WO2018110157A1 - 銀ナノワイヤの製造方法、銀ナノワイヤ、分散液、及び透明導電膜 - Google Patents

銀ナノワイヤの製造方法、銀ナノワイヤ、分散液、及び透明導電膜 Download PDF

Info

Publication number
WO2018110157A1
WO2018110157A1 PCT/JP2017/040216 JP2017040216W WO2018110157A1 WO 2018110157 A1 WO2018110157 A1 WO 2018110157A1 JP 2017040216 W JP2017040216 W JP 2017040216W WO 2018110157 A1 WO2018110157 A1 WO 2018110157A1
Authority
WO
WIPO (PCT)
Prior art keywords
silver
metal
copper
silver nanowire
dispersion
Prior art date
Application number
PCT/JP2017/040216
Other languages
English (en)
French (fr)
Inventor
智央 山内
坂本 圭
Original Assignee
マイクロ波化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マイクロ波化学株式会社 filed Critical マイクロ波化学株式会社
Priority to KR1020197015514A priority Critical patent/KR102465793B1/ko
Priority to US16/307,877 priority patent/US20190308248A1/en
Priority to CN201780072727.2A priority patent/CN110023009B/zh
Publication of WO2018110157A1 publication Critical patent/WO2018110157A1/ja
Priority to US17/541,553 priority patent/US20220088678A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0547Nanofibres or nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0466Alloys based on noble metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/762Nanowire or quantum wire, i.e. axially elongated structure having two dimensions of 100 nm or less

Definitions

  • the present invention relates to a method for producing silver nanowires having a metal lump in the length direction.
  • a transparent conductive film is a thin film having both visible light transmittance and electrical conductivity, and is widely used as a transparent electrode for liquid crystal displays, electroluminescence displays, touch panels, solar cells, and the like.
  • the sputtered film of indium tin oxide (ITO) has high transparency and conductivity, so it is suitable for small applications of around 4 inches such as smartphones and medium-sized applications of around 7 to 10 inches such as tablet terminals. Widely used as a film sensor for capacitive touch panels.
  • a transparent conductive film containing metal nanowires that can be manufactured by a liquid phase method, has both low resistance and transparency, and has flexibility has been studied.
  • a transparent conductive film using silver nanowires is particularly attracting attention because it has high conductivity and stability.
  • ITO is a kind of ceramic and is very brittle, but silver has excellent malleability and ductility among metals, and the resistance to bending is further improved in the form of a nanowire.
  • a polyol method in which silver nitrate is reduced with ethylene glycol, which is a polyhydric alcohol, in the presence of polyvinylpyrrolidone (PVP) is well known (see, for example, Patent Document 1).
  • PVP polyvinylpyrrolidone
  • a silver nanowire obtained by the polyol method it has a five-fold multiple twin structure in which five (100) planes are adjacent to the silver crystal plane growth direction [100] and ten (111) planes are covered. Therefore, the cross section of the silver nanowire is pentagonal.
  • Non-Patent Document 1 describes the improvement of the wire diameter and the optical characteristics.
  • the wire diameter is further reduced to 40, 30, and 20 nm, and the peak top of plasmon absorption peculiar to silver nanowires in the visible light region is blue shifted to 375, 370, and 365 nm to a short wavelength.
  • a method for improving the transparency in the visible light region has been proposed.
  • Non-Patent Document 1 the absorption maximum of the plasmon absorption band can be shifted to the short wavelength side by reducing the wire diameter of the silver nanowire.
  • the thinner the wire diameter the lower the thermal stability. Therefore, the wire is broken in the process of applying silver nanowires to the film and drying, so that the expected conductivity cannot be obtained. was there.
  • the present invention has been made to solve the above problems, and provides a method for producing silver nanowires and the like that can shift the absorption maximum of the plasmon absorption band to a short wavelength without reducing the wire diameter of the silver nanowires.
  • the purpose is to do.
  • the inventors of the present invention have made extensive studies on the above-mentioned problems, and by making the metal lumps fly away in the length direction of the silver nanowires, the absorption maximum of the plasmon absorption band can be obtained without reducing the wire diameter. Has been found to be shiftable to the short wavelength side, and the present invention has been completed. That is, the present invention is as follows.
  • the method for producing silver nanowires according to the present invention comprises heating a mixed liquid of a dispersion of silver nanowires and a metal ion of a transition metal different from silver, and reducing the metal ions to form a transition metal mass on the surface of the silver nanowire. It has a metal lump in the length direction, which includes a step of precipitating out.
  • the heating temperature of the mixed solution may be 300 ° C. or lower in the step of depositing the transition metal mass.
  • the transition metal is copper
  • a silver lump is also deposited on both sides of each copper lump, and the copper lump deposited on the surface of the silver nanowires.
  • the method further includes a step of removing the lump, and the metal lump may be a silver lump deposited on both sides of the copper lump in the step of depositing copper.
  • the metal mass may be a transition metal mass precipitated in the step of depositing the transition metal.
  • the transition metal may be at least one selected from nickel, iron, and cobalt.
  • the silver nanowire by this invention has a metal lump jumping in the length direction, and a metal lump is a deposit.
  • the metal block may be one or more blocks selected from silver, nickel, iron, and cobalt.
  • the dispersion liquid by this invention has the said silver nanowire.
  • the transparent conductive film by this invention has the said silver nanowire.
  • the method for producing silver nanowires according to the present invention comprises heating a mixed liquid of a dispersion of silver nanowires and a metal ion of a transition metal different from silver to reduce the metal ions, thereby transition metal on the surface of the silver nanowires.
  • the metal oxide is separated in the lengthwise direction, with the step of allowing the transition metal mass to oxidize by exposing the silver nanowires with the transition metal mass deposited on the surface to the atmosphere It has a lump of things.
  • the silver nanowire by this invention has a lump of a metal oxide jumping in the length direction, and a lump of a metal oxide is an oxide of a metal deposit.
  • the absorption maximum of the plasmon absorption band can be shifted to a short wavelength without reducing the wire diameter.
  • the figure which shows the absorption spectrum of the dispersion A, B, C obtained in Example 1 The figure which shows the TEM image of the dispersion liquids A, B, and C obtained in Example 1
  • the figure which shows the FE-SEM image of the dispersion liquids A and C obtained in Example 1 The figure which shows the absorption spectrum of the dispersion liquid obtained in Example 1,2.
  • the figure which shows the surface orientation regarding the TEM image of the dispersion liquid obtained in Example 3, and precipitation of the nickel crystal on the silver nanowire surface The figure which shows the absorption spectrum of the dispersion liquid obtained in Example 3
  • the process comprises the step of heating the liquid mixture of the silver nanowire dispersion and the metal ions of the transition metal and reducing the metal ions to cause the transition metal masses to jump out on the surface of the silver nanowires.
  • the manufacturing method of the silver nanowire which has a metal lump in a jump is demonstrated.
  • the dispersion of the silver nanowire as the starting material may be any method as long as it is a dispersion having silver nanowires.
  • the silver nanowire may be manufactured using, for example, a polyol method, or manufactured by a method in which a silver complex solution is added and heated in an aqueous solvent containing a halogen compound or a reducing agent. It may also be manufactured by other methods. It is preferable that the starting silver nanowire has a constant wire diameter in the length direction, that is, a wire diameter that does not change in the length direction (for example, FIG. 2A and FIG. 3). (See (a)).
  • the constant wire diameter in the length direction means that, for example, for a single silver nanowire, a plurality of wire diameters are measured for a certain length (for example, every 50 nm), and the standard deviation is used using the measurement results. And the average standard deviation obtained by averaging the calculated standard deviation of one silver nanowire for a plurality of silver nanowires may be 5 nm or less.
  • the silver nanowire having a constant wire diameter in the length direction has two peak tops such as 347 nm and 371 nm in the plasmon absorption band in the methanol dispersion. Therefore, in the plasmon absorption band, it may be considered that the silver nanowire having such two peak tops is a silver nanowire having a constant wire diameter in the length direction.
  • the average diameter of the silver nanowires is large.
  • the average diameter of the starting silver nanowire may be 20 nm or more, 25 nm or more, or 30 nm or more.
  • the average diameter of the silver nanowire is small.
  • the average diameter of the silver nanowire may be 50 nm or less, 45 nm or less, or 40 nm or less.
  • the average diameter of the starting silver nanowire may be, for example, 20 nm or more and 50 nm or less.
  • the average diameter of the silver nanowire which is a starting material may be, for example, a value obtained by averaging the wire diameter measured at one place for one silver nanowire with respect to a plurality of silver nanowires.
  • the average of the wire diameters measured at a plurality of locations may be further averaged for a plurality of silver nanowires.
  • the dispersion of the silver nanowire that is the starting material may be before or after purification of the silver nanowire.
  • the dispersion solvent of the dispersion may be, for example, a polyol, alcohols such as water, methanol, ethanol, 1-propanol, 2-propanol, butanol, pentanol and hexanol, ethers such as tetrahydrofuran and dioxane, For example, amides such as formamide, acetamide, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidinone, organic sulfur compounds such as dimethyl sulfoxide, monoterpene alcohols such as terpineol, etc. Good. Examples of polyols are as described below.
  • the dispersion solvent may be used independently or may be used in mixture of two or more.
  • the dispersion liquid may contain a resin such as PVP or the like.
  • the metal ion is an ion of a transition metal different from silver.
  • a transition metal is not specifically limited,
  • the transition metal of a 4th period may be sufficient and transition metals other than a 4th period may be sufficient.
  • the transition metal in the fourth period is not particularly limited, for example, it may be at least one selected from copper, nickel, iron, cobalt, and titanium, and may be another transition metal in the fourth period.
  • the transition metal other than the fourth period is not particularly limited, but may be, for example, molybdenum or tungsten.
  • the metal ion may have a ligand or may not have a ligand.
  • a metal complex may be formed by coordinate bonding of ammonia or an organic ligand to a metal ion.
  • the metal ions may be, for example, copper ions, nickel ions, iron ions, and cobalt ions.
  • the metal complex may be, for example, an organometallic complex or an ammine complex.
  • the organometallic complex is not particularly limited.
  • the organometallic complex may have one or more kinds of ligands selected from ⁇ -diketonato ligands such as carboxylate ions and acetylacetonates, triphenylphosphine, and amine compounds. Good.
  • the carboxylate ion is not particularly limited, and examples thereof include acetate ion, formate ion, saturated fatty acid ion, unsaturated fatty acid ion, hydroxy acid ion, dicarboxylate ion, and bile acid ion.
  • the saturated fatty acid ion may be, for example, myristic acid ion, stearic acid ion, or the like.
  • Unsaturated fatty acid ions may be, for example, oleate ions, linoleate ions, and the like.
  • Hydroxy acid ions may be, for example, citrate ions, malate ions, and the like.
  • the dicarboxylate ion may be, for example, an oxalate ion, malonate ion, succinate ion, or the like.
  • the bile acid ion may be, for example, cholic acid ion.
  • a metal complex is not specifically limited, For example, what is shown by general formula [ Mn + (L) m ] X may be used.
  • M is an atom of a transition metal
  • n is a valence of the transition metal
  • L is NH 3 or an amine
  • m is a coordination number of the atom M.
  • X may be a halogen ion, NO 3 ⁇ , SO 4 2 ⁇ , PF 6 ⁇ , BF 4 ⁇ or the like.
  • the amine may be, for example, a heterocyclic compound such as R—NH 2 , RR′—NH, NH 2 —R—NH 2, pyridine, and bipyridine.
  • R and R ′ are each independently a hydrocarbon group which may have a substituent.
  • the ammine complex is a complex having ammine (ammonia) as a ligand. Examples of the ammine complex include a tetraammine copper complex, a hexaammine nickel complex, a hexaammine cobalt complex, and a hexaammine iron complex.
  • the metal complex may have, for example, a ligand that is a water molecule.
  • a metal complex in which the counter anion is an organic ligand or an ammine complex in which ammonia is a ligand is preferable.
  • the metal whose counter anion is an organic ligand Complexes and ammine complexes are preferred.
  • a metal complex having a carboxylate ion as a ligand is preferable, and for example, relatively inexpensive copper formate, copper acetate, nickel formate, nickel acetate, and the like can be suitably used.
  • a metal ion and a metal complex may be used independently, or multiple may be used in mixture.
  • a mixture of silver nanowire dispersion and metal ions is prepared by mixing both.
  • the mixing may be performed, for example, by mixing a dispersion of silver nanowires with a metal salt or a metal complex, or by mixing a dispersion of silver nanowires with a metal ion solution. Further, the metal ion solution may be dropped into a silver nanowire dispersion, for example.
  • the metal salt include transition metal halides, sulfates, nitrates, hydroxides, and the like.
  • the halide salt may be, for example, copper chloride, nickel chloride, iron chloride, cobalt chloride and the like.
  • the solvent for the metal ion solution include water, monovalent alcohol, polyol and the like.
  • the monovalent alcohol may be, for example, methanol, ethanol, 1-propanol, 2-propanol, butanol and the like. Examples of polyols are as described below.
  • the solvent may or may not contain a resin that is a viscosity modifier for dispersing transition metal ions.
  • the resin may be, for example, PVP.
  • PVP polyvinyl styrene
  • the weight average molecular weight of the PVP is not particularly limited, but may be within a range of 30,000 to 1,200,000, for example.
  • the process is not ask
  • the dispersion of the silver nanowire and the substance for preparing the metal complex are mixed, resulting in the dispersion of the silver nanowire and the metal complex. It may be mixed.
  • the substance for preparing the metal complex is not particularly limited, and examples thereof include transition metal inorganic salts and anions.
  • the inorganic salt may be, for example, copper chloride, copper sulfate, copper nitrate, nickel chloride, nickel sulfate, nickel nitrate or the like.
  • the anion may be, for example, a carboxylate such as sodium carboxylate or potassium carboxylate. Examples of sodium carboxylate include sodium acetate and sodium formate. Examples of potassium carboxylate include potassium acetate and potassium formate.
  • a substance for preparing a metal complex for example, when copper chloride and sodium acetate are used, copper acetate can be prepared by mixing both.
  • a part of the substance for preparing the metal complex may not become a metal complex. More materials are needed to produce silver nanowires with Therefore, from the viewpoint of yield, it is preferable to mix the metal complex and the silver nanowire dispersion.
  • the silver nanowire to be manufactured has a metal lump that jumps in the length direction.
  • the length direction of the silver nanowire is the long axis direction (longitudinal direction).
  • having a metal lump in a fly means that the silver nanowire has a plurality of metal lumps in the length direction.
  • the interval between the metal blocks is constant or indefinite.
  • the metal mass may be composed of the same metal as the metal ion, or may be composed of a different metal.
  • the flying metal lump of the silver nanowire to be manufactured is a silver metal lump
  • the metal ion metal is at least one selected from transition metals other than copper, for example, nickel, iron, cobalt, titanium, or molybdenum or tungsten
  • the flying metal mass of the silver nanowire to be manufactured is , A metal lump of the same metal as the metal ion.
  • the flying metal lump of the silver nanowire to be manufactured is a metal lump of silver and copper.
  • the flying metal lump existing on the surface of the silver nanowire may be a single metal lump or a plurality of metal lumps.
  • the wavelength of the absorption maximum of the plasmon absorption band in the methanol dispersion of the silver nanowire to be manufactured may be, for example, 367 nm or less, 365 nm or less, 363 nm or less, or 360 nm or less. It may be. From the viewpoint of realizing a larger blue shift, it is preferable that the wavelength of the absorption maximum be shorter. Further, the wavelength of the absorption maximum may be, for example, 300 nm or more.
  • the average diameter of the silver nanowires having the flying metal lump may be, for example, 23 nm or more, 27 nm or more, 30 nm or more, or may exceed 35 nm.
  • the average diameter of the silver nanowire may be, for example, 54 nm or less, 47 nm or less, or 40 nm or less. From the viewpoint of shortening the wavelength of the absorption maximum of the plasmon absorption band, a smaller average diameter is preferable, and from the viewpoint of preventing disconnection, a larger average diameter is preferable.
  • the average diameter of the silver nanowires to be manufactured may be, for example, 23 nm or more and 54 nm or less.
  • the average diameter of the silver nanowires to be manufactured may be an average of thicknesses measured at intervals of 50 nm from one end for one wire and further averaged for a plurality of wires. Further, the diameter at the narrowest portion of the silver nanowire to be manufactured may be 15 nm or more. Moreover, 100 nm or less may be sufficient as the diameter in the thickest location in the silver nanowire of manufacture object.
  • the average CV value (coefficient of variation: standard deviation divided by average diameter) of the silver nanowires to be manufactured may be 10% or more, 15% or more, or 20% or more. It may be. The average CV value may be 60% or less, or 50% or less.
  • the average CV value for one wire is calculated by dividing the standard deviation for the thickness measured at intervals of 50 nm from one end by the average of the thickness, and calculating the CV value per wire.
  • the average CV value of a plurality of wires may be used.
  • the distance between the lengthwise jumping metal lumps existing in the silver nanowire to be manufactured may be, for example, 20 nm or more and 10 ⁇ m or less with respect to the length direction.
  • the metal lump may exist 1 or more per 10 micrometers of the length direction of silver nanowire, for example.
  • the thickness of one metal lump (the diameter of the metal lump in the short axis direction of the silver nanowire) is, for example, 1.1 times or more and 5 times or less the diameter of the trunk portion of the silver nanowire in the vicinity of the metal lump. It may be.
  • the thickness of the metal lump (that is, the wire diameter at the position of the metal lump) may be obtained by measuring the width in the direction perpendicular to the length direction of the silver nanowire in the electron micrograph.
  • the diameter of the trunk portion of the silver nanowire is the diameter of the silver nanowire where there is no metal block.
  • the metal mass may be, for example, a silver metal mass, a silver and copper metal mass, or at least one metal selected from nickel, iron, cobalt, titanium, molybdenum, and tungsten. It may be a lump.
  • the metal of the metal mass is silver or silver and copper
  • the metal mass is usually spherical or spindle-shaped extending in the length direction of the wire, and the entire wire that becomes the trunk of the silver nanowire is used. It exists over the circumference (see, for example, FIG. 2C). That is, a silver wire serving as a trunk is present in the vicinity of the center of the silver metal block and the silver and copper metal blocks.
  • the metal of the metal mass is the same metal as the metal ion, such as nickel, iron, cobalt, etc.
  • the metal mass is usually present in a part of the circumferential direction of the wire that becomes the trunk of the silver nanowire. (For example, see FIG. 5B). That is, a silver nanowire serving as a trunk exists at the end of the metal block.
  • the metal of the metal mass is the same metal as the metal ion, such as nickel, iron, cobalt, etc., for example, as shown in FIG. 5 (d), a pentagonal shape that is a cross section of the starting silver nanowire This is because the metal is deposited on one side.
  • the metal lump that is present in the surface-modified silver nanowire is a metal lump such as silver, copper, nickel, iron, cobalt, titanium, molybdenum, and tungsten, but at least one of the metal lump.
  • the part may be a metal oxide.
  • the metal of the metal mass is silver, nickel, cobalt, titanium, molybdenum, or tungsten, it is not easily oxidized, but at least a part of the surface of the metal mass may become an oxide.
  • a metal lump is a lump of a metal, either when the metal lump is a lump of the metal itself or when it is a lump of the metal and an oxide of the metal. You may think. In other words, a metal lump of a certain metal may be considered as a metal lump that may be at least partially oxidized. Moreover, instead of a metal lump, a metal oxide lump may exist on the surface of the silver nanowire. The same applies to copper deposited in the step of depositing a transition metal mass on the surface of the silver nanowire.
  • a method for producing a silver nanowire having a step of removing the deposited metal a case where the metal ion is a copper ion will be described, and a method for producing a silver nanowire having no step of removing the deposited metal, A case where the metal ions are nickel ions will be described.
  • Method for producing silver nanowire having a step of removing deposited metal The case where a transition metal is copper is demonstrated regarding the manufacturing method of the silver nanowire which has the process of removing the deposited metal.
  • the metal ion is a copper ion.
  • the copper ion may be, for example, a copper ion having no ligand or a copper ion having a ligand.
  • the copper complex may be, for example, an organic copper complex or an ammine copper complex.
  • the organic copper complex is not particularly limited.
  • a copper complex containing a ⁇ -diketonato ligand such as copper carboxylate, bis (2,4-pentanedionato) copper, triphenylphosphine copper, or an amine compound.
  • Examples thereof include a copper complex containing a ligand.
  • the copper carboxylate is not particularly limited, and examples thereof include copper acetate, copper formate, saturated fatty acid copper, unsaturated fatty acid copper, hydroxy acid copper, dicarboxylic acid copper, and bile acid copper.
  • the fatty acid copper may be, for example, a long-chain alkyl carboxylate copper.
  • the saturated fatty acid copper may be, for example, copper myristate, copper stearate or the like.
  • the unsaturated fatty acid copper may be, for example, copper oleate, copper linoleate or the like.
  • the copper hydroxy acid may be, for example, copper citrate, copper malate and the like.
  • the copper dicarboxylate may be, for example, copper oxalate, copper malonate, copper succinate and the like.
  • the bile acid copper may be, for example, copper cholate.
  • the ratio of copper atoms to silver atoms in the mixed liquid of silver nanowire dispersion and copper ions is 0.01 or more, It is preferable that it is 0.9 or less.
  • the copper ions are reduced, and copper masses fly out on the surface of the silver nanowires.
  • a silver lump is also deposited on both sides of each copper lump. Both sides are both sides in the length direction of the silver nanowire. Usually, the precipitated silver mass is smaller than the copper mass.
  • the precipitation of silver may be caused by, for example, migration of silver atoms in silver nanowires or reduction of silver ions in the dispersion.
  • the silver ions in the dispersion liquid may be present in the dispersion liquid from the beginning, or may be obtained by ionizing silver on the surface of the silver nanowires. Since copper precipitates on the surface of the silver nanowires, the silver lump also precipitates as a result.
  • the surface modification resin for example, PVP
  • the heating temperature of the mixed solution is preferably 300 ° C. or lower.
  • the heating temperature of the mixed solution is more preferably 250 ° C. or less.
  • the temperature of the mixed liquid containing copper ions not having such a ligand is about 250 ° C.
  • the heating temperature of the mixed solution is more preferably 200 ° C. or lower.
  • the heating temperature of the mixed liquid of the silver nanowire dispersion and the copper complex is preferably lower than the reduction temperature of the copper complex alone. Since silver acts as a copper ion reduction catalyst, it can be reduced at a temperature lower than the reduction temperature of the copper complex alone in the presence of silver. For this reason, when the mixed solution is heated to a temperature lower than the reduction temperature, the reduction reaction of copper ions proceeds selectively on the surface of the silver nanowire, and the precipitation of copper nanoparticles preferentially occurs on the surface of the silver nanowire. As a result, the reduction of copper on the surface other than the surface of the silver nanowire can be suppressed, and the copper complex can be efficiently used for precipitation on the surface of the silver nanowire.
  • the heating temperature of the mixed solution is more preferably 160 ° C. or lower.
  • the temperature of the mixed solution may be 60 ° C. or higher, 100 ° C. or higher, 120 ° C. or higher, 130 ° C. or higher, and 140 ° C. or higher.
  • the copper complex is copper acetate
  • it may be heated so that the temperature of the mixed solution is 140 ° C. or higher.
  • a copper complex is a tetraammine copper complex
  • you may heat so that the temperature of a liquid mixture may be 100 degreeC or more.
  • the mixture may be heated so that the temperature of the mixed solution is 200 ° C. or higher.
  • the inert atmosphere may be an atmosphere of an inert gas such as nitrogen gas or argon gas.
  • the oxidation of copper can also be prevented by heating in an inert atmosphere.
  • the order of mixing the silver nanowire dispersion and copper ions and heating is not limited. For example, the two may be mixed and then heated, or after the silver nanowire dispersion is heated to a target temperature, copper ions may be dropped into the dispersion. Further, when the silver nanowire dispersion and the copper ions are mixed, or when copper is deposited on the surface of the silver nanowire, stirring may be performed.
  • the stirring may be, for example, rotary stirring or rocking stirring.
  • the mixed liquid may be heated by, for example, microwave irradiation or may be performed by other heating means such as an oil bath.
  • microwave frequency and the microwave irradiation method for microwave heating are as described later.
  • the process of removing the copper lump deposited on the surface of the silver nanowire is further provided after the process of depositing copper.
  • Copper nanoparticles having a particle size of 100 nm or less are immediately oxidized into copper oxide by exposure to air at room temperature.
  • the copper lump may be removed from the viewpoint of showing durability and conductivity deterioration.
  • ammonium salts include ammonium chloride (NH 4 Cl) and ammonium bromide (NH 4 Br). Since the copper nanoparticles deposited on the surface of the silver nanowire are eluted in a polar solvent as a tetraammine copper (II) complex immediately in the atmosphere and in the presence of halogen ions, they can be easily removed from the silver nanowire. Finally, on the surface of the silver nanowire, only the metal mass which is the silver mass deposited on both sides of the copper mass in the process of depositing copper remains. Silver metal masses are not easily oxidized.
  • the temperature of the dispersion may be, for example, room temperature or may be heated to 100 ° C. or lower.
  • the pressure in the process of depositing copper on the surface of silver nanowire and the process of removing the copper lump on the surface of silver nanowire is not ask
  • the heating time in the step of depositing copper on the surface of the silver nanowire may be, for example, 1 minute or more and 2 hours or less from the time when the mixing of the silver nanowire dispersion liquid and copper ions is completed. For example, when the copper ion solution is dropped into the silver nanowire dispersion, the time when the mixing is completed is the time when the dropping of all the copper ion solutions is completed.
  • the time of the process of removing the copper lump on the surface of silver nanowire may be 10 minutes or more and 20 hours or less, for example.
  • the metal ion is nickel ion.
  • the nickel ion may be, for example, a nickel ion having no ligand or a nickel ion having a ligand. In the latter case, a nickel complex is formed.
  • the nickel complex may be, for example, an organic nickel complex or an ammine nickel complex.
  • the organic nickel complex is not particularly limited, but for example, nickel carboxylate, nickel complex containing ⁇ -diketonato ligand such as bis (2,4-pentanedionato) nickel, triphenylphosphine nickel, amine compound A nickel complex containing a ligand can be used.
  • the nickel carboxylate is not particularly limited, and examples thereof include nickel acetate, nickel formate, saturated fatty acid nickel, unsaturated fatty acid nickel, hydroxy acid nickel, dicarboxylate nickel, and bile acid nickel.
  • the fatty acid nickel may be, for example, a long-chain nickel alkylcarboxylate.
  • the saturated fatty acid nickel may be, for example, nickel myristate, nickel stearate, or the like.
  • the unsaturated fatty acid nickel may be, for example, nickel oleate or nickel linoleate.
  • the nickel hydroxy acid may be, for example, nickel citrate, nickel malate, or the like.
  • the nickel dicarboxylate may be, for example, nickel oxalate, nickel malonate, nickel succinate and the like.
  • the nickel bile acid may be, for example, nickel cholate.
  • the nickel complex is preferably a complex containing an organic ligand that is easily thermally decomposed. Further, in the step of depositing the nickel metal lump on the surface of the silver nanowire, the ratio (atomic ratio) of nickel atoms to silver atoms in the mixture of silver nanowire dispersion and nickel ions is 0.03 or more.
  • the atomic ratio is preferably 1.0 or less.
  • the nickel ions are reduced, and nickel masses fly out on the surface of the silver nanowires.
  • the temperature of the mixed liquid of silver nanowire dispersion and nickel ions exceeds 300 ° C., the surface modification resin present on the surface of the silver nanowire is decomposed, and the silver nanowire aggregates. Therefore, the temperature of the mixed solution is preferably 300 ° C. or lower.
  • the temperature of a liquid mixture is high, damage, such as a disconnection, will arise easily to silver nanowire. From this viewpoint, the temperature of the mixed solution is more preferably 250 ° C. or lower.
  • the temperature of the liquid mixture is about 250 degreeC.
  • the temperature of the mixed solution is more preferably 200 ° C. or lower.
  • the heating temperature of the mixed liquid of the silver nanowire dispersion and the nickel complex is preferably lower than the reduction temperature of the nickel complex alone.
  • the heating temperature of the mixed solution is more preferably 160 ° C. or lower.
  • the temperature of the mixed solution may be 60 ° C. or higher, 100 ° C. or higher, 120 ° C. or higher, 130 ° C. or higher, and 140 ° C. or higher. Also good.
  • the nickel complex is nickel acetate
  • heating may be performed so that the temperature of the mixed solution is 140 ° C. or higher.
  • heating may be performed so that the temperature of the mixed solution becomes 200 ° C.
  • the order of mixing the silver nanowire dispersion and nickel ions and heating is not limited.
  • the two may be mixed and then heated, or after the silver nanowire dispersion is heated to a target temperature, nickel ions may be dropped into the dispersion.
  • stirring may be performed when the silver nanowire dispersion and nickel ions are mixed, or when nickel is deposited on the surface of the silver nanowires.
  • the stirring may be, for example, rotary stirring or rocking stirring.
  • the mixed liquid may be heated by, for example, microwave irradiation or may be performed by other heating means such as an oil bath.
  • the microwave frequency and the microwave irradiation method for microwave heating are as described later.
  • nickel deposited on the surface of the silver nanowire is not easily oxidized, it may not be removed like copper. That is, when the transition metal is nickel, the step of removing nickel from the surface of the silver nanowire is not necessary.
  • the metal lump is a nickel lump suitably deposited to deposit nickel. A metal mass that is nickel is not easily oxidized.
  • the pressure in the process of depositing nickel on the surface of silver nanowire is not ask
  • the heating time in the step of depositing nickel on the surface of the silver nanowire may be, for example, 1 minute or more and 2 hours or less from the time when the mixing of the silver nanowire dispersion liquid and nickel ions is completed.
  • a silver nanowire can be manufactured similarly to the manufacturing method of the silver nanowire using nickel ion.
  • the atomic ratio, temperature, pressure, time, etc. in the production method may be the same as in the silver nanowire production method using nickel ions.
  • the metal complex may be, for example, cobalt acetate, cobalt formate, cobalt oxalate, cobalt citrate, cobalt oleate, triphenylphosphine cobalt, or ammine cobalt complex.
  • a metal mass that is cobalt is not easily oxidized.
  • the metal complex may be, for example, iron acetate, iron formate, iron oxalate, iron citrate, iron oleate, triphenylphosphine iron, or ammine iron complex.
  • the metal lump becomes a lump of the transition metal (for example, a lump of cobalt or iron) deposited in the step of depositing the transition metal. Note that, by heating in an inert atmosphere, for example, oxidation of iron can be prevented.
  • the metal of the metal ion is copper, the copper deposited on the surface of the silver nanowire does not have to be removed as in the method for producing silver nanowires using nickel ions.
  • the lump of silver and copper which is the transition metal deposited in the step of depositing the transition metal, becomes a metal lump, and a silver nanowire in which the metal lump is scattered on the surface is produced.
  • the transition metal lumps are further oxidized so that the transition metal lumps are oxidized in the longitudinal direction.
  • Silver nanowires having a metal oxide mass can be produced.
  • the metal oxide mass is an oxide of a metal deposit.
  • the metal oxide may be, for example, copper oxide or iron oxide.
  • the silver nanowire in which the wavelength of the absorption maximum of the plasmon absorption band is shifted to the short wavelength side may be purified by a known method.
  • the silver nanowire dispersion contains a resin such as PVP
  • a resin for example, PVP or other surface modifier
  • a resin contained in the silver nanowire dispersion is obtained by centrifugation, crossflow filtration, or other filtration. It may be decreased.
  • metal ions and the like can be removed as appropriate.
  • purified in that way may be used for manufacture of a transparent conductive film, for example, and may be used for another use.
  • a liquid dispersion of silver nanowires may be prepared, the dispersion may be deposited on a substrate, and dried or cured.
  • the manufactured silver nanowires may be used to prepare the liquid dispersion.
  • the dispersion may be called, for example, an ink composition or a conductive ink.
  • known methods can be used as a method of depositing the dispersion liquid on the substrate and a method of drying or curing the deposited dispersion liquid.
  • the method for producing the silver nanowire dispersion liquid is not particularly limited.
  • it may be produced by the following polyol method.
  • a polyol, a silver compound, and polyvinylpyrrolidone are mixed at a temperature of 100 ° C. or less, and in a reaction solution in which a polyol containing a halogen compound is heated to a range from 110 ° C. to less than the boiling point, A second step of dropping the mixed liquid mixture will be described.
  • the polyol used in the first step is an alcohol having two or more alcoholic hydroxyl groups.
  • the polyol is not particularly limited.
  • the polyol is preferably, for example, ethylene glycol, propylene glycol (PG), or trimethylene glycol from the viewpoint of reactivity and viscosity.
  • a polyol may be used independently or multiple may be mixed and used.
  • the silver compound is preferably soluble in the polyol.
  • the silver compound is not particularly limited.
  • silver nitrate, silver perchlorate, and silver acetate are preferable, and silver nitrate and silver acetate are more preferable.
  • the weight average molecular weight of polyvinyl pyrrolidone is not particularly limited. For example, it is preferably in the range of 10,000 to 1,500,000, and more preferably in the range of 30,000 to 900,000. Moreover, in the molar ratio, the number of moles of PVP is calculated with 1 unit of repeating units (molecular weight: 111.14) as 1 mole. The same applies to the molar ratio of PVP to silver in the following description. Further, in order to appropriately form a precursor of PVP and silver in the mixed solution and synthesize silver nanowires of a more uniform size, the PVP concentration (wt%) in the mixed solution is 3 wt% or more. Is preferred. In addition, it is preferable that the polyol or the silver compound is selected so that the silver compound or PVP is soluble in the polyol.
  • the order of mixing the polyol, the silver compound and the PVP is not limited.
  • the PVP is mixed with the polyol, and the silver compound or the silver compound dissolved in the polyol is added thereto and mixed. May be.
  • JP 2014-507562 A discloses that a silver seed solution is produced by heating a mixture of ethylene glycol, PVP, and silver nitrate to 115 ° C., so the temperature in the first step is , It is preferred that it be lower. Therefore, the temperature at the time of mixing may be 100 ° C. or less, for example.
  • polyol acts as a solvent and reducing agent
  • PVP has a very low reducing ability but acts as a reducing aid. Therefore, the higher the temperature, the more progressive the reduction and the higher the possibility that silver particles will be generated. Therefore, the temperature during mixing is preferably 80 ° C. or less.
  • the temperature at the time of mixing is 10 degreeC or more.
  • the mixing may be performed by, for example, rotary stirring or rocking stirring.
  • the first step is usually performed at normal pressure, but may be performed under pressure or under reduced pressure as necessary. Normal pressure is desirable from the viewpoint of handling.
  • the first step is usually performed in an air atmosphere, but may be performed in an inert atmosphere.
  • the polyol used in the second step may or may not be the same as the polyol used in the first step.
  • This polyol are as described above.
  • This polyol is a solvent and reducing agent.
  • As this polyol from the viewpoint of reactivity and viscosity, for example, ethylene glycol, PG, or trimethylene glycol is suitable.
  • a polyol may be used independently or multiple may be mixed and used.
  • the halogen compound contained in the polyol in the second step provides halide ions such as chloride ions and bromide ions in the polyol.
  • the halogen compound contained in the polyol is not particularly limited, but may contain a chlorine compound.
  • the chlorine compound may be at least one selected from, for example, inorganic chloride and organic chloride.
  • the inorganic chloride is at least one selected from, for example, alkali metal chloride, alkaline earth metal chloride, earth metal chloride, zinc group metal chloride, carbon group metal chloride, and transition metal chloride. May be.
  • the alkali metal chloride may be, for example, NaCl, KCl, or LiCl.
  • the alkaline earth metal chloride may be, for example, magnesium chloride or calcium chloride.
  • the earth metal chloride may be, for example, aluminum chloride.
  • the zinc group metal chloride may be, for example, zinc chloride.
  • the carbon group metal chloride may be, for example, tin chloride.
  • the transition metal chloride may be, for example, manganese chloride, iron chloride, cobalt chloride, or nickel chloride.
  • the organic chloride may be, for example, tetraalkylammonium chloride. Tetraalkylammonium chloride is represented by the general formula R 1 R 2 R 3 R 4 NCl. In the formula, R 1 to R 4 may each independently be a linear or branched alkyl group having 1 to 8 carbon atoms.
  • tetraalkylammonium chloride is, for example, tetramethylammonium chloride, tetraethylammonium chloride, tetrapropylammonium chloride, tetraisopropylammonium chloride, tetrabutylammonium chloride, tetrapentylammonium chloride, tetrahexylammonium chloride, tetraheptylammonium chloride, tetra Octylammonium chloride, hexadecyltrimethylammonium chloride, or methyltrioctylammonium chloride may be used.
  • the chlorine compounds may be used alone or in combination.
  • the halogen compound when the halogen compound contains a chlorine compound, the halogen compound may also contain a bromine compound.
  • the bromine compound may be, for example, an inorganic bromide or an organic bromide.
  • the inorganic bromide may be at least one selected from, for example, alkali metal bromides, alkaline earth metal bromides, earth metal bromides, zinc group metal bromides, carbon group metal bromides, and transition metal bromides.
  • the alkali metal bromide may be, for example, NaBr, KBr, or LiBr.
  • the alkaline earth metal bromide may be, for example, magnesium bromide or calcium bromide.
  • the earth metal bromide may be, for example, aluminum bromide.
  • the zinc group metal bromide may be, for example, zinc bromide.
  • the carbon group metal bromide may be, for example, tin bromide.
  • the transition metal bromide may be, for example, manganese bromide, iron bromide, cobalt bromide, or nickel bromide.
  • the organic bromide may be, for example, a tetraalkylammonium bromide.
  • the tetraalkylammonium bromide is represented by the general formula R 5 R 6 R 7 R 8 NBr. In the formula, R 5 to R 8 may each independently be a linear or branched alkyl group having 1 to 8 carbon atoms.
  • tetraalkylammonium bromide is, for example, tetramethylammonium bromide, tetraethylammonium bromide, tetrapropylammonium bromide, tetraisopropylammonium bromide, tetrabutylammonium bromide, tetrapentylammonium bromide, tetrahexylammonium bromide, tetraheptylammonium bromide, tetra Octyl ammonium bromide, hexadecyl trimethyl ammonium bromide, or methyl trioctyl ammonium bromide may be used.
  • the bromine compound may be used alone, or a plurality of bromine compounds may be used in combination.
  • the halogen compound contains tetraalkylammonium chloride and tetraalkylammonium bromide, and the ratio (mol%) of the tetraalkylammonium chloride and tetraalkylammonium bromide in the halogen compound is [R 1 R 2 R 3 R 4 NCl], respectively.
  • the halogen compound contains a chlorine compound and a bromine compound
  • both the chlorine compound and the bromine compound are present in the reaction solution of the polyol before the mixed solution is dropped in the second step.
  • the molar ratio of the halogen compound contained in the reaction solution with respect to the silver contained in the mixed solution in the first step, which is the dropping target is 0.005 or more and preferably 0.06 or less.
  • the molar ratio is more preferably 0.05 or less, and further preferably 0.04 or less.
  • the silver contained in the liquid mixture of dripping object is the silver contained in the reaction solution after dripping of a liquid mixture.
  • the polyol may contain a surface modifier in addition to the halogen compound.
  • the surface modifier is sometimes called a capping agent, and promotes the growth of silver nanowires in a one-dimensional direction by preferentially adhering to the side surfaces of the growing silver nanowires.
  • the surface modifier is not particularly limited, and may be, for example, PVP or polyvinyl acetamide. They may be used alone or in admixture.
  • the amount of the surface modifier is not particularly limited, but the molar ratio of the surface modifier to silver contained in the mixed solution dropped in the second step may be 0 to 20. The molar ratio is preferably 0 to 10.
  • the molar ratio of the surface modifier (the surface modifier includes PVP contained in the mixed solution) to silver contained in the reaction solution after the dropping of the mixed solution is preferably 0.5 or more. 1 or more is more preferable. This is because if the amount of the surface modifier is small, the possibility that spherical particles are generated increases.
  • the surface modifier for silver contained in the reaction solution after completion of dropping of the mixed solution (the surface modifier includes PVP contained in the mixed solution).
  • the molar ratio is preferably 2 or more, more preferably 2.5 or more, and even more preferably 3 or more. Further, the molar ratio is preferably 20 or less, more preferably 15 or less, and further preferably 10 or less. This is because particulate silver is produced even when the surface modifier is too much.
  • the molar ratio is assumed to be a molar ratio in which 1 unit of the surface modifier is repeated as 1 mole.
  • the mixed solution mixed in the first step is dropped into a reaction solution of a polyol containing a halogen compound.
  • the reaction solution is heated from 110 ° C. to a range below the boiling point of the reaction solution.
  • the reaction solution may be heated in the range of 110 ° C. to 200 ° C., or may be heated in the range of 120 ° C. to 180 ° C.
  • the heating may be performed by microwave irradiation or may be performed by other heating means such as an oil bath. In the heating, it is preferable to keep the temperature of the reaction solution as constant as possible.
  • the temperature of the reaction solution slightly decreases.
  • the frequency of the microwave is not particularly limited.
  • the frequency may be 2.45 GHz, 5.8 GHz, 24 GHz, 915 MHz, or other 300 MHz to 300 GHz. A frequency within the range may be used.
  • the microwave of a single frequency may be irradiated and the microwave of a several frequency may be irradiated.
  • the microwaves having a plurality of frequencies may be irradiated at the same position or at different positions, for example. Further, the microwave irradiation may be performed continuously, or may be performed intermittently between irradiation and pause.
  • the temperature of the irradiation target rises, but the intensity of the microwave irradiation may be adjusted so that the temperature becomes constant.
  • the temperature of the reaction solution that is the object of microwave irradiation may be measured using a known thermometer such as a thermocouple thermometer or an optical fiber thermometer. The measured temperature may be used to control the output (intensity) of the microwave.
  • the microwave irradiation may be performed in a single mode or in a multimode.
  • a mixed solution in an amount such that the concentration of silver contained in the reaction solution after the dropping of the mixed solution is 1 wt% or less is dropped. It is because the silver nanowire obtained will become thick when the density
  • the concentration of silver contained in the reaction solution is the concentration of silver containing all of silver ions, silver elements, and silver compounds.
  • the speed at which the mixed solution is dropped into the reaction solution is arbitrary as long as the silver nanowires can be appropriately synthesized, but is preferably slower from the viewpoint of obtaining a silver nanowire having a longer average length.
  • the average increase speed of the silver concentration in the reaction solution is 0.6 wt% / h or less, and it is more preferable to add it so that it is 0.1 wt% / h or less. More preferably, it is dropped so as to be 0.04 wt% / h or less.
  • the average increase speed is obtained by dividing the silver concentration (wt%) after completion of dropping by the dropping time (h). Therefore, when the dropping speed of the mixed liquid is constant, the silver concentration increases at a value larger than the average increase speed at the start of dropping, and the silver concentration decreases at a value smaller than the average increasing speed at the end of dropping. Will increase.
  • the temperature at the time of dropping may be maintained or not. If the time during which the dropping temperature is maintained after the dropping of the mixed liquid is called a holding time, the holding time may be in the range of 0 to 12 hours. The holding time is preferably in the range of 30 minutes to 2 hours.
  • the silver contained in the dropped droplet may be a silver compound or a silver ion. The silver compound may or may not be the silver compound used during mixing.
  • the second step is usually performed at normal pressure, but may be performed under pressure or under reduced pressure as necessary. Normal pressure is desirable from the viewpoint of handling. In addition, when the pressure is not normal pressure, the boiling point of the reaction solvent is the boiling point at that pressure.
  • the second step is preferably performed in an inert atmosphere.
  • the inert gas used to make the inert atmosphere may contain at least one selected from nitrogen, helium, neon, and argon. Note that performing the reaction in the second step in an inert atmosphere may be considered as replacing the air present in the reaction vessel with an inert gas.
  • the silver nanowire produced by the second step has an average diameter of 20 to 50 nm and an aspect ratio in the range of 200 to 10,000.
  • the aspect ratio may be in the range of 200 to 5000.
  • the silver nanowire produced by the second step can be purified by a known method.
  • the silver nanowire dispersion liquid mixed with the metal ions may be purified or may be purified.
  • silver nanowire may be manufactured by polyol methods other than the above, and other than a polyol method It goes without saying that silver nanowires as a starting material for which the absorption maximum is shifted may be produced by the production method described above.
  • the wavelength of the absorption maximum in the plasmon absorption band is blue-shifted, but similarly for the dispersion of silver nanowires using other solvents, the absorption maximum in the plasmon absorption band is similarly described. It is considered that the blue shift of the wavelength can be confirmed.
  • silver nanowires in which the wavelength of the absorption maximum of the plasmon absorption band in the methanol dispersion liquid is shifted to the short wavelength side can be produced.
  • the absorption maximum can be blue-shifted without reducing the wire diameter of the silver nanowire, the blue-shift can be realized without reducing durability and conductivity.
  • a metal complex used in the production of the silver nanowire a copper complex, a nickel complex, or the like can be used. From the viewpoint of reducing the absorbance in a wavelength band other than the absorption maximum, it is necessary to use a copper complex. Is preferred.
  • the obtained silver nanowire dispersion liquid was dropped on a SiO 2 substrate and dried at 100 ° C. Analysis was performed under the following conditions, and the average diameter and average length were calculated by measuring the size of 200 wires. Measuring device: Field emission scanning electron microscope (manufactured by Hitachi High-Technologies Corporation, FE-SEM, S4800) Average diameter measurement conditions: acceleration voltage 10 kV, WD 8 mm, magnification 100,000 times Average length measurement conditions: acceleration voltage 10 kV, WD 8 mm, magnification 1,000 times
  • Example 1 Preparation of silver nanowire dispersion
  • 2.25 g of silver nitrate (manufactured by Wako Pure Chemical Industries, Ltd.) and 7.2 g of PVP (weight average molecular weight 50,000, manufactured by Wako Pure Chemical Industries, Ltd.) powder are gradually added to 210 g of PG solvent while stirring vigorously.
  • the mixture was dissolved to prepare a dark green mixed solution.
  • reaction solution 200 g of PG solvent and 0.055 g of tetrabutylammonium salt were put into the 1,000 mL glass container and all were dissolved by stirring at room temperature to prepare a reaction solution.
  • tetrabutylammonium salt a mixture having a molar ratio of tetrabutylammonium chloride and tetrabutylammonium bromide of 86:14 was used. After the inside of the container was replaced with nitrogen gas, it was constantly kept in an inert atmosphere at a nitrogen gas flow rate of 100 ml / min. First, the reaction solution in the glass container was heated from room temperature to 150 ° C.
  • dispersion liquid A a silver nanowire dispersion liquid
  • PTFE polytetrafluoroethylene
  • the above reaction apparatus is incorporated in a multi-mode type microwave irradiation apparatus (manufactured by Shikoku Keiki Kogyo Co., Ltd., ⁇ -Reactor Ex; maximum output 1,000 W, transmission frequency 2.45 GHz), and the whole mixture is heated by microwave irradiation. did.
  • the temperature control was performed by measuring the temperature in the liquid with a thermocouple and controlling the microwave output so that the measured temperature becomes a set temperature.
  • the mixed liquid prepared as described above was transferred to a round bottom flask, and the inside of the container was replaced with nitrogen gas. Then, the mixture was constantly kept in an inert atmosphere at a nitrogen gas flow rate of 100 ml / min. The mixture was heated from room temperature to 150 ° C. at a heating rate of 10 ° C./min by microwave irradiation. Since the color of the mixed solution changed from grayish green to reddish brown 10 minutes after reaching 150 ° C., it was confirmed that copper ions were reduced and copper nanoparticles were generated. After reaching 150 ° C., the temperature was maintained for 60 minutes to complete the reaction, and the resulting reddish brown solution was cooled to room temperature (referred to as dispersion B).
  • the precipitate containing a large amount of nanowires and PVP resin is diluted to 200 g with methanol, and this dispersion is filled into a Teflon (registered trademark) centrifuge container. Then, the mixture was centrifuged with a centrifuge (TOX, CAX-371) at a rotation speed of 2,300 rpm (equivalent to 1,000 G) for 60 minutes, and then the supernatant was removed. Thereafter, the obtained slurry is re-dispersed with the same amount of methanol, and the operation of centrifuging is further repeated three times to perform a washing operation, thereby removing excess PG solvent and resin (PVP). A target silver nanowire dispersion was obtained.
  • TOX centrifuge
  • FIG. 1 shows an absorption spectrum of a diluted dispersion obtained by collecting 0.1 g of the dispersions A, B, and C in the above process and diluting 100 times (w / w) with a methanol solvent. 1 is an enlarged view in the vicinity of 325 to 415 nm.
  • the absorbance at 550 to 650 nm was relatively decreased as compared with the dispersion B. From this result, it can be seen that the dispersions B and C became silver nanowires in which the absorption band in the visible light region was entirely blue shifted (that is, shifted to a short wavelength). It can also be seen that it is preferable to remove copper deposited on the surface of the silver nanowires from the viewpoint of eliminating the plasmon absorption band of copper nanoparticles and reducing the absorbance at 550 to 650 nm.
  • FIG. 2 is a diagram showing a TEM image obtained from the dispersion liquid after the dispersion liquids A, B, and C have been purified by centrifugation.
  • 2 (a) is a TEM image of dispersion A, FIG.
  • FIGS. 2 (c) and 2 (d) purify dispersion C. 3 is a TEM image of the dispersion.
  • the silver nanowire of the dispersion A was a straight wire, whereas the silver nanowire of the dispersion B had a lump portion partially inflated like a balloon and a slightly swollen portion at both ends thereof. The wire shape was confirmed. Further, when the region enclosed by the square in FIG. 2B was subjected to elemental analysis by EDX (energy dispersive X-ray analysis), copper and silver atoms were confirmed, and it was confirmed to be composed of copper and silver. .
  • EDX energy dispersive X-ray analysis
  • the bulge like a balloon disappeared and it was confirmed as a wire shape in which only the bulges at both ends remained.
  • the wire was an uneven wire composed of silver. Therefore, it is considered that the balloon-like lump in the silver nanowire of dispersion B is a copper lump, and the bulges present on both sides thereof are silver lump.
  • FIG. 3 is a diagram showing an FE-SEM image of a methanol dispersion obtained by centrifugally washing the dispersions A and C.
  • 3A is an FE-SEM image of Dispersion A
  • FIG. 3B is an FE-SEM image of Dispersion C. It can be seen that the silver nanowires of the dispersion A are formed from those having a pentagonal cross section, whereas the silver nanowires of the dispersion C partially have a metal lump.
  • the average diameter was 33.4 nm (standard deviation 3.0 nm) and the average length was 9.8 ⁇ m (standard deviation 4.9 ⁇ m). .
  • the thickness of one place was randomly measured for 200 wires.
  • the silver nanowires of dispersion A have almost no variation in thickness per wire, and extend at the same thickness.
  • the thickness thereof is 35 to 80 nm, and the CV value indicating the thickness variation in one is as follows.
  • the average of the dispersion A increased from 5.3% to an average of 26.8%, about 5 times.
  • the average diameter of each silver nanowire exceeds 35 nm, the average of one average diameter for 10 wires also exceeds 35 nm. Therefore, for such silver nanowires having an average diameter exceeding 35 nm, the absorption maximum of the plasmon absorption band could be shifted to a short wavelength.
  • the measurement results regarding the dispersion A are as follows.
  • the measurement results regarding the dispersion C are as follows.
  • Example 2 Surface modification of the silver nanowire was performed under the same conditions as in Example 1 except that the amount of copper acetate monohydrate was changed to 0.074 g, 0.222 g, and 0.74 g.
  • the atomic ratio (ratio of the copper atom with respect to a silver atom) corresponding to the quantity of those copper acetate monohydrate is set to 0.10, 0.30, and 1.0, respectively.
  • FIG. 4 is a graph showing an absorption spectrum of the methanol dispersion liquid after purifying the dispersion liquid C in Examples 1 and 2.
  • the solid line is the absorption spectrum of the dispersion C after purification of the dispersion C in which the ratio of copper atoms to silver atoms is 0.1
  • the dotted line is the absorption of the dispersion A before surface treatment. It is a spectrum.
  • 4 (b), FIG. 4 (c), and FIG. 4 (d) respectively show the dispersions after purification of the dispersion C in which the ratio of copper atoms to silver atoms is 0.3, 0.5, and 1.0. It is an absorption spectrum of. From FIG.
  • the copper complex mixed with the silver nanowire dispersion is mixed so that the ratio of copper atoms to silver atoms is 0.9 or less.
  • Example 3 Surface modification of silver nanowires was performed under the same conditions as in Example 1 except that nickel acetate tetrahydrate was used instead of copper acetate monohydrate. However, unlike Example 1, the aqueous ammonia solution was not dropped. This is because in the case of nickel, it is not necessary to remove nickel deposited on the surface of the silver nanowire. The amount of nickel acetate tetrahydrate used, the atomic ratio in the mixed solution, and the maximum absorption wavelength are as shown in the following table. The obtained dispersion was washed by centrifugal separation to obtain a target silver nanowire dispersion.
  • FIG. 5 is a diagram showing a TEM image of the obtained dispersion of silver nanowires.
  • 5 (a) to 5 (c) respectively show the above-mentioned Nos. 1, No. 1 3
  • No. 4 is a TEM image of a dispersion of silver nanowires after surface modification corresponding to FIG. 4
  • FIG. 5 (d) is a diagram for explaining precipitation of nickel on the surface of the silver nanowires.
  • FIG. 5 (d) when nickel acetate is used for the reaction, nickel is deposited in a plate shape on the surface of the silver nanowires.
  • FIGS. 1 TEM image
  • the size of the nickel crystals deposited on the surface of the silver nanowires depended on the amount of nickel ions added. That is, the size of the nickel crystal deposited on the surface of the silver nanowire is No. No. 1 sample is about 40 nm. In the sample 4, it was about 10 to 20 nm.
  • FIG. 6 is a diagram showing absorption spectra of a dispersion obtained by diluting the obtained dispersion with methanol.
  • the maximum wavelength of absorption is described in the said table
  • Test Example 2 The experiment was performed in the same manner as in Test Example 1 except that the temperature after the temperature increase was changed to 165 ° C. The color of the solution changed from green to reddish brown after about 1 hour from holding at 165 ° C., confirming the reduction of copper ions and the formation of copper nanoparticles.
  • the silver nanowires produced by the method for producing silver nanowires according to the present invention, the silver nanowires according to the present invention, dispersions thereof, and transparent conductive films can be used, for example, in touch panels.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

【課題】ワイヤ径を細くすることなくプラズモン吸収帯の吸光極大を短波長側にシフトさせることができる銀ナノワイヤの製造方法を提供する。 【解決手段】銀ナノワイヤの製造方法は、銀ナノワイヤの分散液と、銀とは異なる遷移金属の金属イオンとの混合液を加熱し、金属イオンを還元させることによって銀ナノワイヤの表面に遷移金属の塊を飛び飛びに析出させる工程を備えている。そのようにして製造された銀ナノワイヤは、長さ方向に飛び飛びに金属塊を有しており、プラズモン吸収帯の吸光極大を短波長側にシフトされている。

Description

銀ナノワイヤの製造方法、銀ナノワイヤ、分散液、及び透明導電膜
 本発明は、長さ方向に飛び飛びに金属塊を有している銀ナノワイヤの製造方法等に関する。
 透明導電膜は、可視光透過性と電気導電性を兼ね備えた薄膜であり、液晶ディスプレイ、エレクトロルミネッセンスディスプレイ、タッチパネル、太陽電池などの透明電極として広く使用されている。その中でも酸化インジウムスズ(ITO)のスパッタ膜は、高い透明性と導電性を持つことから、スマートフォンなどの4インチ前後の小型用途向けや、タブレット端末などの7~10インチ前後の中型用途向けの静電容量タッチパネルのフィルムセンサとして広く使用されている。
 近年、ノートPCやオールインワンPCなどの14~23インチの大型製品や電子黒板などの大型タッチパネルにおいて使用される透明導電膜の特性として、低抵抗性が求められているが、ITOフィルムを低抵抗化するには導電層であるITOを厚くする必要がある。そのようにITOフィルムを厚くすると、フィルムの透明性が低下し、パターン成形後の骨見えリスクも高くなるなど、ディスプレイの視認性に影響を与えることになる。
 そのようなITOフィルムの代替品として、液相法で製造可能であり、低抵抗性と透明性を兼ね備え、かつ柔軟性を有する金属ナノワイヤを含有する透明導電膜が検討されている。その中でも銀ナノワイヤを用いた透明導電膜は、高い導電性及び安定性を有するので特に注目されている。ITOはセラミックの一種であり非常に脆いが、銀の展性・延性は、金属の中でも優れており、またナノワイヤ形状になるとさらに曲げに対する耐性は向上する。
 銀ナノワイヤの製造方法として、ポリビニルピロリドン(PVP:Polyvinylpyrrolidone)存在下、硝酸銀を多価アルコールであるエチレングリコールによって還元するポリオール法がよく知られている(例えば、特許文献1等参照)。ポリオール法で得られる銀ナノワイヤの場合、銀の結晶面成長方向[100]に(100)の5面を隣接させ、(111)の10面をかぶせた5回回転多重双晶構造をとっているため、銀ナノワイヤの断面は五角形状である。この角が鋭いと、該当する角に電子が局在化し、プラズモン吸収が増加するために、黄色みが残るなどして透明性が悪化するという課題があった。非特許文献1には、ワイヤ径と上記光学特性の改善に関する記述がある。その非特許文献1では、ワイヤ径を40、30、20nmへとより細くし、可視光領域にある銀ナノワイヤ特有のプラズモン吸収のピークトップを375、370、365nmへと短波長へブルーシフトさせることで、可視光領域の透明性を向上させる方法が提案されている。
特許第5936759号
Eun-Jong Lee,Yong-Hoe Kim,Do Kyung Hwang,Won Kook Choib,Jin-Yeol Kim,「Synthesis and optoelectronic characteristics of 20 nm diameter silver nanowires for highly transparent electrode films」,RSC Adv.6巻,11702-11710頁,2016年
 上記非特許文献1に記載されているように、銀ナノワイヤのワイヤ径を細くすることによってプラズモン吸収帯の吸光極大を短波長側にシフトさせることができる。しかしながら、ワイヤ径を細くすればするほど、熱的な安定性が低下するため、銀ナノワイヤをフィルムに塗布し、乾燥させる過程においてワイヤが断線することによって、想定した導電性が得られないといった問題があった。
 本発明は、上記課題を解決するためになされたものであり、銀ナノワイヤのワイヤ径を細くすることなくプラズモン吸収帯の吸光極大を短波長にシフトさせることができる銀ナノワイヤの製造方法等を提供することを目的とする。
 本発明者らは、上述の課題に対して鋭意研究の末、銀ナノワイヤの長さ方向に飛び飛びに金属塊が存在するようにすることによって、ワイヤ径を細くすることなくプラズモン吸収帯の吸光極大を短波長側にシフトできることを見いだし、発明を完成するに至った。
 すなわち、本発明は下記のとおりである。
 本発明による銀ナノワイヤの製造方法は、銀ナノワイヤの分散液と、銀とは異なる遷移金属の金属イオンとの混合液を加熱し、金属イオンを還元させることによって銀ナノワイヤの表面に遷移金属の塊を飛び飛びに析出させる工程を備えた、長さ方向に飛び飛びに金属塊を有しているものである。
 また、本発明による銀ナノワイヤの製造方法では、遷移金属の塊を析出させる工程において、混合液の加熱温度は300℃以下であってもよい。
 また、本発明による銀ナノワイヤの製造方法では、遷移金属は銅であり、銅を析出させる工程では、銅の各塊の両側に銀の塊も析出し、銀ナノワイヤの表面に析出させた銅の塊を除去する工程をさらに備え、金属塊は、銅を析出させる工程において銅の塊の両側に析出した銀の塊であってもよい。
 また、本発明による銀ナノワイヤの製造方法では、金属塊は、遷移金属を析出させる工程において析出した遷移金属の塊であってもよい。
 また、本発明による銀ナノワイヤの製造方法では、遷移金属は、ニッケル、鉄、コバルトから選ばれる少なくとも1種であってもよい。
 また、本発明による銀ナノワイヤは、長さ方向に飛び飛びに金属塊を有しており、金属塊は析出物であるものである。
 また、本発明による銀ナノワイヤでは、金属塊は、銀、ニッケル、鉄、コバルトから選ばれる1種以上の塊であってもよい。
 また、本発明による分散液は、上記銀ナノワイヤを有するものである。
 また、本発明による透明導電膜は、上記銀ナノワイヤを有するものである。
 また、本発明による銀ナノワイヤの製造方法は、銀ナノワイヤの分散液と、銀とは異なる遷移金属の金属イオンとの混合液を加熱し、金属イオンを還元させることによって銀ナノワイヤの表面に遷移金属の塊を飛び飛びに析出させ、遷移金属の塊が表面に析出した銀ナノワイヤを大気暴露させることによって、遷移金属の塊が酸化されるようにする工程を備えた、長さ方向に飛び飛びに金属酸化物の塊を有しているものである。
 また、本発明による銀ナノワイヤは、長さ方向に飛び飛びに金属酸化物の塊を有しており、金属酸化物の塊は金属の析出物の酸化物であるものである。
 本発明による銀ナノワイヤの製造方法等によれば、ワイヤ径を細くすることなくプラズモン吸収帯の吸光極大を短波長にシフトさせることができる。
実施例1で得られた分散液A,B,Cの吸収スペクトルを示す図 実施例1で得られた分散液A,B,CのTEM画像を示す図 実施例1で得られた分散液A,CのFE-SEM画像を示す図 実施例1,2で得られた分散液の吸収スペクトルを示す図 実施例3で得られた分散液のTEM画像、及び銀ナノワイヤ表面へのニッケル結晶の析出に関する面方位を示す図 実施例3で得られた分散液の吸収スペクトルを示す図
 銀ナノワイヤの分散液と、遷移金属の金属イオンとの混合液を加熱し、金属イオンを還元させることによって銀ナノワイヤの表面に遷移金属の塊を飛び飛びに析出させる工程を備えた、長さ方向に飛び飛びに金属塊を有している銀ナノワイヤの製造方法について説明する。
 出発物質である銀ナノワイヤの分散液は、銀ナノワイヤを有している分散液であれば、どのように製造されたものであってもよい。銀ナノワイヤは、例えば、ポリオール法を用いて製造されたものであってもよく、ハロゲン化合物や還元剤を含む水溶媒中に銀錯体溶液を添加して加熱する方法によって製造されたものであってもよく、その他の方法によって製造されたものであってもよい。出発物質の銀ナノワイヤは、長さ方向について、ワイヤ径が一定であること、すなわち、ワイヤ径が長さ方向に関して変化しないものであることが好適である(例えば、図2(a)、図3(a)参照)。長さ方向についてワイヤ径が一定であるとは、例えば、1本の銀ナノワイヤについて、ワイヤ径を一定の長さごと(例えば、50nmごとなど)に複数計測し、その計測結果を用いて標準偏差を算出し、その算出した1本の銀ナノワイヤの標準偏差を複数の銀ナノワイヤについて平均した平均の標準偏差が、5nm以下であることであってもよい。また、長さ方向についてワイヤ径が一定である銀ナノワイヤは、メタノール分散液におけるプラズモン吸収帯において、例えば、347nmと371nmのように2つのピークトップを有している。したがって、プラズモン吸収帯において、そのような2つのピークトップを有する銀ナノワイヤが、長さ方向についてワイヤ径が一定である銀ナノワイヤであると考えてもよい。透明導電膜の製造過程などにおける銀ナノワイヤの断線を防止する観点からは、その銀ナノワイヤの平均径は大きい方が好適である。出発物質である銀ナノワイヤの平均径は、20nm以上であってもよく、25nm以上であってもよく、30nm以上であってもよい。一方、透明度を向上させ、また、プラズモン吸収帯の吸光極大の波長を長波長側にさせない観点からは、その銀ナノワイヤの平均径は小さい方が好適である。その銀ナノワイヤの平均径は、50nm以下であってもよく、45nm以下であってもよく、40nm以下であってもよい。出発物質である銀ナノワイヤの平均径は、例えば、20nm以上、50nm以下であってもよい。また、出発物質である銀ナノワイヤの平均径は、例えば、1本の銀ナノワイヤについて1箇所で計測したワイヤ径を、複数の銀ナノワイヤについて平均したものであってもよく、1本の銀ナノワイヤについて複数箇所で計測したワイヤ径の平均を、複数の銀ナノワイヤについてさらに平均したものであってもよい。
 出発物質である銀ナノワイヤの分散液は、銀ナノワイヤの精製前のものであってもよく、精製後のものであってもよい。その分散液の分散溶媒は、例えば、ポリオールであってもよく、水、メタノール、エタノール、1-プロパノール、2-プロパノール、ブタノール、ペンタノール、ヘキサノール等のアルコール類、テトラヒドロフラン、ジオキサン等のエーテル類、ホルムアミド、アセトアミド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリジノン等のアミド類、ジメチルスルホキシド等の有機硫黄化合物類、テルピネオール等のモノテルペンアルコールなどであってもよい。ポリオールの例示は、後記のとおりである。なお、その分散溶媒は、単独で用いてもよく、または複数を混合して用いてもよい。また、その分散液に、PVP等の樹脂などが含まれていてもよく、または、そうでなくてもよい。
 金属イオンは、銀とは異なる遷移金属のイオンである。遷移金属は、特に限定されないが、例えば、第4周期の遷移金属であってもよく、第4周期以外の遷移金属であってもよい。第4周期の遷移金属は、特に限定されないが、例えば、銅、ニッケル、鉄、コバルト、チタンから選ばれる少なくとも1種であってもよく、その他の第4周期の遷移金属であってもよい。また、第4周期以外の遷移金属は、特に限定されないが、例えば、モリブデン、またはタングステンであってもよい。金属イオンは、例えば、配位子を有していてもよく、または、配位子を有していなくてもよい。例えば、金属イオンにアンモニアや有機配位子が配位結合することによって、金属錯体を形成していてもよい。金属イオンは、例えば、銅イオン、ニッケルイオン、鉄イオン、コバルトイオンであってもよい。金属イオンが金属錯体を形成している場合に、その金属錯体は、例えば、有機金属錯体であってもよく、アンミン錯体であってもよい。有機金属錯体は、特に限定されないが、例えば、カルボン酸イオン、アセチルアセトナートなどのβ-ジケトナト配位子、トリフェニルホスフィン、アミン化合物から選ばれる1種以上の配位子を有していてもよい。カルボン酸イオンは、特に限定されないが、例えば、酢酸イオン、蟻酸イオン、飽和脂肪酸イオン、不飽和脂肪酸イオン、ヒドロキシ酸イオン、ジカルボン酸イオン、胆汁酸イオンなどを挙げることができる。飽和脂肪酸イオンは、例えば、ミリスチン酸イオン、ステアリン酸イオン等であってもよい。不飽和脂肪酸イオンは、例えば、オレイン酸イオン、リノール酸イオン等であってもよい。ヒドロキシ酸イオンは、例えば、クエン酸イオン、リンゴ酸イオン等であってもよい。ジカルボン酸イオンは、例えば、シュウ酸イオン、マロン酸イオン、コハク酸イオン等であってもよい。胆汁酸イオンは、例えば、コール酸イオン等であってもよい。金属錯体は、特に限定されないが、例えば、一般式[Mn+(L)m]Xで示されるものであってもよい。なお、式中、Mは、遷移金属の原子であり、nは、その遷移金属の価数であり、Lは、NH3、またはアミンであり、mは、原子Mの配位数である。Xは、ハロゲンイオン、NO3 -、SO4 2-、PF6 -、BF4 -等であってもよい。アミンは、例えば、R-NH2、RR'-NH、NH2-R-NH2、ピリジン、ビピリジンなどの複素環化合物等であってもよい。R及びR'は、それぞれ独立して、置換基を有していてもよい炭化水素基である。アンミン錯体は、アンミン(アンモニア)を配位子として有する錯体である。アンミン錯体としては、例えば、テトラアンミン銅錯体、ヘキサアンミンニッケル錯体、ヘキサアンミンコバルト錯体、ヘキサアンミン鉄錯体などを挙げることができる。金属錯体は、例えば、水分子である配位子を有していてもよい。金属の還元温度が低くなる観点から、カウンターアニオンが有機配位子である金属錯体、または、アンモニアが配位子であるアンミン錯体が好適である。また、ハロゲンイオン、NO3 -、SO4 2-などの無機化合物からなるカウンターアニオンは系中に残存し、ナノワイヤに取り込まれる可能性がある観点からも、カウンターアニオンが有機配位子である金属錯体やアンミン錯体が好適である。したがって、カルボン酸イオンを配位子とする金属錯体が好ましく、例えば、比較的安価な蟻酸銅、酢酸銅、蟻酸ニッケル、酢酸ニッケルなどを好適に使用することができる。金属イオンや金属錯体は、単独で用いられてもよく、または、複数が混合して用いられてもよい。
 銀ナノワイヤの分散液と、金属イオンとの混合液は、両者を混合することによって調製される。その混合は、例えば、銀ナノワイヤの分散液と金属塩や金属錯体との混合によって行われてもよく、銀ナノワイヤの分散液と金属イオン溶液との混合によって行われてもよい。また、金属イオン溶液は、例えば、銀ナノワイヤの分散液に滴下されてもよい。金属塩としては、例えば、遷移金属のハロゲン化塩、硫酸塩、硝酸塩、水酸化物等を挙げることができる。ハロゲン化塩は、例えば、塩化銅、塩化ニッケル、塩化鉄、塩化コバルト等であってもよい。金属イオン溶液の溶媒としては、例えば、水、一価のアルコール、ポリオール等を挙げることができる。一価のアルコールは、例えば、メタノール、エタノール、1-プロパノール、2-プロパノール、ブタノール等であってもよい。ポリオールの例示は、後記のとおりである。なお、その溶媒に、遷移金属イオンを分散させるための粘度調整剤である樹脂が含まれてもよく、または、含まれなくてもよい。その樹脂は、例えば、PVPであってもよい。金属イオン溶液にPVPが含まれる場合に、そのPVPの重量平均分子量は特に限定されないが、例えば、3万から120万の範囲内であってもよい。また、銀ナノワイヤの分散液と金属イオンとが最終的に混合されるのであれば、その過程は問わない。例えば、金属イオンが金属錯体を形成している場合に、銀ナノワイヤの分散液と、金属錯体を調製するための物質とを混合することによって、結果として、銀ナノワイヤの分散液と金属錯体とが混合されてもよい。金属錯体を調製するための物質は特に限定されないが、例えば、遷移金属の無機塩とアニオンとを挙げることができる。無機塩は、例えば、塩化銅、硫酸銅、硝酸銅、塩化ニッケル、硫酸ニッケル、硝酸ニッケル等であってもよい。また、アニオンは、例えば、カルボン酸ナトリウムやカルボン酸カリウム等のカルボン酸塩などであってもよい。カルボン酸ナトリウムとしては、例えば、酢酸ナトリウム、蟻酸ナトリウム等を挙げることができ、カルボン酸カリウムとしては、例えば、酢酸カリウム、蟻酸カリウム等を挙げることができる。金属錯体を調製するための物質として、例えば、塩化銅と酢酸ナトリウムとを用いた場合には、両者を混合することによって、酢酸銅を調製することができる。なお、金属錯体を調製するための物質と銀ナノワイヤの分散液とを混合しても、金属錯体を調製するための物質の一部が金属錯体にならないこともあり、その場合には、金属塊を有する銀ナノワイヤを製造するために、より多くの物質が必要になる。したがって、収率の観点からは、金属錯体と、銀ナノワイヤの分散液とを混合する方が好適である。
 製造対象の銀ナノワイヤは、長さ方向に飛び飛びに金属塊を有している。銀ナノワイヤの長さ方向は、長軸方向(長手方向)のことである。なお、飛び飛びに金属塊を有しているとは、銀ナノワイヤが長さ方向にわたって複数の金属塊を有していることである。その金属塊の間隔は、一定または不定である。その金属塊は、金属イオンと同じ金属から構成されてもよく、または、異なる金属から構成されてもよい。後述するように、例えば、金属イオンの金属が銅であり、析出した銅を銀ナノワイヤの表面から除去する場合には、製造対象の銀ナノワイヤが有する飛び飛びの金属塊は銀の金属塊であり、金属イオンの金属が銅以外の遷移金属、例えば、ニッケル、鉄、コバルト、チタンから選ばれる少なくとも1種、または、モリブデンもしくはタングステンである場合には、製造対象の銀ナノワイヤが有する飛び飛びの金属塊は、その金属イオンと同じ金属の金属塊である。また、例えば、金属イオンの金属が銅であり、その銅を除去しない場合には、製造対象の銀ナノワイヤが有する飛び飛びの金属塊は銀及び銅の金属塊である。そのように、銀ナノワイヤの表面に存在する飛び飛びの金属塊は、単独の金属の金属塊であってもよく、複数の金属の金属塊であってもよい。また、製造対象の銀ナノワイヤのメタノール分散液におけるプラズモン吸収帯の吸光極大の波長は、例えば、367nm以下であってもよく、365nm以下であってもよく、363nm以下であってもよく、360nm以下であってもよい。より大きいブルーシフトを実現する観点からは、その吸光極大の波長が短い方が好適である。また、その吸光極大の波長は、例えば、300nm以上であってもよい。また、飛び飛びの金属塊を有する銀ナノワイヤの平均径は、例えば、23nm以上であってもよく、27nm以上であってもよく、30nm以上であってもよく、35nmを超えてもよい。また、その銀ナノワイヤの平均径は、例えば、54nm以下であってもよく、47nm以下であってもよく、40nm以下であってもよい。プラズモン吸収帯の吸光極大の波長が短くなる観点からは、平均径が小さい方が好適であり、断線を防止する観点からは、平均径が大きい方が好適である。製造対象の銀ナノワイヤの平均径は、例えば、23nm以上、54nm以下であってもよい。なお、製造対象の銀ナノワイヤの平均径は、ワイヤ1本について、一端から50nmの間隔ごとに太さを計測した平均を、複数本のワイヤについてさらに平均したものであってもよい。また、製造対象の銀ナノワイヤにおける最も細い箇所における直径は、15nm以上であってもよい。また、製造対象の銀ナノワイヤにおける最も太い箇所における直径は、100nm以下であってもよい。また、その製造対象の銀ナノワイヤのCV値(変動係数:標準偏差を平均径で割ったもの)の平均は、10%以上であってもよく、15%以上であってもよく、20%以上であってもよい。また、CV値の平均は、60%以下であってもよく、50%以下であってもよい。そのCV値の平均は、ワイヤ1本について、一端から50nmの間隔ごとに計測した太さに関する標準偏差を、その太さの平均で割って1本あたりのCV値を算出し、その1本あたりのCV値を複数本のワイヤについて平均したものであってもよい。また、製造対象の銀ナノワイヤに存在する長さ方向の飛び飛びの金属塊の間隔は、長さ方向に対して、例えば、20nm以上、10μm以下であってもよい。また、その金属塊は、例えば、銀ナノワイヤの長さ方向の10μmあたりに1個以上存在してもよい。また、1個の金属塊の太さ(銀ナノワイヤの短軸方向における金属塊の直径)は、例えば、その金属塊の近傍における銀ナノワイヤの幹部分の直径の1.1倍以上、5倍以下であってもよい。金属塊の太さ(すなわち、金属塊の位置におけるワイヤ径)は、電子顕微鏡写真において、銀ナノワイヤの長さ方向に直交する方向における幅を測定したものであってもよい。また、銀ナノワイヤの幹部分の直径とは、銀ナノワイヤにおいて金属塊のない部分の直径である。その金属塊は、例えば、銀の金属塊であってもよく、銀及び銅の金属塊であってもよく、または、ニッケル、鉄、コバルト、チタン、モリブデン、タングステンから選ばれる少なくとも1種の金属塊であってもよい。その金属塊の金属が銀である場合または銀及び銅である場合には、金属塊は、通常、球形状またはワイヤの長さ方向に延びる紡錘形状であり、銀ナノワイヤの幹となるワイヤの全周にわたって存在する(例えば、図2(c)参照)。すなわち、銀の金属塊や、銀及び銅の金属塊の中心付近に、幹となる銀のワイヤが存在することになる。一方、その金属塊の金属がニッケル、鉄、コバルト等のように、金属イオンと同じ金属である場合には、金属塊は、通常、銀ナノワイヤの幹となるワイヤの周方向の一部に存在する(例えば、図5(b)参照)。すなわち、金属塊の端部に、幹となる銀ナノワイヤが存在することになる。金属塊の金属がニッケル、鉄、コバルト等のように、金属イオンと同じ金属である場合には、例えば、図5(d)で示されるように、出発物質の銀ナノワイヤの断面である五角形状の一辺において、金属が析出するからである。また、金属塊を有しない銀ナノワイヤから、表面に飛び飛びの金属塊を有する銀ナノワイヤを製造することは、銀ナノワイヤの表面のみを変化させていると考えることもできるため、以下、その銀ナノワイヤの製造を銀ナノワイヤの表面改質と呼ぶこともある。表面改質された銀ナノワイヤに飛び飛びに存在する金属塊は、上述のように、銀や、銅、ニッケル、鉄、コバルト、チタン、モリブデン、タングステンなど金属塊であるが、その金属塊の少なくとも一部は、金属の酸化物であってもよい。例えば、金属塊の金属が銀、ニッケル、コバルト、チタン、モリブデン、タングステンである場合には、容易には酸化しないが、その金属塊の表面の少なくとも一部が酸化物になることがある。また、例えば、金属塊の金属が銅、鉄である場合には、その金属塊の一部または全部が酸化物になることがある。したがって、金属塊が、ある金属の塊であるとは、その金属塊が、その金属そのものの塊である場合や、その金属と、その金属の酸化物との塊である場合のいずれかであると考えてもよい。すなわち、ある金属の金属塊とは、その少なくとも一部が酸化されていてもよい金属塊である、と考えてもよい。また、銀ナノワイヤの表面には、金属塊に代えて、金属酸化物の塊が存在してもよい。このことは、銀ナノワイヤの表面に遷移金属の塊を析出させる工程において析出される銅についても同様である。
 次に、析出した金属を除去する工程を有する銀ナノワイヤの製造方法に関し、金属イオンが銅イオンである場合について説明し、また、析出した金属を除去する工程を有しない銀ナノワイヤの製造方法に関し、金属イオンがニッケルイオンである場合について説明する。
 [析出した金属を除去する工程を有する銀ナノワイヤの製造方法]
 析出した金属を除去する工程を有する銀ナノワイヤの製造方法に関し、遷移金属が銅である場合について説明する。遷移金属が銅である場合には、金属イオンは銅イオンとなる。銅イオンは、例えば、配位子を有しない銅イオンであってもよく、配位子を有する銅イオンであってもよい。後者の場合には、銅錯体が形成されることになる。その銅錯体は、例えば、有機銅錯体であってもよく、アンミン銅錯体であってもよい。有機銅錯体は、特に限定されないが、例えば、カルボン酸銅、ビス(2,4-ペンタンジオナト)銅などのβ-ジケトナト配位子を含む銅錯体、トリフェニルホスフィン銅、アミン化合物である配位子を含む銅錯体などを挙げることができる。カルボン酸銅は、特に限定されないが、例えば、酢酸銅、蟻酸銅、飽和脂肪酸銅、不飽和脂肪酸銅、ヒドロキシ酸銅、ジカルボン酸銅、胆汁酸銅などを挙げることができる。脂肪酸銅は、例えば、長鎖アルキルカルボン酸銅であってもよい。飽和脂肪酸銅は、例えば、ミリスチン酸銅、ステアリン酸銅等であってもよい。不飽和脂肪酸銅は、例えば、オレイン酸銅、リノール酸銅等であってもよい。ヒドロキシ酸銅は、例えば、クエン酸銅、リンゴ酸銅等であってもよい。ジカルボン酸銅は、例えば、シュウ酸銅、マロン酸銅、コハク酸銅等であってもよい。胆汁酸銅は、例えば、コール酸銅等であってもよい。なお、銀ナノワイヤの表面に銅の塊を飛び飛びに析出させる工程において、銀ナノワイヤの分散液と銅イオンとの混合液中の銀原子に対する銅原子の比率(原子比率)は、0.01以上、0.9以下であることが好適である。銀ナノワイヤの分散液と銅イオンとの混合液を加熱することによって、銅イオンが還元され、銀ナノワイヤの表面に銅の塊が飛び飛びに析出することになる。その銅を析出させる工程において、銅の各塊の両側に銀の塊も析出する。両側とは、銀ナノワイヤの長さ方向の両側である。通常、析出した銀の塊は、銅の塊よりも小さいものである。その銀の析出は、例えば、銀ナノワイヤにおける銀原子のマイグレーションや、分散液中の銀イオンの還元によって起こるのではないかと推察できる。分散液中の銀イオンは、分散液にはじめから存在していてもよく、または、銀ナノワイヤの表面の銀がイオン化したものであってもよい。銀ナノワイヤの表面に銅は飛び飛びに析出するため、結果として、銀の塊も飛び飛びに析出することになる。銀ナノワイヤの分散液と銅イオンとの混合液の温度が300℃を超えると、銀ナノワイヤの表面に存在する表面修飾樹脂(例えば、PVPなどである)が分解され、銀ナノワイヤが凝集するため、好ましくない。そのため、混合液の加熱温度は300℃以下であることが好適である。また、混合液の温度が高い場合には、銀ナノワイヤに断線等の劣化が生じやすくなる。その観点から、混合液の加熱温度は、250℃以下であることがより好適である。なお、例えば、塩化銅を溶媒に溶解させると、配位子を有しない銅イオン溶液になるが、その銅イオンは、250℃程度で単体でも還元される。したがって、そのような配位子を有しない銅イオンを有する混合液の温度は、250℃程度であることが好適である。また、混合液の加熱温度は200℃以下であることがさらに好適である。また、銀ナノワイヤの分散液と銅錯体との混合液の加熱温度は、銅錯体単体での還元温度よりも低い温度であることが好適である。銀は銅イオンの還元触媒として作用するため、銀の存在下では、銅錯体単体での還元温度より低温で還元できる。そのため、混合液を還元温度より低い温度に加熱すると、銀ナノワイヤの表面で選択的に銅イオンの還元反応が進み、銀ナノワイヤ表面において銅ナノ粒子の析出が優先的に起こることになる。その結果、銀ナノワイヤの表面以外における銅の還元を抑制することができ、銅錯体を、銀ナノワイヤ表面における析出に効率的に用いることができるようになるからである。その観点から、混合液の加熱温度は、160℃以下であることがよりさらに好適である。また、混合液の温度は、60℃以上であってもよく、100℃以上であってもよく、120℃以上であってもよく、130℃以上であってもよく、140℃以上であってもよい。例えば、銅錯体が酢酸銅である場合には、混合液の温度が140℃以上となるように加熱してもよい。また、銅錯体がテトラアンミン銅錯体である場合には、混合液の温度が100℃以上となるように加熱してもよい。また、例えば、銅イオンが錯体を形成していない場合には、混合液の温度が200℃以上となるように加熱してもよい。また、その加熱還元処理では、銀ナノワイヤの劣化を防止する観点から、不活性雰囲気下で加熱することが好適である。不活性雰囲気下は、例えば、窒素ガス、アルゴンガスなどの不活性ガスの雰囲気下であってもよい。なお、不活性雰囲気下で加熱することにより、銅の酸化も防止することができる。また、銀ナノワイヤの分散液及び銅イオンの混合と、加熱との順序は問わない。例えば、両者を混合してから加熱してもよく、銀ナノワイヤの分散液を目的の温度に加熱した後に、その分散液に銅イオンを滴下してもよい。また、銀ナノワイヤの分散液と銅イオンとを混合する際や、銀ナノワイヤの表面に銅を析出させる際に、撹拌を行ってもよい。その撹拌は、例えば、回転撹拌や、揺動撹拌などであってもよい。また、混合液の加熱は、例えば、マイクロ波の照射によって行われてもよく、または、オイルバスなどのその他の加熱手段によって行われてもよい。マイクロ波加熱に関するマイクロ波の周波数や、マイクロ波の照射方法については、後記のとおりである。
 この銀ナノワイヤの製造方法においては、銅を析出させる工程の後に、銀ナノワイヤの表面に析出させた銅の塊を除去する工程をさらに備えている。粒子サイズが100nm以下である銅ナノ粒子は、室温、大気暴露により直ちに酸化銅に酸化される。そのように、酸化銅が銀ナノワイヤ表面に存在すると、耐久性、導電性の劣化を示す観点から、その銅の塊を除去してもよい。銅の塊を除去する工程では、例えば、アンモニア水溶液、またはアンモニウム塩の水溶液と、銀ナノワイヤの分散液とを混合し、銅の塊を銅イオンとして溶解させて除去することが好適である。なお、アンモニウム塩としては、例えば、塩化アンモニウム(NH4Cl)、臭化アンモニウム(NH4Br)などを挙げることができる。銀ナノワイヤの表面に析出した銅ナノ粒子は、大気雰囲気、ハロゲンイオンの存在下では直ちにテトラアンミン銅(II)錯体として極性溶媒中に溶出するため、銀ナノワイヤから容易に取り除くことができる。最終的に、銀ナノワイヤの表面には、銅を析出させる工程において銅の塊の両側に析出した銀の塊である金属塊のみが残ることになる。銀である金属塊は、容易に酸化しないものである。その銀の金属塊が銀ナノワイヤの表面に存在することにより、銀ナノワイヤのメタノール分散液におけるプラズモン吸収帯の吸光極大の波長が短波長側にシフトすることになる。この工程では、分散液(混合液)の温度は、例えば、室温であってもよく、100℃以下に加熱されてもよい。
 なお、銀ナノワイヤの表面に銅を析出させる工程、及び銀ナノワイヤの表面の銅の塊を除去する工程における圧力は問わない。すなわち、常圧であってもよく、加圧下または減圧下であってもよい。また、銀ナノワイヤの表面に銅を析出させる工程の加熱時間は、例えば、銀ナノワイヤの分散液と銅イオンとの混合が終了した時点から、1分以上、2時間以下であってもよい。混合が終了した時点とは、例えば、銀ナノワイヤの分散液に銅イオン溶液を滴下する場合には、すべての銅イオン溶液の滴下が終了した時点のことである。また、銀ナノワイヤの表面の銅の塊を除去する工程の時間は、例えば、10分以上、20時間以下であってもよい。
 [析出した金属を除去する工程を有しない銀ナノワイヤの製造方法]
 析出した金属を除去する工程を有しない銀ナノワイヤの製造方法に関し、遷移金属がニッケルである場合について説明する。遷移金属がニッケルである場合には、金属イオンはニッケルイオンとなる。ニッケルイオンは、例えば、配位子を有しないニッケルイオンであってもよく、配位子を有するニッケルイオンであってもよい。後者の場合には、ニッケル錯体が形成されることになる。そのニッケル錯体は、例えば、有機ニッケル錯体であってもよく、アンミンニッケル錯体であってもよい。有機ニッケル錯体は、特に限定されないが、例えば、カルボン酸ニッケル、ビス(2,4-ペンタンジオナト)ニッケルなどのβ-ジケトナト配位子を含むニッケル錯体、トリフェニルホスフィンニッケル、アミン化合物である配位子を含むニッケル錯体などを挙げることができる。カルボン酸ニッケルは、特に限定されないが、例えば、酢酸ニッケル、蟻酸ニッケル、飽和脂肪酸ニッケル、不飽和脂肪酸ニッケル、ヒドロキシ酸ニッケル、ジカルボン酸ニッケル、胆汁酸ニッケルなどを挙げることができる。脂肪酸ニッケルは、例えば、長鎖アルキルカルボン酸ニッケルであってもよい。飽和脂肪酸ニッケルは、例えば、ミリスチン酸ニッケル、ステアリン酸ニッケル等であってもよい。不飽和脂肪酸ニッケルは、例えば、オレイン酸ニッケル、リノール酸ニッケル等であってもよい。ヒドロキシ酸ニッケルは、例えば、クエン酸ニッケル、リンゴ酸ニッケル等であってもよい。ジカルボン酸ニッケルは、例えば、シュウ酸ニッケル、マロン酸ニッケル、コハク酸ニッケル等であってもよい。胆汁酸ニッケルは、例えば、コール酸ニッケル等であってもよい。なお、ニッケル錯体は、熱分解しやすい有機配位子を含む錯体であることが好適である。また、銀ナノワイヤの表面にニッケルの金属塊を飛び飛びに析出させる工程において、銀ナノワイヤの分散液とニッケルイオンとの混合液中の銀原子に対するニッケル原子の比率(原子比率)は、0.03以上であることが好適である。また、その原子比率は、1.0以下であることが好適である。銀ナノワイヤの分散液とニッケルイオンとの混合液を加熱することによって、ニッケルイオンが還元され、銀ナノワイヤの表面にニッケルの塊が飛び飛びに析出することになる。銀ナノワイヤの分散液とニッケルイオンとの混合液の温度が300℃を超えると、銀ナノワイヤの表面に存在する表面修飾樹脂が分解され、銀ナノワイヤが凝集するため、好ましくない。そのため、混合液の温度は300℃以下であることが好適である。また、混合液の温度が高い場合には、銀ナノワイヤに断線等の損傷が生じやすくなる。その観点から、混合液の温度は、250℃以下であることがより好適である。なお、例えば、塩化ニッケルを溶媒に溶解させると、配位子を有しないニッケルイオン溶液になるが、そのニッケルイオンは、250℃程度で単体でも還元される。したがって、そのような配位子を有しない銅イオンを有する混合液を加熱する場合には、その混合液の温度は、250℃程度であることが好適である。また、混合液の温度は200℃以下であることがさらに好適である。また、銀ナノワイヤの分散液とニッケル錯体との混合液の加熱の温度は、ニッケル錯体単体での還元温度よりも低い温度であることが好適である。ニッケルの場合にも、銀はニッケルイオンの還元触媒として作用するため、銀の存在下では、ニッケル錯体単体での還元温度より低温で還元できるからである。その観点から、混合液の加熱の温度は、160℃以下であることがよりさらに好適である。また、混合液の温度は、60℃以上であってもよく、100℃以上であってもよく、120℃以上であってもよく、130℃以上であってもよく、140℃以上であってもよい。例えば、ニッケル錯体が酢酸ニッケルである場合には、混合液の温度が140℃以上となるように加熱してもよい。また、例えば、ニッケルイオンが錯体を形成していない場合には、混合液の温度が200℃以上となるように加熱してもよい。また、その加熱還元処理では、銀ナノワイヤの劣化を防止する観点から、不活性雰囲気下で加熱することが好適である。なお、銀ナノワイヤの分散液及びニッケルイオンの混合と、加熱との順序は問わない。例えば、両者を混合してから加熱してもよく、銀ナノワイヤの分散液を目的の温度に加熱した後に、その分散液にニッケルイオンを滴下してもよい。また、銀ナノワイヤの分散液とニッケルイオンとを混合する際や、銀ナノワイヤの表面にニッケルを析出させる際に、撹拌を行ってもよい。その撹拌は、例えば、回転撹拌や、揺動撹拌などであってもよい。また、混合液の加熱は、例えば、マイクロ波の照射によって行われてもよく、または、オイルバスなどのその他の加熱手段によって行われてもよい。マイクロ波加熱に関するマイクロ波の周波数や、マイクロ波の照射方法については、後記のとおりである。また、銀ナノワイヤの表面に析出したニッケルは酸化しにくいため、銅のように除去しなくてもよい。すなわち、遷移金属がニッケルである場合には、銀ナノワイヤの表面からニッケルを除去する工程は不要である。この場合には、金属塊は、ニッケルを析出させる好適において析出したニッケルの塊である。ニッケルである金属塊は、容易に酸化しないものである。
 なお、銀ナノワイヤの表面にニッケルを析出させる工程における圧力は問わない。すなわち、常圧であってもよく、加圧下または減圧下であってもよい。また、銀ナノワイヤの表面にニッケルを析出させる工程の加熱時間は、例えば、銀ナノワイヤの分散液とニッケルイオンとの混合が終了した時点から、1分以上、2時間以下であってもよい。
 なお、金属イオンの金属がコバルトや鉄、チタン、モリブデン、タングステン等である場合にも、ニッケルイオンを用いた銀ナノワイヤの製造方法と同様に、銀ナノワイヤを製造することができる。その製造方法における原子比率や温度、圧力、時間等は、ニッケルイオンを用いた銀ナノワイヤの製造方法と同様であってもよい。遷移金属がコバルトである場合には、金属錯体は、例えば、酢酸コバルト、蟻酸コバルト、シュウ酸コバルト、クエン酸コバルト、オレイン酸コバルト、トリフェニルホスフィンコバルト、またはアンミンコバルト錯体などであってもよい。コバルトである金属塊は、容易に酸化しないものである。遷移金属が鉄である場合には、金属錯体は、例えば、酢酸鉄、蟻酸鉄、シュウ酸鉄、クエン酸鉄、オレイン酸鉄、トリフェニルホスフィン鉄、またはアンミン鉄錯体などであってもよい。この場合には、金属塊は、遷移金属を析出させる工程において析出した、その遷移金属の塊(例えば、コバルトや鉄の塊)となる。なお、不活性雰囲気下で加熱することにより、例えば、鉄の酸化を防止することができる。また、金属イオンの金属が銅である場合にも、ニッケルイオンを用いた銀ナノワイヤの製造方法と同様に、銀ナノワイヤの表面に析出した銅を除去しなくてもよい。その場合には、遷移金属を析出させる工程において析出した遷移金属である銀と銅との塊が金属塊となり、その金属塊が表面に飛び飛びに存在する銀ナノワイヤが製造されることになる。なお、そのような遷移金属の塊が表面に飛び飛びに析出した銀ナノワイヤを大気暴露させることによって、その遷移金属の塊が酸化されるようにする工程をさらに備えることにより、長さ方向に飛び飛びに金属酸化物の塊を有している銀ナノワイヤを製造することができる。その金属酸化物の塊は、金属の析出物の酸化物である。その金属酸化物は、例えば、酸化銅や酸化鉄などであってもよい。
 このようにしてプラズモン吸収帯の吸光極大の波長が短波長側にシフトされた銀ナノワイヤは、公知の方法によって精製されてもよい。銀ナノワイヤの分散液にPVPなどの樹脂等が含まれる場合には、精製によってその樹脂等を除去することが好適である。例えば、水、アルコール等の分散溶媒によって希釈した後に、遠心分離、クロスフローろ過、その他のろ過等によって、銀ナノワイヤの分散液に含まれる樹脂(例えば、PVPや、その他の表面修飾剤等)を減少させてもよい。また、そのような希釈とろ過等の処理とを繰り返してもよい。この精製によって、適宜、金属イオン等も除去できることになる。また、そのようにして精製された銀ナノワイヤは、例えば、透明導電膜の製造に用いられてもよく、その他の用途に用いられてもよい。透明導電膜の製造に銀ナノワイヤを用いる際に、銀ナノワイヤの液状分散液を調製し、その分散液を基板上に堆積させ、乾燥や硬化させるようにしてもよい。そのように、製造された銀ナノワイヤは、その液状分散液の調製に用いられてもよい。その分散液は、例えば、インク組成物や導電性インクと呼ばれることもある。その分散液を基板上に堆積させる方法や、堆積させた分散液を乾燥させたり硬化させたりする方法については、公知の方法を用いることができる。
 [銀ナノワイヤの分散液の製造方法]
 前述のように、銀ナノワイヤの分散液の製造方法は特に問わないが、例えば、次のようなポリオール法によって製造してもよい。ここでは、ポリオールと銀化合物とポリビニルピロリドンとを100℃以下で混合する第一の工程と、ハロゲン化合物を含むポリオールを110℃から沸点未満の範囲に加熱した反応溶液中に、第1の工程で混合した混合液を滴下する第二の工程と、を備えた銀ナノワイヤの製造方法について説明する。
 第一の工程で用いられるポリオールは、2以上のアルコール性ヒドロキシル基を有するアルコールである。ポリオールは特に限定されないが、例えば、エチレングリコール、プロピレングリコール(1,2-プロパンジオール)、トリメチレングリコール(1,3-プロパンジオール)、テトラエチレングリコール、ポリエチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリプロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、またはグリセリンなどを挙げることができる。そのポリオールとしては、反応性及び粘度の観点から、例えば、エチレングリコール、プロピレングリコール(PG)、またはトリメチレングリコールが好適である。ポリオールは、単独で用いられてもよく、または複数が混合されて用いられてもよい。
 銀化合物は、ポリオールに可溶であることが好適である。銀化合物は特に限定されないが、例えば、硝酸銀、酢酸銀、安息香酸銀、臭素酸銀、炭酸銀、クエン酸銀、乳酸銀、亜硝酸銀、過塩素酸銀、リン酸銀、硫酸銀、トリフルオロ酢酸銀、チオシアネート化銀、シアン化銀、シアネート化銀、四フッ素ボレート化銀、またはアセチルアセトネート化銀であってもよい。銀化合物としては、例えば、硝酸銀、過塩素酸銀、酢酸銀が好適であり、硝酸銀、酢酸銀がより好適である。
 ポリビニルピロリドンの重量平均分子量は特に限定されないが、例えば、1万から150万の範囲内であることが好適であり、3万から90万の範囲内であることがより好適である。また、そのモル比において、PVPのモル数は、繰り返しの1単位(分子量:111.14)を1モルとして計算している。以下の説明における、銀に対するPVPのモル比においても同様である。また、混合液においてPVPと銀との前駆体が適切に形成され、より均一なサイズの銀ナノワイヤが合成されるようにするため、混合液におけるPVP濃度(wt%)は、3wt%以上であることが好適である。
 また、ポリオールに銀化合物やPVPが可溶となるように、ポリオールや銀化合物が選択されることが好適である。
 第一の工程において、ポリオールと銀化合物とPVPとを混合する順序は問わないが、例えば、ポリオールにPVPを混合し、そこに銀化合物またはポリオールに溶解させた銀化合物を加えて混合するようにしてもよい。ポリオールに銀化合物やPVPを溶解させるため、十分な撹拌を行うことが好適である。第一の工程は、銀種を生成するための工程ではないため、その撹拌時の温度、すなわち混合時の温度は、銀ナノ粒子が生成され難い温度であることが好適である。例えば、特表2014-507562号公報には、エチレングリコールとPVPと硝酸銀との混合物を115℃に加熱することによって銀種溶液を生成することが記載されているため、第一の工程における温度は、それよりも低いことが好適である。したがって、混合時の温度は、例えば、100℃以下であってもよい。なお、銀イオンの還元や銀ナノ粒子の生成において、ポリオールは、溶媒兼還元剤として作用し、またPVPの還元能は非常に低いが還元補助剤として作用することが知られている。したがって、温度が高くなるほど、順次還元が進行し、銀粒子が生成される可能性が高くなる。そのため、混合時の温度は、80℃以下であることが好適である。また、混合時の温度は、10℃以上であることが好適である。混合は、例えば、回転撹拌や、揺動撹拌などによって行われてもよい。第一の工程は、通常、常圧において行われるが、必要に応じて加圧下または減圧下において行われてもよい。取り扱いの観点からは、常圧が望ましい。また、第一の工程は、通常、大気雰囲気中で行われるが、不活性雰囲気中で行ってもよい。
 第二の工程において用いるポリオールは、第一の工程で用いたポリオールと同じであってもよく、または、そうでなくてもよい。このポリオールの例示は、上述のとおりである。このポリオールは、溶媒兼還元剤である。このポリオールとしては、反応性及び粘度の観点から、例えば、エチレングリコール、PG、またはトリメチレングリコールが好適である。ポリオールは、単独で用いられてもよく、または複数が混合されて用いられてもよい。
 第二の工程におけるポリオールに含まれるハロゲン化合物は、ポリオール中においてハロゲン化物イオン、例えば、塩化物イオンや臭化物イオン等を提供する。ポリオールに含まれるハロゲン化合物は、特に限定されないが、塩素化合物を含んでいてもよい。その塩素化合物は、例えば、無機塩化物、及び有機塩化物から選ばれる少なくとも一つであってもよい。無機塩化物は、例えば、アルカリ金属塩化物、アルカリ土類金属塩化物、土類金属塩化物、亜鉛属金属塩化物、炭素属金属塩化物、及び遷移金属塩化物から選ばれる少なくとも一つであってもよい。アルカリ金属塩化物は、例えば、NaCl、KCl、またはLiClであってもよい。アルカリ土類金属塩化物は、例えば、塩化マグネシウム、または塩化カルシウムであってもよい。土類金属塩化物は、例えば、塩化アルミニウムであってもよい。亜鉛属金属塩化物は、例えば、塩化亜鉛であってもよい。炭素属金属塩化物は、例えば、塩化スズであってもよい。遷移金属塩化物は、例えば、塩化マンガン、塩化鉄、塩化コバルト、または塩化ニッケルであってもよい。有機塩化物は、例えば、テトラアルキルアンモニウムクロリドであってもよい。テトラアルキルアンモニウムクロリドは、一般式R1234NClで示されるものである。その式中、R1~R4は、それぞれ独立して、炭素数1~8の直鎖または分岐のアルキル基であってもよい。すなわち、テトラアルキルアンモニウムクロリドは、例えば、テトラメチルアンモニウムクロリド、テトラエチルアンモニウムクロリド、テトラプロピルアンモニウムクロリド、テトライソプロピルアンモニウムクロリド、テトラブチルアンモニウムクロリド、テトラペンチルアンモニウムクロリド、テトラヘキシルアンモニウムクロリド、テトラヘプチルアンモニウムクロリド、テトラオクチルアンモニウムクロリド、ヘキサデシルトリメチルアンモニウムクロリド、またはメチルトリオクチルアンモニウムクロリドであってもよい。その塩素化合物は、単独で用いられてもよく、または複数が混合されて用いられてもよい。また、ハロゲン化合物が塩素化合物を含んでいる場合に、そのハロゲン化合物は、臭素化合物をも含んでいてもよい。その臭素化合物は、例えば、無機臭化物であってもよく、有機臭化物であってもよい。無機臭化物は、例えば、アルカリ金属臭化物、アルカリ土類金属臭化物、土類金属臭化物、亜鉛属金属臭化物、炭素属金属臭化物、及び遷移金属臭化物から選ばれる少なくとも一つであってもよい。アルカリ金属臭化物は、例えば、NaBr、KBr、またはLiBrであってもよい。アルカリ土類金属臭化物は、例えば、臭化マグネシウム、または臭化カルシウムであってもよい。土類金属臭化物は、例えば、臭化アルミニウムであってもよい。亜鉛属金属臭化物は、例えば、臭化亜鉛であってもよい。炭素属金属臭化物は、例えば、臭化スズであってもよい。遷移金属臭化物は、例えば、臭化マンガン、臭化鉄、臭化コバルト、または臭化ニッケルであってもよい。有機臭化物は、例えば、テトラアルキルアンモニウムブロミドであってもよい。テトラアルキルアンモニウムブロミドは、一般式R5678NBrで示されるものである。その式中、R5~R8は、それぞれ独立して、炭素数1~8の直鎖または分岐のアルキル基であってもよい。すなわち、テトラアルキルアンモニウムブロミドは、例えば、テトラメチルアンモニウムブロミド、テトラエチルアンモニウムブロミド、テトラプロピルアンモニウムブロミド、テトライソプロピルアンモニウムブロミド、テトラブチルアンモニウムブロミド、テトラペンチルアンモニウムブロミド、テトラヘキシルアンモニウムブロミド、テトラヘプチルアンモニウムブロミド、テトラオクチルアンモニウムブロミド、ヘキサデシルトリメチルアンモニウムブロミド、またはメチルトリオクチルアンモニウムブロミドであってもよい。その臭素化合物は、単独で用いられてもよく、または複数が混合されて用いられてもよい。なお、ハロゲン化合物がテトラアルキルアンモニウムクロリド及びテトラアルキルアンモニウムブロミドを含んでおり、ハロゲン化合物におけるテトラアルキルアンモニウムクロリド及びテトラアルキルアンモニウムブロミドの割合(mol%)をそれぞれ[R1234NCl]、[R5678NBr]とした場合に、
 [R1234NCl]+[R5678NBr]=100、
 80≦[R1234NCl]≦97、
となることが好適である。ハロゲン化合物に含まれる塩素化合物を80モル%以上とすることによって、高収率で銀ナノワイヤを合成できるからである。また、ハロゲン化合物に含まれる塩素化合物を100%とするのではなく、少量の臭素化合物を含むようにすることによって、生成される銀ナノワイヤが太くならないようにすることができる。ハロゲン化合物に塩素化合物と臭素化合物とが含まれる場合に、その塩素化合物と臭素化合物との両方は、第二の工程において混合液の滴下を行う前に、ポリオールの反応溶液中に存在していることが好適である。なお、滴下対象である第一の工程の混合液に含まれる銀に対する、反応溶液に含まれるハロゲン化合物のモル比は、0.005以上であり、0.06以下であることが好適である。そのモル比は、0.05以下であることがより好適であり、0.04以下であることがさらに好適である。そのようにすることで、生成されるワイヤの太さのばらつきがより少ない均一な銀ナノワイヤを合成することができるからである。なお、滴下対象の混合液に含まれる銀とは、混合液の滴下後の反応溶液に含まれる銀であると考えてもよい。また、ポリオールにハロゲン化合物が可溶となるように、ポリオールやハロゲン化合物が選択されることが好適である。
 また、第二の工程において、ポリオールには、ハロゲン化合物以外に表面修飾剤も含まれていてもよい。表面修飾剤は、キャッピング剤と呼ばれることもあり、成長する銀ナノワイヤの側面に優先的に付着することによって、銀ナノワイヤの1次元方向への成長を促進するものである。表面修飾剤は特に限定されないが、例えば、PVP、またはポリビニルアセトアミドなどであってもよい。それらは単独で用いられてもよく、または混合されて用いられてもよい。その表面修飾剤の量は特に限定されないが、第二の工程で滴下される混合液に含まれる銀に対する表面修飾剤のモル比は、0から20であってもよい。なお、そのモル比は、0から10であることが好適である。使用する表面修飾剤の量が多いほど、銀ナノワイヤの生成後に表面修飾剤を除去したり低減したりする処理がより多く必要になるため、より少ない量の表面修飾剤を用いることが好適だからである。また、混合液の滴下終了後の反応溶液に含まれる銀に対する表面修飾剤(その表面修飾剤は、混合液に含まれていたPVPを含む)のモル比は、0.5以上が好適であり、1以上がより好適である。表面修飾剤が少ないと、球状粒子が生成される可能性が高くなるからである。また、合成される銀ナノワイヤを太くしない観点からは、混合液の滴下終了後の反応溶液に含まれる銀に対する表面修飾剤(その表面修飾剤は、混合液に含まれていたPVPを含む)のモル比は、2以上が好適であり、2.5以上がより好適であり、3以上がさらに好適である。また、そのモル比は、20以下であることが好適であり、15以下であることがより好適であり、10以下であることがさらに好適である。表面修飾剤が多すぎる場合にも、粒子状の銀が生成されるからである。そのモル比は、表面修飾剤の繰り返しの1単位を1モルとしたモル比であるとする。
 第二の工程において、第一の工程で混合した混合液を、ハロゲン化合物を含むポリオールの反応溶液中に滴下する。その際に、110℃から、その反応溶液の沸点未満の範囲に反応溶液を加熱する。また、反応溶液は、110℃から200℃の範囲に加熱されてもよく、120℃から180℃の範囲に加熱されてもよい。その加熱は、マイクロ波の照射によって行われてもよく、または、オイルバスなどのその他の加熱手段によって行われてもよい。その加熱において、反応溶液の温度をできるだけ一定に保持することが好適である。反応溶液に第一の工程で混合した混合液を滴下した時に、反応溶液の温度が少し低下する。したがって、その際に温度低下を引き起こさないようにするためには、マイクロ波加熱を行うことが好適である。マイクロ波加熱は、内部加熱であって、急速加熱が可能だからである。マイクロ波の周波数は特に限定されないが、例えば、2.45GHzであってもよく、5.8GHzであってもよく、24GHzであってもよく、915MHzであってもよく、その他の300MHzから300GHzの範囲内の周波数であってもよい。また、単一の周波数のマイクロ波が照射されてもよく、複数の周波数のマイクロ波が照射されてもよい。複数の周波数のマイクロ波は、例えば、同じ位置で照射されてもよく、または異なる位置で照射されてもよい。また、マイクロ波の照射は、連続で行ってもよく、または照射と休止を繰り返す間欠で行ってもよい。マイクロ波を照射すると、照射対象の温度が上昇するが、その温度が一定になるようにマイクロ波照射の強度を調整してもよい。マイクロ波の照射対象である反応溶液の温度は、例えば、熱電対方式の温度計や、光ファイバー方式の温度計などの既知の温度計を用いて測定されてもよい。その測定された温度は、マイクロ波の出力(強度)の制御に用いられてもよい。マイクロ波の照射は、シングルモードで行われてもよく、またはマルチモードで行われてもよい。
 第二の工程において、混合液の滴下終了後の反応溶液に含まれる銀の濃度が、1wt%以下となる量の混合液が滴下されることが好適である。反応溶液中の銀の濃度が高くなると、得られる銀ナノワイヤが太くなるからである。反応溶液に含まれる銀の濃度とは、銀イオン、銀元素、銀化合物のすべてを含む銀の濃度である。反応溶液に混合液を滴下するスピードは、銀ナノワイヤが適切に合成できる範囲内において任意であるが、より長い平均長の銀ナノワイヤを得る観点からは、より遅いことが好適である。例えば、反応溶液における銀濃度の平均増加スピードが0.6wt%/h以下となるように滴下することが好適であり、0.1wt%/h以下となるように滴下することがより好適であり、0.04wt%/h以下となるように滴下することがさらに好適である。なお、その平均増加スピードは、滴下終了後の銀濃度(wt%)を、滴下時間(h)で割ったものである。したがって、混合液の滴下スピードが一定である場合には、滴下開始時には、その平均増加スピードより大きな値で銀濃度が増加し、滴下終了間際には、その平均増加スピードより小さな値で銀濃度が増加することになる。
 また、その混合液の滴下が終了した後に、滴下時の温度を維持してもよく、またはそうでなくてもよい。混合液の滴下の終了後に滴下の温度を維持する時間を保持時間と呼ぶとすると、その保持時間は、0から12時間の範囲であってもよい。また、その保持時間は、30分から2時間の範囲内であることが好適である。混合液の滴下直後に、滴下された液滴に含まれる銀を用いた銀ナノワイヤの成長が行われると考えられるため、通常、保持時間を設けなくても問題ないと考えられるが、その保持時間を設けることによって、より完全に銀ナノワイヤの成長が完了すると考えられる。したがって、保持時間は長時間でなくても問題ない。なお、滴下された液滴に含まれる銀とは、銀化合物であってもよく、銀イオンであってもよい。その銀化合物は、混合時に用いられた銀化合物であってもよく、または、そうでなくてもよい。
 第二の工程は、通常、常圧において行われるが、必要に応じて加圧下または減圧下において行われてもよい。取り扱いの観点からは、常圧が望ましい。また、圧力が常圧でない場合には、反応溶媒の沸点は、その圧力における沸点となる。
 第二の工程は、不活性雰囲気中で行われることが好適である。その不活性雰囲気とするために用いられる不活性気体は、窒素、ヘリウム、ネオン、及びアルゴンから選ばれる少なくとも一つを含有していてもよい。なお、不活性雰囲気中で第二の工程の反応を行うとは、反応容器に存在する空気を不活性気体で置き換えることであると考えてもよい。
 第二の工程において、反応溶液に混合液を滴下することによって、反応溶液中で銀イオンが還元され、銀ナノワイヤを得ることができる。第二の工程によって生成される銀ナノワイヤは、平均径が20~50nmであり、アスペクト比が200~10000の範囲内のものとなる。そのアスペクト比は、200~5000の範囲内であってもよい。アスペクト比は、ナノワイヤの直径に対する長さの比である。すなわち、アスペクト比=ナノワイヤの長さ/ナノワイヤの直径となる。第二の工程によって製造された銀ナノワイヤは、公知の方法によって精製することができる。上記金属イオンと混合される銀ナノワイヤの分散液は、精製後のものであってもよく、または、精製前のものであってもよい。
 なお、ここでは、吸光極大をシフトさせる対象となる出発物質としての銀ナノワイヤを製造する一例として、ポリオール法について説明したが、上記以外のポリオール法によって銀ナノワイヤを製造してもよく、ポリオール法以外の製造方法によって、吸光極大をシフトさせる対象となる出発物質としての銀ナノワイヤを製造してもよいことは言うまでもない。
 また、銀ナノワイヤのメタノール分散液について、プラズモン吸収帯の吸光極大の波長がブルーシフトすることについて説明したが、他の溶媒を用いた銀ナノワイヤの分散液についても、同様にプラズモン吸収帯の吸光極大の波長のブルーシフトを確認できると考えられる。
 以上のように、本発明による銀ナノワイヤの製造方法によれば、メタノール分散液におけるプラズモン吸収帯の吸光極大の波長を短波長側にシフトさせた銀ナノワイヤを製造することができる。また、銀ナノワイヤのワイヤ径を細くすることなく、吸光極大をブルーシフトさせることができるため、耐久性や導電性を低下させることなく、ブルーシフトを実現できることになる。なお、その銀ナノワイヤの製造で用いる金属イオンは、還元温度を低くできる観点から、アンミン錯体や、有機配位子をカウンターアニオンとして有する金属錯体を形成していることが好適である。また、その銀ナノワイヤの製造で用いる金属錯体として、銅錯体やニッケル錯体等を用いることができるが、吸光極大以外の波長帯域における吸光度を低くすることができる観点からは、銅錯体を用いることが好適である。
 [実施例、比較例]
 以下、本発明を実施例に基づいて詳しく説明するが、これらの実施例は例示的なものであり、本発明はこれらの実施例により限定されるものではない。
 銀ナノワイヤの分散液の評価として、以下の手順にしたがい、各調製条件の差異を確認した。
 [可視吸収スペクトル]
 分散液0.1gを採取し、メタノール溶媒にて50倍(w/w)に希釈した希釈分散液を、以下の測定装置、装置条件で分析した。
 測定装置:U-3300形分光光度計(日立ハイテクノロジーズ社製)
 装置条件
  開始:660.00nm
  終了:300.00nm
  スキャンスピード:60nm/min
  サンプリング間隔:2.00nm
  スリット:2nm
  セル長:10.0mm
 [ワイヤ径、ワイヤ長の計測]
 銀ナノワイヤのサイズ計測は、以下の手順に従い平均値を算出した。
 分散液10gをメタノールにて200gになるように希釈した希釈分散液をテフロン(登録商標)製遠沈容器に充填し、遠心分離機(TOMY社製、CAX-371)にて、回転数2,300rpm(1,000G相当)、60分の回転条件で遠心分離した後、上澄みを除去した。その後、得られたスラリーを同量のメタノールで再分散させ、遠心分離する操作をさらに3回繰り返すことによって洗浄操作を行い、過剰に存在していたPG溶媒、樹脂(PVP)を除去した。得られた銀ナノワイヤ分散液をSiO2基板に液滴し、100℃にて乾燥した。以下の条件にて分析を行い、200本のワイヤのサイズを計測することで平均径、平均長を算出した。
 測定装置:電界放射型走査電子顕微鏡(日立ハイテクノロジーズ社製,FE-SEM,S4800)
 平均径測定条件:加速電圧10kV、WD8mm、倍率100,000倍
 平均長測定条件:加速電圧10kV、WD8mm、倍率1,000倍
 [実施例1]
 (銀ナノワイヤ分散液の調製)
 室温下、2.25gの硝酸銀(和光純薬社製)、7.2gのPVP(重量平均分子量50,000、和光純薬社製)粉末を、210gのPG溶媒中に激しく撹拌しながら少量ずつ加えて溶解させ、深緑色の混合液を調製した。
 ポリテトラフルオロエチレン(PTFE)製シール栓付き撹拌機(東京理理化機器社製,マゼラZ2310)、窒素導入管、熱電対挿入口、混合液滴下口を有する容積1,000mLのガラス製丸底フラスコと、撹拌翼であるPTFE製三日月型羽根とを備えた反応装置を用いて銀ナノワイヤを合成した。なお、上記反応装置をマルチモード型マイクロ波照射装置(四国計測工業社製,μ-Reactor Ex;最大出力1,000W,発信周波数2.45GHz)内に組み込み、マイクロ波照射により溶液全体を加熱した。温度制御は、溶液内の温度を熱電対にて計測し、その計測温度が設定された温度となるようにマイクロ波の出力をプログラム制御することによって行った。
 上記1,000mLガラス容器内に200gのPG溶媒と0.055gのテトラブチルアンモニウム塩を投入し、室温にて撹拌することで全て溶解させ、反応溶液を調製した。そのテトラブチルアンモニウム塩としては、テトラブチルアンモニウムクロリドとテトラブチルアンモニウムブロミドとのモル比が86:14の混合物を使用した。容器内を窒素ガスにて置換した後、100ml/minの窒素ガス流量にて絶えず不活性雰囲気下に保持した。まず、ガラス容器内の反応溶液をマイクロ波照射により室温から150℃まで昇温速度10℃/minにて昇温し、溶液の温度を保持した。また、30℃の硝酸銀の混合液を、定量ポンプ(KNF社製,SIMDOS02)を用いて、4時間かけて滴下した後、温度をさらに60分保持することで銀ナノワイヤを合成し、得られた灰緑色溶液を室温まで冷却することで銀ナノワイヤの分散液(分散液Aとする)を得た。
 (銀ナノワイヤの表面改質)
 28.920gのPG溶媒に、1.080gのPVP(重量平均分子量50,000、 和光純薬社製)を溶解させた後、0.370gの酢酸銅1水和物粉末(和光純薬製)を混合し、50℃にて加熱撹拌することで銅錯体を溶解させた。この銅錯体溶液を上記銀ナノワイヤ分散液(分散液A)200.0gと混合することによって混合液を調製した。ここで、銀原子に対する銅原子の比率は0.50(原子比率)であった。
 ポリテトラフルオロエチレン(PTFE)製シール栓付き撹拌機(東京理理化機器社製,マゼラZ2310)、窒素導入管、熱電対挿入口を有する容積500mLのガラス製丸底フラスコと、撹拌翼であるPTFE製三日月型羽根とを備えた反応装置を用いた。なお、上記反応装置をマルチモード型マイクロ波照射装置(四国計測工業社製,μ-Reactor Ex;最大出力1,000W,発信周波数2.45GHz)内に組み込み、マイクロ波照射によって混合液全体を加熱した。温度制御は、液中の温度を熱電対にて計測し、その計測温度が設定された温度となるようにマイクロ波の出力をプログラム制御することによって行った。
 上記のように調製した混合液を丸底フラスコに移し、容器内を窒素ガスにて置換した後、100ml/minの窒素ガス流量にて絶えず不活性雰囲気下に保持し、まず、ガラス容器内の混合液をマイクロ波照射により室温から昇温速度10℃/minにて150℃まで昇温した。150℃到達10分後に混合液の色が灰緑色から赤褐色に変化したことから、銅イオンが還元され銅ナノ粒子が生成したことが確認された。なお、150℃に到達後、その温度にて60分保持して反応を完結させ、得られた赤褐色溶液を室温まで冷却した(分散液Bとする)。
 この反応溶液を室温、大気雰囲気にて撹拌しながら、60gの28%アンモニア水溶液を5分かけて滴下した。滴下した後さらに1時間撹拌することで反応溶液が灰緑色溶液(分散液Cとする)に戻るのを確認した後、240gの酢酸エチルを5分かけて滴下する貧溶媒晶析手法によりナノワイヤ沈殿物を得た。ここで、上澄み溶液は酢酸エチルとPG溶媒の混合液であり、さらに薄い青色を呈しており、銅イオンが上澄みに抽出されていた。
 上記晶析溶液の上澄みをデカンテーションにより除いた後、ナノワイヤ、PVP樹脂を多く含む沈殿物をメタノールにて200gになるように希釈し、この分散液をテフロン(登録商標)製遠沈容器に充填し、遠心分離機(TOMY社製、CAX-371)にて、回転数2,300rpm(1,000G相当)、60分の回転条件にて遠心分離した後、上澄みを除去した。その後、得られたスラリーを同量のメタノールで再分散させ、遠心分離する操作をさらに3回繰り返すことによって洗浄操作を行い、過剰に存在していたPG溶媒、樹脂(PVP)を除去することで目的とする銀ナノワイヤの分散液を得た。
 (得られた反応液の吸収スペクトル変化)
 各反応段階における銀ナノワイヤ分散液のプラズモン吸収帯の変化を調べると以下のような経時変化が観察された。上記過程の分散液A,B,Cを0.1g採取し、メタノール溶媒にて100倍(w/w)に希釈した希釈分散液の吸収スペクトルを図1に示す。なお、図1における四角枠内は、325~415nm付近の拡大図である。
 銀ナノワイヤの合成直後(分散液A)は、347nmと371nmの2つのピークトップを有するプラズモン吸収帯を示していたが、酢酸銅を加え加熱したもの(分散液B)は、360nmのみにピークトップを有する銀ナノワイヤ特有のプラズモン吸収を示した。さらに600nm付近に銅ナノ粒子特有のプラズモン吸収を示すことが確認された。一方、大気暴露した後、アンモニア処理した分散液Cは、600nmの銅ナノ粒子プラズモン吸収帯が消失し、360nmのみにピークトップを有する銀ナノワイヤ特有のプラズモン吸収帯のみが確認された。また、分散液Cでは、550~650nmの吸光度が分散液Bと比べ、相対的に減少していることが確認された。この結果から、分散液B,Cは可視光領域の吸収帯が全体的にブルーシフト(すなわち、短波長にシフト)した銀ナノワイヤとなったことが分かる。また、銅ナノ粒子プラズモン吸収帯を消失させ、550~650nmの吸光度を減少させる観点からは、銀ナノワイヤの表面に析出した銅を除去させる方が好適であることが分かる。
 (得られた反応液に含まれる銀ナノワイヤの形状)
 各反応段階における銀ナノワイヤの形状を透過型電子顕微鏡(TEM:日立ハイテクノロジーズ社製,H800EDX,加速電圧200kV)にて観察した。精製したメタノール希釈分散液をエラスティックカーボン支持膜Moグリッド(応研商事社製、ELS-M10)に液滴し、40℃、真空乾燥させることで溶媒を除去したものを使用した。図2は、分散液A、B、Cを遠心分離にて精製した後の分散液から得られたTEM画像を示す図である。図2(a)は、分散液AのTEM画像であり、図2(b)は、分散液BのTEM画像であり、図2(c)及び図2(d)は、分散液Cを精製した分散液のTEM画像である。分散液Aの銀ナノワイヤはまっすぐなワイヤであったのに対し、分散液Bの銀ナノワイヤは、部分的にバルーンのように膨らんだ塊の箇所と、その両端に少し膨らんだ箇所とが存在するワイヤ形状となっていることが確認された。また図2(b)の四角で囲った領域をEDX(エネルギー分散型X線分析)により元素分析したところ、銅と銀の原子が確認され、銅と銀で構成されていることが確認された。一方、分散液Cの銀ナノワイヤについては、バルーンのような膨らみが消失し、その両端の膨らみのみが残ったワイヤ形状として確認された。図2(c)の四角で囲った領域をEDXにより元素分析したところ、銀原子のみが確認され、銀で構成される凹凸状のワイヤであることが確認された。したがって、分散液Bの銀ナノワイヤにおけるバルーンのような塊は銅の塊であり、その両側に存在する膨らみは銀の塊であると考えられる。
 (得られた銀ナノワイヤのサイズ変化)
 図3は、分散液A,Cを遠心分離洗浄することで得られたメタノール分散液のFE-SEM画像を示す図である。図3(a)は、分散液AのFE-SEM画像であり、図3(b)は、分散液CのFE-SEM画像である。分散液Aの銀ナノワイヤは断面が五角形状のエッジを有するものから形成されているのに対して、分散液Cの銀ナノワイヤは部分的に金属塊を有していることが分かる。ここで、分散液Aの銀ナノワイヤ200本からワイヤ径、ワイヤ長を計測したところ、平均径33.4nm(標準偏差3.0nm)、平均長9.8μm(標準偏差4.9μm)であった。この平均径の算出においては、ワイヤ1本に対して、無作為に1箇所の太さを計測することを200本のワイヤについて行った。
 (銀ナノワイヤ1本あたりの太さの変化)
 分散液A,CのFE-SEM画像において、ワイヤ1本におけるワイヤ径変化(太さ変化)を以下の条件にて計測した。ワイヤ1本においてワイヤの端から50nmの間隔ごとに太さを計測し、ワイヤ1本におけるワイヤ径の平均値と標準偏差を算出した。これを10本のワイヤにて計測した結果を次表に示す。
 分散液Aの銀ナノワイヤは1本あたりの太さのばらつきはほとんどなく、同じ太さで伸びていることが分かる。一方、表面処理を施した分散液Cにおいては、部分的に金属塊を有する箇所が形成されており、その太さは35~80nmであり、1本中の太さのばらつきを示すCV値は、分散液Aの平均5.3%から、約5倍の平均26.8%に上昇している。また、分散液Cにおいては、各銀ナノワイヤの平均径が35nmを超えているため、1本の平均径を10本のワイヤについて平均した結果も35nmを超えることになる。したがって、そのような平均径が35nmを超える銀ナノワイヤについて、プラズモン吸収帯の吸光極大を短波長にシフトさせることができたことになる。
 分散液Aに関する計測結果は、次のとおりである。
Figure JPOXMLDOC01-appb-T000001
 分散液Cに関する計測結果は、次のとおりである。
Figure JPOXMLDOC01-appb-T000002
 [実施例2]
 酢酸銅1水和物の量を0.074g、0.222g、及び0.74gとした以外は、実施例1と同様の条件にて銀ナノワイヤの表面改質を行った。なお、それらの酢酸銅1水和物の量に対応する原子比率(銀原子に対する銅原子の比率)はそれぞれ、0.10、0.30、及び1.0となる。
 図4は、実施例1,2に関する分散液Cを精製した後のメタノール分散液の吸収スペクトルを示す図である。図4(a)において、実線は、銀原子に対する銅原子の比率が0.1である分散液Cの精製後の分散液の吸収スペクトルであり、点線は、表面処理前の分散液Aの吸収スペクトルである。図4(b)、図4(c)、図4(d)はそれぞれ、銀原子に対する銅原子の比率が0.3、0.5、1.0である分散液Cの精製後の分散液の吸収スペクトルである。図4から、表面改質を行うことによって銀のプラズモン吸収のピークトップを371nmから360nmへブルーシフトするためには、銀原子に対する銅原子の比率が0.10程度の少量の添加でも十分効果があることが分かる。一方、銀原子に対する銅原子の比率を1.0にした場合は、銀のプラズモン吸収のピークトップが同様のブルーシフトをしているが、320~450nmにわたってブロードな吸収となっている。したがって、銀ナノワイヤの分散液と混合する銅錯体は、銀原子に対する銅原子の比率が0.9以下となるように混合することが好適である。
 [実施例3]
 酢酸銅1水和物の代わりに、酢酸ニッケル4水和物を用いる以外は、実施例1と同様の条件にて銀ナノワイヤの表面改質を行った。ただし、実施例1とは異なり、アンモニア水溶液の滴下は行わなかった。ニッケルの場合には、銀ナノワイヤの表面に析出したニッケルを除去する必要がないからである。また、使用した酢酸ニッケル4水和物の量、混合液中の原子比率、吸収最大波長は、次表のとおりである。得られた分散液を遠心分離操作で洗浄することによって目的とする銀ナノワイヤの分散液を得た。
Figure JPOXMLDOC01-appb-T000003
 (TEM画像)
 図5は、得られた銀ナノワイヤの分散液のTEM画像を示す図である。図5(a)~図5(c)はそれぞれ、上記No.1,No.3,No.4に対応する表面改質後の銀ナノワイヤの分散液のTEM画像であり、図5(d)は、銀ナノワイヤ表面におけるニッケルの析出について説明するための図である。図5(d)で示されるように、酢酸ニッケルを用いて反応させる場合には、銀ナノワイヤの表面にプレート状にニッケルが析出する。図5(a)~図5(c)から分かるように、銀ナノワイヤの表面に析出するニッケル結晶のサイズは、ニッケルイオンの添加量に依存していた。すなわち、銀ナノワイヤの表面に析出したニッケル結晶のサイズは、No.1のサンプルでは40nm程度であり、No.4のサンプルでは10~20nm程度であった。
 (吸収スペクトルの変化)
 図6は、得られた分散液をメタノール希釈した分散液の吸収スペクトルそれぞれ示す図である。吸収の最大波長を上記表に記載しているが、ニッケルの添加量を増やすことで銀ナノワイヤのプラズモン吸収体の最大波長がブルーシシフトしていることが分かる。ただし、No.5の混合液中の原子比率[Ni2+]/[Ag]=0.02の場合には、表面改質前の銀ナノワイヤの吸収スペクトルからの変化が微小であるため、銀原子に対するニッケル原子の比率は、0.02を超えていることが好適である。
 [試験例1]
 0.370gの酢酸銅1水和物、1.080gのPVP(重量平均分子量50,000)を28.92gのPG溶媒に混合し、50℃にて加熱撹拌することで銅錯体を溶解させた。この銅錯体を実施例1と同様の反応装置にて窒素雰囲気下、昇温速度10℃/minにて150℃まで昇温し、2時間保持した。なお、2時間経っても溶液の色の変化はなかった。
 [試験例2]
 昇温後の温度を165℃に変更した以外は、試験例1と同様にして実験を行った。165℃に保持してから1時間程度の経過後から溶液の色が緑色から赤褐色に変化し、銅イオンの還元及び銅ナノ粒子の生成が確認された。
 試験例1,2の結果と実施例1の結果から、銀ナノワイヤが存在する場合には、銀が触媒となることによって、150℃という低温下においても銅イオンの還元が促進されることが分かる。また、銀ナノワイヤの表面に銅イオンの還元及び銅(0)の析出が発生することによって、効率よく銀の表面を銅で覆うことができる。一方、165℃以上の温度で反応させる場合には、PG溶媒中で銅の還元、銅ナノ粒子の析出が独立して発生することによって、銀ナノワイヤの表面改質に使われる銅の量が減少し、銀ナノワイヤの表面改質の効果が低減するため好ましくないと考えられる。したがって、銀ナノワイヤの分散液と銅錯体とを混合させる場合には、165℃より低い温度に加熱することが好適である。
 なお、本発明は、以上の実施例に限定されることなく、種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることは言うまでもない。
 本発明による銀ナノワイヤの製造方法によって製造された銀ナノワイヤ、本発明による銀ナノワイヤやその分散液、透明導電膜は、例えば、タッチパネル等において用いることができる。

Claims (11)

  1. 銀ナノワイヤの分散液と、銀とは異なる遷移金属の金属イオンとの混合液を加熱し、前記金属イオンを還元させることによって前記銀ナノワイヤの表面に前記遷移金属の塊を飛び飛びに析出させる工程を備えた、長さ方向に飛び飛びに金属塊を有している銀ナノワイヤの製造方法。
  2. 前記遷移金属の塊を析出させる工程において、前記混合液の加熱温度は300℃以下である、請求項1記載の銀ナノワイヤの製造方法。
  3. 前記遷移金属は銅であり、
    銅を析出させる工程では、銅の各塊の両側に銀の塊も析出し、
    前記銀ナノワイヤの表面に析出させた銅の塊を除去する工程をさらに備え、
    前記金属塊は、銅を析出させる工程において銅の塊の両側に析出した銀の塊である、請求項1または請求項2記載の銀ナノワイヤの製造方法。
  4. 前記金属塊は、遷移金属を析出させる工程において析出した遷移金属の塊である、請求項1または請求項2記載の銀ナノワイヤの製造方法。
  5. 前記遷移金属は、ニッケル、鉄、コバルトから選ばれる少なくとも1種である、請求項4記載の銀ナノワイヤの製造方法。
  6. 長さ方向に飛び飛びに金属塊を有しており、前記金属塊は析出物である銀ナノワイヤ。
  7. 前記金属塊は、銀、ニッケル、鉄、コバルトから選ばれる1種以上の塊である、請求項6記載の銀ナノワイヤ。
  8. 請求項6または請求項7記載の銀ナノワイヤを有する分散液。
  9. 請求項6または請求項7記載の銀ナノワイヤを有する透明導電膜。
  10. 銀ナノワイヤの分散液と、銀とは異なる遷移金属の金属イオンとの混合液を加熱し、前記金属イオンを還元させることによって前記銀ナノワイヤの表面に前記遷移金属の塊を飛び飛びに析出させ、当該遷移金属の塊が表面に析出した銀ナノワイヤを大気暴露させることによって、当該遷移金属の塊が酸化されるようにする工程を備えた、長さ方向に飛び飛びに金属酸化物の塊を有している銀ナノワイヤの製造方法。
  11. 長さ方向に飛び飛びに金属酸化物の塊を有しており、前記金属酸化物の塊は金属の析出物の酸化物である銀ナノワイヤ。
PCT/JP2017/040216 2016-12-12 2017-11-08 銀ナノワイヤの製造方法、銀ナノワイヤ、分散液、及び透明導電膜 WO2018110157A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020197015514A KR102465793B1 (ko) 2016-12-12 2017-11-08 은 나노 와이어의 제조방법, 은 나노 와이어, 분산액, 및 투명 도전막
US16/307,877 US20190308248A1 (en) 2016-12-12 2017-11-08 Method for producing silver nanowires, silver nanowires, dispersion, and transparent conductive film
CN201780072727.2A CN110023009B (zh) 2016-12-12 2017-11-08 银纳米线的制造方法、银纳米线、分散液及透明导电膜
US17/541,553 US20220088678A1 (en) 2016-12-12 2021-12-03 Method for producing silver nanowires, silver nanowires, dispersion, and transparent conductive film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016240080A JP6139009B1 (ja) 2016-12-12 2016-12-12 銀ナノワイヤの製造方法、銀ナノワイヤ、分散液、及び透明導電膜
JP2016-240080 2016-12-12

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/307,877 A-371-Of-International US20190308248A1 (en) 2016-12-12 2017-11-08 Method for producing silver nanowires, silver nanowires, dispersion, and transparent conductive film
US17/541,553 Division US20220088678A1 (en) 2016-12-12 2021-12-03 Method for producing silver nanowires, silver nanowires, dispersion, and transparent conductive film

Publications (1)

Publication Number Publication Date
WO2018110157A1 true WO2018110157A1 (ja) 2018-06-21

Family

ID=58794340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040216 WO2018110157A1 (ja) 2016-12-12 2017-11-08 銀ナノワイヤの製造方法、銀ナノワイヤ、分散液、及び透明導電膜

Country Status (6)

Country Link
US (2) US20190308248A1 (ja)
JP (1) JP6139009B1 (ja)
KR (1) KR102465793B1 (ja)
CN (1) CN110023009B (ja)
TW (1) TWI645923B (ja)
WO (1) WO2018110157A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111812757A (zh) * 2019-04-11 2020-10-23 南京大学 一种柔性导电复合金属纳米线光栅材料及其制备方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190092507A (ko) * 2016-12-08 2019-08-07 도와 일렉트로닉스 가부시키가이샤 은 나노와이어 및 그 제조 방법 및 은 나노와이어 잉크
WO2019172423A1 (ja) 2018-03-09 2019-09-12 大日本印刷株式会社 導電性フィルム、センサー、タッチパネル、および画像表示装置
JP7239297B2 (ja) * 2018-10-22 2023-03-14 トヨタ自動車株式会社 銀ナノワイヤの製造方法
WO2020218067A1 (ja) * 2019-04-26 2020-10-29 コニカミノルタ株式会社 透明電極及びそれを具備した電子デバイス
CN110340348B (zh) * 2019-08-05 2021-12-21 郴州市金贵银业股份有限公司 一种纳米银粉、制备方法、银浆和应用
CN110791136A (zh) * 2019-09-25 2020-02-14 深圳市华科创智技术有限公司 一种银纳米线涂布溶液及透明导电薄膜
CN110814332B (zh) * 2019-11-08 2022-07-12 惠州达祺光电科技有限公司 一种银纳米线后处理方法
JP7030277B1 (ja) * 2020-06-17 2022-03-07 星光Pmc株式会社 銀ナノワイヤ分散液、銀ナノワイヤ含有導電体および銀ナノワイヤ含有導電性積層体
CN114570938A (zh) * 2022-03-10 2022-06-03 南开大学 一种数码可控打印Ag纳米线的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013144822A (ja) * 2012-01-13 2013-07-25 Dic Corp 金属ナノワイヤーの製造方法
US20130192423A1 (en) * 2012-01-27 2013-08-01 Blue Nano Inc. Method of producing silver nanowires
JP2015040316A (ja) * 2013-08-20 2015-03-02 デクセリアルズ株式会社 ナノ粒子担持金属ナノワイヤー、分散液、透明導電膜及びその製造方法、並びに、タッチパネル

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5936759B2 (ja) 1975-05-23 1984-09-05 フジサキ ヒロヤ 音声認識方法
CN101428345B (zh) * 2007-11-09 2010-08-11 北京有色金属研究总院 一种超细钼粉或超细钨粉表面包覆金属铜的制备方法
US20100101832A1 (en) * 2008-10-24 2010-04-29 Applied Materials, Inc. Compound magnetic nanowires for tco replacement
CN104508758B (zh) * 2012-03-01 2018-08-07 雷蒙特亚特特拉维夫大学有限公司 导电纳米线膜
WO2013137018A1 (ja) * 2012-03-15 2013-09-19 古河電気工業株式会社 金属ナノネットワークおよびその製造方法並びにそれを用いた導電フィルム、導電基材
DE102013002855A1 (de) * 2013-02-20 2014-08-21 Heraeus Precious Metals Gmbh & Co. Kg Formulierungen aus gewaschenen Silberdrähten und PEDOT
CN103198884B (zh) * 2013-03-04 2016-03-02 中国科学院长春光学精密机械与物理研究所 全溶液加工多层结构透明导电薄膜及其制备方法
CN104145313A (zh) * 2013-04-05 2014-11-12 苏州诺菲纳米科技有限公司 带有融合金属纳米线的透明导电电极、它们的结构设计及其制造方法
US9318230B2 (en) * 2013-05-31 2016-04-19 Basf Corporation Nanostructure dispersions and transparent conductors
CN103894624B (zh) * 2014-04-03 2016-11-23 复旦大学 一种纳米银线粉体的过滤制备筛选工艺

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013144822A (ja) * 2012-01-13 2013-07-25 Dic Corp 金属ナノワイヤーの製造方法
US20130192423A1 (en) * 2012-01-27 2013-08-01 Blue Nano Inc. Method of producing silver nanowires
JP2015040316A (ja) * 2013-08-20 2015-03-02 デクセリアルズ株式会社 ナノ粒子担持金属ナノワイヤー、分散液、透明導電膜及びその製造方法、並びに、タッチパネル

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111812757A (zh) * 2019-04-11 2020-10-23 南京大学 一种柔性导电复合金属纳米线光栅材料及其制备方法

Also Published As

Publication number Publication date
CN110023009A (zh) 2019-07-16
US20190308248A1 (en) 2019-10-10
TWI645923B (zh) 2019-01-01
TW201825211A (zh) 2018-07-16
JP2018095905A (ja) 2018-06-21
KR102465793B1 (ko) 2022-11-09
US20220088678A1 (en) 2022-03-24
JP6139009B1 (ja) 2017-05-31
CN110023009B (zh) 2021-07-30
KR20190094351A (ko) 2019-08-13

Similar Documents

Publication Publication Date Title
JP6139009B1 (ja) 銀ナノワイヤの製造方法、銀ナノワイヤ、分散液、及び透明導電膜
JP2022116130A (ja) 化学的還元法を用いたコアシェル構造の銀コーティング銅ナノワイヤの製造方法
TWI476160B (zh) 奈米銀線之製備方法
JP2017066512A (ja) 銀ナノワイヤの製造方法
KR20160129895A (ko) 은나노 와이어의 제조 방법 및 은나노 와이어 및 이를 사용한 잉크
WO2013103322A1 (en) Methods of preparing monodispersed polydopamine nano- or microspheres, and methods of preparing nano-or microstructures based on the polydopamine nano- or microspheres
JP4679888B2 (ja) 金属微粒子および金属微粒子の製造方法
JP2013139589A (ja) 銀微粒子及びその製造法並びに該銀微粒子を含有する導電性ペースト、導電性膜及び電子デバイス
JP5936759B1 (ja) 銀ナノワイヤの製造方法
CN113857487B (zh) 一种银纳米线及其制备方法
WO2015129781A1 (ja) 金属ナノワイヤー形成用組成物、金属ナノワイヤー及びその製造方法
JP5788832B2 (ja) ソルボサーマル法を用いるCu,Zn,Sn及びSを含有する硫化物系化合物半導体ナノ粒子の製造方法
JP2014224276A (ja) 分散安定性の高い銅ナノ粒子の製造方法
KR20120129451A (ko) 은 나노선 제조용 조성물, 은 나노선의 제조 방법 및 그 방법에 의해 제조된 은 나노선
Lei et al. Controlling the size of silver nanowires through one-pot polyol method with trace halide and its effect on kinetic process
CN113976906A (zh) 一种银纳米线及其制备方法
JP2013040374A (ja) 金属ナノ粒子分散液、金属ナノ粒子凝集体、金属ナノ粒子分散体及びそれらの製造方法
CN112705721B (zh) 银纳米线的制备方法
JP5151230B2 (ja) 太陽電池の電極形成用組成物及び該電極の形成方法並びに該形成方法により得られた電極を用いた太陽電池の製造方法
TWI648409B (zh) Method for producing nickel particles
WO2022004762A1 (ja) 銀ナノワイヤの製造方法
JP6715588B2 (ja) 金属複合粉末の製造方法
Abbasi et al. Glycerol and Water Mediated Synthesis of Silver Nanowires in the Presence of Cobalt Chloride as Growth Promoting Additive
CN111448162B (zh) 纤维状碳纳米结构体
KR20140104933A (ko) 은 나노와이어 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17881371

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197015514

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17881371

Country of ref document: EP

Kind code of ref document: A1