WO2018101154A1 - レーザ照射装置および薄膜トランジスタの製造方法 - Google Patents

レーザ照射装置および薄膜トランジスタの製造方法 Download PDF

Info

Publication number
WO2018101154A1
WO2018101154A1 PCT/JP2017/042107 JP2017042107W WO2018101154A1 WO 2018101154 A1 WO2018101154 A1 WO 2018101154A1 JP 2017042107 W JP2017042107 W JP 2017042107W WO 2018101154 A1 WO2018101154 A1 WO 2018101154A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
mask pattern
laser
projection
laser light
Prior art date
Application number
PCT/JP2017/042107
Other languages
English (en)
French (fr)
Inventor
水村 通伸
敏成 新井
畑中 誠
琢郎 竹下
Original Assignee
株式会社ブイ・テクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016253448A external-priority patent/JP2018093154A/ja
Application filed by 株式会社ブイ・テクノロジー filed Critical 株式会社ブイ・テクノロジー
Priority to CN201780069323.8A priority Critical patent/CN109952630A/zh
Priority to US16/465,050 priority patent/US20190287790A1/en
Priority to KR1020197014100A priority patent/KR20190087427A/ko
Publication of WO2018101154A1 publication Critical patent/WO2018101154A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Definitions

  • the present invention relates to the formation of a thin film transistor, and more particularly to a laser irradiation apparatus and a method of manufacturing a thin film transistor for forming a polysilicon thin film by irradiating an amorphous silicon thin film on the thin film transistor with a laser beam.
  • Patent Document 1 an amorphous silicon thin film is formed in a channel region, and then the amorphous silicon thin film is irradiated with a laser beam such as an excimer laser, and laser annealing is performed. It is disclosed to perform a treatment for crystallizing a thin film. According to Patent Document 1, it is possible to make the channel region between the source and drain of a thin film transistor a polysilicon thin film with high electron mobility by performing this process, and to increase the speed of transistor operation. Are listed.
  • the channel region between the source and the drain is formed by one (one) polysilicon thin film. Therefore, the characteristics of the thin film transistor depend on one (one) polysilicon thin film.
  • the energy density of laser light such as excimer laser varies for each irradiation (shot)
  • the electron mobility of the polysilicon thin film formed using the laser light also varies. Therefore, the characteristics of the thin film transistor formed using the polysilicon thin film also depend on the variation in the energy density of the laser light.
  • the characteristics of the plurality of thin film transistors included in the glass substrate may vary.
  • An object of the present invention has been made in view of such problems, and is to provide a laser irradiation apparatus and a thin film transistor manufacturing method capable of suppressing variations in characteristics of a plurality of thin film transistors included in a glass substrate.
  • a laser irradiation apparatus includes a light source that generates laser light and a projection that irradiates a predetermined region of an amorphous silicon thin film deposited on each of a plurality of thin film transistors on a glass substrate with the laser light.
  • a projection mask pattern including a plurality of masks provided on the projection lens and having a transmittance that is a ratio of transmitting the laser light, and the projection lens moves in a predetermined direction.
  • the plurality of thin film transistors on the glass substrate are irradiated with the laser light through each of the plurality of masks included in the projection mask pattern, and each of the plurality of masks included in the projection mask pattern is Any one of the plurality of transmittances is set.
  • the laser irradiation apparatus may be characterized in that, in the projection mask pattern, the masks having different transmittances are randomly arranged.
  • each of the plurality of masks included in the projection mask pattern is set to one of the transmittances included in a predetermined range. It may be a feature.
  • the laser irradiation apparatus is a plurality of microlenses included in a microlens array capable of separating the laser light, and each of the plurality of masks included in the projection mask pattern includes the plurality of masks. It may be characterized by corresponding to each of the microlenses.
  • the laser irradiation apparatus in one embodiment of the present invention may be characterized in that each of the masks included in the projection mask pattern and adjacent to each other in a row orthogonal to the predetermined direction has a different transmittance. .
  • the laser irradiation apparatus may be characterized in that each of the plurality of masks included in the projection mask pattern has a different transmittance.
  • the projection mask pattern has a transmittance of the mask corresponding to each of the microlenses based on characteristics of each of the plurality of microlenses included in the microlens array. May be set as a feature.
  • the projection mask pattern is a phase shift mask that increases the resolution of the microlens by changing the phase of the laser light transmitted through the microlens.
  • the mask may be characterized in that, among the plurality of microlenses, the phase of the laser light transmitted through the microlens determined based on the resolution is changed to increase the resolution of the microlens.
  • the phase shift mask changes the phase of the laser light that passes through the microlenses having a relatively low resolution among the plurality of microlenses.
  • the resolution may be increased.
  • the projection lens irradiates a predetermined region of the amorphous silicon thin film deposited between the source electrode and the drain electrode included in the thin film transistor with a laser beam.
  • a silicon thin film may be formed.
  • a method of manufacturing a thin film transistor includes: a first step of generating a laser beam; and a laser beam in a predetermined region of an amorphous silicon thin film deposited on each of a plurality of thin film transistors on a glass substrate.
  • a third step of moving the glass substrate in a predetermined direction In the second step, the projection mask pattern including a plurality of the masks in which any one of the plurality of transmittances is set. Then, the laser beam is irradiated.
  • the laser light is irradiated through the projection mask pattern in which the masks having different transmittances are randomly arranged. May be a feature.
  • the method of manufacturing a thin film transistor according to an embodiment of the present invention is performed through the projection mask pattern including the mask in which any one of the transmittances included in a predetermined range is set in the second step. Then, the laser light may be irradiated.
  • a laser irradiation apparatus and a thin film transistor manufacturing method capable of suppressing variations in characteristics of a plurality of thin film transistors included in a glass substrate.
  • FIG. 1 is a diagram illustrating a configuration example of a laser irradiation device 10.
  • FIG. 3 is a diagram illustrating a configuration example of a microlens array 13.
  • FIG. It is a schematic diagram which shows the example of the thin-film transistor 20 by which the predetermined area
  • It is a schematic diagram which shows the example of the glass substrate 30 which the laser irradiation apparatus 10 irradiates with the laser beam 14.
  • FIG. It is a schematic diagram which shows the other example of the glass substrate 30 to which the laser irradiation apparatus 10 irradiates the laser beam 14.
  • FIG. FIG. 4 is a schematic diagram showing a configuration example of a projection mask pattern 15 provided on a microlens array 13.
  • FIG. 1 is a diagram illustrating a configuration example of a laser irradiation apparatus 10 according to the first embodiment of the present invention.
  • the laser irradiation apparatus 10 performs annealing by irradiating only a channel region formation scheduled region with laser light, for example.
  • This is an apparatus for polycrystallizing a channel region formation planned region.
  • the laser irradiation device 10 is used, for example, when forming a thin film transistor of a pixel such as a peripheral circuit of a liquid crystal display device.
  • a gate electrode made of a metal film such as Al is formed on the glass substrate 30 by sputtering.
  • a gate insulating film made of a SiN film is formed on the entire surface of the glass substrate 30 by a low temperature plasma CVD method.
  • an amorphous silicon thin film 21 is formed on the gate insulating film by, for example, plasma CVD.
  • the laser irradiation apparatus 10 illustrated in FIG. 1 irradiates a predetermined region on the gate electrode of the amorphous silicon thin film 21 with the laser beam 14 and anneals to crystallize the predetermined region into polysilicon.
  • the beam system of the laser light emitted from the laser light source 11 is expanded by the coupling optical system 12, and the luminance distribution is made uniform.
  • the laser light source 11 is, for example, an excimer laser that emits laser light having a wavelength of 308 nm or 248 nm at a predetermined repetition period.
  • the laser beam is separated into a plurality of laser beams 14 by a plurality of openings (transmission regions) of a projection mask pattern 15 (not shown) provided on the microlens array 13, and a predetermined region of the amorphous silicon thin film 21 is obtained. Is irradiated.
  • the microlens array 13 is provided with a projection mask pattern 15, and the projection mask pattern 15 irradiates a predetermined region with laser light 14.
  • a predetermined region of the amorphous silicon thin film 21 is instantaneously heated and melted, and a part of the amorphous silicon thin film 21 becomes the polysilicon thin film 22.
  • the polysilicon thin film 22 has a higher electron mobility than the amorphous silicon thin film 21 and is used in the thin film transistor 20 in a channel region that electrically connects the source 23 and the drain 24.
  • FIG. 1 an example using the microlens array 13 is shown, but the microlens array 13 is not necessarily used, and the laser light 14 may be irradiated using one projection lens. .
  • the polysilicon thin film 22 is formed using the microlens array 13 will be described as an example.
  • FIG. 2 is a diagram showing a configuration example of the microlens array 13 used for annealing.
  • 20 microlenses 17 are arranged in one column (or one row) in the scanning direction.
  • the laser irradiation apparatus 1 irradiates one thin film transistor 20 with the laser beam 14 by using at least a part of the 20 microlenses 17 included in one column (or one row) of the microlens array 13.
  • the number of microlenses 17 in one row (or one row) included in the microlens array 13 is not limited to 20 and may be any number.
  • the microlens array 13 includes 20 microlenses 17 in one column (or one row), but includes, for example, 83 microlenses in one row (or one column). It is needless to say that 83 is an example, and any number is possible.
  • FIG. 3 is a schematic diagram showing an example of the thin film transistor 20 in which a predetermined region is annealed.
  • the thin film transistor 20 is formed by first forming a polysilicon thin film 22 and then forming a source 23 and a drain 24 at both ends of the formed polysilicon thin film 22.
  • a polysilicon thin film 22 is formed between a source 23 and a drain 24.
  • the laser irradiation apparatus 10 irradiates the thin film transistor 20 with the laser light 14 using, for example, 20 microlenses 17 included in one row (or one row) of the microlens array 13 illustrated in FIG. That is, the laser irradiation apparatus 10 irradiates the polysilicon thin film 22 with 20 shots of laser light 14.
  • a predetermined region of the amorphous silicon thin film 21 is instantaneously heated and melted to become a polysilicon thin film 22.
  • the polysilicon thin film 22 may vary in its electron mobility. This is because the electron mobility of the polysilicon thin film 22 depends on the energy density of the laser beam 14 last irradiated on the polysilicon thin film 22, that is, the energy density of the last shot, as described above.
  • the laser irradiation apparatus 10 irradiates the amorphous silicon thin film 21 with the laser beam 14.
  • the laser irradiation apparatus 10 irradiates the laser beam 14 at a predetermined cycle, moves the glass substrate 30 during a time when the laser beam 14 is not irradiated, and the laser beam 14 is applied to the next amorphous silicon thin film 21. Let it be irradiated.
  • the amorphous silicon thin film 21 is arranged on the glass substrate 30 at a predetermined interval “H” with respect to the moving direction.
  • the laser irradiation apparatus 10 irradiates the part of the amorphous silicon thin film 21 arrange
  • the laser irradiation apparatus 10 irradiates the same laser beam 14 to the plurality of amorphous silicon thin films 21 on the glass substrate using the microlens array 13.
  • the laser irradiation apparatus 10 irradiates, for example, the same laser light 14 to a plurality of amorphous silicon thin films 21 included in the region A shown in FIG.
  • the laser irradiation apparatus 10 irradiates the same laser beam 14 also to the plurality of amorphous silicon thin films 21 included in the region B shown in FIG.
  • the laser irradiation apparatus 10 irradiates the laser beam 14 using each of the 20 microlenses 17 included in one row (or one row) of the microlens array 13 shown in FIG. 2 in order to perform annealing. It is possible to do.
  • the plurality of amorphous silicon thin films 21 in the region A in FIG. 4 are first irradiated with the laser beam 14 using the first microlens 17a included in the microlens array 13 shown in FIG. Thereafter, the glass substrate 30 is moved by a predetermined interval “H”. While the glass substrate 30 is moving, the laser irradiation apparatus 10 stops the irradiation of the laser light 14. Then, after the glass substrate 30 has moved by “H”, the plurality of amorphous silicon thin films 21 in the region A are subjected to laser light 14 using the second microlens 17b included in the microlens array 13 shown in FIG. Irradiated. The laser irradiation apparatus 10 may irradiate the glass substrate 30 once stopped after the glass substrate 30 has moved by “H”, or may continue to move the glass substrate 30. May be irradiated with laser light 14.
  • the irradiation head that is, the laser light source 11, the coupling optical system 12, the microlens array 13, and the projection mask 150
  • the irradiation head 10 may move with respect to the glass substrate 30.
  • the laser irradiation apparatus 10 repeatedly executes this, and finally, the microlenses 17t (that is, the last microlens 17) of the microlens array 13 shown in FIG. ) Is used to irradiate the laser beam 14.
  • the plurality of amorphous silicon thin films 21 in the region A are irradiated with the laser beam 14 using each of the 20 microlenses 17 included in one row (or one row) of the microlens array 13 shown in FIG. Will be.
  • the laser irradiation apparatus 10 applies 20 microlenses included in one row (or one row) of the microlens array 13 shown in FIG. 2 to the plurality of amorphous silicon thin films 21 in the region B of FIG.
  • Each of 17 is irradiated with laser light 14.
  • the timing of irradiation with the laser light 14 is delayed by one irradiation.
  • the plurality of amorphous silicon thin films 21 in the region A are irradiated with the laser light 14 using the second microlens 17b
  • the plurality of amorphous silicon thin films 21 in the region B use the first microlens 17a.
  • Laser light 14 is irradiated.
  • the amorphous silicon thin films 21 in the region A are irradiated with the laser light 14 using the twentieth micro lens 17t (that is, the last micro lens 17)
  • the amorphous silicon thin films 21 in the region B are Laser light is irradiated using the previous nineteenth microlens 17s.
  • the plurality of amorphous silicon thin films 21 in the region B are irradiated with laser light using the twentieth microlens 17t (that is, the last microlens 17) at the timing of the next laser light irradiation. Become.
  • the last irradiated laser beam 14 differs between the plurality of amorphous silicon thin films 21 included in the region A shown in FIG. 4 and the plurality of amorphous silicon thin films 21 included in the region B.
  • the stability between pulses is about 0.5%. That is, the laser irradiation apparatus 10 causes a variation of about 0.5% in the energy density of the laser light 14 for each shot. For this reason, the electron mobility of the polysilicon thin film 22 formed by the laser irradiation apparatus 10 may also vary.
  • the electron mobility of the polysilicon thin film 22 formed by irradiating the laser beam 14 is equal to the energy density of the laser beam 14 last irradiated to the polysilicon thin film 22, that is, the energy density of the last shot. Dependent.
  • the electron movement of the formed polysilicon thin film 22 is different.
  • the degrees will be different from each other.
  • the electron mobility of the formed polysilicon thin film 22 is the same in the region A. It becomes. This is the same for the plurality of amorphous silicon thin films 21 included in the region B. In the region B, the electron mobility of the formed polysilicon thin film 22 is the same. That is, on the glass substrate, the electron mobility differs between regions adjacent to each other, but the plurality of amorphous silicon thin films 21 in the same region have the same electron mobility.
  • the transmittance of the laser light 14 applied to each of the amorphous silicon thin films 21 included in the substrate 30 is changed using, for example, the projection mask pattern 15.
  • the transmittance of the laser light 14 applied to the amorphous silicon thin film 21 is varied. Note that the transmittance is a ratio at which the laser light passes through the mask 150.
  • the amorphous silicon thin film 21 is irradiated with the laser light 14 having different transmittances, and the same is applied to all the amorphous silicon thin films 21.
  • the situation where the laser beam 14 is irradiated is eliminated.
  • adjacent amorphous silicon thin films 21 are irradiated with laser beams 14 having different transmittances.
  • the transmittance of the laser light 14 finally irradiated to the adjacent amorphous silicon thin film 21 is different.
  • the adjacent amorphous silicon thin films 21 are not necessarily irradiated with laser beams 14 having different transmittances.
  • masks having the same transmittance may be adjacent to each other.
  • the adjacent amorphous silicon thin film 21 is irradiated with the laser beam 14 having the same transmittance.
  • the masks 150 having different transmittances are randomly arranged in the projection mask pattern 15, so that the adjacent amorphous silicon thin films 21 have different transmittance laser beams 14. The possibility of irradiation is increased.
  • the electron mobility of the adjacent polysilicon thin film 22 is different from each other.
  • the characteristics of the adjacent thin film transistors 20 are also different in the same region (for example, in the region A).
  • the characteristics of the thin film transistors 20 adjacent to each other in the entire glass substrate 30 are different from each other, and a display difference (for example, a difference in color shading) due to the difference in the characteristics does not appear “linearly”. . Therefore, the display unevenness on the liquid crystal screen does not become “streak”, and the display unevenness can be prevented from being emphasized.
  • FIG. 5 is a diagram for explaining the presence or absence of display unevenness due to the adjacent thin film transistor 20 in the glass substrate 30.
  • the characteristics of the plurality of thin film transistors 20 in the region A are the same as the characteristic A
  • the characteristics of the plurality of thin film transistors 20 in the region B are the same as the characteristic B.
  • the thin film transistor 20 with the characteristic A and the thin film transistor 20 with the characteristic B collide at the “linear” boundary between the region A and the region B, and the difference in display due to the difference in the characteristic is “linear”. Will appear. For this reason, the display unevenness on the liquid crystal screen is emphasized as “streaks”.
  • adjacent thin film transistors 20 in the same region have different characteristics when irradiated with laser beams 14 having different transmittances. Differences in display due to differences are dispersed and do not appear “linear”. Therefore, display unevenness in the liquid crystal screen can be reduced.
  • the projection mask pattern 15 provided on the microlens array 13 has a plurality of masks set with a transmittance that is a ratio of transmitting laser light. 150.
  • Each of the plurality of masks 150 included in the projection mask pattern 15 is set to one of a plurality of transmittances.
  • the plurality of transmittances are, for example, any one of 10 transmittances of 90%, 91%, 92%... 100%.
  • the plurality of transmittances are merely examples, and any transmittance may be used.
  • the plurality of transmittances are not limited to ten, and there may be any number of transmittances.
  • the plurality of transmittances may be in any range such as a range of 70% to 100%.
  • the plurality of transmittance ranges may be a predetermined range. For example, the predetermined range may be set in advance between 90% and 100%.
  • masks 150 having different transmittances are randomly arranged.
  • FIG. 6 is a diagram showing a configuration example of the mask 150 of the projection mask pattern 15 in the first embodiment of the present invention.
  • each of the projection mask patterns 15 having different transmittances is not necessarily arranged at random, and may be arranged based on a predetermined condition.
  • the numerical value described on the projection mask pattern is the transmittance of the laser beam 14 in the projection mask pattern.
  • each of the projection mask patterns is set to a transmittance of 90% to 100%, for example.
  • the transmittance of the projection mask pattern does not need to be in the range of 90 to 100%, and may be any transmittance.
  • the projection mask patterns 15 adjacent to each other may be arranged so as to have different transmittances. Note that the projection mask patterns 15 adjacent to each other are not necessarily arranged so as to have different transmittances.
  • the masks 150 adjacent to each other are different from each other in one row orthogonal to the movement direction (predetermined direction) of the microlens array 13.
  • 150 may be arranged.
  • the laser irradiation apparatus 10 uses at least adjacent microlenses among the 20 microlenses 17 included in one row (or one row) of the microlens array 13 shown in FIG.
  • the transmittance of the laser light 14 irradiated from 17 is different.
  • the laser irradiation apparatus 10 has different amorphous silicon thin films by disposing projection mask patterns having different transmittances on each of the 20 microlenses 17 included in one row (or one row) of the microlens array 13. 21 can be irradiated with laser beams 14 having different transmittances.
  • the width of the transmission region 16 in each projection mask pattern 15 is, for example, 4 ⁇ m.
  • the opening provided in the projection mask pattern 15 shown in FIG. 6 has, for example, a rectangular shape, a long side of 20 ⁇ m, and a short side of 10 ⁇ m.
  • the size of the opening of the projection mask pattern 15 is merely an example, and may be any size as long as it corresponds to the size of the microlens 17.
  • the transmission region 16 of the projection mask pattern 15 is provided so as to be orthogonal to the moving direction (scanning direction) of the glass substrate 30.
  • the transmission region 16 of the projection mask pattern 15 is not necessarily orthogonal to the movement direction (scan direction) of the glass substrate 30, and is provided in parallel (substantially parallel) to the movement direction (scan direction). It may be.
  • the laser irradiation apparatus 10 uses the projection mask pattern 15 shown in FIG. 6 to irradiate the glass substrate 30 illustrated in FIG. 2 with the laser light 14, and as a result, in the same region (for example, in the region A) shown in FIG.
  • adjacent amorphous silicon thin films 21 are irradiated with laser beams 14 having different transmittances. Therefore, for a plurality of amorphous silicon thin films 21 included in the same region (for example, in region A), for example, the laser beam 14 finally irradiated to the adjacent amorphous silicon thin film 21 also has different transmittances. .
  • the electron mobility of the adjacent polysilicon thin films 22 is different from each other.
  • the thin film transistors 20 in the adjacent regions have different characteristics. Become.
  • adjacent thin film transistors 20 have different characteristics in the entire glass substrate 30. For this reason, display differences due to differences in the characteristics of the thin film transistor 20 (for example, differences in color shading) are dispersed and do not appear linearly. Therefore, the display unevenness on the liquid crystal screen does not become “streak”, and the display unevenness can be prevented from being emphasized.
  • the glass substrate 30 moves a predetermined distance each time the laser light 14 is irradiated by one microlens 17. As illustrated in FIG. 2, the predetermined distance is a distance “H” between the plurality of thin film transistors 20 on the glass substrate 30.
  • the laser irradiation apparatus 10 stops the irradiation of the laser beam 14 while moving the glass substrate 30 by the predetermined distance.
  • the laser irradiation apparatus 10 irradiates the laser beam 14 using the microlens 17 included in the microlens array 13.
  • the laser light 14 is irradiated to one amorphous silicon thin film 21 by five microlenses 17.
  • the source 23 and the drain 24 are formed on the thin film transistor 20 in another process.
  • the transmittances of the plurality of masks 150 included in the projection mask pattern 15 are arranged so that the masks 150 having different transmittances are randomly arranged in the projection mask pattern 15.
  • adjacent amorphous silicon thin films 21 are irradiated with laser beams 14 having different transmittances. Therefore, the electron mobility of the adjacent polysilicon thin film 22 is different from each other. That is, the characteristics of the thin film transistors 20 adjacent to each other in the entire glass substrate 30 are different from each other, and a display difference (for example, a difference in color shading) due to the difference in the characteristics does not appear “linearly”. . Therefore, the display unevenness on the liquid crystal screen does not become “streak”, and the display unevenness can be prevented from being emphasized.
  • the second embodiment of the present invention is an embodiment in which the transmittance of each projection mask pattern 15 is changed (adjusted) based on the characteristics of each of the plurality of microlenses 17 included in the microlens array 13.
  • the characteristics of the plurality of microlenses 17 included in the microlens array 13 are different from each other.
  • the characteristics of the microlens 17 disposed near the center of the microlens array 13 and the microlens 17 disposed near the periphery may be biased. Therefore, the laser light 14 emitted from each of the plurality of macro lenses 17 has different characteristics (for example, energy density) due to the different characteristics of the micro lens 17. Therefore, even if the laser irradiation apparatus 10 uses the plurality of microlenses 17 included in the microlens array 13 and simultaneously irradiates the laser light 14, the characteristics of the plurality of microlenses 17 are different from each other. Each characteristic (energy density, etc.) of the laser beam 14 will be different.
  • the transmittance of each of the projection mask patterns 15 is set (adjusted) based on the characteristics of each of the plurality of microlenses 17 included in the microlens array 13. As a result, it is possible to reduce the difference in characteristics of the laser light 14 irradiated using each of the plurality of microlenses 17.
  • each of the plurality of microlenses 17 included in the microlens array 13 shown in FIG. 2 differ within a range of 5%, for example. Note that 5% is merely an example, and the characteristics of the plurality of microlens arrays 13 may be different in a range above or below this.
  • the difference in the characteristics of the microlenses 17 can be grasped in advance by, for example, irradiating each of the microlenses 17 with the laser light 14 and measuring the characteristics (for example, energy density).
  • the transmittance of each projection mask pattern 15 is set (adjusted) based on the characteristics of each microlens 17 grasped in advance.
  • the transmittance of the projection mask pattern 15 disposed on the one microlens 17 is set low.
  • the transmittance of the projection mask pattern 15 disposed on the other microlens 17 is set high. In this way, by setting (adjusting) the transmittance of the projection mask pattern 15 disposed on the microlens 17 according to the characteristics of the microlens 17, the laser light 14 caused by the difference in the characteristics of the microlens 17 can be obtained. Differences in characteristics can be reduced.
  • FIG. 7 shows a projection mask pattern 15 including a mask 150 in which the transmittance is set (adjusted) based on the characteristics of the microlens 17.
  • the example of FIG. 7 shows the projection mask pattern 15 when the characteristics of the microlens 17 arranged near the center of the microlens array 13 and the microlens 17 arranged near the periphery are biased. It is an example.
  • the transmittance of the mask 150 included in the projection mask pattern 15 is set (adjusted) based on the characteristics of the microlens.
  • the laser irradiation apparatus 10 irradiates the laser light 14 using the projection mask pattern illustrated in FIG. 7, thereby improving the characteristics of the laser light 14 caused by the characteristics of the microlenses 17 included in the microlens array 13. The difference is reduced, and the laser beam 14 having substantially the same characteristics can be irradiated.
  • the transmittance of each of the plurality of masks 150 included in the projection mask pattern 15 is based on the characteristics of each of the plurality of microlenses 17 included in the microlens array 13. By changing (adjusting) the difference in characteristics of the laser light 14 due to the difference in characteristics of the microlens 17 can be reduced.
  • the transmittance of the plurality of masks 150 included in the projection mask pattern 15 is changed (adjusted) based on the characteristics of each of the plurality of microlenses 17 included in the microlens array 13. This is an embodiment in which the transmittance of the mask 150 is further changed in order to vary the transmittance of the laser light 14 later.
  • the transmittance of the plurality of masks 150 included in the projection mask pattern 15 is changed (adjusted) based on the characteristics of each of the plurality of microlenses 17 included in the microlens array 13.
  • the difference in the characteristics of the laser light 14 due to the characteristics of each of the plurality of microlenses 17 included in the microlens array 13 is reduced.
  • the transmittance of the plurality of masks 150 included in the projection mask pattern 15 is changed so that the masks 150 having different transmittances are randomly arranged in the projection mask pattern 15. .
  • adjacent amorphous silicon thin films 21 are irradiated with laser beams 14 having different transmittances. Therefore, the electron mobility of the adjacent polysilicon thin film 22 is different from each other.
  • the characteristics of the thin film transistors 20 adjacent to each other in the entire glass substrate 30 are different from each other, and a display difference (for example, a difference in color shading) due to the difference in the characteristics may appear “linearly”. Disappear. Therefore, the display unevenness on the liquid crystal screen does not become “streak”, and the display unevenness can be prevented from being emphasized.
  • the transmittance of the mask 150 included in the projection mask pattern 15 is set (adjusted) based on the characteristics of the microlens 17.
  • the transmittance of each projection mask pattern 15 is set (adjusted) based on the characteristics of each microlens 17 grasped in advance. For example, when the energy density of the laser light 14 transmitted through one microlens 17 is high, the transmittance of the projection mask pattern 15 arranged on the one microlens 17 is set low. On the other hand, when the energy density of the laser light 14 transmitted through the other microlens 17 is low, the transmittance of the projection mask pattern 15 disposed on the other microlens 17 is set high.
  • the transmittance of the mask 150 is dispersed so that the transmittance is dispersed throughout the projection mask pattern 15 with the set transmittance as a reference. Change further.
  • the mask 150 whose transmittance is set to 90% based on the characteristics of the microlens 17 changes the transmittance assigned to the mask 150 so that the transmittance varies throughout the projection mask pattern 15.
  • the 90% transmittance is further changed in proportion. For example, if the transmittance change ratio assigned to vary the transmittance across the projection mask pattern 15 is 95%, the mask 150 will change the transmittance from 90% to a further 95%. , 85.5% transmittance.
  • the transmittance is changed with the transmittance set based on the characteristics of the microlens 17 as a reference, in order to further vary the transmittance in the entire projection mask pattern 15. .
  • laser light having different transmittances with respect to the adjacent amorphous silicon thin film 21 while reducing the difference in the characteristics of the laser light 14 due to the characteristics of each of the plurality of microlenses 17 included in the microlens array 13. 14 can be irradiated.
  • the electron mobility of the adjacent polysilicon thin films 22 different from each other while reducing the difference in the characteristics of the laser light 14 generated based on the characteristics of the microlens 17.
  • the characteristics of the adjacent thin film transistors 20 are different from each other, and a display difference (for example, a difference in color density) due to the difference in the characteristics does not appear “linearly”. Therefore, the display unevenness on the liquid crystal screen does not become “streak”, and the display unevenness can be prevented from being emphasized.
  • the fourth embodiment of the present invention is an embodiment in which laser annealing is performed using a single projection lens 18 instead of the microlens array 13.
  • FIG. 8 is a diagram illustrating a configuration example of the laser irradiation apparatus 10 according to the fourth embodiment of the present invention.
  • the laser irradiation apparatus 10 according to the third embodiment of the present invention includes a laser light source 11, a coupling optical system 12, a projection mask pattern 15, and a projection lens 18.
  • the laser light source 11 and the coupling optical system 12 have the same configuration as the laser light source 11 and the coupling optical system 12 in the first embodiment of the present invention shown in FIG. Omitted.
  • the projection mask pattern has the same configuration as the projection mask pattern in the first embodiment of the present invention, detailed description is omitted.
  • Laser light passes through an opening (transmission region) of a projection mask pattern 15 (not shown) illustrated in FIG. 6 and is irradiated onto a predetermined region of the amorphous silicon thin film 21 by the projection lens 18.
  • a predetermined region of the amorphous silicon thin film 21 is instantaneously heated and melted, and a part of the amorphous silicon thin film 21 becomes the polysilicon thin film 22.
  • the laser irradiation apparatus 10 irradiates the laser beam 14 at a predetermined cycle, moves the glass substrate 30 during the time when the laser beam 14 is not irradiated, and the next amorphous silicon thin film 21.
  • the laser beam 14 is irradiated to the point.
  • the amorphous silicon thin film 21 is arranged on the glass substrate 30 at a predetermined interval “H” in the moving direction.
  • the laser irradiation apparatus 10 irradiates the part of the amorphous silicon thin film 21 arrange
  • the laser beam 14 is converted by the magnification of the optical system of the projection lens 18. That is, the pattern of the projection mask pattern 15 is converted by the magnification of the optical system of the projection lens 18, and a predetermined region on the glass substrate 30 is laser annealed.
  • the mask pattern of the projection mask pattern 15 is converted by the magnification of the optical system of the projection lens 18, and a predetermined region on the glass substrate 30 is laser-annealed.
  • a predetermined region on the glass substrate 30 is laser-annealed.
  • the magnification of the optical system of the projection lens 18 is not limited to about twice, and may be any magnification.
  • a predetermined region on the glass substrate 30 is laser-annealed according to the magnification of the optical system of the projection lens 18. For example, if the magnification of the optical system of the projection lens 18 is 4, the mask pattern of the projection mask pattern 15 is multiplied by about 1/4 (0.25), and a predetermined region of the glass substrate 30 is laser annealed. .
  • the reduced image of the projection mask pattern 15 irradiated on the glass substrate 30 is a pattern rotated 180 degrees around the optical axis of the lens of the projection lens 18.
  • the projection lens 18 forms an erect image
  • the reduced image of the projection mask pattern 15 irradiated on the glass substrate 30 is the projection mask pattern 15 as it is.
  • the transmittance of the mask 150 in the central portion of the projection mask pattern 15 is increased while the transmission of the mask 150 in the peripheral portion is increased.
  • the adjacent amorphous silicon thin films 21 have different transmittances. Irradiation with the laser beam 14 is possible. As a result, the characteristics of the thin film transistors 20 adjacent to each other in the entire glass substrate 30 are different from each other, and a display difference (for example, a difference in color shading) due to the difference in the characteristics may appear “linearly”. Disappear. Therefore, the display unevenness on the liquid crystal screen does not become “streak”, and the display unevenness can be prevented from being emphasized.
  • a display difference for example, a difference in color shading
  • a phase shift mask is applied to a location corresponding to a micro lens having a relatively low resolution based on the resolution of each of the plurality of micro lenses 17 included in the micro lens array 13. This is an embodiment in which the resolving power of the micro lens 17 having a relatively low resolving power is increased.
  • Each of the plurality of microlenses 17 included in the microlens array 13 may have different resolving power as one of its characteristics. That is, the microlens array 13 may include a microlens 17 having a relatively low resolution. If the resolving power of the microlens 17 is low, the light transmitted through the adjacent mask may not be correctly resolved and may not be annealed according to the pattern of the projection mask pattern 15. As a result, the microcrystal may disturb the channel region of the thin film transistor 20 and adversely affect the display of the liquid crystal screen.
  • FIG. 9 is a diagram illustrating a configuration example of the microlens 17 included in the microlens array 13.
  • the microlens 17 shown in gray has a relatively low resolving power compared to other microlenses 17 (microlenses 17 shown in white). Therefore, when the laser irradiation apparatus 10 irradiates the laser beam 14 using the microlens array 13 illustrated in FIG. 9, the channel region of the thin film transistor 20 may not be appropriately annealed according to the pattern of the projection mask pattern 15. There is.
  • a phase shift mask is used to increase the resolving power of the microlenses 17 having a relatively low resolving power among the plurality of microlenses 17 included in the microlens array 13.
  • a phase shift mask is applied to the portion of the micro lens 17 having a relatively low resolving power, and the resolving power of the micro lens 17 having a relatively low resolving power is increased.
  • the resolving power of the microlens 17 having a relatively low resolving power is increased, while the phase shift mask is not applied to the resolving power of the other microlenses 17, so that the resolving power of the other microlenses 17 is increased more than necessary. There is no end.
  • the difference in resolving power of each of the plurality of microlenses 17 can be reduced in the entire microlens 13, and the amorphous silicon annealing of the thin film transistor 20 can be appropriately executed (that is, the annealing is executed according to the mask pattern). Can adversely affect the display on the liquid crystal screen.
  • the part of the plurality of microlenses 17 included in the microlens array 13 illustrated in FIG. 2 may have a resolution that is, for example, 10% lower than that of the other microlenses 17. Note that “10%” is merely an example, and the resolving power of each of the plurality of microlens arrays 13 may be different within this range or less.
  • the difference in resolving power of the microlenses 17 can be grasped in advance by, for example, irradiating each of the microlenses 17 with the laser light 14 and measuring the resolving power.
  • a phase shift mask is applied to the microlenses 17 having a resolution lower than a predetermined resolution based on the resolving power of each microlens 17 grasped in advance.
  • the predetermined resolving power is, for example, a resolving power that is 10% or more lower than the average value of the resolving power of the plurality of microlenses 17. Note that 10% is merely an example, and it is needless to say that any value may be used.
  • the predetermined resolving power may be a predetermined resolving power (fixed value).
  • the predetermined resolving power (fixed value) is a resolving power at which the amorphous silicon of the thin film transistor 20 can be appropriately annealed.
  • the micro lens 17 to which the phase shift mask is applied may be determined based on a difference from the micro lens 17 having the highest resolution among the plurality of micro lenses 17. That is, it is determined that the phase shift mask is applied to the microlens 17 whose resolution and difference of the highest microlens 17 are equal to or greater than a predetermined value.
  • microlens 17 to which the phase shift mask is applied may be determined in any way, and if the microlens 17 that may not be annealed properly because the light transmitted through the adjacent mask is not correctly resolved can be extracted. Any method may be used.
  • FIG. 10 is a diagram illustrating a configuration example of the laser irradiation apparatus 10 according to the fifth embodiment.
  • the laser irradiation apparatus 10 in the fifth embodiment includes a phase shift mask 19 on the microlens array 13.
  • a phase shift mask (Phase-Shifting Mask: PSM) 19 is a mask capable of controlling the phase and transmittance of the laser light 14 and can improve the resolution and the depth of focus of the microlens 17.
  • the phase shift mask 19 is, for example, a halftone phase shift mask, which is a mask capable of changing the phase of the laser light 14 transmitted through the microlens 17.
  • the halftone phase shift mask for example, by providing a translucent light-shielding film (phase shifter) on the microlens 17, the propagation speed of the laser light 14 passing through the light-shielding film is delayed, and accordingly, The phase of the laser beam 14 is changed. Then, the laser beam 14 whose phase has changed through the translucent light-shielding film interferes with the laser light 14 that has not passed through the semi-transparent light-shielding film and whose phase has not changed, thereby causing the laser light to interfere.
  • the resolution of 14 can be improved.
  • the phase shift mask 19 in the fifth embodiment uses a laser beam in the amorphous silicon region of the thin film transistor 20 for each of the microlenses 17 included in the microlens array 13 like the projection mask pattern 15 in the above-described embodiment.
  • the pattern for irradiating 14 is provided.
  • the phase shift mask 19 has a configuration in which the resolution can be improved by, for example, a phase shifter with respect to the microlens 17 having a low resolution.
  • the phase shift mask 19 is applied to the microlens 17 having a relatively low resolution among the microlenses 17 included in the microlens array 13.
  • the phase shift mask 19 is applied to the microlenses 17 (for example, the microlenses 17 in the columns 1 and 10 and the columns 6 and 7) shown in FIG.
  • the resolving power of the micro lens 17 having a relatively low resolving power can be improved, and the channel region of the thin film transistor 20 can be appropriately annealed according to the pattern of the phase shift mask 19.
  • the phase shift mask 19 is not applied to the other microlenses 17 (microlenses 17 whose resolving power is not relatively low).
  • the resolving power of the microlens 17 having a relatively low resolving power is improved, while the resolving power of the other microlenses 17 remains unchanged, and the resolving power is not improved more than necessary. Therefore, as a result, the difference in the resolving power of each of the plurality of microlenses 17 in the entire microlens 13 can be reduced.
  • the fifth embodiment of the present invention can reduce the difference in resolution between each of the plurality of microlenses 17 in the entire microlens 13, and can appropriately perform the annealing of amorphous silicon in the thin film transistor 20 ( That is, annealing can be performed according to the mask pattern), and adverse effects on the display of the liquid crystal screen can be suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Recrystallisation Techniques (AREA)
  • Thin Film Transistor (AREA)

Abstract

本発明の一実施形態におけるレーザ照射装置は、レーザ光を発生する光源と、ガラス基板上の複数の薄膜トランジスタの各々に被着されたアモルファスシリコン薄膜の所定の領域に、当該レーザ光を照射する投影レンズと、当該投影レンズ上に設けられ、当該レーザ光が透過する割合である透過率が設定された複数のマスクを含む投影マスクパターンと、を備え、当該投影レンズは、所定の方向に移動する当該ガラス基板上の当該複数の薄膜トランジスタに対して、当該投影マスクパターンに含まれる当該複数のマスクの各々を介して当該レーザ光を照射し、当該投影マスクパターンに含まれる当該複数のマスクの各々は、複数の当該透過率のいずれかが設定される、レーザ照射装置。

Description

レーザ照射装置および薄膜トランジスタの製造方法
 本発明は、薄膜トランジスタの形成に関するものであり、特に、薄膜トランジスタ上のアモルファスシリコン薄膜にレーザ光を照射して、ポリシリコン薄膜を形成するためのレーザ照射装置および薄膜トランジスタの製造方法に関する。
 逆スタガ構造の薄膜トランジスタとして、アモルファスシリコン薄膜をチャネル領域に使用したものが存在する。ただ、アモルファスシリコン薄膜は電子移動度が小さいため、当該アモルファスシリコン薄膜をチャネル領域に使用すると、薄膜トランジスタにおける電荷の移動度が小さくなるという難点があった。
 そこで、アモルファスシリコン薄膜の所定の領域をレーザ光により瞬間的に加熱することで多結晶化し、電子移動度の高いポリシリコン薄膜を形成して、当該ポリシリコン薄膜をチャネル領域に使用する技術が存在する。
 例えば、特許文献1には、チャネル領域にアモルファスシリコン薄膜形成し、その後、このアモルファスシリコン薄膜にエキシマレーザ等のレーザ光を照射してレーザアニールすることにより、短時間での溶融凝固によって、ポリシリコン薄膜に結晶化させる処理を行うことが開示されている。特許文献1には、当該処理を行うことにより、薄膜トランジスタのソースとドレイン間のチャネル領域を、電子移動度の高いポリシリコン薄膜とすることが可能となり、トランジスタ動作の高速化が可能になる旨が記載されている。
特開2016-100537号公報
 特許文献1に記載の薄膜トランジスタでは、ソースとドレイン間のチャネル領域が、一か所(一本)のポリシリコン薄膜により形成されている。そのため、薄膜トランジスタの特性は、一か所(一本)のポリシリコン薄膜に依存することになる。
 ここで、エキシマレーザ等のレーザ光のエネルギ密度は、その照射(ショット)ごとにばらつきが生じるため、当該レーザ光を用いて形成されるポリシリコン薄膜の電子移動度にもばらつきが生じる。そのため、当該ポリシリコン薄膜を用いて形成される薄膜トランジスタの特性も、レーザ光のエネルギ密度のばらつきに依存してしまう。
 その結果、ガラス基板に含まれる複数の薄膜トランジスタの特性には、ばらつきが生じてしまう可能性がある。
 本発明の目的は、かかる問題点に鑑みてなされたものであって、ガラス基板に含まれる複数の薄膜トランジスタの特性のばらつきを抑制可能なレーザ照射装置および薄膜トランジスタの製造方法を提供することである。
 本発明の一実施形態におけるレーザ照射装置は、レーザ光を発生する光源と、ガラス基板上の複数の薄膜トランジスタの各々に被着されたアモルファスシリコン薄膜の所定の領域に、当該レーザ光を照射する投影レンズと、当該投影レンズ上に設けられ、当該レーザ光が透過する割合である透過率が設定された複数のマスクを含む投影マスクパターンと、を備え、当該投影レンズは、所定の方向に移動する当該ガラス基板上の当該複数の薄膜トランジスタに対して、当該投影マスクパターンに含まれる当該複数のマスクの各々を介して当該レーザ光を照射し、当該投影マスクパターンに含まれる当該複数のマスクの各々は、複数の当該透過率のいずれかが設定される。
 本発明の一実施形態におけるレーザ照射装置は、当該投影マスクパターンにおいて、異なる当該透過率が設定された当該マスクがランダムに配置されることを特徴としてもよい。
 本発明の一実施形態におけるレーザ照射装置は、当該投影マスクパターンに含まれる当該複数のマスクの各々は、予め定められた所定の範囲内に含まれる当該透過率のいずれかが設定されることを特徴としてもよい。
 本発明の一実施形態におけるレーザ照射装置は、当該レーザ光を分離可能なマイクロレンズアレイに含まれる複数のマイクロレンズであり、当該投影マスクパターンに含まれる当該複数のマスクの各々は、当該複数のマイクロレンズの各々に対応することを特徴としてもよい。
 本発明の一実施形態におけるレーザ照射装置は、当該投影マスクパターンに含まれ、当該所定の方向に直交する一列において互いに隣接する当該マスクの各々は、互いに当該透過率が異なることを特徴としてもよい。
 本発明の一実施形態におけるレーザ照射装置は、当該投影マスクパターンに含まれる当該複数のマスクの各々は、互いに当該透過率が異なることを特徴としてもよい。
 本発明の一実施形態におけるレーザ照射装置は、当該投影マスクパターンは、当該マイクロレンズアレイに含まれる複数のマイクロレンズの各々の特性に基づいて、当該マイクロレンズの各々に対応する当該マスクの透過率が設定されることを特徴としてもよい。
 本発明の一実施形態におけるレーザ照射装置は、当該投影マスクパターンは、当該マイクロレンズを透過するレーザ光の位相を変化させることにより、当該マイクロレンズの解像度を高める位相シフトマスクであり、当該位相シフトマスクは、当該複数のマイクロレンズのうち、当該解像度に基づいて決定されたマイクロレンズを透過する当該レーザ光の位相を変化させ、当該マイクロレンズの解像度を高くすることを特徴としてもよい。
 本発明の一実施形態におけるレーザ照射装置は、当該位相シフトマスクは、当該複数のマイクロレンズのうち、相対的に解像度が低いマイクロレンズを透過する当該レーザ光の位相を変化させ、当該マイクロレンズの解像度を高くすることを特徴としてもよい。
 本発明の一実施形態におけるレーザ照射装置は、当該投影レンズは、薄膜トランジスタに含まれるソース電極とドレイン電極との間に被着されたアモルファスシリコン薄膜の所定の領域にレーザ光を照射して、ポリシリコン薄膜を形成することを特徴としてもよい。
 本発明の一実施形態における薄膜トランジスタの製造方法は、レーザ光を発生する第1のステップと、ガラス基板上の複数の薄膜トランジスタの各々に被着されたアモルファスシリコン薄膜の所定の領域に、当該レーザ光が透過する割合である透過率が設定された複数のマスクを含む投影マスクパターンが設けれた投影レンズを用いて、当該レーザ光を照射する第2のステップと、当該レーザ光が照射されるごとに、当該ガラス基板を所定の方向に移動する第3のステップと、を含み、第2のステップにおいて、複数の当該透過率のいずれかが設定された複数の当該マスクを含む当該投影マスクパターンを介して、当該レーザ光を照射する。
 本発明の一実施形態における薄膜トランジスタの製造方法は、第2のステップにおいて、異なる当該透過率が設定された当該マスクがランダムに配置された当該投影マスクパターンを介して、当該レーザ光を照射することを特徴としてもよい。
 本発明の一実施形態における薄膜トランジスタの製造方法は、第2のステップにおいて、予め定められた所定の範囲内に含まれる当該透過率のいずれかが設定された当該マスクを含む当該投影マスクパターンを介して、当該レーザ光を照射することを特徴としてもよい。
 本発明によれば、ガラス基板に含まれる複数の薄膜トランジスタの特性のばらつきを抑制可能な、レーザ照射装置および薄膜トランジスタの製造方法を提供することである。
レーザ照射装置10の構成例を示す図である。 マイクロレンズアレイ13の構成例を示す図である。 所定の領域がアニール化された薄膜トランジスタ20の例を示す模式図である。 レーザ照射装置10がレーザ光14を照射するガラス基板30の例を示す模式図である。 レーザ照射装置10がレーザ光14を照射するガラス基板30の他の例を示す模式図である。 マイクロレンズアレイ13に設けられた投影マスクパターン15の構成例を示す模式図である。 マイクロレンズアレイ13に設けられた投影マスクパターン15の他の構成例を示す模式図である。 レーザ照射装置10の他の構成例を示す図である。 マイクロレンズアレイ13の他の構成例を示す図である。 レーザ照射装置10の他の構成例を示す図である。
 以下、本発明の実施形態について、添付の図面を参照して具体的に説明する。
 (第1の実施形態)
 図1は、本発明の第1の実施形態におけるレーザ照射装置10の構成例を示す図である。
 本発明の第1の実施形態において、レーザ照射装置10は、薄膜トランジスタ(TFT)20のような半導体装置の製造工程において、例えば、チャネル領域形成予定領域のみにレーザ光を照射してアニールし、当該チャネル領域形成予定領域を多結晶化するための装置である。
 レーザ照射装置10は、例えば、液晶表示装置の周辺回路などの画素の薄膜トランジスタを形成する際に用いられる。このような薄膜トランジスタを形成する場合、まず、ガラス基板30上にAl等の金属膜からなるゲート電極を、スパッタによりパターン形成する。そして、低温プラズマCVD法により、ガラス基板30上の全面にSiN膜からなるゲート絶縁膜を形成する。その後、ゲート絶縁膜上に、例えば、プラズマCVD法によりアモルファスシリコン薄膜21を形成する。そして、図1に例示するレーザ照射装置10により、アモルファスシリコン薄膜21のゲート電極上の所定の領域にレーザ光14を照射してアニールし、当該所定の領域を多結晶化してポリシリコン化する。
 図1に示すように、レーザ照射装置10において、レーザ光源11から出射されたレーザ光は、カップリング光学系12によりビーム系が拡張され、輝度分布が均一化される。レーザ光源11は、例えば、波長が308nmや248nmなどのレーザ光を、所定の繰り返し周期で放射するエキシマレーザである。
 その後、レーザ光は、マイクロレンズアレイ13上に設けられた投影マスクパターン15(図示しない)の複数の開口(透過領域)により、複数のレーザ光14に分離され、アモルファスシリコン薄膜21の所定の領域に照射される。マイクロレンズアレイ13には、投影マスクパターン15が設けられ、当該投影マスクパターン15によって所定の領域にレーザ光14が照射される。そして、アモルファスシリコン薄膜21の所定の領域が瞬間加熱されて溶融し、アモルファスシリコン薄膜21の一部がポリシリコン薄膜22となる。
 ポリシリコン薄膜22は、アモルファスシリコン薄膜21に比べて電子移動度が高く、薄膜トランジスタ20において、ソース23とドレイン24とを電気的に接続させるチャネル領域に用いられる。なお、図1の例では、マイクロレンズアレイ13を用いた例を示しているが、必ずしもマイクロレンズアレイ13を用いる必要はなく、1個の投影レンズを用いてレーザ光14を照射してもよい。なお、実施形態1では、マイクロレンズアレイ13を用いて、ポリシリコン薄膜22を形成する場合を例にして説明する。
 図2は、アニール化に用いるマイクロレンズアレイ13の構成例を示す図である。図2に示すように、マイクロレンズアレイ13において、スキャン方向の1列(又は1行)には、20個のマイクロレンズ17が配置される。レーザ照射装置1は、1つの薄膜トランジスタ20に対して、マイクロレンズアレイ13の1列(又は1行)に含まれる20個のマイクロレンズ17の少なくとも一部を用いて、レーザ光14を照射する。なお、なお、マイクロレンズアレイ13に含まれる一列(又は一行)のマイクロレンズ17の数は、20個に限られず、いくつであってもよい。
 図2に示すように、マイクロレンズアレイ13は、その一列(または一行)にマイクロレンズ17を20個含むが、一行(または一列)には例えば83個含む。なお、83個は例示であって、いくつであってもよいことは言うまでもない。
 図3は、所定の領域がアニール化された薄膜トランジスタ20の例を示す模式図である。なお、薄膜トランジスタ20は、最初にポリシリコン薄膜22を形成し、その後、形成されたポリシリコン薄膜22の両端にソース23とドレイン24を形成することで、作成される。
 図3に示すように、薄膜トランジスタは、ソース23とドレイン24との間に、ポリシリコン薄膜22が形成されている。レーザ照射装置10は、薄膜トランジスタ20に対して、図2に示したマイクロレンズアレイ13の一列(または一行)に含まれる例えば20個のマイクロレンズ17を用いて、レーザ光14を照射する。すなわち、レーザ照射装置10は、ポリシリコン薄膜22に対して、20ショットのレーザ光14を照射する。その結果、薄膜トランジスタ20において、アモルファスシリコン薄膜21の所定の領域が瞬間加熱されて溶融し、ポリシリコン薄膜22となる。
 ポリシリコン薄膜22は、レーザ光14のエネルギ密度は1ショットごとにばらつきがあることから、その電子移動度にばらつきが生じる可能性がある。前述したように、ポリシリコン薄膜22の電子移動度は、当該ポリシリコン薄膜22に最後に照射されたレーザ光14のエネルギ密度、すなわち最後のショットのエネルギ密度に依存するからである。
 レーザ照射装置10は、アモルファスシリコン薄膜21にレーザ光14を照射する。ここで、レーザ照射装置10は所定の周期でレーザ光14を照射し、レーザ光14が照射されていない時間にガラス基板30を移動させ、次のアモルファスシリコン薄膜21の箇所に当該レーザ光14が照射されるようにする。図4に示すように、ガラス基板30は、移動方向に対して、所定の間隔「H」でアモルファスシリコン薄膜21が配置される。そして、レーザ照射装置10は、所定の周期で、ガラス基板30上に配置されたアモルファスシリコン薄膜21の部分に、レーザ光14を照射する。
 そして、レーザ照射装置10は、マイクロレンズアレイ13を用いて、ガラス基板上の複数のアモルファスシリコン薄膜21に対して、同一のレーザ光14を照射する。レーザ照射装置10は、例えば、図4に示す領域Aに含まれる複数のアモルファスシリコン薄膜21に対して、同一のレーザ光14を照射する。また、レーザ照射装置10は、図4に示す領域Bに含まれる複数のアモルファスシリコン薄膜21に対しても、同一のレーザ光14を照射する。
 ここで、レーザ照射装置10は、アニール化を行うために、図2に示すマイクロレンズアレイ13の一列(又は一行)に含まれる20個のマイクロレンズ17の各々を用いて、レーザ光14を照射することが考えられる。
 この場合、図4の領域Aにある複数のアモルファスシリコン薄膜21は、まず、図2に示すマイクロレンズアレイ13に含まれる第1のマイクロレンズ17aを用いて、レーザ光14を照射される。その後、ガラス基板30を所定の間隔「H」だけ移動させる。ガラス基板30が移動している間、レーザ照射装置10は、レーザ光14の照射を停止する。そして、ガラス基板30が「H」だけ移動した後、領域Aにある複数のアモルファスシリコン薄膜21は、図2に示すマイクロレンズアレイ13に含まれる第2のマイクロレンズ17bを用いて、レーザ光14を照射される。なお、レーザ照射装置10は、ガラス基板30が「H」だけ移動した後、一旦停止した当該ガラス基板30に対してレーザ光14を照射してもよいし、移動し続けている当該ガラス基板30に対してレーザ光14を照射してもよい。
 なお、レーザ照射装置10の照射ヘッド(すなわち、レーザ光源11、カップリング光学系12、マイクロレンズアレイ13及び投影マスク150)が、ガラス基板30に対して移動してもよい。
 レーザ照射装置10は、これを繰り返し実行して、最後に、領域Aにある複数のアモルファスシリコン薄膜21に対して、図2に示すマイクロレンズアレイ13のマイクロレンズ17t(すなわち、最後のマイクロレンズ17)を用いて、レーザ光14を照射する。その結果、領域Aにある複数のアモルファスシリコン薄膜21は、図2に示すマイクロレンズアレイ13の一列(又は一行)に含まれる20個のマイクロレンズ17の各々を用いて、レーザ光14を照射されることになる。
 同様にして、レーザ照射装置10は、図4の領域Bにある複数のアモルファスシリコン薄膜21に対しても、図2に示すマイクロレンズアレイ13の一列(又は一行)に含まれる20個のマイクロレンズ17の各々を用いて、レーザ光14を照射する。ただ、領域Bは、領域Aに比べてガラス基板の移動方向に対して「H」だけ位置が異なるため、レーザ光14が照射されるタイミングが、1照射分だけ遅れる。すなわち、領域Aの複数のアモルファスシリコン薄膜21が第2のマイクロレンズ17bを用いてレーザ光14を照射される時に、領域Bの複数のアモルファスシリコン薄膜21は、第1のマイクロレンズ17aを用いてレーザ光14を照射される。そして、領域Aの複数のアモルファスシリコン薄膜21が第20のマイクロレンズ17t(すなわち、最後のマイクロレンズ17)を用いてレーザ光14を照射される時には、領域Bの複数のアモルファスシリコン薄膜21は、一つ前の第19のマイクロレンズ17sを用いて、レーザ光が照射されることになる。そして、領域Bの複数のアモルファスシリコン薄膜21は、次のレーザ光の照射のタイミングで、第20のマイクロレンズ17t(すなわち、最後のマイクロレンズ17)を用いて、レーザ光が照射されることになる。
 つまり、図4に示す領域Aに含まれる複数のアモルファスシリコン薄膜21と、領域Bに含まれる複数のアモルファスシリコン薄膜21とは、最後に照射されるレーザ光14が異なることになる。
 ここで、エキシマレーザにおいて、パルス間の安定性は、0.5%程度である。すなわち、レーザ照射装置10は、1ショットごとに、そのレーザ光14のエネルギ密度に0.5%程度のばらつきを生じさせる。そのため、レーザ照射装置10によって形成されるポリシリコン薄膜22の電子移動度にも、ばらつきが生じてしまう可能性がある。そして、レーザ光14を照射されたことにより形成されたポリシリコン薄膜22の電子移動度は、当該ポリシリコン薄膜22に最後に照射されたレーザ光14のエネルギ密度、すなわち最後のショットのエネルギ密度に依存する。
 そのため、領域Aに含まれる複数のアモルファスシリコン薄膜21と、領域Bに含まれる複数のアモルファスシリコン薄膜21とは、最後に照射されるレーザ光が異なるため、形成されるポリシリコン薄膜22の電子移動度が互いに異なることになる。
 一方で、領域Aに含まれる複数のアモルファスシリコン薄膜21どうしは、最後に照射されたレーザ光14は同じであるため、領域A内においては、形成されるポリシリコン薄膜22の電子移動度は同じとなる。これは、領域Bに含まれる複数のアモルファスシリコン薄膜21どうしでも同様であり、領域B内においては、形成されるポリシリコン薄膜22の電子移動度は同じとなる。すなわち、ガラス基板上において、互いに隣接する領域間では電子移動度が互いに異なるが、同じ領域内の複数のアモルファスシリコン薄膜21どうしは電子移動度が同一となる。
 その結果、液晶画面において、表示むらが発生する原因となる。図4に例示するように、領域Aと領域Bとの境界が“線状”であるため、互いに異なる特性の薄膜トランジスタ20が、当該“線上”の境界において突き合うことなり、その特性の違いによる表示の違い(例えば色の濃淡などの違い)が“線”となって表れてしまう。その結果、液晶画面において表示むらが“すじ”となってしまい、無視できない程度に強調されてしまう。
 そこで、本発明の第1の実施形態では、例えば投影マスクパターン15を用いて、基板30に含まれるアモルファスシリコン薄膜21の各々に照射するレーザ光14の透過率を変更する。例えば、アモルファスシリコン薄膜21に照射するレーザ光14の透過率にばらつきを持たせる。なお、透過率は、レーザ光がマスク150を透過する割合である。
 上記のように、レーザ光14の透過率をばらつかせることにより、アモルファスシリコン薄膜21には、異なる透過率のレーザ光14が照射されるようになり、全てのアモルファスシリコン薄膜21に対して同一のレーザ光14が照射されるという状況がなくなる。そのため、同一領域内(例えば領域A内)に含まれる複数のアモルファスシリコン薄膜21であっても、隣接するアモルファスシリコン薄膜21が異なる透過率のレーザ光14によって照射されるようになる。その結果、同一領域内(例えば領域A内)において、隣接するアモルファスシリコン薄膜21に最後に照射されるレーザ光14の透過率が異なることになる。なお、隣接するアモルファスシリコン薄膜21は、必ずしも異なる透過率のレーザ光14が照射されるというわけではなく、投影マスクパターン15におけるマスク150の配置によっては、同一の透過率のマスクが隣接することもあり、その場合には、隣接するアモルファスシリコン薄膜21は同一の透過率のレーザ光14が照射されることになる。ただし、基板30に含まれるアモルファスシリコン薄膜21全体を考えれば、投影マスクパターン15において、異なる透過率のマスク150がランダムに配置されるため、隣接するアモルファスシリコン薄膜21が異なる透過率のレーザ光14によって照射される可能性は高くなる。
 そうすると、同一領域内(例えば領域A内)において、隣接するポリシリコン薄膜22の電子移動度は、互いに異なることとなる。その結果、同一領域内(例えば領域A内)において、隣接する薄膜トランジスタ20の特性も異なることになる。そうすると、ガラス基板30全体において、互いに隣接する薄膜トランジスタ20の特性は、互いに異なることになり、当該特性の違いによる表示の違い(例えば色の濃淡などの違い)が“線状”に表れることが無くなる。そのため、液晶画面において表示むらが“スジ”とならず、当該表示むらが強調されることを防止することができる。
 図5は、ガラス基板30において隣接する薄膜トランジスタ20による、表示むらの発生の有無を説明するための図である。図5(a)において、領域A内の複数の薄膜トランジスタ20の特性は特性Aで同一であり、領域B内の複数の薄膜トランジスタ20の特性は特性Bで同一である。その結果、領域Aと領域Bの“線状”の境界において、特性Aの薄膜トランジスタ20と、特性Bの薄膜トランジスタ20とが突き合うことになり、特性の違いによる表示の違いが、“線状”になって表れてしまう。そのため、液晶画面において表示むらが“スジ”となって強調されてしまう。
 一方、図5(b)において、同一領域内(領域A/領域B)の隣接する薄膜トランジスタ20は、互いに異なる透過率のレーザ光14で照射されることにより、互いに異なる特性となるため、特性の違いによる表示の違いが分散され、“線状”になって表れない。そのため、液晶画面において表示むらを低減することが可能となる。
 上述した内容を実現するために、本発明の第1の実施形態において、マイクロレンズアレイ13上に設けられる投影マスクパターン15は、レーザ光が透過する割合である透過率が設定された複数のマスク150を含む。そして、投影マスクパターン15に含まれる複数のマスク150の各々は、複数の透過率のいずれかが設定される。複数の透過率は、例えば、90%、91%、92%・・・100%の10通りの透過率のうちのいずれかである。なお、複数の透過率は、あくまでも例示であって、どのような透過率であってもよい。また、複数の透過率は、10通りに限られず、何通りの透過率があってもよい。また、複数の透過率は、例えば、70%~100%の範囲など、どのような範囲であってもよい。複数の透過率の範囲は、予め定められた所定の範囲であってもよい。例えば、所定の範囲は、予め90%~100%に定められていてもよい。
 また、投影マスクパターン15において、異なる透過率が設定されたマスク150が、ランダムに配置される。
 図6は、本発明の第1の実施形態における、投影マスクパターン15のマスク150の構成例を示す図である。
 図6に示すように、投影マスクパターン15は、異なる透過率が設定されたマスク150が、ランダムに配置される。ただし、透過率の異なる投影マスクパターン15の各々は、必ずしも、ランダムに配置される必要はなく、所定の条件に基づいて配置されてもよい。ここで、図6において、投影マスクパターン上に記載の数値は、当該投影マスクパターンにおけるレーザ光14の透過率である。図6に示すように、投影マスクパターンの各々は、例えば、透過率が90%~100%のいずれかに設定される。なお、上述したように、投影マスクパターンの透過率は、90~100%の範囲内である必要はなく、どのような透過率であってもよい。
 なお、互いに隣接する投影マスクパターン15が、互いに異なる透過率となるように配置されてもよい。なお、互いに隣接する投影マスクパターン15が、必ずしも、互いに異なる透過率となるように配置される必要はない。
 また、投影マスクパターン15に含まれる複数のマスクの各々において、マイクロレンズアレイ13の移動方向(所定の方向)に直交する一列において、互いに隣接するマスク150の透過率が互いに異なるように、当該マスク150を配置してもよい。この場合において、レーザ照射装置10は、1つのアモルファスシリコン薄膜21に対して、図2に示すマイクロレンズアレイ13の一列(又は一行)に含まれる20個のマイクロレンズ17において、少なくとも隣接するマイクロレンズ17から照射されるレーザ光14の透過率を異なるものとなる。例えば、レーザ照射装置10は、マイクロレンズアレイ13の一列(又は一行)に含まれる20個のマイクロレンズ17の各々に、異なる透過率である投影マスクパターンを配置することにより、互いに異なるアモルファスシリコン薄膜21に対し、互いに異なる透過率のレーザ光14を照射することができる。
 また、各投影マスクパターン15における透過領域16の幅は、例えば4μmである。また、図6に示す投影マスクパターン15に設けられる開口部は、例えば、その形状が長方形であり、長辺が20μmであり、短辺が10μmである。なお、投影マスクパターン15の開口部大きさは例示であって、マイクロレンズ17の大きさに対応していれば、どのような大きさであってもよい。
 図6の例では、ガラス基板30の移動方向(スキャン方向)に対して、投影マスクパターン15の透過領域16は、直交するように設けられる。なお、投影マスクパターン15の透過領域16は、ガラス基板30の移動方向(スキャン方向)に対して必ずしも直交する必要はなく、該移動方向(スキャン方向)に対して平行(略平行)に設けられていてもよい。
 レーザ照射装置10は、図6に示す投影マスクパターン15を用いて、図2に例示するガラス基板30にレーザ光14を照射するその結果、図3に示す同一領域内(例えば領域A内)において、例えば、隣接するアモルファスシリコン薄膜21が、互いに異なる透過率のレーザ光14を照射されるようになる。そのため、同一領域内(例えば領域A内)に含まれる複数のアモルファスシリコン薄膜21について、例えば、隣接するアモルファスシリコン薄膜21に最後に照射されるレーザ光14も、その透過率が互いに異なることになる。その結果、同一領域内(例えば領域A内)において、隣接するポリシリコン薄膜22の電子移動度は、互いに異なることとなる。
 そして、スキャン方向に直交する領域(図3に例示する領域Aや領域B)間では、上述したように、照射されるレーザ光14が異なるため、隣接する領域の薄膜トランジスタ20は、互いに異なる特性となる。
 その結果、ガラス基板30全体において、隣接する薄膜トランジスタ20が、互いに異なる特性となる。そのため、薄膜トランジスタ20の特性の違いによる表示の違い(例えば色の濃淡などの違い)が分散され、線状に表われなくなる。そのため、液晶画面において表示むらが“スジ”とならず、当該表示むらが強調されることを防止することができる。
 本発明の第1の実施形態において、ガラス基板30は、1つのマイクロレンズ17によりレーザ光14が照射されるごとに、所定の距離だけ移動する。所定の距離は、図2に例示するように、ガラス基板30における複数の薄膜トランジスタ20間の距離「H」である。レーザ照射装置10は、ガラス基板30を当該所定の距離移動させる間、レーザ光14の照射を停止する。
 ガラス基板30が所定の距離「H」を移動した後、レーザ照射装置10は、マイクロレンズアレイ13に含まれるマイクロレンズ17を用いて、レーザ光14を照射する。なお、本発明の第1の実施形態では、図6に示す投影マスクパターン15を用いるため、1つのアモルファスシリコン薄膜21に対して、5個のマイクロレンズ17によりレーザ光14が照射される。
 そして、ガラス基板30の薄膜トランジスタ20に、レーザアニールを用いてポリシリコン薄膜22を形成した後、別の工程において、当該薄膜トランジスタ20に、ソース23とドレイン24とが形成される。
 このように、本発明の第1の実施形態では、投影マスクパターン15において、異なる透過率のマスク150がランダムに配置されるように、当該投影マスクパターン15に含まれる複数のマスク150の透過率を変更する。その結果、例えば、隣接するアモルファスシリコン薄膜21が、互いに異なる透過率のレーザ光14を照射されるようになる。そのため、隣接するポリシリコン薄膜22の電子移動度は、互いに異なることとなる。すなわち、ガラス基板30全体において、互いに隣接する薄膜トランジスタ20の特性は、互いに異なることになり、当該特性の違いによる表示の違い(例えば色の濃淡などの違い)が“線状”に表れることが無くなる。そのため、液晶画面において表示むらが“スジ”とならず、当該表示むらが強調されることを防止することができる。
 (第2の実施形態)
 本発明の第2の実施形態は、マイクロレンズアレイ13に含まれる複数のマイクロレンズ17の各々の特性に基づいて、投影マスクパターン15の各々の透過率を変化(調整)させる実施形態である。
 マイクロレンズアレイ13に含まれる複数のマイクロレンズ17の各々は、その特性が互いに異なる。例えば、マイクロレンズアレイ13の中心付近に配置されるマイクロレンズ17と、周辺部に配置されるマイクロレンズ17とにおいて、その特性に偏りが生じる場合がある。そのため、複数のマクロレンズ17の各々から照射されるレーザ光14は、マイクロレンズ17の特性が異なることに起因して、互いにその特性(例えば、エネルギ密度)が異なることとなる。そのため、レーザ照射装置10は、マイクロレンズアレイ13に含まれる複数のマイクロレンズ17を用いて、同時にレーザ光14を照射したとしても、当該複数のマイクロレンズ17の各々の特性が互いに異なることにより、当該レーザ光14の各々の特性(エネルギ密度など)が異なるものとなってしまう。
 そこで、本発明の第2の実施形態は、マイクロレンズアレイ13に含まれる複数のマイクロレンズ17の各々の特性に基づいて、投影マスクパターン15の各々の透過率を設定(調整)する。その結果、複数のマイクロレンズ17の各々を用いて照射されるレーザ光14の特性の違いを、低減することが可能となる。
 図2に示すマイクロレンズアレイ13に含まれる複数のマイクロレンズ17の各々は、その特性が例えば5%の範囲で異なる。なお、5%はあくまでも例示であって、これ以上またはこれ以下の範囲で、複数のマイクロレンズアレイ13の特性が異なることもある。マイクロレンズ17の特性の違いは、例えば、当該マイクロレンズ17の各々に対してレーザ光14を照射し、その特性(例えば、エネルギ密度)を測定することにより、予め把握することが可能である。
 そこで、本発明の第2の実施形態では、予め把握したマイクロレンズ17の各々の特性に基づいて、投影マスクパターン15の各々の透過率を設定(調整)する。その結果、透過率を設定(調整)した投影マスクパターン15を配置したマイクロレンズアレイ13を用いてレーザ光14を照射することにより、当該レーザ光14の特性の違いを低減することが可能となる。
 例えば、一のマイクロレンズ17を透過したレーザ光14のエネルギ密度が高い場合には、当該一のマイクロレンズ17に配置する投影マスクパターン15の透過率を低く設定する。一方、他のマイクロレンズ17を透過したレーザ光14のエネルギ密度が低い場合には、当該他のマイクロレンズ17に配置する投影マスクパターン15の透過率を高く設定する。このように、マイクロレンズ17の特性に応じて、当該マイクロレンズ17に配置する投影マスクパターン15の透過率を設定(調整)することにより、マイクロレンズ17の特性の違いに起因するレーザ光14の特性の違いを低減することが可能となる。
 図7は、マイクロレンズ17の特性に基づいて透過率が設定(調整)されたマスク150を含む、投影マスクパターン15である。図7の例は、マイクロレンズアレイ13の中心付近に配置されるマイクロレンズ17と、周辺部に配置されるマイクロレンズ17とにおいて、その特性に偏りが生じている場合における、投影マスクパターン15の例である。
 図7に示すように、マイクロレンズの特性に基づいて、投影マスクパターン15に含まれるマスク150の透過率が設定(調整)される。その結果、レーザ照射装置10は、図7に例示する投影マスクパターンを用いてレーザ光14を照射することにより、マイクロレンズアレイ13に含まれるマイクロレンズ17の特性に起因するレーザ光14の特性の違いが低減され、概ね同一の特性のレーザ光14を照射することができる。
 上記のとおり、本発明の第2の実施形態は、マイクロレンズアレイ13に含まれる複数のマイクロレンズ17の各々の特性に基づいて、投影マスクパターン15に含まれる複数のマスク150の各々の透過率を変化(調整)させることにより、マイクロレンズ17の特性の違いに起因するレーザ光14の特性の違いを低減することが可能となる。
 (第3の実施形態)
 本発明の第3の実施形態は、マイクロレンズアレイ13に含まれる複数のマイクロレンズ17の各々の特性に基づいて、投影マスクパターン15に含まれる複数のマスク150の透過率を変化(調整)した後に、レーザ光14の透過率をばらつかせるために、当該マスク150の透過率をさらに変更する場合の実施形態である。
 第3の実施形態では、まず、マイクロレンズアレイ13に含まれる複数のマイクロレンズ17の各々の特性に基づいて、投影マスクパターン15に含まれる複数のマスク150の透過率を変化(調整)する。その結果、マイクロレンズアレイ13に含まれる複数のマイクロレンズ17の各々の特性による、レーザ光14の特性の違いが低減される。
 その上で、第3の実施形態では、投影マスクパターン15において、異なる透過率のマスク150がランダムに配置されるように、当該投影マスクパターン15に含まれる複数のマスク150の透過率を変更する。その結果、例えば、隣接するアモルファスシリコン薄膜21が、互いに異なる透過率のレーザ光14を照射されるようになる。そのため、隣接するポリシリコン薄膜22の電子移動度は、互いに異なることとなる。その結果、ガラス基板30全体において、互いに隣接する薄膜トランジスタ20の特性は、互いに異なることになり、当該特性の違いによる表示の違い(例えば色の濃淡などの違い)が“線状”に表れることが無くなる。そのため、液晶画面において表示むらが“スジ”とならず、当該表示むらが強調されることを防止することができる。
 第3の実施形態では、まず、図7に例示するように、マイクロレンズ17の特性に基づいて、投影マスクパターン15に含まれるマスク150の透過率を設定(調整)する。具体的には、予め把握したマイクロレンズ17の各々の特性に基づいて、投影マスクパターン15の各々の透過率を設定(調整)する。例えば、一のマイクロレンズ17を透過したレーザ光14のエネルギ密度が高い場合には、当該一のマイクロレンズ17に配置する投影マスクパターン15の透過率を低く設定する。一方、他のマイクロレンズ17を透過したレーザ光14のエネルギ密度が低い場合には、当該他のマイクロレンズ17に配置する投影マスクパターン15の透過率を高く設定する。
 その後、マイクロレンズ17の特性に基づいて透過率が設定されたマスク150について、当該設定された透過率を基準として、投影マスクパターン15全体で透過率が分散するように、当該マスク150の透過率をさらに変更する。
 例えば、マイクロレンズ17の特性に基づいて、透過率が90%に設定されたマスク150は、透過率を投影マスクパターン15全体でばらつかせるために、当該マスク150に割り当てられた透過率変更の割合で、当該90%の透過率をさらに変更する。例えば、透過率を投影マスクパターン15全体でばらつかせるために割り当てられた透過率変更の割合が95%である場合、当該マスク150は、90%からさらに95%透過率を変更することになり、85.5%の透過率となる。
 このように、第3の実施形態では、マイクロレンズ17の特性に基づいて設定された透過率を基準として、さらに、透過率を投影マスクパターン15全体でばらつかせるために当該透過率を変更する。その結果、マイクロレンズアレイ13に含まれる複数のマイクロレンズ17の各々の特性による、レーザ光14の特性の違いを低減しつつ、隣接するアモルファスシリコン薄膜21に対して、互いに異なる透過率のレーザ光14を照射することが可能となる。
 その結果、マイクロレンズ17の特性に基づいて生じるレーザ光14の特性の違いを低減しつつ、隣接するポリシリコン薄膜22の電子移動度を互いに異ならせることができるため、ガラス基板30全体において、互いに隣接する薄膜トランジスタ20の特性は、互いに異なることになり、当該特性の違いによる表示の違い(例えば色の濃淡などの違い)が“線状”に表れることが無くなる。そのため、液晶画面において表示むらが“スジ”とならず、当該表示むらが強調されることを防止することができる。
 (第4の実施形態)
 本発明の第4の実施形態は、マイクロレンズアレイ13の代わりに、1個の投影レンズ18を用いて、レーザアニールを行う場合の実施形態である。
 図8は、本発明の第4の実施形態におけるレーザ照射装置10の構成例を示す図である。図8に示すように、本発明の第3の実施形態におけるレーザ照射装置10は、レーザ光源11と、カップリング光学系12と、投影マスクパターン15と、投影レンズ18とを含む。なお、レーザ光源11と、カップリング光学系12とは、図1に示す本発明の第1の実施形態におけるレーザ光源11と、カップリング光学系12と同様の構成であるため、詳細な説明は省略される。また、投影マスクパターンは、本発明の第1の実施形態における投影マスクパターンと同様の構成であるため、詳細な説明は省略される。
 レーザ光は、図6に例示する投影マスクパターン15(図示しない)の開口(透過領域)を透過し、投影レンズ18により、アモルファスシリコン薄膜21の所定の領域に照射される。その結果、アモルファスシリコン薄膜21の所定の領域が瞬間加熱されて溶融し、アモルファスシリコン薄膜21の一部がポリシリコン薄膜22となる。
 本発明の第4の実施形態においても、レーザ照射装置10は所定の周期でレーザ光14を照射し、レーザ光14が照射されていない時間にガラス基板30を移動させ、次のアモルファスシリコン薄膜21の箇所に当該レーザ光14が照射されるようにする。第2の実施形態においても、図3に示すように、ガラス基板30は、移動方向に対して、所定の間隔「H」でアモルファスシリコン薄膜21が配置される。そして、レーザ照射装置10は、所定の周期で、ガラス基板30上に配置されたアモルファスシリコン薄膜21の部分に、レーザ光14を照射する。
 ここで、投影レンズ18を用いる場合、レーザ光14が、当該投影レンズ18の光学系の倍率で換算される。すなわち、投影マスクパターン15のパターンが、投影レンズ18の光学系の倍率で換算され、ガラス基板30上の所定の領域がレーザアニールされる。
 すなわち、投影マスクパターン15のマスクパターンは、投影レンズ18の光学系の倍率で換算され、ガラス基板30上の所定の領域がレーザアニールされる。例えば、投影レンズ18の光学系の倍率が約2倍であると、投影マスクパターン15のマスクパターンは、約1/2(0.5)倍され、ガラス基板30の所定の領域がレーザアニールされる。なお、投影レンズ18の光学系の倍率は、約2倍に限られず、どのような倍率であってもよい。投影マスクパターン15のマスクパターンは、投影レンズ18の光学系の倍率に応じて、ガラス基板30上の所定の領域がレーザアニールされる。例えば、投影レンズ18の光学系の倍率が4倍であれば、投影マスクパターン15のマスクパターンは、約1/4(0.25)倍され、ガラス基板30の所定の領域がレーザアニールされる。
 また、投影レンズ18が倒立像を形成する場合、ガラス基板30に照射される投影マスクパターン15の縮小像は、投影レンズ18のレンズの光軸を中心に180度回転したパターンとなる。一方、投影レンズ18が正立像を形成する場合、ガラス基板30に照射される投影マスクパターン15の縮小像は、当該投影マスクパターン15そのままとなる。
 なお、単一の投影レンズにおいて、例えば、収差等の影響で、中央部に比べて周辺部の照射光量や倍率が異なる場合でも、投影マスクパターン15の中央部と周辺部でマスック150の透過率を変えることで均一な照射を実現できる。例えば、単一の照射レンズにおいて、中央部に比べて周辺部の照射光量が少ない場合は、投影マスクパターン15の中央部のマスク150の透過率を高くし、一方で周辺部のマスク150の透過率を当該中央部の透過率に比べて低く設定することにより、投影マスクパターン150全体で均一な照射を実現することが可能となる。
 上記のとおり、本発明の第4の実施形態では、1個の投影レンズ18を用いて、レーザアニールを行った場合であっても、隣接するアモルファスシリコン薄膜21に対して、互いに異なる透過率のレーザ光14を照射することが可能となる。その結果、ガラス基板30全体において、互いに隣接する薄膜トランジスタ20の特性は、互いに異なることになり、当該特性の違いによる表示の違い(例えば色の濃淡などの違い)が“線状”に表れることが無くなる。そのため、液晶画面において表示むらが“スジ”とならず、当該表示むらが強調されることを防止することができる。
 なお、以上の説明において、「垂直」「平行」「平面」「直交」等の記載がある場合に、これらの各記載は厳密な意味ではない。すなわち、「垂直」「平行」「平面」「直交」とは、設計上や製造上等における公差や誤差が許容され、「実質的に垂直」「実質的に平行」「実質的に平面」「実質的に直交」という意味である。なお、ここでの公差や誤差とは、本発明の構成・作用・効果を逸脱しない範囲における単位のことを意味するものである。
 (第5の実施形態)
 本発明の第5の実施形態は、マイクロレンズアレイ13に含まれる複数のマイクロレンズ17の各々の解像力に基づいて、当該解像力が相対的に低いマイクロレンズに対応する場所に位相シフトマスクを適用することにより、当該解像力が相対的に低いマイクロレンズ17の解像力を高める実施形態である。
 マイクロレンズアレイ13に含まれる複数のマイクロレンズ17の各々は、その特性の1つである解像力が互いに異なる場合がある。すなわち、マイクロレンズアレイ13は、解像力が相対的に低いマイクロレンズ17を含む場合がある。マイクロレンズ17の解像力が低いと、隣接するマスクを透過した光が正しく解像せず、投影マスクパターン15のパターンどおりにアニール化できない恐れがある。その結果、微結晶が薄膜トランジスタ20のチャネル領域に乱れを生じさせ、液晶画面の表示に悪影響を与える可能性がある。
 図9は、マイクロレンズアレイ13に含まれるマイクロレンズ17の構成例を示す図である。図9に示すマイクロレンズ17のうち、例えば、灰色で示すマイクロレンズ17は、他のマイクロレンズ17(白色で示すマイクロレンズ17)に比較して、解像力が相対的に低い。そのため、レーザ照射装置10が、図9に例示するマイクロレンズアレイ13を用いてレーザ光14を照射すると、投影マスクパターン15のパターン通りに薄膜トランジスタ20のチャネル領域を適切にアニール化することができない恐れがある。
 一方で、解像力が相対的に低いマイクロレンズ17の解像力を高くするために、マイクロレンズアレイ13に含まれるマイクロレンズ17全体の解像力を高くすることが考えられる。しかしながら、他のマイクロレンズ17、すなわち解像力が相対的に低くないマイクロレンズ17の解像力が必要以上に高まることになり、当該他のマイクロレンズ17の焦点深度(DOF:Depth of Focus)が狭くなってしまう恐れがある。その結果、マイクロレンズアレイ13を用いた薄膜トランジスタ20のチャネル領域のアニール化のプロセスに、悪影響を与える可能性が生じる。したがって、マイクロレンズアレイ13に含まれるマイクロレンズ17全体の解像力を高くすることには限界がある。
 そこで、本発明の第5の実施形態では、マイクロレンズアレイ13に含まれる複数のマイクロレンズ17のうち、相対的に解像力が低いマイクロレンズ17の解像力を高めるため、位相シフトマスクを用いる。具体的には、相対的に解像力が低いマイクロレンズ17の部分に対して位相シフトマスクを適用し、当該相対的に解像力が低いマイクロレンズ17の解像力を高める。その結果、相対的に解像力が低いマイクロレンズ17の解像力が高まる一方、他のマイクロレンズ17の解像力には当該位相シフトマスクを適用しないため、当該他のマイクロレンズ17の解像力が必要以上に高めてしまうことがない。
 その結果、マイクロレンズ13全体において複数のマイクロレンズ17の各々の解像力の違いを低減可能であり、薄膜トランジスタ20のアモルファスシリコンのアニール化を適切に実行でき(すなわち、マスクのパターン通りにアニール化を実行でき)、液晶画面の表示に悪影響を与えることを抑制することができる。
 図2に示すマイクロレンズアレイ13に含まれる複数のマイクロレンズ17の一部は、その解像力が他のマイクロレンズ17と比較して、例えば10%低い場合がある。なお、“10%”は、あくまでも例示であって、これ以上またはこれ以下の範囲で、複数のマイクロレンズアレイ13の各々の解像力が異なることもある。マイクロレンズ17の解像力の違いは、例えば、当該マイクロレンズ17の各々に対してレーザ光14を照射し、その解像力を測定することにより、予め把握することが可能である。
 そこで、本発明の第5の実施形態では、予め把握したマイクロレンズ17の各々の解像力に基づいて、所定の解像力未満のマイクロレンズ17に対して、位相シフトマスクを適用する。
 所定の解像力は、例えば、複数のマイクロレンズ17の解像力の平均値よりも、10%以上低い解像力である。なお、10%はあくまでも例示であって、どのような値でも良いことは言うまでもない。また、所定の解像力は、予め定められた解像力(固定値)であってもよい。当該予め定められた解像力(固定値)は、薄膜トランジスタ20のアモルファスシリコンのアニール化を適切に実行可能な解像力である。
 また、位相シフトマスクを適用するマイクロレンズ17は、複数のマイクロレンズ17のうち解像力が最も高いマイクロレンズ17との差分に基づいて決定してもよい。すなわち、最も高いマイクロレンズ17の解像力と差分が、所定値以上であるマイクロレンズ17に対して、位相シフトマスクを適用すると決定する。
 なお、位相シフトマスクを適用するマイクロレンズ17は、どのように決定してもよく、隣接するマスクを透過した光が正しく解像せず、適切にアニール化できない恐れがあるマイクロレンズ17を抽出できれば、どのような方法であってもよい。
 図10は、第5の実施形態におけるレーザ照射装置10の構成例を示す図である。図10に示すように、第5の実施形態におけるレーザ照射装置10は、マイクロレンズアレイ13上に、位相シフトマスク19を含む。
 位相シフトマスク(Phase―Shifting Mask:PSM)19は、レーザ光14の位相や透過率を制御可能なマスクであり、マイクロレンズ17の解像度や焦点深度を改善することができる。
 位相シフトマスク19には、例えば、ハーフトーン型位相シフトマスクがあり、マイクロレンズ17を透過するレーザ光14の位相を変化させることが可能なマスクである。ハーフトーン型位相シフトマスクでは、例えば、半透明な遮光膜(位相シフタ)をマイクロレンズ17上に設けることにより、当該遮光膜を透過するレーザ光14の伝搬速度を遅らせることにより、その分だけ当該レーザ光14の位相を変化させる。そして、半透明な遮光膜を通過して位相が変化したレーザ光14と、当該半透明な遮光膜を通過せずに位相が変化していないレーザ光14とを干渉させることで、当該レーザ光14の解像力を向上させることが可能となる。
 なお、第5の実施形態における位相シフトマスク19は、上述した実施形態における投影マスクパターン15のように、マイクロレンズアレイ13に含まれるマイクロレンズ17の各々について、薄膜トランジスタ20のアモルファスシリコン領域にレーザ光14を照射するためのパターンが設けられている。それに加えて、当該位相シフトマスク19は、解像力が低いマイクロレンズ17に対して、例えば位相シフタによって解像力を向上させることができる構成を備えるものである。
 第5の実施形態におけるレーザ照射装置10では、マイクロレンズアレイ13に含まれるマイクロレンズ17のうち、解像力が相対的に低いマイクロレンズ17に対して位相シフトマスク19を適用する。具体的には、図9に示す解像力が相対的に低いマイクロレンズ17(例えば、列1・行10や列6・行7のマイクロレンズ17)に対して、位相シフトマスク19を適用する。その結果、解像力が相対的に低いマイクロレンズ17の解像力を向上させることができ、位相シフトマスク19のパターン通りに薄膜トランジスタ20のチャネル領域を適切にアニール化することができる。
 一方、他のマイクロレンズ17(解像力が相対的に低くないマイクロレンズ17)に対しては、位相シフトマスク19を適用しない。その結果、解像力が相対的に低いマイクロレンズ17については当該解像力が向上する一方、他のマイクロレンズ17の解像力はそのままとなり必要以上に解像力が向上することはない。したがって、その結果、マイクロレンズ13全体において複数のマイクロレンズ17の各々の解像力の違いを低減可能である。
 上記のとおり、本発明の第5の実施形態は、マイクロレンズ13全体において複数のマイクロレンズ17の各々の解像力の違いを低減可能であり、薄膜トランジスタ20のアモルファスシリコンのアニール化を適切に実行でき(すなわち、マスクのパターン通りにアニール化を実行でき)、液晶画面の表示に悪影響を与えることを抑制することができる。
 また、以上の説明において、外観上の寸法や大きさが「同一」「等しい」「異なる」等の記載がある場合に、これらの各記載は厳密な意味ではない。すなわち、「同一」「等しい」「異なる」とは、設計上や製造上等における公差や誤差が許容され、「実質的に同一」「実質的に等しい」「実質的に異なる」という意味である。なお、ここでの公差や誤差とは、本発明の構成・作用・効果を逸脱しない範囲における単位のことを意味するものである。
 本発明を諸図面や実施形態に基づき説明してきたが、当業者であれば本開示に基づき種々の変形や修正を行うことが容易であることに注意されたい。従って、これらの変形や修正は本発明の範囲に含まれることに留意されたい。例えば、各手段、各ステップ等に含まれる機能等は論理的に矛盾しないように再配置可能であり、複数の手段やステップ等を1つに組み合わせたり、或いは分割したりすることが可能である。また、上記実施の形態に示す構成を適宜組み合わせることとしてもよい。
 10 レーザ照射装置
 11 レーザ光源
 12 カップリング光学系
 13 マイクロレンズアレイ
 14 レーザ光
 15 投影マスクパターン
 16 透過領域
 17 マイクロレンズ
 18 投影レンズ
 19 位相シフトマスク
 20 薄膜トランジスタ
 21 アモルファスシリコン薄膜
 22 ポリシリコン薄膜
 23 ソース
 24 ドレイン
 30 ガラス基板

Claims (13)

  1.  レーザ光を発生する光源と、
     ガラス基板上の複数の薄膜トランジスタの各々に被着されたアモルファスシリコン薄膜の所定の領域に、前記レーザ光を照射する投影レンズと、
     前記投影レンズ上に設けられ、前記レーザ光が透過する割合である透過率が設定された複数のマスクを含む投影マスクパターンと、を備え、
     前記投影レンズは、所定の方向に移動する前記ガラス基板上の前記複数の薄膜トランジスタに対して、前記投影マスクパターンに含まれる前記複数のマスクの各々を介して前記レーザ光を照射し、
     前記投影マスクパターンに含まれる前記複数のマスクの各々は、複数の前記透過率のいずれかが設定される、レーザ照射装置。
  2.  前記投影マスクパターンにおいて、異なる前記透過率が設定された前記マスクがランダムに配置されることを特徴とする請求項1に記載のレーザ照射装置。
  3.  前記投影マスクパターンに含まれる前記複数のマスクの各々は、予め定められた所定の範囲内に含まれる前記透過率のいずれかが設定されることを特徴とする請求項1または2に記載のレーザ照射装置。
  4.  前記投影マスクパターンに含まれ、前記所定の方向に直交する一列において互いに隣接する前記マスクの各々は、互いに前記透過率が異なることを特徴とする請求項1乃至3のいずれかに記載のレーザ照射装置。
  5.  前記投影マスクパターンに含まれる前記複数のマスクの各々は、互いに前記透過率が異なることを特徴とする請求項1乃至4のいずれかに記載のレーザ照射装置。
  6.  前記投影レンズは、前記レーザ光を分離可能なマイクロレンズアレイに含まれる複数のマイクロレンズであり、
     前記投影マスクパターンに含まれる前記複数のマスクの各々は、前記複数のマイクロレンズの各々に対応することを特徴とする請求項1乃至5のいずれかに記載のレーザ照射装置。
  7.  前記投影マスクパターンは、前記マイクロレンズアレイに含まれる複数のマイクロレンズの各々の特性に基づいて、当該マイクロレンズの各々に対応する前記マスクの透過率が設定されることを特徴とする請求項6に記載のレーザ照射装置。
  8.  前記投影マスクパターンは、前記マイクロレンズを透過するレーザ光の位相を変化させることにより、当該マイクロレンズの解像度を高める位相シフトマスクであり、
     前記位相シフトマスクは、前記複数のマイクロレンズのうち、前記解像度に基づいて決定されたマイクロレンズを透過する前記レーザ光の位相を変化させ、当該マイクロレンズの解像度を高くすることを特徴とする請求項6または7に記載のレーザ光照射装置。
  9.  前記位相シフトマスクは、前記複数のマイクロレンズのうち、相対的に解像度が低いマイクロレンズを透過する前記レーザ光の位相を変化させ、当該マイクロレンズの解像度を高くすることを特徴とする請求項6乃至8のいずれかに記載のレーザ光照射装置。
  10.  前記投影レンズは、薄膜トランジスタに含まれるソース電極とドレイン電極との間に被着されたアモルファスシリコン薄膜の所定の領域にレーザ光を照射して、ポリシリコン薄膜を形成することを特徴とする請求項1乃至9のいずれかに記載のレーザ照射装置。
  11.  レーザ光を発生する第1のステップと、
     ガラス基板上の複数の薄膜トランジスタの各々に被着されたアモルファスシリコン薄膜の所定の領域に、前記レーザ光が透過する割合である透過率が設定された複数のマスクを含む投影マスクパターンが設けられた投影レンズを用いて、前記レーザ光を照射する第2のステップと、
     前記レーザ光が照射されるごとに、前記ガラス基板を所定の方向に移動する第3のステップと、を含み、
     第2のステップにおいて、複数の前記透過率のいずれかが設定された複数の前記マスクを含む前記投影マスクパターンを介して、前記レーザ光を照射する、薄膜トランジスタの製造方法。
  12.  第2のステップにおいて、異なる前記透過率が設定された前記マスクがランダムに配置された前記投影マスクパターンを介して、前記レーザ光を照射することを特徴とする請求項11に記載の薄膜トランジスタの製造方法。
  13.  第2のステップにおいて、予め定められた所定の範囲内に含まれる前記透過率のいずれかが設定された前記マスクを含む前記投影マスクパターンを介して、前記レーザ光を照射することを特徴とする請求項11または12に記載の薄膜トランジスタの製造方法。
PCT/JP2017/042107 2016-11-30 2017-11-22 レーザ照射装置および薄膜トランジスタの製造方法 WO2018101154A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780069323.8A CN109952630A (zh) 2016-11-30 2017-11-22 激光照射装置及薄膜晶体管的制造方法
US16/465,050 US20190287790A1 (en) 2016-11-30 2017-11-22 Laser irradiation apparatus and method of manufacturing thin film transistor
KR1020197014100A KR20190087427A (ko) 2016-11-30 2017-11-22 레이저 조사 장치 및 박막 트랜지스터의 제조 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016232505 2016-11-30
JP2016-232505 2016-11-30
JP2016253448A JP2018093154A (ja) 2016-11-30 2016-12-27 レーザ照射装置および薄膜トランジスタの製造方法
JP2016-253448 2016-12-27

Publications (1)

Publication Number Publication Date
WO2018101154A1 true WO2018101154A1 (ja) 2018-06-07

Family

ID=62241385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042107 WO2018101154A1 (ja) 2016-11-30 2017-11-22 レーザ照射装置および薄膜トランジスタの製造方法

Country Status (1)

Country Link
WO (1) WO2018101154A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004072103A (ja) * 2002-07-24 2004-03-04 Advanced Lcd Technologies Development Center Co Ltd 結晶化装置、結晶化方法、薄膜トランジスタ及び表示装置
JP2005129769A (ja) * 2003-10-24 2005-05-19 Hitachi Ltd 半導体薄膜の改質方法、改質した半導体薄膜とその評価方法、およびこの半導体薄膜で形成した薄膜トランジスタ、並びにこの薄膜トランジスタを用いて構成した回路を有する画像表示装置
JP2006013050A (ja) * 2004-06-24 2006-01-12 Sharp Corp レーザビーム投影マスク及びそれを用いたレーザ加工方法、レーザ加工装置
JP2008085318A (ja) * 2006-08-31 2008-04-10 Semiconductor Energy Lab Co Ltd 結晶性半導体膜、及び半導体装置の作製方法
US20090258465A1 (en) * 2008-04-10 2009-10-15 Samsung Ellectronic Co., Ltd. Mask for silicon crystallization, method of forming poly-silicon thin film, and manufacturing method of thin film transistor
JP2012004250A (ja) * 2010-06-15 2012-01-05 V Technology Co Ltd 低温ポリシリコン膜の形成装置及び方法
WO2016186043A1 (ja) * 2015-05-19 2016-11-24 株式会社ブイ・テクノロジー レーザアニール方法、レーザアニール装置及び薄膜トランジスタの製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004072103A (ja) * 2002-07-24 2004-03-04 Advanced Lcd Technologies Development Center Co Ltd 結晶化装置、結晶化方法、薄膜トランジスタ及び表示装置
JP2005129769A (ja) * 2003-10-24 2005-05-19 Hitachi Ltd 半導体薄膜の改質方法、改質した半導体薄膜とその評価方法、およびこの半導体薄膜で形成した薄膜トランジスタ、並びにこの薄膜トランジスタを用いて構成した回路を有する画像表示装置
JP2006013050A (ja) * 2004-06-24 2006-01-12 Sharp Corp レーザビーム投影マスク及びそれを用いたレーザ加工方法、レーザ加工装置
JP2008085318A (ja) * 2006-08-31 2008-04-10 Semiconductor Energy Lab Co Ltd 結晶性半導体膜、及び半導体装置の作製方法
US20090258465A1 (en) * 2008-04-10 2009-10-15 Samsung Ellectronic Co., Ltd. Mask for silicon crystallization, method of forming poly-silicon thin film, and manufacturing method of thin film transistor
JP2012004250A (ja) * 2010-06-15 2012-01-05 V Technology Co Ltd 低温ポリシリコン膜の形成装置及び方法
WO2016186043A1 (ja) * 2015-05-19 2016-11-24 株式会社ブイ・テクノロジー レーザアニール方法、レーザアニール装置及び薄膜トランジスタの製造方法

Similar Documents

Publication Publication Date Title
WO2018016146A1 (ja) レーザ照射装置、薄膜トランジスタおよび薄膜トランジスタの製造方法
US20200176284A1 (en) Laser irradiation device, method of manufacturing thin film transistor, and projection mask
JP2018093154A (ja) レーザ照射装置および薄膜トランジスタの製造方法
WO2018092218A1 (ja) レーザ照射装置、薄膜トランジスタおよび薄膜トランジスタの製造方法
WO2018101154A1 (ja) レーザ照射装置および薄膜トランジスタの製造方法
WO2018124214A1 (ja) レーザ照射装置、薄膜トランジスタおよび薄膜トランジスタの製造方法
WO2018155455A1 (ja) レーザ照射装置、薄膜トランジスタの製造方法、プログラムおよび投影マスク
WO2019146354A1 (ja) レーザ照射装置、投影マスク及びレーザ照射方法
WO2019138674A1 (ja) レーザ照射装置、及び、レーザ照射方法
WO2019107108A1 (ja) レーザ照射装置、レーザ照射方法及び投影マスク
WO2019111362A1 (ja) レーザ照射装置、レーザ照射方法、および、投影マスク
US20200194260A1 (en) Laser irradiation device, laser irradiation method and projection mask
US20200171601A1 (en) Laser irradiation device, method of manufacturing thin film transistor, program, and projection mask
WO2018092213A1 (ja) レーザ照射装置および薄膜トランジスタの製造方法
KR20200035025A (ko) 레이저 조사 장치, 투영 마스크, 레이저 조사 방법 및 프로그램

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17876968

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197014100

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17876968

Country of ref document: EP

Kind code of ref document: A1