WO2018092604A1 - 合成ポリイソプレンラテックス - Google Patents

合成ポリイソプレンラテックス Download PDF

Info

Publication number
WO2018092604A1
WO2018092604A1 PCT/JP2017/039740 JP2017039740W WO2018092604A1 WO 2018092604 A1 WO2018092604 A1 WO 2018092604A1 JP 2017039740 W JP2017039740 W JP 2017039740W WO 2018092604 A1 WO2018092604 A1 WO 2018092604A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular weight
synthetic
synthetic polyisoprene
latex
isoprene chain
Prior art date
Application number
PCT/JP2017/039740
Other languages
English (en)
French (fr)
Inventor
小出村 順司
俊仁 相原
吉隆 佐藤
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2018551571A priority Critical patent/JP6984610B2/ja
Priority to EP17871943.1A priority patent/EP3543261B1/en
Priority to BR112019009441-5A priority patent/BR112019009441B1/pt
Priority to US16/346,864 priority patent/US20200062873A1/en
Priority to CN201780068191.7A priority patent/CN109923132B/zh
Publication of WO2018092604A1 publication Critical patent/WO2018092604A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F36/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F36/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F36/04Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F36/08Isoprene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/003Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C2/00Treatment of rubber solutions
    • C08C2/06Wining of rubber from solutions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F136/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F136/02Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F136/04Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F136/08Isoprene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/02Direct processing of dispersions, e.g. latex, to articles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L47/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/10Latex
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J109/00Adhesives based on homopolymers or copolymers of conjugated diene hydrocarbons
    • C09J109/10Latex
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0058Liquid or visquous
    • B29K2105/0064Latex, emulsion or dispersion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2553/00Packaging equipment or accessories not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2309/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08J2309/10Latex
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2409/00Presence of diene rubber

Definitions

  • the present invention provides a synthetic polyisoprene latex that is excellent in film forming property, excellent in tensile strength and elongation, and capable of giving a film molded body such as a dip molded body having a soft texture, and such a synthesis.
  • the present invention relates to a latex composition using polyisoprene latex, a film molded body, and a packaging structure.
  • a film molded body obtained by molding a latex composition containing natural rubber latex into a film shape is known.
  • a film molded body a dip molded body obtained by dip molding a latex composition containing natural rubber latex and used in contact with a human body such as a nipple, a balloon, a glove, a balloon, and a sac is known. It has been.
  • natural rubber latex contains a protein that causes allergic symptoms in the human body, there are cases in which there is a problem as a dip-molded product that is in direct contact with a living mucous membrane or an organ. Therefore, studies have been made on using synthetic rubber latex instead of natural rubber latex.
  • Patent Document 1 discloses a synthetic polyisoprene latex having a weight average molecular weight controlled within a predetermined range as a latex used for dip molding.
  • the technique of Patent Document 1 depending on the synthetic polyisoprene to be used, there is a problem that the film forming property at the time of dip molding is inferior, and thereby the tensile strength of the resulting dip molded body is lowered. .
  • the present invention has been made in view of such a situation, and provides a film molded body such as a dip molded body having excellent film forming properties, excellent tensile strength and elongation, and having a soft texture. It is an object of the present invention to provide a synthetic polyisoprene latex that can be prepared.
  • the present inventors have found that a synthetic polymer containing a synthetic isoprene chain having a relatively small molecular weight and a synthetic isoprene chain having a relatively large molecular weight in a predetermined ratio, respectively.
  • the inventors have found that the above object can be achieved by using isoprene latex, and have completed the present invention.
  • the synthetic polyisoprene latex of the present invention has a molecular weight distribution curve having two local maximum points, the maximum point on the low molecular weight synthetic isoprene chain side and the maximum point on the high molecular weight synthetic isoprene chain side. It is preferable that it is bimodal. According to the present invention, there is also provided a method for producing the above synthetic polyisoprene latex, wherein the low molecular weight is obtained by polymerizing a monomer containing isoprene using an organic alkali metal catalyst in an organic solvent.
  • a method for producing a synthetic polyisoprene latex to obtain the synthetic isoprene chain and the synthetic polyisoprene containing the high molecular weight synthetic isoprene chain In the method for producing a synthetic polyisoprene latex of the present invention, it is preferable to use an organic solvent containing a deactivator as the organic solvent. Furthermore, according to the present invention, there is provided a method for producing the above synthetic polyisoprene latex, wherein the low molecular weight is obtained by polymerizing a monomer containing isoprene using an organic alkali metal catalyst in an organic solvent.
  • a synthetic polyisoprene comprising: a step of obtaining a second polymer solution mainly contained; and a step of obtaining the synthetic polyisoprene by mixing the first polymer solution and the second polymer solution.
  • a method for producing a latex is provided. In the method for producing a synthetic polyisoprene latex according to the present invention, the amount of the organic alkali metal catalyst used when obtaining the first polymer solution is the same as the amount of the organic alkali metal catalyst used when obtaining the second polymer solution.
  • a method for producing the above synthetic polyisoprene latex wherein a polymer solution of the synthetic polyisoprene obtained by polymerizing a monomer containing isoprene is used as an aqueous solution of a surfactant.
  • a method for producing a synthetic polyisoprene latex comprising a step of emulsifying with the use of.
  • a latex composition containing the above synthetic polyisoprene latex and a crosslinking agent.
  • the film forming body which consists of said latex composition is provided. Further, according to the present invention, at least a part of the first sheet base material and at least a part of the second sheet base material are bonded and laminated by the coating film made of the synthetic polyisoprene latex, There is provided a packaging structure capable of accommodating an object to be packaged between a first sheet substrate and the second sheet substrate.
  • a synthetic polyisoprene latex having excellent film forming properties, excellent tensile strength and elongation, and capable of providing a film molded body such as a dip molded body having a soft texture, and such It is possible to provide a latex composition, a film molded body, and a packaging structure using such a synthetic polyisoprene latex.
  • the synthetic polyisoprene latex of the present invention contains synthetic polyisoprene, and the synthetic polyisoprene latex constituting the synthetic polyisoprene latex has a content ratio of a low molecular weight synthetic isoprene chain having a molecular weight of less than 1,000,000.
  • the content of high molecular weight synthetic isoprene chains having a molecular weight of 10 to 70% by weight and a molecular weight of 1,000,000 or more is 30 to 90% by weight.
  • Synthetic polyisoprene contained in the synthetic polyisoprene latex of the present invention is a solution of isoprene and other copolymerizable ethylenically unsaturated monomers used as necessary in an inert organic solvent.
  • the synthetic polyisoprene obtained by polymerization contains a low molecular weight synthetic isoprene chain having a molecular weight of less than 1,000,000 in a proportion of 10 to 70% by weight and has a molecular weight of 1,000,000 or more. And a high molecular weight synthetic isoprene chain of 30 to 90% by weight.
  • the synthetic polyisoprene constituting the synthetic polyisoprene latex contains the low-molecular-weight synthetic isoprene chain and the high-molecular-weight synthetic isoprene chain in the above proportion, so that the synthetic polyisoprene latex can be used for dip molding and the like.
  • the film-forming property at the time of manufacturing the film molded body is improved, and thus the obtained film molded body can be excellent in tensile strength and elongation and have a soft texture.
  • a synthetic isoprene chain having a relatively large molecular weight has a physical property of excellent tensile strength
  • a film molded article such as a dip molded article is produced using a latex containing only such a synthetic isoprene chain having a large molecular weight.
  • the film-forming property is inferior (specifically, the adhesion between the synthetic isoprene chains at the time of film formation becomes insufficient), and as a result, the tensile strength of the obtained film molded body is lowered.
  • a synthetic isoprene chain having a relatively large molecular weight but also a synthetic polyisoprene containing a synthetic isoprene chain having a relatively small molecular weight is used to dip-mold the synthetic polyisoprene latex.
  • a synthetic isoprene chain having a relatively low molecular weight acts so as to adhere synthetic isoprene chains having a relatively large molecular weight, thereby improving the film-forming property, As a result, the tensile strength of the obtained film molded body can be improved.
  • a low-molecular-weight synthetic isoprene latex is used.
  • the molecular weight synthetic isoprene chain By the action of the molecular weight synthetic isoprene chain, it is possible to ensure a high tensile strength by the action of the high molecular weight synthetic isoprene chain while preventing a decrease in tensile strength due to insufficient film formation.
  • the low-molecular-weight synthetic isoprene chain and the high-molecular-weight synthetic isoprene chain may each independently be a homopolymer of isoprene, or may be combined with other ethylenically unsaturated monomers copolymerizable with isoprene. It may be polymerized, and the content of isoprene units is flexible with respect to all monomer units because it is easy to obtain a film molded body such as a dip molded body having excellent tensile strength. Is 70% by weight or more, more preferably 90% by weight or more, still more preferably 95% by weight or more, and particularly preferably 100% by weight (isoprene homopolymer).
  • Examples of other ethylenically unsaturated monomers copolymerizable with isoprene include conjugated diene monomers other than isoprene such as butadiene, chloroprene and 1,3-pentadiene; acrylonitrile, methacrylonitrile, fumaronitrile, ⁇ - Ethylenically unsaturated nitrile monomers such as chloroacrylonitrile; vinyl aromatic monomers such as styrene and alkylstyrene; methyl (meth) acrylate (meaning “methyl acrylate and / or methyl methacrylate”; The same applies to ethyl (meth) acrylate, etc.), ethylenically unsaturated carboxylic acid ester monomers such as ethyl (meth) acrylate, butyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate; Is mentioned.
  • the content ratio of the low molecular weight synthetic isoprene chain and the high molecular weight synthetic isoprene chain in the synthetic polyisoprene was obtained by measuring a molecular weight distribution curve in terms of standard polystyrene by gel permeation chromatography analysis. Based on the molecular weight distribution curve, the proportion (unit: wt%) of the synthetic isoprene chain having a molecular weight of less than 1,000,000 is the content ratio of the low molecular weight synthetic isoprene chain, and the molecular weight is in the range of 1,000,000 or more.
  • the ratio (unit: wt%) of a certain synthetic isoprene chain can be determined as the content ratio of the high molecular weight synthetic isoprene chain.
  • the content of the low molecular weight synthetic isoprene chain may be 10 to 70% by weight, preferably 20 to 65% by weight, more preferably 30 to 60% by weight, and most preferably 40 to 55% by weight. It is.
  • the content ratio of the low molecular weight synthetic isoprene chain in the above range, the film forming property at the time of dip molding using the obtained synthetic polyisoprene latex is further improved, and thereby film molding such as the dip molded body obtained. The tensile strength of the body is further improved.
  • the content of the high molecular weight synthetic isoprene chain may be 30 to 90% by weight as described above, but preferably 35 to 80% by weight, more preferably 40 to 70% by weight, and most preferably 45 to 60%. % By weight.
  • the synthetic polyisoprene contained in the synthetic polyisoprene latex of the present invention is not limited as long as it contains a low molecular weight synthetic isoprene chain and a high molecular weight synthetic isoprene chain in the above-described proportions, but the molecular weight distribution curve is There may be two or more local maximum points, and there are two local maximum points, a maximum point on the low molecular weight synthetic isoprene chain side and a maximum point on the high molecular weight synthetic isoprene chain side (bimodal) Are preferred).
  • the weight average molecular weight on the low molecular weight synthetic isoprene chain side (for example, the boundary between the maximum point on the low molecular weight synthetic isoprene chain side and the maximum point on the high molecular weight synthetic isoprene chain side)
  • the weight average molecular weight on the low molecular weight side from the minimum point is preferably 100,000 to 1,000,000, more preferably 200,000 to 700,000, still more preferably 300,000 to 500,000.
  • the film forming property when dip-molding using the obtained synthetic polyisoprene latex is further improved, and thus the resulting dip-molded body and the like The tensile strength of the film molded body is further improved.
  • the weight average molecular weight on the high molecular weight synthetic isoprene chain side (for example, the boundary between the maximum point on the low molecular weight synthetic isoprene chain side and the maximum point on the high molecular weight synthetic isoprene chain side,
  • the weight average molecular weight on the high molecular weight side above the minimum point) is preferably 2,000,000 to 6,000,000, more preferably 2,500,000 to 5,500,000, still more preferably 3,000,000 000 to 5,000,000.
  • the weight average molecular weight on the high molecular weight synthetic isoprene chain side in the above range, the tensile strength of the obtained film molded article such as a dip molded article is further improved, and it tends to be easy to produce the high molecular weight synthetic isoprene chain.
  • synthetic polyisoprene is polymerized by polymerizing isoprene and other copolymerizable ethylenically unsaturated monomers used as necessary.
  • synthetic polyisoprene is polymerized by polymerizing isoprene and other copolymerizable ethylenically unsaturated monomers used as necessary.
  • a low molecular weight synthetic isoprene chain and a high molecular weight synthetic isoprene chain can be obtained by reducing the molecular weight of a part of the synthetic isoprene chain obtained by polymerization by using a quencher.
  • a method of mixing the coalescence solution may be used.
  • a method using a deactivator and a method using a coupling agent are preferable, and the molecular weight of the synthetic isoprene chain can be controlled better. From the viewpoint, a method using a quencher is particularly preferable.
  • the quencher to be used is not particularly limited.
  • water alcohols such as methanol, ethanol, propyl alcohol, butanol, ethylene glycol, propylene glycol, glycerin; phenol, cresol , ⁇ , ⁇ -naphthol, nonylphenol, phenols such as t-butyl-hydroxytoluene;
  • alcohols such as methanol, ethanol, propyl alcohol, butanol, ethylene glycol, propylene glycol, glycerin
  • water and alcohols are preferable, and water is particularly preferable.
  • These quenchers can be used alone or in combination of two or more.
  • the method for adding the quenching agent is not particularly limited, but in solution polymerization of isoprene and other copolymerizable ethylenically unsaturated monomers used as necessary in an inert organic solvent,
  • a method using an organic solvent containing a deactivator or a method of adding a deactivator when performing solution polymerization can be mentioned, but the molecular weight of the synthetic isoprene chain can be better controlled.
  • a method using an organic solvent containing a quencher is preferable.
  • the content of the deactivator in the organic solvent is preferably 3 to 100 ppm by weight, more preferably 5 to 50 ppm by weight, and still more preferably 10 to 30 ppm. Ppm by weight.
  • the method for adjusting the content ratio of the quenching agent in the organic solvent to the above range is not particularly limited.
  • the organic solvent is brought into contact with a drying agent such as molecular sieves. And a method of adjusting the amount of water in the organic solvent.
  • the coupling agent is not particularly limited.
  • tin tetrachloride hexachlorodisilane, bis (trichlorosilyl) methane, 1,2-bis (trichlorosilyl) ethane, 1 Halogenated silicon compounds such as 1,3-bis (trichlorosilyl) propane, 1,4-bis (trichlorosilyl) butane, 1,5-bis (trichlorosilyl) pentane, 1,6-bis (trichlorosilyl) hexane; Is mentioned.
  • These coupling agents can be used alone or in combination of two or more.
  • the method of reacting the synthetic isoprene chain with the coupling agent is not particularly limited as long as it is a method capable of mixing the solution containing the synthetic isoprene chain having an active end with the coupling agent, for example, From the viewpoint that the coupling reaction can be well controlled, a method of adding a coupling agent to a solution containing a synthetic isoprene chain having an active end is preferred. At that time, the coupling agent is preferably added after being dissolved in an inert solvent.
  • Synthetic isoprene chains can be copolymerized with isoprene and optionally used in an inert organic solvent using a conventionally known method such as an organic alkali metal catalyst or a Ziegler polymerization catalyst. It can be obtained by solution polymerization of the ethylenically unsaturated monomer. When performing such solution polymerization, if the molecular weight of the synthetic isoprene chain is adjusted using a quencher or a coupling agent as described above, the low molecular weight synthetic isoprene chain and the high molecular weight synthesis are used as they are. Synthetic polyisoprene having an isoprene chain can be obtained.
  • the polymer solution When a polymer solution of synthetic polyisoprene is obtained by solution polymerization, the polymer solution may be used as it is in the production of a synthetic polyisoprene latex described later, but solid synthetic polyisoprene is obtained from the polymer solution. After taking out, it can melt
  • a pre-synthesized synthetic isoprene chain (low molecular weight synthetic isoprene chain) having a molecular weight of less than 1,000,000 is used.
  • a method of mixing a first polymer solution mainly containing a second polymer solution mainly containing a synthetic isoprene chain (high molecular weight synthetic isoprene chain) synthesized in advance with a molecular weight of 1,000,000 or more is used.
  • a low molecular weight synthetic isoprene chain and a high molecular weight synthetic isoprene chain can be synthesized by solution polymerization, respectively.
  • an organic alkali metal catalyst when used as a polymerization catalyst, as the amount of the organic alkali metal catalyst used is increased, the polymerization starting point increases due to the action of the organic alkali metal catalyst.
  • the molecular weight can be controlled to be relatively small, and a low molecular weight synthetic isoprene chain can be selectively obtained.
  • the smaller the amount of the organic alkali metal catalyst used the less the polymerization starting point. This makes it possible to control the molecular weight of the resulting synthetic isoprene chain to a relatively large one and select the high molecular weight synthetic isoprene chain. Can be obtained.
  • the molecular weight of the resulting synthetic isoprene chain tends to be relatively small due to the action of the Ziegler catalyst, so that a low molecular weight synthetic isoprene chain can be selectively obtained. become able to.
  • the organic alkali metal catalyst is not particularly limited.
  • organic monolithium compounds such as n-butyllithium, sec-butyllithium, t-butyllithium, hexyllithium, phenyllithium, stilbenelithium; dilithiomethane, 1,
  • Organic polyvalent lithium compounds such as 4-dilithiobutane, 1,4-dilithio-2-ethylcyclohexane, 1,3,5-trilithiobenzene, 1,3,5-tris (lithiomethyl) benzene; organic sodium such as sodium naphthalene Compounds; organic power lithium compounds such as potassium naphthalene; and the like.
  • organic monolithium compound it is preferable to use an organic monolithium compound, and it is more preferable to use n-butyllithium.
  • These organic alkali metal catalysts can be used alone or in combination of two or more.
  • Examples of the method for adding the organic alkali metal catalyst include, for example, an organic alkali metal catalyst in a reaction vessel charged with a monomer (isoprene and an ethylenically unsaturated monomer copolymerizable with isoprene, if necessary). May be added as it is, or may be added in a state where the organic alkali metal catalyst is dissolved in an inert solvent such as hexane.
  • the amount of the organic alkali metal catalyst used is usually 1 to 50 mmol per 1000 g of the monomer used for the polymerization (isoprene and ethylenically unsaturated monomer copolymerizable with isoprene if necessary).
  • the range is preferably 5 to 40 mmol, more preferably 10 to 30 mmol.
  • the amount is preferably in the range of 2 to 20 mmol, more preferably 5 to 10 mmol, per 1000 g of the monomer used for polymerization.
  • the Ziegler-based catalyst is not particularly limited, and a known catalyst can be used. For example, it is obtained by reducing titanium tetrachloride with an organoaluminum compound and further treating with various electron donors and electron acceptors. Examples include a catalyst system in which a titanium trichloride composition and an organoaluminum compound are combined, and a supported catalyst system in which titanium tetrachloride and various electron donors are brought into contact with magnesium halide. Among these, titanium tetrachloride and organic A catalyst system using an aluminum compound is preferable, and a catalyst system using titanium tetrachloride and trialkylaluminum is particularly preferable.
  • the content ratio of cis bond units in the isoprene units contained in the synthetic polyisoprene is preferably 70% by weight or more based on the total isoprene units. More preferably, it is 90 weight% or more, More preferably, it is 95 weight% or more.
  • the polymer Mooney viscosity (ML 1 + 4 , 100 ° C.) of the synthetic polyisoprene is preferably 50 to 80, more preferably 60 to 80, and still more preferably 70 to 80.
  • the synthetic polyisoprene latex of the present invention is a latex containing the above-described synthetic polyisoprene.
  • Examples of a method for obtaining a synthetic polyisoprene latex include (1) isoprene dissolved in an organic solvent alone or a mixture of isoprene dissolved in an organic solvent and an ethylenically unsaturated monomer copolymerizable therewith.
  • a mixed solution obtained by mixing a molecular weight synthetic isoprene chain dissolved or finely dispersed in an organic solvent with a fine suspension is emulsified in water in the presence of a surfactant, and the organic solvent is added if necessary. And a method of producing a synthetic polyisoprene latex by removing.
  • the synthetic polyisoprene having a high ratio of cis bond units in the isoprene unit can be used, and a film molded body such as a dip molded body having excellent mechanical properties such as tensile strength can be easily obtained.
  • the production method (1) is preferred.
  • Examples of the organic solvent used in the production method (1) above include aromatic hydrocarbon solvents such as benzene, toluene and xylene; alicyclic hydrocarbon solvents such as cyclopentane, cyclopentene, cyclohexane and cyclohexene; pentane, hexane, And aliphatic hydrocarbon solvents such as heptane; halogenated hydrocarbon solvents such as methylene chloride, chloroform and ethylene dichloride; Of these, aliphatic hydrocarbon solvents are preferred, hexane is more preferred, and normal hexane is particularly preferred.
  • the amount of the organic solvent used is preferably 2,000 parts by weight or less, with respect to a total of 100 parts by weight of isoprene and ethylenically unsaturated monomers copolymerizable with isoprene used as necessary. More preferred is 20 to 1,500 parts by weight, and still more preferred is 500 to 1500.
  • Examples of the surfactant used in the production method (1) include fatty acid salts such as sodium laurate, potassium myristate, sodium palmitate, potassium oleate, sodium linolenate, sodium rosinate; sodium dodecylbenzenesulfonate Alkylbenzenesulfonates such as potassium dodecylbenzenesulfonate, sodium decylbenzenesulfonate, potassium decylbenzenesulfonate, sodium cetylbenzenesulfonate, potassium cetylbenzenesulfonate; sodium di (2-ethylhexyl) sulfosuccinate, di (2 -Ethylhexyl) alkyl sulfosuccinates such as potassium sulfosuccinate and sodium dioctyl sulfosuccinate; alkyls such as sodium lauryl sulfate and potassium lauryl sulfate Acid ester
  • fatty acid salts alkylbenzene sulfonates, alkyl sulfosuccinates, alkyl sulfate esters and polyoxyethylene alkyl ether sulfates are preferred, fatty acid salts and alkylbenzene sulfonates are more preferred, fatty acids Salts are more preferred, and rosinates such as sodium rosinate and potassium rosinate are particularly preferred.
  • alkylbenzene sulfonate and alkylsulfosuccinic acid it is preferable to use a fatty acid salt in combination with at least one selected from the group consisting of a salt, an alkyl sulfate ester salt and a polyoxyethylene alkyl ether sulfate ester salt, and use an alkylbenzene sulfonate salt in combination with a fatty acid salt. It is particularly preferable to use them.
  • sodium rosinate and potassium rosinate are preferable as the fatty acid salt
  • sodium dodecylbenzene sulfonate and potassium dodecylbenzene sulfonate are preferable as the alkylbenzene sulfonate.
  • These surfactants may be used alone or in combination of two or more.
  • the fatty acid salt is used in combination with at least one selected from the group consisting of alkylbenzene sulfonate, alkylsulfosuccinate, alkyl sulfate ester salt and polyoxyethylene alkyl ether sulfate ester salt.
  • the obtained latex contains at least one selected from alkylbenzene sulfonate, alkylsulfosuccinate, alkyl sulfate ester salt and polyoxyethylene alkyl ether sulfate ester salt and a fatty acid salt.
  • a surfactant other than an anionic surfactant may be used in combination, and as a surfactant other than such an anionic surfactant, ⁇ , ⁇ -non-detergent may be used.
  • a surfactant other than such an anionic surfactant examples thereof include copolymerizable surfactants such as sulfoesters of saturated carboxylic acids, sulfate esters of ⁇ , ⁇ -unsaturated carboxylic acids, and sulfoalkylaryl ethers.
  • non-ionic such as polyoxyethylene alkyl ether, polyoxyethylene alkylphenol ether, polyoxyethylene alkyl ester, polyoxyethylene sorbitan alkyl ester, etc., as long as it does not inhibit coagulation by the coagulant used for dip molding
  • a surfactant may be used in combination.
  • the amount of the anionic surfactant used in the production method (1) is preferably 0.1 to 50 parts by weight, more preferably 0.5 to 30 parts by weight with respect to 100 parts by weight of the synthetic polyisoprene. is there.
  • the total amount used is preferably within the above range.
  • the amount of the anionic surfactant used is too small, a large amount of agglomerates may be generated during emulsification. Conversely, if the amount is too large, foaming is likely to occur and pinholes may be formed in a film molded product such as a dip molded product. May occur.
  • an anionic surfactant when used in combination with a fatty acid salt and at least one selected from alkylbenzene sulfonate, alkylsulfosuccinate, alkyl sulfate ester salt and polyoxyethylene alkyl ether sulfate ester salt
  • the ratio of use thereof is determined by changing at least one surface activity selected from “fatty acid salts”: “alkyl benzene sulfonates, alkyl sulfosuccinates, alkyl sulfates and polyoxyethylene alkyl ether sulfates”.
  • the weight ratio of the “total agent” is preferably in the range of 1: 1 to 10: 1, and more preferably in the range of 1: 1 to 7: 1.
  • the amount of water in the aqueous solution of the surfactant used in the production method (1) is preferably 30 to 150 parts by weight, more preferably 40 to 100 parts by weight with respect to 100 parts by weight of the polymer solution of synthetic polyisoprene. Parts, most preferably 50-70.
  • the water to be used include hard water, soft water, ion exchange water, distilled water, zeolite water and the like, and soft water, ion exchange water and distilled water are preferable.
  • An apparatus for directly emulsifying a polymer solution of synthetic polyisoprene using an aqueous solution of a surfactant is not particularly limited as long as it is generally commercially available as an emulsifier or a disperser.
  • the method of adding the surfactant to the synthetic polyisoprene solution or fine suspension is not particularly limited, and it may be added in advance to either or both of water and the polymer solution of synthetic polyisoprene. Then, during the emulsification operation, it may be added to the emulsified liquid, or may be added all at once or dividedly.
  • emulsifier examples include batch type emulsification such as trade name “Homogenizer” (manufactured by IKA), trade name “Polytron” (manufactured by Kinematica), trade name “TK auto homomixer” (manufactured by Tokushu Kika Kogyo Co., Ltd.), etc.
  • the organic solvent it is desirable to remove the organic solvent from the emulsion obtained through the emulsification operation.
  • a method for removing the organic solvent from the emulsion a method capable of setting the content of the organic solvent (preferably alicyclic hydrocarbon solvent) in the obtained synthetic polyisoprene latex to 500 ppm by weight or less is preferable.
  • methods such as vacuum distillation, atmospheric distillation, steam distillation, and centrifugation can be employed.
  • the method (1) it is desirable to remove the organic solvent from the emulsion obtained through the emulsification operation to obtain a synthetic polyisoprene latex.
  • a method for removing the organic solvent from the emulsion there is a method in which the content of the organic solvent (preferably alicyclic hydrocarbon solvent) in the obtained synthetic polyisoprene latex can be 500 ppm by weight or less.
  • methods such as vacuum distillation, atmospheric distillation, steam distillation, and centrifugation can be employed.
  • a concentration operation may be performed by a method such as vacuum distillation, atmospheric distillation, centrifugation, membrane concentration, In particular, it is preferable to perform centrifugation from the viewpoint of increasing the solid content concentration of the synthetic polyisoprene latex and reducing the residual amount of the surfactant in the synthetic polyisoprene latex.
  • Centrifugation is performed using, for example, a continuous centrifuge, centrifugal force is preferably 100 to 10,000 G, and the solid content concentration of the synthetic polyisoprene latex before centrifugation is preferably 2 to 15% by weight. It is preferable that the flow rate to be fed into the machine is preferably 500 to 1700 Kg / hr, and the back pressure (gauge pressure) of the centrifuge is preferably 0.03 to 1.6 MPa. Synthetic polyisoprene latex can be obtained as a liquid. Thereby, the residual amount of the surfactant in the synthetic polyisoprene latex can be reduced.
  • the solid concentration of the synthetic polyisoprene latex of the present invention is preferably 30 to 70% by weight, more preferably 40 to 70% by weight.
  • the synthetic polyisoprene latex can be better transported by piping and stirred in the preparation tank, and the resulting film such as a dip-molded body can be obtained.
  • the strength of the molded body is further improved.
  • the volume average particle diameter of the synthetic polyisoprene latex of the present invention is preferably 0.1 to 10 ⁇ m, more preferably 0.5 to 3.0 ⁇ m, and further preferably 0.5 to 2.0 ⁇ m.
  • Synthetic polyisoprene latex is usually added in the latex field, and includes additives such as pH adjusters, antifoaming agents, preservatives, crosslinking agents, chelating agents, oxygen scavengers, dispersants, and anti-aging agents. May be blended.
  • the pH adjuster include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide; alkali metal carbonates such as sodium carbonate and potassium carbonate; alkali metal hydrogen carbonates such as sodium bicarbonate; ammonia
  • An organic amine compound such as trimethylamine or triethanolamine; an alkali metal hydroxide or ammonia is preferred.
  • the latex composition of the present invention is obtained by adding a crosslinking agent to the above-described synthetic polyisoprene latex of the present invention.
  • crosslinking agents include sulfur such as powdered sulfur, sulfur white, precipitated sulfur, colloidal sulfur, surface-treated sulfur, insoluble sulfur, etc .; sulfur chloride, sulfur dichloride, morpholine disulfide, alkylphenol disulfide, N, N′-dithio And sulfur-containing compounds such as bis (hexahydro-2H-azepinone-2), phosphorus-containing polysulfides, polymer polysulfides, and 2- (4′-morpholinodithio) benzothiazole.
  • sulfur can be preferably used.
  • a crosslinking agent can be used individually by 1 type or in combination of 2 or more types.
  • the content of the crosslinking agent is not particularly limited, but is preferably 0.1 to 10 parts by weight, more preferably 0.2 to 3 parts by weight, with respect to 100 parts by weight of the synthetic polyisoprene constituting the synthetic polyisoprene latex. is there.
  • content of a crosslinking agent into the said range, the tensile strength of film molded objects, such as a dip molded object obtained, can be raised more.
  • the latex composition of this invention contains a crosslinking accelerator further.
  • a crosslinking accelerator those usually used in dip molding can be used. Acids and zinc salts thereof; 2-mercaptobenzothiazole, 2-mercaptobenzothiazole zinc, 2-mercaptothiazoline, dibenzothiazyl disulfide, 2- (2,4-dinitrophenylthio) benzothiazole, 2- (N, N-diethylthio-carbylthio) benzothiazole, 2- (2,6-dimethyl-4-morpholinothio) benzothiazole, 2- (4'-morpholino-dithio) benzothia And 4-morpholinyl-2-benzothiazyl disulfide, 1,3-bis (2-benzothiazyl mercaptomethyl) urea, zinc diethyldithiocarbamate, zinc dibutyldithiocarbamate, zinc 2-mercaptobenzothiazole Is preferred.
  • the content of the crosslinking accelerator is preferably 0.05 to 5 parts by weight, more preferably 0.1 to 2 parts by weight with respect to 100 parts by weight of the synthetic polyisoprene constituting the synthetic polyisoprene latex.
  • the latex composition of this invention contains a zinc oxide further.
  • the content of zinc oxide is not particularly limited, but is preferably 0.1 to 5 parts by weight, more preferably 0.2 to 2 parts by weight with respect to 100 parts by weight of the synthetic polyisoprene constituting the synthetic polyisoprene latex. is there.
  • the latex composition of the present invention further comprises a compounding agent such as an anti-aging agent, a dispersant; a reinforcing agent such as carbon black, silica, or talc; a filler such as calcium carbonate or clay; an ultraviolet absorber; a plasticizer; It can mix
  • a compounding agent such as an anti-aging agent, a dispersant; a reinforcing agent such as carbon black, silica, or talc; a filler such as calcium carbonate or clay; an ultraviolet absorber; a plasticizer; It can mix
  • the method for preparing the latex composition of the present invention is not particularly limited.
  • a dispersing machine such as a ball mill, a kneader, a disper, etc.
  • a synthetic polyisoprene latex is blended with a crosslinking agent and various blends as needed.
  • examples thereof include a method of mixing an agent, a method of preparing an aqueous dispersion of blending components other than the synthetic polyisoprene latex using the above-mentioned disperser, and then mixing the aqueous dispersion into the synthetic polyisoprene latex.
  • the latex composition of the present invention preferably has a pH of 7 or more, more preferably in the range of 7 to 13, and still more preferably in the range of 8 to 12.
  • the solid content concentration of the latex composition is preferably in the range of 15 to 65% by weight.
  • the latex composition of the present invention is preferably aged (pre-crosslinked) before being subjected to molding such as dip molding from the viewpoint of further improving the mechanical properties of a film molded body such as a dip molding obtained.
  • the pre-crosslinking time is not particularly limited and depends on the pre-crosslinking temperature, but is preferably 1 to 14 days, and more preferably 1 to 7 days.
  • the pre-crosslinking temperature is preferably 20 to 40 ° C. After pre-crosslinking, it is preferably stored at a temperature of 10 to 30 ° C. until it is subjected to molding such as dip molding. When stored at a high temperature, the tensile strength of the obtained film molded body such as a dip molded body may be lowered.
  • the film molded body of the present invention is a film-shaped molded body made of the latex composition of the present invention.
  • the film thickness of the film molded body of the present invention is preferably 0.03 to 0.50 mm, more preferably 0.05 to 0.40 mm, and particularly preferably 0.08 to 0.30 mm.
  • the film molded body of the present invention is not particularly limited, but is preferably a dip molded body obtained by dip molding the latex composition of the present invention.
  • Dip molding is a method in which a mold is immersed in a latex composition, the composition is deposited on the surface of the mold, the mold is then lifted from the composition, and then the composition deposited on the mold surface is dried. is there.
  • the mold before being immersed in the latex composition may be preheated. Further, a coagulant can be used as necessary before the mold is immersed in the latex composition or after the mold is pulled up from the latex composition.
  • the method of using the coagulant include a method in which the mold before dipping in the latex composition is immersed in a solution of the coagulant to attach the coagulant to the mold (anode coagulation dipping method), and the latex composition is deposited.
  • anode coagulation dipping method There is a method of immersing the formed mold in a coagulant solution (Teag adhesion dipping method), etc., but the anode adhesion dipping method is preferable in that a dip-formed product with little thickness unevenness can be obtained.
  • coagulants include metal halides such as barium chloride, calcium chloride, magnesium chloride, zinc chloride, and aluminum chloride; nitrates such as barium nitrate, calcium nitrate, and zinc nitrate; acetic acid such as barium acetate, calcium acetate, and zinc acetate. Salts; water-soluble polyvalent metal salts such as calcium sulfate, magnesium sulfate, and sulfates such as aluminum sulfate; Of these, calcium salts are preferable, and calcium nitrate is more preferable. These water-soluble polyvalent metal salts can be used alone or in combination of two or more.
  • the coagulant is preferably used in the form of an aqueous solution.
  • This aqueous solution may further contain a water-soluble organic solvent such as methanol or ethanol, or a nonionic surfactant.
  • concentration of the coagulant varies depending on the type of the water-soluble polyvalent metal salt, but is preferably 5 to 50% by weight, more preferably 10 to 30% by weight.
  • the deposit formed on the mold is usually dried by heating. What is necessary is just to select drying conditions suitably.
  • the heating conditions at the time of crosslinking are not particularly limited, but are preferably 60 to 150 ° C., more preferably 100 to 130 ° C., and preferably 10 to 120 minutes.
  • the heating method is not particularly limited, and there are a method of heating with warm air in an oven, a method of heating by irradiating infrared rays, and the like.
  • the mold may be washed with water or warm water to remove water-soluble impurities (for example, excess surfactant or coagulant) before or after heating the mold on which the latex composition is deposited.
  • water-soluble impurities for example, excess surfactant or coagulant
  • the hot water used is preferably 40 ° C. to 80 ° C., more preferably 50 ° C. to 70 ° C.
  • the dip-formed body after crosslinking is detached from the mold.
  • the desorption method include a method of peeling from a mold by hand, a method of peeling by water pressure or compressed air pressure, and the like. If the dip-formed product in the middle of crosslinking has sufficient strength against desorption, it may be desorbed in the middle of crosslinking, and then the subsequent crosslinking may be continued.
  • the film molded body of the present invention and the dip molded body which is one embodiment thereof are obtained using the latex composition of the present invention described above, the film molded body is excellently formed and has a tensile strength. It is excellent in elongation and has a soft texture, and can be used particularly suitably as, for example, a glove.
  • organic fine particles such as inorganic fine particles such as talc and calcium carbonate or starch particles are gloved. It may be dispersed on the surface, an elastomer layer containing fine particles may be formed on the surface of the glove, or the surface layer of the glove may be chlorinated.
  • the membrane molded article of the present invention and the dip molded article as one aspect thereof are medical supplies such as nipples for baby bottles, syringes, tubes, water pillows, balloon sacks, catheters, condoms, etc. It can also be used for toys such as dolls and balls; industrial articles such as pressure forming bags and gas storage bags; finger sack and the like.
  • the packaging structure of the present invention is formed by adhering and laminating the first sheet base material and the second sheet base material coated with the above-described synthetic polyisoprene latex of the present invention, and can accommodate an object to be packaged.
  • the structure is shown.
  • the first sheet base material and the second sheet base material face each other so that the surfaces to which the synthetic polyisoprene latex is applied (latex application surface) are opposed to each other.
  • the first sheet base material and the second sheet base material and the second sheet base material are pressed together with the latex coated surfaces of the first sheet base material and the second sheet base material in contact with each other as necessary.
  • the sheet base material adheres to each other, and thus has a structure capable of packaging an object to be packaged.
  • a to-be-packaged object For example, the various to-be-packaged goods which it is desired to sterilize like medical goods, such as a bandage, are mentioned.
  • a 1st sheet base material and a 2nd sheet base material For example, paper materials, such as glassine paper, a high density polyethylene nonwoven fabric, a polyolefin film, a polyester film, etc. are mentioned, Among these, Paper materials are preferred, and glassine paper is particularly preferred from the viewpoints of excellent handleability (a point of moderate bending ease) and low cost.
  • a dip-molded product having a film thickness of about 0.2 mm was obtained by dumbbell (trade name “Super Dumbbell (model: SDMK-100C). ) ", Manufactured by Dumbbell Co., Ltd.) to produce a test piece for measuring tensile strength.
  • the test piece was pulled with a Tensilon universal tester (trade name “RTG-1210”, manufactured by Orientec Co., Ltd.) at a tensile speed of 500 mm / min, tensile strength immediately before break (unit: MPa), elongation just before break (unit:%) ) And the tensile stress (unit: MPa) when the elongation is 500%.
  • RMG-1210 tensile strength immediately before break
  • unit: MPa tensile strength just before break
  • unit:% tensile stress
  • the smaller the tensile stress at 500% the better the dip-formed body becomes excellent in flexibility.
  • Production Example 1 (Production of Normal Polyhexane Solution of Synthetic Polyisoprene (A-1)) 1150 parts of normal hexane having a water content of 23 ppm by weight (that is, normal hexane containing 23 ppm by weight of water as a deactivator) dried by molecular sieves as an organic solvent in a dried and nitrogen-substituted stirred autoclave; 100 parts of isoprene were charged. Next, the temperature in the autoclave was adjusted to 60 ° C., and 0.03 part of a hexane solution having a normal butyl lithium concentration of 15% by weight was added with stirring, and reacted for 1 hour. The polymerization reaction rate was 99%.
  • the weight average molecular weight on the low molecular weight synthetic isoprene chain side (from the local minimum point between the maximum point on the low molecular weight synthetic isoprene chain side and the maximum point on the high molecular weight synthetic isoprene chain side)
  • the weight average molecular weight on the low molecular weight side was 420,000
  • the weight average molecular weight on the high molecular weight synthetic isoprene chain side (the weight average molecular weight on the high molecular weight side above the minimum point) was 3,720,000.
  • the weight ratio of “low molecular weight synthetic isoprene chain having a molecular weight of less than 1,000,000: high molecular weight synthetic isoprene chain having a molecular weight of 1,000,000 or more” was 49:51.
  • Production Example 2 (Production of normal hexane solution of synthetic polyisoprene (A-2)) A normal polyhexane solution of synthetic polyisoprene (A-2) was obtained in the same manner as in Production Example 1 except that 1150 parts of normal hexane having a water content of 10 ppm by weight was used instead of normal hexane having a water content of 23 ppm by weight. It was.
  • the resulting synthetic polyisoprene (A-2) in the normal hexane solution has a bimodal molecular weight distribution curve, a weight average molecular weight of 460,000 on the low molecular weight synthetic isoprene chain side, and a high molecular weight synthetic isoprene chain side.
  • the weight average molecular weight is 3210,000 and the weight ratio of “low molecular weight synthetic isoprene chain having a molecular weight of less than 1,000,000: high molecular weight synthetic isoprene chain having a molecular weight of 1,000,000 or more” is 38:62. Met.
  • Production Example 3 (Production of normal hexane solution of low molecular weight synthetic isoprene chain (B-1)) Instead of normal hexane having a water content of 23 ppm by weight, 1150 parts of normal hexane having a water content of 2 ppm by weight was used, and the amount of hexane solution having a normal butyllithium concentration of 15% by weight was changed to 0.11 part. Except for the above, the reaction was carried out in the same manner as in Production Example 1.
  • Production Example 4 (Production of normal hexane solution of high molecular weight synthetic isoprene chain (C-1)) A reaction was carried out in the same manner as in Production Example 1 except that normal hexane having a moisture content of 2 ppm by weight was used instead of normal hexane having a moisture content of 23 ppm by weight. The molecular weight distribution curve showed a maximum on the high molecular weight synthetic isoprene chain side. A normal hexane solution of a unimodal high molecular weight synthetic isoprene chain (C-1) in which only dots appeared was obtained. The high molecular weight synthetic isoprene chain (C-1) in the obtained normal hexane solution had a weight average molecular weight of 3,460,000 on the high molecular weight synthetic isoprene chain side.
  • Production Example 5 (Production of normal hexane solution of low molecular weight synthetic isoprene chain (B-2)) Instead of normal hexane having a water content of 23 ppm by weight, normal hexane having a water content of 2 ppm by weight was used, and the amount of hexane solution having a normal butyl lithium concentration of 15% by weight was changed to 0.06 parts. Then, the reaction was carried out in the same manner as in Production Example 1 to obtain a normal hexane solution of a unimodal low molecular weight synthetic isoprene chain (B-2) in which only the maximum point on the low molecular weight synthetic isoprene chain side appeared in the molecular weight distribution curve. It was. The low molecular weight synthetic isoprene chain (B-2) in the obtained normal hexane solution had a weight average molecular weight of 850,000 on the low molecular weight synthetic isoprene chain side.
  • Example 1 Preparation of synthetic polyisoprene latex 1250 parts of a normal hexane solution of the synthetic polyisoprene (A-1) obtained in Production Example 1 was heated to 60 ° C. and heated to 60 ° C., and a sodium rosinate aqueous solution having a concentration of 1.0% by weight. The flow rate was adjusted to 1250 parts and a weight ratio of 1: 1 and mixed using a line mixer. Subsequently, an emulsion was obtained using a homogenizer.
  • the above emulsion was heated to 80 ° C. under reduced pressure to distill off normal hexane, whereby an aqueous dispersion of synthetic polyisoprene (A-1) was obtained.
  • the obtained aqueous dispersion was centrifuged using a continuous centrifuge to obtain a synthetic polyisoprene latex having a solid concentration of 65% by weight as a light liquid.
  • composition for dip molding While stirring the synthetic polyisoprene latex, 10 parts of dodecylbenzenesulfonic acid soda was added to 100 parts of the synthetic polyisoprene (A-1) so as to be 1 part in terms of solid content. Addition gave a mixture. Then, while stirring the resulting mixture, 1.5 parts of zinc oxide, 1.5 parts of sulfur and an anti-aging agent in terms of solid content with respect to 100 parts of the synthetic polyisoprene (A-1) in the mixture, respectively.
  • a glass mold (diameter: about 5 cm, length of the crushed portion: about 15 cm) on which the production surface of the dip-molded body was ground was washed, preheated in an oven at 70 ° C., then 18 wt% calcium nitrate and 0.05 wt% It was immersed for 5 seconds in a coagulant aqueous solution consisting of% polyoxyethylene lauryl ether (trade name “Emulgen 109P”, manufactured by Kao Corporation) and taken out.
  • a coagulant aqueous solution consisting of% polyoxyethylene lauryl ether (trade name “Emulgen 109P”, manufactured by Kao Corporation) and taken out.
  • the glass mold coated with the coagulant was dried in an oven at 70 ° C. Thereafter, the glass mold coated with the coagulant is taken out of the oven, dipped in the above dip-forming composition adjusted to 25 ° C. for 10 seconds, taken out, and dried at room temperature for 60 minutes, whereby the glass covered with the film Got the mold. And after immersing the glass type
  • the glass mold coated with the above film was vulcanized by heating in an oven at 120 ° C. for 20 minutes.
  • the glass mold covered with the vulcanized film was cooled to room temperature and sprayed with talc, and then the vulcanized film was peeled off from the glass mold to obtain a dip-formed product (rubber glove).
  • each measurement of tensile strength, elongation at break, and stress at the time of 500% elongation was performed. The results are shown in Table 1.
  • Example 2 Air-dried in the same manner as in Example 1 except that the synthetic polyisoprene (A-1) obtained in Production Example 2 was used instead of the synthetic polyisoprene (A-1) obtained in Production Example 1. Films and dip-molded bodies (rubber gloves) were produced and evaluated in the same manner. The results are shown in Table 1.
  • Example 3 Instead of the synthetic polyisoprene (A-1) obtained in Production Example 1, the low molecular weight synthetic isoprene chain (B-1) obtained in Production Example 3 and the high molecular weight synthetic isoprene chain obtained in Production Example 4 ( Example C-1) was used except that C-1) was mixed and used at a weight ratio of “low molecular weight synthetic isoprene chain (B-1): high molecular weight synthetic isoprene chain (C-1)” of 15:85. In the same manner as in Example 1, air-dried films and dip-molded bodies (rubber gloves) were produced and evaluated in the same manner. The results are shown in Table 1.
  • Example 4 instead of the synthetic polyisoprene (A-1) obtained in Production Example 1, the low molecular weight synthetic isoprene chain (B-2) obtained in Production Example 5 and the high molecular weight synthetic isoprene chain obtained in Production Example 4 ( Example C-1) was used except that C-1) was mixed so that the weight ratio of “low molecular weight synthetic isoprene chain (B-2): high molecular weight synthetic isoprene chain (C-1)” was 15:85.
  • air-dried films and dip-molded bodies (rubber gloves) were produced and evaluated in the same manner. The results are shown in Table 1.
  • Comparative Example 1 In the same manner as in Example 1, except that the high molecular weight synthetic isoprene chain (C-1) obtained in Production Example 4 was used instead of the synthetic polyisoprene (A-1) obtained in Production Example 1. Air-dried films and dip-molded bodies (rubber gloves) were produced and evaluated in the same manner. The results are shown in Table 1.
  • Comparative Example 2 In the same manner as in Example 1, except that the low molecular weight synthetic isoprene chain (B-1) obtained in Production Example 3 was used instead of the synthetic polyisoprene (A-1) obtained in Production Example 1. Air-dried films and dip-molded bodies (rubber gloves) were produced and evaluated in the same manner. The results are shown in Table 1.
  • Comparative Example 3 Instead of the synthetic polyisoprene (A-1) obtained in Production Example 1, the low molecular weight synthetic isoprene chain (B-1) obtained in Production Example 3 and the high molecular weight synthetic isoprene chain obtained in Production Example 4 ( Example C-1) was used except that C-1) was mixed and used at a weight ratio of “low molecular weight synthetic isoprene chain (B-1): high molecular weight synthetic isoprene chain (C-1)” of 80:20. In the same manner as in Example 1, air-dried films and dip-molded bodies (rubber gloves) were produced and evaluated in the same manner. The results are shown in Table 1.
  • Deactivator refers to a low molecular weight synthetic isoprene chain and a high molecular weight synthetic isoprene chain directly by adjusting the content of water (deactivator) in normal hexane used as an organic solvent. Produced a synthetic isoprene. “Mixed” indicates that a synthetic isoprene was produced by mixing a low molecular weight synthetic isoprene chain synthesized beforehand and a high molecular weight synthetic isoprene chain synthesized beforehand.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Wrappers (AREA)
  • Laminated Bodies (AREA)

Abstract

合成ポリイソプレンを含有する合成ポリイソプレンラテックスであって、前記合成ポリイソプレンラテックスを構成する前記合成ポリイソプレン中における、分子量が1,000,000未満である低分子量合成イソプレン鎖の含有割合が10~70重量%であり、かつ、分子量が1,000,000以上である高分子量合成イソプレン鎖の含有割合が30~90重量%である合成ポリイソプレンラテックスを提供する。また、上記の合成ポリイソプレンラテックスを製造する方法であって、有機溶媒中、有機アルカリ金属触媒を用いて、イソプレンを含有する単量体を重合することで、前記低分子量合成イソプレン鎖および前記高分子量合成イソプレン鎖を含有する前記合成ポリイソプレンを得る合成ポリイソプレンラテックスの製造方法を提供する。

Description

合成ポリイソプレンラテックス
 本発明は、製膜性に優れ、かつ、引張強度および伸びに優れ、しかも、柔軟な風合いを備えるディップ成形体などの膜成形体を与えることのできる合成ポリイソプレンラテックス、ならびに、このような合成ポリイソプレンラテックスを用いたラテックス組成物、膜成形体および包装構造体に関する。
 従来、天然ゴムのラテックスを含有するラテックス組成物を膜状に成形して得られる膜成形体が知られている。たとえば、膜成形体としては、天然ゴムのラテックスを含有するラテックス組成物をディップ成形して得られ、乳首、風船、手袋、バルーン、サック等の人体と接触して使用されるディップ成形体が知られている。しかしながら、天然ゴムのラテックスは、人体にアレルギー症状を引き起こすような蛋白質を含有するため、生体粘膜又は臓器と直接接触するディップ成形体としては問題がある場合があった。そのため、天然ゴムのラテックスではなく、合成ゴムのラテックスを用いる検討がされてきている。
 たとえば、特許文献1には、ディップ成形に用いるラテックスとして、重量平均分子量を所定範囲に制御した合成ポリイソプレンラテックスが開示されている。しかしながら、特許文献1の技術においては、使用する合成ポリイソプレンによっては、ディップ成形する際における製膜性に劣り、これにより、得られるディップ成形体の引張強度が低下してしまうという問題があった。
特許第5999103号
 本発明は、このような実状に鑑みてなされたものであり、製膜性に優れ、かつ、引張強度および伸びに優れ、しかも、柔軟な風合いを備えるディップ成形体などの膜成形体を与えることのできる合成ポリイソプレンラテックスを提供することを目的とする。
 本発明者等は、上記目的を達成するために鋭意検討を行った結果、分子量が比較的小さい合成イソプレン鎖と、分子量が比較的大きい合成イソプレン鎖とを、それぞれ所定の割合で含有する合成ポリイソプレンラテックスにより、上記目的を達成できることを見出し、本発明を完成させるに至った。
 すなわち、本発明によれば、合成ポリイソプレンを含有する合成ポリイソプレンラテックスであって、前記合成ポリイソプレンラテックスを構成する前記合成ポリイソプレン中における、分子量が1,000,000未満である低分子量合成イソプレン鎖の含有割合が10~70重量%であり、かつ、分子量が1,000,000以上である高分子量合成イソプレン鎖の含有割合が30~90重量%である合成ポリイソプレンラテックスが提供される。
 本発明の合成ポリイソプレンラテックスにおいて、前記合成ポリイソプレンは、分子量分布曲線が、前記低分子量合成イソプレン鎖側の極大点と、前記高分子量合成イソプレン鎖側の極大点との2つの極大点が存在する二峰性であることが好ましい。
 また、本発明によれば、上記の合成ポリイソプレンラテックスを製造する方法であって、有機溶媒中、有機アルカリ金属触媒を用いて、イソプレンを含有する単量体を重合することで、前記低分子量合成イソプレン鎖および前記高分子量合成イソプレン鎖を含有する前記合成ポリイソプレンを得る合成ポリイソプレンラテックスの製造方法が提供される。
 本発明の合成ポリイソプレンラテックスの製造方法において、前記有機溶媒として、失活剤を含む有機溶媒を用いることが好ましい。
 さらに、本発明によれば、上記の合成ポリイソプレンラテックスを製造する方法であって、有機溶媒中、有機アルカリ金属触媒を用いて、イソプレンを含有する単量体を重合することで、前記低分子量合成イソプレン鎖を主として含有する第1の重合体溶液を得る工程と、有機溶媒中、有機アルカリ金属触媒を用いて、イソプレンを含有する単量体を重合することで、前記高分子量合成イソプレン鎖を主として含有する第2の重合体溶液を得る工程と、前記第1の重合体溶液と、前記第2の重合体溶液とを混合することで前記合成ポリイソプレンを得る工程と、を備える合成ポリイソプレンラテックスの製造方法が提供される。
 本発明の合成ポリイソプレンラテックスの製造方法において、前記第1の重合体溶液を得る際に用いる有機アルカリ金属触媒の使用量を、前記第2の重合体溶液を得る際に用いる有機アルカリ金属触媒の使用量よりも多くすることが好ましい。
 さらに、本発明によれば、上記の合成ポリイソプレンラテックスを製造する方法であって、イソプレンを含有する単量体を重合して得られる前記合成ポリイソプレンの重合体溶液を、界面活性剤の水溶液を用いて乳化する工程を備える合成ポリイソプレンラテックスの製造方法が提供される。
 本発明によれば、上記の合成ポリイソプレンラテックス、および架橋剤を含有するラテックス組成物が提供される。
 また、本発明によれば、上記のラテックス組成物からなる膜成形体が提供される。
 さらに、本発明によれば、第1のシート基材の少なくとも一部と第2のシート基材の少なくとも一部とが、上記の合成ポリイソプレンラテックスからなる塗膜により接着積層されてなり、前記第1のシート基材と前記第2のシート基材との間に被包装物を収容可能な包装構造体が提供される。
 本発明によれば、製膜性に優れ、かつ、引張強度および伸びに優れ、しかも、柔軟な風合いを備えるディップ成形体などの膜成形体を与えることのできる合成ポリイソプレンラテックス、ならびに、このような合成ポリイソプレンラテックスを用いたラテックス組成物、膜成形体および包装構造体を提供することができる。
 本発明の合成ポリイソプレンラテックスは、合成ポリイソプレンを含有し、前記合成ポリイソプレンラテックスを構成する前記合成ポリイソプレン中における、分子量が1,000,000未満である低分子量合成イソプレン鎖の含有割合が10~70重量%であり、かつ、分子量が1,000,000以上である高分子量合成イソプレン鎖の含有割合が30~90重量%である。
 合成ポリイソプレン
 本発明の合成ポリイソプレンラテックスに含有される合成ポリイソプレンは、不活性な有機溶媒中で、イソプレンおよび必要に応じて用いられる共重合可能な他のエチレン性不飽和単量体を溶液重合して得られるものであり、合成ポリイソプレンは、分子量が1,000,000未満である低分子量合成イソプレン鎖を10~70重量%の割合で含有するとともに、分子量が1,000,000以上である高分子量合成イソプレン鎖を30~90重量%の割合で含有するものである。
 本発明によれば、合成ポリイソプレンラテックスを構成する合成ポリイソプレンが、上記割合で低分子量合成イソプレン鎖および高分子量合成イソプレン鎖を含有することにより、該合成ポリイソプレンラテックスを用いてディップ成形などの膜成形体を製造する際における製膜性が向上し、これにより、得られる膜成形体を、引張強度および伸びに優れ、しかも、柔軟な風合いを備えるものとすることが可能となる。
 すなわち、分子量が比較的大きい合成イソプレン鎖は、引張強度に優れるという物性を有するものの、そのような分子量が大きい合成イソプレン鎖のみを含むラテックスを用いてディップ成形体などの膜成形体を製造すると、製膜性に劣るものとなり(具体的には、製膜した際における合成イソプレン鎖同士の接着が不十分となってしまい)、その結果、得られる膜成形体の引張強度が低下してしまう。
 これに対し、本発明によれば、分子量が比較的大きい合成イソプレン鎖だけでなく、分子量が比較的小さい合成イソプレン鎖を含有する合成ポリイソプレンを用いることにより、合成ポリイソプレンラテックスを用いてディップ成形体などの膜成形体を製造する際に、分子量が比較的小さい合成イソプレン鎖が、分子量が比較的大きい合成イソプレン鎖同士を接着するように作用し、これにより、製膜性が向上し、その結果、得られる膜成形体の引張強度を向上させることができる。すなわち、本発明によれば、上述したように低分子量合成イソプレン鎖および高分子量合成イソプレン鎖を含有する合成ポリイソプレンラテックスを用いることにより、ディップ成形体などの膜成形体を製造する際において、低分子量合成イソプレン鎖の作用により、不十分な製膜に起因する引張強度の低下を防止しながら、高分子量合成イソプレン鎖の作用による高い引張強度を確保することができるものである。
 なお、低分子量合成イソプレン鎖および高分子量合成イソプレン鎖は、それぞれ独立して、イソプレンの単独重合体であってもよいし、イソプレンと共重合可能な他のエチレン性不飽和単量体とを共重合したものであってもよく、また、イソプレン単位の含有量は、柔軟で、引張強度に優れるディップ成形体などの膜成形体が得られやすいことから、全単量体単位に対して、好ましくは70重量%以上、より好ましくは90重量%以上、さらに好ましくは95重量%以上、特に好ましくは100重量%(イソプレンの単独重合体)である。
 イソプレンと共重合可能な他のエチレン性不飽和単量体としては、たとえば、ブタジエン、クロロプレン、1,3-ペンタジエン等のイソプレン以外の共役ジエン単量体;アクリロニトリル、メタクリロニトリル、フマロニトリル、α-クロロアクリロニトリル等のエチレン性不飽和ニトリル単量体;スチレン、アルキルスチレン等のビニル芳香族単量体;(メタ)アクリル酸メチル(「アクリル酸メチルおよび/またはメタクリル酸メチル」の意味であり、以下、(メタ)アクリル酸エチルなども同様。)、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸-2-エチルヘキシル等のエチレン性不飽和カルボン酸エステル単量体;などが挙げられる。これらのイソプレンと共重合可能な他のエチレン性不飽和単量体は、1種単独でも、複数種を併用してもよい。
 本発明においては、合成ポリイソプレン中の低分子量合成イソプレン鎖および高分子量合成イソプレン鎖の含有割合は、ゲル・パーミーエーション・クロマトグラフィー分析による標準ポリスチレン換算での分子量分布曲線を測定し、得られた分子量分布曲線に基づいて、分子量1,000,000未満の範囲にある合成イソプレン鎖の割合(単位:重量%)を低分子量合成イソプレン鎖の含有割合とし、分子量1,000,000以上の範囲にある合成イソプレン鎖の割合(単位:重量%)を高分子量合成イソプレン鎖の含有割合として求めることができる。
 低分子量合成イソプレン鎖の含有割合は、上述したように10~70重量%であればよいが、好ましくは20~65重量%、より好ましくは30~60重量%、最も好ましくは40~55重量%である。低分子量合成イソプレン鎖の含有割合を上記範囲とすることにより、得られる合成ポリイソプレンラテックスを用いてディップ成形する際の製膜性がより向上し、これにより、得られるディップ成形体などの膜成形体の引張強度がより向上する。
 また、高分子量合成イソプレン鎖の含有割合は、上述したように30~90重量%であればよいが、好ましくは35~80重量%、より好ましくは40~70重量%、最も好ましくは45~60重量%である。高分子量合成イソプレン鎖の含有割合を上記範囲とすることにより、得られるディップ成形体などの膜成形体の引張強度がより向上するとともに、高分子量合成イソプレン鎖が製造しやすくなる傾向がある。
 なお、本発明の合成ポリイソプレンラテックスに含有される合成ポリイソプレンは、低分子量合成イソプレン鎖と、高分子量合成イソプレン鎖とを上述した含有割合で含有するものであればいが、分子量分布曲線が、2つ以上の極大点を有していてもよく、低分子量合成イソプレン鎖側の極大点と、高分子量合成イソプレン鎖側の極大点との2つの極大点が存在すること(二峰性であること)が好ましい。この際においては、低分子量合成イソプレン鎖側の重量平均分子量(たとえば、低分子量合成イソプレン鎖側の極大点と、高分子量合成イソプレン鎖側の極大点との間の極小点を境にした場合における、該極小点より低分子量側の重量平均分子量)が、好ましくは100,000~1,000,000、より好ましくは200,000~700,000、さらに好ましくは300,000~500,000である。低分子量合成イソプレン鎖側の重量平均分子量を上記範囲とすることにより、得られる合成ポリイソプレンラテックスを用いてディップ成形する際の製膜性がより向上し、これにより、得られるディップ成形体などの膜成形体の引張強度がより向上する。同様に、高分子量合成イソプレン鎖側の重量平均分子量(たとえば、低分子量合成イソプレン鎖側の極大点と、高分子量合成イソプレン鎖側の極大点との間の極小点を境にした場合における、該極小点以上の高分子量側の重量平均分子量)が、好ましくは2,000,000~6,000,000、より好ましくは2,500,000~5,500,000、さらに好ましくは3,000,000~5,000,000である。高分子量合成イソプレン鎖側の重量平均分子量を上記範囲とすることにより、得られるディップ成形体などの膜成形体の引張強度がより向上するとともに、高分子量合成イソプレン鎖を製造しやすくなる傾向がある。
 本発明の合成ポリイソプレンラテックスに含有される合成ポリイソプレンを得るための方法としては、イソプレンおよび必要に応じて用いられる共重合可能な他のエチレン性不飽和単量体を重合して合成ポリイソプレンを得る際に、たとえば、失活剤を用いることにより、重合により得られる合成イソプレン鎖のうち、一部を低分子量化することで、低分子量合成イソプレン鎖と、高分子量合成イソプレン鎖とを上記割合にて含有するものとする方法、カップリング剤を用いて合成イソプレン鎖同士をカップリングさせることにより、一部を高分子量化することで、低分子量合成イソプレン鎖と、高分子量合成イソプレン鎖とを上記割合にて含有するものとする方法などが挙げられる。あるいは、予め合成した分子量1,000,000未満の合成イソプレン鎖を主として含有する第1の重合体溶液と、予め合成した分子量1,000,000以上の合成イソプレン鎖を主として含有する第2の重合体溶液とを混合する方法を用いてもよい。これらのなかでも、合成ポリイソプレンの製造効率に優れるという観点より、失活剤を用いる方法、およびカップリング剤を用いる方法が好ましく、さらに合成イソプレン鎖の分子量をより良好に制御することができるという観点より、失活剤を用いる方法が特に好ましい。
 失活剤を用いる方法においては、使用する失活剤としては、特に限定されないが、たとえば、水;メタノール、エタノール、プロピルアルコール、ブタノール、エチレングリコール、プロピレングリコール、グリセリン等のアルコール類;フェノール、クレゾール、α,β-ナフタノール、ノニルフェノール、t-ブチル-ヒドロキシトルエン等のフェノール類;などの活性水素を有する化合物を挙げることができる。これらのなかでも、水およびアルコール類が好ましく、水が特に好ましい。これらの失活剤は、単独で、または2種以上を組合せて用いることができる。
 失活剤を添加する方法としては、特に限定されないが、不活性な有機溶媒中でイソプレンおよび必要に応じて用いられる共重合可能な他のエチレン性不飽和単量体を溶液重合する際において、たとえば、該有機溶媒として失活剤を含むものを用いる方法や、溶液重合を行う際に失活剤を添加する方法などが挙げられるが、合成イソプレン鎖の分子量をより良好に制御することができるという観点より、有機溶媒として失活剤を含むものを用いる方法が好ましい。
 有機溶媒として失活剤を含むものを用いる場合には、有機溶媒中の失活剤の含有割合は、好ましくは3~100重量ppm、より好ましくは5~50重量ppm、さらに好ましくは10~30重量ppmである。
 有機溶媒中の失活剤の含有割合を上記範囲に調整する方法としては、特に限定されないが、たとえば、失活剤として水を用いる場合には、有機溶媒をモレキュラーシーブス等の乾燥剤と接触させて、有機溶媒中の水分量を調整する方法が挙げられる。
 また、カップリング剤を用いる方法においては、カップリング剤としては、特に限定されないが、たとえば、四塩化錫;ヘキサクロロジシラン、ビス(トリクロロシリル)メタン、1,2-ビス(トリクロロシリル)エタン、1,3-ビス(トリクロロシリル)プロパン、1,4-ビス(トリクロロシリル)ブタン、1,5-ビス(トリクロロシリル)ペンタン、1,6-ビス(トリクロロシリル)ヘキサンなどのハロゲン化ケイ素化合物;などが挙げられる。これらのカップリング剤は、単独で、または2種以上を組合せて用いることができる。
 合成イソプレン鎖とカップリング剤とを反応させる方法としては、活性末端を有する合成イソプレン鎖を含有する溶液と、カップリング剤とを混合することができる方法であればよく、特に限定されないが、たとえば、カップリング反応を良好に制御することができるという観点より、活性末端を有する合成イソプレン鎖を含有する溶液に、カップリング剤を添加する方法が好ましい。その際、カップリング剤は、不活性溶媒に溶解して添加することが好ましい。
 合成イソプレン鎖は、従来公知の方法、たとえば有機アルカリ金属触媒やチーグラー系重合触媒等の重合触媒を用いて、不活性な有機溶媒中で、イソプレンと、必要に応じて用いられる共重合可能な他のエチレン性不飽和単量体とを溶液重合して得ることができる。このような溶液重合を行う際に、上述したように、失活剤またはカップリング剤等を用いて、合成イソプレン鎖の分子量を調整した場合には、そのまま、低分子量合成イソプレン鎖と高分子量合成イソプレン鎖とが併存する合成ポリイソプレンを得ることができる。
 溶液重合により合成ポリイソプレンの重合体溶液を得た場合には、該重合体溶液は、後述する合成ポリイソプレンラテックスの製造にそのまま用いてもよいが、該重合体溶液から固形の合成ポリイソプレンを取り出した後、有機溶媒に溶解して、合成ポリイソプレンラテックスの製造に用いることもできる。
 この際、合成した後に重合体溶液中に残った重合触媒の残渣などの不純物を取り除いてもよい。また、重合中または重合後の溶液に、後述する老化防止剤を添加してもよい。
 なお、上述したように、本発明の合成ポリイソプレンラテックスに含有される合成ポリイソプレンを得るための方法として、予め合成した分子量1,000,000未満の合成イソプレン鎖(低分子量合成イソプレン鎖)を主として含有する第1の重合体溶液と、予め合成した分子量1,000,000以上の合成イソプレン鎖(高分子量合成イソプレン鎖)を主として含有する第2の重合体溶液とを混合する方法を用いる場合においても、同様にして、低分子量合成イソプレン鎖と、高分子量合成イソプレン鎖とを、それぞれ溶液重合により合成することができる。
 なお、溶液重合により、低分子量合成イソプレン鎖を選択的に得る方法、または高分子量合成イソプレン鎖を選択的に得る方法としては、溶液重合で使用する重合触媒の種類や、量を調整する方法が挙げられる。
 たとえば、重合触媒として有機アルカリ金属触媒を用いる場合には、有機アルカリ金属触媒の使用量を多くするほど、有機アルカリ金属触媒の作用により重合開始点が多くなり、これにより、得られる合成イソプレン鎖の分子量を比較的小さなものに制御することができ、低分子量合成イソプレン鎖を選択的に得ることができるようになる。一方、有機アルカリ金属触媒の使用量を少なくするほど、重合開始点が少なくなり、これにより、得られる合成イソプレン鎖の分子量を比較的大きなものに制御することができ、高分子量合成イソプレン鎖を選択的に得ることができるようになる。
 また、重合触媒としてチーグラー系触媒を用いる場合には、チーグラー系触媒の作用により、得られる合成イソプレン鎖の分子量が比較的小さくなる傾向にあるため、低分子量合成イソプレン鎖を選択的に得ることができるようになる。
 なお、有機アルカリ金属触媒としては、特に限定されないが、たとえば、n-ブチルリチウム、sec-ブチルリチウム、t-ブチルリチウム、ヘキシルリチウム、フェニルリチウム、スチルベンリチウムなどの有機モノリチウム化合物;ジリチオメタン、1,4-ジリチオブタン、1,4-ジリチオ-2-エチルシクロヘキサン、1,3,5-トリリチオベンゼン、1,3,5-トリス(リチオメチル)ベンゼンなどの有機多価リチウム化合物;ナトリウムナフタレンなどの有機ナトリウム化合物;カリウムナフタレンなどの有機力リウム化合物;などが挙げられる。これらのなかでも、有機モノリチウム化合物を用いることが好ましく、n-ブチルリチウムを用いることがより好ましい。これらの有機アルカリ金属触媒は、それぞれ単独で、または2種以上を組み合わせて用いることができる。
 有機アルカリ金属触媒の添加方法としては、たとえば、単量体(イソプレン、および必要に応じて用いられるイソプレンと共重合可能なエチレン性不飽和単量体)を仕込んだ反応容器に、有機アルカリ金属触媒をそのまま添加してもよいし、有機アルカリ金属触媒をヘキサン等の不活性溶媒中に溶解させた状態で添加してもよい。
 有機アルカリ金属触媒の使用量は、重合に用いる単量体(イソプレン、および必要に応じて用いられるイソプレンと共重合可能なエチレン性不飽和単量体)1000g当り、通常、1~50ミリモルであるが、低分子量合成イソプレン鎖を選択的に得ようとする場合には、好ましくは5~40ミリモル、より好ましくは10~30ミリモルの範囲である。また、高分子量合成イソプレン鎖を選択的に得ようとする場合には、重合に用いる単量体1000g当り、好ましくは2~20ミリモル、より好ましくは5~10ミリモルの範囲である。
 チーグラー系触媒としては、特に限定されず、公知のものを用いることができるが、たとえば、四塩化チタンを有機アルミニウム化合物で還元し、さらに各種電子供与体および電子受容体で処理して得られた三塩化チタン組成物と有機アルミニウム化合物を組み合わせた触媒系、ハロゲン化マグネシウムに四塩化チタンと各種電子供与体とを接触させる担持型触媒系などが挙げられ、これらのなかでも、四塩化チタンおよび有機アルミニウム化合物を用いた触媒系が好ましく、四塩化チタンおよびトリアルキルアルミニウムを用いた触媒系が特に好ましい。
 合成ポリイソプレン中のイソプレン単位としては、イソプレンの結合状態により、シス結合単位、トランス結合単位、1,2-ビニル結合単位、3,4-ビニル結合単位の4種類が存在する。得られるディップ成形体などの膜成形体の引張強度向上の観点から、合成ポリイソプレンに含まれるイソプレン単位中のシス結合単位の含有割合は、全イソプレン単位に対して、好ましくは70重量%以上、より好ましくは90重量%以上、さらに好ましくは95重量%以上である。
 また、合成ポリイソプレンのポリマー・ムーニー粘度(ML1+4、100℃)は、好ましくは50~80、より好ましくは60~80、さらに好ましくは70~80である。
 本発明の合成ポリイソプレンラテックスは、上述した合成ポリイソプレンを含むラテックスである。
 合成ポリイソプレンラテックスを得るための方法としては、たとえば、(1)有機溶媒に溶解させたイソプレン単独または、有機溶媒に溶解させたイソプレンとそれと共重合可能なエチレン性不飽和単量体との混合物を、溶液重合して得られる合成ポリイソプレンの重合体溶液を、界面活性剤の水溶液を用いて直接乳化することで合成ポリイソプレンラテックスを製造する方法、(2)一度凝固させた合成ポリイソプレンを有機溶媒に溶解または微分散してなる溶液または微細懸濁液を、界面活性剤の存在下に、水中で乳化し、必要により有機溶媒を除去して、合成ポリイソプレンラテックスを製造する方法、(3)一度凝固させた低分子量合成イソプレン鎖を有機溶媒に溶解または微分散してなる溶液または微細懸濁液と、一度凝固させた高分子量合成イソプレン鎖を有機溶媒に溶解または微分散してなる溶液または微細懸濁液と、を混合してなる混合液を、界面活性剤の存在下に、水中で乳化し、必要により有機溶媒を除去して、合成ポリイソプレンラテックスを製造する方法、が挙げられる。これらのなかでも、イソプレン単位中のシス結合単位の割合が高い合成ポリイソプレンを用いることができ、引張強度等の機械的特性に優れるディップ成形体などの膜成形体が得られやすい点から、上記(1)の製造方法が好ましい。
 上記(1)の製造方法で用いる有機溶媒としては、たとえば、ベンゼン、トルエン、キシレン等の芳香族炭化水素溶媒;シクロペンタン、シクロペンテン、シクロヘキサン、シクロヘキセン等の脂環族炭化水素溶媒;ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素溶媒;塩化メチレン、クロロホルム、二塩化エチレン等のハロゲン化炭化水素溶媒;等を挙げることができる。これらのうち、脂肪族炭化水素溶媒が好ましく、ヘキサンがより好ましく、ノルマルヘキサンが特に好ましい。
 なお、有機溶媒の使用量は、イソプレンと、必要に応じて用いられるイソプレンと共重合可能なエチレン性不飽和単量体との合計100重量部に対して、好ましくは2,000重量部以下、より好ましくは20~1,500重量部、更に好ましくは500~1500である。
 上記(1)の製造方法で用いる界面活性剤としては、たとえば、ラウリン酸ナトリウム、ミリスチン酸カリウム、パルミチン酸ナトリウム、オレイン酸カリウム、リノレン酸ナトリウム、ロジン酸ナトリウム等の脂肪酸塩;ドデシルベンゼンスルホン酸ナトリウム、ドデシルベンゼンスルホン酸カリウム、デシルベンゼンスルホン酸ナトリウム、デシルベンゼンスルホン酸カリウム、セチルベンゼンスルホン酸ナトリウム、セチルベンゼンスルホン酸カリウム等のアルキルベンゼンスルホン酸塩;ジ(2-エチルヘキシル)スルホコハク酸ナトリウム、ジ(2-エチルヘキシル)スルホコハク酸カリウム、ジオクチルスルホコハク酸ナトリウム等のアルキルスルホコハク酸塩;ラウリル硫酸ナトリウム、ラウリル硫酸カリウム等のアルキル硫酸エステル塩;ポリオキシエチレンラウリルエーテル硫酸ナトリウム、ポリオキシエチレンラウリルエーテル硫酸カリウム等のポリオキシエチレンアルキルエーテル硫酸エステル塩;ラウリルリン酸ナトリウム、ラウリルリン酸カリウム等のモノアルキルリン酸塩;等のアニオン性界面活性剤が挙げられる。
 これらアニオン性界面活性剤の中でも、脂肪酸塩、アルキルベンゼンスルホン酸塩、アルキルスルホコハク酸塩、アルキル硫酸エステル塩およびポリオキシエチレンアルキルエーテル硫酸エステル塩が好ましく、脂肪酸塩およびアルキルベンゼンスルホン酸塩がより好ましく、脂肪酸塩がさらに好ましく、ロジン酸ナトリウム、ロジン酸カリウム等のロジン酸塩が特に好ましい。
 また、合成ポリイソプレン由来の、微量に残留する重合触媒をより効率的に除去でき、ラテックス組成物を製造する際における、凝集物の発生が抑制されることから、アルキルベンゼンスルホン酸塩、アルキルスルホコハク酸塩、アルキル硫酸エステル塩およびポリオキシエチレンアルキルエーテル硫酸エステル塩からなる群から選ばれる少なくとも1種と、脂肪酸塩とを併用して用いることが好ましく、アルキルベンゼンスルホン酸塩と、脂肪酸塩とを併用して用いることが特に好ましい。ここで、脂肪酸塩としては、ロジン酸ナトリウムおよびロジン酸カリウムが好ましく、また、アルキルベンゼンスルホン酸塩としては、ドデシルベンゼンスルホン酸ナトリウムおよびドデシルベンゼンスルホン酸カリウムが好ましい。また、これらの界面活性剤は、1種単独でも2種以上を併用してもよい。
 なお、上述したように、アルキルベンゼンスルホン酸塩、アルキルスルホコハク酸塩、アルキル硫酸エステル塩およびポリオキシエチレンアルキルエーテル硫酸エステル塩からなる群から選ばれる少なくとも1種と、脂肪酸塩とを併用して用いることにより、得られるラテックスが、アルキルベンゼンスルホン酸塩、アルキルスルホコハク酸塩、アルキル硫酸エステル塩およびポリオキシエチレンアルキルエーテル硫酸エステル塩の中から選ばれた少なくとも1種と、脂肪酸塩とを含有するものとなる。
 また、上記(1)の製造方法においては、アニオン性界面活性剤以外の界面活性剤を併用してもよく、このようなアニオン性界面活性剤以外の界面活性剤としては、α,β-不飽和カルボン酸のスルホエステル、α,β-不飽和カルボン酸のサルフェートエステル、スルホアルキルアリールエーテル等の共重合性の界面活性剤が挙げられる。
 さらに、ディップ成形する際に使用する凝固剤による凝固を阻害しない範囲であれば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェノールエーテル、ポリオキシエチレンアルキルエステル、ポリオキシエチレンソルビタンアルキルエステル等の非イオン性界面活性剤も併用してもよい。
 上記(1)の製造方法で用いるアニオン性界面活性剤の使用量は、合成ポリイソプレン100重量部に対して、好ましくは0.1~50重量部、より好ましくは0.5~30重量部である。なお、2種類以上の界面活性剤を用いる場合においては、これらの合計の使用量を上記範囲とすることが好ましい。すなわち、たとえば、アルキルベンゼンスルホン酸塩、アルキルスルホコハク酸塩、アルキル硫酸エステル塩およびポリオキシエチレンアルキルエーテル硫酸エステル塩の中から選ばれた少なくとも1種と、脂肪酸塩とを併用する場合には、これらの使用量の合計を上記範囲とすることが好ましい。アニオン性界面活性剤の使用量が少なすぎると、乳化時に凝集物が多量に発生するおそれがあり、逆に多すぎると、発泡しやすくなり、得られるディップ成形体などの膜成形体にピンホールが発生する可能性がある。
 また、アニオン性界面活性剤として、アルキルベンゼンスルホン酸塩、アルキルスルホコハク酸塩、アルキル硫酸エステル塩およびポリオキシエチレンアルキルエーテル硫酸エステル塩の中から選ばれた少なくとも1種と、脂肪酸塩とを併用する場合には、これらの使用割合を、「脂肪酸塩」:「アルキルベンゼンスルホン酸塩、アルキルスルホコハク酸塩、アルキル硫酸エステル塩およびポリオキシエチレンアルキルエーテル硫酸エステル塩の中から選ばれた少なくとも1種の界面活性剤の合計」の重量比で、1:1~10:1の範囲とすることが好ましく、1:1~7:1の範囲とすることがより好ましい。アルキルベンゼンスルホン酸塩、アルキルスルホコハク酸塩、アルキル硫酸エステル塩およびポリオキシエチレンアルキルエーテル硫酸エステル塩の中から選ばれた少なくとも1種の界面活性剤の使用割合が多すぎると、合成ポリイソプレンの取り扱い時に泡立ちが激しくなるおそれがあり、これにより、長時間の静置や、消泡剤の添加などの操作が必要になり、作業性の悪化およびコストアップに繋がるおそれがある。
 上記(1)の製造方法で使用する界面活性剤の水溶液における水の量は、合成ポリイソプレンの重合体溶液100重量部に対して、好ましくは30~150重量部、より好ましくは40~100重量部、最も好ましくは50~70である。使用する水の種類としては、硬水、軟水、イオン交換水、蒸留水、ゼオライトウォーターなどが挙げられ、軟水、イオン交換水および蒸留水が好ましい。
 合成ポリイソプレンの重合体溶液を、界面活性剤の水溶液を用いて直接乳化する装置は、一般に乳化機または分散機として市販されているものであれば特に限定されず使用できる。合成ポリイソプレンの溶液または微細懸濁液に、界面活性剤を添加する方法としては、特に限定されず、予め、水もしくは合成ポリイソプレンの重合体溶液のいずれか、あるいは両方に添加してもよいし、乳化操作を行っている最中に、乳化液に添加してもよく、一括添加しても、分割添加してもよい。
 乳化装置としては、たとえば、商品名「ホモジナイザー」(IKA社製)、商品名「ポリトロン」(キネマティカ社製)、商品名「TKオートホモミキサー」(特殊機化工業社製)等のバッチ式乳化機;商品名「TKパイプラインホモミキサー」(特殊機化工業社製)、商品名「コロイドミル」(神鋼パンテック社製)、商品名「スラッシャー」(日本コークス工業社製)、商品名「トリゴナル湿式微粉砕機」(三井三池化工機社製)、商品名「キャビトロン」(ユーロテック社製)、商品名「マイルダー」(太平洋機工社製)、商品名「ファインフローミル」(太平洋機工社製)等の連続式乳化機;商品名「マイクロフルイダイザー」(みずほ工業社製)、商品名「ナノマイザー」(ナノマイザー社製)、商品名「APVガウリン」(ガウリン社製)等の高圧乳化機;商品名「膜乳化機」(冷化工業社製)等の膜乳化機;商品名「バイブロミキサー」(冷化工業社製)等の振動式乳化機;商品名「超音波ホモジナイザー」(ブランソン社製)等の超音波乳化機;等が挙げられる。なお、乳化装置による乳化操作の条件は、特に限定されず、所望の分散状態になるように、処理温度、処理時間などを適宜選定すればよい。
 上記(1)の製造方法においては、乳化操作を経て得られた乳化物から、有機溶媒を除去することが望ましい。
 乳化物から有機溶媒を除去する方法としては、得られる合成ポリイソプレンラテックス中における、有機溶媒(好ましくは脂環族炭化水素溶媒)の含有量を500重量ppm以下とすることのできる方法が好ましく、たとえば、減圧蒸留、常圧蒸留、水蒸気蒸留、遠心分離等の方法を採用することができる。
 上記(1)の方法においては、乳化操作を経て得られた乳化物から、有機溶媒を除去して、合成ポリイソプレンラテックスを得ることが望ましい。
 乳化物から有機溶媒を除去する方法としては、得られる合成ポリイソプレンラテックス中における、有機溶媒(好ましくは脂環族炭化水素溶媒)の含有量を500重量ppm以下とすることができるような方法が好ましく、たとえば、減圧蒸留、常圧蒸留、水蒸気蒸留、遠心分離等の方法を採用することができる。
 また、有機溶媒を除去した後、必要に応じ、合成ポリイソプレンラテックスの固形分濃度を上げるために、減圧蒸留、常圧蒸留、遠心分離、膜濃縮等の方法で濃縮操作を施してもよく、特に、合成ポリイソプレンラテックスの固形分濃度を上げるとともに、合成ポリイソプレンラテックス中の界面活性剤の残留量を低減することができるという観点より、遠心分離を行うことが好ましい。
 遠心分離は、たとえば、連続遠心分離機を用いて、遠心力を、好ましくは100~10,000G、遠心分離前の合成ポリイソプレンラテックスの固形分濃度を、好ましくは2~15重量%、遠心分離機に送り込む流速を、好ましくは500~1700Kg/hr、遠心分離機の背圧(ゲージ圧)を、好ましくは0.03~1.6MPaの条件にて実施することが好ましく、遠心分離後の軽液として、合成ポリイソプレンラテックスを得ることができる。そして、これにより、合成ポリイソプレンラテックス中における、界面活性剤の残留量を低減することができる。
 本発明の合成ポリイソプレンラテックスの固形分濃度は、好ましくは30~70重量%、より好ましくは40~70重量%である。固形分濃度を上記範囲とすることにより、合成ポリイソプレンラテックスについて、配管での移送や調合タンク内での撹拌をより良好に行うことができるようになり、さらに、得られるディップ成形体などの膜成形体の強度がより向上する。
 本発明の合成ポリイソプレンラテックスの体積平均粒子径は、好ましくは0.1~10μm、より好ましくは0.5~3.0μm、さらに好ましくは0.5~2.0μmである。この体積平均粒子径を上記範囲とすることにより、ラテックス粘度が適度なものとなり取り扱いやすくなるとともに、合成ポリイソプレンラテックスを貯蔵した際に、ラテックス表面に皮膜が生成することを抑制できる。
 また、合成ポリイソプレンラテックスには、ラテックスの分野で通常配合される、pH調整剤、消泡剤、防腐剤、架橋剤、キレート化剤、酸素捕捉剤、分散剤、老化防止剤等の添加剤を配合してもよい。
 pH調整剤としては、たとえば、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属の水酸化物;炭酸ナトリウム、炭酸カリウムなどのアルカリ金属の炭酸塩;炭酸水素ナトリウムなどのアルカリ金属の炭酸水素塩;アンモニア;トリメチルアミン、トリエタノールアミンなどの有機アミン化合物;等が挙げられるが、アルカリ金属の水酸化物またはアンモニアが好ましい。
 本発明のラテックス組成物は、上述した本発明の合成ポリイソプレンラテックスに、架橋剤を添加してなるものである。
 架橋剤としては、たとえば、粉末硫黄、硫黄華、沈降硫黄、コロイド硫黄、表面処理硫黄、不溶性硫黄等の硫黄;塩化硫黄、二塩化硫黄、モルホリン・ジスルフィド、アルキルフェノール・ジスルフィド、N,N’-ジチオ-ビス(ヘキサヒドロ-2H-アゼピノン-2)、含りんポリスルフィド、高分子多硫化物、2-(4’-モルホリノジチオ)ベンゾチアゾール等の硫黄含有化合物が挙げられる。これらのなかでも、硫黄が好ましく使用できる。架橋剤は、1種単独で、あるいは2種以上を組み合わせて用いることができる。
 架橋剤の含有量は、特に限定されないが、合成ポリイソプレンラテックスを構成する合成ポリイソプレン100重量部に対して、好ましくは0.1~10重量部、より好ましくは0.2~3重量部である。架橋剤の含有量を上記範囲とすることにより、得られるディップ成形体などの膜成形体の引張強度をより高めることができる。
 また、本発明のラテックス組成物は、さらに架橋促進剤を含有することが好ましい。
 架橋促進剤としては、ディップ成形において通常用いられるものが使用でき、たとえば、ジエチルジチオカルバミン酸、ジブチルジチオカルバミン酸、ジ-2-エチルヘキシルジチオカルバミン酸、ジシクロヘキシルジチオカルバミン酸、ジフェニルジチオカルバミン酸、ジベンジルジチオカルバミン酸などのジチオカルバミン酸類およびそれらの亜鉛塩;2-メルカプトベンゾチアゾール、2-メルカプトベンゾチアゾール亜鉛、2-メルカプトチアゾリン、ジベンゾチアジル・ジスルフィド、2-(2,4-ジニトロフェニルチオ)ベンゾチアゾール、2-(N,N-ジエチルチオ・カルバイルチオ)ベンゾチアゾール、2-(2,6-ジメチル-4-モルホリノチオ)ベンゾチアゾール、2-(4′-モルホリノ・ジチオ)ベンゾチアゾール、4-モルホニリル-2-ベンゾチアジル・ジスルフィド、1,3-ビス(2-ベンゾチアジル・メルカプトメチル)ユリアなどが挙げられるが、ジエチルジチオカルバミン酸亜鉛、2ジブチルジチオカルバミン酸亜鉛、2-メルカプトベンゾチアゾール亜鉛が好ましい。架橋促進剤は、1種単独で、あるいは2種以上を組み合わせて用いることができる。
 架橋促進剤の含有量は、合成ポリイソプレンラテックスを構成する合成ポリイソプレン100重量部に対して、好ましくは0.05~5重量部であり、より好ましくは0.1~2重量部である。架橋促進剤の含有量を上記範囲とすることにより、得られるディップ成形体などの膜成形体の引張強度をより高めることができる。
 また、本発明のラテックス組成物は、さらに酸化亜鉛を含有することが好ましい。
 酸化亜鉛の含有量は、特に限定されないが、合成ポリイソプレンラテックスを構成する合成ポリイソプレン100重量部に対して、好ましくは0.1~5重量部、より好ましくは0.2~2重量部である。酸化亜鉛の含有量を上記範囲とすることにより、乳化安定性を良好なものとしながら、得られるディップ成形体などの膜成形体の引張強度をより高めることができる。
 本発明のラテックス組成物には、さらに、老化防止剤、分散剤;カーボンブラック、シリカ、タルク等の補強剤;炭酸カルシウム、クレー等の充填剤;紫外線吸収剤;可塑剤;等の配合剤を必要に応じて配合することができる。
 本発明のラテックス組成物の調製方法は、特に限定されないが、たとえば、ボールミル、ニーダー、ディスパー等の分散機を用いて、合成ポリイソプレンラテックスに、架橋剤、および必要に応じて配合される各種配合剤を混合する方法や、上記の分散機を用いて、合成ポリイソプレンラテックス以外の配合成分の水性分散液を調製した後、該水性分散液を合成ポリイソプレンラテックスに混合する方法などが挙げられる。
 本発明のラテックス組成物は、pHが7以上であることが好ましく、pHが7~13の範囲であることがより好ましく、pHが8~12の範囲であることがさらに好ましい。また、ラテックス組成物の固形分濃度は、15~65重量%の範囲にあることが好ましい。
 本発明のラテックス組成物は、得られるディップ成形体などの膜成形体の機械的特性をより高めるという観点より、ディップ成形などの成形に供する前に、熟成(前架橋)させることが好ましい。前架橋する時間は、特に限定されず、前架橋の温度にも依存するが、好ましくは1~14日間であり、より好ましくは1~7日間である。なお、前架橋の温度は、好ましくは20~40℃である。
 そして、前架橋した後、ディップ成形などの成形に供されるまで、好ましくは10~30℃の温度で貯蔵することが好ましい。高温のまま貯蔵すると、得られるディップ成形体などの膜成形体の引張強度が低下する場合がある。
 膜成形体
 本発明の膜成形体は、本発明のラテックス組成物からなる膜状の成形体である。本発明の膜成形体の膜厚は、好ましくは0.03~0.50mm、より好ましくは0.05~0.40mm、特に好ましくは0.08~0.30mmである。
 本発明の膜成形体としては、特に限定されないが、本発明のラテックス組成物をディップ成形して得られるディップ成形体であることが好適である。ディップ成形は、ラテックス組成物に型を浸漬し、型の表面に当該組成物を沈着させ、次に型を当該組成物から引き上げ、その後、型の表面に沈着した当該組成物を乾燥させる方法である。なお、ラテックス組成物に浸漬される前の型は予熱しておいてもよい。また、型をラテックス組成物に浸漬する前、または、型をラテックス組成物から引き上げた後、必要に応じて凝固剤を使用できる。
 凝固剤の使用方法の具体例としては、ラテックス組成物に浸漬する前の型を凝固剤の溶液に浸漬して型に凝固剤を付着させる方法(アノード凝着浸漬法)、ラテックス組成物を沈着させた型を凝固剤溶液に浸漬する方法(ティーグ凝着浸漬法)などがあるが、厚みムラの少ないディップ成形体が得られる点で、アノード凝着浸漬法が好ましい。
 凝固剤の具体例としては、塩化バリウム、塩化カルシウム、塩化マグネシウム、塩化亜鉛、塩化アルミニウムなどのハロゲン化金属;硝酸バリウム、硝酸カルシウム、硝酸亜鉛などの硝酸塩;酢酸バリウム、酢酸カルシウム、酢酸亜鉛など酢酸塩;硫酸カルシウム、硫酸マグネシウム、硫酸アルミニウムなどの硫酸塩;などの水溶性多価金属塩である。なかでも、カルシウム塩が好ましく、硝酸カルシウムがより好ましい。これらの水溶性多価金属塩は、1種単独で、または2種以上を併用することができる。
 凝固剤は、好ましくは水溶液の状態で使用する。この水溶液は、さらにメタノール、エタノールなどの水溶性有機溶媒やノニオン性界面活性剤を含有していてもよい。凝固剤の濃度は、水溶性多価金属塩の種類によっても異なるが、好ましくは5~50重量%、より好ましくは10~30重量%である。
 型をラテックス組成物から引き上げた後、通常、加熱して型上に形成された沈着物を乾燥させる。乾燥条件は適宜選択すればよい。
 次いで、加熱して、型上に形成された沈着物を架橋させる。
 架橋時の加熱条件は、特に限定されないが、好ましくは60~150℃、より好ましくは100~130℃の加熱温度で、好ましくは10~120分の加熱時間である。
 加熱の方法は、特に限定されないが、オーブンの中で温風で加熱する方法、赤外線を照射して加熱する方法などがある。 
 また、ラテックス組成物を沈着させた型を加熱する前あるいは加熱した後に、水溶性不純物(たとえば、余剰の界面活性剤や凝固剤)を除去するために、型を水または温水で洗浄することが好ましい。用いる温水としては好ましくは40℃~80℃であり、より好ましくは50℃~70℃である。
 架橋後のディップ成形体は、型から脱着される。脱着方法の具体例は、手で型から剥がす方法、水圧または圧縮空気圧力により剥がす方法等が挙げられる。架橋途中のディップ成形体が脱着に対する十分な強度を有していれば、架橋途中で脱着し、引き続き、その後の架橋を継続してもよい。
 本発明の膜成形体、およびその一態様であるディップ成形体は、上述した本発明のラテックス組成物を用いて得られるものであるため、良好に製膜されたものであり、しかも、引張強度および伸びに優れ、かつ、柔軟な風合いを備えたものであり、たとえば、手袋として特に好適に用いることができる。膜成形体が手袋である場合、膜成形体同士の接触面における密着を防止し、着脱の際の滑りをよくするために、タルク、炭酸カルシウムなどの無機微粒子または澱粉粒子などの有機微粒子を手袋表面に散布したり、微粒子を含有するエラストマー層を手袋表面に形成したり、手袋の表面層を塩素化したりしてもよい。
 また、本発明の膜成形体、およびその一態様であるディップ成形体は、上記手袋の他にも、哺乳瓶用乳首、スポイト、チューブ、水枕、バルーンサック、カテーテル、コンドームなどの医療用品;風船、人形、ボールなどの玩具;加圧成形用バック、ガス貯蔵用バックなどの工業用品;指サックなどにも用いることができる。
 包装構造体
 本発明の包装構造体は、上述した本発明の合成ポリイソプレンラテックスを塗布した第1のシート基材および第2のシート基材を接着積層してなり、被包装物を収容可能な構造を示す。具体的には、本発明の包装構造体においては、第1のシート基材および第2のシート基材は、合成ポリイソプレンラテックスが塗布された面(ラテックス塗布面)が対向するようにして、必要に応じて被包装物を挟み、第1のシート基材および第2のシート基材のラテックス塗布面同士が互いに接触した状態で、押圧することにより、第1のシート基材と第2のシート基材とが互いに接着し、これにより、被包装物を包装可能な構造となっている。被包装物としては、特に限定されないが、たとえば、絆創膏等の医療品のように、滅菌をすることが望まれる各種被包装物が挙げられる。第1のシート基材および第2のシート基材としては、特に限定されないが、たとえば、グラシン紙等の紙材、高密度ポリエチレン不織布、ポリオレフィンフィルム、ポリエステルフィルム等が挙げられ、これらのなかでも、取り扱い性が優れている点(適度な折れ曲がり易さを有している点)および安価であるという点から、紙材が好ましく、グラシン紙が特に好ましい。
 以下、実施例により本発明が詳細に説明されるが、本発明はこれらの実施例に限定されない。なお、以下の「部」は、特に断りのない限り、重量基準である。なお、各種の物性は以下のように測定された。
 分子量分布曲線、重量平均分子量(Mw)
 試料を固形分濃度が0.1重量%となるように、テトラヒドロフランで希釈し、この溶液について、ゲル・パーミーエーション・クロマトグラフィー分析を標準ポリスチレン換算で行うことで、分子量分布曲線を得て、重量平均分子量(Mw)を算出した。
 固形分濃度
 アルミ皿(重量:X1)に試料2gを精秤し(重量:X2)、これを105℃の熱風乾燥器内で2時間乾燥させた。次いで、デシケーター内で冷却した後、アルミ皿ごと重量を測定し(重量:X3)、下記の計算式にしたがって、固形分濃度を算出した。
 固形分濃度(重量%)=(X3-X1)×100/X2
 製膜性
 凝固剤で被覆されたガラス型にディップ成形用組成物を浸漬させた後、温水中への浸漬および風乾を行って得られたフィルムの一部について、走査型電子顕微鏡(SEM)にて合成ポリイソプレン粒子の界面を観察し、以下の基準にて製膜性の評価を行った。
  A:合成ポリイソプレン粒子同士の界面が観察されなかった。
  B:合成ポリイソプレン粒子同士の界面が観察されたものの、僅かであった。
  C:合成ポリイソプレン粒子同士の界面が観察されたものの、若干であった。
  D:合成ポリイソプレン粒子同士の界面が多く観察された。
 ディップ成形体の引張強度、破断時伸び、500%引張応力
 ASTM D412に基づいて、膜厚が約0.2mmのフィルム状のディップ成形体を、ダンベル(商品名「スーパーダンベル(型式:SDMK-100C)」、ダンベル社製)で打ち抜き、引張強度測定用試験片を作製した。当該試験片をテンシロン万能試験機(商品名「RTG-1210」、オリエンテック社製)で引張速度500mm/minで引っ張り、破断直前の引張強度(単位:MPa)、破断直前の伸び(単位:%)および伸び率が500%の時の引張応力(単位:MPa)を測定した。なお、引張強度および破断時伸びは高いほど好ましい。また、500%の時の引張応力が小さいほど、ディップ成形体は柔軟性に優れたものとなり、好ましい。
 製造例1(合成ポリイソプレン(A-1)のノルマルヘキサン溶液の製造)
 乾燥および窒素置換された撹拌付きオートクレーブに、有機溶媒としてモレキュラーシーブスにより乾燥させた水分量23重量ppmのノルマルヘキサン(すなわち、失活剤としての水を23重量ppmで含むノルマルヘキサン)1150部と、イソプレン100部とを仕込んだ。次いで、オートクレーブ内の温度を60℃にし、撹拌しながら、ノルマルブチルリチウムの濃度が15重量%であるヘキサン溶液0.03部を加えて1時間反応させた。重合反応率は99%であった。得られたポリマー溶液に重合停止剤としてメタノール0.05部を添加し、反応を停止させて、合成ポリイソプレン(A-1)のノルマルヘキサン溶液を得た。そして、ノルマルヘキサン溶液中の合成ポリイソプレン(A-1)について、上記方法にしたがって、分子量分布曲線を測定した結果、分子量分布曲線が二峰性であった(低分子量合成イソプレン鎖側の極大点と、高分子量合成イソプレン鎖側の極大点との2つの極大点が確認された)。なお、低分子量合成イソプレン鎖側の重量平均分子量(低分子量合成イソプレン鎖側の極大点と、高分子量合成イソプレン鎖側の極大点との間の極小点を境にした場合における、該極小点より低分子量側の重量平均分子量)が420,000、高分子量合成イソプレン鎖側の重量平均分子量(上記極小点以上の高分子量側の重量平均分子量)が3,720,000であった。また、「分子量1,000,000未満である低分子量合成イソプレン鎖:分子量1,000,000以上である高分子量合成イソプレン鎖」の重量比率は49:51であった。
 製造例2(合成ポリイソプレン(A-2)のノルマルヘキサン溶液の製造)
 水分量23重量ppmのノルマルヘキサンに代えて、水分量10重量ppmのノルマルヘキサン1150部を使用した以外は、製造例1と同様にして、合成ポリイソプレン(A-2)のノルマルヘキサン溶液を得た。得られたノルマルヘキサン溶液中の合成ポリイソプレン(A-2)は、分子量分布曲線が二峰性であり、低分子量合成イソプレン鎖側の重量平均分子量が460,000、高分子量合成イソプレン鎖側の重量平均分子量が3,210,000であり、「分子量1,000,000未満である低分子量合成イソプレン鎖:分子量1,000,000以上である高分子量合成イソプレン鎖」の重量比率は38:62であった。
 製造例3(低分子量合成イソプレン鎖(B-1)のノルマルヘキサン溶液の製造)
 水分量23重量ppmのノルマルヘキサンに代えて、水分量2重量ppmのノルマルヘキサン1150部を使用し、ノルマルブチルリチウムの濃度が15重量%であるヘキサン溶液の使用量を0.11部に変更した以外は、製造例1と同様にして反応させたところ、分子量分布曲線に低分子量合成イソプレン鎖側の極大点のみが現れた単峰性の低分子量合成イソプレン鎖(B-1)のノルマルヘキサン溶液が得られた。得られたノルマルヘキサン溶液中の低分子量合成イソプレン鎖(B-1)は、低分子量合成イソプレン鎖側の重量平均分子量が430,000であった。
 製造例4(高分子量合成イソプレン鎖(C-1)のノルマルヘキサン溶液の製造)
 水分量23重量ppmのノルマルヘキサンに代えて、水分量2重量ppmのノルマルヘキサンを使用した以外は、製造例1と同様にして反応させたところ、分子量分布曲線に高分子量合成イソプレン鎖側の極大点のみが現れた単峰性の高分子量合成イソプレン鎖(C-1)のノルマルヘキサン溶液が得られた。得られたノルマルヘキサン溶液中の高分子量合成イソプレン鎖(C-1)は、高分子量合成イソプレン鎖側の重量平均分子量が3,460,000であった。
 製造例5(低分子量合成イソプレン鎖(B-2)のノルマルヘキサン溶液の製造)
 水分量23重量ppmのノルマルヘキサンに代えて、水分量2重量ppmのノルマルヘキサンを使用し、ノルマルブチルリチウムの濃度が15重量%であるヘキサン溶液の使用量を0.06部に変更した以外は、製造例1と同様にして反応させたところ、分子量分布曲線に低分子量合成イソプレン鎖側の極大点のみが現れた単峰性の低分子量合成イソプレン鎖(B-2)のノルマルヘキサン溶液が得られた。得られたノルマルヘキサン溶液中の低分子量合成イソプレン鎖(B-2)は、低分子量合成イソプレン鎖側の重量平均分子量が850,000であった。
 実施例1
 合成ポリイソプレンラテックスの調製
 製造例1で得られた合成ポリイソプレン(A-1)のノルマルヘキサン溶液1250部を60℃に加熱し、60℃に加熱した濃度1.0重量%のロジン酸ナトリウム水溶液1250部と、重量比で1:1となるように流量を調整してラインミキサーを用いて混合し、続いて、ホモジナイザ―を用いて乳化液を得た。
 次いで、上記の乳化液を減圧下で80℃に加温してノルマルヘキサンを留去し、合成ポリイソプレン(A-1)の水分散液を得た。得られた水分散液を連続遠心分離機を用いて遠心分離し、軽液として固形分濃度65重量%の合成ポリイソプレンラテックスを得た。
 ディップ成形用組成物の調製
 合成ポリイソプレンラテックスを攪拌しながら、合成ポリイソプレン(A-1)100部に対して、固形分換算で1部になるように濃度10%のドデシルベンゼンスルホン酸ソーダを添加して混合物を得た。そして、得られた混合物を攪拌しながら、混合物中の合成ポリイソプレン(A-1)100部に対して、それぞれ固形分換算で、酸化亜鉛1.5部、硫黄1.5部、老化防止剤(商品名:「Wingstay L」、グッドイヤー社製)2部、ジエチルジチオカルバミン酸亜鉛0.3部、ジブチルジチオカルバミン酸亜鉛0.5部、メルカプトベンゾチアゾール亜鉛塩0.7部となるように、各配合剤の水分散液を添加した後、水酸化カリウム水溶液を添加して、pHを10.5に調整したディップ成形用組成物を得た。その後、得られたディップ成形用組成物を、30℃に調整された恒温水槽で24時間熟成した。
 ディップ成形体の製造
 表面がすり加工されたガラス型(直径約5cm、すり部長さ約15cm)を洗浄し、70℃のオーブン内で予備加熱した後、18重量%の硝酸カルシウムおよび0.05重量%のポリオキシエチレンラウリルエーテル(商品名「エマルゲン109P」、花王社製)からなる凝固剤水溶液に5秒間浸漬して、取り出した。 
 次いで、凝固剤で被覆されたガラス型を70℃のオーブン内で乾燥させた。その後、凝固剤で被覆されたガラス型をオーブンから取り出し、25℃に調整した上記ディップ成形用組成物に10秒間浸漬してから取り出し、室温で60分間乾燥させることで、フィルムで被覆されたガラス型を得た。そして、このフィルムで被覆されたガラス型を60℃の温水中に2分間浸漬した後、室温で30分間風乾させた。そして、風乾したフィルムの一部について、上記方法にしたがって、製膜性の評価を行った。結果を表1に示す。
 その後、上記フィルムで被覆されたガラス型を120℃のオーブンにて20分間加熱することで加硫を行った。加硫したフィルムで被覆されたガラス型を室温まで冷却し、タルクを散布した後、当該加硫したフィルムをガラス型から剥離して、ディップ成形体(ゴム手袋)を得た。そして、得られたディップ成形体(ゴム手袋)について、上記方法にしたがって、引張強度、破断時伸び、500%伸長時の応力の各測定を行った。結果を表1に示す。
 実施例2
 製造例1で得られた合成ポリイソプレン(A-1)に代えて、製造例2で得られた合成ポリイソプレン(A-2)を使用した以外は、実施例1と同様にして、風乾したフィルムおよびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表1に示す。
 実施例3
 製造例1で得られた合成ポリイソプレン(A-1)に代えて、製造例3で得られた低分子量合成イソプレン鎖(B-1)および製造例4で得られた高分子量合成イソプレン鎖(C-1)を、「低分子量合成イソプレン鎖(B-1):高分子量合成イソプレン鎖(C-1)」の重量比率で15:85となるように混合して使用した以外は、実施例1と同様にして、風乾したフィルムおよびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表1に示す。
 実施例4
 製造例1で得られた合成ポリイソプレン(A-1)に代えて、製造例5で得られた低分子量合成イソプレン鎖(B-2)および製造例4で得られた高分子量合成イソプレン鎖(C-1)を、「低分子量合成イソプレン鎖(B-2):高分子量合成イソプレン鎖(C-1)」の重量比率で15:85となるように混合して使用した以外は、実施例1と同様にして、風乾したフィルムおよびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表1に示す。
 比較例1
 製造例1で得られた合成ポリイソプレン(A-1)に代えて、製造例4で得られた高分子量合成イソプレン鎖(C-1)を使用した以外は、実施例1と同様にして、風乾したフィルムおよびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表1に示す。 
 比較例2
 製造例1で得られた合成ポリイソプレン(A-1)に代えて、製造例3で得られた低分子量合成イソプレン鎖(B-1)を使用した以外は、実施例1と同様にして、風乾したフィルムおよびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表1に示す。
 比較例3
 製造例1で得られた合成ポリイソプレン(A-1)に代えて、製造例3で得られた低分子量合成イソプレン鎖(B-1)および製造例4で得られた高分子量合成イソプレン鎖(C-1)を、「低分子量合成イソプレン鎖(B-1):高分子量合成イソプレン鎖(C-1)」の重量比率で80:20となるように混合して使用した以外は、実施例1と同様にして、風乾したフィルムおよびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 *)表1中、「失活剤」は、有機溶媒として用いたノルマルヘキサン中の水(失活剤)の含有割合を調整することで、直接、低分子量合成イソプレン鎖および高分子量合成イソプレン鎖が併存する合成イソプレンを製造したことを示している。また、「混合」は、予め合成した低分子量合成イソプレン鎖と、予め合成した高分子量合成イソプレン鎖とを、混合することで、合成イソプレンを製造したことを示している。
 表1より、低分子量合成イソプレン鎖の含有割合が10~70重量%であり、かつ、高分子量合成イソプレン鎖の含有割合が30~90重量%である合成ポリイソプレンのラテックスを用いた場合には、ディップ成形する際の製膜性に優れ、しかも、得られるディップ成形体は、引張強度および伸びに優れ、かつ、柔軟な風合いを備えるものであった(実施例1~4)。
 一方、高分子量合成イソプレン鎖からなるラテックスを用いた場合には、ディップ成形する際の製膜性に劣り、これにより、得られるディップ成形体の引張強度が低下してしまった(比較例1)。
 また、低分子量合成イソプレン鎖からなるラテックスを用いた場合には、ディップ成形する際の製膜性に優れるものの、得られるディップ成形体の引張強度が低下してしまった(比較例2)。
 さらに、低分子量合成イソプレン鎖および高分子量合成イソプレン鎖を含有する合成ポリイソプレンを用いた場合であっても、低分子量合成イソプレン鎖の含有割合が高すぎる(高分子量合成イソプレン鎖の含有割合が低すぎる)場合には、ディップ成形する際の製膜性に優れるものの、得られるディップ成形体の引張強度が低下してしまった(比較例3)。

Claims (10)

  1.  合成ポリイソプレンを含有する合成ポリイソプレンラテックスであって、
     前記合成ポリイソプレンラテックスを構成する前記合成ポリイソプレン中における、分子量が1,000,000未満である低分子量合成イソプレン鎖の含有割合が10~70重量%であり、かつ、分子量が1,000,000以上である高分子量合成イソプレン鎖の含有割合が30~90重量%である合成ポリイソプレンラテックス。
  2.  前記合成ポリイソプレンラテックスを構成する前記合成ポリイソプレンは、分子量分布曲線が、前記低分子量合成イソプレン鎖側の極大点と、前記高分子量合成イソプレン鎖側の極大点との2つの極大点が存在する二峰性である請求項1に記載の合成ポリイソプレンラテックス。
  3.  請求項1または2に記載の合成ポリイソプレンラテックスを製造する方法であって、
     有機溶媒中、有機アルカリ金属触媒を用いて、イソプレンを含有する単量体を重合することで、前記低分子量合成イソプレン鎖および前記高分子量合成イソプレン鎖を含有する前記合成ポリイソプレンを得る合成ポリイソプレンラテックスの製造方法。
  4.  前記有機溶媒として、失活剤を含む有機溶媒を用いる請求項3に記載の合成ポリイソプレンラテックスの製造方法。
  5.  請求項1または2に記載の合成ポリイソプレンラテックスを製造する方法であって、
     有機溶媒中、有機アルカリ金属触媒を用いて、イソプレンを含有する単量体を重合することで、前記低分子量合成イソプレン鎖を主として含有する第1の重合体溶液を得る工程と、
     有機溶媒中、有機アルカリ金属触媒を用いて、イソプレンを含有する単量体を重合することで、前記高分子量合成イソプレン鎖を主として含有する第2の重合体溶液を得る工程と、
     前記第1の重合体溶液と、前記第2の重合体溶液とを混合することで前記合成ポリイソプレンを得る工程と、を備える合成ポリイソプレンラテックスの製造方法。
  6.  前記第1の重合体溶液を得る際に用いる有機アルカリ金属触媒の使用量を、前記第2の重合体溶液を得る際に用いる有機アルカリ金属触媒の使用量よりも多くする請求項5に記載の合成ポリイソプレンラテックスの製造方法。
  7.  請求項1または2に記載の合成ポリイソプレンラテックスを製造する方法であって、
     イソプレンを含有する単量体を重合して得られる前記合成ポリイソプレンの重合体溶液を、界面活性剤の水溶液を用いて乳化する工程を備える合成ポリイソプレンラテックスの製造方法。
  8.  請求項1または2に記載の合成ポリイソプレンラテックス、および架橋剤を含有するラテックス組成物。
  9.  請求項8に記載のラテックス組成物からなる膜成形体。
  10.  第1のシート基材の少なくとも一部と第2のシート基材の少なくとも一部とが、請求項1または2に記載の合成ポリイソプレンラテックスからなる塗膜により接着積層されてなり、前記第1のシート基材と前記第2のシート基材との間に被包装物を収容可能な包装構造体。
PCT/JP2017/039740 2016-11-15 2017-11-02 合成ポリイソプレンラテックス WO2018092604A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018551571A JP6984610B2 (ja) 2016-11-15 2017-11-02 合成ポリイソプレンラテックス
EP17871943.1A EP3543261B1 (en) 2016-11-15 2017-11-02 Synthetic polyisoprene latex
BR112019009441-5A BR112019009441B1 (pt) 2016-11-15 2017-11-02 Látex de poli-isopreno sintético, método para produção do látex de poli-isopreno sintético, composição de látex, artigo formado por película, e, estrutura de embalagem
US16/346,864 US20200062873A1 (en) 2016-11-15 2017-11-02 Synthetic polyisoprene latex
CN201780068191.7A CN109923132B (zh) 2016-11-15 2017-11-02 合成聚异戊二烯胶乳

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016222316 2016-11-15
JP2016-222316 2016-11-15

Publications (1)

Publication Number Publication Date
WO2018092604A1 true WO2018092604A1 (ja) 2018-05-24

Family

ID=62146257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/039740 WO2018092604A1 (ja) 2016-11-15 2017-11-02 合成ポリイソプレンラテックス

Country Status (6)

Country Link
US (1) US20200062873A1 (ja)
EP (1) EP3543261B1 (ja)
JP (1) JP6984610B2 (ja)
CN (1) CN109923132B (ja)
BR (1) BR112019009441B1 (ja)
WO (1) WO2018092604A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112142892B (zh) * 2019-06-27 2022-09-20 中国石油化工股份有限公司 双峰分布聚异戊二烯及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07233285A (ja) * 1993-12-29 1995-09-05 Bridgestone Corp ゴム組成物
JPH1025366A (ja) * 1996-04-02 1998-01-27 Huels Ag 一体ゴムをベースとするタイヤトレッド
JP2004359934A (ja) * 2003-05-15 2004-12-24 Yokohama Rubber Co Ltd:The フラーレンに結合した重合体を含むゴム組成物
US20130317176A1 (en) * 2012-05-28 2013-11-28 Beijing Research Institute Of Chemical Industry China Petroleum & Chemical Corporation Polyisoprene, preparation method thereof, polyisoprene rubber compounds and vulcanizate therefrom
JP5999103B2 (ja) 2011-12-27 2016-09-28 日本ゼオン株式会社 ラテックス、ディップ成形用組成物およびディップ成形体

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4537936A (en) * 1981-04-30 1985-08-27 Sumitomo Chemical Company, Limited Diene rubber composition, method of preparing the same and tire employing said composition
US4845165A (en) * 1987-03-13 1989-07-04 The Goodyear Tire & Rubber Company Anionic diene polymerization process with branching
US5071913A (en) * 1987-12-11 1991-12-10 Exxon Chemical Patents Inc. Rubbery isoolefin polymers exhibiting improved processability
US5508336A (en) * 1993-12-29 1996-04-16 Bridgestone Corporation Rubber composition
US5548043A (en) * 1994-11-30 1996-08-20 Xerox Corporation Processes for producing bimodal toner resins
JP3603294B2 (ja) * 1996-08-21 2004-12-22 日本ゼオン株式会社 ポリブタジエンゴム及び耐衝撃性芳香族ビニル系樹脂組成物
DE69822278T2 (de) * 1997-12-16 2004-08-12 Jsr Corp. Kautschuk aus einem konjugierten Diolefin -Copolymer und dessen Zusammensetzungen
US20050095436A1 (en) * 1998-06-18 2005-05-05 Story Harold G. Synthetic based self seal adhesive system for packaging
EP1601579A4 (en) * 2003-03-12 2007-09-12 Avery Dennison Corp REUSABLE LOCKS FOR PACKAGING AND METHOD FOR THE MANUFACTURE AND USE THEREOF
CN100482700C (zh) * 2006-06-09 2009-04-29 北京化工大学 一种双峰分子量分布高顺式聚二烯烃及其制备方法
DE102007038439A1 (de) * 2007-08-16 2009-02-19 Lanxess Deutschland Gmbh Nanostrukturierte Polymere auf Basis von konjugierten Dienen
MY155831A (en) * 2008-03-14 2015-12-15 Allegiance Corp Water-based resin composition and articles made therefrom
CN101838360A (zh) * 2009-03-19 2010-09-22 上海生大医保股份有限公司 一种聚异戊二烯水性乳液及用来制备手套和相关产品的方法
JP5488137B2 (ja) * 2010-04-06 2014-05-14 日本ゼオン株式会社 ディップ成形用組成物及びディップ成形体
CN103254332B (zh) * 2012-02-20 2015-07-22 中国石油化工股份有限公司 一种聚异戊二烯的制备方法和由该方法制得的聚异戊二烯
CN102936346B (zh) * 2012-09-10 2015-01-28 大连理工大学 采用聚异戊二烯胶液直接制备聚异戊二烯胶乳的方法
MY183214A (en) * 2013-09-30 2021-02-18 Zeon Corp Dip-forming composition and dip-formed article

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07233285A (ja) * 1993-12-29 1995-09-05 Bridgestone Corp ゴム組成物
JPH1025366A (ja) * 1996-04-02 1998-01-27 Huels Ag 一体ゴムをベースとするタイヤトレッド
JP2004359934A (ja) * 2003-05-15 2004-12-24 Yokohama Rubber Co Ltd:The フラーレンに結合した重合体を含むゴム組成物
JP5999103B2 (ja) 2011-12-27 2016-09-28 日本ゼオン株式会社 ラテックス、ディップ成形用組成物およびディップ成形体
US20130317176A1 (en) * 2012-05-28 2013-11-28 Beijing Research Institute Of Chemical Industry China Petroleum & Chemical Corporation Polyisoprene, preparation method thereof, polyisoprene rubber compounds and vulcanizate therefrom

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Rubber composition", RESEARCH DISCLOSURE, vol. 566, no. 72, 1 June 2011 (2011-06-01), GB , pages 755, XP007140627, ISSN: 0374-4353
KRATON: "Cariflex™ IR0401 BU Latex ", DATA DOCUMENT, 1 July 2011 (2011-07-01), pages 1 - 2, XP055939608
KRUTZER ET AL.: "A COMPARISON OF POLYISOPRENE LATEX TO NATURAL RUBBER LATEX: EXAMPLES IN THE USE OF STRAIGHTDIPPED GOODS", LATEX AND SYNTHETIC POLYMER DISPERSIONS, KUALA LUMPUR, 1 September 2013 (2013-09-01) - 11 September 2013 (2013-09-11), Kuala Lumpur, pages 1 - 16, XP055939614
P. MIGCHELS: "Kraton™ IR - a pure alternative", RUBBER TECHNOLOGY INTERNATIONAL, 1 January 1999 (1999-01-01), GB , pages 1 - 4, XP002286625, ISSN: 1362-4679
YASUYUKI TANAKA: "Structural Characterization of Natural Polyisoprenes: Solve the Mystery of Natural Rubber Based on Structural Study", RUBBER CHEMISTRY AND TECHNOLOGY, vol. 74, no. 3, 2001, pages 355 - 375, XP055939593

Also Published As

Publication number Publication date
EP3543261A1 (en) 2019-09-25
BR112019009441A2 (pt) 2019-07-30
CN109923132B (zh) 2021-12-17
JPWO2018092604A1 (ja) 2019-10-17
CN109923132A (zh) 2019-06-21
US20200062873A1 (en) 2020-02-27
EP3543261A4 (en) 2020-05-06
BR112019009441B1 (pt) 2023-05-09
JP6984610B2 (ja) 2021-12-22
EP3543261B1 (en) 2023-09-06

Similar Documents

Publication Publication Date Title
EP2799483B1 (en) Latex, composition for dip molding and dip molded body
EP2960293B1 (en) Latex for dip molding use, composition for dip molding use, and dip-molded article
WO2017130889A1 (ja) ラテックス組成物
KR102634108B1 (ko) 중합체 라텍스의 제조 방법
EP3029100B1 (en) Composition for dip molding, and dip-molded article
JP5488137B2 (ja) ディップ成形用組成物及びディップ成形体
JP5472286B2 (ja) ディップ成形用組成物及びディップ成形体
WO2018155243A1 (ja) ラテックス組成物
JP6879218B2 (ja) 重合体ラテックスの製造方法
WO2019039523A1 (ja) ラテックス組成物
WO2018061867A1 (ja) ラテックス組成物
JP6729549B2 (ja) ディップ成形用合成イソプレン重合体ラテックスの製造方法、ディップ成形用組成物の製造方法およびディップ成形体の製造方法
WO2018092604A1 (ja) 合成ポリイソプレンラテックス
JP6984609B2 (ja) 合成ポリイソプレンラテックスの製造方法
WO2021171994A1 (ja) ディップ成形体の製造方法
WO2019171981A1 (ja) 酸変性共役ジエン系重合体のラテックス、およびその製造方法
WO2022181389A1 (ja) 変性共役ジエン系重合体ラテックスの製造方法
WO2023026782A1 (ja) ラテックス組成物およびディップ成形体
JPWO2018088327A1 (ja) 合成ポリイソプレンラテックス
WO2022172696A1 (ja) 成形体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17871943

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018551571

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019009441

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017871943

Country of ref document: EP

Effective date: 20190617

ENP Entry into the national phase

Ref document number: 112019009441

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190508