WO2018099081A1 - 一种基于量子点荧光膜的led灯珠的封装方法 - Google Patents

一种基于量子点荧光膜的led灯珠的封装方法 Download PDF

Info

Publication number
WO2018099081A1
WO2018099081A1 PCT/CN2017/091993 CN2017091993W WO2018099081A1 WO 2018099081 A1 WO2018099081 A1 WO 2018099081A1 CN 2017091993 W CN2017091993 W CN 2017091993W WO 2018099081 A1 WO2018099081 A1 WO 2018099081A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum dot
glue
lamp bead
fluorescent film
dot fluorescent
Prior art date
Application number
PCT/CN2017/091993
Other languages
English (en)
French (fr)
Inventor
高丹鹏
张志宽
邢其彬
郝玉凤
王旭改
Original Assignee
深圳市聚飞光电股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市聚飞光电股份有限公司 filed Critical 深圳市聚飞光电股份有限公司
Publication of WO2018099081A1 publication Critical patent/WO2018099081A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations

Definitions

  • the invention belongs to the field of LED backlight processing, and in particular relates to a packaging method of an LED lamp bead based on a quantum dot fluorescent film.
  • LED backlights have become the mainstream in the market. Compared with the traditional CCFL backlight, LED backlight has many advantages such as high color gamut, high brightness, long life, energy saving and environmental protection, real-time color control, etc. Especially the high color gamut LED backlight enables the application of its TV, mobile phone, Electronic products such as tablets have more vivid colors and higher color reproduction. At present, the commonly used LED backlight uses a blue chip to excite the form of YAG yellow phosphor. Due to the lack of red light component in the backlight, the color gamut value can only reach NTSC.
  • the technician In order to further improve the color gamut value, the technician generally adopts a method in which the blue light chip simultaneously excites the red phosphor and the green phosphor, but since the half-wave width of the phosphor is wider, even if this method is used, only Can increase the color gamut value of the backlight to about 80% NTSC.
  • the excitation efficiency of the existing phosphor is low, and a large amount of phosphor is required for realizing high color gamut white light, which leads to a high concentration of phosphor powder (a ratio of phosphor to package glue) in the LED packaging process, thereby greatly increasing the packaging operation. Difficulty and poor product rate.
  • quantum dot materials have been paid more and more attention.
  • quantum dot phosphors have a series of unique optical properties such as adjustable spectrum with size, narrow half-wave width of emission peak, large Stokes shift, and high excitation efficiency. Wide attention.
  • quantum dot phosphors achieve high color gamut white light mainly in the following ways: (1) The quantum dot phosphor is made into an optical film, filled in a light guide plate or attached to a liquid crystal screen, and excited by a blue or ultraviolet backlight lamp bead. (2) The quantum dot phosphor powder is made into a glass tube, placed on the side of the screen, and excited by blue or ultraviolet backlight beads to obtain high color gamut white light.
  • These two implementations have been introduced with related products, such as the quantum dot film of TCL. TV.
  • the two implementations are complicated in process, low in light conversion efficiency, and high in cost, and it is difficult to achieve large-scale industrialization.
  • the technical problem to be solved by the present invention is to overcome the technical bottleneck of the prior art complicated process, low light conversion efficiency, high cost, and difficult to realize large-scale industrialization, thereby proposing a high color gamut value and avoiding quantum dots.
  • a method for encapsulating a quantum dot fluorescent film type LED lamp bead of a phosphor which is affected by external moisture, oxygen, and high temperature of a chip, has a high yield, and can be mass-produced industrially.
  • the present invention discloses a method for packaging an LED lamp bead based on a quantum dot fluorescent film, and the steps of the packaging method are as follows:
  • the encapsulating glue is weighed for the second time, poured into the luminescent material weighed in step 3), and subjected to stirring treatment to obtain a quantum dot fluorescent gel; the quality of the luminescent material and the encapsulating glue added for the second time The ratio is 1:1 to 30000;
  • step 5) taking the quantum dot fluorescent glue obtained in step 4) on the jig, and preparing a quantum dot fluorescent film precursor having a thickness of 20-200 ⁇ m by spin coating, baking the film to cure the quantum dot fluorescent film. ;
  • the thickness of the coating glue applied is 0-50 ⁇ m
  • step 8) preliminary baking the lamp bead obtained in step 7) until the encapsulating glue is closely adhered to the quantum dot fluorescent film, and the encapsulating glue is fully filled in the gap between the quantum dot film and the support; then the lamp bead is secondarily Baking treatment until the encapsulating glue coated on the quantum dot fluorescent film is solidified Sub-point fluorescent film type LED lamp beads.
  • the composition of the quantum dot phosphor is: BaS, AglnS 2 , NaCl, Fe 2 O 3 , In 2 O 3 , InAs, InN, InP, CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, GaAs, At least one of GaN, GaS, GaSe, InGaAs, MgS, MgSe, MgTe, PbS, PbSe, PbTe, Cd(S x Se 1-x ), BaTiO 3 , PbZrO 3 , CsPbCl 3 , CsPbBr 3 , and CsPbl 3 .
  • the phosphor other than the quantum dot phosphor in the luminescent material is a rare earth doped phosphor
  • the phosphor is at least one of a silicate, an aluminate, a phosphate, a nitride, and a fluoride phosphor.
  • the luminescent material has an emission light peak wavelength of 450-660 nm.
  • the encapsulating glue is at least one of an epoxy encapsulant, a silicone encapsulant, and a polyurethane encapsulant.
  • the ultraviolet light chip has a wavelength of 230-400 nm; and the blue light chip has a wavelength of 420-480 nm.
  • the baking temperature is 80-180 ° C, and the time is 0.5-12 h.
  • the baking temperature is 50-160 ° C, and the time is 0.5-8 h.
  • the preliminary baking treatment has a temperature of 80-180 ° C and a time of 0.5-12 h.
  • the temperature of the secondary baking treatment is 35-55 ° C, and the baking time is 1-4 h.
  • the half-wave width of the quantum dot material is narrow, and the color gamut value of the LED lamp bead can be greatly improved.
  • the color gamut value of the LED lamp bead obtained by the invention can reach more than 96% of NTSC.
  • the quantum dot fluorescent film is packaged to avoid the quantum dot material straight
  • the contact chip is affected by the high temperature of the chip surface, which improves the reliability of the lamp bead.
  • the invention adopts a quantum dot fluorescent film to obtain white LED lamp beads, which can quantitatively control the content of quantum dots and other luminescent materials on each lamp bead, thereby reducing the difficulty of packaging operation and product defects.
  • the rate increases the concentration of the excellent production area and is suitable for large-scale industrial production.
  • FIG. 1 is a schematic view of an LED lamp bead in which the encapsulant A is not coated in Embodiment 1;
  • FIG. 2 is a schematic view of an LED lamp bead after applying the encapsulant A in Embodiment 2;
  • Embodiment 3 is a schematic view of an LED lamp bead attached with a quantum dot fluorescent film in Embodiment 3;
  • FIG. 4 is a schematic view showing an LED lamp bead of the quantum dot fluorescent film in the first embodiment
  • step 5) Take a certain amount of the quantum dot fluorescent glue B obtained in the step 4) and apply it to the corresponding fixture, and prepare a quantum dot fluorescent film precursor with a thickness of 50 ⁇ m by spin coating, and bake at 120 ° C. h, curing the quantum dot fluorescent film.
  • the quantum dot fluorescent film obtained in the step 5 is appropriately cut by a slitting machine, and then the cut quantum dot film is attached to the sealing glue A of the lamp bead obtained in the step 2).
  • the lamp bead obtained in step 7) is placed in an oven, baked at 35 ° C for 4 h, so that the encapsulating glue and the quantum dot fluorescent film are closely adhered, and the encapsulating glue fully fills the gap between the quantum dot film and the bracket;
  • the lamp bead is baked at 180 ° C for 0.5 h, and the encapsulating glue coated on the quantum dot fluorescent film is solidified to obtain a quantum dot fluorescent film type LED lamp bead.
  • the color gamut value of the lamp bead is high and the reliability is good.
  • step 3 Weigh 0.60 g of the polyurethane-based encapsulating glue B, pour it into the luminescent material weighed in step 3), and perform vacuum defoaming and stirring to obtain a quantum dot fluorescent gel B.
  • step 5 taking a certain amount of the quantum dot fluorescent glue B obtained in the step 4), coating the corresponding fixture, and preparing a quantum dot fluorescent film precursor having a thickness of 20 ⁇ m by spin coating, and baking at 100 ° C for 6 hours.
  • the quantum dot fluorescent film is cured.
  • the quantum dot fluorescent film obtained in the step 5 is appropriately cut by a slitting machine, and then the cut quantum dot film is attached to the sealing glue A of the lamp bead obtained in the step 2).
  • the encapsulating glue may be at least one of an epoxy encapsulating adhesive, a silicone encapsulating adhesive, and a polyurethane encapsulating adhesive), and applying it to the quantum dot fluorescent film obtained in step 6
  • the surface was controlled to have a thickness of 50 ⁇ m.
  • the lamp bead obtained in step 7) is placed in an oven, baked at 55 ° C for 2 h, so that the encapsulating glue and the quantum dot fluorescent film are closely adhered, and the encapsulating glue fully fills the gap between the quantum dot film and the bracket;
  • the lamp bead is baked at 80 ° C for 12 h, and the encapsulating glue coated on the quantum dot fluorescent film is solidified to obtain a quantum dot fluorescent film type LED lamp bead.
  • the color gamut value of the lamp bead is high and the reliability is good.
  • step 3 Weigh 1.65 g of epoxy-based encapsulating glue B, pour it into the luminescent material weighed in step 3), perform vacuum defoaming and stirring, and obtain quantum dot fluorescent glue B.
  • the quantum dot fluorescent film obtained in the step 5 is appropriately cut by a slitting machine, and then the cut quantum dot film is attached to the sealing glue A of the lamp bead obtained in the step 2).
  • the encapsulating glue may be at least one of an epoxy encapsulating adhesive, a silicone encapsulating adhesive, and a polyurethane encapsulating adhesive), and applying the upper surface of the quantum dot fluorescent film obtained in step 6
  • the thickness of the applied encapsulating glue was controlled to be 50 ⁇ m.
  • the lamp bead obtained in step 7) is placed in an oven, baked at 50 ° C for 4 h, so that the encapsulating glue and the quantum dot fluorescent film are closely adhered, and the encapsulating glue fully fills the gap between the quantum dot film and the bracket;
  • the lamp beads were baked at 120 ° C for 9 h to make the package glue coated on the quantum dot fluorescent film Curing, that is, a quantum dot fluorescent film type LED lamp bead is obtained, and the color gamut value of the lamp bead is high and the reliability is good.
  • Example 1 Example 2
  • Example 3 Color coordinates (0.33, 0.32) (0.28, 0.28) (0.30, 0.29)
  • NTSC gamut value 96.6% 97.4% 99.8%
  • the above results show that the color of the quantum dot LED lamp bead obtained by the method of Examples 1-3 is in the white light region, and has a high color gamut value, and the color gamut value can reach 96% or more.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Abstract

一种基于量子点荧光膜(8)的LED灯珠的封装方法,采用的量子点材料(6、7)的半波宽较窄,能极大提升LED灯珠的色域值,所得LED灯珠色域值可达NTSC 96%以上。与现有封装方法相比,量子点荧光膜进行封装可避免量子点材料直接接触芯片(3),避免受芯片表面高温的影响,提高了灯珠的可靠性。采用量子点荧光膜获得白光LED灯珠,可定量控制每颗灯珠上量子点及其它发光材料的含量,降低了封装作业的难度及产品不良率,提高了产出色区的集中度,适合大批量工业化生产。

Description

一种基于量子点荧光膜的LED灯珠的封装方法 技术领域
本发明属于LED背光加工领域,具体涉及一种基于量子点荧光膜的LED灯珠的封装方法。
背景技术
进入二十一世纪以来,背光源技术发展迅速,不断有新技术、新产品推出,LED背光已成为市场主流。与传统的CCFL背光源相比,LED背光具有高色域、高亮度、长寿命、节能环保、实时色彩可控等诸多优点,特别是高色域的LED背光源使应用其的电视、手机、平板电脑等电子产品屏幕具有更加鲜艳的颜色,色彩还原度更高。目前常用的LED背光源采用蓝光芯片激发YAG黄光荧光粉的形式,因背光源中缺少红光成分,色域值只能达到NTSC
65%~72%。为了进一步提高色域值,技术人员普遍采用了蓝光芯片同时激发红光荧光粉、绿光荧光粉的方式,但由于现用荧光粉的半波宽较宽,故即使采用这种方式,也只能将背光源的色域值提升至NTSC 80%左右。同时,现有荧光粉的激发效率低,为实现高色域白光需要大量荧光粉,导致LED封装过程中荧光粉的浓度(荧光粉占封装胶水的比例)很高,从而极大地增加了封装作业的难度以及产品的不良率。
近年来,量子点材料逐渐受到重视,特别是量子点荧光粉具有光谱随尺寸可调、发射峰半波宽窄、斯托克斯位移大、激发效率高等一系列独特的光学性能,受到LED背光行业的广泛关注。目前,量子点荧光粉实现高色域白光的方式主要有:(1)将量子点荧光粉制成光学膜材,填充于导光板或者贴于液晶屏幕内,通过蓝光或紫外光背光灯珠激发,获得高色域白光;(2)将量子点荧光粉制成玻璃管,置于屏幕侧面,通过蓝光或紫外光背光灯珠激发,获得高色域白光。这两种实现方式已有相关产品推出,例如TCL的量子点膜 电视。但是,这两种实现方式的工艺复杂、光转化效率低、成本较高,很难实现大规模产业化。
发明内容
为此,本发明所要解决的技术问题在于克服现有技术工艺复杂、光转化效率低、成本较高,很难实现大规模产业化的技术瓶颈,从而提出一种色域值高、避免量子点荧光粉的受外界湿气、氧气以及芯片高温的影响、良率高、可大批量工业化生产的量子点荧光膜型LED灯珠的封装方法。
为解决上述技术问题,本发明公开了一种基于量子点荧光膜的LED灯珠的封装方法,所述封装方法的步骤如下:
1)取封装胶水,滴入已经固定有紫外光或蓝光芯片的LED支架中,滴入的封装胶水占支架内部容积的50%-90%;
2)将步骤1)所得滴有封装胶水的LED支架烘烤处理,使封装胶水固化;
3)称取至少两种荧光粉混合作为发光材料,所述荧光粉中至少一种荧光粉为量子点荧光粉;
4)第二次称取封装胶水,倒入将步骤3)所称取的发光材料中,进行搅拌处理,获得量子点荧光胶;所述发光材料和第二次加入的所述封装胶水的质量比为1∶1-300;
5)取步骤4)所得量子点荧光胶涂覆于治具上,通过旋涂的方式制得出厚度为20-200μm的量子点荧光膜前驱物,进行烘烤处理,使量子点荧光膜固化;
6)对步骤5)所得量子点荧光膜进行切割,然后将切割后的量子点膜材贴附于步骤2)所得灯珠的封装胶水之上;
7)第三次取封装胶水,涂覆于步骤6)所得量子点荧光膜的上表面,所涂覆封装胶水的厚度为0-50μm;
8)将步骤7)所得灯珠进行初步烘烤处理,直至封装胶水与量子点荧光膜紧密贴合,封装胶水充分填满在量子点膜和支架接触的缝隙中;然后再将灯珠二次烘烤处理,直至涂覆在量子点荧光膜之上的封装胶水固化,即得量 子点荧光膜型LED灯珠。
优选的,所述量子点荧光粉的组成为:BaS、AglnS2、NaCl、Fe2O3、In2O3、InAs、InN、InP、CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、GaAs、GaN、GaS、GaSe、InGaAs、MgS、MgSe、MgTe、PbS、PbSe、PbTe、Cd(SxSe1-x)、BaTiO3、PbZrO3、CsPbCl3、CsPbBr3、CsPbl3中的至少一种。
优选的,所述发光材料中除了量子点荧光粉以外的荧光粉为掺杂稀土元素的荧光粉;
所述荧光粉为硅酸盐、铝酸盐、磷酸盐、氮化物、氟化物荧光粉中的至少一种。
优选的,所述发光材料的发射光峰值波长为450-660nm。
优选的,所述封装胶水为环氧类封装胶、有机硅类封装胶、聚氨酯封装胶中的至少一种。
优选的,所述紫外光芯片波长为230-400nm;所述蓝光芯片波长为420-480nm。
优选的,所述步骤2)中,所述烘烤的温度为80-180℃,时间为0.5-12h。
优选的,所述步骤2)中,所述烘烤的温度为50-160℃,时间为0.5-8h。
优选的,所述步骤8)中,所述初步烘烤处理的温度为80-180℃,时间为0.5-12h。
更为优选的,所述步骤8)中,所述二次烘烤处理的温度为35-55℃,时间为烘烤1-4h。
本发明的上述技术方案相比现有技术具有以下优点:
(1)与现有技术方案相比,量子点材料的半波宽较窄,能极大提升LED灯珠的色域值,本发明所得LED灯珠色域值可达NTSC 96%以上。
(2)与现有封装方法相比,量子点荧光膜进行封装可避免量子点材料直 接接触芯片,受芯片表面高温的影响,提高了灯珠的可靠性。
(3)与现有封装工艺相比,本发明采用量子点荧光膜获得白光LED灯珠,可定量控制每颗灯珠上量子点及其它发光材料的含量,降低了封装作业的难度及产品不良率,提高了产出色区的集中度,适合大批量工业化生产。
附图说明
为了使本发明的内容更容易被清楚的理解,下面根据本发明的具体实施例并结合附图,对本发明作进一步详细的说明,其中
图1为实施例1中未涂覆封装胶A的LED灯珠示意图;
图2为实施例2中涂覆封装胶A后的LED灯珠示意图;
图3为实施例3中贴附量子点荧光膜的LED灯珠示意图;
图4为实施例1中量子点荧光膜上再加封封装胶C的LED灯珠示意图;
图中附图标记表示为:1-支架;2-金属镀层;3-芯片;4-键合线;5-封装胶水A;6-发光材料A;7-发光材料B;8量子点膜材;9-封装胶水C。
具体实施方式
实施例
实施例1:
1)取一定量的硅胶类封装胶水A,滴入已经固定有蓝光芯片(芯片发射光波长为440nm)的LED支架中,控制滴入的封装胶水A占支架杯壳内部容积的50%。
2)将步骤1)所得滴有封装胶水A的LED支架置于烘箱中,在80℃下烘烤10h,使封装胶水A固化。
3)称取0.05g发射光波长为630nm的BaS红光量子点荧光粉,称取0.02g发射光波长为540nm的Fe2O3绿光量子点荧光粉,共同置于容器中。
4)称取0.45g的硅胶类封装胶水B,倒入将步骤3)所称取的发光材料中,进行真空脱泡搅拌,获得量子点荧光胶B。
5)取一定量的步骤4)所得量子点荧光胶B涂覆于相应治具上,通过旋涂的方式制备出厚度为50μm的量子点荧光膜前驱物,在120℃下烘烤4 h,使量子点荧光膜固化。
6)利用切膜机对步骤5所得量子点荧光膜进行适当切割,然后将切割后的量子点膜材贴附于步骤2)所得灯珠的封装胶水A之上。
7)再取一定量的硅胶类封装胶水C,涂覆于步骤6所得量子点荧光膜的上表面,控制所涂覆封装胶水的厚度为20μm。
8)将步骤7)所得灯珠置于烘箱中,在35℃烘烤4h,使封装胶水与量子点荧光膜紧密贴合,封装胶水充分填满量子点膜和支架接触的缝隙中;然后再将灯珠于180℃下烘烤0.5h,使涂覆在量子点荧光膜之上的封装胶水固化,即得到量子点荧光膜型LED灯珠,灯珠的色域值高,可靠性好。
实施例2:
1)取一定量的环氧类封装胶水A,滴入已经固定有蓝光芯片(芯片发射光波长为480nm)的LED支架中,控制滴入的封装胶水A占支架杯壳内部容积的50%。
2)将步骤1)所得滴有封装胶水A的LED支架置于烘箱中,在180℃下烘烤0.5h,使封装胶水A固化。
3)称取0.12g发射光波长为660nm的ZnTe红光量子点荧光粉,称取0.05g发射光波长为532nm的Cd(SxSe1-x)绿光量子点荧光粉,共同置于容器中。
4)称取0.60g的聚氨酯类封装胶水B,倒入将步骤3)所称取的发光材料中,进行真空脱泡搅拌,获得量子点荧光胶B。
5)取一定量的步骤4)所得量子点荧光胶B涂覆于相应治具上,通过旋涂的方式制备出厚度为20μm的量子点荧光膜前驱物,在100℃下烘烤6h,使量子点荧光膜固化。
6)利用切膜机对步骤5所得量子点荧光膜进行适当切割,然后将切割后的量子点膜材贴附于步骤2)所得灯珠的封装胶水A之上。
7)再取一定量的封装胶水C(封装胶水可以为环氧类封装胶、有机硅类封装胶、聚氨酯封装胶中的至少一种),涂覆于步骤6所得量子点荧光膜的上 表面,控制所涂覆封装胶水的厚度为50μm。
8)将步骤7)所得灯珠置于烘箱中,在55℃烘烤2h,使封装胶水与量子点荧光膜紧密贴合,封装胶水充分填满量子点膜和支架接触的缝隙中;然后再将灯珠于80℃下烘烤12h,使涂覆在量子点荧光膜之上的封装胶水固化,即得到量子点荧光膜型LED灯珠,灯珠的色域值高,可靠性好。
实施例3:
1)取一定量的环氧类封装胶水A,滴入已经固定有紫外光芯片(芯片发射光波长为320nm)的LED支架中,控制滴入的封装胶水A占支架杯壳内部容积的90%。
2)将步骤1)所得滴有封装胶水A的LED支架置于烘箱中,在120℃下烘烤12h,使封装胶水A固化。
3)称取0.17g发射光波长为640nm的InAs红光量子点荧光粉,0.05g发射光波长为532nm的InGaAs绿光量子点荧光粉,以及0.03g发射光波长为466nm的CsPbCl3蓝光量子点荧光粉,共同置于容器中。
4)称取1.65g的环氧类封装胶水B,倒入将步骤3)所称取的发光材料中,进行真空脱泡搅拌,获得量子点荧光胶B。
5)取一定量的步骤4)所得量子点荧光胶B涂覆于相应治具上,通过旋涂的方式制备出厚度为200μm的量子点荧光膜前驱物,在70℃下烘烤8h,使量子点荧光膜固化。
6)利用切膜机对步骤5所得量子点荧光膜进行适当切割,然后将切割后的量子点膜材贴附于步骤2)所得灯珠的封装胶水A之上。
7)再取一定量的封装胶水C(封装胶水可以为环氧类封装胶、有机硅类封装胶、聚氨酯封装胶中的至少一种),涂覆于步骤6所得量子点荧光膜的上表面,控制所涂覆封装胶水的厚度为50μm。
8)将步骤7)所得灯珠置于烘箱中,在50℃烘烤4h,使封装胶水与量子点荧光膜紧密贴合,封装胶水充分填满量子点膜和支架接触的缝隙中;然后再将灯珠于120℃下烘烤9h,使涂覆在量子点荧光膜之上的封装胶水 固化,即得到量子点荧光膜型LED灯珠,灯珠的色域值高,可靠性好。
实验例
测试实施例1-3所述的量子点LED灯珠的色坐标和色域值,结果如表1所示。
表1
  实施例1 实施例2 实施例3
色坐标 (0.33,0.32) (0.28,0.28) (0.30,0.29)
NTSC色域值 96.6% 97.4% 99.8%
上述结果显示,采用实施例1-3的方法得到的量子点LED灯珠的光色都在白光区,且具有高色域值,色域值均可达96%以上。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (10)

  1. 一种基于量子点荧光膜的LED灯珠的封装方法,其特征在于,所述封装方法的步骤如下:
    1)取封装胶水,滴入已经固定有紫外光或蓝光芯片的LED支架中,滴入的封装胶水占支架内部容积的50%-90%;
    2)将步骤1)所得滴有封装胶水的LED支架烘烤处理,使封装胶水固化;
    3)称取至少两种荧光粉混合作为发光材料,所述荧光粉中至少一种荧光粉为量子点荧光粉;
    4)第二次称取封装胶水,倒入将步骤3)所称取的发光材料中,进行搅拌处理,获得量子点荧光胶;所述发光材料和第二次加入的所述封装胶水的质量比为1∶1-300;
    5)取步骤4)所得量子点荧光胶涂覆于治具上,通过旋涂的方式制得出厚度为20-200μm的量子点荧光膜前驱物,进行烘烤处理,使量子点荧光膜固化;
    6)对步骤5)所得量子点荧光膜进行切割,然后将切割后的量子点膜材贴附于步骤2)所得灯珠的封装胶水之上;
    7)第三次取封装胶水,涂覆于步骤6)所得量子点荧光膜的上表面,所涂覆封装胶水的厚度为0-50μm;
    8)将步骤7)所得灯珠进行初步烘烤处理,直至封装胶水与量子点荧光膜紧密贴合,封装胶水充分填满在量子点膜和支架接触的缝隙中;然后再将灯珠二次烘烤处理,直至涂覆在量子点荧光膜之上的封装胶水固化,即得量子点荧光膜型LED灯珠。
  2. 如权利要求1所述的封装方法,其特征在于,所述量子点荧光粉的组成为:BaS、AgInS2、NaCl、Fe2O3、In2O3、InAs、InN、InP、CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、GaAs、GaN、GaS、GaSe、InGaAs、MgS、MgSe、MgTe、PbS、PbSe、PbTe、Cd(SxSe1-x)、BaTiO3、PbZrO3、CsPbCl3、CsPbBr3、CsPbl3中的至少一种。
  3. 如权利要求2所述的封装方法,其特征在于,所述发光材料中除了量子点荧光粉以外的荧光粉为掺杂稀土元素的荧光粉;
    所述荧光粉为硅酸盐、铝酸盐、磷酸盐、氮化物、氟化物荧光粉中的至少一种。
  4. 如权利要求1-3任一项所述的封装方法,其特征在于,所述发光材料的发射光峰值波长为450-660nm。
  5. 如权利要求1-3任一项所述的封装方法,其特征在于,所述封装胶水为环氧类封装胶、有机硅类封装胶、聚氨酯封装胶中的至少一种。
  6. 如权利要求1-3任一项所述的封装方法,其特征在于,所述紫外光芯片波长为230-400nm;所述蓝光芯片波长为420-480nm。
  7. 如权利要求1-3任一项所述的封装方法,其特征在于,所述步骤2)中,所述烘烤的温度为80-180℃,时间为0.5-12h。
  8. 如权利要求1-3任一项所述的封装方法,其特征在于,所述步骤2)中,所述烘烤的温度为50-160℃,时间为0.5-8h。
  9. 如权利要求1-3任一项所述的封装方法,其特征在于,所述步骤8)中,所述初步烘烤处理的温度为80-180℃,时间为0.5-12h。
  10. 如权利要求1-3任一项所述的封装方法,其特征在于,所述步骤8)中,所述二次烘烤处理的温度为35-55℃,时间为烘烤1-4h。
PCT/CN2017/091993 2016-11-30 2017-07-06 一种基于量子点荧光膜的led灯珠的封装方法 WO2018099081A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611079979.1A CN106449908B (zh) 2016-11-30 2016-11-30 一种基于量子点荧光膜的led灯珠的封装方法
CN201611079979.1 2016-11-30

Publications (1)

Publication Number Publication Date
WO2018099081A1 true WO2018099081A1 (zh) 2018-06-07

Family

ID=58222867

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/091993 WO2018099081A1 (zh) 2016-11-30 2017-07-06 一种基于量子点荧光膜的led灯珠的封装方法

Country Status (2)

Country Link
CN (1) CN106449908B (zh)
WO (1) WO2018099081A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109830475A (zh) * 2019-02-18 2019-05-31 南通创亿达新材料股份有限公司 高色域量子点灯条、制备方法及其背光模组

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106449908B (zh) * 2016-11-30 2018-10-26 深圳市聚飞光电股份有限公司 一种基于量子点荧光膜的led灯珠的封装方法
CN110392724B (zh) 2017-03-13 2023-07-25 住友化学株式会社 含钙钛矿化合物的混合物
CN106898679A (zh) * 2017-03-31 2017-06-27 华南理工大学 一种量子点led背光器件及其制备方法
CN108767085B (zh) * 2018-04-27 2019-10-01 南昌大学 一种白光led封装结构及封装方法
CN109545943B (zh) * 2018-09-27 2020-06-12 纳晶科技股份有限公司 发光件的制造工艺与发光件

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100002662A (ko) * 2008-06-30 2010-01-07 서울반도체 주식회사 발광장치 및 발광장치 제조방법
JP2011155188A (ja) * 2010-01-28 2011-08-11 Konica Minolta Opto Inc 発光ダイオードユニットの製造方法
CN102867902A (zh) * 2012-10-08 2013-01-09 江苏国星电器有限公司 提升白光一致性及改善光斑的led灯及其封装方法
CN102956789A (zh) * 2011-08-17 2013-03-06 盈胜科技股份有限公司 多层式阵列型发光二极管光引擎的封装结构
CN203300701U (zh) * 2013-06-06 2013-11-20 歌尔声学股份有限公司 发光二极管装置
CN104298001A (zh) * 2014-10-10 2015-01-21 深圳市华星光电技术有限公司 直下式背光模组及其制造方法
CN105845810A (zh) * 2016-03-30 2016-08-10 深圳市聚飞光电股份有限公司 一种基于绿光量子点的高色域白光led灯珠的制作方法
CN105870302A (zh) * 2016-03-30 2016-08-17 深圳市聚飞光电股份有限公司 一种高色域白光量子点led的封装方法
CN106449908A (zh) * 2016-11-30 2017-02-22 深圳市聚飞光电股份有限公司 一种基于量子点荧光膜的led灯珠的封装方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202454609U (zh) * 2012-01-19 2012-09-26 福州瑞晟电子有限公司 一种分层式led封装结构
CN203733842U (zh) * 2013-12-20 2014-07-23 广州闻达电子有限公司 一种能提高出光率的led
KR101621820B1 (ko) * 2014-12-29 2016-05-17 삼성전자 주식회사 광원, 광원을 포함하는 백라이트 유닛 및 액정 표시 장치

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100002662A (ko) * 2008-06-30 2010-01-07 서울반도체 주식회사 발광장치 및 발광장치 제조방법
JP2011155188A (ja) * 2010-01-28 2011-08-11 Konica Minolta Opto Inc 発光ダイオードユニットの製造方法
CN102956789A (zh) * 2011-08-17 2013-03-06 盈胜科技股份有限公司 多层式阵列型发光二极管光引擎的封装结构
CN102867902A (zh) * 2012-10-08 2013-01-09 江苏国星电器有限公司 提升白光一致性及改善光斑的led灯及其封装方法
CN203300701U (zh) * 2013-06-06 2013-11-20 歌尔声学股份有限公司 发光二极管装置
CN104298001A (zh) * 2014-10-10 2015-01-21 深圳市华星光电技术有限公司 直下式背光模组及其制造方法
CN105845810A (zh) * 2016-03-30 2016-08-10 深圳市聚飞光电股份有限公司 一种基于绿光量子点的高色域白光led灯珠的制作方法
CN105870302A (zh) * 2016-03-30 2016-08-17 深圳市聚飞光电股份有限公司 一种高色域白光量子点led的封装方法
CN106449908A (zh) * 2016-11-30 2017-02-22 深圳市聚飞光电股份有限公司 一种基于量子点荧光膜的led灯珠的封装方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109830475A (zh) * 2019-02-18 2019-05-31 南通创亿达新材料股份有限公司 高色域量子点灯条、制备方法及其背光模组

Also Published As

Publication number Publication date
CN106449908A (zh) 2017-02-22
CN106449908B (zh) 2018-10-26

Similar Documents

Publication Publication Date Title
WO2018099081A1 (zh) 一种基于量子点荧光膜的led灯珠的封装方法
WO2018099080A1 (zh) 一种分层型量子点led灯珠的封装方法
US10153407B2 (en) Packaging method for high gamut white light quantum dot LED
WO2018099082A1 (zh) 一种包覆型量子点led灯珠的封装方法
CN106384776B (zh) 一种三明治型量子点led灯珠的封装方法
CN106449943A (zh) 一种倒装型量子点led灯珠的成型封装方法
WO2012144030A1 (ja) 発光装置及びその製造方法
CN206878027U (zh) 一种新型的高色域发光器件
WO2017166870A1 (zh) 一种基于红光量子点的高色域白光led灯珠的制作方法
CN103207476B (zh) 一种led背光液晶显示装置及其发光材料的涂覆方法
CN206497278U (zh) 一种量子点显示装置
CN106935693A (zh) 一种五面发光的量子点csp背光源及其制备方法
CN107546314A (zh) 一种led荧光粉沉降的封装工艺
CN207718119U (zh) 一种量子点透镜、灯条及背光模组
CN109830474B (zh) 彩光led芯片制备方法及彩光led灯珠制备方法
CN106784177B (zh) 一种量子点led灯珠的封装方法
CN106784260A (zh) 一种直下式led背光源的制作方法
CN105977244A (zh) 一种可调色温的csp封装器件及其封装方法
CN109742220B (zh) 含液态量子点的白光led及其制备方法
CN101123285A (zh) 采用旋胶和光刻工艺封装发光二极管的方法
CN102054919A (zh) 一种高亮度黄绿灯及其制作方法
CN105742462A (zh) 一种紫外光与多量子点组合的高色域白光实现方式
CN111952292A (zh) 发光装置及其制备方法
CN105845810B (zh) 一种基于绿光量子点的高色域白光led灯珠的制作方法
CN108231972B (zh) 一种led芯片封装方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17876367

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17876367

Country of ref document: EP

Kind code of ref document: A1