WO2018112786A1 - 一种用于微流控制的液体流量控制装置和微流控制方法 - Google Patents

一种用于微流控制的液体流量控制装置和微流控制方法 Download PDF

Info

Publication number
WO2018112786A1
WO2018112786A1 PCT/CN2016/111277 CN2016111277W WO2018112786A1 WO 2018112786 A1 WO2018112786 A1 WO 2018112786A1 CN 2016111277 W CN2016111277 W CN 2016111277W WO 2018112786 A1 WO2018112786 A1 WO 2018112786A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
capillary
piston
flow control
microfluidic
Prior art date
Application number
PCT/CN2016/111277
Other languages
English (en)
French (fr)
Inventor
王立言
蒙玄
Original Assignee
无锡源清天木生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 无锡源清天木生物科技有限公司 filed Critical 无锡源清天木生物科技有限公司
Priority to PCT/CN2016/111277 priority Critical patent/WO2018112786A1/zh
Publication of WO2018112786A1 publication Critical patent/WO2018112786A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K13/00Other constructional types of cut-off apparatus; Arrangements for cutting-off
    • F16K13/08Arrangements for cutting-off not used
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/04Actuating devices; Operating means; Releasing devices electric; magnetic using a motor

Definitions

  • the invention relates to the field of microfluidic control, in particular to a liquid flow control device and a microfluidic control method for microfluidic control.
  • microfluidic chip technology With the rapid development of microfluidic chip technology, switching control of microfluidic channels has been paid more and more attention, especially for liquid flow control.
  • Microfluidic chips have micro-upgraded accuracy requirements for incoming liquid flow, and current liquid flow control devices are difficult to meet accuracy requirements.
  • Valves are often used in the field of microfluidics to control the opening or stopping of liquid flow.
  • microfluidic chip tubing is typically very small in size, typically on the micron or millimeter scale, and the flow of liquid needs to be precisely controlled.
  • valve does not immediately block the flow of the liquid at the moment of closing, it not only affects the accuracy of the volume of the liquid entering the chip, but also affects the positioning of the droplet during the manipulation of the droplet, as well as the droplet Quantitative segmentation and fusion, etc.
  • the patent document CN205663974U discloses a temperature control valve for a micro flow channel, comprising: a valve body located in the micro flow channel control chip, the valve body is provided with a temperature control valve core assembly, and the temperature control valve core assembly comprises: a liquid storage a cavity in which the liquid in the liquid storage chamber is heated or expanded by a temperature control device to drive the valve core to move or close the valve; the temperature control device processor module is configured to control the temperature of the liquid in the liquid storage chamber
  • the semiconductor cooling plate is connected to the driving module; the processor module is adapted to control the temperature rise of the semiconductor cooling plate by the driving module, or change the current output direction by controlling the driving module to realize the semiconductor cooling plate Cooling down; the processor module is further connected to a temperature sensor for detecting a temperature of the liquid; and the processor module is further connected to the button module and the display module, and the opening value of the valve is set by the button module, and is displayed by the display module
  • the processor module is adapted to pass The set opening value is converted into the temperature value
  • the patent adopts the principle of temperature control to realize the control of the valve, and integrates the temperature control valve into the micro flow channel control chip, which satisfies the flow regulation between the liquids of the micro flow channels, but the patent has complicated structure, many components and The external environment requirements are relatively high, and it is not suitable for a variety of more severe environments, and the liquid flow control accuracy is not high because the liquid passage cannot be quickly cut off by the temperature control.
  • Patent document CN2503286Y discloses a flow control solenoid valve, which comprises a plunger valve component, a micromotor, a rotary screw shaft for driving the plunger valve core to lift and a rotary/axial movement conversion device, and the micromotor is composed of a plurality of magnetic poles.
  • the electromagnetic stator is composed of a multi-pole permanent magnet rotor, and the rotating screw is directly connected to the rotor.
  • the patent uses a solenoid valve for liquid flow control, but the patent uses electromagnetic control to quickly switch between open and closed states, but because the piston is closed, the liquid is pressed into the liquid outlet channel while the piston is closed, so that excess liquid enters the chip, etc., which is reduced. Liquid flow control accuracy.
  • Patent document CN204512599U discloses a three-way microfluidic solenoid valve, which is mainly composed of a solenoid valve body (1) and a valve tube two-way pipe (7).
  • the electromagnetic valve body (1) is a hollow cylinder and a cylinder. The center penetrates up and down to form a solenoid valve cavity (5).
  • the upper part of the solenoid valve cavity (5) is mounted with an electromagnet (3) composed of a micro coil, and the center of the electromagnet (3) is wrapped with a solenoid valve external pipe (4)
  • the upper end of the electromagnetic valve outer tube (4) protrudes from the electromagnetic valve body (1) 10 to 20 mm long, the lower end is flush with the electromagnet (3), and the remaining middle and lower solenoid valve inner chamber (5) and the electromagnetic valve body are connected ( 1)
  • a slidably rotating, cylindrical solenoid valve inner ring is mounted on the wall of the middle and lower solenoid valve chamber (5);
  • the solenoid valve body (1) is internally removed from the solenoid valve Outside the space occupied by the cavity (5) and the electromagnet (3), a miniature rotating motor (2) is mounted, the rotating motor (2) can be rotated clockwise or counterclockwise, and the rotating motor (2) is controlled by gear transmission.
  • the inner ring groove (6) on the inner ring of the movable solenoid valve rotates 90° horizontally clockwise or 90° horizontally counterclockwise; in the inner and lower solenoid valve cavity (5), a lower end seal is installed.
  • the dead two-way pipe (9), the top end of the two-way pipe (9) has an H from the outer end of the solenoid valve outer tube (4) and the electromagnet (3) Length, an elastic device (7) with a telescopic stroke of length H is installed in the inner cavity (5) of the H length; the upper end of the elastic device (7) is fixed on the lower end plane of the electromagnet (3), and the elastic device ( The lower end of 7) is placed on the ferromagnetic ear (18) at the top of the two-way pipe (9); the upper part of the two-way pipe (9) is machined with a groove (19) for cooperating with the inner ring groove (6)
  • the lower end of the two-way pipe (9) protrudes from the electromagnetic valve body (1), and a circular circular opening (15) having a diameter of ⁇ 100 ⁇ m to ⁇ 500 ⁇ m is opened on the side of the sealed lower end.
  • the patent uses a solenoid valve for liquid flow control, which is simple to use, but although the patent uses electromagnetic control to quickly switch between open and closed state, the piston is closed, so that the liquid is pressed into the liquid outlet channel while the piston is closed, so that excess liquid enters the chip, etc. , reducing the accuracy of liquid flow control.
  • the present invention provides a liquid flow control device and a microfluidic control method for microfluidic control.
  • the device not only achieves precise liquid flow control, but also can quickly switch the liquid flow opening and closing, and once closed, there will be no excess microfluidic droplets entering the liquid outlet, but discharged from the liquid inlet, and the liquid flow
  • the control device has a simple structure, is suitable for a variety of more stringent and precise environments, has a wide application range, low cost, safety and reliability, and requires no maintenance.
  • a liquid flow control device for microfluidic control includes a hollow body and a piston that is movable within the body, the body including a liquid inlet and a liquid outlet, the liquid inlet a movable piston and a liquid outlet forming a variable volume liquid chamber, the liquid chamber being provided with a partition wall, the liquid chamber being divided by the partition wall from the liquid inlet to the junction of the piston and the partition wall a liquid inlet passage, and a liquid outlet passage of the piston and the partition wall to the liquid outlet, the liquid discharge passage including a capillary tube and a filler filled between the capillary tube and the liquid outlet passage, and when the piston is in an open position, the liquid is advanced
  • the liquid port flows through the inlet channel and/or the liquid flows through the capillary tube and is discharged from the liquid outlet.
  • the piston closes the capillary tube so that the resistance of the liquid entering the capillary tube is greater than entering the liquid inlet channel to prevent excess microflui
  • the volume of the capillary is smaller than the volume of the inlet channel.
  • the cross-sectional dimension of the capillary is less than or equal to the cross-sectional dimension of the inlet channel.
  • the cross-sectional dimension of the capillary is smaller than the cross-sectional dimension of the inlet passage, and the cross-sectional dimension of the inlet passage is 1 mm to 10 mm, preferably 2 mm to 7 mm, further preferably 2 mm to 5 mm. .
  • the capillary has a cross-sectional dimension of from 2% to 20%, preferably from 5% to 15%, further preferably from 8% to 12%, of the cross-sectional dimension of the inlet passage.
  • the capillary has a cross-sectional dimension of from 20 ⁇ m to 2000 ⁇ m, preferably from 50 ⁇ m to 1000 ⁇ m, further preferably from 100 ⁇ m to 500 ⁇ m, further preferably from 200 ⁇ m to 400 ⁇ m.
  • the liquid outlet is connected to the microfluidic chip via a microfluidic chip tube.
  • the capillary and the dividing wall are flush such that when the piston is in the closed position, the piston simultaneously abuts the dividing wall and the capillary.
  • the material of the filler is not specifically limited, but it is preferred that the filler itself is resistant to organic solvents, acids, and alkalis, such as high molecular weight polymers such as poly(methyl) methacrylate, polycarbonate, polytetrafluoroethylene, Polyethylene, polyetheretherketone, etc., low melting point metals such as tin, low melting point alloy aluminum, etc., preferably the filler is made of a hydrophobic material to prevent liquid from entering between the capillary and the liquid passage, such as polytetrafluoroethylene High molecular polymer materials such as ethylene, polyethylene, and polyether ether ketone.
  • high molecular weight polymers such as poly(methyl) methacrylate, polycarbonate, polytetrafluoroethylene, Polyethylene, polyetheretherketone, etc.
  • low melting point metals such as tin, low melting point alloy aluminum, etc.
  • the filler is made of a hydrophobic material to prevent liquid from entering between the capillary and the liquid
  • the device of the present invention may not use a partition wall, but the filler also functions as a partition wall, in which case the liquid is required to be impermeable to the filler, and for example, a low melting point metal such as tin or low may be used.
  • a low melting point metal such as tin or low
  • the alloy aluminum of the melting point or the like serves as a filler, and at the same time functions to divide the liquid inlet passage and the outlet passage.
  • the material of the capillary used in the present invention is not particularly limited, and materials for the field of microfluidic control can be generally used, and for example, a metal, a glass, or a polymer material such as polyetheretherketone (PEEK) can be used. Made of capillaries.
  • the liquid flow control device is a solenoid valve.
  • microfluidic control device of the present invention may also be obtained by modifying a solenoid valve of a conventional microfluidic device.
  • the present invention provides a solenoid valve for microfluidic control in which a liquid is discharged from a solenoid valve Filling the channel with a filler and inserting the capillary into the filler to allow the liquid sample entering the solenoid valve to flow out of the outlet via the capillary, and the piston of the solenoid valve closes the capillary, so that the resistance of the liquid into the capillary is greater than the inlet channel into the solenoid valve Resistance to prevent excess microfluidic droplets from flowing out of the outlet.
  • the description of the capillary, the filler, the liquid outlet passage, and the inlet passage can be referred to the various cases enumerated above.
  • a microfluidic control method according to the liquid flow control device for microfluidic control includes the following steps:
  • the liquid flow control device is activated with the piston in the open position, the liquid flowing from the inlet port through the inlet passage and/or the liquid flowing through the capillary and discharged from the outlet.
  • the liquid flow control device is stopped, the piston is in the closed position, and the piston closes the capillary so that the resistance of the liquid into the capillary is greater than entering the inlet passage to prevent excess microfluidic droplets from flowing out of the outlet, and the capillary is maintained by capillary action. Residual microfluidic droplets in the capillary.
  • the capillary causes the resistance of the liquid to enter the capillary to be greater than the inlet passage to prevent excess microfluidic droplets from flowing out of the outlet, and the capillary retains residual micro-capillaries by capillary action.
  • the liquid flow control device structure is a mechanical component, the structure is simple, does not involve components related to temperature and the like, and does not include electronic components, and is suitable for a variety of more severe environments, and has a wide application range. Low cost, safe and reliable, no maintenance required.
  • the present invention can provide a suitable solenoid valve that is currently difficult to find on the market, so as to achieve precise control of the liquid, as long as the structurally modified solenoid valve is commercially available to obtain the device of the present invention.
  • the effect of the present invention is simple in operation and does not significantly increase the cost.
  • FIG. 1 is a schematic structural view of an open state of a liquid flow control device for microfluidic control in the prior art.
  • FIG. 2 is a schematic structural view of a closed state of a liquid flow control device for microfluidic control in the prior art.
  • FIG 3 is a schematic structural view showing an open state of a liquid flow control device for microfluidic control according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural view of a closed state of a liquid flow control device for microfluidic control according to an embodiment of the present invention.
  • Fig. 5 is a schematic view showing the steps of a microfluidic control method for a liquid flow control device for microfluidic control according to the present invention.
  • Valves are often used in the field of microfluidics to control the opening or stopping of liquid flow.
  • microfluidic chip tubing is typically very small in size, from a few microns to a few hundred microns, and the flow of liquid requires precise control. Therefore, when the valve is closed, it cannot immediately block the flow of the liquid, which not only affects the accuracy of the volume of the liquid entering the chip, but also affects the positioning of the droplet and the quantification of the droplet during the manipulation of the droplet. Segmentation and fusion, etc.
  • FIGS. 1 and 2 are structural schematic views of an open state and a closed state of a liquid flow control device for microfluidic control in the prior art.
  • a liquid flow control device such as a solenoid valve
  • the piston moves downward to block the flow of the liquid.
  • the liquid flow control device issues a closing command
  • the liquid flow control device immediately executes the closing command.
  • a liquid flow control device for microfluidic control includes a hollow body 1 and a piston 2 disposed within the body 1, the body 1 including a liquid inlet 3 and a liquid outlet 4,
  • the liquid inlet 3, the movable piston 2 and the liquid outlet 4 form a liquid chamber of variable volume, the liquid chamber being provided with a partition wall 5, which is divided into two by the partition wall 5
  • the partition wall is joined to the liquid outlet passage of the liquid outlet 4, and the liquid discharge passage includes a capillary tube 6 and a filler filled between the capillary tube 6 and the liquid outlet passage, and when the piston 2 is in the open position, the liquid flows from the liquid inlet port 3.
  • FIG. 3 and FIG. 4 are structural diagrams showing an open state and a closed state of a liquid flow control device for microfluidic control according to an embodiment of the present invention.
  • the liquid flow control device is energized, and the piston is upward. Pulling up, the liquid flows into the liquid chamber from the liquid inlet under negative pressure and then exits the liquid outlet, thereby entering the microfluidic chip.
  • the liquid flow control device in the case of power failure, directly blocks the capillary when the piston moves downward, and the rest is filled with the filler, so that the resistance of the liquid entering the chip is greater than the resistance of the liquid returning to the liquid inlet channel.
  • the piston moves downward without pressing excess liquid into the chip, but presses the liquid back to the liquid flow control device.
  • the droplets for example, water-in-oil droplets
  • the capillary also maintains residual microfluidic droplets within the capillary via capillary action, further improving accuracy.
  • the filler is designed according to the size of the outlet passage of the solenoid valve, and then the filling of the capillary can be inserted and fixed in the middle.
  • the material such as a polymer material, a filler of a metallic material, is filled into the liquid outlet passage of the solenoid valve, and the capillary is inserted into the filler, thereby obtaining the structure shown in FIGS. 3 and 4, which can realize the existing market.
  • the simple modification of the solenoid valve purchased above achieves precise control of the droplet sample as described above.
  • the volume of the capillary ie, the outlet channel
  • the volume of the capillary is smaller than the volume of the inlet channel, wherein the cross-sectional dimension of the outlet channel is less than or equal to the cross-sectional dimension of the inlet channel.
  • the volume of the liquid outlet passage is smaller than the volume of the liquid inlet passage, so that when the piston is closed, the resistance of the liquid entering the chip is greater than the resistance of the liquid returning to the liquid inlet passage, and the liquid is more likely to enter the inlet passage instead of the outlet passage.
  • the volume of the liquid passage is smaller than the volume of the inlet passage.
  • the cross-sectional size of the outlet passage is smaller than the cross-sectional size of the inlet passage.
  • the capillary 6 has a cross-sectional dimension smaller than a cross-sectional dimension of the inlet passage, and the inlet passage has a cross-sectional dimension of 1 mm to 10 mm, preferably 2 mm to 7 mm, further It is preferably 2 mm to 5 mm. In one embodiment of the present invention, the capillary 6 has a cross-sectional dimension of 2% to 20%, preferably 5% to 15%, further preferably 8% to 12%, of the cross-sectional dimension of the inlet passage.
  • the cross-sectional dimension of 6 is from 20 ⁇ m to 2000 ⁇ m, preferably from 50 ⁇ m to 1000 ⁇ m, further preferably from 100 ⁇ m to 500 ⁇ m, further preferably from 200 ⁇ m to 400 ⁇ m.
  • the liquid outlet 4 is connected to the microfluidic chip via a microfluidic chip tube.
  • a liquid flow control device for microfluidic control includes a hollow body 1 and a piston 2 movable in the body 1, the body 1 including a liquid inlet 3 and a liquid outlet 4, the liquid inlet 3
  • the movable piston 2 and the liquid outlet 4 form a liquid chamber of variable volume, the liquid chamber being provided with a partition wall 5, which is divided by the partition wall 5 from the liquid inlet 3 to the piston 2
  • An inlet passage at a junction with the partition wall and a discharge passage of the piston 2 and the partition wall to the outlet port 4 the outlet passage including a capillary tube 6 and a filler filled between the capillary tube 6 and the outlet passage,
  • the filler is made of a hydrophobic material to prevent liquid from entering between the capillary 6 and the outlet passage. This further improves the accuracy of the device.
  • a liquid flow control device for microfluidic control includes a hollow body 1 and a piston 2 movable in the body 1, the body 1 including a liquid inlet 3 and a liquid outlet 4, the liquid inlet 3
  • the movable piston 2 and the liquid outlet 4 form a liquid chamber of variable volume, and the liquid chamber is not provided with the partition wall 5, but is made of metal or a polymer such as polyetheretherketone or the like.
  • the filler acts as a partition wall 5 and at the same time serves to fix the capillary 6, which is divided by a filling into a liquid inlet passage from the inlet 3 to the junction of the piston 2 and the filler and the piston 2 is combined with the filler.
  • the liquid outlet passage is a capillary tube 6, and when the piston 2 is in an open position, liquid flows from the liquid inlet 3 through the liquid inlet passage and The liquid outlet passage is for discharging the liquid outlet port 4.
  • the piston 2 closes the capillary tube 6 so that the resistance of the liquid into the liquid outlet passage is greater than the inlet liquid passage to prevent excess microfluid droplets from flowing out of the liquid outlet 4.
  • the cross-sectional dimension of the outlet passage is a capillary cross-sectional dimension and is much smaller than the cross-sectional dimension of the inlet passage.
  • the liquid flow control device is a solenoid valve, but is not limited thereto, and may be other types of valves.
  • Fig. 5 is a schematic view showing the steps of a microfluidic control method for a liquid flow control device for microfluidic control according to the present invention.
  • the microfluidic control method for a liquid flow control device for microfluidic control includes the following steps:
  • a first step S1 the liquid flow control device is activated, the piston 2 is in the open position, and the liquid flows from the inlet 3 through the inlet passage and/or the liquid flows through the capillary 6 and is discharged from the outlet 4.
  • a second step S2 the liquid flow control device is stopped, the piston 2 is in the closed position, and the piston 2 closes the capillary 6 such that the liquid enters the capillary 6 such that the resistance is greater than the inlet passage to prevent excess microfluidic droplets from flowing out of the outlet.
  • the capillary 6 holds the residual microfluidic droplets in the capillary 6 by capillary action.
  • the method of the present invention allows the fluid to prevent excess microfluidic droplets from flowing out of the liquid outlet at the moment of closure, and the capillary 6 retains residual microfluidic droplets in the capillary 6 by capillary action, and the liquid in the chip no longer flows.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

一种用于微流控制的液体流量控制装置和微流控制方法,该装置包括中空主体(1)和设在主体(1)内可移动的活塞(2),主体(1)包括进液口(3)和出液口(4),进液口(3)、可移动的活塞(2)和出液口(4)形成可变化容积的液体腔室,液体腔室设有分隔壁(5),液体腔室经由分隔壁(5)分为由进液口(3)到活塞(2)与分隔壁结合处的进液通道,和活塞(2)与分隔壁结合处到出液口(4)的出液通道,出液通道包括毛细管(6)和填充在毛细管(6)和出液通道之间的填充物,活塞(2)处于开启位置,液体从进液口(3)流经进液通道和/或流经出液通道并从出液口(4)排出,活塞(2)处于闭合位置,活塞(2)闭合毛细管(6)使得液体进入出液通道的阻力大于进入进液通道的阻力以防止多余的微流液滴从出液口(4)流出。

Description

一种用于微流控制的液体流量控制装置和微流控制方法 技术领域
本发明涉及微流控制领域,特别涉及一种用于微流控制的液体流量控制装置和微流控制方法。
背景技术
随着微流控芯片技术的飞速发展,对微流控通道的开关控制越来越被关注,特别是对液体流量控制提出了更精确的要求。微流控芯片对流入的液体流量有着微升级的精度要求,而目前的液体流量控制装置难以满足精度需求。在微流控领域中经常使用阀门去控制液体流动的开启或停止。但是微流控芯片管道的尺寸通常非常细小,一般是微米级别或毫米级别,液体的流量需要精确控制。所以阀门在闭合的瞬间,如果不能立即的阻断液体的流动,不仅影响到进入芯片中的液体的体积的精确度,而且在微滴的操控过程中,影响微滴的定位,以及对微滴的定量分割和融合等。
发明内容
专利文献CN205663974U公开了一种微流道用温控阀,其包括:位于微流道控制芯片内的阀体,阀体内设有温控阀芯组件,所述温控阀芯组件包括:储液腔,该储液腔内液体通过温控装置升温膨胀或降温收缩,以驱动阀芯移动,使阀关闭或打开;所述温控装置处理器模块、用于对储液腔内液体进行温度控制的半导体致冷片,所述半导体致冷片与驱动模块相连;所述处理器模块适于通过驱动模块控制半导体致冷片升温,或通过控制驱动模块改变其电流输出方向,实现半导体致冷片降温;所述处理器模块还与用于检测液体温度的温度传感器相连;以及所述处理器模块还与按键模块、显示模块相连,将通过按键模块设定阀的开度值,经显示模块显示;所述处理器模块适于通过 设定的开度值转换为储液腔内液体的温度值;即当阀打开后,若需要调小阀的开度,则通过半导体致冷片对储液腔内液体进行升温;或当阀打开后,若需要调大阀的开度,则通过半导体致冷片对储液腔内液体进行降温。该专利采用温控的原理实现了对阀的控制,并将温控阀集成于微流道控制芯片内,满足了各微流道液体之间流量调节,但该专利结构复杂、部件多且对外部环境要求比较高,不适用于多种较为严苛的环境,且由于采用温控无法迅速切断液体通道使得液体流量控制精度不高。
专利文献CN2503286Y公开了一种流量控制电磁阀,包括柱塞式阀部件,微电机,带动柱塞阀芯升降的转动丝杆、固定螺母组成的旋转/轴向移动转换装置,微电机由多磁极电磁定子与多磁极永磁体转子组成,所述转动丝杆直接与转子相连。该专利采用电磁阀进行液体流量控制,但该专利虽然采用电磁控制能够迅速切换开启闭合状态,但由于活塞闭合仍然使得液体在活塞闭合的同时压入出液通道使得多余的液体进入芯片等,降低了液体流量控制精度。
专利文献CN204512599U公开了一种三通微流控电磁阀,其主要由电磁阀体(1),阀芯的二通管(7)组成,电磁阀体(1)为一个空心圆柱体,圆柱体中心上下贯通形成一个电磁阀内腔(5),电磁阀内腔(5)的上部安装有一个微型线圈组成的电磁体(3),电磁体(3)中心包裹着电磁阀外接管(4);电磁阀外接管(4)上端伸出电磁阀体(1)10~20mm长,下端与电磁体(3)平齐,接通剩余的中下部电磁阀内腔(5)与电磁阀体(1)外部大气的通路;在中下部电磁阀内腔(5)的壁上安装有可滑动旋转的、圆筒状的一个电磁阀内腔圈;电磁阀体(1)的内部除去电磁阀内腔(5)和电磁体(3)所占的空间外,安装有一个微型的旋转电机(2),旋转电机(2)能够顺时针或逆时针旋转,旋转电机(2)通过齿轮传动控制着电磁阀内腔(5)中下部壁上的电磁阀内腔圈的水平旋转;旋转电机(2)顺时针或逆时针的每次开动一次,能够带动电磁阀内腔圈上的内腔圈凸槽(6)刚好顺时针水平旋转90°、或逆时针水平旋转90°;在中下部电磁阀内腔(5),安装有一个下部端头封死的二通管(9),二通管(9)的顶端距离电磁阀外接管(4)和电磁体(3)的下端平面有一个H 长度,在H长度的电磁阀内腔(5)内安装有伸缩行程为H长度的弹性装置(7);弹性装置(7)的上端固定在电磁体(3)的下端平面上,弹性装置(7)的下端顶着二通管(9)的顶部的铁磁性耳子(18)上;二通管(9)的上部加工有凹槽(19)与内腔圈凸槽(6)相配合;二通管(9)的下端伸出电磁阀体(1),在封死的下部端头侧面开有一个圆形的,直径为Φ100μm~Φ500μm的圆开口(15)。该专利采用电磁阀进行液体流量控制,使用简单,但该专利虽然采用电磁控制能够迅速切换开启闭合状态,但由于活塞闭合仍然使得液体在活塞闭合的同时压入出液通道使得多余的液体进入芯片等,降低了液体流量控制精度。
因此,需要一种适用多种复杂环境、简单耐用且流体控制精度高的专用于微流控制的液体流量控制装置和微流控制方法。
上述信息仅仅用于增强对本发明背景的理解,因此可能包含不构成在本领域普通技术人员公知的现有技术的信息。
为了解决上述问题,本发明提供了一种用于微流控制的液体流量控制装置和微流控制方法。该装置不但可以实现精确的液体流量控制,能够迅速切换液体流量开启和闭合,且一旦闭合,不会有多余的微流液滴进入出液通道,而是从进液口排出,而且该液体流量控制装置结构简单、适用于多种较为严苛、精密的环境,应用范围广,成本低且安全可靠、无需维护。
本发明的目的是通过以下技术方案予以实现。
根据本发明的一方面,一种用于微流控制的液体流量控制装置包括中空的主体和设在主体内可移动的活塞,所述主体包括进液口和出液口,所述进液口、可移动的活塞和出液口形成可变化容积的液体腔室,所述液体腔室设有分隔壁,所述液体腔室经由分隔壁分为由进液口到活塞与分隔壁结合处的进液通道,以及活塞与分隔壁结合处到出液口的出液通道,所述出液通道包括毛细管和填充在毛细管和出液通道之间的填充物,当活塞处于开启位置,液体从进液口流经进液通道和/或液体流经毛细管并从出液口排出,当活塞处于闭合位置时,活塞闭合毛细管使得液体进入毛细管的阻力大于进入进液通道以防止多余的微流液滴从出液口流出。
优选地,所述毛细管的容积小于所述进液通道的容积。
优选地,所述毛细管的截面尺寸小于或等于所述进液通道的截面尺寸。
优选地,所述毛细管的截面尺寸小于所述进液通道的截面尺寸,所述进液通道的截面尺寸为1毫米到10毫米,优选为2毫米到7毫米,进一步优选为2毫米到5毫米。
优选地,所述毛细管的截面尺寸为所述进液通道的截面尺寸的2%~20%,优选5%到15%,进一步优选8%到12%。所述毛细管的截面尺寸为20微米到2000微米,优选为50微米到1000微米,进一步优选为100微米到500微米,进一步优选为200微米到400微米。
优选地,所述出液口经由微流控芯片管道连接微流控芯片。
优选地,毛细管和分隔壁平齐使得当活塞处于闭合位置时,活塞同时抵接分隔壁和毛细管。
对于填充物的材料没有具体地限定,但优选填充物本身耐有机溶剂、耐酸、耐碱,例如:高分子聚合物,例如聚(甲基)丙烯酸甲酯、聚碳酸酯、聚四氟乙烯、聚乙烯、聚醚醚酮等,低熔点金属,例如锡、低熔点的合金铝等,优选地所述填充物由疏水材料制成以防止液体进入毛细管和出液通道之间,例如聚四氟乙烯、聚乙烯、聚醚醚酮等高分子聚合物材料。
优选地,本发明的装置中可以不采用分隔壁,而是利用填充物同样起到了分隔壁的作用,此时要求液体不能透过填充物,此时例如可以使用低熔点金属,例如锡、低熔点的合金铝等作为填充物,并且同时起到分割进液通道和出液通道的作用。
对于本发明中使用的毛细管的材质没有什么具体的限定,可以通常使用用于微流控制领域的材料,例如可以采用金属、玻璃、高分子聚合物材,例如聚醚醚酮(PEEK)等材料制成的毛细管。
优选地,所述液体流量控制装置为电磁阀。
本发明的微流控制装置也可以是对现有的微流控装置的电磁阀进行改造而得到的、
本发明提供一种用于微流控制的电磁阀,其中,在电磁阀的出液 通道中填充填充物,并将毛细管***填充物中以使进入电磁阀的液体样品经由毛细管从出口流出,并且电磁阀的活塞闭合毛细管时,使得液体进入毛细管的阻力大于进入电磁阀的进液通道的阻力以防止多余的微流液滴从出口流出。
此时,对于毛细管、填充物、出液通道和进液通道的描述可以参考上文中所列举的各种情况。
根据本发明的另一方面,根据所述的用于微流控制的液体流量控制装置的微流控制方法包括以下步骤:
在第一步骤中,启动液体流量控制装置,活塞处于开启位置,液体从进液口流经进液通道和/或液体流经毛细管并从出液口排出。
在第二步骤中,停止液体流量控制装置,活塞处于闭合位置,活塞闭合毛细管使得液体进入毛细管的阻力大于进入进液通道以防止多余的微流液滴从出液口流出,毛细管通过毛细作用保持毛细管中的残余微流液滴。
采用本发明的装置和方法,可以实现:活塞闭合的同时,毛细管使得液体进入毛细管的阻力大于进液通道以防止多余的微流液滴流出出液口,毛细管通过毛细作用保持毛细管中的残余微流液滴,由于该液体流量控制装置结构均是机械部件,构造简单,不涉及与温度等与环境有关的部件,也不包含电子部件,适用于多种较为严苛的环境,应用范围广,成本低且安全可靠、无需维护。
此外,本发明可以提供一种目前市场上难以找到的合适的电磁阀,以实现对液体进行精密的控制,只要对市场上销售的电磁阀进行结构上的改造即可获得本发明的装置,实现本发明的效果,操作简单,不会显著增加成本。
上述说明仅是本发明技术方案的概述,为了能够使得本发明的技术手段更加清楚明白,达到本领域技术人员可依照说明书的内容予以实施的程度,并且为了能够让本发明的上述和其它目的、特征和优点能够更明显易懂,下面以本发明的具体实施方式进行举例说明。
附图说明
通过阅读下文优选的具体实施方式中的详细描述,本发明各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。说明书附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。显而易见地,下面描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。而且在整个附图中,用相同的附图标记表示相同的部件。
在附图中:
图1为现有技术中用于微流控制的液体流量控制装置的开启状态的结构示意图。
图2为现有技术中用于微流控制的液体流量控制装置的闭合状态的结构示意图。
图3为本发明一个实施例的用于微流控制的液体流量控制装置的开启状态的结构示意图。
图4为本发明的一个实施例的用于微流控制的液体流量控制装置的闭合状态的结构示意图。
图5为本发明的用于微流控制的液体流量控制装置的微流控制方法的步骤示意图。
具体实施方式
下面将参照附图更详细地描述本发明的具体实施例。虽然附图中显示了本发明的具体实施例,然而应当理解,可以以各种形式实现本发明而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本发明,并且能够将本发明的范围完整的传达给本领域的技术人员。
需要说明的是,在说明书及权利要求当中使用了某些词汇来指称特定组件。本领域技术人员应可以理解,技术人员可能会用不同名词来称呼同一个组件。本说明书及权利要求并不以名词的差异来作为区分组件的方式,而是以组件在功能上的差异来作为区分的准则。如在通篇说明书及权利要求当中所提及的“包含”或“包括”为一开放式 用语,故应解释成“包含但不限定于”。说明书后续描述为实施本发明的较佳实施方式,然所述描述乃以说明书的一般原则为目的,并非用以限定本发明的范围。本发明的保护范围当视所附权利要求所界定者为准。
在微流控领域中经常使用阀门去控制液体流动的开启或停止。但是微流控芯片管道的尺寸通常非常细小,从几微米到几百微米,液体的流量需要精确的控制。所以阀门在闭合的瞬间,不能立即的阻断液体的流动,不仅影响到进入芯片中液体的体积的精确度,而且在微滴的操控过程中,影响微滴的定位,以及对微滴的定量分割和融合等。
为了更好地理解本发明,首先示意性介绍现有技术,图1和图2是现有技术中用于微流控制的液体流量控制装置的开启状态和闭合状态的结构示意图。如图1所示,如电磁阀的液体流量控制装置在通电的情况下,活塞向上拉起,液体从进液口流入液体腔室而后从出液口排出,从而进入微流控芯片。如图2所示,如电磁阀的液体流量控制装置在断电的情况下,活塞向下运动,阻断液体的流动。但是当液体流量控制装置发出闭合命令时,液体流量控制装置虽然立即执行闭合命令。但是微滴并没有立刻停止下来,会继续向前运动一小段距离。原因是活塞向下运动,堵住液体运动的同时也压入少量的液体,进而推动微滴继续向前运动,进而影响对微滴精确控制的精确性。因而不能完成特定体积微滴的生成,也不能定量的完成微滴的分割和融合等常规操作。
为便于对本发明实施例的理解,下面将结合附图以几个具体实施例为例做进一步的解释说明,且各个附图并不构成对本发明实施例的限定。
实施例1
在一个实施例中,一种用于微流控制的液体流量控制装置包括中空的主体1和设在主体1内可移动的活塞2,所述主体1包括进液口3和出液口4,所述进液口3、可移动的活塞2和出液口4形成可变化容积的液体腔室,所述液体腔室设有分隔壁5,所述液体腔室经由分隔壁5分为由进液口3到活塞2与分隔壁结合处的进液通道,以及活塞2与分 隔壁结合处到出液口4的出液通道,所述出液通道包括毛细管6和填充在毛细管6和出液通道之间的填充物,当活塞2处于开启位置,液体从进液口3流经进液通道和/或液体流经出液通道并从出液口4排出,当活塞2处于闭合位置时,活塞2闭合毛细管6使得液体进入毛细管6的阻力大于进入进液通道以防止多余的微流液滴从出液口4流出。
图3和图4是本发明一个实施例的用于微流控制的液体流量控制装置的开启状态和闭合状态的结构示意图,如图3所示,液体流量控制装置在通电的情况下,活塞向上拉起,液体在负压下从进液口流入液体腔室而后排出出液口,从而进入微流控芯片。如图4所示,液体流量控制装置在断电的情况下,活塞向下运动时直接堵住毛细管,其余部分用填充物填满,从而液体进入芯片的阻力大于液体返回进液通道的阻力。液体流量控制装置在执行断电操作时,活塞向下运动,并没有把多余的液体压入芯片,而是把液体压回液体流量控制装置。从而微滴(例如可以是油包水微滴)能立即的停止下来,精确的控制了液体的流量,及微滴的运动。并且,毛细管还经由毛细作用保持毛细管内的残余微流液滴,进一步提高了精确性。
当采用市场上购买的现有的微流控制用电磁阀(例如图1所示的电磁阀)时,按照电磁阀的出液通道的大小设计填充物,然后将中间可以***并固定毛细管的填充物,例如高分子材料、金属材料质的填充物填充到电磁阀的出液通道中,并将毛细管***填充物中,从而获得图3和图4所示的结构,这样可以实现对现有市场上购买的电磁阀的简单地改造,从而实现如上所述的对液滴样品精确地控制。
实施例2
在本发明的一个实施方式中,所述毛细管即出液通道的容积小于所述进液通道的容积,其中,所述出液通道的截面尺寸小于或等于所述进液通道的截面尺寸。出液通道的容积小于所述进液通道的容积进一步使得当活塞闭合时,液体进入芯片的阻力大于液体返回进液通道的阻力,液体更容易进入进液通道而不是出液通道,所述出液通道的容积小于所述进液通道的容积有多种方式,例如,所述出液通道的截面尺寸小于所述进液通道的截面尺寸。
在本发明的一个实施方式中,所述毛细管6的截面尺寸小于所述进液通道的截面尺寸,所述进液通道的截面尺寸为1毫米到10毫米,优选为2毫米到7毫米,进一步优选为2毫米到5毫米。在本发明的一个实施方式中,所述毛细管6的截面尺寸为所述进液通道的截面尺寸的2%~20%,优选5%到15%,进一步优选8%到12%,所述毛细管6的截面尺寸为20微米到2000微米,优选为50微米到1000微米,进一步优选为100微米到500微米,进一步优选为200微米到400微米。
在本发明的一个实施方式中,所述出液口4经由微流控芯片管道连接微流控芯片。
实施例3
一种用于微流控制的液体流量控制装置包括中空的主体1和设在主体1内可移动的活塞2,所述主体1包括进液口3和出液口4,所述进液口3、可移动的活塞2和出液口4形成可变化容积的液体腔室,所述液体腔室设有分隔壁5,所述液体腔室经由分隔壁5分为由进液口3到活塞2与分隔壁结合处的进液通道以及活塞2与分隔壁结合处到出液口4的出液通道,所述出液通道包括毛细管6和填充在毛细管6和出液通道之间的填充物,当活塞2处于开启位置,液体从进液口3流经进液通道和出液通道以从出液口4排出,毛细管6和分隔壁5平齐使得当活塞2处于闭合位置时,活塞2同时抵接分隔壁5和毛细管6。
在本发明的一个实施方式中,所述填充物由疏水材料制成以防止液体进入毛细管6和出液通道之间。这进一步提高了本装置的精度。
实施例4
一种用于微流控制的液体流量控制装置包括中空的主体1和设在主体1内可移动的活塞2,所述主体1包括进液口3和出液口4,所述进液口3、可移动的活塞2和出液口4形成可变化容积的液体腔室,所述液体腔室不设有分隔壁5,而是采用金属制、或者高分子聚合物如聚醚醚酮等的填充物来充当分隔壁5,并且同时用于固定毛细管6,所述液体腔室经由填充物分为由进液口3到活塞2与填充物结合处的进液通道以及活塞2与填充物结合处到出液口4的出液通道,所述出液通道为毛细管6,当活塞2处于开启位置,液体从进液口3流经进液通道和 出液通道以排出出液口4,当活塞2处于闭合位置时,活塞2闭合毛细管6使得液体进入出液通道的阻力大于进液通道以防止多余的微流液滴从出液口4流出。所述出液通道的截面尺寸为毛细管截面尺寸且远小于进液通道截面尺寸。通过不使用分隔壁5,可以进一步简化了装置的结构。
在本发明的一个实施方式中,所述液体流量控制装置为电磁阀,但不仅限于此,也可以是其他类型的阀。
图5为本发明的用于微流控制的液体流量控制装置的微流控制方法的步骤示意图。用于微流控制的液体流量控制装置的微流控制方法包括以下步骤:
在第一步骤S1中,启动液体流量控制装置,活塞2处于开启位置,液体从进液口3流经进液通道和/或液体流经毛细管6并从出液口4排出。
在第二步骤S2中,停止液体流量控制装置,活塞2处于闭合位置,活塞2闭合毛细管6使得液体进入毛细管6使的阻力大于进液通道以防止多余的微流液滴从出液口流出,毛细管6通过毛细作用保持毛细管6中的残余微流液滴。
本发明的方法使得流体在关闭的瞬间,防止了多余的微流液滴流出出液口,毛细管6通过毛细作用保持毛细管6中的残余微流液滴,芯片中的液体不再流动。
本申请接受各种修改和可替换的形式,具体的实施方式已经在附图中借助于实施例来显示并且已经在本申请详细描述。但是,本申请不意在受限于公开的特定形式。相反,本申请意在包括本申请范围内的所有修改形式、等价物、和可替换物,本申请的范围由所附权利要求及其法律等效物限定。

Claims (11)

  1. 一种用于微流控制的液体流量控制装置,其包括中空的主体(1)和设在主体(1)内可移动的活塞(2),所述主体(1)包括进液口(3)和出液口(4),所述进液口(3)、可移动的活塞(2)和出液口(4)形成可变化容积的液体腔室,所述液体腔室设有分隔壁(5),所述液体腔室经由分隔壁(5)分为由进液口(3)到活塞(2)与分隔壁结合处的进液通道,以及活塞(2)与分隔壁结合处到出液口(4)的出液通道,其特征在于:所述出液通道包括毛细管(6)和填充在毛细管(6)和出液通道之间的填充物,当活塞(2)处于开启位置,液体从进液口(3)流经进液通道和/或液体流经毛细管(6)并从出液口(4)排出,当活塞(2)处于闭合位置时,活塞(2)闭合毛细管(6)使得液体进入毛细管(6)的阻力大于进入进液通道的阻力以防止多余的微流液滴从出液口(4)流出。
  2. 根据权利要求1所述的用于微流控制的液体流量控制装置,其特征在于:所述液体流量控制装置为电磁阀。
  3. 一种用于微流控制的电磁阀,其中,在电磁阀的出液通道中填充填充物,并将毛细管(6)***填充物中以使进入电磁阀的液体样品经由毛细管(6)从出口(4)流出,并且电磁阀的活塞(2)闭合毛细管(6)时,使得液体进入毛细管(6)的阻力大于进入电磁阀的进液通道的阻力以防止多余的微流液滴从出口流出。
  4. 根据权利要求1~3中任一项所述的用于微流控制的液体流量控制装置,其特征在于:所述毛细管(6)的容积小于所述进液通道的容积。
  5. 根据权利要求1~4中任一项所述的用于微流控制的液体流量控制装置,其特征在于:所述毛细管(6)的截面尺寸小于所述进液通道的截面尺寸,所述进液通道的截面尺寸为1毫米到10毫米,优选为2毫米到7毫米,进一步优选为2毫米到5毫米。
  6. 根据权利要求1~5中任一项所述的用于微流控制的液体流量控制装置,其特征在于:所述毛细管(6)的截面尺寸为所述进液通道的截面尺寸的2%~20%,优选5%到15%,进一步优选8%到12%。
  7. 根据权利要求1~6中任一项所述的用于微流控制的液体流量控制装置,其特征在于:所述出液口(4)经由微流控芯片管道连接微流控芯片。
  8. 根据权利要求1~7中任一项所述的用于微流控制的液体流量控制装置,其特征在于:毛细管(6)和分隔壁(5)平齐使得当活塞(2)处于闭合位置时,活塞(2)同时抵接分隔壁(5)和毛细管(6)。
  9. 根据权利要求1~8中任一项所述的用于微流控制的液体流量控制装置,其特征在于:利用所述填充物代替所述分隔壁(5),所述出液通道的截面尺寸为毛细管截面尺寸且小于进液通道截面尺寸。
  10. 根据权利要求1~9中任一项所述的用于微流控制的液体流量控制装置,其特征在于:所述填充物由疏水材料制成以防止液体进入毛细管(6)和出液通道之间。
  11. 根据权利要求1~10中任一项所述的用于微流控制的液体流量控制装置的微流控制方法,其包括以下步骤:
    在第一步骤(S1)中,启动液体流量控制装置,活塞(2)处于开启位置,液体从进液口(3)流经进液通道和/或液体流经毛细管(6)并从出液口(4)排出;
    在第二步骤(S2)中,停止液体流量控制装置,活塞(2)处于闭合位置,活塞(2)闭合毛细管(6)使得液体进入毛细管(6)的阻力大于进入进液通道以防止多余的微流液滴从出液口(4)流出,毛细管(6)通过毛细作用保持毛细管(6)中的残余微流液滴。
PCT/CN2016/111277 2016-12-21 2016-12-21 一种用于微流控制的液体流量控制装置和微流控制方法 WO2018112786A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/111277 WO2018112786A1 (zh) 2016-12-21 2016-12-21 一种用于微流控制的液体流量控制装置和微流控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/111277 WO2018112786A1 (zh) 2016-12-21 2016-12-21 一种用于微流控制的液体流量控制装置和微流控制方法

Publications (1)

Publication Number Publication Date
WO2018112786A1 true WO2018112786A1 (zh) 2018-06-28

Family

ID=62624433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/111277 WO2018112786A1 (zh) 2016-12-21 2016-12-21 一种用于微流控制的液体流量控制装置和微流控制方法

Country Status (1)

Country Link
WO (1) WO2018112786A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108955493A (zh) * 2018-08-20 2018-12-07 安徽胜华波汽车电器有限公司 一种汽车微电机丝杆检测装置
CN112374580A (zh) * 2020-12-02 2021-02-19 合肥学院 稳态层流滤膜池

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5958344A (en) * 1995-11-09 1999-09-28 Sarnoff Corporation System for liquid distribution
JP2000065220A (ja) * 1998-08-12 2000-03-03 Kitz Corp 調節弁
CN2503286Y (zh) * 2001-09-07 2002-07-31 宜兴市四通塑粉有限公司 流量控制电磁阀
US6782746B1 (en) * 2000-10-24 2004-08-31 Sandia National Laboratories Mobile monolithic polymer elements for flow control in microfluidic devices
CN1745264A (zh) * 2002-12-04 2006-03-08 斯宾克斯公司 流体的可程控微量控制用装置和方法
CN101725720A (zh) * 2008-11-03 2010-06-09 大连八方经济技术有限公司 隔膜式稳压微调阀门
CN101907631A (zh) * 2010-07-19 2010-12-08 中国科学院长春光学精密机械与物理研究所 微流控芯片内的双液体毛细微流控制阀及其制作方法
CN102215967A (zh) * 2008-11-13 2011-10-12 皇家飞利浦电子股份有限公司 微流体***的入口与毛细管通道的连接
WO2013041700A1 (fr) * 2011-09-22 2013-03-28 Commissariat à l'énergie atomique et aux énergies alternatives Pompe d'injection d'un fluide, et notamment micropompe utilisable pour delivrer une dose determinee
CN204512599U (zh) * 2015-01-20 2015-07-29 重庆科技学院 三通微流控电磁阀
CN205663974U (zh) * 2016-05-16 2016-10-26 江苏微全芯生物科技有限公司 温控阀芯组件、温控阀、微流道控制芯片及控制***

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5958344A (en) * 1995-11-09 1999-09-28 Sarnoff Corporation System for liquid distribution
JP2000065220A (ja) * 1998-08-12 2000-03-03 Kitz Corp 調節弁
US6782746B1 (en) * 2000-10-24 2004-08-31 Sandia National Laboratories Mobile monolithic polymer elements for flow control in microfluidic devices
CN2503286Y (zh) * 2001-09-07 2002-07-31 宜兴市四通塑粉有限公司 流量控制电磁阀
CN1745264A (zh) * 2002-12-04 2006-03-08 斯宾克斯公司 流体的可程控微量控制用装置和方法
CN101725720A (zh) * 2008-11-03 2010-06-09 大连八方经济技术有限公司 隔膜式稳压微调阀门
CN102215967A (zh) * 2008-11-13 2011-10-12 皇家飞利浦电子股份有限公司 微流体***的入口与毛细管通道的连接
CN101907631A (zh) * 2010-07-19 2010-12-08 中国科学院长春光学精密机械与物理研究所 微流控芯片内的双液体毛细微流控制阀及其制作方法
WO2013041700A1 (fr) * 2011-09-22 2013-03-28 Commissariat à l'énergie atomique et aux énergies alternatives Pompe d'injection d'un fluide, et notamment micropompe utilisable pour delivrer une dose determinee
CN204512599U (zh) * 2015-01-20 2015-07-29 重庆科技学院 三通微流控电磁阀
CN205663974U (zh) * 2016-05-16 2016-10-26 江苏微全芯生物科技有限公司 温控阀芯组件、温控阀、微流道控制芯片及控制***

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108955493A (zh) * 2018-08-20 2018-12-07 安徽胜华波汽车电器有限公司 一种汽车微电机丝杆检测装置
CN108955493B (zh) * 2018-08-20 2024-03-15 安徽胜华波汽车电器有限公司 一种汽车微电机丝杆检测装置
CN112374580A (zh) * 2020-12-02 2021-02-19 合肥学院 稳态层流滤膜池

Similar Documents

Publication Publication Date Title
WO2021218399A1 (zh) 微流控芯片和检测***
EP2270334B1 (en) Metering pump and its driving device
CN108223814B (zh) 一种用于微流控制的液体流量控制装置和微流控制方法
WO2018112786A1 (zh) 一种用于微流控制的液体流量控制装置和微流控制方法
CN106902904B (zh) 用于微流控芯片的液体控制阀门装置及其微流控芯片
CN210585000U (zh) 一种液体存储控释装置以及生物检测芯片
CN105715865A (zh) 电磁微阀装置
CN205663974U (zh) 温控阀芯组件、温控阀、微流道控制芯片及控制***
CN103321285B (zh) 一种用于马桶冲水的***型排水阀
ES2711088T3 (es) Módulo fluídico, dispositivo y procedimiento para manipular un líquido
CN105465480A (zh) 一种相变阀装置及其制备方法
Xu et al. Phaseguide-assisted blood separation microfluidic device for point-of-care applications
US9328849B2 (en) Microdevice structure of microchannel chip
Oskooei et al. Bubble gate for in-plane flow control
JP2006189161A (ja)
US20130303355A1 (en) Reagent vessel insert and reagent vessel
Feng et al. Fabrication and characterization of thermally driven fast turn-on microvalve with adjustable backpressure design
JP2005134187A (ja) マイクロチップの微細流路における液体送液方法
LaCroix-Fralish et al. A rapid prototyping technique for valves and filters in centrifugal microfluidic devices
JP4454350B2 (ja) 薬液供給装置
Peng A micro surface tension pump (MISPU) in a glass microchip
US8141575B2 (en) Valve and production method thereof
CN105805400A (zh) 温控阀芯组件、温控阀、微流道控制芯片及控制***
CN113090800B (zh) 一种具有自动断流功能的机械式阀门
JPH09296877A (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16924597

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16924597

Country of ref document: EP

Kind code of ref document: A1