WO2018112851A1 - 一种手势控制工业机器人方法以及工业机器人手持控制器 - Google Patents

一种手势控制工业机器人方法以及工业机器人手持控制器 Download PDF

Info

Publication number
WO2018112851A1
WO2018112851A1 PCT/CN2016/111586 CN2016111586W WO2018112851A1 WO 2018112851 A1 WO2018112851 A1 WO 2018112851A1 CN 2016111586 W CN2016111586 W CN 2016111586W WO 2018112851 A1 WO2018112851 A1 WO 2018112851A1
Authority
WO
WIPO (PCT)
Prior art keywords
industrial robot
detection signal
handheld controller
acceleration sensor
detecting
Prior art date
Application number
PCT/CN2016/111586
Other languages
English (en)
French (fr)
Inventor
郭涛
Original Assignee
深圳配天智能技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳配天智能技术研究院有限公司 filed Critical 深圳配天智能技术研究院有限公司
Priority to PCT/CN2016/111586 priority Critical patent/WO2018112851A1/zh
Priority to CN201680026902.XA priority patent/CN107995886A/zh
Publication of WO2018112851A1 publication Critical patent/WO2018112851A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/0081Programme-controlled manipulators with master teach-in means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer

Definitions

  • the present invention relates to the field of industrial robot technology, and in particular to a gesture control industrial robot method and an industrial robot hand controller.
  • the first step in programming robots is often to teach, that is, through the controller, by manual operation, the robot is controlled to gradually move to the position desired by the operator and reach the corresponding posture of the operator.
  • the robot running program is completed by offline programming, in actual operation, because the absolute positioning accuracy of the industrial robot is low, the running result and the program expectation often have great differences, and the robot program needs to be adjusted through the teaching method. Complete the final determination of the robot program.
  • the existing industrial robot control basically uses a handheld controller as a control device.
  • a handheld controller as a control device.
  • the other is based on a 6-dimensional joystick: the program was adopted by the Kuka robot. Most industrial robots have six degrees of freedom, reflected to the end effector, which is three translational degrees of freedom, three degrees of freedom of rotation. The program uses a mechanically designed six-degree-of-freedom joystick to position the robot's end effector position and attitude.
  • the rotational positioning often involves the simultaneous movement of multiple axes, and the operation of the above-mentioned scheme 1 must be a single-axis single operation, especially for the attitude adjustment of the robot end effector, it is often necessary to simultaneously adjust three
  • the degree of translational freedom and the three degrees of freedom of rotation are very complicated to operate in a way that requires separate operation of each axis. While the second solution can partially solve the above problems, it is not the same as the human cognition, and the operation is more complicated.
  • the invention provides a gesture control industrial robot method and an industrial robot hand controller, which can teach an industrial robot using a method similar to a human cognition.
  • the present invention provides a teaching method for an industrial robot, comprising: detecting, between the two postures of the handheld controller before and after the movement, after the handheld controller is manually moved by the user. Changing and generating a corresponding detection signal; transmitting the detection signal to the robot control system, so that the robot control system generates a corresponding control signal according to the detection signal to control the industrial robot to perform a corresponding motion.
  • the step of detecting a change between the two postures of the handheld controller before and after the motion and generating a corresponding detection signal includes:
  • a linear motion of the handheld controller in a third direction is detected to generate a third direction motion detection signal.
  • the step of detecting a change between the two postures of the handheld controller before and after the motion and generating a corresponding detection signal further includes:
  • the step of transmitting the detection signal to the robot control system, so that the robot control system generates a corresponding control signal according to the detection signal to control the industrial robot to perform the corresponding motion includes:
  • the measurement signal and the third angle detection signal and the robot control algorithm generate corresponding control signals to control the industrial robot to perform corresponding actions.
  • the present invention also provides an industrial robot handheld controller, including a processor and a teaching attitude detecting device, wherein the teaching attitude detecting device detects that a user holds the handheld controller before moving And a change between the two gestures after the motion and generating a corresponding detection signal, the processor connecting the teaching attitude detecting device to receive the detection signal and generate a corresponding control signal to control the industry robot.
  • the teaching attitude detecting device includes at least one linear acceleration sensor and at least one angular acceleration sensor, wherein the at least one linear acceleration sensor is configured to detect movement of the handheld controller in multiple directions, and At least one angular acceleration sensor is used to detect rotation of the handheld controller in multiple directions.
  • the teaching attitude detecting device includes a first linear acceleration sensor, a second linear acceleration sensor, and a third linear acceleration sensor, wherein the first linear acceleration sensor is configured to detect the handheld controller in a first direction a linear motion, the second linear acceleration sensor is configured to detect a linear motion of the handheld controller in a second direction, and the third linear acceleration sensor is configured to detect a straight line of the handheld controller in a third direction motion.
  • the teaching attitude detecting device further includes a first angular acceleration sensor, a second angular acceleration sensor, and a third angular acceleration sensor, wherein the first angular acceleration sensor is configured to detect the handheld controller An angle of rotation of the first direction, the second angular acceleration sensor is configured to detect an angle of rotation of the handheld controller about the second direction, and the third angular acceleration sensor is configured to detect the winding of the handheld controller The angle of rotation of the third direction.
  • the method further includes a communication module, the communication module is connected to the processor to receive the control signal, and communicates with the industrial robot to control the industrial robot to implement a corresponding posture.
  • the communication module communicates with the industrial robot by wire or wirelessly.
  • wireless methods include WiFi, Bluetooth or ZigBee.
  • the handheld controller is a wearable device.
  • the wearable device communicates through a WiFi or Bluetooth and communication module.
  • the invention has the beneficial effects that the present invention detects the posture of the handheld controller and generates a corresponding detection signal by the teaching posture detecting device, and the processor connects.
  • the teaching attitude detecting device receives the detection signal and generates a corresponding control signal to control the industrial robot, and can use a method similar to a human cognition method to teach the industrial robot. It also reduces the complexity of the operation during the teaching process.
  • FIG. 1 is a schematic flow chart of a first embodiment of a gesture control industrial robot method according to the present invention
  • FIG. 2 is a schematic flow chart of a second embodiment of a gesture control industrial robot method according to the present invention.
  • FIG. 3 is a schematic block diagram showing the structure of a first embodiment of the industrial robot hand-held controller of the present invention.
  • FIG. 1 is a schematic flow chart of a first embodiment of a gesture control industrial robot method according to the present invention.
  • This gesture control industrial robot method includes the following steps:
  • the change between the two postures before and after the exercise may be a short period of time, such as tens to hundreds of milliseconds, or a longer period of time, such as several seconds to several minutes.
  • the detection signal includes a motion signal and a rotation signal.
  • S200 Send the detection signal to the robot control system, so that the robot control system generates a corresponding control signal according to the detection signal to control the industrial robot to perform the corresponding motion.
  • the control signal generated based on the detection signal includes an instruction to control the movement of the industrial robot and an instruction to control the rotation of the robot.
  • the processor is connected to the teaching attitude detecting device to receive the detection signal and generate a corresponding control signal to control the industrial robot.
  • the teaching of industrial robots is also reduced, and the complexity of the operation in the teaching process is also reduced.
  • the handheld controller in the above embodiment also called the teach programmer, is a core component of the robot control system and is a device for registering and storing mechanical motion or processing memory, which is executed by an electronic system or a computer system.
  • the hand-held controller may be a conventional hand-held controller, and in other embodiments of the gesture-controlled industrial robot method of the present invention, it may also be a specially designed wearable device.
  • FIG. 2 is a schematic flow chart of a second embodiment of a gesture control industrial robot method according to the present invention.
  • this embodiment :
  • Step S100 detects a change between the two postures of the handheld controller before and after the motion and generates corresponding detection signals, including:
  • the change between the two postures before and after the exercise may be a short period of time, such as tens to hundreds of milliseconds, or a longer period of time, such as several seconds to several minutes.
  • first direction is perpendicular to the second direction
  • third direction is perpendicular to the plane defined by the first direction and the second direction.
  • the step S100 detects a change between the two gestures before and after the movement of the handheld controller of the user and generates a corresponding detection signal, and further includes:
  • S140 Detect an angle of the handheld controller rotating in the first direction to generate a first angle detection signal
  • S160 Detect an angle of the handheld controller rotating in a third direction to generate a third angle detection signal.
  • the detection of the linear motion may be through a linear accelerometer, and the detection of the rotational angle may be through an angular accelerometer.
  • Step S200 sends the detection signal to the robot control system, so that the robot control system generates a corresponding control signal according to the detection signal to control the industrial robot to perform corresponding motion:
  • the robot control algorithm is configured to convert the detection signal sent by the handheld controller into a corresponding control signal, thereby controlling the industrial robot to perform a motion desired by the user.
  • the control signal is used to specifically control the motion of various components of the industrial robot.
  • the robot control algorithm may be a common basic algorithm in robot motion control.
  • FIG. 3 is a schematic block diagram showing the structure of a first embodiment of the industrial robot hand-held controller of the present invention.
  • the handheld controller 10 includes a processor 12 and a teaching attitude detecting device 14 that detects changes between the two postures of the user's handheld handheld controller before and after the movement. And generating a corresponding detection signal, and the processor 12 is connected to the teaching attitude detecting device 14 to receive the detection signal and generate a corresponding control signal to control the industrial robot 20.
  • the processor 12 by detecting a change between the two postures before and after the movement of the handheld controller 10 by the user and generating a corresponding detection signal, the processor 12 connects the teaching attitude detecting device 14 to receive the detection.
  • the signal is measured and a corresponding control signal is generated to control the industrial robot 20, and the teaching of the industrial robot 20 can be performed using a method similar to that of the human cognition, and the operational complexity in the teaching process is also reduced.
  • the handheld controller 10 in the above embodiment is also called a teaching programmer, which is a core component of the robot control system, and is a device for registering and storing mechanical motion or processing memory, which is executed by an electronic system or a computer system. .
  • the change between the two poses before and after the exercise may be a short period of time, such as tens to hundreds of milliseconds, or a longer period of time, such as a few seconds to a few minutes.
  • a robot control system 30 is also included.
  • the hand-held controller 10 transmits a detection signal to the robot control system 30 to cause the robot control system 30 to generate a corresponding control signal to control the industrial robot to perform the corresponding action.
  • the hand-held controller may be a conventional hand-held handheld controller, and in other embodiments of the industrial robot hand-held controller of the present invention, it may also be a wearable device that can be specifically designed.
  • the teaching attitude detecting device 14 includes at least one linear acceleration sensor 142 and at least one angular acceleration sensor 144, wherein at least one linear acceleration sensor 142 is used to detect movement of the handheld controller 10 in multiple directions, and at least one angle The acceleration sensor 144 is used to detect the rotation of the handheld controller 10 in multiple directions.
  • the reference gesture detecting device 14 includes a first linear acceleration sensor 1422, a second linear acceleration sensor 1424, and a third linear acceleration sensor 1426, wherein the first linear acceleration sensor 1422 is used to detect the handheld controller 10 in the first In a linear motion in one direction, the second linear acceleration sensor 1424 is used to detect the linear motion of the handheld controller 10 in the second direction, and the third linear acceleration sensor 1426 is used to detect the linear motion of the handheld controller 10 in the third direction. .
  • first direction is perpendicular to the second direction
  • third direction is perpendicular to the plane defined by the first direction and the second direction.
  • the teaching attitude detecting device 14 further includes a first angular acceleration sensor 1442, a second angular acceleration sensor 1444, and a third angular acceleration sensor 1446, wherein the first angular acceleration sensor 1442 is configured to detect the handheld controller 10 around the first The angle of the direction of rotation, the second angular acceleration sensor 1444 is used to detect the angle of rotation of the hand-held controller 10 about the second direction, and the third angular acceleration sensor 1446 is used to detect the angle of rotation of the hand-held controller 10 about the third direction.
  • the line acceleration sensor and the angular acceleration sensor may each be set to one, or any number may be set as needed.
  • the linear motion is detected by a linear accelerometer, and the rotation angle is detected by an angular accelerometer.
  • the detection handheld controller 10 further includes a communication module 16 that is coupled to the processor 12 to receive control signals and to communicate with the industrial robot 20 to control the industrial robot 20 to achieve a corresponding attitude.
  • the communication mode of the communication module 16 and the industrial robot 20 may be wireless or wired, and the wired mode may be an optical fiber, a general communication cable, or the like, and the wireless mode may be WiFi, Bluetooth, ZigBee, or the like.
  • the technician communicates through the WiFi or Bluetooth and the communication module by controlling the wearable device worn on the arm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Manipulator (AREA)

Abstract

一种工业机器人(20)的示教方法以及工业机器人(20)手持控制器,通过示教姿态侦测装置侦测用户手持手持控制器运动前以及运动后的两个姿态之间的变化并生成对应的侦测信号,处理器(12)连接示教姿态侦测装置以接收侦测信号并生成相应的控制信号以控制工业机器人(20),能够使用一种与人的认知方式相近的方法,来进行工业机器人(20)的示教,同时也降低了示教过程中的操作复杂程度。

Description

一种手势控制工业机器人方法以及工业机器人手持控制器
【技术领域】
本发明涉及工业机器人技术领域,特别是涉及一种手势控制工业机器人方法以及工业机器人手持控制器。
【背景技术】
使用工业机器人时,对于机器人的编程,第一步往往是示教,即通过控制器,由人工操作,控制机器人逐步运行至操作者希望的位置,并达到操作者相应的姿态。即使通过离线编程完成的机器人运行程序,在实际运行时,由于工业机器人绝对定位精度较低,其运行结果与程序预期往往也有较大差别,仍需要通过示教的方法,对机器人程序进行调整,完成机器人程序的最终确定。
而现有工业机器人控制,基本都以手持控制器为控制设备。在对工业机器人进行示教的过程中,有如下两种操作机器人的方式:
一种是基于按键的方式:往往分为两个步骤,a.选择移动方向:包括选择沿x轴、y轴或者z轴,或者机器人六个旋转关节中的一个。b.按下运行键,运行到相应位置。
另一种是基于6维操作杆:该方案曾被Kuka机器人采用。绝大多数工业机器人具有六个自由度,反映到末端执行器,就是三个平移自由度,三个旋转自由度。该方案采用机械设计的六自由度操作杆,来完成对机器人末端执行器位置和姿态的定位。
由于工业机器人的平移定位,旋转定位,往往涉及到多个轴的同时移动,而上述方案一的操作,必须是单轴单独操作,尤其是对于机器人末端执行器的姿态调整,往往需要同时调整三个平移自由度以及三个旋转自由度,对于需要每个轴单独操作的方式,操作起来非常复杂。而方案二,虽然能够部分解决上述问题,但其与人的认知方式并不相同,操作起来也较为复杂。
【发明内容】
本发明提供一种手势控制工业机器人方法以及工业机器人手持控制器,能够使用一种与人的认知方式相近的方法,来进行工业机器人的示教。
为了解决上述问题,本发明提供了一种工业机器人的示教方法,包括:当手持控制器被用户手持运动后,侦测所述手持控制器在运动前以及运动后的两个姿态之间的变化并生成对应的侦测信号;将所述侦测信号发送给机器人控制***,以使得机器人控制***根据所述侦测信号而生成相应的控制信号以控制工业机器人执行相应的运动。
其中,侦测所述手持控制器在运动前以及运动后的两个姿态之间的变化并生成对应的侦测信号的步骤包括:
侦测所述手持控制器在第一方向上的直线运动以生成第一方向移动侦测信号;
侦测所述手持控制器在第二方向上的直线运动以生成第二方向移动侦测信号;
侦测所述手持控制器在第三方向上的直线运动以生成第三方向移动侦测信号。
其中,侦测所述手持控制器在运动前以及运动后的两个姿态之间的变化并生成对应的侦测信号的步骤进一步包括:
侦测所述手持控制器绕所述第一方向转动的角度以生成第一角度侦测信号;
侦测所述手持控制器绕所述第二方向转动的角度以生成第二角度侦测信号;
侦测所述手持控制器绕所述第三方向转动的角度以生成第三角度侦测信号。
其中,将所述侦测信号发送给机器人控制***,以使得机器人控制***根据所述侦测信号而生成相应的控制信号以控制工业机器人执行相应的运动的步骤包括:
使得机器人控制***根据所述第一方向移动侦测信号、所述第二方向移动侦测信号、所述第三方向移动侦测信号、所述第一角度侦测信号、所述第二角度侦测信号和所述第三角度侦测信号以及机器人控制算法而生成相应的控制信号,从而以控制所述工业机器人执行相应的动作。
为解决上述技术问题,本发明还提出一种工业机器人手持控制器,包括处理器和示教姿态侦测装置,其中,所述示教姿态侦测装置侦测用户手持所述手持控制器运动前以及运动后的两个姿态之间的变化并生成对应的侦测信号,所述处理器连接所述示教姿态侦测装置以接收所述侦测信号并生成相应的控制信号以控制所述工业机器人。
其中,所述示教姿态侦测装置包括至少一个线加速度传感器和至少一个角加速度传感器,其中,所述至少一个线加速度传感器用以侦测所述手持控制器多个方向的移动,而所述至少一个角加速度传感器用以侦测所述手持控制器多个方向的旋转。
其中,所述示教姿态侦测装置包括第一线加速度传感器、第二线加速度传感器和第三线加速度传感器,其中,所述第一线加速度传感器用于侦测所述手持控制器在第一方向上的直线运动,所述第二线加速度传感器用于侦测所述手持控制器在第二方向上的直线运动,而所述第三线加速度传感器用于侦测所述手持控制器在第三方向上的直线运动。
其中,所述示教姿态侦测装置还包括第一角加速度传感器、第二角加速度传感器和第三角加速度传感器,其中,所述第一角加速度传感器用于侦测所述手持控制器绕所述第一方向转动的角度,所述第二角加速度传感器用于侦测所述手持控制器绕所述第二方向转动的角度,而所述第三角加速度传感器用于侦测所述手持控制器绕所述第三方向转动的角度。
其中,进一步包括通讯模块,所述通讯模块连接所述处理器以接收所述控制信号,并与所述工业机器人通信以控制所述工业机器人实现相应的姿态。
其中,通讯模块通过有线或无线方式和工业机器人通信。
其中,无线方式包括WiFi、蓝牙或ZigBee。
其中,手持控制器为可穿戴设备。
其中,可穿戴设备通过通过WiFi或者蓝牙和通讯模块进行通信。
本发明的有益效果是:区别于现有技术的情况,本发明通过所述示教姿态侦测装置侦测用户手持所述手持控制器的姿态并生成对应的侦测信号,所述处理器连接所述示教姿态侦测装置以接收所述侦测信号并生成相应的控制信号以控制所述工业机器人,能够使用一种与人的认知方式相近的方法,来进行工业机器人的示教,同时也降低了示教过程中的操作复杂程度。
【附图说明】
图1是本发明手势控制工业机器人方法第一实施例的流程示意图;
图2是本发明手势控制工业机器人方法第二实施例的流程示意图;
图3是本发明工业机器人手持控制器第一实施例的结构示意框图。
【具体实施方式】
为使本领域的技术人员更好地理解本发明的技术方案,下面结合附图和具体实施方式对发明所提供的一种工业机器人手持控制器以及手势控制工业机器人方法做进一步详细描述。
请参阅图1,图1是本发明手势控制工业机器人方法第一实施例的流程示意图。本手势控制工业机器人方法包括以下步骤:
S100:当手持控制器被用户手持运动后,侦测手持控制器在运动前以及运动后的两个姿态之间的变化并生成对应的侦测信号。
其中,运动前以及运动后的两个姿态之间的变化可以是很短的一段时间,例如几十到几百毫秒,或者是较长一段时间,例如几秒钟至几分钟。
该侦测信号包括了移动信号和旋转信号。
S200:将所述侦测信号发送给机器人控制***,以使得机器人控制***根据侦测信号而生成相应的控制信号以控制工业机器人执行相应的运动。
根据侦测信号生成的控制信号包括了控制工业机器人移动的指令以及控制机器人转动的指令。
在该实施方式中,通过侦测用户手持手持控制器的姿态并生成对应的侦测信号,处理器连接示教姿态侦测装置以接收侦测信号并生成相应的控制信号以控制工业机器人,能够使用一种与人的认知方式相近的方法,来进行工业机器人的示教,同时也降低了示教过程中的操作复杂程度。
上述实施例中的手持控制器又叫示教编程器,是机器人控制***的核心部件,是一个用来注册和存储机械运动或处理记忆的设备,该设备是由电子***或计算机***执行的。
在本发明手势控制工业机器人方法的第一实施例中,手持控制器可以是传统的手持控制器,在本发明手势控制工业机器人方法的其他实施例中,也可以是专门设计的可穿戴设备。
参照图2,图2是本发明手势控制工业机器人方法第二实施例的流程示意图。在本实施例中:
步骤S100侦测手持控制器在运动前以及运动后的两个姿态之间的变化并生成对应的侦测信号包括:
S110:侦测手持控制器在第一方向上的直线运动以生成第一方向移动侦测信号;
S120:侦测手持控制器在第二方向上的直线运动以生成第二方向移动侦测信号;
S130:侦测手持控制器在第三方向上的直线运动以生成第三方向移动侦测信号;
其中,运动前以及运动后的两个姿态之间的变化可以是很短的一段时间,例如几十到几百毫秒,或者是较长一段时间,例如几秒钟至几分钟。
其中,第一方向垂直于所述第二方向,而第三方向垂直于第一方向和第二方向所确定的平面。
进一步的,S100侦测用户手持手持控制器运动前以及运动后的两个姿态之间的变化并生成对应的侦测信号的步骤进一步包括:
S140:侦测手持控制器绕第一方向转动的角度以生成第一角度侦测信号;
S150:侦测手持控制器绕第二方向转动的角度以生成第二角度侦测信号;
S160:侦测手持控制器绕第三方向转动的角度以生成第三角度侦测信号。
上述实施例中,直线运动的侦测可以是通过线加速度计,转动角度的侦测可以是通过角加速度计。
步骤S200将所述侦测信号发送给机器人控制***,以使得机器人控制***根据所述侦测信号而生成相应的控制信号以控制工业机器人执行相应的运动的步骤包括:
S210:使得机器人控制***根据第一方向移动侦测信号、第二方向移动侦测信号、第三方向移动侦测信号、第一角度侦测信号、第二角度侦测信号和第三角度侦测信号以及机器人控制算法而生成相应的控制信号,从而控制工业机器人执行相应的动作。
具体的,所述机器人控制算法用于将所述手持控制器发送的侦测信号转化为相应的控制信号,从而控制工业机器人执行用户所期望的运动。所述控制信号用于具体控制工业机器人的各个部件的运动。所述机器人控制算法可以是机器人运动控制方面的常用基本算法。
参照图3,图3是本发明工业机器人手持控制器第一实施例的结构示意框图。在本实施例中:手持控制器10包括处理器12和示教姿态侦测装置14,示教姿态侦测装置14侦测用户手持手持控制器运动前以及运动后的两个姿态之间的变化并生成对应的侦测信号,处理器12连接示教姿态侦测装置14以接收侦测信号并生成相应的控制信号以控制工业机器人20。
在该实施方式中,通过侦测用户手持手持控制器10运动前以及运动后的两个姿态之间的变化并生成对应的侦测信号,处理器12连接示教姿态侦测装置14以接收侦测信号并生成相应的控制信号以控制工业机器人20,能够使用一种与人的认知方式相近的方法,来进行工业机器人20的示教,同时也降低了示教过程中的操作复杂程度。
上述实施例中的手持控制器10又叫示教编程器,是机器人控制***的核心部件,是一个用来注册和存储机械运动或处理记忆的设备,该设备是由电子***或计算机***执行的。
运动前以及运动后的两个姿态之间的变化可以是很短的一段时间,例如几十到几百毫秒,或者是较长一段时间,例如几秒钟至几分钟。
继续参照图3,还包括了机器人控制***30,手持控制器10发送侦测信号给机器人控制***30,以使得机器人控制***30生成相应的控制信号,从而控制工业机器人执行相应的动作。
在本发明工业机器人手持控制器第一实施例中,手持控制器可以是传统的手持手持控制器,在本发明工业机器人手持控制器其他实施例中,也是可以专门设计的可穿戴设备。
示教姿态侦测装置14包括至少一个线加速度传感器142和至少一个角加速度传感器144,其中,至少一个线加速度传感器142用以侦测手持控制器10在多个方向上的移动,而至少一个角加速度传感器144用以侦测手持控制器10在多个方向上的旋转。
具体的,参照图示教姿态侦测装置14包括第一线加速度传感器1422、第二线加速度传感器1424和第三线加速度传感器1426,其中,第一线加速度传感器1422用于侦测手持控制器10在第一方向上的直线运动,第二线加速度传感器1424用于侦测手持控制器10在第二方向上的直线运动,而第三线加速度传感器1426用于侦测手持控制器10在第三方向上的直线运动。
其中,第一方向垂直于第二方向,而第三方向垂直于第一方向和第二方向所确定的平面。
此外,示教姿态侦测装置14还包括第一角加速度传感器1442、第二角加速度传感器1444和第三角加速度传感器1446,其中,第一角加速度传感器1442用于侦测手持控制器10绕第一方向转动的角度,第二角加速度传感器1444用于侦测手持控制器10绕第二方向转动的角度,而第三角加速度传感器1446用于侦测手持控制器10绕第三方向转动的角度。
在本发明工业机器人手持控制器其他实施例中,线加速度传感器和角加速度传感器均可以设置为一个,或者根据需要设置任意多个。
上述实施例中,直线运动的侦测通过线加速度计,转动角度的侦测通过角加速度计。
侦测手持控制器10还包括通讯模块16,通讯模块16连接处理器12以接收控制信号,并与工业机器人20通信以控制工业机器人20实现相应的姿态。
其中,通讯模块16和工业机器人20的通讯方式可以是无线或有线方式,有线方式可以是光纤、普通通信电缆等等,无线方式可以是WiFi、蓝牙、ZigBee等等。
在本发明工业机器人手持控制器第一实施例的一个应用场景中,技术人员通过控制戴在手臂上的可穿戴设备通过WiFi或者蓝牙和通讯模块进行通信。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (13)

  1. 一种手势控制工业机器人方法,其中,包括:
    当手持控制器被用户手持运动后,侦测所述手持控制器在运动前以及运动后的两个姿态之间的变化并生成对应的侦测信号;
    将所述侦测信号发送给机器人控制***,以使得机器人控制***根据所述侦测信号而生成相应的控制信号以控制工业机器人执行相应的运动。
  2. 根据权利要求1所述的手势控制工业机器人方法,其中,侦测所述手持控制器在运动前以及运动后的两个姿态之间的变化并生成对应的侦测信号的步骤包括:
    侦测所述手持控制器在第一方向上的直线运动以生成第一方向移动侦测信号;
    侦测所述手持控制器在第二方向上的直线运动以生成第二方向移动侦测信号;
    侦测所述手持控制器在第三方向上的直线运动以生成第三方向移动侦测信号。
  3. 根据权利要求2所述的手势控制工业机器人方法,其中,侦测所述手持控制器在运动前以及运动后的两个姿态之间的变化并生成对应的侦测信号的步骤进一步包括:
    侦测所述手持控制器绕所述第一方向转动的角度以生成第一角度侦测信号;
    侦测所述手持控制器绕所述第二方向转动的角度以生成第二角度侦测信号;
    侦测所述手持控制器绕所述第三方向转动的角度以生成第三角度侦测信号。
  4. 根据权利要求3所述的手势控制工业机器人方法,其中,将所述侦测信号发送给机器人控制***,以使得机器人控制***根据所述侦测信号而生成相应的控制信号以控制工业机器人执行相应的运动的步骤包括:
    使得机器人控制***根据所述第一方向移动侦测信号、所述第二方向移动侦测信号、所述第三方向移动侦测信号、所述第一角度侦测信号、所述第二角度侦测信号和所述第三角度侦测信号以及机器人控制算法而生成相应的控制信号,从而控制所述工业机器人执行相应的动作。
  5. 一种工业机器人手持控制器,其中,包括处理器和示教姿态侦测装置,其中,所述示教姿态侦测装置侦测用户手持所述手持控制器运动前以及运动后的两个姿态之间的变化并生成对应的侦测信号,所述处理器连接所述示教姿态侦测装置以接收所述侦测信号并生成相应的控制信号以控制所述工业机器人。
  6. 根据权利要求5所述的工业机器人手持控制器,其中,所述示教姿态侦测装置包括至少一个线加速度传感器和至少一个角加速度传感器,其中,所述至少一个线加速度传感器用以侦测所述手持控制器在多个方向上的移动,而所述至少一个角加速度传感器用以侦测所述手持控制器在多个方向上的旋转。
  7. 根据权利要求6所述的工业机器人手持控制器,其中,所述示教姿态侦测装置包括第一线加速度传感器、第二线加速度传感器和第三线加速度传感器,其中,所述第一线加速度传感器用于侦测所述手持控制器在第一方向上的直线运动,所述第二线加速度传感器用于侦测所述手持控制器在第二方向上的直线运动,而所述第三线加速度传感器用于侦测所述手持控制器在第三方向上的直线运动。
  8. 根据权利要求7所述的工业机器人手持控制器,其中,所述示教姿态侦测装置还包括第一角加速度传感器、第二角加速度传感器和第三角加速度传感器,其中,所述第一角加速度传感器用于侦测所述手持控制器绕所述第一方向转动的角度,所述第二角加速度传感器用于侦测所述手持控制器绕所述第二方向转动的角度,而所述第三角加速度传感器用于侦测所述手持控制器绕所述第三方向转动的角度。
  9. 根据权利要求8所述的工业机器人手持控制器,其中,进一步包括通讯模块,所述通讯模块连接所述处理器以接收所述控制信号,并与所述工业机器人通信以控制所述工业机器人实现相应的姿态。
  10. 根据权利要求9所述的工业机器人手持控制器,其特征在于,所述通讯模块通过有线或无线方式和所述工业机器人通信。
  11. 根据权利要求10所述的工业机器人手持控制器,其特征在于,所述无线方式包括WiFi、蓝牙或ZigBee。
  12. 根据权利要求11所述的工业机器人手持控制器,其特征在于,所述手持控制器为可穿戴设备。
  13. 根据权利要求12所述的工业机器人手持控制器,所述可穿戴设备通过通过WiFi或者蓝牙和所述通讯模块进行通信。
PCT/CN2016/111586 2016-12-22 2016-12-22 一种手势控制工业机器人方法以及工业机器人手持控制器 WO2018112851A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/111586 WO2018112851A1 (zh) 2016-12-22 2016-12-22 一种手势控制工业机器人方法以及工业机器人手持控制器
CN201680026902.XA CN107995886A (zh) 2016-12-22 2016-12-22 一种手势控制工业机器人方法以及工业机器人手持控制器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/111586 WO2018112851A1 (zh) 2016-12-22 2016-12-22 一种手势控制工业机器人方法以及工业机器人手持控制器

Publications (1)

Publication Number Publication Date
WO2018112851A1 true WO2018112851A1 (zh) 2018-06-28

Family

ID=62029718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/111586 WO2018112851A1 (zh) 2016-12-22 2016-12-22 一种手势控制工业机器人方法以及工业机器人手持控制器

Country Status (2)

Country Link
CN (1) CN107995886A (zh)
WO (1) WO2018112851A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090157221A1 (en) * 2007-12-14 2009-06-18 Hon Hai Precision Industry Co., Ltd. Robotic system, robot and mobile phone
CN103279206A (zh) * 2013-06-15 2013-09-04 苏州时运机器人有限公司 一种具有手势感测示教器的机器人控制***
CN105302021A (zh) * 2015-10-23 2016-02-03 哈尔滨工业大学 人机协作再制造中控制机器人运动的穿戴式手势控制装置
CN205068294U (zh) * 2015-09-21 2016-03-02 广东省自动化研究所 机器人人机交互装置
CN105955489A (zh) * 2016-05-26 2016-09-21 苏州活力旺机器人科技有限公司 一种机器人手势识别示教装置及方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6834249B2 (en) * 2001-03-29 2004-12-21 Arraycomm, Inc. Method and apparatus for controlling a computing system
US8760392B2 (en) * 2010-04-20 2014-06-24 Invensense, Inc. Wireless motion processing sensor systems suitable for mobile and battery operation
CN103995592A (zh) * 2014-05-21 2014-08-20 上海华勤通讯技术有限公司 穿戴式设备与终端进行信息交互的方法及终端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090157221A1 (en) * 2007-12-14 2009-06-18 Hon Hai Precision Industry Co., Ltd. Robotic system, robot and mobile phone
CN103279206A (zh) * 2013-06-15 2013-09-04 苏州时运机器人有限公司 一种具有手势感测示教器的机器人控制***
CN205068294U (zh) * 2015-09-21 2016-03-02 广东省自动化研究所 机器人人机交互装置
CN105302021A (zh) * 2015-10-23 2016-02-03 哈尔滨工业大学 人机协作再制造中控制机器人运动的穿戴式手势控制装置
CN105955489A (zh) * 2016-05-26 2016-09-21 苏州活力旺机器人科技有限公司 一种机器人手势识别示教装置及方法

Also Published As

Publication number Publication date
CN107995886A (zh) 2018-05-04

Similar Documents

Publication Publication Date Title
US10688659B2 (en) Robot
JP2019202413A (ja) 高機能遠隔マニピュレーターシステム
JP6255901B2 (ja) ロボット制御装置、ロボットおよびロボットシステム
US20040266276A1 (en) Connector gripping device, connector inspection system comprising the device, and connector connection system
US20180029221A1 (en) Robot and robot system
CN107856014B (zh) 基于手势识别的机械臂位姿控制方法
WO2017022893A1 (ko) 작업공간에서의 강성 개선을 위한 여자유도 로봇 제어 시스템, 방법, 및 상기 방법을 실행시키기 위한 컴퓨터 판독 가능한 프로그램을 기록한 기록 매체
WO2017217732A1 (ko) 역감 전달 시스템
WO2011102629A2 (ko) 로봇의 마스터 조작 디바이스 및 이를 이용한 수술용 로봇
JP6696341B2 (ja) 制御方法
CN107735227A (zh) 机器人示教***、方法及机器人
WO2013018985A1 (ko) 수술용 로봇 시스템
Çoban et al. Wireless teleoperation of an industrial robot by using myo arm band
JP2015186834A (ja) ロボット制御装置、把持部制御装置、ロボット、把持部、ロボット制御方法、及びプログラム
Nakai et al. 7 DOF arm type haptic interface for teleoperation and virtual reality systems
JP6117281B2 (ja) 電動アクチュエータを用いたエアポンプ装置及びエアポンプシステム
KR102327392B1 (ko) Rms/ros 기능과 국산로봇을 활용한 avn 모듈 자동 조립 및 체결 스마트 시스템
WO2018112851A1 (zh) 一种手势控制工业机器人方法以及工业机器人手持控制器
JP5370757B2 (ja) 手動操作装置とその信号処理方法
JP2016221653A (ja) ロボット制御装置およびロボットシステム
CN114683276B (zh) 机器人***
JPH07227779A (ja) ロボットハンドの姿勢制御装置
Chu et al. Research on Gesture Guidance and Teaching of Cooperative Robot Based on Nine-axis AirMouse
WO2017217610A1 (ko) 다자유도 로봇의 말단 제어를 위한 콘트롤러, 상기 콘트롤러를 이용한 다자유도 로봇 제어방법 및 이에 의해 동작하는 로봇
JPH03105404A (ja) ダイレクトティーチ方式

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16924392

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16924392

Country of ref document: EP

Kind code of ref document: A1