04 佛山市顺德区美的电子科技有限公司 空调器的过压保护方法、装置和空调器
CN112865653A (zh) * 2021-01-27 2021-05-28 上海应用技术大学 一种新型变交轴电压单电流调节器弱磁控制方法
CN113691173A (zh) * 2021-07-23 2021-11-23 江苏东成工具科技有限公司 一种电流控制方法
CN114034902A (zh) * 2021-09-28 2022-02-11 海信(山东)空调有限公司 相电压检测方法、装置、变频空调器及其控制方法及装置
CN114583936A (zh) * 2022-03-21 2022-06-03 无锡雷利电子控制技术有限公司 基于直流母线电容的电路保护方法、车载控制器控制***
CN115242092A (zh) * 2022-08-18 2022-10-25 阳光电源股份有限公司 飞跨电容三电平dcdc变换器、光伏***及控制方法
CN115912267B (zh) * 2022-11-09 2023-11-21 成都哈工驱动科技有限公司 基于伺服驱动的共直流母线对拖装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1169880A (ja) * 1997-08-28 1999-03-09 Toshiba Corp インバータ制御装置
US20030081440A1 (en) * 2001-10-25 2003-05-01 Toyota Jidosha Kabushiki Kaisha Load driver and control method for safely driving DC load and computer-readable recording medium with program recorded thereon for allowing computer to execute the control
CN201341015Y (zh) * 2009-01-21 2009-11-04 襄樊航力机电技术发展有限公司 自励发电机过压保护器
CN104242347A (zh) * 2014-09-23 2014-12-24 国家电网公司 一种风电变流器的高电压穿越方法
CN204794030U (zh) * 2015-06-17 2015-11-18 广东美的制冷设备有限公司 过压保护装置及无电解电容电机驱动***
CN106505527A (zh) * 2016-12-19 2017-03-15 广东美的制冷设备有限公司 电机驱动保护装置、过压保护方法及变频空调器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1936796B1 (en) * 2006-12-22 2011-11-23 Fuji Electric Co., Ltd. Inverter device
DE112008003666B4 (de) * 2008-02-20 2012-06-14 Merstech Inc. Magnetenergie-Wiederherstellschalter mit Schutzschaltung
CN201629719U (zh) * 2010-02-02 2010-11-10 北京科技大学 一种机器人用异步电动机用伺服驱动装置
CN102480245B (zh) * 2010-11-30 2016-04-06 Ls产电株式会社 逆变器
US9041327B2 (en) * 2013-06-12 2015-05-26 Rockwell Automation Technologies, Inc. Method and apparatus for overvoltage protection and reverse motor speed control for motor drive power loss events
CN105978433B (zh) * 2016-05-31 2018-12-18 广东美的制冷设备有限公司 电容小型化的电机驱动装置和变频空调器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1169880A (ja) * 1997-08-28 1999-03-09 Toshiba Corp インバータ制御装置
US20030081440A1 (en) * 2001-10-25 2003-05-01 Toyota Jidosha Kabushiki Kaisha Load driver and control method for safely driving DC load and computer-readable recording medium with program recorded thereon for allowing computer to execute the control
CN201341015Y (zh) * 2009-01-21 2009-11-04 襄樊航力机电技术发展有限公司 自励发电机过压保护器
CN104242347A (zh) * 2014-09-23 2014-12-24 国家电网公司 一种风电变流器的高电压穿越方法
CN204794030U (zh) * 2015-06-17 2015-11-18 广东美的制冷设备有限公司 过压保护装置及无电解电容电机驱动***
CN106505527A (zh) * 2016-12-19 2017-03-15 广东美的制冷设备有限公司 电机驱动保护装置、过压保护方法及变频空调器

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109856536A (zh) * 2018-12-26 2019-06-07 湖南福德电气有限公司 一种中压负载柜
CN113366752A (zh) * 2019-01-30 2021-09-07 大金工业株式会社 功率转换装置
US11979097B2 (en) 2019-01-30 2024-05-07 Daikin Industries, Ltd. Power conversion device
EP3896836A4 (en) * 2019-01-30 2022-08-24 Daikin Industries, Ltd. CURRENT TRANSFORMING DEVICE
CN112838751A (zh) * 2019-11-22 2021-05-25 比亚迪股份有限公司 一种电机控制器的主动泄放电路及其泄放控制方法
CN112838751B (zh) * 2019-11-22 2023-04-07 比亚迪股份有限公司 一种电机控制器的主动泄放电路及其泄放控制方法
CN111308159A (zh) * 2019-12-02 2020-06-19 广东美的制冷设备有限公司 空调器的电流估算方法、装置、空调器及存储介质
CN113054887B (zh) * 2019-12-28 2024-01-05 南京泉峰科技有限公司 一种电动工具的过压保护电路、方法以及电动工具
CN113054887A (zh) * 2019-12-28 2021-06-29 南京德朔实业有限公司 一种电动工具的过压保护电路、方法以及电动工具
CN114070133A (zh) * 2020-08-04 2022-02-18 美的威灵电机技术(上海)有限公司 驱动装置、控制方法、电器设备和存储介质
CN114070133B (zh) * 2020-08-04 2023-09-15 美的威灵电机技术(上海)有限公司 驱动装置、控制方法、电器设备和存储介质
CN113726230B (zh) * 2021-05-24 2024-03-08 核工业理化工程研究院 一种基于瞬时功率反馈的闭环i/f控制方法及其变频器控制***
CN113726230A (zh) * 2021-05-24 2021-11-30 核工业理化工程研究院 一种基于瞬时功率反馈的闭环i/f控制方法及其变频器控制***

Also Published As

Publication number Publication date
CN106505527A (zh) 2017-03-15

Similar Documents

Publication Publication Date Title
WO2018113388A1 (zh) 电机驱动保护装置、过压保护方法及变频空调器
CN106559026B (zh) 一种电机驱动***的控制方法、控制装置和变频空调器
US9780683B2 (en) Power converter with a power buffer circuit whose buffered power is smaller than an AC component of a pulsating power
AU2012208179B2 (en) Power conversion apparatus
KR102546001B1 (ko) 모터 가변 주파수 구동 시스템 및 다중 분할 중앙 에어컨
WO2012098875A1 (ja) 電力変換装置
CN106208887B (zh) 无电解电容电机驱动***及其控制方法、装置
CN105978433B (zh) 电容小型化的电机驱动装置和变频空调器
EP3422551A1 (en) Power conversion device, motor drive device, and refrigerator using same
JP2008113514A (ja) 電源回路、及びこれに用いる制御回路
JP5063379B2 (ja) 電力変換装置、及び電力変換装置用モジュール、並びに、空気調和機及び冷凍装置
CN109546913B (zh) 一种电容小型化电机驱动装置
JP6075067B2 (ja) 電力変換装置
CN106208869B (zh) 无电解电容电机驱动***及其控制方法、装置
JP4909857B2 (ja) コンバータ装置
CN110971149A (zh) 用于电机减速的控制方法、控制装置及驱动电路
Hiraide et al. Current harmonics reduction method of electrolytic capacitor-less diode rectifier using inverter-controlled IPM motor
CN109660183B (zh) 一种电容小型化电机驱动装置
JP2019057979A (ja) モータ制御装置及び空調機
JP6024262B2 (ja) 電力変換装置
WO2023105761A1 (ja) 電力変換装置、電動機駆動装置及び冷凍サイクル適用機器
WO2023105689A1 (ja) 電力変換装置、電動機駆動装置及び冷凍サイクル適用機器
US20240011663A1 (en) Air conditioner
WO2024075163A1 (ja) 電力変換装置、モータ駆動装置および冷凍サイクル適用機器
JP7361948B2 (ja) 電動機駆動装置、冷凍サイクル装置、及び空気調和機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17882865

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17882865

Country of ref document: EP

Kind code of ref document: A1