WO2018101233A1 - 抵抗測定装置及び抵抗測定方法 - Google Patents

抵抗測定装置及び抵抗測定方法 Download PDF

Info

Publication number
WO2018101233A1
WO2018101233A1 PCT/JP2017/042509 JP2017042509W WO2018101233A1 WO 2018101233 A1 WO2018101233 A1 WO 2018101233A1 JP 2017042509 W JP2017042509 W JP 2017042509W WO 2018101233 A1 WO2018101233 A1 WO 2018101233A1
Authority
WO
WIPO (PCT)
Prior art keywords
supply
conductive
current
voltage
unit
Prior art date
Application number
PCT/JP2017/042509
Other languages
English (en)
French (fr)
Inventor
山下 宗寛
Original Assignee
日本電産リード株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産リード株式会社 filed Critical 日本電産リード株式会社
Priority to CN201780073175.7A priority Critical patent/CN109997046B/zh
Priority to KR1020197014673A priority patent/KR102416051B1/ko
Priority to JP2018554146A priority patent/JP6885612B2/ja
Publication of WO2018101233A1 publication Critical patent/WO2018101233A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/08Measuring resistance by measuring both voltage and current
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/14Measuring resistance by measuring current or voltage obtained from a reference source

Definitions

  • the present invention relates to a resistance measuring device and a resistance measuring method for measuring the resistance of a substrate.
  • a planar conductor In a substrate provided with a conductor that expands in a planar shape (hereinafter referred to as a planar conductor), conductive portions such as pads, bumps, and wiring on the substrate surface and the planar conductor are electrically connected in the thickness direction of the substrate.
  • a substrate with a connected structure There is a substrate with a connected structure. 7 and 8 are conceptual schematic diagrams showing an example of such a substrate.
  • FIG. 7 is a conceptual schematic diagram showing a multilayer substrate WB which is an example of a substrate provided with a planar inner layer pattern IP on the substrate inner layer.
  • the multilayer substrate WB shown in FIG. 7 has conductive portions PA and PB such as pads and wiring patterns formed on the substrate surface BS.
  • the conductive portions PA and PB are electrically connected to the inner layer pattern IP by connection portions RA and RB such as vias and wiring patterns.
  • the inner layer pattern IP corresponds to a planar conductor.
  • a substrate manufacturing method a printed metal board is laminated on both sides of a conductive metal plate as a base, and the two printed wirings are peeled off from the base metal plate.
  • the substrate hereinafter referred to as an intermediate substrate
  • the substrate in a state before the substrate is peeled off from the base metal plate has an aspect in which the metal plate is sandwiched between two substrates. .
  • FIG. 8 is a conceptual schematic diagram showing an example of such an intermediate substrate B.
  • the substrate WB1 is formed on one surface of the metal plate MP, and the substrate WB2 is formed on the other surface of the metal plate MP.
  • Conductive portions PA1, PB1,..., PZ1 such as pads and wiring patterns are formed on the substrate surface BS1 of the substrate WB1.
  • Conductive portions PA2, PB2,..., PZ2 such as pads and wiring patterns are formed on the contact surface BS2 of the substrate WB1 with the metal plate MP.
  • the metal plate MP is a conductive metal plate having a thickness of about 1 mm to 10 mm, for example.
  • the conductive portions PA1 to PZ1 are electrically connected to the conductive portions PA2 to PZ2 through connection portions RA to RZ such as vias and wiring patterns. Since the conductive portions PA2 to PZ2 are in close contact with and conductive with the metal plate MP, the conductive portions PA1 to PZ1 are electrically connected to the metal plate MP through the connection portions RA to RZ.
  • the conductive portion PA1 and the connection portion RA are paired, the conductive portion PB1 and the connection portion RB are paired, and the conductive portion and the connection portion are respectively paired. Since the substrate WB2 is configured in the same manner as the substrate WB1, its description is omitted.
  • the metal plate MP corresponds to a planar conductor.
  • the resistance values Ra to Rz of the connection portions RA to RZ may be measured.
  • FIG. 9 is an explanatory diagram for explaining a measurement method for measuring the resistance values Ra and Rb of the connection portions RA and RB of the intermediate substrate B shown in FIG.
  • a current I for measurement is passed between the conductive part PA1 and the conductive part PB1, and a voltage generated between the conductive part PA1 and the conductive part PB1.
  • V the resistance value calculated by V / I is Ra + Rb.
  • An object of the present invention is to electrically connect a conductive planar conductor extending in a planar shape, a substrate surface facing the planar conductor, a conductive portion provided on the substrate surface, and the conductive portion to the planar conductor.
  • Another object of the present invention is to provide a resistance measuring device and a resistance measuring method capable of individually measuring the resistance of each connecting portion of a substrate to be measured having a pair with the connecting portion.
  • a resistance measuring device includes a conductive planar conductor that extends in a planar shape, a substrate surface that faces the planar conductor, a conductive portion provided on the substrate surface, and a conductive portion provided on the surface.
  • a resistance measuring device for measuring the resistance of the connection portion of the substrate to be measured which has a pair of connection portions electrically connected to the conductor and has three or more pairs.
  • a current supply unit for supplying a preset supply current to a supply-side conductive unit that is one of the conductive units, and one of the conductive units that is different from the supply-side conductive unit A current drawing unit for drawing a preset drawing current from the drawing side conductive unit, and a voltage measuring conductive unit which is a conductive unit different from the supply side conductive unit and the drawing side conductive unit among the conductive units.
  • Supply side voltage which is a voltage between the supply side and the supply side conductive part.
  • the resistance measuring method includes a conductive planar conductor extending in a planar shape, a substrate surface facing the planar conductor, a conductive portion provided on the substrate surface, and the conductive portion.
  • a resistance measuring method for measuring the resistance of the connection portion of a substrate to be measured that has a pair of connection portions electrically connected to the planar conductor and includes three or more pairs.
  • a current supply step of supplying a preset supply current to a supply-side conductive portion that is one of the conductive portions, and one of the conductive portions that is different from the supply-side conductive portion A current drawing step for drawing a preset drawing current from the drawing-side conductive unit, and a voltage-measuring conductive unit that is different from the supply-side conductive unit and the drawing-side conductive unit among the conductive units; Detects supply-side voltage, which is the voltage between the supply-side conductive part Supply-side voltage detection step, a pull-in side voltage detection step of detecting a pull-in side voltage that is a voltage between the voltage measuring conductive portion and the pull-in side conductive portion, and the supply current and the supply-side voltage.
  • FIG. 2 is a block diagram illustrating an example of an electrical configuration of a measurement unit illustrated in FIG. 1. It is a flowchart which shows an example of operation
  • FIG. 1 is a schematic diagram conceptually showing the configuration of a resistance measuring apparatus 1 using a resistance measuring method according to an embodiment of the present invention.
  • a resistance measuring apparatus 1 shown in FIG. 1 is an apparatus for measuring the resistance of a measurement target substrate to be measured.
  • the resistance measuring device 1 may be a substrate inspection device that determines the quality of a measured substrate based on the measured resistance value.
  • the substrate to be measured is, for example, an intermediate substrate or a multilayer substrate, a package substrate for a semiconductor package, a film carrier, a printed wiring substrate, a flexible substrate, a ceramic multilayer wiring substrate, an electrode plate for a liquid crystal display or a plasma display, and these substrates. It may be an intermediate substrate in the process of manufacturing.
  • the multilayer substrate WB shown in FIG. 7 and the intermediate substrate B shown in FIG. 8 correspond to an example of the substrate to be measured.
  • FIG. 1 shows an example in which an intermediate substrate B is attached to the resistance measuring apparatus 1 as a substrate to be measured.
  • An arbitrary number of conductive portions PA1, PB1,..., PZ1 are provided.
  • the conductive portions PA1, PB1,..., PZ1 are collectively referred to as a conductive portion P.
  • the resistance measuring device 1 shown in FIG. In the internal space of the housing 112, a substrate fixing device 110, a measurement unit 121, a measurement unit 122, a measurement unit moving mechanism 125, and a control unit 20 are mainly provided.
  • the substrate fixing device 110 is configured to fix the intermediate substrate B to be measured at a predetermined position.
  • the measurement unit 121 is located above the intermediate substrate B fixed to the substrate fixing device 110.
  • the measurement unit 122 is located below the intermediate substrate B fixed to the substrate fixing device 110.
  • the measurement parts 121 and 122 include measurement jigs 4U and 4L for bringing the probe into contact with the conductive part P formed on the intermediate substrate B.
  • a plurality of probes Pr are attached to the measurement jigs 4U and 4L.
  • the measurement jigs 4U and 4L arrange and hold a plurality of probes Pr so as to correspond to the arrangement of the conductive parts P to be measured formed on the surface of the intermediate substrate B.
  • the measurement unit moving mechanism 125 appropriately moves the measurement units 121 and 122 within the housing 112 in accordance with a control signal from the control unit 20, and the probes Pr of the measurement jigs 4U and 4L are moved to the respective conductive units P of the intermediate substrate B. Contact.
  • the resistance measuring device 1 may include only one of the measurement units 121 and 122. And the resistance measuring apparatus 1 may be made to invert the board
  • the control unit 20 includes, for example, a CPU (Central Processing Unit) that executes predetermined arithmetic processing, a RAM (Random Access Memory) that temporarily stores data, and a ROM (Read Only Memory) that stores a predetermined control program. And a storage unit such as an HDD (Hard Disk Drive), and peripheral circuits thereof. And the control part 20 functions as the electroconductive part selection part 21 and the resistance calculation part 22, for example by running the control program memorize
  • a CPU Central Processing Unit
  • RAM Random Access Memory
  • ROM Read Only Memory
  • FIG. 2 is a block diagram showing an example of an electrical configuration of the measurement unit 121 shown in FIG. Note that the measurement unit 122 is configured in the same manner as the measurement unit 121, and thus the description thereof is omitted.
  • the measurement unit 121 shown in FIG. 2 includes a plurality of measurement blocks M1 to Mn (n is a natural number), a scanner unit 31, and a plurality of probes Pr.
  • the measurement blocks M1 to Mn correspond to an example of a set.
  • Each of the measurement blocks M1 to Mn includes a current supply unit CS, a current drawing unit CM, a supply side voltage detection unit VM1, and a drawing side voltage detection unit VM2.
  • the scanner unit 31 is a switching circuit configured using switching elements such as transistors and relay switches.
  • the scanner unit 31 detects the voltage generated between the current terminals + F and ⁇ F for supplying the resistance measurement current I to the intermediate substrate B and the conductive portion P of the intermediate substrate B by the current I.
  • a plurality of probes Pr are electrically connected to the scanner unit 31.
  • the scanner unit 31 includes a current terminal + F, -F, a voltage detection terminal + S1, -S1, + S2, -S2, a ground terminal G, and a plurality of probes Pr. Switch the connection relationship.
  • the current supply part CS has one end of its output terminal connected to the circuit ground and the other end connected to the current terminal + F.
  • the current supply unit CS is a constant current circuit that supplies a preset supply current Io to the current terminal + F in accordance with a control signal from the control unit 20.
  • the current lead-in part CM has one end connected to the current terminal -F and the other end connected to the circuit ground.
  • the current drawing unit CM is a constant current circuit that draws a preset drawing current Ii from the current terminal ⁇ F to the circuit ground in accordance with a control signal from the control unit 20.
  • An oxide film may be formed on the surface of each conductive part P due to oxidation.
  • an oxide film is formed on the surface of the conductive portion P, the contact resistance with the probe Pr increases, and the accuracy of resistance measurement decreases.
  • Such an oxide film can be removed by flowing a current equal to or higher than a predetermined oxide film removal current value.
  • the oxide film removal current value is, for example, 20 mA.
  • a rated current value is defined as an upper limit value of a current value that can flow without damaging the probe.
  • the rated current value of the probe Pr is a current value less than 40 mA, for example, and is 30 mA, for example.
  • the drawing current Ii and the supply current Io are set to 20 mA or more and 30 mA or less, for example. This improves the accuracy of resistance measurement by removing the oxide film on the surface of the conductive portion P without damaging the probe Pr.
  • the total of the supply currents Io supplied from the current supply units CS of the measurement blocks M1 to Mn and the total of the draw currents Ii drawn by the current drawing units CM of the measurement blocks M1 to Mn are preferably substantially equal. If the sum of the supply currents Io and the sum of the pull-in currents Ii are substantially equal, substantially all of the current supplied from the n current supply units CS to the intermediate substrate B is transferred to the intermediate substrate B by the n current pull-in units CM. As a result, the leakage current is prevented from flowing from the intermediate substrate B to the outside.
  • each supply current Io and each drawing current Ii are substantially equal to each other.
  • the supply currents Io and the pull-in currents Ii are substantially equal to each other, the current flowing between the connection parts at each part of the intermediate substrate B is equalized, so that the potential of the metal plate MP is stabilized. As a result, resistance measurement accuracy is improved.
  • the supply side voltage detection unit VM1 has one end connected to the voltage detection terminal + S1 and the other end connected to the voltage detection terminal -S1.
  • the supply side voltage detection unit VM1 is a voltage detection circuit that measures the voltage between the voltage detection terminals + S1 and -S1, and transmits the voltage value to the control unit 20 as the supply side voltage V1.
  • the pull-in voltage detector VM2 has one end connected to the voltage detection terminal + S2 and the other end connected to the voltage detection terminal -S2.
  • the pull-in side voltage detection unit VM2 is a voltage detection circuit that measures the voltage between the voltage detection terminals + S2 and -S2, and transmits the voltage value to the control unit 20 as the pull-in side voltage V2.
  • the scanner unit 31 arbitrarily selects the ground terminal G, the current terminals + F and ⁇ F of the measurement blocks M1 to Mn, and the voltage detection terminals + S1, ⁇ S1, + S2, and ⁇ S2 in accordance with a control signal from the control unit 20.
  • the probe Pr can be conductively connected.
  • the scanner unit 31 causes a current to flow between the arbitrary conductor portions in contact with the probe Pr in accordance with the control signal from the control unit 20, and detects the voltage generated between the arbitrary conductor portions. Measurement is performed by the part VM1 and the pull-in side voltage detection part VM2, and any conductor part can be connected to the circuit ground.
  • the scanner unit 31 corresponds to an example of a grounding unit.
  • the conductive portion selector 21 includes n supply-side conductive portions corresponding to the measurement blocks M1 to Mn, n lead-side conductive portions, and n ( Or 2n) voltage measuring conductive parts and an arbitrary number of grounding conductive parts.
  • the resistance calculation unit 22 calculates the resistance value of the connection part paired with the conductive part P selected as the supply side conductive part and the lead side conductive part. Therefore, the conductive part selection unit 21 finally selects a new conductive part P that is paired with a connection part for which a resistance value has not yet been calculated as a supply side conductive part and a lead side conductive part, so that a resistance is finally obtained. It is designed to measure the resistance values of all the connection parts whose values are to be measured.
  • the conductive part selection unit 21 connects the probe Pr that is in contact with the supply-side conductive part and the current supply part CS (current terminal + F) by the scanner unit 31, and the probe Pr that is in contact with the lead-side conductive part.
  • Connect the current lead-in part CM current terminal -F
  • the probe Pr that is in contact with the supply portion and the other end (voltage detection terminal -S1) of the supply side voltage detection unit VM1 are connected, and the probe Pr that is in contact with the voltage measurement conductive unit and the pull-in side voltage detection unit VM2
  • One end (voltage detection terminal + S2) is connected, and the probe Pr that is in contact with the drawing-side conductive portion and the other end (voltage detection terminal -S2) of the drawing-side voltage detection portion VM2 are connected.
  • the conductive part selector 21 causes the current supply part CS and the current lead-in part CM to cause a current to flow between the supply-side conductive part and the lead-in side conductive part via the metal plate MP, thereby supplying the supply-side voltage detection part VM1.
  • the resistance calculation unit 22 corresponds to the measurement blocks M1 to Mn, and determines the resistance value of the connection part paired with the supply side conductive part of each measurement block based on the supply current Io and the supply side voltage V1 of each measurement block. calculate. Further, the resistance calculation unit 22 corresponds to the measurement blocks M1 to Mn, and based on the pull-in current Ii and the pull-in side voltage V2 of each measurement block, the resistance of the connection part paired with the pull-in side conductive part of each measurement block Calculate the value.
  • a resistance measurement method for measuring the resistance of the substrate WB1 using the measurement unit 121 will be described by taking the case where the substrate to be measured is the intermediate substrate B as an example. Since the measurement of the resistance of the substrate WB2 using the measurement unit 122 is the same as the measurement of the resistance of the substrate WB1 using the measurement unit 121, the description thereof is omitted.
  • FIGS. 5 and 6 are explanatory diagrams for explaining the operation of the resistance measuring apparatus 1 shown in FIG.
  • the explanatory views shown in FIGS. 5 and 6 exemplify the case where the intermediate substrate B is measured. 5 and 6, the description of the scanner unit 31 is omitted for the sake of simplicity.
  • control unit 20 moves the measurement unit 121 by the measurement unit moving mechanism 125 to bring the probe Pr of the measurement jig 4U into contact with the intermediate substrate B fixed to the substrate fixing device 110 (step S1).
  • the control unit 20 moves the measurement unit 121 by the measurement unit moving mechanism 125 to bring the probe Pr of the measurement jig 4U into contact with the intermediate substrate B fixed to the substrate fixing device 110 (step S1).
  • the control unit 20 moves the measurement unit 121 by the measurement unit moving mechanism 125 to bring the probe Pr of the measurement jig 4U into contact with the intermediate substrate B fixed to the substrate fixing device 110 (step S1).
  • FIGS. 5 and 6 a case where resistance is measured by a so-called four-terminal measurement method is illustrated, and two probes Pr are in contact with each conductive portion P.
  • the resistance measuring apparatus 1 is not limited to the example of performing resistance measurement by the four-terminal measurement method, and a configuration in which the probe Pr is brought into contact with each conductive portion one by one and the current supply and the voltage measurement are combined with one probe Pr. It is good.
  • the conductive part selection unit 21 selects a grounding conductive part from among the conductive parts P with which the probe Pr is in contact, and further supplies n supply-side conductive parts corresponding to the measurement blocks M1 to Mn; The n lead-side conductive parts and the n voltage measuring conductive parts are selected (step S2: conductive part selecting step).
  • the supply-side conductivity depends on the number of connection parts to be measured.
  • Section, the lead-in conductive part, and the voltage measuring conductive part may be selected. At least one grounding conductive portion may be selected, and a plurality of grounding conductive portions may be selected.
  • the conductive part selection unit 21 supplies the supply side conductive part, the pull-in side conductive part, and the voltage measurement conductive part selected by the scanner unit 31 to the current supply part CS, the current draw part CM, and the supply of the measurement blocks M1 to Mn.
  • the side voltage detection unit VM1 and the lead-in side voltage detection unit VM2 are connected, and the grounding conductive unit and the circuit ground are connected.
  • FIG. 5 shows the selected supply side conductive part, lead-in side conductive part, voltage measurement conductive part, grounding conductive part, current supply part CS, current lead-in part CM, supply-side voltage detection part VM1, pull-in side voltage It is explanatory drawing which shows an example of connection relation with detection part VM2 and circuit ground.
  • the conductive part PA1 is selected as the supply-side conductive part
  • the conductive part PC1 is selected as the lead-in conductive part
  • the conductive part PB1 is selected as the voltage measurement conductive part corresponding to the measurement block M1.
  • the conductive part PD1 is selected as the supply side conductive part
  • the conductive part PF1 is selected as the lead-in side conductive part
  • the conductive part PE1 is selected as the voltage measurement conductive part.
  • the supply side conductive part, the lead-in side conductive part, the voltage measuring conductive part, and the grounding conductive part are appropriately selected.
  • the conductive portion PZ1 is selected as the grounding conductive portion.
  • the control unit 20 supplies the supply current Io from the current supply units CS of the measurement blocks M1 to Mn to each supply-side conductive unit (step S3: current supply process).
  • the current supply step for example, an ammeter is connected in series with the current supply unit CS, and the current actually supplied from the current supply unit CS to the supply-side conductive unit is measured as the supply current Io and is measured by this ammeter.
  • the supplied current Io may be used in a resistance calculation step in step S7 described later.
  • the control unit 20 causes the current drawing unit CM of the measurement blocks M1 to Mn to draw the drawing current Ii from each drawing side conductive unit (step S4: current drawing step).
  • the current drawing process for example, an ammeter is connected in series with the current drawing unit CM, and the current actually drawn from the drawing-side conductive unit by the current drawing unit CM is measured as the drawing current Ii and measured by this ammeter.
  • the drawn current Ii may be used in the resistance calculation step in step S7 described later.
  • the supply side voltage detection unit VM1 detects the supply side voltage V1 between the supply side conductive unit and the voltage measurement conductive unit (step S5: supply side voltage detection step). .
  • each supply-side voltage V1 measured by each supply-side voltage detection unit VM1 does not include the voltage generated at the connection units RB, RE,. Accordingly, each supply-side voltage V1 is supplied with the supply current Io at the connection portions RA, RD,..., RV paired with the supply-side conductive portions PA1, PD1,. It is approximately equal to the voltage generated by flowing.
  • the pull-in side voltage detection unit VM2 detects the pull-in side voltage V2 between the pull-in side conductive unit and the voltage measurement conductive unit (step S6: pull-in side voltage detection step).
  • each pull-in side voltage V2 measured by each pull-in side voltage detection unit VM2 does not include a voltage generated at the connection units RB, RE,. Accordingly, each pull-in side voltage V2 is caused by the pull-in current Ii at the connection parts RC, RF,..., RX paired with the lead-side conductive parts PC1, PF1,. It is approximately equal to the voltage generated by flowing.
  • the resistance values Ra, Rd,..., Rv of the connection portions RA, RD,..., RV are calculated as the resistance values Ro, and the connection portions RC, RF,.
  • Resistance values Rc, Rf,..., Rx are calculated as resistance values Ri.
  • the resistance values Ra, Rc, Rd, Rf,..., Rv, Rx of the connection portions RA, RC, RD, RF,..., RV, RX can be individually measured.
  • voltage detection can be performed at two locations in each of the measurement blocks M1 to Mn. Therefore, voltage detection for resistance measurement can be performed in parallel for the connection portion twice as many as the number n of measurement blocks, so that the resistance measurement time can be shortened.
  • the supply current Io and the drawing current Ii are current values not less than the oxide film removal current value and not more than the rated current value of the probe Pr, the surface of each conductive portion P is oxidized without damaging the probe Pr. The film can be removed. As a result, the resistance measurement accuracy of each connection portion can be improved.
  • the current supplied from the current supply part CS of the measurement blocks M1 to Mn is the resistance value of the current path from each current supply part CS to the circuit ground via the lead-side conductive parts PC1, PF1,. And the current flowing through the lead-side conductive portions PC1, PF1,..., PX1 varies.
  • the current flowing through the lead-side conductive portions PC1, PF1,..., PX1 may exceed the rated current value of the probe Pr or may not satisfy the oxide film removal current value.
  • the probe Pr that contacts the lead-side conductive part whose current exceeds the rated current value is damaged, and the oxide film is not removed at the lead-side conductive part where the flowing current does not satisfy the oxide film removal current value.
  • the accuracy of calculation of the resistance value of the connecting portion paired with is reduced.
  • the currents flowing through the lead-side conductive portions PC1, PF1,..., PX1 are not less than the oxide film removal current value and not more than the rated current value of the probe Pr by each current supply portion CS. Therefore, the resistance measurement accuracy of each connection portion can be improved without damaging the probe Pr.
  • the metal plate MP is connected to the circuit ground via the internal impedance of the current supply part CS or the current drawing part CM.
  • the potential of the metal plate MP becomes unstable.
  • voltage measurement by the supply-side voltage detection unit VM1 and the pull-in side voltage detection unit VM2 becomes unstable, and the measurement accuracy of the supply-side voltage V1 and the pull-in side voltage V2 decreases. There is a possibility that the calculation accuracy of the resistance value of each connection portion is lowered.
  • the conductive portion PZ1 for grounding is connected to the circuit ground by the scanner unit 31 (grounding portion), and the metal plate MP is connected to the circuit ground via the low resistance connecting portion RZ.
  • the potential of the metal plate MP is stabilized.
  • the measurement accuracy of the supply side voltage V1 and the pull-in side voltage V2 is improved, and the calculation accuracy of the resistance value of each connection portion is improved.
  • the conductive portion selection unit 21 checks whether or not the resistance values of all the connection portions RA to RZ to be measured have been calculated (step S11). If the resistance values of all the connection portions RA to RZ to be measured have been calculated (YES in step S11), the conductive portion selection unit 21 ends the process.
  • the conductive portion selection unit 21 makes a pair with the connection portion in which the probe Pr is in contact and the resistance value has not been calculated.
  • N supply side conductive parts corresponding to the measurement blocks M1 to Mn and n lead side conductive parts corresponding to the measurement blocks M1 to Mn are newly selected, and conductive parts other than the newly selected conductive part are selected.
  • a grounding conductive part and n voltage measuring conductive parts corresponding to the measurement blocks M1 to Mn are newly selected from among them (step S12).
  • the conductive portion selector 21 sets the supply side conductive portion, the pull-in side conductive portion, and the voltage measurement conductive portion newly selected by the scanner portion 31 as the current supply portion CS and the current draw in the measurement blocks M1 to Mn.
  • the unit CM, the supply side voltage detection unit VM1, and the pull-in side voltage detection unit VM2 are connected, the newly selected grounding conductive unit is connected to the circuit ground, and the processing from step S3 is repeated again.
  • FIG. 6 shows the newly selected supply side conductive part, lead-in side conductive part, voltage measurement conductive part, grounding conductive part, current supply part CS, current lead-in part CM, supply-side voltage detection part VM1, lead-in It is explanatory drawing which shows an example of the connection relationship with the side voltage detection part VM2 and circuit ground.
  • the conductive part PB1 is selected as the supply-side conductive part
  • the conductive part PE1 is selected as the lead-side conductive part
  • the conductive part PC1 and the conductive part are used as the voltage measurement conductive part.
  • PD1 is selected.
  • the plurality of conductive portions may be voltage measurement conductive portions.
  • the conductive part PW1 is selected as the supply side conductive part
  • the conductive part PZ1 is selected as the lead-in side conductive part
  • the conductive part PX1 is selected as the voltage measurement conductive part.
  • the supply side conductive part, the lead-in side conductive part, the voltage measuring conductive part, and the grounding conductive part are appropriately selected.
  • the conductive portion PA1 is selected as the ground conductive portion.
  • step S2 the voltage measurement conductive part or the ground conductive part is used, and the conductive parts PB1, PE1, PW1, and PZ1 that have not been measured for resistance are the supply side conductive parts or the lead side conductive parts.
  • the resistance values of the connecting portions paired with the conductive portions PB1, PE1, PW1, and PZ1 are measured.
  • steps S3 to S11 are repeated based on the newly selected supply side conductive part, lead-in side conductive part, and voltage measurement conductive part, and finally the resistance values of all the connection parts to be measured. Is measured.
  • a planar conductor such as the conductive intermediate substrate B spreading in a planar shape, the substrate surface BS1 facing the planar conductor, and the conductive portion PA1 provided on the substrate surface BS1.
  • Resistance values Ra to Rz of connection portions RA to RZ of a substrate to be measured such as an intermediate substrate B having a pair of connection portions RA to RZ that electrically connect the conductive portions PA1 to PZ1 to the planar conductors Can be measured individually.
  • the number of measurement blocks may be one. Even if the number of measurement blocks is one, it is possible to individually measure the resistance of the two connection portions corresponding to the measurement block. Further, the grounding conductive portion may not be provided, and the scanner unit 31 may not connect the grounding conductive portion to the circuit ground.
  • the current supply unit CS the current drawing unit CM
  • the supply-side voltage detection unit VM1 the pull-in side voltage detection unit VM2
  • the circuit ground may be electrically connected to the conductive unit.
  • a resistance measuring device includes a conductive planar conductor that extends in a planar shape, a substrate surface that faces the planar conductor, a conductive portion provided on the substrate surface, and a conductive portion provided on the surface.
  • a resistance measuring device for measuring the resistance of the connection portion of the substrate to be measured which has a pair of connection portions electrically connected to the conductor and has three or more pairs.
  • a current supply unit for supplying a preset supply current to a supply-side conductive unit that is one of the conductive units, and one of the conductive units that is different from the supply-side conductive unit A current drawing unit for drawing a preset drawing current from the drawing side conductive unit, and a voltage measuring conductive unit which is a conductive unit different from the supply side conductive unit and the drawing side conductive unit among the conductive units.
  • Supply side voltage which is a voltage between the supply side and the supply side conductive part.
  • the supply current is supplied to the supply-side conductive unit by the current supply unit, and the current draw-in is drawn from the draw-side conductive unit by the current drawing unit.
  • the supply-side conductive unit and the supply-side conductive unit are paired.
  • a current flows through the connection part, the planar conductor, the connection part paired with the lead-side conductive part, and the lead-side conductive part.
  • no current flows through the connecting portion that is paired with the voltage measuring conductive portion, and no voltage is generated at this connecting portion, the supply side that is the voltage between the voltage measuring conductive portion and the supply-side conductive portion.
  • the voltage includes a voltage generated at a connection portion paired with the supply-side conductive portion, and does not include a voltage generated at other connection portions.
  • the resistance value calculated by the resistance calculation unit based on the supply current and the supply-side voltage is substantially equal to the resistance value of the connection part paired with the supply-side conductive unit.
  • the pull-in side voltage which is the voltage between the voltage measuring conductive part and the lead-side conductive part, includes the voltage generated at the connection part paired with the lead-side conductive part, and is generated at the other connection part. Voltage is not included.
  • the resistance value calculated by the resistance calculation unit based on the pull-in current and the pull-in side voltage is substantially equal to the resistance value of the connection part paired with the pull-in side conductive part.
  • the lead-side conductive unit and the voltage measurement conductive unit are set, and the resistance calculation unit corresponds to each set based on the supply current and the supply side voltage detected corresponding to each set.
  • the resistance value of the connection part paired with the supply side conductive part is calculated, and the lead side conductivity corresponding to each set is calculated based on the draw current and the draw side voltage detected corresponding to each set. It is preferable to calculate the resistance value of the connection part paired with the part.
  • the resistance value measurement of the connection part paired with the supply-side conductive part and the resistance value measurement of the connection part paired with the drawing-side conductive part can be performed in parallel for each set. As a result, the resistance measurement time can be shortened.
  • the sum of the supply currents corresponding to the respective groups and the sum of the drawn currents corresponding to the respective groups are substantially equal.
  • the supply current and the pull-in current are substantially equal to each other.
  • This configuration stabilizes the potential of the planar conductor as a result of equalizing the current flowing between the connecting portions at each portion of the substrate to be measured. As a result, resistance measurement accuracy is improved.
  • the supply current and the lead-in current are set to be not less than the oxide film removal current value for removing the oxide film generated on the surface of each conductive portion and not more than the rated current value of the probe. Is preferred.
  • each probe flows a current not less than the oxide film removal current value for removing the oxide film and not more than the rated current value of the probe.
  • the accuracy of resistance measurement can be improved by removing the oxide film on the surface of the portion.
  • a grounding part that connects a grounding conductive part different from the supply-side conductive part, the lead-in conductive part, and the voltage measurement conductive part among the conductive parts to the circuit ground.
  • the resistance measuring method includes a conductive planar conductor extending in a planar shape, a substrate surface facing the planar conductor, a conductive portion provided on the substrate surface, and the conductive portion.
  • a resistance measuring method for measuring the resistance of the connection portion of a substrate to be measured that has a pair of connection portions electrically connected to the planar conductor and includes three or more pairs.
  • a current supply step of supplying a preset supply current to a supply-side conductive portion that is one of the conductive portions, and one of the conductive portions that is different from the supply-side conductive portion A current drawing step for drawing a preset drawing current from the drawing-side conductive unit, and a voltage-measuring conductive unit that is different from the supply-side conductive unit and the drawing-side conductive unit among the conductive units; Detects supply-side voltage, which is the voltage between the supply-side conductive part Supply-side voltage detection step, a pull-in side voltage detection step of detecting a pull-in side voltage that is a voltage between the voltage measuring conductive portion and the pull-in side conductive portion, and the supply current and the supply-side voltage.
  • the supply current is supplied to the supply-side conductive unit in the current supply step, and the draw-in current is drawn from the draw-side conductive unit in the current drawing step.
  • the supply-side conductive unit and the supply-side conductive unit are paired.
  • a current flows through the connection part, the planar conductor, the connection part paired with the lead-side conductive part, and the lead-side conductive part.
  • no current flows through the connecting portion that is paired with the voltage measuring conductive portion, and thus no voltage is generated at this connecting portion, the supply that is the voltage between the voltage measuring conductive portion and the supply-side conductive portion.
  • the side voltage includes a voltage generated at a connection portion paired with the supply-side conductive portion, and does not include a voltage generated at other connection portions.
  • the resistance value calculated based on the supply current and the supply-side voltage in the resistance calculation step is substantially equal to the resistance value of the connection portion paired with the supply-side conductive portion.
  • the pull-in side voltage which is the voltage between the voltage measuring conductive part and the lead-side conductive part, includes the voltage generated at the connection part paired with the lead-side conductive part, and is generated at the other connection part. Voltage is not included.
  • the resistance value calculated based on the pull-in current and the pull-in side voltage in the resistance calculation step is substantially equal to the resistance value of the connection part paired with the pull-in side conductive part.
  • the resistance measuring device and the resistance measuring method having such a configuration include a conductive planar conductor extending in a planar shape, a substrate surface facing the planar conductor, a conductive portion provided on the substrate surface, and the conductive portion facing the conductive surface conductor. It is possible to individually measure the resistance of the connection portion of the board to be measured that has a pair with the connection portion that is electrically connected to the conductor.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

各導電部Pのうちの一つである供給側導電部に供給電流Ioを供給するための電流供給部CSと、各導電部のうちの一つである引込側導電部から引込電流Iiを引き込むための電流引込部CMと、供給側導電部及び引込側導電部とは異なる導電部である電圧測定用導電部と供給側導電部との間の電圧である供給側電圧V1を検出する供給側電圧検出部VM1と、電圧測定用導電部と引込側導電部との間の電圧である引込側電圧V2を検出する引込側電圧検出部VM2と、供給電流Ioと供給側電圧V1とに基づいて供給側導電部と対になる接続部の抵抗値を算出し、引込電流Iiと引込側電圧V2とに基づいて引込側導電部と対になる接続部の抵抗値を算出する抵抗算出部22とを備えた。

Description

抵抗測定装置及び抵抗測定方法
 本発明は、基板の抵抗を測定する抵抗測定装置、及び抵抗測定方法に関する。
 従来より、回路基板に形成されたビアのように、回路基板の一方の面から他方の面に亘って貫通するものを測定対象とするときに、当該測定対象に測定電流を流し、当該測定対象に生じた電圧を測定することによって、その電流値と電圧値とから当該測定対象の抵抗値を測定する基板検査装置が知られている(例えば、特許文献1参照。)。
特開2012-117991号公報
 ところで、面状に拡がる導体(以下、面状導体と称する)を内部に備えた基板において、基板表面のパッド、バンプ、配線等の導電部と面状導体とが基板の厚み方向に電気的に接続された構造の基板がある。図7、図8は、このような基板の一例を示す概念的な模式図である。
 図7は、基板内層に面状の内層パターンIPを備えた基板の一例である多層基板WBを示す概念的な模式図である。図7に示す多層基板WBは、その基板面BSにパッドや配線パターン等の導電部PA,PBが形成されている。導電部PA,PBは、ビアや配線パターン等の接続部RA,RBによって内層パターンIPと電気的に接続されている。多層基板WBの例では、内層パターンIPが面状導体に相当する。
 また、基板の製造方法として、導電性の金属板を土台としてこの金属板の両面にプリント配線基板を積層形成し、形成された基板を土台の金属板から剥離することによって、二枚のプリント配線基板を形成する方法がある。このような基板の製造方法において、土台の金属板から基板を剥離する前の状態の基板(以下、中間基板と称する)は、金属板が二枚の基板に挟まれた態様を有している。
 図8は、このような中間基板Bの一例を示す概念的な模式図である。図8に示す中間基板Bは、金属板MPの一方の面に基板WB1が形成され、金属板MPの他方の面に基板WB2が形成されている。基板WB1の基板面BS1には、パッドや配線パターン等の導電部PA1,PB1,・・・,PZ1が形成されている。基板WB1の金属板MPとの接触面BS2には、パッドや配線パターン等の導電部PA2,PB2,・・・,PZ2が形成されている。金属板MPは、例えば厚さが1mm~10mm程度の導電性を有する金属板である。
 導電部PA1~PZ1は、ビアや配線パターン等の接続部RA~RZによって導電部PA2~PZ2と電気的に接続されている。導電部PA2~PZ2は、金属板MPと密着、導通しているので、導電部PA1~PZ1は、接続部RA~RZによって金属板MPと電気的に接続されている。導電部PA1と接続部RAとが対になり、導電部PB1と接続部RBとが対になり、それぞれ導電部と接続部とが対になっている。基板WB2は、基板WB1と同様に構成されているのでその説明を省略する。中間基板Bの例では、金属板MPが面状導体に相当する。
 多層基板WBや中間基板B等の検査として、接続部RA~RZの抵抗値Ra~Rzを測定する場合がある。
 図9は、図8に示す中間基板Bの接続部RA,RBの抵抗値Ra,Rbを測定する測定方法を説明するための説明図である。接続部RA,RBの抵抗値Ra,Rbを測定するには、導電部PA1と導電部PB1との間に測定用の電流Iを流し、導電部PA1と導電部PB1との間に生じた電圧Vを測定し、抵抗値をV/Iとして算出することが考えられる。この場合、V/Iによって算出される抵抗値は、Ra+Rbとなる。
 しかしながら、二カ所の接続部の合計抵抗値ではなく、各接続部の抵抗値を個別に測定したいというニーズがある。
 本発明の目的は、面状に拡がる導電性の面状導体と、面状導体と対向する基板面と、基板面に設けられた導電部とその導電部を前記面状導体に電気的に接続する接続部との対とを有する被測定基板の各接続部の抵抗を個別に測定することができる抵抗測定装置、及び抵抗測定方法を提供することである。
 本発明の一局面に従う抵抗測定装置は、面状に拡がる導電性の面状導体と、前記面状導体と対向する基板面と、前記基板面に設けられた導電部とその導電部を前記面状導体に電気的に接続する接続部との対とを有すると共に当該対を三つ以上備える被測定基板の前記接続部の抵抗を測定するための抵抗測定装置であって、前記三つ以上の導電部のうちの一つである供給側導電部に予め設定された供給電流を供給するための電流供給部と、前記各導電部のうちの一つであって前記供給側導電部とは異なる引込側導電部から、予め設定された引込電流を引き込むための電流引込部と、前記各導電部のうちの前記供給側導電部及び前記引込側導電部とは異なる導電部である電圧測定用導電部と前記供給側導電部との間の電圧である供給側電圧を検出する供給側電圧検出部と、前記電圧測定用導電部と前記引込側導電部との間の電圧である引込側電圧を検出する引込側電圧検出部と、前記供給電流と前記供給側電圧とに基づいて前記供給側導電部と対になる接続部の抵抗値を算出し、前記引込電流と前記引込側電圧とに基づいて前記引込側導電部と対になる接続部の抵抗値を算出する抵抗算出部とを備える。
 また、本発明の一局面に従う抵抗測定方法は、面状に拡がる導電性の面状導体と、前記面状導体と対向する基板面と、前記基板面に設けられた導電部とその導電部を前記面状導体に電気的に接続する接続部との対とを有すると共に当該対を三つ以上備える被測定基板の前記接続部の抵抗を測定するための抵抗測定方法であって、前記三つ以上の導電部のうちの一つである供給側導電部に予め設定された供給電流を供給する電流供給工程と、前記各導電部のうちの一つであって前記供給側導電部とは異なる引込側導電部から、予め設定された引込電流を引き込む電流引込工程と、前記各導電部のうちの前記供給側導電部及び前記引込側導電部とは異なる導電部である電圧測定用導電部と前記供給側導電部との間の電圧である供給側電圧を検出する供給側電圧検出工程と、前記電圧測定用導電部と前記引込側導電部との間の電圧である引込側電圧を検出する引込側電圧検出工程と、前記供給電流と前記供給側電圧とに基づいて前記供給側導電部と対になる接続部の抵抗値を算出し、前記引込電流と前記引込側電圧とに基づいて前記引込側導電部と対になる接続部の抵抗値を算出する抵抗算出工程とを含む。
本発明の一実施形態に係る抵抗測定方法を用いる抵抗測定装置の構成を概念的に示す模式図である。 図1に示す測定部の電気的構成の一例を示すブロック図である。 図1に示す抵抗測定装置の動作の一例を示すフローチャートである。 図1に示す抵抗測定装置の動作の一例を示すフローチャートである 図1に示す抵抗測定装置の動作を説明するための説明図である。 図1に示す抵抗測定装置の動作を説明するための説明図である。 基板内層に面状の内層パターンを備えた基板の一例である多層基板を示す概念的な模式図である。 中間基板の一例を示す概念的な模式図である。 図8に示す中間基板の抵抗値を測定する測定方法を説明するための説明図である。
 以下、本発明に係る実施形態を図面に基づいて説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、その説明を省略する。図1は、本発明の一実施形態に係る抵抗測定方法を用いる抵抗測定装置1の構成を概念的に示す模式図である。図1に示す抵抗測定装置1は、測定対象となる被測定基板の抵抗を測定するための装置である。抵抗測定装置1は、測定された抵抗値に基づき被測定基板の良否を判定する基板検査装置であってもよい。
 被測定基板は、例えば中間基板や多層基板であり、半導体パッケージ用のパッケージ基板、フィルムキャリア、プリント配線基板、フレキシブル基板、セラミック多層配線基板、液晶ディスプレイやプラズマディスプレイ用の電極板、及びこれらの基板を製造する過程の中間基板であってもよい。図7に示す多層基板WB、及び図8に示す中間基板Bは、被測定基板の一例に相当している。図1では、被測定基板として中間基板Bが抵抗測定装置1に取り付けられた例を示している。導電部PA1,PB1,・・・,PZ1は、任意の個数設けられている。以下、導電部PA1,PB1,・・・,PZ1を総称して、導電部Pと称する。
 図1に示す抵抗測定装置1は、筐体112を有している。筐体112の内部空間には、基板固定装置110と、測定部121と、測定部122と、測定部移動機構125と、制御部20とが主に設けられている。基板固定装置110は、測定対象の中間基板Bを所定の位置に固定するように構成されている。
 測定部121は、基板固定装置110に固定された中間基板Bの上方に位置する。測定部122は、基板固定装置110に固定された中間基板Bの下方に位置する。測定部121,122は、中間基板Bに形成された導電部Pにプローブを接触させるための測定治具4U,4Lを備えている。
 測定治具4U,4Lには、複数のプローブPrが取り付けられている。測定治具4U,4Lは、中間基板Bの表面に形成された測定対象の導電部Pの配置と対応するように複数のプローブPrを配置、保持する。測定部移動機構125は、制御部20からの制御信号に応じて測定部121,122を筐体112内で適宜移動させ、測定治具4U,4LのプローブPrを中間基板Bの各導電部Pに接触させる。
 なお、抵抗測定装置1は、測定部121,122のうちいずれか一方のみを備えてもよい。そして、抵抗測定装置1は、被測定基板を表裏反転させて、いずれか一方の測定部によって、その両面の測定を順次行うようにしてもよい。
 制御部20は、例えば、所定の演算処理を実行するCPU(Central Processing Unit)と、データを一時的に記憶するRAM(Random Access Memory)と、所定の制御プログラムを記憶するROM(Read Only Memory)やHDD(Hard Disk Drive)等の記憶部と、これらの周辺回路等とを備えて構成されている。そして、制御部20は、例えば記憶部に記憶された制御プログラムを実行することにより、導電部選択部21及び抵抗算出部22として機能する。
 図2は、図1に示す測定部121の電気的構成の一例を示すブロック図である。なお、測定部122は、測定部121と同様に構成されているのでその説明を省略する。図2に示す測定部121は、複数の測定ブロックM1~Mn(nは自然数)、スキャナ部31、及び複数のプローブPrを備えている。測定ブロックM1~Mnは、組の一例に相当している。測定ブロックM1~Mnは、それぞれ、電流供給部CS、電流引込部CM、供給側電圧検出部VM1、及び引込側電圧検出部VM2を備えている。
 スキャナ部31は、例えばトランジスタやリレースイッチ等のスイッチング素子を用いて構成された切り替え回路である。スキャナ部31は、中間基板Bに抵抗測定用の電流Iを供給するための電流端子+F,-Fと、電流Iによって中間基板Bの導電部P間に生じた電圧を検出するための電圧検出端子+S1,-S1,+S2,-S2とをn組、回路グラウンドに接続される接地端子Gを任意の個数備えている。また、スキャナ部31には、複数のプローブPrが電気的に接続されている。スキャナ部31は、制御部20からの制御信号に応じて、電流端子+F,-F、電圧検出端子+S1,-S1,+S2,-S2、及び接地端子Gと、複数のプローブPrとの間の接続関係を切り替える。
 電流供給部CSは、その出力端子の一端が回路グラウンドに接続され、他端が電流端子+Fに接続されている。電流供給部CSは、制御部20からの制御信号に応じて、予め設定された供給電流Ioを電流端子+Fへ供給する定電流回路である。
 電流引込部CMは、その一端が電流端子-Fに接続され、他端が回路グラウンドに接続されている。電流引込部CMは、制御部20からの制御信号に応じて、予め設定された引込電流Iiを電流端子-Fから回路グラウンドへ引き込む定電流回路である。
 各導電部Pの表面には、酸化により酸化膜が生じている場合がある。導電部Pの表面に酸化膜が生じると、プローブPrとの接触抵抗が増大するため抵抗測定の精度が低下する。このような酸化膜は、所定の酸化膜除去電流値以上の電流を流すことによって除去できる。酸化膜除去電流値は、例えば20mAである。プローブPrには、そのプローブを損傷させることなく流すことのできる電流値の上限値として定格電流値が定められている。プローブPrの定格電流値は、例えば40mAに満たない電流値であり、例えば30mAである。
 引込電流Ii及び供給電流Ioは、例えば20mA以上、かつ30mA以下に設定されている。これにより、プローブPrを損傷させることなく、かつ導電部Pの表面の酸化膜を除去して抵抗測定の精度を向上させるようになっている。
 測定ブロックM1~Mnの各電流供給部CSから供給される供給電流Ioの合計と、測定ブロックM1~Mnの各電流引込部CMによって引き込まれる引込電流Iiの合計とは、略等しいことが好ましい。各供給電流Ioの合計と各引込電流Iiの合計とが略等しければ、n個の電流供給部CSから中間基板Bへ供給された電流の略すべてがn個の電流引込部CMによって中間基板Bから引き出されるので、中間基板Bから外部に漏れ電流が流れることが抑制される。
 また、各供給電流Ioと各引込電流Iiとが、互いに略等しいことがより好ましい。各供給電流Ioと各引込電流Iiとが互いに略等しいと、中間基板Bの各部で接続部相互間に流れる電流が均等化される結果、金属板MPの電位が安定化される。その結果、抵抗測定精度が向上する。
 供給側電圧検出部VM1は、その一端が電圧検出端子+S1に接続され、他端が電圧検出端子-S1に接続されている。供給側電圧検出部VM1は、電圧検出端子+S1,-S1間の電圧を測定し、その電圧値を供給側電圧V1として制御部20へ送信する電圧検出回路である。
 引込側電圧検出部VM2は、その一端が電圧検出端子+S2に接続され、他端が電圧検出端子-S2に接続されている。引込側電圧検出部VM2は、電圧検出端子+S2,-S2間の電圧を測定し、その電圧値を引込側電圧V2として制御部20へ送信する電圧検出回路である。
 スキャナ部31は、制御部20からの制御信号に応じて、接地端子Gと、測定ブロックM1~Mnの電流端子+F,-F及び電圧検出端子+S1,-S1,+S2,-S2とを、任意のプローブPrに導通接続可能にされている。これにより、スキャナ部31は、制御部20からの制御信号に応じて、プローブPrが接触している任意の導体部間に電流を流し、任意の導体部間に生じた電圧を供給側電圧検出部VM1及び引込側電圧検出部VM2によって測定させ、任意の導体部を回路グラウンドに接続することが可能にされている。スキャナ部31は、接地部の一例に相当している。
 導電部選択部21は、プローブPrが接触している導電部Pのうちから、測定ブロックM1~Mnに対応するn個の供給側導電部と、n個の引込側導電部と、n個(又は2n個)の電圧測定用導電部と、任意の個数の接地用導電部とを選択する。供給側導電部及び引込側導電部として選択された導電部Pと対になる接続部の抵抗値が抵抗算出部22によって算出される。そこで、導電部選択部21は、まだ抵抗値が算出されていない接続部と対になる新たな導電部Pを供給側導電部及び引込側導電部として順次、選択することによって、最終的に抵抗値を測定しようとしている全ての接続部の抵抗値を測定するようになっている。
 導電部選択部21は、スキャナ部31によって、供給側導電部に接触しているプローブPrと電流供給部CS(電流端子+F)とを接続させ、引込側導電部に接触しているプローブPrと電流引込部CM(電流端子-F)とを接続させ、供給側導電部に接触しているプローブPrと供給側電圧検出部VM1の一端(電圧検出端子+S1)とを接続させ、電圧測定用導電部に接触しているプローブPrと供給側電圧検出部VM1の他端(電圧検出端子-S1)とを接続させ、電圧測定用導電部に接触しているプローブPrと引込側電圧検出部VM2の一端(電圧検出端子+S2)とを接続させ、引込側導電部に接触しているプローブPrと引込側電圧検出部VM2の他端(電圧検出端子-S2)とを接続させる。
 これによって、導電部選択部21は、電流供給部CS及び電流引込部CMによって供給側導電部と引込側導電部との間に金属板MPを介して電流を流させ、供給側電圧検出部VM1によって供給側導電部と電圧測定用導電部との間の供給側電圧V1を検出させ、引込側電圧検出部VM2によって引込側導電部と電圧測定用導電部との間の引込側電圧V2を検出させる。
 抵抗算出部22は、測定ブロックM1~Mnに対応し、各測定ブロックの供給電流Ioと供給側電圧V1とに基づいて、各測定ブロックの供給側導電部と対になる接続部の抵抗値を算出する。また、抵抗算出部22は、測定ブロックM1~Mnに対応し、各測定ブロックの引込電流Iiと引込側電圧V2とに基づいて、各測定ブロックの引込側導電部と対になる接続部の抵抗値を算出する。
 次に、上述の抵抗測定装置1の動作について説明する。被測定基板が中間基板Bである場合を例に、測定部121を用いて基板WB1の抵抗測定を行う抵抗測定方法について説明する。測定部122を用いて基板WB2の抵抗測定を行う場合は、測定部121を用いて基板WB1の抵抗測定を行う場合と同様であるのでその説明を省略する。
 図3、図4は、本発明の一実施形態に係る抵抗測定方法を用いる抵抗測定装置1の動作の一例を示すフローチャートである。図5、図6は、図1に示す抵抗測定装置1の動作を説明するための説明図である。図5、図6に示す説明図は、中間基板Bの測定を行う場合について例示している。図5、図6では、説明を簡単にするためスキャナ部31の記載を省略している。
 まず、制御部20は、測定部移動機構125によって測定部121を移動させ、基板固定装置110に固定された中間基板Bに測定治具4UのプローブPrを接触させる(ステップS1)。図5、図6に示す例では、いわゆる四端子測定法によって抵抗測定する場合を例示しており、各導電部Pに、プローブPrが二つずつ接触する。
 なお、抵抗測定装置1は、四端子測定法によって抵抗測定を行う例に限られず、各導電部にプローブPrを一つずつ接触させ、一つのプローブPrで電流供給と電圧測定とを兼用する構成としてもよい。
 次に、導電部選択部21は、プローブPrが接触している導電部Pのうちから、接地用導電部を選択し、さらに測定ブロックM1~Mnに対応するn個の供給側導電部と、n個の引込側導電部と、n個の電圧測定用導電部とを選択する(ステップS2:導電部選択工程)。
 一つの測定ブロックに対応して二箇所の接続部の抵抗値を測定できるので、測定対象の接続部の数が2n個に満たない場合は、測定対象の接続部の数に応じて供給側導電部、引込側導電部、及び電圧測定用導電部を選択すればよい。接地用導電部は、少なくとも一つ選択すればよく、複数選択してもよい。
 導電部選択部21は、スキャナ部31によって、選択された供給側導電部、引込側導電部、及び電圧測定用導電部を、測定ブロックM1~Mnの電流供給部CS、電流引込部CM、供給側電圧検出部VM1、及び引込側電圧検出部VM2に接続させ、接地用導電部と回路グラウンドとを接続させる。
 図5は、選択された供給側導電部、引込側導電部、電圧測定用導電部、及び接地用導電部と、電流供給部CS、電流引込部CM、供給側電圧検出部VM1、引込側電圧検出部VM2、及び回路グラウンドとの接続関係の一例を示す説明図である。
 図5に示す例では、測定ブロックM1に対応し、供給側導電部として導電部PA1が選択され、引込側導電部として導電部PC1が選択され、電圧測定用導電部として導電部PB1が選択されている。測定ブロックM2に対応し、供給側導電部として導電部PD1が選択され、引込側導電部として導電部PF1が選択され、電圧測定用導電部として導電部PE1が選択されている。以下、他の導電部Pについても、適宜供給側導電部、引込側導電部、電圧測定用導電部、及び接地用導電部が選択されている。接地用導電部としては、導電部PZ1が選択されている。
 次に、制御部20は、測定ブロックM1~Mnの電流供給部CSから、各供給側導電部へ供給電流Ioを供給させる(ステップS3:電流供給工程)。電流供給工程においては、例えば電流供給部CSと直列に電流計を接続し、実際に電流供給部CSから供給側導電部へ供給された電流を供給電流Ioとして測定し、この電流計によって測定された供給電流Ioを後述するステップS7の抵抗算出工程で用いてもよい。
 次に、制御部20は、測定ブロックM1~Mnの電流引込部CMによって、各引込側導電部から引込電流Iiを引き込ませる(ステップS4:電流引込工程)。電流引込工程においては、例えば電流引込部CMと直列に電流計を接続し、実際に電流引込部CMによって引込側導電部から引き込まれた電流を引込電流Iiとして測定し、この電流計によって測定された引込電流Iiを後述するステップS7の抵抗算出工程で用いてもよい。
 次に、測定ブロックM1~Mnにおいて、供給側電圧検出部VM1によって、供給側導電部と電圧測定用導電部との間の供給側電圧V1が検出される(ステップS5:供給側電圧検出工程)。
 この場合、図5に破線で示した電流経路から明らかなように、測定ブロックM1~Mnと対応する電圧測定用導電部である導電部PB1,PE1,・・・,PW1と対になる接続部RB,RE,・・・,RWには電流が流れず、従ってこの箇所では電圧が生じない。その結果、各供給側電圧検出部VM1によって測定された各供給側電圧V1には、接続部RB,RE,・・・,RWで生じた電圧が含まれない。従って、各供給側電圧V1は、測定ブロックM1~Mnと対応する供給側導電部PA1,PD1,・・・,PV1と対になる接続部RA,RD,・・・,RVに供給電流Ioが流れることによって生じた電圧に略等しい。
 次に、測定ブロックM1~Mnにおいて、引込側電圧検出部VM2によって、引込側導電部と電圧測定用導電部との間の引込側電圧V2が検出される(ステップS6:引込側電圧検出工程)。
 この場合、図5に破線で示した電流経路から明らかなように、測定ブロックM1~Mnと対応する電圧測定用導電部である導電部PB1,PE1,・・・,PW1と対になる接続部RB,RE,・・・,RWには電流が流れず、従ってこの箇所では電圧が生じない。その結果、各引込側電圧検出部VM2によって測定された各引込側電圧V2には、接続部RB,RE,・・・,RWで生じた電圧が含まれない。従って、各引込側電圧V2は、測定ブロックM1~Mnと対応する引込側導電部PC1,PF1,・・・,PX1と対になる接続部RC,RF,・・・,RXに引込電流Iiが流れることによって生じた電圧に略等しい。
 次に、測定ブロックM1~Mnに対応して検出された供給側電圧V1及び引込側電圧V2と、引込電流Ii及び供給電流Ioとに基づき、抵抗算出部22によって、下記の式(1)、(2)に基づき、測定ブロックM1~Mnに対応する供給側導電部と対になる接続部の抵抗値Roと、引込側導電部と対になる接続部の抵抗値Riとが算出される(ステップS7:抵抗算出工程)。
供給側導電部と対になる接続部の抵抗値Ro=V1/Io ・・・(1)
引込側導電部と対になる接続部の抵抗値Ri=V2/Ii ・・・(2)
 図5に示す例では、接続部RA,RD,・・・,RVの抵抗値Ra,Rd,・・・,Rvが抵抗値Roとして算出され、接続部RC,RF,・・・,RXの抵抗値Rc,Rf,・・・,Rxが抵抗値Riとして算出される。
 これにより、接続部RA,RC,RD,RF,・・・,RV,RXの抵抗値Ra,Rc,Rd,Rf,・・・,Rv,Rxを、個別に測定することができる。この場合、各測定ブロックM1~Mnで、それぞれ二箇所ずつ電圧検出を行うことができる。従って、測定ブロックの数nの二倍の接続部について、抵抗測定のための電圧検出を並行して行うことができるので、抵抗測定時間を短縮することができる。
 また、供給電流Io及び引込電流Iiは、酸化膜除去電流値以上、プローブPrの定格電流値以下の電流値とされているので、プローブPrを損傷させることなく、かつ各導電部P表面の酸化膜を除去することができる。その結果、各接続部の抵抗測定精度を向上することができる。
 図5において、もし仮に、電流引込部CMが設けられておらず、引込側導電部PC1,PF1,・・・,PX1が直接回路グラウンドに接続されていた場合には、測定ブロックM1~Mnの電流供給部CSは金属板MPに対して並列接続され、引込側導電部PC1,PF1,・・・,PX1もまた金属板MPに対して並列接続される。
 従って、測定ブロックM1~Mnの電流供給部CSから供給された電流は、各電流供給部CSから引込側導電部PC1,PF1,・・・,PX1を介して回路グラウンドに至る電流経路の抵抗値に応じて分配され、引込側導電部PC1,PF1,・・・,PX1に流れる電流にバラツキが生じる。
 その結果、引込側導電部PC1,PF1,・・・,PX1に流れる電流が、プローブPrの定格電流値を超えたり、酸化膜除去電流値に満たなかったりするおそれがある。流れる電流が定格電流値を超えた引込側導電部に接触するプローブPrは損傷し、流れる電流が酸化膜除去電流値に満たない引込側導電部では酸化膜が除去されないためにその引込側導電部と対になる接続部の抵抗値の算出精度は低下してしまう。
 一方、抵抗測定装置1によれば、引込側導電部PC1,PF1,・・・,PX1に流れる電流は、各電流供給部CSによって、酸化膜除去電流値以上、プローブPrの定格電流値以下とされるので、プローブPrを損傷させることなく各接続部の抵抗測定精度を向上することができる。
 また、もし仮に、接地用導電部PZ1が回路グラウンドに接続されていなかった場合、金属板MPは、電流供給部CS又は電流引込部CMの内部インピーダンスを介して回路グラウンドに接続されることとなり、金属板MPの電位が不安定になる。金属板MPの電位が不安定になると、供給側電圧検出部VM1及び引込側電圧検出部VM2による電圧測定が不安定になり、供給側電圧V1及び引込側電圧V2の測定精度が低下する結果、各接続部の抵抗値の算出精度が低下するおそれがある。
 一方、抵抗測定装置1によれば、接地用導電部PZ1がスキャナ部31(接地部)によって回路グラウンドに接続され、低抵抗の接続部RZを介して金属板MPが回路グラウンドに接続されるので、金属板MPの電位が安定化される。その結果、供給側電圧V1及び引込側電圧V2の測定精度が向上し、各接続部の抵抗値の算出精度が向上する。
 次に、導電部選択部21は、測定対象のすべての接続部RA~RZの抵抗値が算出済みであるか否かを確認する(ステップS11)。そして、測定対象のすべての接続部RA~RZの抵抗値が算出済みであれば(ステップS11でYES)、導電部選択部21は、処理を終了する。
 一方、まだ抵抗値が算出されていない接続部が残っていれば(ステップS11でNO)、導電部選択部21は、プローブPrが接触し、かつ抵抗値が算出されていない接続部と対になる導電部のうちから測定ブロックM1~Mnに対応するn個の供給側導電部と、n個の引込側導電部とを新たに選択し、さらに新たに選択された導電部以外の導電部のうちから接地用導電部と測定ブロックM1~Mnに対応するn個の電圧測定用導電部とを新たに選択する(ステップS12)。
 そして、導電部選択部21は、スキャナ部31によって、新たに選択された供給側導電部、引込側導電部、及び電圧測定用導電部を、測定ブロックM1~Mnの電流供給部CS、電流引込部CM、供給側電圧検出部VM1、及び引込側電圧検出部VM2に接続させ、新たに選択された接地用導電部を回路グラウンドに接続させ、再びステップS3以降の処理を繰り返す。
 図6は、新たに選択された供給側導電部、引込側導電部、電圧測定用導電部、及び接地用導電部と、電流供給部CS、電流引込部CM、供給側電圧検出部VM1、引込側電圧検出部VM2、及び回路グラウンドとの接続関係の一例を示す説明図である。
 図6に示す例では、測定ブロックM1に対応し、供給側導電部として導電部PB1が選択され、引込側導電部として導電部PE1が選択され、電圧測定用導電部として導電部PC1と導電部PD1とが選択されている。このように、複数の導電部が電圧測定用導電部とされてもよい。
 また、測定ブロックMnに対応し、供給側導電部として導電部PW1が選択され、引込側導電部として導電部PZ1が選択され、電圧測定用導電部として導電部PX1が選択されている。以下、他の導電部Pについても、適宜供給側導電部、引込側導電部、電圧測定用導電部、及び接地用導電部が選択されている。接地用導電部としては、導電部PA1が選択されている。
 図6に示す例では、ステップS2では電圧測定用導電部又は接地用導電部とされ、抵抗測定されていなかった導電部PB1,PE1,PW1,PZ1が供給側導電部又は引込側導電部とされ、導電部PB1,PE1,PW1,PZ1と対の接続部の抵抗値が測定されるようにされている。
 以下、ステップS3~S11の処理が、新たに選択された供給側導電部、引込側導電部、及び電圧測定用導電部に基づいて繰り返され、最終的に測定対象の全ての接続部の抵抗値が測定される。
 以上、ステップS1~S12の処理によれば、面状に拡がる導電性の中間基板Bなどの面状導体と、面状導体と対向する基板面BS1と、基板面BS1に設けられた導電部PA1~PZ1とその導電部PA1~PZ1を面状導体に電気的に接続する接続部RA~RZとの対とを有する中間基板Bなどの被測定基板の接続部RA~RZの抵抗値Ra~Rzを個別に測定することができる。
 なお、測定ブロックの数は、一つであってもよい。測定ブロックの数は、一つであっても、その測定ブロックに対応する二箇所の接続部の抵抗を個別に測定することができる。また、接地用導電部を設けなくてもよく、スキャナ部31は接地用導電部を回路グラウンドに接続しなくてもよい。
 また、複数のプローブPrが、被検査基板の導電部の配置と対応するように配置されている例を示したが、移動式の、いわゆるフライングプローブによって、電流供給部CS、電流引込部CM、供給側電圧検出部VM1、引込側電圧検出部VM2、及び回路グラウンドが導電部と電気的に接続される構成としてもよい。
 本発明の一局面に従う抵抗測定装置は、面状に拡がる導電性の面状導体と、前記面状導体と対向する基板面と、前記基板面に設けられた導電部とその導電部を前記面状導体に電気的に接続する接続部との対とを有すると共に当該対を三つ以上備える被測定基板の前記接続部の抵抗を測定するための抵抗測定装置であって、前記三つ以上の導電部のうちの一つである供給側導電部に予め設定された供給電流を供給するための電流供給部と、前記各導電部のうちの一つであって前記供給側導電部とは異なる引込側導電部から、予め設定された引込電流を引き込むための電流引込部と、前記各導電部のうちの前記供給側導電部及び前記引込側導電部とは異なる導電部である電圧測定用導電部と前記供給側導電部との間の電圧である供給側電圧を検出する供給側電圧検出部と、前記電圧測定用導電部と前記引込側導電部との間の電圧である引込側電圧を検出する引込側電圧検出部と、前記供給電流と前記供給側電圧とに基づいて前記供給側導電部と対になる接続部の抵抗値を算出し、前記引込電流と前記引込側電圧とに基づいて前記引込側導電部と対になる接続部の抵抗値を算出する抵抗算出部とを備える。
 この構成によれば、電流供給部によって供給側導電部へ供給電流が供給され、電流引込部によって引込側導電部から引込電流が引き込まれる結果、供給側導電部、供給側導電部と対になる接続部、面状導体、引込側導電部と対になる接続部、及び引込側導電部に電流が流れる。しかしながら、電圧測定用導電部と対になる接続部には電流が流れず、従ってこの接続部では電圧が生じないから、電圧測定用導電部と供給側導電部との間の電圧である供給側電圧には、供給側導電部と対になる接続部で生じた電圧が含まれ、その他の接続部で生じた電圧は含まれない。その結果、抵抗算出部が供給電流と供給側電圧とに基づいて算出した抵抗値は、供給側導電部と対になる接続部の抵抗値と略等しくなる。同様に、電圧測定用導電部と引込側導電部との間の電圧である引込側電圧には、引込側導電部と対になる接続部で生じた電圧が含まれ、その他の接続部で生じた電圧は含まれない。その結果、抵抗算出部が引込電流と引込側電圧とに基づいて算出した抵抗値は、引込側導電部と対になる接続部の抵抗値と略等しくなる。これにより、供給側導電部と対になる接続部の抵抗値と、引込側導電部と対になる接続部の抵抗値とを、個別に測定することができる。
 また、前記電流供給部、前記電流引込部、前記供給側電圧検出部、及び前記引込側電圧検出部を含む組を複数組備え、前記組のそれぞれに対応して、前記供給側導電部、前記引込側導電部、及び前記電圧測定用導電部が設定され、前記抵抗算出部は、前記各組に対応して検出された前記供給電流及び前記供給側電圧に基づいて、前記各組に対応する前記供給側導電部と対になる接続部の抵抗値を算出し、前記各組に対応して検出された前記引込電流及び前記引込側電圧に基づいて、前記各組に対応する前記引込側導電部と対になる接続部の抵抗値を算出することが好ましい。
 この構成によれば、各組毎の供給側導電部と対になる接続部の抵抗値測定と引込側導電部と対になる接続部の抵抗値測定とを並行して実行することが可能となるので、抵抗測定時間を短縮することが可能となる。
 また、前記各組に対応する前記供給電流の合計と、前記各組に対応する引込電流の合計とが略等しいことが好ましい。
 この構成によれば、各組の電流供給部から被測定基板へ供給された電流の略すべてが各組の電流引込部によって被測定基板から引き出されるので、被測定基板から外部に漏れ電流が流れることが抑制される。
 また、前記供給電流と前記引込電流とは、互いに略等しいことが好ましい。
 この構成によれば、被測定基板の各部で接続部相互間に流れる電流が均等化される結果、面状導体の電位が安定化される。その結果、抵抗測定精度が向上する。
 また、前記電流供給部による電流供給、前記電流引込部による電流引き込み、前記供給側電圧検出部による電圧検出、及び前記引込側電圧検出部による電圧検出を行うために前記各導電部に接触させるためのプローブを備え、前記供給電流及び前記引込電流は、前記各導電部の表面に生じる酸化膜を除去するための酸化膜除去電流値以上、かつ前記プローブの定格電流値以下に設定されていることが好ましい。
 この構成によれば、各プローブには、酸化膜を除去するための酸化膜除去電流値以上であって、かつプローブの定格電流値以下の電流が流れるので、プローブを損傷させることなく、かつ導電部の表面の酸化膜を除去して抵抗測定の精度を向上させることができる。
 また、前記各導電部のうち、前記供給側導電部、前記引込側導電部、及び前記電圧測定用導電部とは異なる接地用導電部を、回路グラウンドに接続する接地部をさらに備えることが好ましい。
 この構成によれば、接地用導電部が接地部によって回路グラウンドに接続され、面状導体が接続部を介して回路グラウンドに接続されるので、面状導体の電位が安定化される。その結果、供給側電圧及び引込側電圧の測定精度が向上し、各接続部の抵抗値の算出精度が向上する。
 また、本発明の一局面に従う抵抗測定方法は、面状に拡がる導電性の面状導体と、前記面状導体と対向する基板面と、前記基板面に設けられた導電部とその導電部を前記面状導体に電気的に接続する接続部との対とを有すると共に当該対を三つ以上備える被測定基板の前記接続部の抵抗を測定するための抵抗測定方法であって、前記三つ以上の導電部のうちの一つである供給側導電部に予め設定された供給電流を供給する電流供給工程と、前記各導電部のうちの一つであって前記供給側導電部とは異なる引込側導電部から、予め設定された引込電流を引き込む電流引込工程と、前記各導電部のうちの前記供給側導電部及び前記引込側導電部とは異なる導電部である電圧測定用導電部と前記供給側導電部との間の電圧である供給側電圧を検出する供給側電圧検出工程と、前記電圧測定用導電部と前記引込側導電部との間の電圧である引込側電圧を検出する引込側電圧検出工程と、前記供給電流と前記供給側電圧とに基づいて前記供給側導電部と対になる接続部の抵抗値を算出し、前記引込電流と前記引込側電圧とに基づいて前記引込側導電部と対になる接続部の抵抗値を算出する抵抗算出工程とを含む。
 この構成によれば、電流供給工程において供給側導電部へ供給電流が供給され、電流引込工程において引込側導電部から引込電流が引き込まれる結果、供給側導電部、供給側導電部と対になる接続部、面状導体、引込側導電部と対になる接続部、及び引込側導電部に電流が流れる。しかしながら、電圧測定用導電部と対になる接続部には電流が流れず、従ってこの接続部には電圧が生じないから、電圧測定用導電部と供給側導電部との間の電圧である供給側電圧には、供給側導電部と対になる接続部で生じた電圧が含まれ、その他の接続部で生じた電圧は含まれない。その結果、抵抗算出工程で供給電流と供給側電圧とに基づいて算出された抵抗値は、供給側導電部と対になる接続部の抵抗値と略等しくなる。同様に、電圧測定用導電部と引込側導電部との間の電圧である引込側電圧には、引込側導電部と対になる接続部で生じた電圧が含まれ、その他の接続部で生じた電圧は含まれない。その結果、抵抗算出工程で引込電流と引込側電圧とに基づいて算出された抵抗値は、引込側導電部と対になる接続部の抵抗値と略等しくなる。これにより、供給側導電部と対になる接続部の抵抗値と、引込側導電部と対になる接続部の抵抗値とを、個別に測定することができる。
 このような構成の抵抗測定装置及び抵抗測定方法は、面状に拡がる導電性の面状導体と、面状導体と対向する基板面と、基板面に設けられた導電部とその導電部を面状導体に電気的に接続する接続部との対とを有する被測定基板の接続部の抵抗を個別に測定することができる。
 この出願は、2016年12月1日に出願された日本国特許出願特願2016-233892を基礎とするものであり、その内容は、本願に含まれるものである。なお、発明を実施するための形態の項においてなされた具体的な実施態様又は実施例は、あくまでも、本発明の技術内容を明らかにするものであって、本発明は、そのような具体例にのみ限定して狭義に解釈されるべきものではない。
1    抵抗測定装置
4U,4L  測定治具
20  制御部
21  導電部選択部
22  抵抗算出部
31  スキャナ部
110      基板固定装置
112      筐体
121,122    測定部
125      測定部移動機構
B    中間基板(被測定基板)
BS,BS1      基板面
BS2      接触面
CM  電流引込部
CS  電流供給部
G    接地端子
Ii  引込電流
Io   供給電流
IP  内層パターン(面状導体)
M1~Mn  測定ブロック(組)
MP  金属板(面状導体)
P,PA1~PZ1      導電部
Pr  プローブ
RA~RZ  接続部
Ra~Rz  抵抗値
V1  供給側電圧
V2  引込側電圧
VM1      供給側電圧検出部
VM2      引込側電圧検出部
WB  多層基板(被測定基板)
WB1,WB2    基板
 

Claims (7)

  1.  面状に拡がる導電性の面状導体と、前記面状導体と対向する基板面と、前記基板面に設けられた導電部とその導電部を前記面状導体に電気的に接続する接続部との対とを有すると共に当該対を三つ以上備える被測定基板の前記接続部の抵抗を測定するための抵抗測定装置であって、
     前記三つ以上の導電部のうちの一つである供給側導電部に予め設定された供給電流を供給するための電流供給部と、
     前記各導電部のうちの一つであって前記供給側導電部とは異なる引込側導電部から、予め設定された引込電流を引き込むための電流引込部と、
     前記各導電部のうちの前記供給側導電部及び前記引込側導電部とは異なる導電部である電圧測定用導電部と前記供給側導電部との間の電圧である供給側電圧を検出する供給側電圧検出部と、
     前記電圧測定用導電部と前記引込側導電部との間の電圧である引込側電圧を検出する引込側電圧検出部と、
     前記供給電流と前記供給側電圧とに基づいて前記供給側導電部と対になる接続部の抵抗値を算出し、前記引込電流と前記引込側電圧とに基づいて前記引込側導電部と対になる接続部の抵抗値を算出する抵抗算出部とを備える抵抗測定装置。
  2.  前記電流供給部、前記電流引込部、前記供給側電圧検出部、及び前記引込側電圧検出部を含む組を複数組備え、
     前記組のそれぞれに対応して、前記供給側導電部、前記引込側導電部、及び前記電圧測定用導電部が設定され、
     前記抵抗算出部は、前記各組に対応して検出された前記供給電流及び前記供給側電圧に基づいて、前記各組に対応する前記供給側導電部と対になる接続部の抵抗値を算出し、前記各組に対応して検出された前記引込電流及び前記引込側電圧に基づいて、前記各組に対応する前記引込側導電部と対になる接続部の抵抗値を算出する請求項1記載の抵抗測定装置。
  3.  前記各組に対応する前記供給電流の合計と、前記各組に対応する引込電流の合計とが略等しい請求項2記載の抵抗測定装置。
  4.  前記供給電流と前記引込電流とは、互いに略等しい請求項1~3のいずれか1項に記載の抵抗測定装置。
  5.  前記電流供給部による電流供給、前記電流引込部による電流引き込み、前記供給側電圧検出部による電圧検出、及び前記引込側電圧検出部による電圧検出を行うために前記各導電部に接触させるためのプローブを備え、
     前記供給電流及び前記引込電流は、前記各導電部の表面に生じる酸化膜を除去するための酸化膜除去電流値以上、かつ前記プローブの定格電流値以下に設定されている請求項1~4のいずれか1項に記載の抵抗測定装置。
  6.  前記各導電部のうち、前記供給側導電部、前記引込側導電部、及び前記電圧測定用導電部とは異なる接地用導電部を、回路グラウンドに接続する接地部をさらに備える請求項1~5のいずれか1項に記載の抵抗測定装置。
  7.  面状に拡がる導電性の面状導体と、前記面状導体と対向する基板面と、前記基板面に設けられた導電部とその導電部を前記面状導体に電気的に接続する接続部との対とを有すると共に当該対を三つ以上備える被測定基板の前記接続部の抵抗を測定するための抵抗測定方法であって、
     前記三つ以上の導電部のうちの一つである供給側導電部に予め設定された供給電流を供給する電流供給工程と、
     前記各導電部のうちの一つであって前記供給側導電部とは異なる引込側導電部から、予め設定された引込電流を引き込む電流引込工程と、
     前記各導電部のうちの前記供給側導電部及び前記引込側導電部とは異なる導電部である電圧測定用導電部と前記供給側導電部との間の電圧である供給側電圧を検出する供給側電圧検出工程と、
     前記電圧測定用導電部と前記引込側導電部との間の電圧である引込側電圧を検出する引込側電圧検出工程と、
     前記供給電流と前記供給側電圧とに基づいて前記供給側導電部と対になる接続部の抵抗値を算出し、前記引込電流と前記引込側電圧とに基づいて前記引込側導電部と対になる接続部の抵抗値を算出する抵抗算出工程とを含む抵抗測定方法。
     
PCT/JP2017/042509 2016-12-01 2017-11-28 抵抗測定装置及び抵抗測定方法 WO2018101233A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780073175.7A CN109997046B (zh) 2016-12-01 2017-11-28 电阻测量装置及电阻测量方法
KR1020197014673A KR102416051B1 (ko) 2016-12-01 2017-11-28 저항 측정 장치 및 저항 측정 방법
JP2018554146A JP6885612B2 (ja) 2016-12-01 2017-11-28 抵抗測定装置及び抵抗測定方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-233892 2016-12-01
JP2016233892 2016-12-01

Publications (1)

Publication Number Publication Date
WO2018101233A1 true WO2018101233A1 (ja) 2018-06-07

Family

ID=62242861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042509 WO2018101233A1 (ja) 2016-12-01 2017-11-28 抵抗測定装置及び抵抗測定方法

Country Status (5)

Country Link
JP (1) JP6885612B2 (ja)
KR (1) KR102416051B1 (ja)
CN (1) CN109997046B (ja)
TW (1) TWI761398B (ja)
WO (1) WO2018101233A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117074785A (zh) * 2023-10-12 2023-11-17 福建省志骐电子科技有限公司 一种精度高的电阻阻值检测设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111208353B (zh) * 2020-01-16 2022-03-25 精电(河源)显示技术有限公司 一种cog模组的ito+pin电阻的检测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004101453A (ja) * 2002-09-12 2004-04-02 Ngk Spark Plug Co Ltd 特性測定方法及び装置
JP2006047172A (ja) * 2004-08-06 2006-02-16 Nidec-Read Corp 基板検査装置、基板検査プログラム及び基板検査方法
JP2013051355A (ja) * 2011-08-31 2013-03-14 Fujikura Ltd 貫通配線の検査方法、貫通配線基板の製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1764844A (zh) * 2003-03-26 2006-04-26 Jsr株式会社 测量电阻的连接器、连接器设备及其生产方法及电路板的电阻测量装置和方法
JP2007178318A (ja) * 2005-12-28 2007-07-12 Nidec-Read Corp 基板検査装置及び方法
KR100958038B1 (ko) * 2009-09-10 2010-05-17 모니텍주식회사 용접 검사 장치
TW201142310A (en) * 2010-05-21 2011-12-01 Yageo Corp Method for measuring the resistance of a chip resistor having a low resistance
JP5507430B2 (ja) 2010-12-03 2014-05-28 日置電機株式会社 回路基板検査装置
KR101882700B1 (ko) * 2012-07-18 2018-07-30 삼성디스플레이 주식회사 칩온글래스 기판 및 칩온글래스 기판에서의 접속 저항 측정 방법
KR102090578B1 (ko) * 2013-05-06 2020-03-19 삼성디스플레이 주식회사 전자 장치의 기판, 이를 포함하는 전자 장치 및 접속부의 저항 측정 방법
JP6311223B2 (ja) * 2013-06-07 2018-04-18 日本電産リード株式会社 検査装置、検査装置のキャリブレーション方法及び検査方法
TWI526132B (zh) * 2013-12-13 2016-03-11 Mpi Corp Correction film structure
JP6375661B2 (ja) * 2014-03-26 2018-08-22 日本電産リード株式会社 抵抗測定装置、基板検査装置、検査方法、及び検査用治具のメンテナンス方法
CN107076790B (zh) * 2014-10-29 2019-12-13 日本电产理德股份有限公司 基板检查装置及基板检查方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004101453A (ja) * 2002-09-12 2004-04-02 Ngk Spark Plug Co Ltd 特性測定方法及び装置
JP2006047172A (ja) * 2004-08-06 2006-02-16 Nidec-Read Corp 基板検査装置、基板検査プログラム及び基板検査方法
JP2013051355A (ja) * 2011-08-31 2013-03-14 Fujikura Ltd 貫通配線の検査方法、貫通配線基板の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117074785A (zh) * 2023-10-12 2023-11-17 福建省志骐电子科技有限公司 一种精度高的电阻阻值检测设备
CN117074785B (zh) * 2023-10-12 2023-12-22 福建省志骐电子科技有限公司 一种精度高的电阻阻值检测设备

Also Published As

Publication number Publication date
CN109997046A (zh) 2019-07-09
JP6885612B2 (ja) 2021-06-16
TWI761398B (zh) 2022-04-21
KR102416051B1 (ko) 2022-07-04
TW201821812A (zh) 2018-06-16
JPWO2018101233A1 (ja) 2019-10-24
KR20190086463A (ko) 2019-07-22
CN109997046B (zh) 2022-01-14

Similar Documents

Publication Publication Date Title
JP6592885B2 (ja) 基板検査方法及び基板検査装置
JP2005005331A (ja) 検査方法及び検査装置
JP2013170917A (ja) 基板内蔵電子部品の端子判別方法及び端子判別装置
TWI512308B (zh) 檢測裝置及檢測方法
WO2018101233A1 (ja) 抵抗測定装置及び抵抗測定方法
KR102455794B1 (ko) 기판 검사 장치 및 기판 검사 방법
JP2007333598A (ja) 基板検査装置
KR102416052B1 (ko) 저항 측정 장치 및 저항 측정 방법
JP2010204021A (ja) 回路基板検査装置および回路基板検査方法
KR20160004263A (ko) 기판 검사 장치 및 기판 검사 방법
JP2007322127A (ja) 基板検査方法及び基板検査装置
JP2010175489A (ja) 回路基板検査装置および回路基板検査方法
WO2008001651A1 (fr) Procédé d'inspection de carte et dispositif d'inspection de carte
JP5420303B2 (ja) 回路基板検査装置および回路基板検査方法
JP5991034B2 (ja) 電気特性検出方法及び検出装置
JP6696523B2 (ja) 抵抗測定方法、抵抗測定装置、及び基板検査装置
JP2006234642A (ja) 基板検査装置及び基板検査方法
JP2015015441A (ja) 半導体装置及び半導体装置の検査用パッドに対するプローブの位置を検出する方法
JP2014137231A (ja) 検査治具の検査方法
JP2014181977A (ja) 絶縁検査方法及び絶縁検査装置
JP2012237622A (ja) 測定装置及び測定方法
JP2006071567A (ja) プローブの接触状態判別方法、回路基板検査方法および回路基板検査装置
JP6255833B2 (ja) 基板検査方法及び基板検査装置
JP2020128881A (ja) 短絡検査システム、及び短絡検査方法
JP2005055369A (ja) 基板検査装置及び基板検査方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17877262

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018554146

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197014673

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17877262

Country of ref document: EP

Kind code of ref document: A1