WO2018112902A1 - 一种研究天然气水合物开采过程中产沙行为与多孔介质径向形变的关系的实验装置及方法 - Google Patents

一种研究天然气水合物开采过程中产沙行为与多孔介质径向形变的关系的实验装置及方法 Download PDF

Info

Publication number
WO2018112902A1
WO2018112902A1 PCT/CN2016/111758 CN2016111758W WO2018112902A1 WO 2018112902 A1 WO2018112902 A1 WO 2018112902A1 CN 2016111758 W CN2016111758 W CN 2016111758W WO 2018112902 A1 WO2018112902 A1 WO 2018112902A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrate
control unit
sand
natural gas
porous medium
Prior art date
Application number
PCT/CN2016/111758
Other languages
English (en)
French (fr)
Inventor
李小森
王屹
黄宁生
李刚
张郁
陈朝阳
Original Assignee
中国科学院广州能源研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院广州能源研究所 filed Critical 中国科学院广州能源研究所
Publication of WO2018112902A1 publication Critical patent/WO2018112902A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/04Investigating sedimentation of particle suspensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/03Pressure vessels, or vacuum vessels, having closure members or seals specially adapted therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/32Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring the deformation in a solid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00946Features relating to the reactants or products
    • B01J2208/00955Sampling of the particulate material, the reactants or the products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00004Scale aspects
    • B01J2219/00011Laboratory-scale plants
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells

Definitions

  • the invention relates to the field of natural gas hydrate exploitation, and particularly relates to an experimental device and a method for studying the relationship between the sand production behavior and the radial deformation of a porous medium during the exploitation of natural gas hydrate.
  • Natural gas hydrate is a kind of cage-shaped crystalline compound produced by natural gas and water under low temperature and high pressure. Its shape is like ice and snow, and it is burned in case of fire. It is commonly called “combustible ice”. Natural gas hydrates in natural gas hydrates are mainly methane (>90%). At normal temperature and pressure, 1 m 3 of natural gas hydrate decomposes and releases about 160 m 3 of natural gas, so natural gas hydrates have extremely high energy density. Natural gas hydrates in nature are mainly found in sedimentary layers of the continental shelf and terrestrial tundra. In 1964, scientists first discovered natural gas hydrates in the Siberian tundra. Soon after, natural gas hydrates found in seabed sediments were discovered in the Black Sea.
  • Natural gas hydrate mining technology is one of the key links to realize the development and utilization of natural gas hydrate resources. Unlike conventional fossil fuels, natural gas hydrates exist in a solid form in a porous medium. The basic idea of mining is: by changing the temperature-pressure environment in which the natural gas hydrate is stable, that is, the hydrate phase equilibrium condition, the solid hydrate is decomposed into natural gas and water in the reservoir and then the natural gas is produced. Accordingly, scientists have proposed several conventional mining techniques, such as: the pressure reduction method, the heat shock method, and the chemical reagent method.
  • porous media In the previous simulation experiments, large particles were used to make porous media (particle size >100um), so that the hydrate decomposition process
  • the porous medium skeleton cannot be changed, but the particle size of the porous medium in the actual hydrate deposit is composed of 0.01 um microparticles to 500 um large particles, and sand production and deformation are unavoidable during hydrate mining.
  • the radial deformation of the porous medium around the well may be the main cause of collapse and sand production in the wellbore.
  • natural gas hydrate mining experimental devices have tended to be more accurate measurement and close to the actual development of the field.
  • one of the objects of the present invention is to provide an experimental apparatus for studying the relationship between sand-producing behavior and radial deformation of a porous medium during gas hydrate production, by carrying a real-sized mining wellbore and being replaceable.
  • the perforating adapter can simulate the sand-producing behavior of hydrate during the mining process and the flow behavior of gas-liquid solidification in the wellbore, and obtain the sand-forming and radial deformation data of the porous medium during the hydrate mining process, so as to find out the sand-producing behavior.
  • the relationship between radial deformation and porous media provides basic experimental data and theoretical basis for hydrate mining technology.
  • An experimental device for studying the relationship between sand production behavior and radial deformation of porous media during natural gas hydrate production including high pressure reactor, hydrate sample chamber, simulated wellbore, deformation measurement unit, ambient temperature control unit, outlet control unit, and inlet a control unit and a data processing unit;
  • the high pressure reaction kettle is placed in an ambient temperature control unit for providing a confining pressure that simulates actual geological conditions, including an upper kettle lid, a kettle body, and a lower kettle lid;
  • the high-pressure reaction kettle is further provided with a flexible rubber sleeve, and the flexible rubber sleeve, the upper kettle lid and the lower kettle lid enclose a hydrate sample chamber, and the hydrate sample chamber is filled with a porous medium having a particle diameter of less than 100 um, the flexibility a rubber sleeve, a kettle body and a surrounding pressure chamber between the upper kettle lid and the lower kettle lid;
  • the simulated wellbore is a hollow cylindrical structure with perforations on the side wall, which is located in the hydrate sample cavity to simulate the sand production behavior of the hydrate mining process;
  • the deformation measuring unit comprises a set of radial deformation measuring units, the radial deformation unit comprising a plurality of hard connecting rods radially distributed along the flexible rubber sleeve, one end of the hard connecting rod is connected to the outer wall of the flexible rubber sleeve, The other end of the hard connecting rod passes through the outer wall of the autoclave and is connected to a displacement sensor, and the displacement sensor measures the radial deformation of the porous medium in the hydrate sample cavity by measuring the movement of the hard connecting rod;
  • the ambient temperature control unit is configured to control a temperature of a hydrate formation process, a decomposition process, and a sampling process in the high pressure reactor;
  • the inlet control unit is configured to inject water and natural gas into the hydrate sample chamber
  • the outlet control unit is configured to control the outlet pressure of the simulated wellbore during the hydrate mining process, and perform separation and data measurement of the outlet output;
  • the sensing elements of the high pressure reaction kettle, the deformation measuring unit, the ambient temperature control unit, the outlet control unit, and the inlet control unit are electrically connected to the data processing unit through a signal line, and the data processing unit is configured to collect and process the sensing of each sensing element. signal.
  • the outlet control unit includes a fluid-solid separator, an outlet pressure controller, and a gas-liquid separator that are sequentially connected, the fluid-solid separator being installed at an outlet of the simulated wellbore.
  • the radial deformation measuring unit is a plurality of groups and is evenly distributed along the flexible rubber sleeve for measuring the radial deformation of the porous medium in the axial direction.
  • the size of the simulated wellbore is the same as the size of the actual wellbore, and the perforation of the simulated wellbore is also A adapter for changing the size of the perforation is provided, the adapter being detachably mounted on the perforation.
  • the adapter is also provided with a sand control net for simulating sand control and/or a dead plug for simulating a blocked state.
  • the simulated wellbore is also provided with a sensor and an endoscope for directly measuring and observing the sand production situation in the simulated wellbore and the flow in the well.
  • the upper kettle lid and the lower kettle lid and the kettle body of the high-pressure reaction kettle adopt a clamp fixing structure, and the high-pressure reaction vessel can provide a confining pressure of up to 25 MPa through the rubber ring seal.
  • Another object of the present invention is to provide an experimental method for studying the relationship between sand-producing behavior and radial deformation of a porous medium during natural gas hydrate production, by realistically simulating the sediment-producing behavior of the hydrate during the mining process and the gas-liquid solidification in the wellbore
  • the internal flow behavior obtaining sand production and radial deformation data of porous media during hydrate mining, so as to find out the relationship between sand production behavior and radial deformation of porous media, and provide basic experimental data and theoretical basis for hydrate mining technology.
  • the experimental method includes the following steps:
  • the method for controlling the simulated wellbore outlet pressure by the outlet control unit is: first filling the fluid-solid separator of the outlet control unit with water and keeping the pressure in the fluid-solid separator the same as in the high-pressure reactor, and then opening the simulated wellbore outlet valve.
  • the simulated wellbore outlet pressure is controlled by an outlet pressure control valve.
  • the method for real-time metering the gas, water and sand output of the wellbore through the outlet control unit is: firstly separating the sand by the fluid-solid separator, and weighing the weight of the screen sand remover in the fluid-solid separator in real time. Metering the output of sand, the fluid flowing out of the fluid-solid separator is separated into water and gas through a gas-liquid separator, and passed through The electronic balance measures the output of water in real time, and the gas output is measured in real time by the gas flow meter.
  • the measurement of the radial deformation of the porous medium in a circumferential section thereof is realized by a set of radial deformation measuring units disposed on the flexible rubber sleeve, and a plurality of sets of radial deformation measuring units are arranged axially along the flexible rubber sleeve.
  • the measurement of the radial deformation of the plurality of circumferential sections of the porous medium from top to bottom is carried out, thereby obtaining the overall radial deformation of the porous medium, and the combination of the hard connecting rod and the flexible rubber sleeve overcomes the high pressure reactor.
  • the disadvantage of the radial deformation of the porous medium cannot be measured.
  • the export control unit Through the export control unit, the gas, water and sand output of the wellbore are measured in real time, and the gas, water and sand output and the radial deformation of the porous medium are analyzed by the data processing unit to find out the relationship between them. Provide basic experimental data and theoretical basis for hydrate mining technology.
  • the actual size of the simulated wellbore is the same size as the actual wellbore. It can more realistically simulate the sand production problem that may occur during the natural gas hydrate mining process.
  • the adapter is used to adjust the size of the perforation without replacing the simulated wellbore. Under the circumstances, different tests can be realized. By setting a sand-proof net or dead plug on the adapter, it is possible to more realistically simulate the flow problem in the gas-liquid cementing process of the natural gas hydrate mining process.
  • FIG. 1 is a block diagram of an experimental apparatus of the present invention
  • Figure 2 is a schematic structural view of an experimental device of the present invention
  • an experimental device for studying sand production behavior and deformation of porous media during natural gas hydrate production including high pressure reactor, hydrate sample chamber, simulated wellbore 5, deformation measurement unit, and ambient temperature control unit , an exit control unit, an import control unit, and a data processing unit 9.
  • the high pressure reaction kettle is placed in an ambient temperature control unit for providing a confining pressure simulating actual geological conditions, comprising an upper kettle lid 1, a kettle body 2 and a lower kettle lid 3, the upper kettle lid 1 and the lower kettle lid 3
  • the kettle body 2 can be bolted as shown in Fig. 2, or can be clamped, and sealed by a rubber ring, so that the high pressure reactor can provide a confining pressure of up to 25 MPa.
  • the high-pressure reaction kettle is further provided with a flexible rubber sleeve 4, and the flexible rubber sleeve 4, the upper kettle lid 1 and the lower kettle 3 cover a hydrate sample chamber, and the hydrate sample chamber is filled with a porous medium having a particle diameter of less than 100 um. And a hydrate is formed in the porous medium, and the flexible rubber sleeve 4, the kettle body 2, and the upper kettle lid 1 and the lower kettle lid 3 enclose a pressure chamber.
  • the hydrate sample chamber is cylindrical, and the internally filled porous medium is preferably an actual deposit sample.
  • porous medium of the present invention has a particle diameter of less than 100 ⁇ m, and can be visually observed due to hydrate decomposition. Caused by changes in the skeleton of the porous medium.
  • the simulated wellbore 5 is a hollow cylindrical structure with perforations 6 on the side wall, which is located in the hydrate sample cavity to simulate the sand production behavior of the hydrate mining process, the simulation
  • the size 5 of the wellbore is consistent with the size of the actual wellbore, which can more realistically simulate the sand production problems that may occur during gas hydrate mining.
  • the perforation 6 of the simulated wellbore 5 is further provided with a joint 7 for changing the size of the perforation 6, the adapter 7 is detachably mounted on the perforation 6, and the adapter 7 is located at one end of the simulated wellbore 5
  • a sand control net 71 for simulating sand control and/or a dead plug 72 for simulating a clogging state for studying hydrate sand production and sand prevention means and the simulation wellbore 5 is also provided with a sensor and an endoscope ( Not shown in the figure), the sensor is connected to the data processing unit 9, and the endoscope is connected to the data processing unit 9 through the endoscope display 8 to directly measure and observe the sand production in the simulated wellbore 5 and the flow in the well.
  • the deformation measuring unit includes at least one set of radial deformation measuring units including a plurality of hard connecting rods 10 radially distributed along the flexible rubber sleeve 4, the hard connecting rods 10 being stainless steel rods
  • One end is connected to the outer wall of the flexible rubber sleeve 4, the other end is passed through the outer wall of the kettle body 2 of the high-pressure reaction vessel, and is connected to the displacement sensor 11, and the displacement sensor 11 is electrically connected to the data processing unit 9, the displacement sensor 11
  • the amount of radial deformation of the porous medium in the hydrate sample chamber is obtained by measuring the movement of the hard link 10 .
  • the ambient temperature control unit uses a constant temperature water bath 12 for precisely controlling the temperature of the hydrate formation process, the decomposition process, and the sampling process in the high pressure reactor.
  • the inlet control unit injects a set amount of natural gas into the hydrate sample chamber through the booster pump 13, and injects a set amount of water into the hydrate sample chamber through the advection pump 14.
  • the outlet control unit is connected at the exit of the simulated wellbore 5 for controlling the outlet pressure of the simulated wellbore 5 during the hydrate production process, and performing separation of the outlet product and gas-liquid solid data measurement, including sequential fluid-solid separation.
  • the outlet pressure controller 16 and the gas-liquid separator 17 are installed at the outlet of the simulated wellbore 5 so as to prevent the sand produced by the simulated wellbore 5 from clogging the outlet pressure controller 16 and causing the outlet
  • the pressure cannot be controlled, and at the same time, in order to prevent the influence of the fluid-solid separator 15 on the internal pressure of the high-pressure reactor, the fluid-solid separator 15 needs to fill the water to the same pressure as the internal pressure of the high-pressure reactor before the start of the experiment, and then the fluid-solid separator 15 and The high pressure reactor is connected, then the simulated wellbore outlet valve is opened, and the outlet pressure of the simulated wellbore 5 is controlled by the outlet pressure control valve 16.
  • the output from the simulated wellbore 5 is first separated by the fluid-solid separator 15, and the amount of sand is measured in real time by the weight change of the screen remover in the weighing fluid-solid separator 15, and the separation from the fluid-solid is performed.
  • the fluid flowing out of the device 15 is separated into gas and water by the gas-liquid separator 17, and the output of the water is measured in real time through the electronic balance 18, and the gas output is measured in real time by the gas flow meter 19.
  • the sensing elements of the high pressure reactor, the deformation measuring unit, the ambient temperature control unit, the outlet control unit, and the inlet control unit are all electrically connected to the data processing unit 9 through signal lines, and the data processing unit 9 is configured to collect and process the sensing elements. Inductive signal.
  • An experimental method for using the above experimental apparatus for studying sand production behavior and deformation of a porous medium during natural gas hydrate production comprising the following steps:
  • the method for controlling the outlet pressure of the simulated wellbore 5 by the outlet control unit is: first filling the fluid-solid separator 15 of the outlet control unit with water and keeping the pressure in the fluid-solid separator 15 the same as in the high-pressure reactor, and then opening the simulation
  • the wellbore 5 outlet valve controls the outlet pressure of the simulated wellbore 5 through an outlet pressure control valve 16.
  • the method for metering the gas, water and sand output in real time through the outlet control unit is: first separating the sand by the fluid-solid separator 15, and measuring the weight change of the screen sand remover in the weighing fluid-solid separator 15 in real time.
  • the output of sand, the fluid flowing out of the fluid-solid separator 15 is separated into water and gas through the gas-liquid separator 17, and the output of the water is measured in real time through the electronic balance 18, and the gas output is measured in real time through the gas flow meter 19. the amount.
  • the actual size of the simulated wellbore is the same size as the actual wellbore, which can more realistically simulate the sand production problem that may occur during the natural gas hydrate mining process.
  • the adapter is used to adjust the size of the perforation without replacing the simulated wellbore. In the case of the case, different tests can be realized. By setting a sand control net or a dead plug on the adapter, it is possible to more realistically simulate the flow problem in the gas-liquid cementing process of the natural gas hydrate production process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Remote Sensing (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

一种研究天然气水合物开采过程中产沙行为及多孔介质形变的实验装置,包括高压反应釜、水合物样品腔、模拟井筒(5)、形变测量单元、环境温度控制单元、出口控制单元、进口控制单元以及数据处理单元(9)。还公开了一种采用该实验装置进行实验的方法。该实验装置及方法能够便捷地测量水合物分解过程中多孔介质的变形情况和模拟井筒内的出砂情况,能够模拟天然气水合物开采过程产沙问题,能够模拟天然气水合物开采过程气液固井内流动问题,可以准确地获得天然气水合物分解过程中的气固液三相实时产出量,操作简单,易于控制。

Description

一种研究天然气水合物开采过程中产沙行为与多孔介质径向形变的关系的实验装置及方法 技术领域
本发明涉及天然气水合物开采领域,具体涉及一种研究天然气水合物开采过程中产沙行为与多孔介质径向形变的关系的实验装置及方法。
背景技术
天然气水合物(Natural gas hydrate,NGH)是一种在低温高压下由天然气和水生成的一种笼形结晶化合物,其外形如冰雪状,遇火既燃,俗称“可燃冰”。自然界的天然气水合物中的天然气成分主要是甲烷(>90%),在常温常压下1m3的天然气水合物分解释放约160m3天然气,所以天然气水合物具有极高的能量密度。自然界中的天然气水合物主要存在于海洋大陆架的沉积物层和陆地冻土带。1964年,科学家在西伯利亚冻土带首次发现了自然存在的天然气水合物,不久之后,在黑海也发现了赋存于海底沉积物中的天然气水合物。到上世纪90年代,业内学者一致认为,全球天然气水合物所储藏的能量超过所有石油、煤及天然气所储藏能量的总和。在过去的20年中,全球范围内展开包括深海钻探计划(DSDP)、大洋钻探计划(ODP)和综合大洋钻探计划(IODP),对天然气水合物的矿藏资源进行调研。目前全球天然气水合物总量的估计约1015~1018标准立方米,所以,天然气水合物被认为是21世纪石油天然气最具潜力的替代能源。资源调查显示,我国南海、东海陆坡-冲绳海、青藏高原冻土带都蕴藏着天然气水合物。因此,研究出天然气水合物有效、快速、经济的开采方法,为大规模开采天然气水合物提供实验基础和依据,是缓解与日俱增的能源压力的有效途径。
天然气水合物开采技术是实现天然气水合物资源开发利用的关键环节之一。与常规化石能源不同,天然气水合物以固体形态存在于多孔介质中。其开采的基本思路是:通过改变天然气水合物稳定存在的温-压环境,即水合物相平衡条件,造成固体水合物在储层原位分解成天然气和水后再将天然气采出。据此,科学家提出了几种常规开采技术,如:降压法、热激法以及化学试剂法。由于水合物矿藏地质环境复杂,赋存形式多样,并且开采过程包含了复杂的天然气-水-沉积物 -水合物-冰组成的多相体系的相变过程及多相渗流过程,水合物开采过程中伴随水合物分解的多孔介质骨架变化是目前水合物开采中所遇到的最大问题之一。由于固态赋存的天然气水合物变为流动的水和气,原先的水合物矿藏地质特性会发生巨大变化,例如渗透率、孔隙度、力学性质和孔隙压力都发生强烈变化,从而导致多孔介质变形,引起气固液三相混合流动场,最终可能导致地层变形。所以研究天然气水合物分解过程中产沙对多孔介质变形的影响,对于水合物开采技术是否能够顺利完成以及水合物开采技术的安全性有着重要的作用。
当前世界上较为先进的天然气水合物开采研究,其研究重点在不同的开采方法对水合物相变分解的效果,以及水合物分解过程中热量的消耗传递,对于真实条件下,水合物分解过程的复杂相变渗流机理的认识还处于模糊的状态。在水合物开采模拟实验中几乎全部忽略水合物开采过程中产沙与多孔介质形变之间的关系,在以往的模拟实验中利用大颗粒组成多孔介质(粒径>100um),令水合物分解过程中的多孔介质骨架无法变化,但实际水合物矿藏中的多孔介质粒径是由0.01um的微颗粒至500um的大颗粒共同组成的,并且在水合物开采过程中产沙和形变是不可避免的。尤其是在井周围的多孔介质径向形变,可能是导致井壁坍塌和产沙的主要因素,而目前缺乏有效的实验手段对水合物分解引起的径向形变进行测量。目前天然气水合物开采实验装置已趋于更精确测量、贴近野外实际的样式发展,但具体工程实施仍面临着巨大的挑战,现有实验室装置研究成果尚不能完全满足安全经济的实地水合物开采技术的需要,需进一步研究开发可实现更精确反演海底实际水合物藏开采变化和开采设备运行情况的先进实验装备和平台,为实现安全可靠开采奠定坚实的基础。
发明内容
针对现有技术的上述缺陷,本发明的目的之一在于提供一种研究天然气水合物开采过程中产沙行为与多孔介质径向形变的关系的实验装置,通过搭载真实尺寸的开采井筒,以及可更换的射孔转接头,真实模拟水合物在开采过程中的产沙行为以及气液固在井筒内的流动行为,获取水合物开采过程中产沙以及多孔介质径向形变数据,从而找出产沙行为与多孔介质径向形变之间的关系,为水合物开采技术提供基础实验数据及理论依据。
为实现上述目的,本发明的技术方案是:
一种研究天然气水合物开采过程中产沙行为与多孔介质径向形变的关系的实验装置,包括高压反应釜、水合物样品腔、模拟井筒、形变测量单元、环境温度控制单元、出口控制单元、进口控制单元以及数据处理单元;
所述高压反应釜置于环境温度控制单元中,用于提供模拟实际地质条件的围压,其包括上釜盖、釜体和下釜盖;
所述高压反应釜内还设有柔性橡胶套,所述柔性橡胶套、上釜盖和下釜盖围成水合物样品腔,所述水合物样品腔填充有粒径小于100um多孔介质,所述柔性橡胶套、釜体以及上釜盖和下釜盖之间围成围压腔;
所述模拟井筒为侧壁设有射孔的中空圆柱结构,其位于水合物样品腔内,用以模拟水合物开采过程的产沙行为;
所述形变测量单元包括一组径向形变测量单元,所述径向形变单元包括多个沿柔性橡胶套径向均布的硬连接杆,所述硬连接杆的一端与柔性橡胶套外壁连接,所述硬连接杆的另一端穿出高压反应釜釜体外壁,并与位移传感器连接,所述位移传感器通过测量硬连接杆的移动以获取水合物样品腔中多孔介质的径向变形量;
所述环境温度控制单元用于控制高压反应釜中的水合物生成过程、分解过程以及取样过程的温度;
所述进口控制单元用于向水合物样品腔中注入水和天然气;
所述出口控制单元用于控制水合物开采过程中模拟井筒的出口压力,并进行出口产出物的分离及数据计量;
所述高压反应釜、形变测量单元、环境温度控制单元、出口控制单元、进口控制单元的感应元件均通过信号线与数据处理单元电连接,该数据处理单元用以采集和处理各感应元件的感应信号。
所述出口控制单元包括依次连通的流固分离器、出口压力控制器和气液分离器,所述流固分离器安装在模拟井筒的出口处。
所述径向形变测量单元为多组,且沿柔性橡胶套轴向均布,用于测量多孔介质在轴向方向的径向变形情况。
所述模拟井筒的尺寸与实际钻井井筒的尺寸一致,所述模拟井筒的射孔上还 设有用于改变射孔大小的转接头,所述转接头可拆卸地安装在射孔上。
所述转接头上还设置有用于模拟防沙的防沙网或/和用于模拟堵塞状态的死堵。
所述模拟井筒内还设置有传感器和内窥镜,用于直接测量和观察模拟井筒内产沙情况以及井内流动情况。
所述高压反应釜的上釜盖和下釜盖与釜体均采用卡箍固定结构,通过橡胶圈密封使得高压反应釜可提供最高25Mpa的围压。
本发明的另一目的在于提供一种研究天然气水合物开采过程中产沙行为与多孔介质径向形变的关系的实验方法,通过真实模拟水合物在开采过程中的产沙行为以及气液固在井筒内的流动行为,获取水合物开采过程中产沙以及多孔介质径向形变数据,从而找出产沙行为与多孔介质径向形变之间的关系,为水合物开采技术提供基础实验数据及理论依据,该实验方法包括以下步骤:
S1、将高压反应釜置于环境温度控制单元中,将模拟井筒置于水合物样品腔中,在水合物样品腔内填充粒径小于100um的多孔介质;
S2、设定实验环境温度,设定高压反应釜的实验围压,通过进口控制单元向水合物样品腔中注入水和天然气,生成天然气水合物样品;
S3、当天然气水合物生成完成后,保持高压反应釜围压不变,通过环境温度控制单元控制分解温度,对天然气水合物样品进行分解;
S4、通过出口控制单元控制模拟井筒出口压力,通过出口控制单元实时计量模拟井筒的气、水、沙产出量;
S5、通过形变测量单元测量水合物样品腔中多孔介质的变形量;
S6、分析计算多孔介质的变形量、模拟井筒的产气量、产水量、产沙量,获取水合物开采过程中产沙行为与多孔介质径向形变的关系。
所述通过出口控制单元控制模拟井筒出口压力的方法是:首先将出口控制单元的流固分离器中注满水并保持流固分离器中压力与高压反应釜内相同,然后打开模拟井筒出口阀门,通过出口压力控制阀控制模拟井筒出口压力。
所述通过出口控制单元实时计量模拟井筒的气、水、沙产出量的方法是:首先通过流固分离器将沙分离,称量流固分离器中的筛网除砂器的重量变化实时计量沙的产出量,从流固分离器流出的流体再经过气液分离器分离成水和气,通过 电子天平实时计量水的产出量,通过气体流量计实时计量气的产出量。
与现有技术相比,本发明的有益效果是:
1、通过设置在柔性橡胶套上的一组径向形变测量单元,实现对多孔介质在其一圆周截面的径向形变的测量,通过沿柔性橡胶套轴向设置多组径向形变测量单元,实现对多孔介质从上到下的多个圆周截面的径向形变的测量,从而得出多孔介质整体径向形变状况,采用硬连接杆和柔性橡胶套相结合的测量方式,克服了高压反应釜内无法测量多孔介质径向形变的缺点,传统测量方式通过轴向活塞杆移动仅能测量轴向形变,而本发明能够准确测量天然气水合物在开采过程中多孔介质的径向形变,并且柔性外套与硬连接杆连接的测量方式不会影响多孔介质本身的形变和产沙的过程,具有结构简单,测量效果好的优点。
2、通过出口控制单元实时计量模拟井筒的气、水、沙产出量,通过数据处理单元对气、水、沙产出量以及多孔介质径向形变量进行分析,找出它们之间的关系,为水合物开采技术提供基础实验数据及理论依据。
3、采用真实尺寸的模拟井筒,其尺寸大小与实际井筒一致,能够更加真实的模拟天然气水合物开采过程中可能出现的产沙问题,采用转接头调节射孔的大小,在不更换模拟井筒的情况下,就能实现不同的测试,通过在转接头上设置防沙网或死堵,能够更加真实的模拟天然气水合物开采过程气液固井内流动问题。
4、通过在模拟井筒内设置传感器和内窥镜,可直接测量和观察模拟井筒内产沙情况以及井内流动情况。
附图说明
图1是本发明的实验装置的方框图;
图2是本发明的实验装置结构示意图;
附图标记说明:1-上釜盖;2-釜体;3-下釜盖;4-柔性橡胶套;5-模拟井筒;6-射孔;7-转接头;71-防沙网;72-死堵;8-内窥镜显示屏;9-数据处理单元;10-硬连接杆;11-位移传感器;12-恒温水浴;13-增压泵;14-平流泵;15-流固分离器;16-出口压力控制器;17-气液分离器;18-电子天平;19-气体流量计。
具体实施方式
下面结合附图和具体实施方式对本发明的内容做进一步详细说明。
实施例:
如图1和图2所示,一种研究天然气水合物开采过程中产沙行为及多孔介质形变的实验装置,包括高压反应釜、水合物样品腔、模拟井筒5、形变测量单元、环境温度控制单元、出口控制单元、进口控制单元以及数据处理单元9。
所述高压反应釜置于环境温度控制单元中,用于提供模拟实际地质条件的围压,其包括上釜盖1、釜体2和下釜盖3,所述上釜盖1和下釜盖3与釜体2可以采用如图2的螺栓固定方式,也可采用卡箍固定结构,通过橡胶圈密封,使得高压反应釜能够提供最高25Mpa的围压。
所述高压反应釜内还设有柔性橡胶套4,所述柔性橡胶套4、上釜盖1和下釜3盖围成水合物样品腔,水合物样品腔内部填充有粒径小于100um多孔介质,并在多孔介质中生成水合物,所述柔性橡胶套4、釜体2以及上釜盖1和下釜盖3之间围成围压腔。本实施例中,水合物样品腔为圆柱形,内部填充的多孔介质优选实际沉积物样品。在以往的模拟实验中利用大颗粒组成多孔介质(粒径>100um),令水合物分解过程中的多孔介质骨架无法变化,本发明的多孔介质粒径小于100um,能够直观观察到由于水合物分解引起的多孔介质骨架变化。
如图2和图3所示,所述模拟井筒5为侧壁设有射孔6的中空圆柱结构,其位于水合物样品腔内,用以模拟水合物开采过程的产沙行为,所述模拟井筒的尺寸5与实际钻井井筒的尺寸一致,能够更加真实的模拟天然气水合物开采过程中可能出现的产沙问题。所述模拟井筒5的射孔6上还设有用于改变射孔6大小的转接头7,所述转接头7可拆卸地安装在射孔6上,转接头7位于模拟井筒5外部的一端设置有用于模拟防沙的防沙网71或/和用于模拟堵塞状态的死堵72,用以研究水合物出沙及防沙手段,所述模拟井筒5内还设置有传感器和内窥镜(图中未示出),传感器与数据处理单元9连接,内窥镜通过内窥镜显示屏8与数据处理单元9连接,可直接测量和观察模拟井筒5内产沙情况以及井内流动情况。
所述形变测量单元包括至少一组径向形变测量单元,该径向形变测量单元包括多个沿柔性橡胶套4径向均布的硬连接杆10,所述硬连接杆10为不锈钢杆,其一端与柔性橡胶套4外壁连接,另一端穿出高压反应釜的釜体2外壁,并与位移传感器11连接,位移传感器11与数据处理单元9电连接,所述位移传感器 11通过测量硬连接杆10的移动以获取水合物样品腔中多孔介质的径向变形量。
径向形变测量单元能够对柔性橡胶套4的一个圆周截面的径向形变进行测量,本实施例的径向形变测量单元包括2套硬连接杆10和位移传感器11,其分别设置在柔性橡胶套4的左右两侧,当然为了测量的更加准确,还可以设置为4套或更多套。为了对整个柔性橡胶套4内的多孔介质的径向形变进行测量,本实施例沿柔性橡胶套4轴向从上往下依次设置有4组径向形变测量单元,从而能够精确测量水合物样品腔中的多孔介质整体变形情况。
所述环境温度控制单元采用恒温水浴12,用于精准控制高压反应釜中的水合物生成过程、分解过程以及取样过程的温度。
所述进口控制单元通过增压泵13向水合物样品腔中注入设定量的天然气,通过平流泵14向水合物样品腔中注入设定量的水。
所述出口控制单元连接在模拟井筒5出口处,用于控制水合物开采过程中模拟井筒5的出口压力,并进行出口产出物的分离及气液固数据计量,包括依次连通的流固分离器15、出口压力控制器16和气液分离器17,流固分离器15安装在模拟井筒5的出口处,这样设计目的是防止模拟井筒5产出的沙将出口压力控制器16堵塞,导致出口压力无法控制,同时为防止流固分离器15对高压反应釜内部压力的影响,流固分离器15在实验开始前需要填充水达到与高压反应釜内部压力相同,再将流固分离器15与高压反应釜连通,然后打开模拟井筒出口阀门,通过出口压力控制阀16控制模拟井筒5出口压力。
从模拟井筒5出来的产出物首先通过流固分离器15将沙分离,通过称量流固分离器15中的筛网除砂器的重量变化实时计量沙的产出量,从流固分离器15流出的流体再通过气液分离器17分离成气和水,再分别通过电子天平18实时计量水的产出量,通过气体流量计19实时计量气的产出量。
所述高压反应釜、形变测量单元、环境温度控制单元、出口控制单元、进口控制单元的感应元件均通过信号线与数据处理单元9电连接,该数据处理单元9用以采集和处理各感应元件的感应信号。
本发明实施例的一种采用上述研究天然气水合物开采过程中产沙行为及多孔介质形变的实验装置的实验方法,包括以下步骤:
S1、将高压反应釜置于环境温度控制单元中,将模拟井筒5置于水合物样品 腔中,在水合物样品腔内填充粒径小于100um的多孔介质;
S2、设定实验环境温度,设定高压反应釜的实验围压,通过进口控制单元向水合物样品腔中注入水和天然气,生成天然气水合物样品;
S3、当天然气水合物生成完成后,保持高压反应釜围压不变,通过环境温度控制单元控制分解温度,对天然气水合物样品进行分解;
S4、通过出口控制单元控制模拟井筒5出口压力,通过出口控制单元实时计量模拟井筒5的气、水、沙产出量;
S5、通过形变测量单元测量水合物样品腔中多孔介质的变形量;
S6、分析计算多孔介质的变形量、模拟井筒的产气量、产水量、产沙量,获取水合物开采过程中产沙行为与多孔介质形变的关系。
所述通过出口控制单元控制模拟井筒5出口压力的方法是:首先将出口控制单元的流固分离器15中注满水并保持流固分离器15中压力与高压反应釜内相同,然后打开模拟井筒5出口阀门,通过出口压力控制阀16控制模拟井筒5的出口压力。
所述通过出口控制单元实时计量气、水、沙产出量的方法是:首先通过流固分离器15将沙分离,称量流固分离器15中的筛网除砂器的重量变化实时计量沙的产出量,从流固分离器15流出的流体再经过气液分离器17分离成水和气,通过电子天平18实时计量水的产出量,通过气体流量计19实时计量气的产出量。
本发明所提供的研究天然气水合物开采过程中产沙行为与多孔介质径向形变的实验装置,与现有的实验装置相比,具有明显的优势:
(1)通过设置在柔性橡胶套上的一组径向形变测量单元,实现对多孔介质在其一圆周截面的径向形变的测量,通过沿柔性橡胶套轴向设置的多组径向形变测量单元,实现对多孔介质从上到下的多个圆周截面的径向形变的测量,从而得出多孔介质整体径向形变状况,采用硬连接杆和柔性橡胶套相结合的测量方式,能够准确测量天然气水合物在开采过程中多孔介质的径向形变,具有结构简单,测量效果好的优点。
(2)通过出口控制单元实时计量模拟井筒的气、水、沙产出量,通过数据处理单元对气、水、沙产出量以及多孔介质径向形变量进行分析,找出它们之间的关系,为水合物开采技术提供基础实验数据及理论依据。
(3)采用真实尺寸的模拟井筒,其尺寸大小与实际井筒一致,能够更加真实的模拟天然气水合物开采过程中可能出现的产沙问题,采用转接头调节射孔的大小,在不更换模拟井筒的情况下,就能实现不同的测试,通过在转接头上设置防沙网或死堵,能够更加真实的模拟天然气水合物开采过程气液固井内流动问题。
(4)通过在模拟井筒内设置传感器和内窥镜,可直接测量和观察模拟井筒内产沙情况以及井内流动情况。
上述实施例只是为了说明本发明的技术构思及特点,其目的是在于让本领域内的普通技术人员能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡是根据本发明内容的实质所做出的等效的变化或修饰,都应涵盖在本发明的保护范围内。

Claims (10)

  1. 一种研究天然气水合物开采过程中产沙行为与多孔介质径向形变的关系的实验装置,其特征在于,包括高压反应釜、水合物样品腔、模拟井筒、形变测量单元、环境温度控制单元、出口控制单元、进口控制单元以及数据处理单元;
    所述高压反应釜置于环境温度控制单元中,用于提供模拟实际地质条件的围压,其包括上釜盖、釜体和下釜盖;
    所述高压反应釜内还设有柔性橡胶套,所述柔性橡胶套、上釜盖和下釜盖围成水合物样品腔,所述水合物样品腔填充有粒径小于100um多孔介质,所述柔性橡胶套、釜体以及上釜盖和下釜盖之间围成围压腔;
    所述模拟井筒为侧壁设有射孔的中空圆柱结构,其位于水合物样品腔内,用以模拟水合物开采过程的产沙行为;
    所述形变测量单元包括一组径向形变测量单元,所述径向形变单元包括多个沿柔性橡胶套径向均布的硬连接杆,所述硬连接杆的一端与柔性橡胶套外壁连接,所述硬连接杆的另一端穿出高压反应釜釜体外壁,并与位移传感器连接,所述位移传感器通过测量硬连接杆的移动以获取水合物样品腔中多孔介质的径向变形量;
    所述环境温度控制单元用于控制高压反应釜中的水合物生成过程、分解过程以及取样过程的温度;
    所述进口控制单元用于向水合物样品腔中注入水和天然气;
    所述出口控制单元用于控制水合物开采过程中模拟井筒的出口压力,并进行出口产出物的分离及数据计量;
    所述高压反应釜、形变测量单元、环境温度控制单元、出口控制单元、进口控制单元的感应元件均通过信号线与数据处理单元电连接,该数据处理单元用以采集和处理各感应元件的感应信号。
  2. 根据权利要求1所述的研究天然气水合物开采过程中产沙行为与多孔介质径向形变的关系的实验装置,其特征在于,所述出口控制单元包括依次连通的流固分离器、出口压力控制器和气液分离器,所述流固分离器安装在模拟井筒的出口处。
  3. 根据权利要求2所述的研究天然气水合物开采过程中产沙行为与多孔介质径向形变的关系的实验装置,其特征在于,所述径向形变测量单元为多组,且沿柔性橡胶套轴向均布,用于测量多孔介质在轴向方向的径向变形情况。
  4. 根据权利要求3所述的研究天然气水合物开采过程中产沙行为与多孔介质径向形变的关系的实验装置,其特征在于,所述模拟井筒的尺寸与实际钻井井筒的尺寸一致,所述模拟井筒的射孔上还设有用于改变射孔大小的转接头,所述转接头可拆卸地安装在射孔上。
  5. 根据权利要求4所述的研究天然气水合物开采过程中产沙行为与多孔介质径向形变的关系的实验装置,所述转接头上还设置有用于模拟防沙的防沙网或/和用于模拟堵塞状态的死堵。
  6. 根据权利要求1-5任一所述的研究天然气水合物开采过程中产沙行为与多孔介质径向形变的关系的实验装置,其特征在于,所述模拟井筒内还设置有传感器和内窥镜,用于直接测量和观察模拟井筒内产沙情况以及井内流动情况。
  7. 根据权利要求6所述的研究天然气水合物开采过程中产沙行为与多孔介质径向形变的关系的实验装置,其特征在于,所述高压反应釜的上釜盖和下釜盖与釜体均采用卡箍固定结构,通过橡胶圈密封使得高压反应釜可提供最高25Mpa的围压。
  8. 一种研究天然气水合物开采过程中产沙行为与多孔介质径向形变的关系的实验方法,采用权利要求1-7之一所述的实验装置,其特征在于:包括以下步骤:
    S1、将高压反应釜置于环境温度控制单元中,将模拟井筒置于水合物样品腔中,在水合物样品腔内填充粒径小于100um的多孔介质;
    S2、设定实验环境温度,设定高压反应釜的实验围压,通过进口控制单元向水合物样品腔中注入水和天然气,生成天然气水合物样品;
    S3、当天然气水合物生成完成后,保持高压反应釜围压不变,通过环境温度控制单元控制分解温度,对天然气水合物样品进行分解;
    S4、通过出口控制单元控制模拟井筒出口压力,通过出口控制单元实时计量模拟井筒的气、水、沙产出量;
    S5、通过形变测量单元测量水合物样品腔中多孔介质的变形量;
    S6、分析计算多孔介质的变形量、模拟井筒的产气量、产水量、产沙量,获取水合物开采过程中产沙行为与多孔介质径向形变的关系。
  9. 根据权利要求7所述的实验方法,其特征在于,所述通过出口控制单元控制模拟井筒出口压力的方法是:首先将出口控制单元的流固分离器中注满水并保持流固分离器中压力与高压反应釜内相同,然后打开模拟井筒出口阀门,通过出口压力控制阀控制模拟井筒出口压力。
  10. 根据权利要求7所述的实验方法,其特征在于,所述通过出口控制单元实时计量模拟井筒的气、水、沙产出量的方法是:首先通过流固分离器将沙分离,称量流固分离器中的筛网除砂器的重量变化实时计量沙的产出量,从流固分离器流出的流体再经过气液分离器分离成水和气,通过电子天平实时计量水的产出量,通过气体流量计实时计量气的产出量。
PCT/CN2016/111758 2016-12-20 2016-12-23 一种研究天然气水合物开采过程中产沙行为与多孔介质径向形变的关系的实验装置及方法 WO2018112902A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611186227.5A CN107045054B (zh) 2016-12-20 2016-12-20 一种研究天然气水合物开采过程中产沙行为与多孔介质径向形变的关系的实验装置及方法
CN201611186227.5 2016-12-20

Publications (1)

Publication Number Publication Date
WO2018112902A1 true WO2018112902A1 (zh) 2018-06-28

Family

ID=59543282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/111758 WO2018112902A1 (zh) 2016-12-20 2016-12-23 一种研究天然气水合物开采过程中产沙行为与多孔介质径向形变的关系的实验装置及方法

Country Status (3)

Country Link
US (1) US10408728B2 (zh)
CN (1) CN107045054B (zh)
WO (1) WO2018112902A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112505298A (zh) * 2020-12-01 2021-03-16 西南石油大学 一种致密油气储产性能参数原位测试方法
CN115201246A (zh) * 2022-07-29 2022-10-18 青岛海洋地质研究所 水合物分解核磁共振实验低温控制装置及实验方法

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107860569B (zh) * 2017-10-31 2019-07-02 中国石油大学(华东) 天然气水合物开采过程中防砂筛管堵塞特性的评价实验装置及方法
CN107842342B (zh) * 2017-11-30 2023-06-13 青岛海洋地质研究所 现场尺度水合物开采井井筒流动安全保障模拟实验***及方法
CN107795303B (zh) * 2017-11-30 2023-08-08 青岛海洋地质研究所 水合物开采井管内砾石充填仿真***及方法
CN108035700B (zh) * 2017-11-30 2023-04-18 青岛海洋地质研究所 海洋天然气水合物生产井井筒携砂规律仿真***及方法
CN108316913B (zh) * 2018-01-08 2021-06-01 中国海洋石油集团有限公司 海洋天然气水合物藏开采过程出砂模拟测定装置及方法
US11187691B2 (en) * 2018-03-05 2021-11-30 Zhejiang University Pressure-control temperature-control hypergravity experimental device for simulating deep-sea seabed responses
CN109681164B (zh) * 2018-07-30 2021-07-23 东北石油大学 一种模拟套损过程的装置
CN108918392A (zh) * 2018-08-20 2018-11-30 中国石油天然气股份有限公司 一种含水气藏储层产水规律模拟试验装置和方法
CN109599021B (zh) * 2018-11-02 2019-09-17 广州海洋地质调查局 一种地质储层径向流模拟装置
CN109372499B (zh) * 2018-11-02 2023-09-22 广州海洋地质调查局 一种地质储层径向流模拟***
CN109538170A (zh) * 2019-01-21 2019-03-29 吉林大学 射流法原位开采天然气水合物的加压试验装置与方法
CN109682945B (zh) * 2019-01-28 2023-08-29 中国地质大学(武汉) 低温高压条件下水合物物性联测装置及其测试方法
CN109707377B (zh) * 2019-01-28 2023-06-06 中国地质大学(武汉) 水合物开采储层响应与出砂综合模拟实验***及其方法
CN109696360B (zh) * 2019-01-28 2023-10-31 中国地质大学(武汉) 水合物开采储层响应与出砂模拟多功能反应釜
CN109752256A (zh) * 2019-02-20 2019-05-14 中国地质大学(武汉) 测量天然气水合物沉积物动应变的动三轴实验装置及方法
CN110273679B (zh) * 2019-05-17 2023-03-24 江苏联友科研仪器有限公司 一种水合物开发分层物理模拟实验装置
CN110237780B (zh) * 2019-05-23 2024-01-26 兰州理工大学 一种多用途环境友好型水合物形成***
CN110286206B (zh) * 2019-06-13 2024-03-22 中国地质大学(武汉) 一种评价油气钻井中水合物动态形成的实验装置及方法
CN111691881B (zh) * 2020-07-03 2023-12-22 中国石油大学(北京) 含水合物地层受热沉降模拟实验装置及方法
CN111679061B (zh) * 2020-07-03 2024-04-05 中国石油大学(北京) 冻土地层融化沉降试验模拟装置及方法
CN111911133A (zh) * 2020-07-07 2020-11-10 中国石油大学(华东) 一种水合物加热开采热效率测试实验装置
CN112031745B (zh) * 2020-08-06 2021-08-10 中国科学院广州能源研究所 一种用于观察天然气水合物生成特性的装置及方法
CN111997595A (zh) * 2020-08-06 2020-11-27 中国科学院广州能源研究所 一种天然气水合物地质分层装置和方法
CN111997568B (zh) * 2020-08-06 2021-07-30 中国科学院广州能源研究所 一种天然气水合物全尺寸开采模拟井装置及实验方法
CN111948370B (zh) * 2020-08-06 2021-06-08 中国科学院广州能源研究所 用于天然气水合物实验***的流场测量装置及测量方法
CN112034135B (zh) * 2020-08-06 2021-06-22 中国科学院广州能源研究所 一种天然气水合物分解地层形变测量装置
CN112031714B (zh) * 2020-08-06 2021-07-27 中国科学院广州能源研究所 一种大尺度全尺寸开采井三维综合试验开采***
CN112067785B (zh) * 2020-08-07 2021-05-14 中国科学院广州能源研究所 可拆分式天然气水合物模拟出砂防砂试验反应装置及方法
CN111980673B (zh) * 2020-08-28 2023-12-05 中国石油大学(华东) 模拟水合物开采引起海洋能源土-井耦合作用的测试装置和测试方法
CN112504544B (zh) * 2020-09-01 2021-09-03 西安石油大学 孔隙压力连续分布测定装置、方法及拉应力定量评价方法
CN112082835A (zh) * 2020-09-09 2020-12-15 中国科学院地质与地球物理研究所 可控温度压力环境下天然气水合物试样的制备装置及方法
CN114509532A (zh) 2020-11-16 2022-05-17 香港科技大学 离心机能量收集腔室、离心机能量收集腔室***、以及模拟气体制取采集的方法
CN113898337A (zh) * 2021-09-24 2022-01-07 中国矿业大学 一种水合物开采井筒与沉积层相互作用模型及其使用方法
CN113776925B (zh) * 2021-09-26 2022-05-27 中国科学院武汉岩土力学研究所 含天然气水合物地层自钻式旁压模拟测试装置与方法
CN113959396B (zh) * 2021-10-08 2024-01-02 华能澜沧江水电股份有限公司 一种环箍式三轴试样局部轴向-径向变形的测量装置及使用方法
CN113959923A (zh) * 2021-10-25 2022-01-21 中国地质调查局油气资源调查中心 天然气水合物未固结储层多孔介质骨架强化材料评价方法
CN114092489B (zh) * 2021-11-02 2023-08-29 清华大学 多孔介质渗流通道提取、模型训练方法、装置及设备
CN114251085B (zh) * 2021-11-30 2023-01-20 中国石油天然气股份有限公司 一种模拟井筒坍塌沉积物密封能力评价方法及装置
CN114618379A (zh) * 2022-04-12 2022-06-14 中国海洋石油集团有限公司 一种模拟水合物成藏及开采的实验模型及其实验方法
CN114878407B (zh) * 2022-05-07 2024-06-11 青岛海洋地质研究所 天然气水合物分解区孔隙尺度流场响应实验装置及方法
CN115522920B (zh) * 2022-11-24 2023-02-10 西南石油大学 一种测量致密砂岩气藏气水双层射孔开采的试验装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4589276A (en) * 1984-12-12 1986-05-20 Mobil Oil Corporation Method and apparatus for determining effectiveness of foamant in porous media
CN104453794A (zh) * 2014-11-20 2015-03-25 中国科学院广州能源研究所 天然气水合物开采全过程模拟实验***及模拟方法
CN105044284A (zh) * 2015-07-10 2015-11-11 中国科学院广州能源研究所 一种研究天然气水合物分解过程中多孔介质骨架变化的实验装置及实验方法
CN105403672A (zh) * 2015-11-25 2016-03-16 中国科学院广州能源研究所 模拟天然气水合物开采过程地层形变的实验装置和方法
KR101621504B1 (ko) * 2015-11-10 2016-05-16 한국지질자원연구원 가스 하이드레이트 생산에 의한 사질생산 모사장치 및 모사방법
CN105699247A (zh) * 2016-03-04 2016-06-22 西南石油大学 一种天然气水合物合成与分解实验方法及实验***

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5226310A (en) * 1990-08-31 1993-07-13 Exxon Production Research Company Methods and apparatuses for measurement of the strengths, pore pressures, and mechanical properties of low permeability geologic materials
US5243855A (en) * 1990-08-31 1993-09-14 Exxon Production Research Company Apparatuses and methods for measuring ultrasonic velocities in materials
US5275063A (en) * 1992-07-27 1994-01-04 Exxon Production Research Company Measurement of hydration behavior of geologic materials
US5325723A (en) * 1992-12-04 1994-07-05 Halliburton Company Core sample test method and apparatus
US6055874A (en) * 1999-02-02 2000-05-02 Halliburton Energy Services, Inc. Apparatus and method for simulating well bore conditions
US7089816B2 (en) * 2004-01-13 2006-08-15 Halliburton Energy Services, Inc. Method and apparatus for testing cement slurries
CN102109513B (zh) * 2010-12-23 2014-01-08 中国科学院广州能源研究所 一种天然气水合物三维生成开采物性检测实验装置
CN103257079A (zh) * 2013-04-28 2013-08-21 中国科学院广州能源研究所 天然气水合物开采地层稳定性三维模拟装置
CN104405345B (zh) * 2014-10-20 2017-01-18 中国科学院广州能源研究所 一种可渗透边界层天然气水合物开采模拟实验装置
CN104500031B (zh) * 2014-11-20 2017-03-29 中国科学院广州能源研究所 天然气水合物地层钻井模拟装置
CN205015491U (zh) * 2015-09-23 2016-02-03 中国石油大学(华东) 一种多孔介质中气水合物模拟实验测试***
CN105259018B (zh) * 2015-11-05 2018-04-03 西南石油大学 一种天然气水合物合成与分解多参数测试装置
CN105301200B (zh) * 2015-11-12 2017-04-26 中国科学院广州能源研究所 一种天然气水合物开采出砂特性测试装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4589276A (en) * 1984-12-12 1986-05-20 Mobil Oil Corporation Method and apparatus for determining effectiveness of foamant in porous media
CN104453794A (zh) * 2014-11-20 2015-03-25 中国科学院广州能源研究所 天然气水合物开采全过程模拟实验***及模拟方法
CN105044284A (zh) * 2015-07-10 2015-11-11 中国科学院广州能源研究所 一种研究天然气水合物分解过程中多孔介质骨架变化的实验装置及实验方法
KR101621504B1 (ko) * 2015-11-10 2016-05-16 한국지질자원연구원 가스 하이드레이트 생산에 의한 사질생산 모사장치 및 모사방법
CN105403672A (zh) * 2015-11-25 2016-03-16 中国科学院广州能源研究所 模拟天然气水合物开采过程地层形变的实验装置和方法
CN105699247A (zh) * 2016-03-04 2016-06-22 西南石油大学 一种天然气水合物合成与分解实验方法及实验***

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112505298A (zh) * 2020-12-01 2021-03-16 西南石油大学 一种致密油气储产性能参数原位测试方法
CN112505298B (zh) * 2020-12-01 2022-02-15 西南石油大学 一种致密油气储产性能参数原位测试方法
CN115201246A (zh) * 2022-07-29 2022-10-18 青岛海洋地质研究所 水合物分解核磁共振实验低温控制装置及实验方法
CN115201246B (zh) * 2022-07-29 2024-04-12 青岛海洋地质研究所 水合物分解核磁共振实验低温控制装置及实验方法

Also Published As

Publication number Publication date
US10408728B2 (en) 2019-09-10
US20180172574A1 (en) 2018-06-21
CN107045054B (zh) 2019-07-12
CN107045054A (zh) 2017-08-15

Similar Documents

Publication Publication Date Title
WO2018112902A1 (zh) 一种研究天然气水合物开采过程中产沙行为与多孔介质径向形变的关系的实验装置及方法
WO2021227384A1 (zh) 一种超重力水合物研究实验***及方法
CN105403672B (zh) 模拟天然气水合物开采过程地层形变的实验装置和方法
CN105301200B (zh) 一种天然气水合物开采出砂特性测试装置
CN105259003B (zh) 一种合成海洋天然气水合物样品的实验装置和方法
CN104453794B (zh) 天然气水合物开采全过程模拟实验***及模拟方法
WO2017008354A1 (zh) 一种研究天然气水合物分解过程中多孔介质骨架变化的实验装置及实验方法
WO2016061854A1 (zh) 一种可渗透边界层天然气水合物开采模拟实验装置
WO2019170044A1 (zh) 模拟深海海床响应的控压控温超重力实验装置
CN105203716B (zh) 海洋天然气水合物固态流化开采实验模拟装置
Li et al. Experimental investigation into methane hydrate production during three-dimensional thermal huff and puff
WO2018112899A1 (zh) 一种用于对天然气水合物钻井液进行多相分离的实验装置及方法
CN105571647A (zh) 天然气水合物开采多物理场演化模拟测试装置及方法
CN102865066B (zh) 含天然气水合物相变的深水井筒多相流动实验装置及方法
CN205426212U (zh) 天然气水合物开采多物理场演化模拟测试装置
CN107842341A (zh) 一种天然气水合物开采监测模拟装置及方法
WO2014176794A1 (zh) 天然气水合物开采地层稳定性三维模拟装置
CN103233704A (zh) 一种co2/n2置换开采冻土区天然气水合物实验模拟方法及模拟装置
CN103556994A (zh) 缝洞型储层剩余油分布的实验检测***及检测方法
CN110630228B (zh) 评价co2/n2置换法开采水合物时井筒出砂与防砂的装置及方法
CN111577212A (zh) 大尺度天然气水合物形成分解地质环境模拟***及方法
CN107656033B (zh) 一种天然气水合物流化分解与分离实验装置及实验方法
CN205786187U (zh) 一种天然气水合物井轴向出砂一维物理模拟装置
CN111980673B (zh) 模拟水合物开采引起海洋能源土-井耦合作用的测试装置和测试方法
WO2021159836A1 (zh) 一种天然气水合物洞穴完井评价测试装置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16924354

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16924354

Country of ref document: EP

Kind code of ref document: A1