WO2018092213A1 - レーザ照射装置および薄膜トランジスタの製造方法 - Google Patents

レーザ照射装置および薄膜トランジスタの製造方法 Download PDF

Info

Publication number
WO2018092213A1
WO2018092213A1 PCT/JP2016/083972 JP2016083972W WO2018092213A1 WO 2018092213 A1 WO2018092213 A1 WO 2018092213A1 JP 2016083972 W JP2016083972 W JP 2016083972W WO 2018092213 A1 WO2018092213 A1 WO 2018092213A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
mask pattern
projection mask
laser
projection
Prior art date
Application number
PCT/JP2016/083972
Other languages
English (en)
French (fr)
Inventor
水村 通伸
伸武 野寺
吉明 松島
優数 田中
隆夫 松本
英俊 中川
Original Assignee
株式会社ブイ・テクノロジー
堺ディスプレイプロダクト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブイ・テクノロジー, 堺ディスプレイプロダクト株式会社 filed Critical 株式会社ブイ・テクノロジー
Priority to PCT/JP2016/083972 priority Critical patent/WO2018092213A1/ja
Priority to TW106139791A priority patent/TW201820731A/zh
Publication of WO2018092213A1 publication Critical patent/WO2018092213A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy

Definitions

  • the present invention relates to the formation of a thin film transistor, and more particularly to a laser irradiation apparatus, a thin film transistor, and a method for manufacturing the thin film transistor for forming a polysilicon thin film by irradiating an amorphous silicon thin film on the thin film transistor with a laser beam.
  • Patent Document 1 can use a semiconductor laser that can be continuously driven and has excellent output stability, and can form a polysilicon film having good crystal characteristics and high carrier mobility with high reproducibility and high speed. A laser irradiation apparatus is described.
  • Patent Document 1 As shown in FIG. 10, a transparent substrate is operated in the X direction (vertical direction) by a scanner having a laser irradiation head for annealing, and then one step is performed in the Y direction (horizontal direction). It is disclosed that the entire transparent substrate is annealed by a plurality of scans by repeating scanning and moving, such as moving and scanning in the X direction (vertical direction) again.
  • the laser irradiation apparatus disclosed in Patent Document 1 performs the annealing process by scanning the entire transparent substrate while connecting the annealing processes. Therefore, on the transparent substrate that has been annealed, there is a joint (a joining region) between the region annealed in one scan and the region annealed in the next scan.
  • the laser irradiation apparatus of Patent Document 1 scans in the X direction (vertical direction), then moves one step in the Y direction (horizontal direction), and scans again in the X direction.
  • the joints (joint areas) become “linear”.
  • the joint (joint region) is recognized as “joint unevenness”.
  • the object of the present invention has been made in view of such problems, and even when the entire substrate is annealed by a plurality of scans, the joints (joining regions) between the annealing processes are linear. Is provided, and a laser irradiation apparatus, a laser irradiation method, and a program capable of suppressing the occurrence of unevenness in connection are provided.
  • a laser irradiation apparatus irradiates a predetermined region of an amorphous silicon thin film deposited on each of a plurality of thin film transistors on a glass substrate with a light source that generates laser light.
  • the projection lens when the annealing process for the predetermined direction on the glass substrate is completed, after moving in the direction orthogonal to the predetermined direction, the projection lens performs the annealing process for the predetermined direction again,
  • the projection mask pattern has the number of openings in the orthogonal direction from the outer row to the inner row of the projection mask pattern. And characterized by increasing people on.
  • the projection mask pattern gradually increases the number of the opening portions from the outer row to the inner row in the orthogonal direction.
  • the openings may be arranged in steps in rows adjacent to each other.
  • the projection lens is a microlens array including a plurality of microlenses
  • the projection mask pattern includes a set of rows corresponding to each other in the orthogonal direction
  • the total number of the openings provided in each of the pair of rows corresponding to each other may be the number of the plurality of microlenses included in one row of the microlens array.
  • the projection mask pattern is configured such that each of the pair of columns corresponding to each other is opposite to the center line in the predetermined direction in the projection mask pattern. It is good also as arranging.
  • the laser irradiation apparatus may be characterized in that the projection mask pattern is arranged such that each of the set of columns corresponding to each other is arranged at an equal distance from the center line.
  • the projection lens irradiates a predetermined region of the amorphous silicon thin film deposited between the source electrode and the drain electrode included in the thin film transistor with a laser beam.
  • a silicon thin film may be formed.
  • a thin film transistor manufacturing method includes a first step of generating laser light, and a plurality of openings in a predetermined region of an amorphous silicon thin film deposited on each of the plurality of thin film transistors on a glass substrate.
  • the second step of performing the annealing process by irradiating the laser beam using the projection lens provided with the projection mask pattern including the portion, and the annealing process for the predetermined direction on the glass substrate are completed.
  • the number of the openings is gradually increased from the outer row to the inner row in the projection mask pattern.
  • the laser light may be irradiated through the projection mask pattern in which the openings are arranged in steps in adjacent rows.
  • the projection lens is a microlens array including a plurality of microlenses.
  • the projection lens includes a set of rows corresponding to each other in the orthogonal direction. The total number of the openings provided in each of the pair of rows corresponding to each other is the laser through the projection mask pattern, which is the number of the plurality of microlenses included in one row of the microlens array. It may be characterized by irradiating light.
  • each of the pair of corresponding columns is opposite to the center line in the predetermined direction in the projection mask pattern.
  • the laser light may be irradiated through the projection mask pattern arranged in the above.
  • the thin film transistor manufacturing method includes, in the second step, the laser through the projection mask pattern in which each of the pair of columns corresponding to each other is arranged at an equal distance from the center line. It may be characterized by irradiating light.
  • a predetermined region of the amorphous silicon thin film deposited between the source electrode and the drain electrode included in the thin film transistor is irradiated with laser light.
  • a polysilicon thin film may be formed.
  • the present invention even in the case where the entire substrate is annealed by a plurality of scans, it is possible to reduce the occurrence of joint unevenness by reducing the joint (joint region) between the annealing processes from being linear.
  • An irradiation apparatus, a thin film transistor, and a method for manufacturing the thin film transistor are provided.
  • FIG. 1 is a diagram illustrating a configuration example of a laser irradiation apparatus 10 according to the first embodiment of the present invention.
  • the laser irradiation apparatus 10 performs annealing by irradiating only a channel region formation scheduled region with laser light, for example.
  • This is an apparatus for polycrystallizing a channel region formation planned region.
  • the laser irradiation device 10 is used, for example, when forming a thin film transistor of a pixel such as a peripheral circuit of a liquid crystal display device.
  • a gate electrode made of a metal film such as Al is formed on the glass substrate 30 by sputtering.
  • a gate insulating film made of a SiN film is formed on the entire surface of the glass substrate 30 by a low temperature plasma CVD method.
  • an amorphous silicon thin film 21 is formed on the gate insulating film by, for example, plasma CVD.
  • the laser irradiation apparatus 10 illustrated in FIG. 1 irradiates a predetermined region on the gate electrode of the amorphous silicon thin film 21 with the laser beam 14 and anneals to crystallize the predetermined region into polysilicon.
  • the beam system of the laser light emitted from the laser light source 11 is expanded by the coupling optical system 12, and the luminance distribution is made uniform.
  • the laser light source 11 is, for example, an excimer laser that emits laser light having a wavelength of 308 nm or 248 nm at a predetermined repetition period.
  • the laser beam is separated into a plurality of laser beams 14 by a plurality of openings (transmission regions) of a projection mask pattern 15 (not shown) provided on the microlens array 13, and a predetermined region of the amorphous silicon thin film 21 is obtained. Is irradiated.
  • the microlens array 13 is provided with a projection mask pattern 15, and the projection mask pattern 15 irradiates a predetermined region with laser light 14.
  • a predetermined region of the amorphous silicon thin film 21 is instantaneously heated and melted, and a part of the amorphous silicon thin film 21 becomes the polysilicon thin film 22.
  • the polysilicon thin film 22 has a higher electron mobility than the amorphous silicon thin film 21 and is used in the thin film transistor 20 in a channel region that electrically connects the source 23 and the drain 24.
  • FIG. 1 an example using the microlens array 13 is shown, but the microlens array 13 is not necessarily used, and the laser light 14 may be irradiated using one projection lens. .
  • the polysilicon thin film 22 is formed using the microlens array 13 will be described as an example.
  • FIG. 2 is a schematic diagram showing an example of the thin film transistor 20 in which a predetermined region is annealed.
  • the thin film transistor 20 is formed by first forming a polysilicon thin film 22 and then forming a source 23 and a drain 24 at both ends of the formed polysilicon thin film 22.
  • a polysilicon thin film 22 is formed between a source 23 and a drain 24.
  • the laser irradiation apparatus 10 irradiates one thin film transistor 20 with laser light 14 using, for example, 20 microlenses 17 included in one column (or one row) of the microlens array 13 illustrated in FIG. That is, the laser irradiation apparatus 10 irradiates the polysilicon thin film 22 with 20 shots of laser light 14.
  • a predetermined region of the amorphous silicon thin film 21 is instantaneously heated and melted to become a polysilicon thin film 22.
  • FIG. 3 is a schematic diagram showing an example of the glass substrate 30 on which the laser irradiation apparatus 10 irradiates the laser beam 14.
  • the glass substrate 30 includes a plurality of pixels 31, and each of the pixels 31 includes a thin film transistor 20.
  • the thin film transistor 20 performs light transmission control in each of a plurality of pixels 31 by electrically turning on and off.
  • the amorphous silicon thin film 21 is provided on the glass substrate 30 at a predetermined interval “H”.
  • the portion of the amorphous silicon thin film 21 is a portion that becomes the thin film transistor 20.
  • the laser irradiation apparatus 10 irradiates the amorphous silicon thin film 21 with the laser beam 14.
  • the laser irradiation apparatus 10 irradiates the laser beam 14 at a predetermined cycle, moves the glass substrate 30 during a time when the laser beam 14 is not irradiated, and the laser beam 14 is applied to the next amorphous silicon thin film 21. Let it be irradiated.
  • the amorphous silicon thin film 21 is arranged on the glass substrate 30 at a predetermined interval “H” with respect to the moving direction.
  • the laser irradiation apparatus 10 irradiates the part of the amorphous silicon thin film 21 arrange
  • the laser irradiation apparatus 10 irradiates the same laser beam 14 to the plurality of amorphous silicon thin films 21 on the glass substrate using the microlens array 13.
  • the laser irradiation apparatus 10 irradiates, for example, the same laser light 14 to a plurality of amorphous silicon thin films 21 included in the region A shown in FIG.
  • the laser irradiation apparatus 10 irradiates the same laser beam 14 also to the plurality of amorphous silicon thin films 21 included in the region B shown in FIG.
  • FIG. 4 is a diagram showing a configuration example of the microlens array 13 used for annealing.
  • 20 microlenses 17 are arranged in one column (or one row) in the scanning direction.
  • the laser irradiation apparatus 1 irradiates one thin film transistor 20 with the laser beam 14 by using at least a part of the 20 microlenses 17 included in one column (or one row) of the microlens array 13.
  • the number of microlenses 17 in one row (or one row) included in the microlens array 13 is not limited to 20 and may be any number.
  • the microlens array 13 includes 20 microlenses 17 in one column (or one row) in the scanning direction, but in one row (or one column) in the direction (orthogonal direction) orthogonal to the scanning direction, for example, Contains 83. It is needless to say that 83 is an example, and any number is possible.
  • the number of microlenses 17 that can be included in one row (or one column) in the direction orthogonal to the scanning direction of the microlens array depends on the output of the laser light 14 from the laser irradiation device 10. Therefore, in order to perform laser annealing on the entire glass substrate, the laser irradiation apparatus 10 scans in the scanning direction and then moves by one step (long side of the microlens array) in the direction orthogonal to the scanning direction. It is necessary to repeat scanning in the scanning direction again. Therefore, a “linear” joint (a joint region) exists between the region annealed in one scan and the region annealed in the next scan. In this way, if the laser beam 14 is irradiated in such a manner that “linear” joints (joint areas) appear, the joints (joint areas) are recognized as “joint unevenness” on the liquid crystal screen.
  • the openings of the projection mask pattern 15 provided on the microlens array 13 are arranged so as to be stepped (stepped) from the outside to the inside. .
  • FIG. 5 is a diagram showing a configuration example of the projection mask pattern 15 in the first embodiment of the present invention.
  • the projection mask pattern 15 includes a mask 150 having an opening (region having an opening) and a mask 151 having no opening (region having no opening).
  • column 1 in FIG. 5 includes one mask 150 having an opening.
  • a mask 150 having an opening is arranged stepwise from one side parallel to the scanning direction to the inside.
  • one mask 150 having an opening is arranged in the column 1 closest to the side A.
  • the projection mask pattern 15 includes a mask 150 having an opening at the position of “column 1, row 1”.
  • three masks 150 having openings are arranged in the column 2 adjacent to the column 1.
  • the projection mask pattern 15 includes a mask 150 having an opening in each of the rows 1 to 3 in the column 2.
  • five masks 150 having openings are arranged in the column 3 adjacent to the column 2.
  • the projection mask pattern 150 includes a mask 150 having an opening in each of the rows 1 to 5 in the column 3.
  • the openings are arranged in a staircase pattern (step shape) in rows adjacent to each other.
  • the number of openings arranged in each row may be any number, and is not limited to one for row 1, three for row 2, five for row 3, and so on.
  • one mask 150 having an opening is arranged in the highest row Z on the side B facing the side A.
  • the mask 150 having openings in the row Z is disposed on the projection mask pattern 15 at a position that is diagonal to the mask 150 having openings in the row 1.
  • the projection mask pattern 15 includes a mask 150 having an opening at the position of “column Z, row 20”, that is, the diagonal position of “column 1, row 1”.
  • three masks 150 having openings are arranged in the column Y adjacent to the column Z.
  • the mask 150 having openings in the column Y is arranged on the projection mask pattern 15 at a position that is diagonal to the mask 150 having openings in the column 2.
  • the column X adjacent to the column Y includes five masks 150 having openings. Also on the side B side, the masks 150 having openings are arranged so as to be stepped (stepped) in rows adjacent to each other. Note that the number of masks having openings arranged in each column may be any number, and is limited to one in column Z, three in column Y, five in column Z, and so on. is not.
  • the region scanned in the column 1 on the glass substrate 30 is irradiated only once with the laser beam. Therefore, in the glass substrate 30, the glass substrate 30 is moved in the Y direction so that the region scanned in the row 1 is scanned in the region corresponding to the row P (19 openings) in the next scan. Move to.
  • column 1 (one opening) corresponds to column Q (19 openings)
  • the glass substrate moves in the region scanned in column 1 on glass substrate 30. And then scanned in column Q.
  • the glass substrate 30 is irradiated with the laser light 14 a total of 20 times.
  • row 2 (3 openings) corresponds to row R (17 openings)
  • row 3 (5 openings) corresponds to row S (15 openings)
  • the glass substrate 30 is annealed in both corresponding rows. In this way, the entire glass substrate 30 is annealed by a total of 20 times of laser irradiation by scanning with the columns corresponding to each other.
  • FIG. 6 is a diagram for explaining the manner in which the glass substrate 30 is annealed by the microlens array 13 in which the projection mask pattern 15 illustrated in FIG. 5 is arranged. As shown in FIG. 6, after the laser irradiation apparatus 10 scans in the X direction, the glass substrate 30 moves one step in the Y direction, and the laser irradiation apparatus 10 scans in the X direction again.
  • the movement of the glass substrate 30 in the Y direction is performed by a distance that can be scanned in both rows corresponding to each other in the projection mask pattern 15.
  • the glass substrate 30 is placed so that the region scanned in “column 1” of the projection mask pattern 15 is scanned in “column Q” in the next scan in the X direction. Moving.
  • the irradiation head that is, the laser light source 11, the coupling optical system 12, the microlens array 13, and the projection mask 150
  • the irradiation head 10 may move with respect to the glass substrate 30.
  • the total number of “projection mask patterns including openings” included in the columns corresponding to each other is 20.
  • the projection masks 150 including the openings are arranged so that the total number of “projection masks 150 including the openings” included in the columns corresponding to each other is 20.
  • the distance that the glass substrate 30 moves depends on the size of the microlens array 13 and the number of microlenses 17 included in the microlens array 13, but can be set in advance.
  • FIG. 7 is a diagram for explaining “columns” corresponding to each other in the projection mask pattern 15 in FIG. 6.
  • column 1 one opening
  • column Q (19 openings)
  • row 5 3 openings
  • row U 15 openings
  • row 10 (19 openings) and row Z (openings). 1 part
  • the number of openings included in the mutually corresponding rows is 20 in total.
  • the glass substrate 30 moves in a direction (Y direction) orthogonal to the scanning direction (X direction) so that the laser light 14 is irradiated by rows corresponding to each other. For this reason, when the laser light 14 is irradiated using the microlens array 13 using the projection mask pattern 15, the thin film transistor 20 is irradiated with the laser light 14 20 times over the entire glass substrate 30.
  • FIG. 8 is a diagram for comparing the annealing process by the conventional laser irradiation apparatus 10 and the annealing process by the laser irradiation apparatus in the first embodiment of the present invention.
  • the nth X-direction scan area and the (n + 1) th X-direction scan area Is completely separated, so the boundary is clear. That is, in the conventional laser irradiation apparatus, there is a joint between the annealing processes performed by different scans in the glass substrate 30. The joint is recognized as “joint unevenness”.
  • the (n + 1) th X-direction is suddenly detected from the n-th X-direction scan region.
  • the ratio of the regions annealed by different scans gradually changes in a step shape (step shape). Therefore, unlike the case of the conventional laser irradiation apparatus as shown in FIG. 8A, there is no connection between the annealing processes performed by different scans. Since there are no joints, “joint unevenness” does not occur, and a high-quality liquid crystal screen or the like can be provided by performing the annealing treatment with the laser irradiation apparatus 10 in the first embodiment of the present invention.
  • the laser irradiation apparatus 10 irradiates the glass substrate 30 with the laser light 14 using the microlens array 13 provided with the projection mask pattern shown in FIG.
  • the glass substrate 30 moves (scans) a predetermined distance each time the laser light 14 is irradiated using the microlens array 13. As illustrated in FIG. 3, the predetermined distance is a distance “H” between the plurality of thin film transistors 20 on the glass substrate 30.
  • the laser irradiation apparatus 10 stops the irradiation of the laser beam 14 while moving the glass substrate 30 by the predetermined distance.
  • the laser irradiation apparatus 10 irradiates the laser beam 14 using the microlens array 13.
  • the laser irradiation apparatus 10 repeats the irradiation of the laser beam 14 using the microlens array 13 and the movement of the glass substrate 30, and then the vertical direction of the glass substrate 30 (scanning direction. That is, the direction of movement by a predetermined distance). ) Is annealed.
  • the glass substrate 30 moves one step (long side of the microlens array) in a direction orthogonal to the scanning direction.
  • the laser irradiation apparatus 10 stops the irradiation of the laser light 14 while moving the glass substrate 30 by one step.
  • the laser irradiation apparatus 10 irradiates the laser beam 14 using the microlens array 13 and performs an annealing process in the vertical direction of the glass substrate 30.
  • a source 23 and a drain 24 are formed in the thin film transistors 20 in another process.
  • the annealing process by the laser irradiation apparatus 10 in the first embodiment of the present invention there is no connection between the annealing processes performed by different scans. Since there are no joints, “joint unevenness” does not occur, and a high-quality liquid crystal screen or the like can be provided by performing the annealing treatment with the laser irradiation apparatus 10 in the first embodiment of the present invention.
  • the second embodiment of the present invention is an embodiment in which laser annealing is performed using one projection lens 18 instead of the microlens array 13.
  • FIG. 9 is a diagram illustrating a configuration example of the laser irradiation apparatus 10 according to the second embodiment of the present invention.
  • the laser irradiation apparatus 10 according to the second embodiment of the present invention includes a laser light source 11, a coupling optical system 12, a projection mask pattern 15, and a projection lens 18.
  • the laser light source 11 and the coupling optical system 12 have the same configuration as the laser light source 11 and the coupling optical system 12 in the first embodiment of the present invention shown in FIG. Omitted.
  • the projection mask pattern has the same configuration as the projection mask pattern in the first embodiment of the present invention, detailed description is omitted.
  • the laser light is transmitted through the opening (transmission region) of the projection mask pattern 15 as shown in FIG. 5, and is irradiated to a predetermined region of the amorphous silicon thin film 21 by the projection lens 18.
  • a predetermined region of the amorphous silicon thin film 21 is instantaneously heated and melted, and a part of the amorphous silicon thin film 21 becomes the polysilicon thin film 22.
  • the laser irradiation apparatus 10 irradiates the laser beam 14 at a predetermined cycle, moves the glass substrate 30 during the time when the laser beam 14 is not irradiated, and the next amorphous silicon thin film 21.
  • the laser beam 14 is irradiated to the point.
  • the amorphous silicon thin film 21 is arranged on the glass substrate 30 at a predetermined interval “H” in the moving direction.
  • the laser irradiation apparatus 10 irradiates the part of the amorphous silicon thin film 21 arrange
  • the laser beam 14 is converted by the magnification of the optical system of the projection lens 18. That is, the pattern of the projection mask pattern 15 is converted by the magnification of the optical system of the projection lens 18, and a predetermined region on the glass substrate 30 is laser annealed.
  • the mask pattern of the projection mask pattern 15 is converted by the magnification of the optical system of the projection lens 18, and a predetermined region on the glass substrate 30 is laser-annealed.
  • a predetermined region on the glass substrate 30 is laser-annealed.
  • the magnification of the optical system of the projection lens 18 is not limited to about twice, and may be any magnification.
  • a predetermined region on the glass substrate 30 is laser-annealed according to the magnification of the optical system of the projection lens 18. For example, if the magnification of the optical system of the projection lens 18 is 4, the mask pattern of the projection mask pattern 15 is multiplied by about 1/4 (0.25), and a predetermined region of the glass substrate 30 is laser annealed. .
  • the reduced image of the projection mask pattern 15 irradiated on the glass substrate 30 is a pattern rotated 180 degrees around the optical axis of the lens of the projection lens 18.
  • the reduced image of the projection mask pattern 15 irradiated on the glass substrate 30 is the projection mask pattern 15 as it is.
  • the pattern of the projection mask pattern 15 is reduced on the glass substrate 30 as it is.
  • the second embodiment of the present invention even when laser annealing is performed using one projection lens 18, a different scan is performed as in the first embodiment using the microlens array 13. There will be no seam between the annealing treatments made by. Since there are no joints, “joint unevenness” does not occur, and a high-quality liquid crystal screen or the like can be provided by performing the annealing treatment with the laser irradiation apparatus 10 in the second embodiment of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Recrystallisation Techniques (AREA)
  • Thin Film Transistor (AREA)

Abstract

基板上において、アニール化処理間のつなぎ目が存在すると、当該つなぎ目がつなぎムラとして認識されてしまう。本発明の一実施形態におけるレーザ照射装置は、レーザ光を発生する光源と、ガラス基板上の複数の薄膜トランジスタの各々に被着されたアモルファスシリコン薄膜の所定の領域に、当該レーザ光を照射してアニール化処理を行う投影レンズと、当該投影レンズ上に設けられ、当該複数の薄膜トランジスタの各々に対して当該レーザ光が照射されるように、複数の開口部が設けられた投影マスクパターンと、を備え、当該投影レンズは、当該ガラス基板上の所定の方向に対するアニール化処理が完了した場合、当該所定の方向の直交方向に移動した後、再度、当該所定の方向に対するアニール化処理を行い、当該投影マスクパターンは、当該直交方向において、当該投影マスクパターンの外側の列から内側の列に向けて、当該開口部の数を徐々に増加させることを特徴とする。

Description

レーザ照射装置および薄膜トランジスタの製造方法
 本発明は、薄膜トランジスタの形成に関するものであり、特に、薄膜トランジスタ上のアモルファスシリコン薄膜にレーザ光を照射して、ポリシリコン薄膜を形成するためのレーザ照射装置、薄膜トランジスタおよび薄膜トランジスタの製造方法に関する。
 逆スタガ構造の薄膜トランジスタとして、アモルファスシリコン薄膜をチャネル領域に使用したものが存在する。ただ、アモルファスシリコン薄膜は電子移動度が小さいため、当該アモルファスシリコン薄膜をチャネル領域に使用すると、薄膜トランジスタにおける電荷の移動度が小さくなるという難点があった。
 そこで、アモルファスシリコン薄膜の所定の領域をレーザ光により瞬間的に加熱することで多結晶化し、電子移動度の高いポリシリコン薄膜を形成して、当該ポリシリコン薄膜をチャネル領域に使用する技術が存在する。
 例えば、特許文献1には、連続駆動が可能で出力安定性に優れた半導体レーザを用い、良好な結晶特性を備えキャリア移動度の高いポリシリコン膜を再現性良く且つ高速に形成することができるレーザ照射装置について記載されている。
 そして、特許文献1には、図10に示すように、アニール用のレーザ照射ヘッドを備えたスキャナにより、透明基板をX方向(縦方向)に操作した後、Y方向(横方向)に1ステップ移動し、再度X方向(縦方向)へ走査を行うというように、走査と移動とを繰り返して、透明基板の全体を複数の走査でアニール処理することが開示されている。
特開2004-64066号公報
 上記のとおり、特許文献1に開示されているレーザ照射装置は、アニール処理をつなぎながら透明基板全体を走査して、アニール処理を行っている。そのため、アニール処理された透明基板上には、1回の走査でアニール処理された領域と、次の走査でアニール処理された領域との間につなぎ目(つなぎ領域)が存在することになる。
 そして、特許文献1のレーザ照射装置は、図10に示すように、X方向(縦方向)に走査した後、Y方向(横方向)に1ステップ移動し、再度X方向に走査するため、当該つなぎ目(つなぎ領域)が“線状”になってしまう。このように、基板上において“線状”のつなぎ目(つなぎ領域)が存在すると、そのつなぎ目(つなぎ領域)が“つなぎムラ”として認識されてしまう。
 本発明の目的は、かかる問題点に鑑みてなされたものであって、基板全体を複数の走査でアニール処理する場合であっても、アニール処理間のつなぎ目(つなぎ領域)が線状になることを低減し、つなぎムラの発生を抑制可能なレーザ照射装置、レーザ照射方法およびプログラムを提供することである。
 本発明の一実施形態におけるレーザ照射装置は、レーザ光を発生する光源と、ガラス基板上の複数の薄膜トランジスタの各々に被着されたアモルファスシリコン薄膜の所定の領域に、当該レーザ光を照射してアニール化処理を行う投影レンズと、当該投影レンズ上に設けられ、当該複数の薄膜トランジスタの各々に対して当該レーザ光が照射されるように、複数の開口部が設けられた投影マスクパターンと、を備え、当該投影レンズは、当該ガラス基板上の所定の方向に対するアニール化処理が完了した場合、当該所定の方向の直交方向に移動した後、再度、当該所定の方向に対するアニール化処理を行い、当該投影マスクパターンは、当該直交方向において、当該投影マスクパターンの外側の列から内側の列に向けて、当該開口部の数を徐々に増加させることを特徴とする。
 本発明の一実施形態におけるレーザ照射装置は、当該投影マスクパターンは、当該直交方向において、当該投影マスクパターンの外側の列から内側の列に向けて、当該開口部の数を徐々に増加させるとともに、当該開口部を互いに隣り合う列においてステップ状に配置することを特徴としてもよい。
 本発明の一実施形態におけるレーザ照射装置は、当該投影レンズは、複数のマイクロレンズを含むマイクロレンズアレイであり、当該投影マスクパターンは、当該直交方向において、互いに対応する一組の列を含み、当該互いに対応する一組の列の各々に設けられる当該開口部の合計数は、当該マイクロレンズアレイの一列に含まれる当該複数のマイクロレンズの数であることを特徴としてもよい。
 本発明の一実施形態におけるレーザ照射装置は、当該投影マスクパターンは、当該互いに対応する一組の列の各々を、当該投影マスクパターンにおける当該所定の方向の中心線に対して、互いに逆側に配置することを特徴としてもよい。
 本発明の一実施形態におけるレーザ照射装置は、当該投影マスクパターンは、当該互いに対応する一組の列の各々を、当該中心線から等しい距離に配置することを特徴としてもよい。
 本発明の一実施形態におけるレーザ照射装置は、当該投影レンズは、薄膜トランジスタに含まれるソース電極とドレイン電極との間に被着されたアモルファスシリコン薄膜の所定の領域にレーザ光を照射して、ポリシリコン薄膜を形成することを特徴としてもよい。
 本発明の一実施形態における薄膜トランジスタの製造方法は、レーザ光を発生する第1のステップと、ガラス基板上の複数の薄膜トランジスタの各々に被着されたアモルファスシリコン薄膜の所定の領域に、複数の開口部を含む投影マスクパターンが設けれた投影レンズを用いて、当該レーザ光を照射してアニール化処理を行う第2のステップと、当該ガラス基板上の当該所定の方向に対するアニール化処理が完了した場合、当該所定の方向の直交方向に移動した後、再度、当該所定の方向に対するアニール化処理を行う第3のステップと、を含み、第2のステップにおいて、当該直交方向において、当該投影マスクパターンの外側の列から内側の列に向けて、当該開口部の数を徐々に増加した当該投影マスクパターンを介して、当該レーザ光を照射することを特徴とする。
 本発明の一実施形態における薄膜トランジスタの製造方法は、第2のステップにおいて、当該直交方向において、当該投影マスクパターンの外側の列から内側の列に向けて、当該開口部の数を徐々に増加させるとともに、当該開口部を互いに隣り合う列においてステップ状に配置した当該投影マスクパターンを介して、当該レーザ光を照射することを特徴としてもよい。
 本発明の一実施形態における薄膜トランジスタの製造方法は、当該投影レンズは、複数のマイクロレンズを含むマイクロレンズアレイであり、第2のステップにおいて、当該直交方向において、互いに対応する一組の列を含み、当該互いに対応する一組の列の各々に設けられる当該開口部の合計数は、当該マイクロレンズアレイの一列に含まれる当該複数のマイクロレンズの数である当該投影マスクパターンを介して、当該レーザ光を照射する
ことを特徴としてもよい。
 本発明の一実施形態における薄膜トランジスタの製造方法は、第2のステップにおいて、当該互いに対応する一組の列の各々を、当該投影マスクパターンにおける当該所定の方向の中心線に対して、互いに逆側に配置した当該投影マスクパターンを介して、当該レーザ光を照射することを特徴としてもよい。
 本発明の一実施形態における薄膜トランジスタの製造方法は、第2のステップにおいて、当該互いに対応する一組の列の各々を、当該中心線から等しい距離に配置した当該投影マスクパターンを介して、当該レーザ光を照射することを特徴としてもよい。
 本発明の一実施形態における薄膜トランジスタの製造方法は、当該第2のステップにおいて、薄膜トランジスタに含まれるソース電極とドレイン電極との間に被着されたアモルファスシリコン薄膜の所定の領域にレーザ光を照射して、ポリシリコン薄膜を形成する
ことを特徴としてもよい。
 本発明によれば、基板全体を複数の走査でアニール処理する場合であっても、アニール処理間のつなぎ目(つなぎ領域)が線状になることを低減し、つなぎムラの発生を抑制可能なレーザ照射装置、薄膜トランジスタおよび薄膜トランジスタの製造方法を提供することである。
レーザ照射装置の構成例を示す図である。 所定の領域がアニール化された薄膜トランジスタの例を示す模式図である。 レーザ照射装置がレーザ光を照射するガラス基板の例を示す模式図である。 マイクロレンズアレイの構成例を示す図である。 投影マスクパターンの構成例を示す図である。 投影マスクパターンが配置されたマイクロレンズアレイにより、ガラス基板をアニール処理する様子を説明するための図である。 投影マスクパターンにおける、互いに対応する“列”に関して説明するための図である。 従来のレーザ照射装置によるアニール処理と、本発明の第1の実施形態におけるレーザ照射装置によるアニール処理と、を比較するための図である。 本発明の第2の実施形態におけるレーザ照射装置の構成例を示す図である。 従来のレーザ照射装置によるアニール処理の様子を説明するための図である。
 以下、本発明の実施形態について、添付の図面を参照して具体的に説明する。
 (第1の実施形態)
 図1は、本発明の第1の実施形態におけるレーザ照射装置10の構成例を示す図である。
 本発明の第1の実施形態において、レーザ照射装置10は、薄膜トランジスタ(TFT)20のような半導体装置の製造工程において、例えば、チャネル領域形成予定領域のみにレーザ光を照射してアニールし、当該チャネル領域形成予定領域を多結晶化するための装置である。
 レーザ照射装置10は、例えば、液晶表示装置の周辺回路などの画素の薄膜トランジスタを形成する際に用いられる。このような薄膜トランジスタを形成する場合、まず、ガラス基板30上にAl等の金属膜からなるゲート電極を、スパッタによりパターン形成する。そして、低温プラズマCVD法により、ガラス基板30上の全面にSiN膜からなるゲート絶縁膜を形成する。その後、ゲート絶縁膜上に、例えば、プラズマCVD法によりアモルファスシリコン薄膜21を形成する。そして、図1に例示するレーザ照射装置10により、アモルファスシリコン薄膜21のゲート電極上の所定の領域にレーザ光14を照射してアニールし、当該所定の領域を多結晶化してポリシリコン化する。
 図1に示すように、レーザ照射装置10において、レーザ光源11から出射されたレーザ光は、カップリング光学系12によりビーム系が拡張され、輝度分布が均一化される。レーザ光源11は、例えば、波長が308nmや248nmなどのレーザ光を、所定の繰り返し周期で放射するエキシマレーザである。
 その後、レーザ光は、マイクロレンズアレイ13上に設けられた投影マスクパターン15(図示しない)の複数の開口(透過領域)により、複数のレーザ光14に分離され、アモルファスシリコン薄膜21の所定の領域に照射される。マイクロレンズアレイ13には、投影マスクパターン15が設けられ、当該投影マスクパターン15によって所定の領域にレーザ光14が照射される。そして、アモルファスシリコン薄膜21の所定の領域が瞬間加熱されて溶融し、アモルファスシリコン薄膜21の一部がポリシリコン薄膜22となる。
 ポリシリコン薄膜22は、アモルファスシリコン薄膜21に比べて電子移動度が高く、薄膜トランジスタ20において、ソース23とドレイン24とを電気的に接続させるチャネル領域に用いられる。なお、図1の例では、マイクロレンズアレイ13を用いた例を示しているが、必ずしもマイクロレンズアレイ13を用いる必要はなく、1個の投影レンズを用いてレーザ光14を照射してもよい。なお、実施形態1では、マイクロレンズアレイ13を用いて、ポリシリコン薄膜22を形成する場合を例にして説明する。
 図2は、所定の領域がアニール化された薄膜トランジスタ20の例を示す模式図である。なお、薄膜トランジスタ20は、最初にポリシリコン薄膜22を形成し、その後、形成されたポリシリコン薄膜22の両端にソース23とドレイン24を形成することで、作成される。
 図2に示すように、薄膜トランジスタは、ソース23とドレイン24との間に、ポリシリコン薄膜22が形成されている。レーザ照射装置10は、1つの薄膜トランジスタ20に対して、図2に示したマイクロレンズアレイ13の一列(または一行)に含まれる例えば20個のマイクロレンズ17を用いて、レーザ光14を照射する。すなわち、レーザ照射装置10は、ポリシリコン薄膜22に対して、20ショットのレーザ光14を照射する。その結果、薄膜トランジスタ20において、アモルファスシリコン薄膜21の所定の領域が瞬間加熱されて溶融し、ポリシリコン薄膜22となる。
 図3は、レーザ照射装置10がレーザ光14を照射するガラス基板30の例を示す模式図である。図3に示すように、ガラス基板30は、複数の画素31を含み、当該画素31の各々に薄膜トランジスタ20を備える。薄膜トランジスタ20は、複数に画素31の各々における光の透過制御を、電気的にON/OFFすることにより実行するものである。図3に示すように、ガラス基板30には、所定の間隔「H」で、アモルファスシリコン薄膜21が設けられている。当該アモルファスシリコン薄膜21の部分は、薄膜トランジスタ20となる部分である。
 レーザ照射装置10は、アモルファスシリコン薄膜21にレーザ光14を照射する。ここで、レーザ照射装置10は所定の周期でレーザ光14を照射し、レーザ光14が照射されていない時間にガラス基板30を移動させ、次のアモルファスシリコン薄膜21の箇所に当該レーザ光14が照射されるようにする。図3に示すように、ガラス基板30は、移動方向に対して、所定の間隔「H」でアモルファスシリコン薄膜21が配置される。そして、レーザ照射装置10は、所定の周期で、ガラス基板30上に配置されたアモルファスシリコン薄膜21の部分に、レーザ光14を照射する。
 そして、レーザ照射装置10は、マイクロレンズアレイ13を用いて、ガラス基板上の複数のアモルファスシリコン薄膜21に対して、同一のレーザ光14を照射する。レーザ照射装置10は、例えば、図3に示す領域Aに含まれる複数のアモルファスシリコン薄膜21に対して、同一のレーザ光14を照射する。また、レーザ照射装置10は、図3に示す領域Bに含まれる複数のアモルファスシリコン薄膜21に対しても、同一のレーザ光14を照射する。
 図4は、アニール化に用いるマイクロレンズアレイ13の構成例を示す図である。図2に示すように、マイクロレンズアレイ13において、スキャン方向の1列(又は1行)には、20個のマイクロレンズ17が配置される。レーザ照射装置1は、1つの薄膜トランジスタ20に対して、マイクロレンズアレイ13の1列(又は1行)に含まれる20個のマイクロレンズ17の少なくとも一部を用いて、レーザ光14を照射する。なお、なお、マイクロレンズアレイ13に含まれる一列(又は一行)のマイクロレンズ17の数は、20個に限られず、いくつであってもよい。
 図4に示すように、マイクロレンズアレイ13は、スキャン方向の一列(または一行)にマイクロレンズ17を20個含むが、スキャン方向に直交する方向(直交方向)の一行(または一列)には例えば83個含む。なお、83個は例示であって、いくつであってもよいことは言うまでもない。
 ここで、マイクロレンズアレイのスキャン方向の直交方向の一行(または一列)に含むことが可能なマイクロレンズ17の数は、レーザ照射装置10によるレーザ光14の出力に依存する。そのため、レーザ照射装置10は、ガラス基板全体に対してレーザアニール処理を行うためには、スキャン方向にスキャンした後、スキャン方向の直交方向に1ステップ分(マイクロレンズアレイの長辺分)移動し、再度スキャン方向にスキャンすることを繰り返す必要がある。そのため、1回のスキャンでアニール処理された領域と、次のスキャンでアニール処理された領域との間に“線状”のつなぎ目(つなぎ領域)が存在することになる。このように、“線状”のつなぎ目(つなぎ領域)が現れる態様でレーザ光14を照射してしまうと、このつなぎ目(つなぎ領域)が液晶画面上で“つなぎムラ”として認識されてしまう。
 そこで、本発明の第1の実施形態では、1回のスキャンでアニール処理された領域と、次のスキャンでアニール処理された領域と、の間に“線状”のつなぎ目(つなぎ領域)ができないようにアニール処理を行うことで、“つなぎムラ”の発生を低減する。
 そのために、本発明の第1の実施形態では、マイクロレンズアレイ13上に設けられる投影マスクパターン15の開口部の配置を、外側から内側に向けて階段状(ステップ状)となるように配置する。
 図5は、本発明の第1の実施形態における、投影マスクパターン15の構成例を示す図である。図5に示すように、投影マスクパターン15は、開口部を有するマスク150(開口部を有する領域)と、開口部を有しないマスク151(開口部を有しない領域)とを含む。例えば、図5の列1には、開口部を有するマスク150が1つ含まれる。
 図5に示すように、投影マスクパターン15は、開口部を有するマスク150を、スキャン方向に平行な一辺から内側に向けて、階段状(ステップ状)に配置する。例えば、投影マスクパターン15は、辺Aに最も近い列1において、開口部を有するマスク150を1つ配置する。具体的には、投影マスクパターン15は、「列1、行1」の位置に開口部を有するマスク150を備える。また、該投影マスクパターン15において、列1の隣の列2は、開口部を有するマスク150を3つ配置する。具体手には、投影マスクパターン15は、列2において、行1乃至行3の各々に、開口部を有するマスク150を備える。さらに、該投影マスクパターン15において、列2の隣の列3は、開口部を有するマスク150を5つ配置する。具体的には、投影マスクパターン150は、列3において、行1乃至行5の各々に、開口部を有するマスク150を備える。このように、開口部は、互いに隣り合う列において、階段状(ステップ状)となるように配置される。なお、各列に配置される開口部の数はいくつであってもよく、列1に1個、列2に3個、列3に5個・・・のように限定されるわけではない。
 また、投影マスクパターン15上で、辺Aに向い合う辺Bに最も高い列Zにおいて、開口部を有するマスク150を1つ配置する。列Zにおいて開口部を有するマスク150は、投影マスクパターン15上で、列1において開口部を有するマスク150の対角となる位置に配置する。具体的には、投影マスクパターン15は、「列Z、行20」の位置、すなわち「列1、行1」の対角となる位置に開口部を有するマスク150を備える。また、投影マスクパターン15において、列Zの隣の列Yは、開口部を有するマスク150を3つ配置する。列Yにおいて開口部を有するマスク150は、投影マスクパターン15上で、列2において開口部を有するマスク150の対角となる位置に配置する。さらに、該投影マスクパターン15において、列Yの隣の列Xは、開口部を有するマスク150を5つ含む。辺B側においても、開口部を有するマスク150は、互いに隣り合う列において、階段状(ステップ状)となるように配置される。なお、各列に配置される開口部を有するマスクの数はいくつであってもよく、列Zに1個、列Yに3個、列Zに5個・・・のように限定されるわけではない。
 ここで、投影マスクパターン15において列1は開口部を有するマスク150が1個しかないため、ガラス基板30において列1でスキャンされた領域は、レーザ光が1回しか照射されないことになる。そこで、ガラス基板30において、列1でスキャンされた領域が、次のスキャンの際には列P(開口部が19個)に対応する領域でスキャンされるように、該ガラス基板30をY方向に移動させる。
 すなわち、投影マスクパターン15において、列1(開口部1個)と列Q(開口部19個)とが対応しており、ガラス基板30において、列1でスキャンされた領域は、ガラス基板が移動した後、列Qでスキャンされる。これにより、ガラス基板30には、合計で20回のレーザ光14が照射されるようになる。同様に、投影マスクパターン15において、列2(開口部3個)は列R(開口部17個)に、列3(開口部5個)は列S(開口部15個)にそれぞれ対応し、ガラス基板30は、対応する列の両方でアニール処理がなされる。このように、互いに対応する列によってスキャンすることによって、ガラス基板30の全体が、合計20回のレーザ照射により、アニール処理される。
 図6は、図5に例示する投影マスクパターン15が配置されたマイクロレンズアレイ13により、ガラス基板30をアニール処理する様子を説明するための図である。図6に示すように、レーザ照射装置10がX方向にスキャンした後、ガラス基板30がY方向に1ステップ移動し、レーザ照射装置10が再度X方向にスキャンを行う。
 ここで、ガラス基板30のY方向への移動は、投影マスクパターン15において、互いに対応する列の双方でスキャン可能な距離だけ行う。上述したように、図5の例では、投影マスクパターン15の“列1”でスキャンされた領域が、次のX方向へのスキャンにおいて“列Q”でスキャンされるように、ガラス基板30を移動する。
 なお、レーザ照射装置10の照射ヘッド(すなわち、レーザ光源11、カップリング光学系12、マイクロレンズアレイ13及び投影マスク150)が、ガラス基板30に対して移動してもよい。
 このように、投影マスクパターン15において、互いに対応する列に含まれる“開口部を含む投影マスクパターン”の数は、合計20個となる。言い換えると、投影マスクパターン15は、互いに対応する列に含まれる“開口部を含む投影マスク150”の数が合計20個となるように、開口部を含む投影マスク150を配置する。
 なお、ガラス基板30が移動する距離は、マイクロレンズアレイ13の大きさや、該マイクロレンズアレイ13に含まれるマイクロレンズ17の数に依存するが、予め設定可能である。
 図7は、図6における投影マスクパターン15における、互いに対応する“列”に関して説明するための図である。図7に示すように、投影マスクパターン15において、例えば、列1(開口部1個)と、列Q(開口部19個)とが互いに対応する。また、同様にして、投影マスクパターン15において、例えば、列5(開口部3個)と列U(開口部15個)とが互いに対応し、列10(開口部19個)と列Z(開口部1個)とが互いに対応する。このように、互いに対応する列に含まれる開口部の数は、合計20個となる。そして、ガラス基板30は、互いに対応する列によってレーザ光14が照射されるように、スキャン方向(X方向)に直交する方向(Y方向)に移動する。そのため、この投影マスクパターン15を用いたマイクロレンズアレイ13を用いてレーザ光14を照射すると、ガラス基板30の全体において、薄膜トランジスタ20は、20回のレーザ光14の照射を受けることになる。
 図8は、従来のレーザ照射装置10によるアニール処理と、本発明の第1の実施形態におけるレーザ照射装置によるアニール処理と、を比較するための図である。
 図8(a)に示すように、従来のレーザ照射装置(例えば、特許文献1に記載のレーザ照射装置)では、第n回目のX方向のスキャン領域と、第n+1回目のX方向のスキャン領域とは完全に分離しているため、その境界は明確である。すなわち、従来のレーザ照射装置では、ガラス基板30において、異なるスキャンによってなされたアニール化処理間のつなぎ目が存在する。そして、当該つなぎ目は、“つなぎムラ”として認識されてしまう。
 一方、図8(b)に示すように、本発明の第1の実施形態におけるレーザ照射装置10によるアニール化処理では、第n回目のX方向のスキャンの領域から、突然、第n+1回目のX方向のスキャンの領域に変わるのではなく、互いのスキャンの領域が重なり合う領域が存在する。そして、その重なり合う領域においては、異なるスキャンによってアニール化処理された領域の割合が、ステップ状(階段状)に徐々に変化する。そのため、図8(a)のような従来のレーザ照射装置の場合とは異なり、異なるスキャンによってなされたアニール化処理間のつなぎ目が存在しなくなる。つなぎ目がないため、“つなぎムラ”も発生せず、本発明の第1の実施形態におけるレーザ照射装置10によってアニール化処理することにより、高品質な液晶画面等を提供することができる。
 (アニール化処理の工程について)
 本発明の第1の実施形態において、レーザ照射装置10は、ガラス基板30に対して、図5に示す投影マスクパターンが設けられたマイクロレンズアレイ13を用いて、レーザ光14を照射する。
 ガラス基板30は、マイクロレンズアレイ13を用いてレーザ光14が照射されるごとに、所定の距離だけ移動する(スキャンする)。所定の距離は、図3に例示するように、ガラス基板30における複数の薄膜トランジスタ20間の距離「H」である。レーザ照射装置10は、ガラス基板30を当該所定の距離移動させる間、レーザ光14の照射を停止する。
 ガラス基板30が所定の距離「H」移動した後、レーザ照射装置10は、マイクロレンズアレイ13を用いて、レーザ光14を照射する。レーザ照射装置10は、マイクロレンズアレイ13を用いたレーザ光14の照射と、ガラス基板30の移動とを繰り返して、ガラス基板30の縦方向(スキャンする方向。すなわち、所定の距離だけ移動する方向)に対して、アニール化処理を行う。
 その後、ガラス基板30は、スキャン方向に直交する方向に、1ステップ分(マイクロレンズアレイの長辺分)移動する。レーザ照射装置10は、ガラス基板30を当該1ステップ分移動させる間、レーザ光14の照射を停止する。
 ガラス基板30が1ステップ分移動した後、レーザ照射装置10は、マイクロレンズアレイ13を用いてレーザ光14を照射し、当該ガラス基板30の縦方向にアニール化処理を行う。
 そして、ガラス基板30に含まれる薄膜トランジスタ20の全部に、レーザアニールを用いてポリシリコン薄膜22を形成した後、別の工程において、当該薄膜トランジスタ20に、ソース23とドレイン24とが形成される。
 このように、本発明の第1の実施形態では、本発明の第1の実施形態におけるレーザ照射装置10によるアニール化処理では、異なるスキャンによってなされたアニール化処理間のつなぎ目が存在しなくなる。つなぎ目がないため、“つなぎムラ”も発生せず、本発明の第1の実施形態におけるレーザ照射装置10によってアニール化処理することにより、高品質な液晶画面等を提供することができる。
 (第2の実施形態)
 本発明の第2の実施形態は、マイクロレンズアレイ13の代わりに、1個の投影レンズ18を用いて、レーザアニールを行う場合の実施形態である。
 図9は、本発明の第2の実施形態におけるレーザ照射装置10の構成例を示す図である。図9に示すように、本発明の第2の実施形態におけるレーザ照射装置10は、レーザ光源11と、カップリング光学系12と、投影マスクパターン15と、投影レンズ18とを含む。なお、レーザ光源11と、カップリング光学系12とは、図1に示す本発明の第1の実施形態におけるレーザ光源11と、カップリング光学系12と同様の構成であるため、詳細な説明は省略される。また、投影マスクパターンは、本発明の第1の実施形態における投影マスクパターンと同様の構成であるため、詳細な説明は省略される。
 レーザ光は、図5に示すような投影マスクパターン15の開口(透過領域)を透過し、投影レンズ18により、アモルファスシリコン薄膜21の所定の領域に照射される。その結果、アモルファスシリコン薄膜21の所定の領域が瞬間加熱されて溶融し、アモルファスシリコン薄膜21の一部がポリシリコン薄膜22となる。
 本発明の第2の実施形態においても、レーザ照射装置10は所定の周期でレーザ光14を照射し、レーザ光14が照射されていない時間にガラス基板30を移動させ、次のアモルファスシリコン薄膜21の箇所に当該レーザ光14が照射されるようにする。第2の実施形態においても、図3に示すように、ガラス基板30は、移動方向に対して、所定の間隔「H」でアモルファスシリコン薄膜21が配置される。そして、レーザ照射装置10は、所定の周期で、ガラス基板30上に配置されたアモルファスシリコン薄膜21の部分に、レーザ光14を照射する。
 ここで、投影レンズ18を用いる場合、レーザ光14が、当該投影レンズ18の光学系の倍率で換算される。すなわち、投影マスクパターン15のパターンが、投影レンズ18の光学系の倍率で換算され、ガラス基板30上の所定の領域がレーザアニールされる。
 すなわち、投影マスクパターン15のマスクパターンは、投影レンズ18の光学系の倍率で換算され、ガラス基板30上の所定の領域がレーザアニールされる。例えば、投影レンズ18の光学系の倍率が約2倍であると、投影マスクパターン15のマスクパターンは、約1/2(0.5)倍され、ガラス基板30の所定の領域がレーザアニールされる。なお、投影レンズ18の光学系の倍率は、約2倍に限られず、どのような倍率であってもよい。投影マスクパターン15のマスクパターンは、投影レンズ18の光学系の倍率に応じて、ガラス基板30上の所定の領域がレーザアニールされる。例えば、投影レンズ18の光学系の倍率が4倍であれば、投影マスクパターン15のマスクパターンは、約1/4(0.25)倍され、ガラス基板30の所定の領域がレーザアニールされる。
 また、投影レンズ18が倒立像を形成する場合、ガラス基板30に照射される投影マスクパターン15の縮小像は、投影レンズ18のレンズの光軸を中心に180度回転したパターンとなる。一方、投影レンズ18が正立像を形成する場合、ガラス基板30に照射される投影マスクパターン15の縮小像は、当該投影マスクパターン15そのままとなる。図9の例では、正立像を形成する投影レンズ18を用いているため、投影マスクパターン15のパターンが、ガラス基板30上にそのまま縮小されている。
 上記のとおり、本発明の第2の実施形態では、1個の投影レンズ18を用いてレーザアニールを行う場合であっても、マイクロレンズアレイ13を用いる第1の実施形態と同様に、異なるスキャンによってなされたアニール化処理間のつなぎ目が存在しなくなる。つなぎ目がないため、“つなぎムラ”も発生せず、本発明の第2の実施形態におけるレーザ照射装置10によってアニール化処理することにより、高品質な液晶画面等を提供することができる。
 なお、以上の説明において、「垂直」「平行」「平面」「直交」等の記載がある場合に、これらの各記載は厳密な意味ではない。すなわち、「垂直」「平行」「平面」「直交」とは、設計上や製造上等における公差や誤差が許容され、「実質的に垂直」「実質的に平行」「実質的に平面」「実質的に直交」という意味である。なお、ここでの公差や誤差とは、本発明の構成・作用・効果を逸脱しない範囲における単位のことを意味するものである。
 また、以上の説明において、外観上の寸法や大きさが「同一」「等しい」「異なる」等の記載がある場合に、これらの各記載は厳密な意味ではない。すなわち、「同一」「等しい」「異なる」とは、設計上や製造上等における公差や誤差が許容され、「実質的に同一」「実質的に等しい」「実質的に異なる」という意味である。なお、ここでの公差や誤差とは、本発明の構成・作用・効果を逸脱しない範囲における単位のことを意味するものである。
 本発明を諸図面や実施形態に基づき説明してきたが、当業者であれば本開示に基づき種々の変形や修正を行うことが容易であることに注意されたい。従って、これらの変形や修正は本発明の範囲に含まれることに留意されたい。例えば、各手段、各ステップ等に含まれる機能等は論理的に矛盾しないように再配置可能であり、複数の手段やステップ等を1つに組み合わせたり、或いは分割したりすることが可能である。また、上記実施の形態に示す構成を適宜組み合わせることとしてもよい。
 10 レーザ照射装置
 11 レーザ光源
 12 カップリング光学系
 13 マイクロレンズアレイ
 14 レーザ光
 15 投影マスクパターン
  150 開口部を有するマスク
  151 開口部を有しないマスク
 16 透過領域
 17 マイクロレンズ
 18 投影レンズ
 20 薄膜トランジスタ
 21 アモルファスシリコン薄膜
 22 ポリシリコン薄膜
 23 ソース
 24 ドレイン
 30 ガラス基板

Claims (12)

  1.  レーザ光を発生する光源と、
     ガラス基板上の複数の薄膜トランジスタの各々に被着されたアモルファスシリコン薄膜の所定の領域に、前記レーザ光を照射してアニール化処理を行う投影レンズと、
     前記投影レンズ上に設けられ、前記複数の薄膜トランジスタの各々に対して前記レーザ光が照射されるように、複数の開口部が設けられた投影マスクパターンと、を備え、
     前記投影レンズは、前記ガラス基板上の所定の方向に対するアニール化処理が完了した場合、当該所定の方向の直交方向に移動した後、再度、当該所定の方向に対するアニール化処理を行い、
     前記投影マスクパターンは、前記直交方向において、当該投影マスクパターンの外側の列から内側の列に向けて、前記開口部の数を徐々に増加させる
     ことを特徴とするレーザ照射装置。
  2.  前記投影マスクパターンは、前記直交方向において、当該投影マスクパターンの外側の列から内側の列に向けて、前記開口部の数を徐々に増加させるとともに、当該開口部を互いに隣り合う列においてステップ状に配置する
    ことを特徴とする請求項1に記載のレーザ照射装置。
  3.  前記投影レンズは、複数のマイクロレンズを含むマイクロレンズアレイであり、
     前記投影マスクパターンは、前記直交方向において、互いに対応する一組の列を含み、当該互いに対応する一組の列の各々に設けられる前記開口部の合計数は、前記マイクロレンズアレイの一列に含まれる前記複数のマイクロレンズの数である
    ことを特徴とする請求項1または2に記載のレーザ照射装置。
  4.  前記投影マスクパターンは、前記互いに対応する一組の列の各々を、当該投影マスクパターンにおける前記所定の方向の中心線に対して、互いに逆側に配置する
     ことを特徴とする請求項3に記載のレーザ照射装置。
  5.  前記投影マスクパターンは、前記互いに対応する一組の列の各々を、前記中心線から等しい距離に配置する
     ことを特徴とする請求項4に記載のレーザ照射装置。
  6.  前記投影レンズは、薄膜トランジスタに含まれるソース電極とドレイン電極との間に被着されたアモルファスシリコン薄膜の所定の領域にレーザ光を照射して、ポリシリコン薄膜を形成する
    ことを特徴とする請求項1乃至5のいずれかに記載のレーザ照射装置。
  7.  レーザ光を発生する第1のステップと、
     ガラス基板上の複数の薄膜トランジスタの各々に被着されたアモルファスシリコン薄膜の所定の領域に、複数の開口部を含む投影マスクパターンが設けれた投影レンズを用いて、前記レーザ光を照射してアニール化処理を行う第2のステップと、
     前記ガラス基板上の前記所定の方向に対するアニール化処理が完了した場合、当該所定の方向の直交方向に移動した後、再度、当該所定の方向に対するアニール化処理を行う第3のステップと、を含み、
     第2のステップにおいて、前記直交方向において、前記投影マスクパターンの外側の列から内側の列に向けて、前記開口部の数を徐々に増加した当該投影マスクパターンを介して、前記レーザ光を照射する
    ことを特徴とする薄膜トランジスタの製造方法。
  8.  第2のステップにおいて、前記直交方向において、前記投影マスクパターンの外側の列から内側の列に向けて、前記開口部の数を徐々に増加させるとともに、当該開口部を互いに隣り合う列においてステップ状に配置した当該投影マスクパターンを介して、前記レーザ光を照射する
    ことを特徴とする請求項7に記載の薄膜トランジスタの製造方法。
  9.  前記投影レンズは、複数のマイクロレンズを含むマイクロレンズアレイであり、
     第2のステップにおいて、前記直交方向において、互いに対応する一組の列を含み、当該互いに対応する一組の列の各々に設けられる前記開口部の合計数は、前記マイクロレンズアレイの一列に含まれる前記複数のマイクロレンズの数である前記投影マスクパターンを介して、前記レーザ光を照射する
    ことを特徴とする請求項8に記載の薄膜トランジスタの製造方法。
  10.  第2のステップにおいて、前記互いに対応する一組の列の各々を、前記投影マスクパターンにおける前記所定の方向の中心線に対して、互いに逆側に配置した当該投影マスクパターンを介して、前記レーザ光を照射する
    ことを特徴とする請求項9に記載の薄膜トランジスタの製造方法。
  11.  第2のステップにおいて、前記互いに対応する一組の列の各々を、前記中心線から等しい距離に配置した当該投影マスクパターンを介して、前記レーザ光を照射する
    ことを特徴とする請求項10に記載の薄膜トランジスタの製造方法。
  12.  前記第2のステップにおいて、薄膜トランジスタに含まれるソース電極とドレイン電極との間に被着されたアモルファスシリコン薄膜の所定の領域にレーザ光を照射して、ポリシリコン薄膜を形成する
    ことを特徴とする請求項7乃至11のいずれかに記載の薄膜トランジスタの製造方法。
PCT/JP2016/083972 2016-11-16 2016-11-16 レーザ照射装置および薄膜トランジスタの製造方法 WO2018092213A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/083972 WO2018092213A1 (ja) 2016-11-16 2016-11-16 レーザ照射装置および薄膜トランジスタの製造方法
TW106139791A TW201820731A (zh) 2016-11-16 2017-11-16 雷射照射裝置及薄膜電晶體的製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/083972 WO2018092213A1 (ja) 2016-11-16 2016-11-16 レーザ照射装置および薄膜トランジスタの製造方法

Publications (1)

Publication Number Publication Date
WO2018092213A1 true WO2018092213A1 (ja) 2018-05-24

Family

ID=62146301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/083972 WO2018092213A1 (ja) 2016-11-16 2016-11-16 レーザ照射装置および薄膜トランジスタの製造方法

Country Status (2)

Country Link
TW (1) TW201820731A (ja)
WO (1) WO2018092213A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09260681A (ja) * 1996-03-23 1997-10-03 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法
JPH11243057A (ja) * 1998-02-26 1999-09-07 Sony Corp 半導体装置の製造方法および半導体装置の製造装置
JP2008227077A (ja) * 2007-03-12 2008-09-25 Sharp Corp レーザ光のマスク構造、レーザ加工方法、tft素子およびレーザ加工装置
JP2012124366A (ja) * 2010-12-09 2012-06-28 V Technology Co Ltd レーザアニール装置及びレーザアニール方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09260681A (ja) * 1996-03-23 1997-10-03 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法
JPH11243057A (ja) * 1998-02-26 1999-09-07 Sony Corp 半導体装置の製造方法および半導体装置の製造装置
JP2008227077A (ja) * 2007-03-12 2008-09-25 Sharp Corp レーザ光のマスク構造、レーザ加工方法、tft素子およびレーザ加工装置
JP2012124366A (ja) * 2010-12-09 2012-06-28 V Technology Co Ltd レーザアニール装置及びレーザアニール方法

Also Published As

Publication number Publication date
TW201820731A (zh) 2018-06-01

Similar Documents

Publication Publication Date Title
JP6781872B2 (ja) レーザ照射装置および薄膜トランジスタの製造方法
US20200176284A1 (en) Laser irradiation device, method of manufacturing thin film transistor, and projection mask
JP5800292B2 (ja) レーザ処理装置
KR20190087427A (ko) 레이저 조사 장치 및 박막 트랜지스터의 제조 방법
US10896817B2 (en) Laser irradiation apparatus, thin film transistor, and method of manufacturing thin film transistor
WO2018092213A1 (ja) レーザ照射装置および薄膜トランジスタの製造方法
US10840095B2 (en) Laser irradiation device, thin-film transistor and thin-film transistor manufacturing method
WO2019146354A1 (ja) レーザ照射装置、投影マスク及びレーザ照射方法
WO2018155455A1 (ja) レーザ照射装置、薄膜トランジスタの製造方法、プログラムおよび投影マスク
WO2019138674A1 (ja) レーザ照射装置、及び、レーザ照射方法
WO2019111362A1 (ja) レーザ照射装置、レーザ照射方法、および、投影マスク
WO2019035333A1 (ja) レーザ照射装置、薄膜トランジスタの製造方法、プログラムおよび投影マスク
WO2018061126A1 (ja) レーザーアニール装置及びレーザーアニール方法
US20200168642A1 (en) Laser irradiation device, projection mask, laser irradiation method, and program
WO2018101154A1 (ja) レーザ照射装置および薄膜トランジスタの製造方法
WO2019107108A1 (ja) レーザ照射装置、レーザ照射方法及び投影マスク
KR20200057696A (ko) 레이저 조사 장치, 레이저 조사 방법 및 투영 마스크

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16921618

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16921618

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP