WO2018096757A1 - 熱交換システム及びその運転方法、ガスタービンの冷却システム及び冷却方法、並びにガスタービンシステム - Google Patents

熱交換システム及びその運転方法、ガスタービンの冷却システム及び冷却方法、並びにガスタービンシステム Download PDF

Info

Publication number
WO2018096757A1
WO2018096757A1 PCT/JP2017/031726 JP2017031726W WO2018096757A1 WO 2018096757 A1 WO2018096757 A1 WO 2018096757A1 JP 2017031726 W JP2017031726 W JP 2017031726W WO 2018096757 A1 WO2018096757 A1 WO 2018096757A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
line
cooling medium
heat exchanger
cooling
Prior art date
Application number
PCT/JP2017/031726
Other languages
English (en)
French (fr)
Inventor
直希 篠
行政 中本
勇 松見
充志 窪田
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Priority to KR1020197011536A priority Critical patent/KR102318485B1/ko
Priority to DE112017005972.0T priority patent/DE112017005972B4/de
Priority to CN201780066089.3A priority patent/CN109891058A/zh
Priority to US16/337,995 priority patent/US11441452B2/en
Publication of WO2018096757A1 publication Critical patent/WO2018096757A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/106Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with water evaporated or preheated at different pressures in exhaust boiler
    • F01K23/108Regulating means specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/18Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbine being of multiple-inlet-pressure type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/04Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/18Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/14Cooling of plants of fluids in the plant, e.g. lubricant or fuel
    • F02C7/141Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/16Cooling of plants characterised by cooling medium
    • F02C7/18Cooling of plants characterised by cooling medium the medium being gaseous, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/213Heat transfer, e.g. cooling by the provision of a heat exchanger within the cooling circuit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Definitions

  • the present disclosure relates to a heat exchange system and a method of operating the same, a cooling system and a cooling method of a gas turbine, and a gas turbine system.
  • the gas may be cooled by heat exchange between the gas and the cooling medium.
  • Patent Document 1 describes that compressed air is cooled by heat exchange between compressed air compressed by a compressor of a gas turbine and cooling air taken from the outside at a normal temperature using a heat exchanger. It is done. In this heat exchanger, the flow rate of the compressed air flowing through the heat exchanger is adjusted in order to suppress the subcooling or the overheating of the compressed air to be cooled.
  • the heat transfer surface is A specific configuration for preventing local overcooling in the vicinity of is not described.
  • At least one embodiment of the present invention is a heat exchange system capable of suppressing the generation of drain in a gas line through which a gas to be cooled flows, a method of operating the same, a cooling system and method of a gas turbine, and
  • An object of the present invention is to provide a gas turbine system.
  • a heat exchange system A gas line through which the gas to be cooled flows; A first heat exchanger provided in the gas line and configured to cool the gas by heat exchange with a cooling medium; A refrigerant introduction line for introducing the cooling medium into the first heat exchanger; A refrigerant discharge line for discharging the cooling medium after cooling the gas from the first heat exchanger; A recirculation line for recirculating at least a portion of the cooling medium flowing through the refrigerant discharge line to the refrigerant introduction line; A flow rate adjusting unit for adjusting the flow rate of the cooling medium flowing through the recirculation line such that the temperature of the cooling medium introduced from the refrigerant introduction line to the first heat exchanger is equal to or higher than a threshold value; Equipped with
  • the flow rate control unit adjusts the flow rate (recirculation flow rate of the cooling medium) of the high temperature cooling medium returned from the refrigerant discharge line to the refrigerant introduction line via the recirculation line.
  • the temperature of the cooling medium flowing into the first heat exchanger can be maintained at or above the threshold.
  • the flow rate adjustment unit A flow control valve provided in the recirculation line; A valve controller configured to control the flow rate adjustment valve based on a deviation between the temperature of the cooling medium introduced into the first heat exchanger and a target temperature that is equal to or greater than the threshold value; including.
  • the first heat exchange is performed by operating the flow control valve under the control of the valve controller based on the deviation between the temperature of the cooling medium flowing into the first heat exchanger and the target temperature.
  • the temperature of the cooling medium flowing into the vessel can be properly adjusted to effectively suppress the generation of the drain in the gas line.
  • the heat exchange system further includes a recirculation pump provided in the recirculation line.
  • the cooling medium is returned to the refrigerant introduction line which is higher in pressure than the refrigerant discharge line by the pressure loss in the first heat exchanger. It becomes possible to circulate.
  • the gas line supplies compressed air from a compressor of a gas turbine to a cooling target portion of the gas turbine Configured
  • the compressed air generated by the compressor of the gas turbine after the compressed air generated by the compressor of the gas turbine is cooled by the first heat exchanger, it can be supplied to the cooling target portion of the gas turbine. Further, as described in the above (1), since the generation of drain in the gas line can be suppressed by the function of the recirculation line and the flow rate control unit, the carry-in of drain from the gas line to the gas turbine is prevented. It is possible to suppress the decrease in the efficiency of the gas turbine caused by the drain.
  • the heat exchange system includes, in the refrigerant introduction line, condensate from a steam turbine condenser that constitutes GTCC together with the gas turbine. It is configured to be partially supplied.
  • the compressed air can be cooled by heat exchange using condensed water.
  • the function of the recirculation line and the flow rate control unit described in the above (1) is different from the case where the condensate itself having a relatively low temperature is caused to flow into the first heat exchanger as a cooling medium. It is possible to suppress the occurrence.
  • the heat exchange system is a second heat exchange provided upstream of the first heat exchanger of the gas line. It further comprises a
  • the high temperature compressed air from the gas turbine compressor is cooled by using the first heat exchanger and the second heat exchanger on the upstream side to cool the cooling target portion of the gas turbine
  • the temperature can be lowered stepwise to a temperature range suitable for In this case, the risk of drain generation in the gas line is relatively high in the first heat exchanger on the downstream side, but as described in (1) above, due to the function of the recirculation line and the flow rate regulator, the first heat exchanger It is possible to suppress drain generation in the gas line in the heat exchanger.
  • the second heat exchanger performs heat exchange between the gas and high-pressure water supply of GTCC including the gas turbine to cool the gas.
  • the GTCC is recovered by recovering the thermal energy of the high temperature compressed air from the gas turbine compressor by the high pressure feed water by cooling the compressed air with the high pressure feed water in the second heat exchanger.
  • the flow rate adjusting unit is a part of the cooling medium introduced into the first heat exchanger from the refrigerant introduction line. Assuming that the temperature is T [° C.] and the dew point of the gas is T d [° C.], the cooling flow in the recirculation line so as to satisfy the relationship of (T d ⁇ 15) ⁇ T ⁇ (T d +5) It is configured to adjust the flow rate of the medium.
  • a gas turbine cooling system according to at least one embodiment of the present invention, A heat exchange system according to any of the above (1) to (8), configured to cool compressed air from a compressor of a gas turbine; And a cooling air supply line for supplying the compressed air cooled by the heat exchange system to a portion to be cooled of the gas turbine.
  • the compressed air generated by the compressor of the gas turbine after the compressed air generated by the compressor of the gas turbine is cooled by the heat exchange system, it can be supplied to the cooling target portion of the gas turbine. Further, as described in the above (1), since the generation of drain in the gas line can be suppressed by the function of the recirculation line and the flow rate control unit, the carry-in of drain from the gas line to the gas turbine is prevented. It is possible to suppress the decrease in the efficiency of the gas turbine caused by the drain.
  • the cooling system of the gas turbine further includes an air compressor provided in the cooling air supply line.
  • the compressed air cooled by the heat exchange system is pressurized by the air compressor, the relatively low temperature compressed air (cooling air) is smoothed in the portion to be cooled of the gas turbine. Can be supplied.
  • a gas turbine system according to at least one embodiment of the present invention, With gas turbines, (9) or (10), wherein the cooling system is configured to cool the gas turbine; Equipped with
  • the compressed air generated by the compressor of the gas turbine after the compressed air generated by the compressor of the gas turbine is cooled by the heat exchange system, it can be supplied to the cooling target portion of the gas turbine. Further, as described in the above (1), since the generation of drain in the gas line can be suppressed by the function of the recirculation line and the flow rate control unit, the carry-in of drain from the gas line to the gas turbine is prevented. It is possible to suppress the decrease in the efficiency of the gas turbine caused by the drain.
  • a method of operating a heat exchange system Cooling the gas to be cooled by heat exchange with the cooling medium in the first heat exchanger;
  • the cooling medium from the refrigerant discharge line for discharging the cooling medium after cooling the gas from the first heat exchanger to the refrigerant introduction line for introducing the cooling medium to the first heat exchanger Recirculating a portion of the
  • the cooling is recirculated from the refrigerant discharge line to the refrigerant introduction line such that the temperature of the cooling medium introduced from the refrigerant introduction line to the first heat exchanger is equal to or higher than a threshold. Adjust the flow rate of the medium.
  • the flow rate of the high-temperature cooling medium (recirculation flow rate of the cooling medium) returned from the refrigerant discharge line to the refrigerant introduction line is adjusted, it flows into the first heat exchanger
  • the temperature of the cooling medium can be maintained above the threshold.
  • the temperature of the cooling medium introduced into the first heat exchanger from the refrigerant introduction line is T [° C.]
  • T d the dew point of the gas
  • the refrigerant discharge line is recirculated to the refrigerant introduction line so as to satisfy the relationship of (T d ⁇ 15) ⁇ T ⁇ (T d +5).
  • the flow rate of the cooling medium is adjusted.
  • the temperature T of the cooling medium introduced from the refrigerant introduction line to the first heat exchanger is maintained within an appropriate temperature range, whereby the local area in the gas line through which the gas to be cooled flows It is possible to efficiently perform heat exchange in the first heat exchanger while suppressing the occurrence of excessive draining.
  • a method of cooling a gas turbine according to at least one embodiment of the present invention, Operating the heat exchange system according to the method described in (12) or (13) above to cool the compressed air from the compressor of the gas turbine; Supplying the compressed air cooled by the heat exchange system to a portion to be cooled of the gas turbine; Equipped with
  • the compressed air generated by the compressor of the gas turbine after the compressed air generated by the compressor of the gas turbine is cooled by the heat exchange system, it can be supplied to the cooling target portion of the gas turbine.
  • the flow rate of the cooling medium to be recirculated in the recirculation step it is possible to suppress the generation of drain in the gas line through which the gas to be cooled flows. Therefore, the carrying-in of the drain from a gas line to a gas turbine can be prevented, and the efficiency fall of the gas turbine resulting from a drain can be suppressed.
  • a heat exchange system capable of suppressing generation of a drain in a gas line through which a gas to be cooled flows, an operation method thereof, a gas turbine cooling system and method, and a gas turbine system are provided. Be done.
  • a combined cycle power plant including a gas turbine will be described as an example of a gas turbine system to which a heat exchange system according to an embodiment is applied.
  • the application destination of the heat exchange system according to the present invention is not limited to the combined cycle power plant, and can be generally applied to a heat exchanger for cooling gas.
  • FIG. 1 is a diagram showing an example of the overall configuration of a combined cycle power plant (hereinafter referred to as a GTCC power plant) including a gas turbine that is a gas turbine system according to an embodiment.
  • the GTCC power plant 1 mainly includes a gas turbine 2, a steam turbine 11, an exhaust heat recovery boiler 10, and a cooling system 7 for cooling the gas turbine 2.
  • the GTCC power plant 1 may be a multi-shaft type in which the rotors of the gas turbine 2 and the steam turbine 11 are independent of each other as shown in FIG. 1 or the rotors of the gas turbine 2 and the steam turbine 11 May be a single-shaft type.
  • the gas turbine 2 is configured to be rotationally driven by the combustion gas, a compressor 3 for compressing air, a combustor 4 for burning fuel (for example, natural gas or the like) to generate combustion gas, and the combustion gas And a turbine 5. While the compressed air compressed by the compressor 3 is fed to the combustor 4, fuel is supplied via a line (not shown) other than the compressed air. .
  • the compressed air has a role as an oxidant when the fuel is burned in the combustor 4.
  • the combustion gas generated by the combustion of the fuel in the combustor 4 is supplied to the turbine 5 to drive the turbine 5.
  • a generator 6 is connected to the turbine 5 via a rotating shaft, and the generator 6 is driven by the rotational energy of the turbine 5 to generate electric power.
  • the combustion gas (exhaust gas) exhausted from the turbine 5 after finishing work in the turbine 5 is led to the exhaust heat recovery boiler 10 and used as a heat source for steam generation in the exhaust heat recovery boiler 10, a chimney (not shown) Etc.).
  • a part of the compressed air generated by the compressor 3 is led to a cooling system 7 described later, and a heat exchange system 8 including a cooler (the first heat exchanger 14 and / or the second heat exchanger 15). , And then used to cool the gas turbine 2.
  • the waste heat recovery boiler 10 is provided with a low pressure economizer 44, a low pressure evaporator 46, an intermediate pressure economizer 48, an intermediate pressure evaporator 50, a high pressure economizer 52, and a high pressure evaporator 54.
  • a low pressure drum 45, an intermediate pressure drum 49 and a high pressure drum 53 are attached to the low pressure evaporator 46, the medium pressure evaporator 50 and the high pressure evaporator 54, respectively.
  • the steam turbine 11 includes a high pressure turbine 30, an intermediate pressure turbine 32 and a low pressure turbine 34.
  • the high pressure turbine 30 is supplied with high pressure steam obtained by heating the saturated steam from the high pressure drum 53 with a high pressure superheater (not shown) in the exhaust heat recovery boiler 10.
  • the high pressure steam supplied to the high pressure turbine 30 is sent to a reheater (not shown) in the exhaust heat recovery boiler 10 after work by the high pressure turbine 30.
  • the reheater of the waste heat recovery boiler 10 in addition to high pressure steam (low temperature steam before reheating) after working in the high pressure turbine 30, saturated steam from the intermediate pressure drum 49 is The steam superheated by the medium pressure superheater (not shown) is also supplied. Then, the steam heated by the reheater is supplied to the intermediate pressure turbine 32 as reheated steam. The reheated steam supplied to the intermediate pressure turbine 32 is supplied to the low pressure turbine 34 after being worked by the intermediate pressure turbine 32.
  • the steam superheated in the low pressure superheater (not shown) in the exhaust heat recovery boiler 10 is also saturated steam from the low pressure drum 45 Supplied.
  • a generator 36 is connected to the high pressure turbine 30, the intermediate pressure turbine 32 and the low pressure turbine 34 via a rotating shaft, and the generator 36 is driven by the rotational energy of each of the turbines (30, 32, 34). Is to be generated.
  • the gas turbine 2 and the steam turbine 11 may be configured to drive a common generator. That is, the generator 6 driven by the gas turbine 2 and the generator 36 driven by the steam turbine 11 may be the same generator.
  • the exhaust (steam) from the low pressure turbine 34 is led to the condenser 38 and condensed.
  • the water generated by the condenser 38 is introduced into the low pressure economizer 44 by the low pressure feed pump 39.
  • the water that has passed through the low pressure economizer 44 is partially supplied to the low pressure drum 45, and the remainder is guided to the medium pressure water pump 56 and the high pressure water pump 58.
  • the medium pressure feed pump 56 supplies medium pressure feed to the medium pressure drum 49 via the medium pressure economizer 48.
  • the high pressure feed pump 58 supplies high pressure feed water to the high pressure drum 53 via the high pressure economizer 52.
  • the feed water led to the high pressure drum 53, the medium pressure drum 49 and the low pressure drum 45 exchanges heat with the exhaust gas from the turbine 5 of the gas turbine 2 in the high pressure evaporator 54, the medium pressure evaporator 50 and the low pressure evaporator 46, respectively. It is evaporated and accumulated as saturated vapor in each drum (53, 49, 45).
  • the cooling system 7 is configured to cool a portion to be cooled of the gas turbine 2 (e.g., the combustor 4 or the blades or vanes of the turbine 5).
  • the cooling system 7 supplies the heat exchange system 8 configured to cool the compressed air from the compressor 3 of the gas turbine 2 and the compressed air cooled by the heat exchange system 8 to the cooling target portion of the gas turbine 2 And a cooling air supply line 9.
  • the compressed air cooled by the heat exchange system 8 is supplied to the combustor 4 as the cooling target portion via the cooling air supply line 9, but the cooling target is
  • the cooling target is The part is not limited to the combustor 4, and each component of the gas turbine 2 (for example, a moving blade or a stationary blade of the turbine 5 or the like) can be a target to be cooled.
  • the cooling air supply line 9 may be provided with an air compressor 66 for pressurizing the compressed air cooled by the heat exchange system 8.
  • an air compressor 66 for pressurizing the compressed air cooled by the heat exchange system 8.
  • the heat exchange system 8 includes a gas line 12 through which a gas to be cooled flows, a first heat exchanger 14 provided in the gas line 12, and a first heat exchanger. And a refrigerant discharge line connected to the refrigerant flow line.
  • the gas to be cooled is a portion of the compressed air generated by the compressor 3 of the gas turbine 2, and a portion of the compressed air is transmitted via the gas line 12. It is led to the cooling system 7.
  • a cooling medium is introduced into the first heat exchanger 14 from the refrigerant introduction line 16, and the gas to be cooled is exchanged by heat exchange between the gas to be cooled flowing through the gas line 12 and the cooling medium. Configured to cool.
  • condensed water obtained by condensing the exhaust (steam) from the steam turbine 11 with a condenser 38 is introduced into the first heat exchanger 14 as a cooling medium. Then, in the first heat exchanger 14, the compressed air is cooled by heat exchange between the condensed water as the cooling medium and the compressed air flowing through the gas line 12.
  • a part of the condensate from the condenser 38 is supplied to the first heat exchanger 14 via the refrigerant introduction line 16 as a cooling medium.
  • the remaining portion of the condensed water from the condenser 38 is supplied to the first heat exchanger 14 through the condensed water main flow line 40 provided between the condenser 38 and the low pressure economizer 44 of the waste heat recovery boiler 10. It is guided to the low pressure economizer 44 without passing through. That is, in the embodiment shown in FIG. 1, the refrigerant introduction line 16 is provided branched from the condensate main flow line 40.
  • the flow rate of the condensate as the cooling medium introduced to the first heat exchanger 14 via the refrigerant introduction line 16 may be adjusted by, for example, a valve 41 provided in the condensate main flow line 40. Good.
  • the condensed water (cooling medium) introduced into the first heat exchanger 14 cools the compressed air (gas to be cooled) by heat exchange in the first heat exchanger 14, and 1 Exhausted from the heat exchanger 14
  • the condensed water (cooling medium) discharged through the refrigerant discharge line 18 joins the condensed water flowing through the condensed water main line 40 and is led to the low pressure economizer 44 of the exhaust heat recovery boiler 10.
  • the heat exchange system 8 further includes a recirculation line 20 provided between the refrigerant introduction line 16 and the refrigerant discharge line 18.
  • the recirculation line 20 is configured to recirculate (return) a portion of the condensate (cooling medium) flowing through the refrigerant discharge line 18 to the refrigerant introduction line 16.
  • the heat exchange system 8 further includes a flow rate adjustment unit 22 for adjusting the flow rate of the condensate (cooling medium) flowing through the recirculation line 20.
  • the flow control unit 22 includes a flow control valve 24 provided in the recirculation line 20.
  • the flow rate adjustment unit 22 is configured to adjust the flow rate of the condensate flowing through the recirculation line 20 such that the temperature of the condensate introduced from the refrigerant introduction line 16 to the first heat exchanger 14 is equal to or higher than the threshold Ts. Be done.
  • the opening degree of the flow control valve 24 is adjusted so that the temperature of the condensate introduced from the refrigerant introduction line 16 to the first heat exchanger 14 becomes equal to or higher than the threshold Ts.
  • FIG. 2 is a view showing an example of a temperature distribution in the vicinity of the heat transfer tube 13 which constitutes the first heat exchanger 14.
  • the temperature (bulk temperature) of the cooling medium (condensed water in the embodiment shown in FIG. 1) introduced into the first heat exchanger 14 is T, and is introduced into the first heat exchanger 14.
  • the temperature (bulk temperature) of the gas to be cooled (compressed air in the embodiment shown in FIG. 1) is Ta.
  • the heat transfer coefficient of the cooling medium and the gas to be cooled is large in the vicinity of the heat transfer surface 13a (the surface of the heat transfer tube 13), and the temperature of the gas to be cooled becomes lower as the heat transfer surface 13a approaches.
  • the lower the temperature T of the cooling medium the lower the temperature of the gas to be cooled in the vicinity of the heat transfer surface 13a, and the local overcooling of the gas tends to occur locally in the vicinity of the heat transfer surface 13a.
  • the condensate as the cooling medium receives heat by heat exchange with the compressed air
  • the condensate discharged from the first heat exchanger 14 to the refrigerant discharge line 18 is recovered
  • the water is hotter than the condensate flowing through the refrigerant introduction line 16. Therefore, a part of the condensate (cooling medium) flowing through the refrigerant discharge line 18 is recirculated to the refrigerant introduction line 16 via the recirculation line 20, and the refrigerant is introduced from the refrigerant introduction line 16 into the first heat exchanger 14.
  • the temperature of condensed water (cooling medium) can be raised.
  • the first heat exchanger is adjusted by adjusting the flow rate of the high temperature condensate (recirculation flow rate of the cooling medium) returned from the refrigerant discharge line 18 to the refrigerant introduction line 16 via the recirculation line 20 by the flow rate adjustment unit.
  • the temperature of the condensate (cooling medium) flowing into 14 can be maintained above the threshold. Therefore, it is possible to prevent local overcooling of gas in the vicinity of the heat transfer surface of the first heat exchanger 14 and to suppress the generation of drain in the gas line 12. Thereby, piping corrosion of the gas line 12 can be suppressed.
  • the flow control unit 22 may further include a valve controller 26 for controlling the flow control valve 24, as shown in FIG.
  • the flow rate control in the flow rate adjusting unit 22 by the valve controller 26 and the like will be described later.
  • the recirculation line 20 may be provided with a recirculation pump 28.
  • a recirculation pump 28 By providing the recirculation pump 28 in the recirculation line 20, recirculation of condensed water (cooling medium) to the refrigerant introduction line 16 which is at a higher pressure than the refrigerant discharge line 18 by the amount of pressure loss in the first heat exchanger 14. Is possible.
  • the heat exchange system 8 further comprises a second heat exchanger 15 provided upstream of the first heat exchanger 14 of the gas line 12, as shown in FIG.
  • the second heat exchanger 15 upstream of the first heat exchanger 14 (that is, the first stage cooler) and the first heat exchanger 14 (that is, the second stage cooler) are used.
  • the high-temperature compressed air from the compressor 3 of the gas turbine 2 can be gradually cooled to a temperature range suitable for cooling a portion to be cooled (for example, the combustor 4) of the gas turbine 2.
  • a cooling medium for cooling the gas to be cooled in the second heat exchanger 15 for example, a condenser 38
  • low pressure feed water, medium pressure feed water or high pressure feed water supplied to the low pressure evaporator 46, the medium pressure evaporator 50 or the high pressure evaporator 54 of the waste heat recovery boiler 10 may be used.
  • the second heat exchanger 15 is configured to heat exchange between the high pressure feed water in the GTCC power plant 1 and the compressed air flowing through the gas line 12 to cool the compressed air. It is done.
  • the high pressure feed water from the high pressure feed pump 58 is led to the high pressure economizer 52 via the high pressure feed mainstream line 60. Then, a part of the high pressure water supply from the high pressure water supply pump 58 is supplied to the second heat exchanger 15 as a cooling medium via the high pressure water supply introduction line 62 branched from the high pressure water supply mainstream line 60. .
  • the high pressure feed water (cooling medium) obtained by cooling the compressed air by heat exchange in the second heat exchanger 15 is discharged from the second heat exchanger 15 via the high pressure feed water discharge line 64.
  • the high pressure feed water (cooling medium) discharged through the high pressure feed water discharge line 64 merges with the high pressure feed water flowing through the high pressure water feed mainstream line 60 and is led to the high pressure economizer 52 of the exhaust heat recovery boiler 10.
  • the flow rate of high pressure feed water as a cooling medium introduced to the second heat exchanger 15 via the high pressure feed water introduction line 62 is adjusted by, for example, a valve 61 provided in the high pressure feed water mainstream line 60. It is also good.
  • the thermal energy of the high-temperature compressed air from the compressor 3 of the gas turbine 2 is recovered to the high-pressure feed water.
  • the thermal efficiency of the plant 1 can be improved.
  • the flow rate of the condensed water (cooling medium in the first heat exchanger 14) to be recirculated from the refrigerant discharge line 18 to the refrigerant introduction line 16 via the recirculation line 20 (hereinafter referred to as the recirculation flow rate) Control) will be described.
  • the control of the recirculation flow rate of the cooling medium may be performed by the flow rate adjusting unit 22 or may be performed by controlling the opening degree of the flow rate adjusting valve 24 by the valve controller 26.
  • the recirculation flow rate of the condensed water (cooling medium) is equal to or higher than the temperature T of the condensed water (cooling medium) introduced from the refrigerant introduction line 16 into the first heat exchanger 14 and the above-mentioned threshold Ts. It is controlled based on the deviation with the target temperature Tg of. Thus, based on the deviation between the temperature T of the condensed water (cooling medium) flowing into the first heat exchanger 14 and the target temperature Tg, reactivation is performed, for example, by operating the flow control valve under the control of the valve controller. By adjusting the circulation flow rate, the temperature T of the condensate (cooling medium) flowing into the first heat exchanger 14 can be appropriately adjusted, and the generation of the drain in the gas line 12 can be effectively suppressed.
  • the recirculation flow rate of the condensed water (cooling medium) is such that the temperature of the compressed air (gas to be cooled) flowing through the gas line 12 is the compressed air at the heat transfer surface 13a (see FIG. 2) of the first heat exchanger 14. It may be adjusted to be higher than the dew point of
  • the recirculation flow rate of the condensate (cooling medium) is the temperature T [° C.] of the condensate (cooling medium) introduced from the refrigerant introduction line 16 to the first heat exchanger 14,
  • T d the temperature of the condensate (cooling medium) introduced from the refrigerant introduction line 16 to the first heat exchanger 14.
  • local drainage in the gas line 12 can be generated by maintaining the temperature T of the condensate (cooling medium) introduced from the refrigerant introduction line 16 into the first heat exchanger 14 within an appropriate temperature range. While suppressing, heat exchange in the first heat exchanger 14 can be performed efficiently.
  • the valve controller 26 may control the above-described recirculation flow rate based on the detection results of various sensors provided in each line through which the condensed water (cooling medium) flows.
  • the refrigerant introduction line 16 is provided with a temperature sensor 68 for detecting the temperature T of the condensate (cooling medium) introduced into the first heat exchanger 14, and the refrigerant discharge line A temperature sensor 70 is provided at 18 to detect the temperature of the condensate (cooling medium) discharged from the first heat exchanger 14.
  • the recirculation line 20 is provided with a flow rate sensor 72 for detecting the flow rate of condensed water (cooling medium) to be recirculated to the refrigerant introduction line 16.
  • the refrigerant introduction line 16 is downstream of a branch point where the condensate main flow line 40 and the refrigerant introduction line 16 are branched and on the upstream side of a junction where the recirculation line 20 joins the refrigerant introduction line 16
  • a flow rate sensor 74 is provided to detect the flow rate of the condensate flowing into the refrigerant introduction line 16 as a cooling medium among the condensate from the condenser 38.
  • the valve controller 26 is configured to control the recirculation flow rate of condensate (cooling medium) based on the detection result of at least one of the temperature sensor 68, the temperature sensor 70, the flow rate sensor 72, or the flow rate sensor 74, for example. It may be done.
  • a representation representing a relative or absolute arrangement such as “in a direction”, “along a direction”, “parallel”, “orthogonal”, “center”, “concentric” or “coaxial”
  • a representation representing a relative or absolute arrangement such as “in a direction”, “along a direction”, “parallel”, “orthogonal”, “center”, “concentric” or “coaxial”
  • expressions that indicate that things such as “identical”, “equal” and “homogeneous” are equal states not only represent strictly equal states, but also have tolerances or differences with which the same function can be obtained. It also represents the existing state.
  • expressions representing shapes such as a square shape and a cylindrical shape not only indicate shapes such as a square shape and a cylindrical shape in a geometrically strict sense, but also within the range where the same effect can be obtained. Also, the shape including the uneven portion, the chamfered portion, and the like shall be indicated. Moreover, in the present specification, the expressions “comprising”, “including” or “having” one component are not exclusive expressions excluding the presence of other components.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

熱交換システム(8)は、冷却対象のガスが流れるガスライン(12)と、前記ガスライン(12)に設けられ、冷却媒体との熱交換により前記ガスを冷却するように構成された第1熱交換器(14)と、前記第1熱交換器(14)に前記冷却媒体を導入するための冷媒導入ライン(16)と、前記ガスを冷却した後の前記冷却媒体を前記第1熱交換器(14)から排出するための冷媒排出ライン(18)と、前記冷媒排出ライン(18)を流れる前記冷却媒体の少なくとも一部を前記冷媒導入ライン(16)に再循環させるための再循環ライン(20)と、前記冷媒導入ライン(16)から前記第1熱交換器(14)に導入される前記冷却媒体の温度が閾値以上となるように前記再循環ライン(20)を流れる前記冷却媒体の流量を調節するための流量調節部(22)と、を備える。

Description

熱交換システム及びその運転方法、ガスタービンの冷却システム及び冷却方法、並びにガスタービンシステム
 本開示は、熱交換システム及びその運転方法、ガスタービンの冷却システム及び冷却方法、並びにガスタービンシステムに関する。
 ガスと冷却媒体とを熱交換させることによりガスを冷却することがある。
 例えば、特許文献1には、ガスタービンの圧縮機で圧縮された圧縮空気と、外部から取り込まれた常温の冷却空気とを熱交換器で熱交換することにより、圧縮空気を冷却することが記載されている。この熱交換器では、冷却対象の圧縮空気の過冷却又は過熱を抑制するために、熱交換器を流れる圧縮空気の流量を調節するようになっている。
特開2015-152264号公報
 ところで、熱交換器でガスを冷却する場合、熱交換器に供給する冷却媒体の温度が低いと、冷却対象のガスが露点以下の温度となる過冷却が起こりやすくなり、特に、冷却対象のガスと冷却媒体との熱交換が行われる熱交換器の伝熱面の近傍で、局所的にガスの過冷却が起こりやすくなる。このように過冷却が生じると、冷却対象のガス中に含まれる水分からドレン(凝縮水分)が生じ、ガスが流れる配管に腐食等の損傷が生じる場合がある。
 この点、特許文献1に記載の熱交換器では、熱交換器を流れる圧縮空気の流量(熱負荷)を調節して圧縮空気の過冷却を抑制するようになってはいるが、伝熱面の近傍における局所的な過冷却を防止するための具体的な構成は記載されていない。
 上述の事情に鑑みて、本発明の少なくとも一実施形態は、冷却対象のガスが流れるガスラインにおけるドレンの発生を抑制可能な熱交換システム及びその運転方法、ガスタービンの冷却システム及び冷却方法、並びにガスタービンシステムを提供することを目的とする。
(1)本発明の少なくとも一実施形態に係る熱交換システムは、
 冷却対象のガスが流れるガスラインと、
 前記ガスラインに設けられ、冷却媒体との熱交換により前記ガスを冷却するように構成された第1熱交換器と、
 前記第1熱交換器に前記冷却媒体を導入するための冷媒導入ラインと、
 前記ガスを冷却した後の前記冷却媒体を前記第1熱交換器から排出するための冷媒排出ラインと、
 前記冷媒排出ラインを流れる前記冷却媒体の少なくとも一部を前記冷媒導入ラインに再循環させるための再循環ラインと、
 前記冷媒導入ラインから前記第1熱交換器に導入される前記冷却媒体の温度が閾値以上となるように前記再循環ラインを流れる前記冷却媒体の流量を調節するための流量調節部と、
を備える。
 上記(1)の構成によれば、再循環ラインを介して冷媒排出ラインから冷媒導入ラインへと戻す高温の冷却媒体の流量(冷却媒体の再循環流量)を流量調節部により調節するようにしたので、第1熱交換器に流入する冷却媒体の温度を閾値以上に保持することができる。これにより、第1熱交換器の伝熱面の近傍における局所的なガスの過冷却を防止し、ガスラインにおけるドレンの発生を抑制可能となる。よって、ガスラインの配管腐食を抑制することができる。
(2)幾つかの実施形態では、上記(1)の構成において、
 前記流量調節部は、
  前記再循環ラインに設けられた流量調節弁と、
  前記第1熱交換器に導入される前記冷却媒体の前記温度と前記閾値以上の目標温度との偏差に基づいて、前記流量調節弁を制御するように構成された弁コントローラと、
を含む。
 上記(2)の構成によれば、第1熱交換器に流入する冷却媒体の温度と目標温度との偏差に基づいて弁コントローラによる制御下で流量調節弁を作動させることで、第1熱交換器に流入する冷却媒体の温度を適切に調節し、ガスラインにおけるドレンの発生を効果的に抑制できる。
(3)幾つかの実施形態では、上記(1)又は(2)の構成において、前記熱交換システムは、前記再循環ラインに設けられる再循環ポンプをさらに備える。
 上記(3)の構成によれば、再循環ラインに再循環ポンプを設けたので、第1熱交換器における圧力損失の分だけ冷媒排出ラインよりも高圧である冷媒導入ラインへの冷却媒体の再循環が可能となる。
(4)幾つかの実施形態では、上記(1)乃至(3)の何れかの構成において、前記ガスラインは、ガスタービンの圧縮機から該ガスタービンの冷却対象部に圧縮空気を供給するように構成される。
 上記(4)の構成によれば、ガスタービンの圧縮機で生成した圧縮空気を第1熱交換器にて冷却した後、ガスタービンの冷却対象部に供給することができる。また、上記(1)で述べたように、再循環ラインおよび流量調節部の働きによりガスラインにおけるドレンの発生を抑制可能であるから、ガスラインからガスタービンへのドレンの持ち込みを防止して、ドレンに起因したガスタービンの効率低下を抑制できる。
(5)幾つかの実施形態では、上記(4)の構成において、前記熱交換システムは、前記冷媒導入ラインには、前記ガスタービンとともにGTCCを構成する蒸気タービンの復水器からの復水の一部が供給されるように構成される。
 上記(5)の構成によれば、復水を利用した熱交換により圧縮空気を冷却することが可能になる。また、上記(1)で述べた再循環ラインおよび流量調節部の働きにより、比較的温度が低い復水そのものを冷却媒体として第1熱交換器に流入させる場合とは異なり、ガスラインにおけるドレンの発生を抑制可能である。
(6)幾つかの実施形態では、上記(4)又は(5)の構成において、前記熱交換システムは、前記ガスラインの前記第1熱交換器よりも上流側に設けられた第2熱交換器をさらに備える。
 上記(6)の構成によれば、第1熱交換器とその上流側の第2熱交換器とを用いて、ガスタービン圧縮機からの高温の圧縮空気を、ガスタービンの冷却対象部を冷却するのに適した温度域まで段階的に降温させることができる。この場合、下流側の第1熱交換器ではガスラインにおけるドレン発生のリスクが相対的に高くなるが、上記(1)で述べたように、再循環ラインおよび流量調節部の働きにより、第1熱交換器内におけるガスラインでのドレン発生を抑制することができる。
(7)幾つかの実施形態では、上記(6)の構成において、前記第2熱交換器は、前記ガスタービンを含むGTCCの高圧給水と前記ガスとを熱交換させて前記ガスを冷却するように構成される。
 上記(7)の構成によれば、第2熱交換器にて圧縮空気を高圧給水により冷却することで、ガスタービン圧縮機からの高温の圧縮空気の熱エネルギーを高圧給水に回収させることでGTCCの熱効率を向上させることができる。
(8)幾つかの実施形態では、上記(1)乃至(7)の何れかの構成において、前記流量調節部は、前記冷媒導入ラインから前記第1熱交換器に導入される前記冷却媒体の温度をT[℃]とし、前記ガスの露点をT[℃]としたとき、(T-15)≦T≦(T+5)の関係を満たすように前記再循環ラインを流れる前記冷却媒体の流量を調節するように構成される。
 上記(8)の構成によれば、冷媒導入ラインから第1熱交換器に導入される冷却媒体の温度Tを適度な温度範囲内に維持することで、ガスラインにおける局所的なドレン発生を抑制しながら、第1熱交換器における熱交換を効率的に行うことができる。
(9)本発明の少なくとも一実施形態に係るガスタービンの冷却システムは、
 ガスタービンの圧縮機からの圧縮空気を冷却するように構成された上記(1)乃至(8)の何れかに記載の熱交換システムと、
 前記熱交換システムにより冷却した前記圧縮空気を前記ガスタービンの冷却対象部に供給するための冷却空気供給ラインと、を備える。
 上記(9)の構成によれば、ガスタービンの圧縮機で生成した圧縮空気を熱交換システムにて冷却した後、ガスタービンの冷却対象部に供給することができる。また、上記(1)で述べたように、再循環ラインおよび流量調節部の働きによりガスラインにおけるドレンの発生を抑制可能であるから、ガスラインからガスタービンへのドレンの持ち込みを防止して、ドレンに起因したガスタービンの効率低下を抑制できる。
(10)幾つかの実施形態では、上記(9)の構成において、前記ガスタービンの冷却システムは、前記冷却空気供給ラインに設けられる空気圧縮機をさらに備える。
 上記(10)の構成によれば、熱交換システムにより冷却された圧縮空気を空気圧縮機で昇圧するようにしたので、ガスタービンの冷却対象部に比較的低温の圧縮空気(冷却空気)を円滑に供給することができる。
(11)本発明の少なくとも一実施形態に係るガスタービンシステムは、
 ガスタービンと、
 前記ガスタービンを冷却するように構成された上記(9)又は(10)に記載の冷却システムと、
を備える。
 上記(11)の構成によれば、ガスタービンの圧縮機で生成した圧縮空気を熱交換システムにて冷却した後、ガスタービンの冷却対象部に供給することができる。また、上記(1)で述べたように、再循環ラインおよび流量調節部の働きによりガスラインにおけるドレンの発生を抑制可能であるから、ガスラインからガスタービンへのドレンの持ち込みを防止して、ドレンに起因したガスタービンの効率低下を抑制できる。
(12)本発明の少なくとも一実施形態に係る熱交換システムの運転方法は、
 第1熱交換器において、冷却媒体との熱交換により冷却対象のガスを冷却するステップと、
 前記ガスを冷却した後の前記冷却媒体を前記第1熱交換器から排出するための冷媒排出ラインから、前記第1熱交換器に前記冷却媒体を導入するための冷媒導入ラインに、前記冷却媒体の一部を再循環させるステップと、を備え、
 前記再循環させるステップでは、前記冷媒導入ラインから前記第1熱交換器に導入される前記冷却媒体の温度が閾値以上となるように、前記冷媒排出ラインから前記冷媒導入ラインに再循環させる前記冷却媒体の流量を調節する。
 上記(12)の方法によれば、冷媒排出ラインから冷媒導入ラインへと戻す高温の冷却媒体の流量(冷却媒体の再循環流量)を調節するようにしたので、第1熱交換器に流入する冷却媒体の温度を閾値以上に保持することができる。これにより、第1熱交換器の伝熱面の近傍における局所的なガスの過冷却を防止し、冷却対象のガスが流れるガスラインにおけるドレンの発生を抑制可能となる。よって、ガスラインの配管腐食を抑制することができる。
(13)幾つかの実施形態では、上記(12)の方法において、前記再循環させるステップでは、前記冷媒導入ラインから前記第1熱交換器に導入される前記冷却媒体の温度をT[℃]とし、前記ガスの露点をT[℃]としたとき、(T-15)≦T≦(T+5)の関係を満たすように、前記冷媒排出ラインから前記冷媒導入ラインに再循環させる前記冷却媒体の流量を調節する。
 上記(13)の方法によれば、冷媒導入ラインから第1熱交換器に導入される冷却媒体の温度Tを適度な温度範囲内に維持することで、冷却対象のガスが流れるガスラインにおける局所的なドレン発生を抑制しながら、第1熱交換器における熱交換を効率的に行うことができる。
(14)本発明の少なくとも一実施形態に係るガスタービンの冷却方法は、
 上記(12)又は(13)に記載の方法により熱交換システムを運転し、ガスタービンの圧縮機からの圧縮空気を冷却するステップと、
 前記熱交換システムにより冷却した前記圧縮空気を前記ガスタービンの冷却対象部に供給するステップと、
を備える。
 上記(14)の方法によれば、ガスタービンの圧縮機で生成した圧縮空気を熱交換システムにて冷却した後、ガスタービンの冷却対象部に供給することができる。また、上記(12)で述べたように、再循環ステップにおいて再循環させる冷却媒体の流量を調節することにより、冷却対象のガスが流れるガスラインにおけるドレンの発生を抑制可能である。よって、ガスラインからガスタービンへのドレンの持ち込みを防止して、ドレンに起因したガスタービンの効率低下を抑制できる。
 本発明の少なくとも一実施形態によれば、冷却対象のガスが流れるガスラインにおけるドレンの発生を抑制可能な熱交換システム及びその運転方法、ガスタービンの冷却システム及び冷却方法、並びにガスタービンシステムが提供される。
一実施形態に係るガスタービンシステムの全体構成例を示す図である。 熱交換器を構成する伝熱管近傍の温度分布の一例を示す図である。
 以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
 以下、一実施形態に係る熱交換システムが適用されるガスタービンシステムの一例として、ガスタービンを含むコンバインドサイクル発電プラントについて説明する。本発明に係る熱交換システムの適用先は、コンバインドサイクル発電プラントに限定されず、ガスを冷却する熱交換器一般に適用できる。
 図1は、一実施形態に係るガスタービンシステムであるガスタービンを含むコンバインドサイクル発電プラント(以下、GTCC発電プラントと称する)の全体構成例を示す図である。図1に示すように、GTCC発電プラント1は、主として、ガスタービン2と、蒸気タービン11と、排熱回収ボイラ10と、ガスタービン2を冷却するための冷却システム7と、を備えている。
 なお、GTCC発電プラント1は、図1に示すような、ガスタービン2及び蒸気タービン11のロータが互いに独立である多軸型であってもよいし、あるいは、ガスタービン2及び蒸気タービン11のロータが共通である1軸型であってもよい。
 ガスタービン2は、空気を圧縮するための圧縮機3と、燃料(例えば天然ガス等)を燃焼させて燃焼ガスを発生させるための燃焼器4と、燃焼ガスにより回転駆動されるように構成されたタービン5と、を備える。
 燃焼器4には、圧縮機3で圧縮された圧縮空気が送り込まれるようになっているとともに、該圧縮空気とは別のライン(不図示)を介して燃料が供給されるようになっている。圧縮空気は、燃焼器4において燃料が燃焼する際の酸化剤としての役割を有する。
 燃焼器4における燃料の燃焼によって生成した燃焼ガスはタービン5に供給され、タービン5を駆動する。タービン5には回転シャフトを介して発電機6が連結されており、タービン5の回転エネルギーによって発電機6が駆動されて電力が生成されるようになっている。
 タービン5で仕事を終えてタービン5から排出された燃焼ガス(排ガス)は、排熱回収ボイラ10に導かれて、排熱回収ボイラ10における蒸気生成用熱源として利用された後、煙突(不図示)等から排気される。
 なお、圧縮機3で生成される圧縮空気の一部は、後述する冷却システム7に導かれ、冷却器(第1熱交換器14及び/又は第2熱交換器15)を含む熱交換システム8によって冷却された後、ガスタービン2を冷却するために用いられる。
 排熱回収ボイラ10には、低圧節炭器44、低圧蒸発器46、中圧節炭器48、中圧蒸発器50、高圧節炭器52及び高圧蒸発器54が設けられている。なお、低圧蒸発器46、中圧蒸発器50及び高圧蒸発器54には、それぞれ、低圧ドラム45、中圧ドラム49及び高圧ドラム53が附属されている。
 蒸気タービン11は、高圧タービン30、中圧タービン32及び低圧タービン34を備えている。高圧タービン30には、高圧ドラム53からの飽和蒸気を排熱回収ボイラ10内の高圧過熱器(不図示)で過熱した高圧蒸気が供給される。高圧タービン30に供給された高圧蒸気は、高圧タービン30で仕事をした後、排熱回収ボイラ10内の再熱器(不図示)に送られる。
 排熱回収ボイラ10の再熱器には、高圧タービン30で仕事をした後の高圧蒸気(再熱前の低温蒸気)に加えて、中圧ドラム49からの飽和蒸気を排熱回収ボイラ10内の中圧過熱器(不図示)で過熱した蒸気も供給される。そして、再熱器で昇温された蒸気は、再熱蒸気として、中圧タービン32に供給される。中圧タービン32に供給された再熱蒸気は、中圧タービン32で仕事をした後、低圧タービン34に供給される。
 低圧タービン34には、中圧タービン32で仕事をした後の再熱蒸気に加えて、低圧ドラム45からの飽和蒸気を排熱回収ボイラ10内の低圧過熱器(不図示)で過熱した蒸気も供給される。
 高圧タービン30、中圧タービン32及び低圧タービン34には、回転シャフトを介して発電機36が連結されており、各タービン(30,32,34)の回転エネルギーによって発電機36が駆動されて電力が生成されるようになっている。
 なお、ガスタービン2と蒸気タービン11とは、共通の発電機を駆動するように構成されていてもよい。すなわち、ガスタービン2により駆動される発電機6と、蒸気タービン11によって駆動される発電機36は、同一の発電機であってもよい。
 低圧タービン34からの排気(蒸気)は、復水器38に導かれて復水される。復水器38で生成された水は、低圧給水ポンプ39により、低圧節炭器44に導入される。低圧節炭器44を通過した水は、一部が低圧ドラム45に給水され、残りは中圧給水ポンプ56及び高圧給水ポンプ58に導かれる。中圧給水ポンプ56は、中圧節炭器48を介して中圧給水を中圧ドラム49に供給する。また、高圧給水ポンプ58は、高圧節炭器52を介して高圧給水を高圧ドラム53に供給する。高圧ドラム53、中圧ドラム49及び低圧ドラム45に導かれた給水は、それぞれ、高圧蒸発器54、中圧蒸発器50及び低圧蒸発器46において、ガスタービン2のタービン5からの排ガスと熱交換されて蒸発し、各ドラム(53,49,45)に飽和蒸気として溜まるようになっている。
 冷却システム7は、ガスタービン2の冷却対象部(例えば燃焼器4、又は、タービン5の動翼又は静翼等)を冷却するように構成されている。
 冷却システム7は、ガスタービン2の圧縮機3からの圧縮空気を冷却するように構成された熱交換システム8と、熱交換システム8により冷却した圧縮空気をガスタービン2の冷却対象部に供給するための冷却空気供給ライン9と、を備えている。
 なお、図1に示す例では、熱交換システム8により冷却された圧縮空気は、冷却空気供給ライン9を介して冷却対象部としての燃焼器4に供給されるようになっているが、冷却対象部は燃焼器4に限定されず、ガスタービン2の各コンポーネント(例えばタービン5の動翼又は静翼等)が冷却対象部となり得る。
 冷却空気供給ライン9には、熱交換システム8により冷却された圧縮空気を昇圧させるための空気圧縮機66が設けられていてもよい。熱交換システム8により冷却された空気圧縮機66によって圧縮空気を昇圧することにより、ガスタービン2の冷却対象部に比較的低温の圧縮空気(冷却空気)を円滑に供給することができる。
 以下、幾つかの実施形態に係る熱交換システム8について、より詳細に説明する。
 幾つかの実施形態では、熱交換システム8は、図1に示すように、冷却対象のガスが流れるガスライン12と、ガスライン12に設けられる第1熱交換器14と、第1熱交換器14に接続される冷媒導入ライン16及び冷媒排出ライン18と、を備えている。図1に示す例示的な実施形態において、冷却対象のガスは、ガスタービン2の圧縮機3で生成された圧縮空気の一部であり、この圧縮空気の一部が、ガスライン12を介して冷却システム7に導かれるようになっている。
 第1熱交換器14には、冷媒導入ライン16から冷却媒体が導入されるようになっており、ガスライン12を流れる冷却対象のガスと、冷却媒体との熱交換により、冷却対象のガスを冷却するように構成される。
 図1に示す実施形態では、蒸気タービン11からの排気(蒸気)を復水器38で凝縮することにより得られる復水が、冷却媒体として第1熱交換器14に導入される。そして、第1熱交換器14において、冷却媒体である復水と、ガスライン12を流れる圧縮空気との熱交換により、圧縮空気が冷却されるようになっている。
 図1に示す実施形態では、復水器38からの復水の一部が、冷却媒体として冷媒導入ライン16を介して第1熱交換器14に供給されるようになっている。復水器38からの復水の残部は、復水器38と排熱回収ボイラ10の低圧節炭器44との間に設けられる復水主流ライン40を介して、第1熱交換器14を経由せずに低圧節炭器44に導かれるようになっている。すなわち、図1に示す実施形態において、冷媒導入ライン16は、復水主流ライン40から分岐して設けられている。
 なお、冷媒導入ライン16を介して第1熱交換器14に導かれる冷却媒体としての復水の流量は、例えば復水主流ライン40に設けられたバルブ41等によって調節するようになっていてもよい。
 第1熱交換器14に導入された復水(冷却媒体)は、第1熱交換器14での熱交換により圧縮空気(冷却対象のガス)を冷却した後、冷媒排出ライン18を介して第1熱交換器14から排出される。冷媒排出ライン18を介して排出された復水(冷却媒体)は、復水主流ライン40を流れる復水と合流し、排熱回収ボイラ10の低圧節炭器44へと導かれる。
 熱交換システム8は、冷媒導入ライン16と、冷媒排出ライン18との間に設けられる再循環ライン20をさらに備えている。再循環ライン20は、冷媒排出ライン18を流れる復水(冷却媒体)の一部を冷媒導入ライン16に再循環させる(戻す)ように構成される。
 また、熱交換システム8は、再循環ライン20を流れる復水(冷却媒体)の流量を調節するための流量調節部22をさらに備えている。図1に示す実施形態において、流量調節部22は、再循環ライン20に設けられた流量調節弁24を含む。
 流量調節部22は、冷媒導入ライン16から第1熱交換器14に導入される復水の温度が閾値Ts以上となるように、再循環ライン20を流れる復水の流量を調節するように構成される。例えば、冷媒導入ライン16から第1熱交換器14に導入される復水の温度が閾値Ts以上となるように、流量調節弁24の開度が調節されるようになっている。
 ここで、図2は、第1熱交換器14を構成する伝熱管13近傍の温度分布の一例を示す図である。図2に示す例において、第1熱交換器14に導入される冷却媒体(図1に示す実施形態では復水)の温度(バルク温度)はTであり、第1熱交換器14に導入される冷却対象のガス(図1に示す実施形態では圧縮空気)の温度(バルク温度)はTaである。
 典型的には、伝熱管13の近傍では、冷却媒体の温度Tと冷却対象のガスの温度Taとの温度差や、冷却媒体及び冷却対象のガスの伝熱係数等に応じて、図2に示すような温度分布となる。すなわち、伝熱面13a(伝熱管13の表面)の近傍で冷却媒体及び冷却対象のガスの温度勾配が大きく、伝熱面13aに近づくにつれて冷却対象のガスの温度は低くなる。ここで、冷却媒体の温度Tが低いほど、伝熱面13a近傍における冷却対象のガスの温度が低くなり、伝熱面13aの近傍で局所的にガスの過冷却が起こりやすくなる。このように過冷却が生じると、冷却対象のガス中に含まれる水分からドレン(凝縮水分)が生じ、ガスが流れる配管に腐食等の損傷が生じる場合がある。
 この点、図1に示す第1熱交換器14において、冷却媒体である復水は圧縮空気との熱交換により熱を受け取るので、第1熱交換器14から冷媒排出ライン18に排出される復水は、冷媒導入ライン16を流れる復水よりも高温である。
 よって、再循環ライン20を介して、冷媒排出ライン18を流れる復水(冷却媒体)の一部を冷媒導入ライン16に再循環させることにより、冷媒導入ライン16から第1熱交換器14に導入される復水(冷却媒体)の温度を上昇させることができる。
 また、再循環ライン20を介して冷媒排出ライン18から冷媒導入ライン16へと戻す高温の復水の流量(冷却媒体の再循環流量)を流量調節部により調節することにより、第1熱交換器14に流入する復水(冷却媒体)の温度を閾値以上に保持することができる。
 よって、第1熱交換器14の伝熱面の近傍における局所的なガスの過冷却を防止し、ガスライン12におけるドレンの発生を抑制することができる。これにより、ガスライン12の配管腐食を抑制することができる。
 幾つかの実施形態では、流量調節部22は、図1に示すように、流量調節弁24を制御するための弁コントローラ26をさらの備えていてもよい。なお、弁コントローラ26等による流量調節部22における流量制御については、後で説明する。
 再循環ライン20には、再循環ポンプ28が設けられていてもよい。再循環ポンプ28を再循環ライン20に設けることにより、第1熱交換器14における圧力損失の分だけ冷媒排出ライン18よりも高圧である冷媒導入ライン16への復水(冷却媒体)の再循環が可能となる。
 幾つかの実施形態では、熱交換システム8は、図1に示すように、ガスライン12の第1熱交換器14よりも上流側に設けられた第2熱交換器15をさらに備えている。
 この場合、第1熱交換器14よりも上流側の第2熱交換器15(すなわち、一段目の冷却器)と、第1熱交換器14(すなわち、二段目の冷却器)とを用いて、ガスタービン2の圧縮機3からの高温の圧縮空気を、ガスタービン2の冷却対象部(例えば燃焼器4)を冷却するのに適した温度域まで段階的に降温させることができる。
 第2熱交換器15において冷却対象のガス(図1に示す実施形態では、ガスタービン2の圧縮機3で生成された圧縮空気)を冷却するための冷却媒体としては、例えば、復水器38からの復水、あるいは、排熱回収ボイラ10の低圧蒸発器46、中圧蒸発器50又は高圧蒸発器54に供給される低圧給水、中圧給水又は高圧給水を利用してもよい。
 図1に示す例示的な実施形態では、第2熱交換器15は、GTCC発電プラント1における高圧給水と、ガスライン12を流れる圧縮空気とを熱交換させて、圧縮空気を冷却するように構成されている。
 図1に示すように、高圧給水ポンプ58からの高圧給水は、高圧給水主流ライン60を介して高圧節炭器52に導かられるようになっている。そして、高圧給水ポンプ58からの高圧給水の一部が、高圧給水主流ライン60から分岐する高圧給水導入ライン62を介して、冷却媒体として第2熱交換器15に供給されるようになっている。
 第2熱交換器15での熱交換により圧縮空気を冷却した高圧給水(冷却媒体)は、高圧給水排出ライン64を介して第2熱交換器15から排出される。高圧給水排出ライン64を介して排出された高圧給水(冷却媒体)は、高圧給水主流ライン60を流れる高圧給水と合流し、排熱回収ボイラ10の高圧節炭器52へと導かれる。
 なお、高圧給水導入ライン62を介して第2熱交換器15に導かれる冷却媒体としての高圧給水の流量は、例えば高圧給水主流ライン60に設けられたバルブ61等によって調節するようになっていてもよい。
 このように、第2熱交換器15にて圧縮空気を高圧給水により冷却することで、ガスタービン2の圧縮機3からの高温の圧縮空気の熱エネルギーを高圧給水に回収させることで、GTCC発電プラント1の熱効率を向上させることができる。
 次に、熱交換システム8における、冷媒排出ライン18から再循環ライン20を介して冷媒導入ライン16に再循環させる復水(第1熱交換器14における冷却媒体)の流量(以下、再循環流量と称する)の制御について説明する。
 なお、冷却媒体の再循環流量の制御は、流量調節部22によって行われてもよく、弁コントローラ26で流量調節弁24の開度を制御することにより行われてもよい。
 幾つかの実施形態では、復水(冷却媒体)の再循環流量は、冷媒導入ライン16から第1熱交換器14に導入される復水(冷却媒体)の温度Tと、上述の閾値Ts以上の目標温度Tgとの偏差に基づいて制御される。
 このように、第1熱交換器14に流入する復水(冷却媒体)の温度Tと目標温度Tgとの偏差に基づいて、例えば弁コントローラによる制御下で流量調節弁を作動させることにより、再循環流量を調節することで、第1熱交換器14に流入する復水(冷却媒体)の温度Tを適切に調節し、ガスライン12におけるドレンの発生を効果的に抑制できる。
 復水(冷却媒体)の再循環流量は、ガスライン12を流れる圧縮空気(冷却対象のガス)の温度が、第1熱交換器14の伝熱面13a(図2参照)において、該圧縮空気の露点よりも高くなるように調節されてもよい。
 あるいは、幾つかの実施形態では、復水(冷却媒体)の再循環流量は、冷媒導入ライン16から第1熱交換器14に導入される復水(冷却媒体)の温度T[℃]とし、ガスライン12を流れる圧縮空気(冷却対象のガス)の露点をT[℃]としたとき、(T-15)≦T≦(T+5)の関係を満たすように調節される。
 このように、冷媒導入ライン16から第1熱交換器14に導入される復水(冷却媒体)の温度Tを適度な温度範囲内に維持することで、ガスライン12における局所的なドレン発生を抑制しながら、第1熱交換器14における熱交換を効率的に行うことができる。
 なお、弁コントローラ26には、復水(冷却媒体)が流れる各ラインに設けられた各種センサの検出結果に基づいて、上述の再循環流量の制御を行うようになっていてもよい。
 図1に示す例示的な実施形態では、冷媒導入ライン16には、第1熱交換器14に導入される復水(冷却媒体)の温度Tを検出する温度センサ68が設けられ、冷媒排出ライン18には、第1熱交換器14から排出される復水(冷却媒体)の温度を検出する温度センサ70が設けられている。また、再循環ライン20には、冷媒導入ライン16に再循環させる復水(冷却媒体)の流量を検出するための流量センサ72が設けられている。さらに、冷媒導入ライン16には、復水主流ライン40と冷媒導入ライン16とが分岐する分岐点よりも下流側かつ再循環ライン20が冷媒導入ライン16に合流する合流点よりも上流側において、復水器38からの復水のうち、冷却媒体として冷媒導入ライン16に流入する復水の流量を検出する流量センサ74が設けられている。
 弁コントローラ26は、例えば、温度センサ68、温度センサ70、流量センサ72、又は流量センサ74の少なくとも1つの検出結果に基づいて、復水(冷却媒体)の再循環流量の制御を行うように構成されていてもよい。
 以上、本発明の実施形態について説明したが、本発明は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。
 本明細書において、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
 また、本明細書において、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
 また、本明細書において、一の構成要素を「備える」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
1  GTCC発電プラント
2  ガスタービン
3  圧縮機
4  燃焼器
5  タービン
6  発電機
7  冷却システム
8  熱交換システム
9  冷却空気供給ライン
10 排熱回収ボイラ
11 蒸気タービン
12 ガスライン
14 第1熱交換器
15 第2熱交換器
16 冷媒導入ライン
18 冷媒排出ライン
20 再循環ライン
22 流量調節部
24 流量調節弁
26 弁コントローラ
28 再循環ポンプ
30 高圧タービン
32 中圧タービン
34 低圧タービン
36 発電機
38 復水器
39 低圧給水ポンプ
40 復水主流ライン
41 バルブ
44 低圧節炭器
45 低圧ドラム
46 低圧蒸発器
48 中圧節炭器
49 中圧ドラム
50 中圧蒸発器
52 高圧節炭器
53 高圧ドラム
54 高圧蒸発器
56 中圧給水ポンプ
58 高圧給水ポンプ
60 高圧給水主流ライン
61 バルブ
62 高圧給水導入ライン
64 高圧給水排出ライン
66 空気圧縮機
68 温度センサ
70 温度センサ
72 流量センサ
74 流量センサ

Claims (14)

  1.  冷却対象のガスが流れるガスラインと、
     前記ガスラインに設けられ、冷却媒体との熱交換により前記ガスを冷却するように構成された第1熱交換器と、
     前記第1熱交換器に前記冷却媒体を導入するための冷媒導入ラインと、
     前記ガスを冷却した後の前記冷却媒体を前記第1熱交換器から排出するための冷媒排出ラインと、
     前記冷媒排出ラインを流れる前記冷却媒体の少なくとも一部を前記冷媒導入ラインに再循環させるための再循環ラインと、
     前記冷媒導入ラインから前記第1熱交換器に導入される前記冷却媒体の温度が閾値以上となるように前記再循環ラインを流れる前記冷却媒体の流量を調節するための流量調節部と、
    を備えることを特徴とする熱交換システム。
  2.  前記流量調節部は、
      前記再循環ラインに設けられた流量調節弁と、
      前記第1熱交換器に導入される前記冷却媒体の前記温度と前記閾値以上の目標温度との偏差に基づいて、前記流量調節弁を制御するように構成された弁コントローラと、
    を含むことを特徴とする請求項1に記載の熱交換システム。
  3.  前記再循環ラインに設けられる再循環ポンプをさらに備えることを特徴とする請求項1又は2に記載の熱交換システム。
  4.  前記ガスラインは、ガスタービンの圧縮機から該ガスタービンの冷却対象部に圧縮空気を供給するように構成されることを特徴とする請求項1乃至3の何れか一項に記載の熱交換システム。
  5.  前記冷媒導入ラインには、前記ガスタービンとともにGTCCを構成する蒸気タービンの復水器からの復水の一部が供給されるように構成されたことを特徴とする請求項4に記載の熱交換システム。
  6.  前記ガスラインの前記第1熱交換器よりも上流側に設けられた第2熱交換器をさらに備えることを特徴とする請求項4又は5に記載の熱交換システム。
  7.  前記第2熱交換器は、前記ガスタービンを含むGTCCの高圧給水と前記ガスとを熱交換させて前記ガスを冷却するように構成されたことを特徴とする請求項6に記載の熱交換システム。
  8.  前記流量調節部は、前記冷媒導入ラインから前記第1熱交換器に導入される前記冷却媒体の温度をT[℃]とし、前記ガスの露点をT[℃]としたとき、(T-15)≦T≦(T+5)の関係を満たすように前記再循環ラインを流れる前記冷却媒体の流量を調節するように構成されたことを特徴とする請求項1乃至7の何れか一項に記載の熱交換システム。
  9.  ガスタービンの圧縮機からの圧縮空気を冷却するように構成された請求項1乃至8の何れか一項に記載の熱交換システムと、
     前記熱交換システムにより冷却した前記圧縮空気を前記ガスタービンの冷却対象部に供給するための冷却空気供給ラインと、を備えることを特徴とするガスタービンの冷却システム。
  10.  前記冷却空気供給ラインに設けられる空気圧縮機をさらに備えることを特徴とする請求項9に記載のガスタービンの冷却システム。
  11.  ガスタービンと、
     前記ガスタービンを冷却するように構成された請求項9又は10に記載の冷却システムと、
    を備えることを特徴とするガスタービンシステム。
  12.  第1熱交換器において、冷却媒体との熱交換により冷却対象のガスを冷却するステップと、
     前記ガスを冷却した後の前記冷却媒体を前記第1熱交換器から排出するための冷媒排出ラインから、前記第1熱交換器に前記冷却媒体を導入するための冷媒導入ラインに、前記冷却媒体の一部を再循環させるステップと、を備え、
     前記再循環させるステップでは、前記冷媒導入ラインから前記第1熱交換器に導入される前記冷却媒体の温度が閾値以上となるように、前記冷媒排出ラインから前記冷媒導入ラインに再循環させる前記冷却媒体の流量を調節する
    ことを特徴とする熱交換システムの運転方法。
  13.  前記再循環させるステップでは、前記冷媒導入ラインから前記第1熱交換器に導入される前記冷却媒体の温度をT[℃]とし、前記ガスの露点をT[℃]としたとき、(T-15)≦T≦(T+5)の関係を満たすように、前記冷媒排出ラインから前記冷媒導入ラインに再循環させる前記冷却媒体の流量を調節する
    ことを特徴とする請求項12に記載の熱交換システムの運転方法。
  14.  請求項12又は13に記載の方法により熱交換システムを運転し、ガスタービンの圧縮機からの圧縮空気を冷却するステップと、
     前記熱交換システムにより冷却した前記圧縮空気を前記ガスタービンの冷却対象部に供給するステップと、
    を備えることを特徴とするガスタービンの冷却方法。
PCT/JP2017/031726 2016-11-25 2017-09-04 熱交換システム及びその運転方法、ガスタービンの冷却システム及び冷却方法、並びにガスタービンシステム WO2018096757A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020197011536A KR102318485B1 (ko) 2016-11-25 2017-09-04 열교환 시스템, 가스 터빈의 냉각 시스템 및 냉각 방법 및 가스 터빈 시스템
DE112017005972.0T DE112017005972B4 (de) 2016-11-25 2017-09-04 Wärmetauschsystem, kühlsystem und kühlverfahren einer gasturbine und gasturbinensystem
CN201780066089.3A CN109891058A (zh) 2016-11-25 2017-09-04 热交换***及其运转方法、燃气轮机的冷却***及冷却方法、以及燃气轮机***
US16/337,995 US11441452B2 (en) 2016-11-25 2017-09-04 Heat exchange system, cooling system and cooling method of gas turbine, and gas turbine system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-228779 2016-11-25
JP2016228779A JP6905329B2 (ja) 2016-11-25 2016-11-25 熱交換システム及びその運転方法、ガスタービンの冷却システム及び冷却方法、並びにガスタービンシステム

Publications (1)

Publication Number Publication Date
WO2018096757A1 true WO2018096757A1 (ja) 2018-05-31

Family

ID=62194854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/031726 WO2018096757A1 (ja) 2016-11-25 2017-09-04 熱交換システム及びその運転方法、ガスタービンの冷却システム及び冷却方法、並びにガスタービンシステム

Country Status (6)

Country Link
US (1) US11441452B2 (ja)
JP (1) JP6905329B2 (ja)
KR (1) KR102318485B1 (ja)
CN (1) CN109891058A (ja)
DE (1) DE112017005972B4 (ja)
WO (1) WO2018096757A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022081312A1 (en) * 2020-10-15 2022-04-21 Nooter/Eriksen, Inc. Low temperature heat exchanging system and method for a heat recovery steam generator
KR102205341B1 (ko) * 2020-10-21 2021-01-20 한국가스공사 일원화 ghp 배열회수용 열교환 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09119321A (ja) * 1995-08-28 1997-05-06 Abb Manag Ag パワーステーションプラントの運転法
JPH09195797A (ja) * 1996-01-19 1997-07-29 Mitsubishi Heavy Ind Ltd ガスタービン吸気の冷却装置
JPH11173161A (ja) * 1997-12-12 1999-06-29 Hitachi Ltd ガスタービン吸気冷却システム
JP2003201862A (ja) * 2002-01-10 2003-07-18 Toshiba Corp コンバインドサイクル発電システム
JP2015183590A (ja) * 2014-03-24 2015-10-22 三菱日立パワーシステムズ株式会社 排熱回収システム、これを備えているガスタービンプラント、排熱回収方法、及び排熱回収システムの追設方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB645906A (en) 1948-04-29 1950-11-08 English Electric Co Ltd Improvements in and relating to gas turbine plant
JP2001027131A (ja) * 1999-07-16 2001-01-30 Ishikawajima Harima Heavy Ind Co Ltd 複圧蒸気噴射型部分再生サイクルガスタービン
JP2001059426A (ja) 1999-08-20 2001-03-06 Toshiba Plant Kensetsu Co Ltd 吸気の冷却量制御装置
DE10122695A1 (de) 2001-05-10 2002-11-21 Siemens Ag Verfahren zur Kühlung einer Gasturbine und Gasturbinenanlage
CN1571879A (zh) 2002-03-04 2005-01-26 三菱重工业株式会社 涡轮设备、复合发电设备和涡轮工作方法
EP2516810B1 (en) 2009-12-22 2018-02-07 Reijo Alander Arrangement in a gas turbine process
TWI593872B (zh) 2011-03-22 2017-08-01 艾克頌美孚上游研究公司 整合系統及產生動力之方法
US8764414B2 (en) 2011-11-07 2014-07-01 Bha Altair, Llc System for detecting contaminants in an intake flow of a compressor
EP2863033B1 (en) * 2013-10-21 2019-12-04 Ansaldo Energia IP UK Limited Gas turbine with flexible air cooling system and method for operating a gas turbine
CN105899907B (zh) 2014-02-17 2019-01-22 三菱日立电力***株式会社 热交换器
JP6262012B2 (ja) 2014-02-17 2018-01-17 三菱日立パワーシステムズ株式会社 熱交換器
JP2015183597A (ja) 2014-03-24 2015-10-22 三菱日立パワーシステムズ株式会社 排熱回収システム、これを備えているガスタービンプラント、及び排熱回収方法
JP6265536B2 (ja) * 2014-03-24 2018-01-24 三菱日立パワーシステムズ株式会社 排熱回収システム、これを備えているガスタービンプラント、及び排熱回収方法
US20150322822A1 (en) * 2014-05-12 2015-11-12 General Electric Company Simplified water injection system for combined cycle power plant
CN107250511B (zh) * 2015-03-17 2020-01-07 三菱重工业株式会社 吸气冷却方法、执行该方法的吸气冷却装置、具备该装置的废热回收设备及燃气涡轮成套设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09119321A (ja) * 1995-08-28 1997-05-06 Abb Manag Ag パワーステーションプラントの運転法
JPH09195797A (ja) * 1996-01-19 1997-07-29 Mitsubishi Heavy Ind Ltd ガスタービン吸気の冷却装置
JPH11173161A (ja) * 1997-12-12 1999-06-29 Hitachi Ltd ガスタービン吸気冷却システム
JP2003201862A (ja) * 2002-01-10 2003-07-18 Toshiba Corp コンバインドサイクル発電システム
JP2015183590A (ja) * 2014-03-24 2015-10-22 三菱日立パワーシステムズ株式会社 排熱回収システム、これを備えているガスタービンプラント、排熱回収方法、及び排熱回収システムの追設方法

Also Published As

Publication number Publication date
JP6905329B2 (ja) 2021-07-21
US20190234243A1 (en) 2019-08-01
KR102318485B1 (ko) 2021-10-28
US11441452B2 (en) 2022-09-13
DE112017005972T5 (de) 2019-08-14
JP2018084208A (ja) 2018-05-31
DE112017005972B4 (de) 2021-07-15
KR20190052118A (ko) 2019-05-15
CN109891058A (zh) 2019-06-14

Similar Documents

Publication Publication Date Title
EP2535542B1 (en) Systems and methods for improving the efficiency of a combined cycle power plant
KR101328401B1 (ko) 선박의 폐열을 이용한 에너지 절감 장치
US8387356B2 (en) Method of increasing power output of a combined cycle power plant during select operating periods
JP2009299682A (ja) 発生した排熱をターボ機械の補助システムによって回収するためのシステム
US10900418B2 (en) Fuel preheating system for a combustion turbine engine
US11708773B2 (en) Plant and operation method therefor
JPH10196316A (ja) コンバインド発電プラントおよびクローズド空気冷却ガスタービンシステム
WO2018096757A1 (ja) 熱交換システム及びその運転方法、ガスタービンの冷却システム及び冷却方法、並びにガスタービンシステム
JP2003161164A (ja) コンバインドサイクル発電プラント
EP2513477B1 (en) Solar power plant with integrated gas turbine
JP4373420B2 (ja) コンバインド発電プラントおよびクローズド空気冷却ガスタービンシステム
JP6981727B2 (ja) 産業設備
JP5946697B2 (ja) ガスタービン高温部の冷却システム
US10883378B2 (en) Combined cycle plant and method for controlling operation of combine cycle plant
US20110173948A1 (en) Combined cycle electric power generation plant and heat exchanger
JP2009097735A (ja) 給水加温システムおよび排熱回収ボイラ
US20150121871A1 (en) Forced cooling in steam turbine plants
US11859548B2 (en) Gas turbine and control method thereof, and combined cycle plant
KR101887971B1 (ko) 복합 화력 발전 설비들의 저 부하 턴다운
JP3872407B2 (ja) コンバインド発電プラントおよびクローズド空気冷却ガスタービンシステム
JP5812873B2 (ja) コンバインドサイクル発電プラント
JP2001214758A (ja) ガスタービン複合発電プラント設備
US11834968B2 (en) Steam generation apparatus and exhaust gas heat recovery plant
JP2024041574A (ja) ガスタービンプラントの運用方法及びガスタービンプラント
JP2020159324A (ja) タービンシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17873295

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197011536

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17873295

Country of ref document: EP

Kind code of ref document: A1