WO2018088441A1 - 窒化物半導体基板とその製造方法 - Google Patents

窒化物半導体基板とその製造方法 Download PDF

Info

Publication number
WO2018088441A1
WO2018088441A1 PCT/JP2017/040313 JP2017040313W WO2018088441A1 WO 2018088441 A1 WO2018088441 A1 WO 2018088441A1 JP 2017040313 W JP2017040313 W JP 2017040313W WO 2018088441 A1 WO2018088441 A1 WO 2018088441A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitride semiconductor
semiconductor layer
recess
sapphire substrate
layer
Prior art date
Application number
PCT/JP2017/040313
Other languages
English (en)
French (fr)
Inventor
陽 吉川
朋浩 森下
素顕 岩谷
Original Assignee
旭化成株式会社
学校法人名城大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社, 学校法人名城大学 filed Critical 旭化成株式会社
Priority to US16/347,928 priority Critical patent/US10734225B2/en
Priority to JP2018550233A priority patent/JP6819969B2/ja
Publication of WO2018088441A1 publication Critical patent/WO2018088441A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02428Structure
    • H01L21/0243Surface structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02609Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03044Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds comprising a nitride compounds, e.g. GaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1856Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising nitride compounds, e.g. GaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
    • H01L31/16Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources
    • H01L31/167Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources the light sources and the devices sensitive to radiation all being semiconductor devices characterised by potential barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds

Definitions

  • the present invention relates to a nitride semiconductor substrate in which a nitride semiconductor layer is formed on a sapphire substrate.
  • Patent Document 1 As a method of forming a nitride semiconductor layer on a sapphire substrate, the method described in Patent Document 1 is known.
  • the method described in Patent Document 1 is a method for growing a nitride semiconductor by molecular beam epitaxy (MBE), which includes a step of forming a buffer layer on a substrate, and a step of forming a buffer layer on the buffer layer at a first temperature. Forming a first nitride crystal, and forming a first nitride crystal on the first nitride crystal at a second temperature higher than the first temperature.
  • MBE molecular beam epitaxy
  • the method described in Patent Document 1 is intended to grow a nitride semiconductor having a low crystal defect density on a sapphire substrate or the like by an MBE method having advantages such as a low residual impurity concentration.
  • An object of the present invention is to provide a substrate in which a nitride semiconductor layer having excellent crystallinity and surface flatness is formed on a sapphire substrate.
  • a first aspect of the present invention provides a nitride semiconductor substrate having the following configurations (1) to (5).
  • a nitride semiconductor substrate comprising a sapphire substrate and a nitride semiconductor layer formed on the sapphire substrate and mainly containing a group III element containing Al and nitrogen.
  • the surface of the sapphire substrate on which the nitride semiconductor layer is formed has a recess having a maximum opening dimension of 2 nm to 60 nm in a ratio of 1 ⁇ 10 9 to 1 ⁇ 10 11 per cm 2 Have in.
  • It has a space formed by the recess and the surface of the nitride semiconductor layer immediately above the recess.
  • the difference in height between the surface immediately above the recess and the surface in contact with the flat surface is 10 nm or less.
  • the upper portion of the recess of the nitride semiconductor layer has a crystal structure generated by growth along the polar surface of the group III element containing Al.
  • the second aspect of the present invention provides a method for producing a nitride semiconductor substrate having first to third steps shown in the following (11) to (13).
  • (11) A first step of forming, on a sapphire substrate, a recess forming film having a thickness of 0.1 nm or more and 10 nm or less mainly composed of a nitride semiconductor composed of a group III element containing Al and nitrogen.
  • (12) The surface on which the recess forming film of the sapphire substrate is formed while the through hole is formed in the recess forming film by annealing the sapphire substrate after the first step at a temperature of 1100 ° C. to 1350 ° C.
  • a nitride semiconductor substrate in which a nitride semiconductor layer having excellent crystallinity and surface flatness is formed on a sapphire substrate can be provided.
  • the maximum opening dimension is formed on the main surface of the sapphire substrate (surface on which the nitride semiconductor layer is formed in the third step) by the first step and the second step.
  • the recesses having the above-described configuration can be formed in the above-described ratio in the second step, and the initial step in the third step
  • the nitride semiconductor layer formed in the stage can satisfy the following configurations (a) and (b).
  • the upper portion of the recess of the nitride semiconductor layer has a crystal structure generated by growth along the polar surface of a group III element containing Al.
  • the portion formed after the initial stage of the nitride semiconductor layer has a lower rate of island-like growth, so that in the third step, nitridation with excellent surface flatness (surface opposite to the sapphire substrate) is achieved.
  • a physical semiconductor layer is formed.
  • the obtained nitride semiconductor substrate has a space formed by the surface of the nitride semiconductor layer immediately above the recess having the above-described configuration and the recess.
  • the nitride semiconductor substrate 1 of this embodiment includes a sapphire substrate 2 and a nitride semiconductor layer 3 formed on the sapphire substrate 2.
  • the nitride semiconductor layer 3 is a nitride semiconductor layer mainly containing a group III element containing Al and nitrogen.
  • the main surface 21 of the sapphire substrate 2 on which the nitride semiconductor layer 3 is formed has a recess 211 having a maximum opening dimension of 2 nm to 60 nm in a ratio of 1 ⁇ 10 9 to 1 ⁇ 10 11 per cm 2.
  • it has a ratio of 3 ⁇ 10 9 cm ⁇ 2 or more and 1 ⁇ 10 11 cm ⁇ 2 or less.
  • the nitride semiconductor substrate 1 has a space 4 formed by a recess 211 and a surface 311 immediately above the recess 211 of the nitride semiconductor layer 3.
  • the height difference ⁇ H between the surface 311 immediately above the recess 211 and the surface 312 in contact with the flat surface 212 is 10 nm or less.
  • the upper portion 32 of the recess 211 of the nitride semiconductor layer 3 has a crystal structure generated by the growth along the polar surface of the group III element containing Al.
  • ⁇ Nitride semiconductor substrate manufacturing method> A method for manufacturing the nitride semiconductor substrate of this embodiment will be described with reference to FIG. First, on a substantially flat main surface 21 of the sapphire substrate 2, a nitride semiconductor composed mainly of a group III element containing Al and nitrogen is used as a main component, using an organic metal deposition method (MOCVD method). A recess forming film 301 having a thickness of 1 nm to 2 nm is formed (first step). FIG. 2A shows this state. As the recess forming film 301, for example, at least one of AlN, GaN, and InN, or a mixed crystal thereof is formed in a range of 500 ° C. to 900 ° C.
  • MOCVD method organic metal deposition method
  • the sapphire substrate 2 after the first step is annealed at a temperature of 1100 ° C. or higher and 1250 ° C. or lower (second step).
  • a through hole 301 a is formed in the recess forming film 301, and a recess 211 is formed in the main surface 21 of the sapphire substrate 2.
  • FIG. 2B shows this state.
  • the recesses 211 have a maximum opening size of 2 nm or more and 60 nm or less, and are formed at a rate of 1 ⁇ 10 9 or more and 1 ⁇ 10 11 or less per 1 cm 2 .
  • the annealing time in the second step is preferably in the range of 600 seconds to 1200 seconds.
  • a recess 211 maximum opening dimension is 2nm or 60nm or less, 1 cm 2 per 3 ⁇ 10
  • the recess formation film 301 for example, at least one of AlN, GaN, and InN, or a mixed crystal thereof is formed in a range of 500 ° C. to 1050 ° C.
  • the annealing temperature in the second step is set to 1100 ° C. or higher and 1350 ° C. or lower, preferably 1200 ° C. or higher and 1300 ° C. or lower.
  • the annealing time for the second step is set in the range of 600 seconds to 1800 seconds.
  • a nitride semiconductor layer mainly composed of a group III element containing Al and nitrogen is formed on the recess forming film 301 of the sapphire substrate 2 in the state of FIG. 2B (third step).
  • an initial layer 302, a first layer 303, and a second layer 304 are formed in this order as the nitride semiconductor layer 3.
  • the initial layer 302 is formed by MOCVD with the surface temperature of the sapphire substrate 2 kept at 800 ° C. or higher and 900 ° C. or lower.
  • the thickness of the initial layer 302 is preferably set to 0.5 nm to 10 nm.
  • the first layer 303 is formed by the MOCVD method, and the surface temperature at that time is, for example, in the range of 1200 ° C. to 1350 ° C.
  • the thickness of the first layer 303 is preferably 50 nm or more and 200 nm or less.
  • the second layer 304 is formed by the MOCVD method, and the surface temperature at that time is, for example, in the range of 1050 ° C. to 1150 ° C. or 1000 ° C. to 1150 ° C.
  • the thickness of the second layer 304 is preferably 1500 nm to 4500 nm or 1500 nm to 5000 nm. Note that the initial layer 302 is not necessarily formed.
  • trimethylaluminum can be used as the Al raw material.
  • Ga material for example, trimethylgallium (TMGa) can be used.
  • N raw material for example, ammonia (NH 3 ) can be used.
  • TMIn trimethylindium
  • In raw material for example, trimethylindium (TMIn) can be used as the In raw material.
  • the nitride semiconductor layer 3 including the first layer 303 and the second layer 304 is formed on the sapphire substrate 2, and the second layer 304 has a lower dislocation density than the first layer 303.
  • a nitride semiconductor substrate thus obtained can be obtained.
  • the method of the second aspect of the present invention is performed, so that the nitride semiconductor having excellent flatness of the surface (surface opposite to the sapphire substrate) 33 is obtained in the third step.
  • Layer 3 is formed.
  • the nitride semiconductor substrate 1 in which the nitride semiconductor layer 3 having excellent crystallinity and flatness of the surface 33 is formed on the sapphire substrate 2 is obtained.
  • the sapphire substrate has, on the main surface, a recess having a maximum opening dimension of 2 nm to 60 nm and a distribution density of 1 ⁇ 10 9 cm ⁇ 2 to 1 ⁇ 10 11 cm ⁇ 2 and a flat portion.
  • the distribution density of the recesses is preferably 3 ⁇ 10 9 cm ⁇ 2 or more and 1 ⁇ 10 11 cm ⁇ 2 or less, more preferably 7 ⁇ 10 9 cm ⁇ 2 or more and 1 ⁇ 10 11 cm ⁇ 2 or less. More preferably, it is 1 ⁇ 10 10 cm ⁇ 2 or more and 1 ⁇ 10 11 cm ⁇ 2 or less.
  • a recessed part is formed in multiple numbers on the main surface of a sapphire substrate, and means the part depressed with respect to the main surface.
  • the interior of the recess is a cavity, and a space is formed between the interface with the nitride semiconductor layer.
  • a flat part means the flat part of the main surface of a sapphire substrate.
  • the maximum opening dimension of the recess is defined by the maximum length of a straight line that can be drawn inside the opening at the opening end of the recess. For example, when the opening end of the recess is circular, the diameter of the circle is the maximum opening size of the recess. When the opening end of the concave portion is polygonal, the maximum length of the polygonal diagonal is the maximum opening size of the concave portion.
  • TEM transmission electron microscope
  • the length of the recess extending in the horizontal direction of the recess existing in the cross-sectional view, that is, the direction parallel to the main surface of the sapphire substrate is defined as the maximum opening dimension of the recess.
  • the distribution density the average value obtained by dividing the number of concave portions observed from the planar TEM measurement by the measurement area, or the number of concave portions in the cross section from the cross-sectional TEM measurement is the measurement range and the measurement sample depth length.
  • the higher density is defined as the distribution density
  • the average value of the five cross sections is defined as the distribution density of the recesses of the sapphire substrate.
  • the depth of the recess is preferably 5 nm or more and 50 nm or less.
  • the degree of dislocation concentration to the nitride semiconductor layer portion formed in the initial stage is further increased, and the nitride semiconductor formed thereafter
  • the crystallinity of the layer portion is further improved.
  • the depth of the recess means the maximum depth of the recess in the direction perpendicular to the plane including the opening end. The depth of the recess can be measured by the above-mentioned cross-sectional transmission electron microscope (TEM).
  • the maximum dimension (T) of the bottom surface of the recess is preferably 1/10 or less of the maximum opening dimension (K) of the recess, that is, T / K ⁇ 0.1.
  • the maximum dimension of the bottom surface is defined by the maximum length of a straight line that can be drawn inside the bottom surface, like the maximum opening dimension of the recess.
  • the nitride semiconductor layer is a layer that is formed on the main surface of the sapphire substrate and contains Al. Further, the portion of the nitride semiconductor layer on the recess of the sapphire substrate is a crystal structure generated by growth along the polar surface of the group III element (hereinafter also referred to as “group III polar surface portion”, “group III polar surface”). The difference in height between the surface of the nitride semiconductor layer on the sapphire substrate side and the surface immediately above the recess and the surface in contact with the flat surface is 10 nm or less.
  • the method for confirming that the portion of the nitride semiconductor layer on the recess is a group III polar surface is as follows.
  • the nitride semiconductor substrate is immersed in a 50 wt% KOH solution heated to 80 ° C. for 10 minutes. Thereafter, the surface of the nitride semiconductor layer of the nitride semiconductor substrate taken out from the KOH solution is observed with a scanning electron microscope (SEM) or an atomic force microscope (AFM), and the cross section of the nitride semiconductor substrate is cross-sectionally transmitted. Observe with a microscope (TEM).
  • SEM scanning electron microscope
  • AFM atomic force microscope
  • the portion of the group V polar surface of the nitride semiconductor layer has a higher etching rate with respect to the KOH solution than the portion of the group III polar surface. Therefore, when the nitride semiconductor substrate is immersed in the KOH solution, the group V of the nitride semiconductor layer The part of the polar face is greatly etched. Since the polarity surface of the nitride semiconductor layer is either a group III polarity surface or a group V polarity surface, the surface of the nitride semiconductor layer is not etched with the KOH solution by observing the surface of the nitride semiconductor layer using the above conditions. It can be confirmed that the portion is a group III polar surface of the nitride semiconductor layer.
  • the portion of the nitride semiconductor layer on the concave portion of the sapphire substrate is a group III polar surface. It can.
  • five cross-sections are observed, and when 90% or more of the portion on the concave portion is a group III polar surface, “the portion on the concave portion of the nitride semiconductor layer is a group III polar surface”.
  • the surface is physically ground and polished to expose the nitride semiconductor layer. This makes it possible to discriminate using the above KOH solution.
  • the fact that the “difference in height between the surface of the nitride semiconductor layer on the sapphire substrate side and the surface directly in contact with the concave portion and the surface in contact with the flat surface” is 10 nm or less indicates that the cross-sectional transmission electron microscope (TEM) ) Can be confirmed by observation.
  • TEM transmission electron microscope
  • the cross section of the nitride semiconductor substrate is observed in five cross sections, "the difference in height between the surface of the nitride semiconductor layer on the sapphire substrate side and the surface directly in contact with the flat surface, and the surface contacting the flat surface”
  • the average value is defined as “the difference in height between the surface of the nitride semiconductor layer on the sapphire substrate side and the surface directly above the recess and the surface in contact with the flat surface”.
  • the material of the nitride semiconductor layer is not particularly limited as long as it is a compound of a group III element containing Al and nitrogen, and examples thereof include AlN, AlGaN, and AlInN.
  • the fact that the nitride semiconductor layer contains Al can be confirmed by X-ray fluorescence elemental analysis (XRF), Rutherford backscattering spectroscopy (RBS), secondary ion mass measurement SIMS, and X-ray photoelectron spectroscopy (XPS).
  • XRF X-ray fluorescence elemental analysis
  • RBS Rutherford backscattering spectroscopy
  • XPS X-ray photoelectron spectroscopy
  • the Al material for example, trimethylaluminum (TMAl) can be used.
  • TMGa trimethylgallium
  • TMGa triethylgallium
  • N raw material for example, ammonia (NH 3) can be used.
  • TMIn trimethylindium
  • In raw material
  • the crystallinity of the nitride semiconductor layer is preferably 45 arcsec or more and 70 arcsec or less on the (0002) plane and 240 arcsec or more and 290 arcsec or less on the (10-12) plane. Thereby, the crystallinity of the layer formed on the nitride semiconductor layer can be improved.
  • the crystallinity of the nitride semiconductor layer can be evaluated by an X-ray rocking curve method ( ⁇ scan).
  • ⁇ scan X-ray rocking curve method
  • Rq root mean square roughness
  • the root mean square roughness (Rq) of the surface of the nitride semiconductor layer can be measured using an AFM (Atomic Force Microscope).
  • the measurement range of the AFM is, for example, a square having a side of 4 ⁇ m.
  • the portion on the flat portion of the nitride semiconductor layer is preferably a group III polar surface. Thereby, the surface flatness of the nitride semiconductor layer can be further improved.
  • the ultraviolet light emitting device of this embodiment includes the nitride semiconductor substrate of the above-described embodiment.
  • the ultraviolet light-emitting device of this embodiment includes a nitride semiconductor substrate in which the main component of the nitride semiconductor layer is AlN, and a nitride semiconductor stacked portion formed on the nitride semiconductor layer, from the nitride semiconductor layer side.
  • a nitride semiconductor stacked portion having an n-type nitride semiconductor layer, a light emitting layer, and a p-type nitride semiconductor layer in this order.
  • the nitride semiconductor layer is an AlN layer formed on the sapphire substrate according to the present embodiment, a nitride semiconductor multilayer portion having good crystallinity can be formed on the nitride semiconductor layer. Therefore, by using the nitride semiconductor substrate of the present invention, it is possible to obtain an ultraviolet light emitting device with excellent luminous efficiency.
  • an organic metal deposition method MOCVD method
  • MOCVD method organic metal deposition method
  • the ultraviolet light emitting element of this embodiment can be applied to various devices.
  • the present invention can be applied to all existing apparatuses in which an ultraviolet lamp is used, and can be replaced with the used ultraviolet lamp.
  • the present invention can be applied to an apparatus using deep ultraviolet light having a wavelength of 300 nm or less.
  • the present invention can be applied to devices in the medical and life science fields, the environmental field, the industrial and industrial fields, the life and home appliance fields, the agricultural field, and other fields.
  • liquid sterilizers include automatic ice making equipment, ice trays, ice storage containers, water storage tanks for ice making machines, ice making machines, freezers, ice making machines, humidifiers, dehumidifiers, water server cold water tanks, hot water tanks, flow paths Pipes, stationary water purifiers, portable water purifiers, water heaters, water heaters, wastewater treatment devices, disposers, toilet drainage traps, washing machines, dialysis water sterilization modules, peritoneal dialysis connector sterilizers, disaster water storage systems, etc. This is not the case.
  • gas sterilizers include air purifiers, air conditioners, ceiling fans, floor and bedding vacuum cleaners, futon dryers, shoe dryers, washing machines, clothes dryers, indoor sterilization lights, and storage ventilation.
  • Examples include, but are not limited to, systems, shoe boxes, and chests.
  • solid sterilizers including surface sterilizers
  • solid sterilizers include vacuum packers, belt conveyors, medical / dental / barber / beauty salon hand tool sterilizers, toothbrushes, toothbrush holders, chopstick boxes, cosmetic pouches
  • Examples include, but are not limited to, drainage lids, toilet bowl cleaners, toilet lids, and the like.
  • the ultraviolet light receiving element of this embodiment includes the nitride semiconductor substrate of the above-described embodiment.
  • the ultraviolet light receiving element of this embodiment includes a nitride semiconductor substrate whose main component of the nitride semiconductor layer is AlN, a first nitride semiconductor layer formed on the nitride semiconductor layer and containing Al and Ga, A second nitride semiconductor layer formed on the first nitride semiconductor layer, containing Al and Ga, and having an Al content greater than that of the first nitride semiconductor layer; and the second nitride semiconductor layer And an electrode pair formed.
  • the nitride semiconductor layer is an AlN layer formed on the sapphire substrate according to the present embodiment
  • the first and second nitride semiconductor layers having good crystallinity are formed on the nitride semiconductor layer. can do. Therefore, by using the nitride semiconductor substrate of the present invention, an ultraviolet light receiving element with excellent light receiving efficiency can be obtained.
  • an organic metal deposition method MOCVD method
  • MOCVD method organic metal deposition method
  • the ultraviolet light emitting element of this embodiment can be applied to various devices.
  • the present invention can be applied to all existing apparatuses in which an ultraviolet sensor is used, and can be replaced with the used ultraviolet sensor.
  • the present invention can be applied to an apparatus using deep ultraviolet light having a wavelength of 300 nm or less.
  • Application examples include, but are not limited to, flame sensors, nitric oxide sensors, ozone sensors, urea sensors, and the like.
  • Example 1 A nitride semiconductor substrate was produced by the following method. First, on the substantially flat main surface of the sapphire substrate, an AlN layer (recess formation film) was formed to a thickness of 0.3 nm by an organic metal deposition method (MOCVD method). The surface temperature of the sapphire substrate at this time was 800 ° C. Next, the sapphire substrate on which the AlN layer (recess formation film) was formed was annealed at 1100 ° C. for 10 minutes to form a recess having a maximum opening dimension of 2 nm to 60 nm on the main surface.
  • MOCVD method organic metal deposition method
  • the distribution density of the concave portions was 3 ⁇ 10 10 cm ⁇ 2 .
  • an AlN layer (initial layer) was formed by MOCVD on the recess forming film (AlN layer) of the sapphire substrate by 3 nm.
  • an AlN layer (first layer) was formed to a thickness of 100 nm by MOCVD on the AlN layer (initial layer).
  • an AlN layer (second layer) was formed at 3500 nm by MOCVD while maintaining the surface temperature of the sapphire substrate at 1100 ° C.
  • trimethylaluminum (TMAl) was used as the Al material, and ammonia (NH 3 ) was used as the N material.
  • the surface (AlN layer) of the obtained nitride semiconductor substrate was immersed in an 80 ° C. KOH solution (50 wt%) for 10 minutes, and then observed with a cross-sectional TEM.
  • the AlN layer immediately above the recess was hardly etched, and the portion immediately above the recess of the AlN layer was crystal-grown along the Al polar face (Group III polar face).
  • the portion immediately above the flat portion of the AlN layer also grew along the Al polar face (Group III polar face).
  • ⁇ H the difference in height between the surface of the AlN layer on the sapphire substrate side and the surface directly in contact with the flat surface
  • Example 2 A nitride semiconductor substrate was fabricated in the same manner as in Example 1 except that the film thickness of the recess forming film was 4 nm.
  • the sapphire substrate on which the recess formation film (AlN layer) was formed was measured by a cross-sectional TEM. As a result, the distribution density of the recesses was 5 ⁇ 10 10 cm ⁇ 2 .
  • the surface (AlN layer) of the obtained nitride semiconductor substrate was immersed in an 80 ° C. KOH solution (50 wt%) for 10 minutes, and then observed with a cross-sectional TEM.
  • the AlN layer immediately above the recess was hardly etched, and the portion immediately above the recess of the AlN layer was crystal-grown along the Al polar face (Group III polar face).
  • the portion immediately above the flat portion of the AlN layer also grew along the Al polar face (Group III polar face).
  • ⁇ H the difference in height between the surface of the AlN layer on the sapphire substrate side and the surface directly in contact with the flat surface
  • Example 3 A nitride semiconductor substrate was fabricated by the same method as in Example 1 except that the film thickness of the recess forming film was 10 nm.
  • the sapphire substrate on which the recess formation film (AlN layer) was formed was measured by a cross-sectional TEM, the distribution density of the recesses was 8 ⁇ 10 10 cm ⁇ 2 .
  • the surface (AlN layer) of the obtained nitride semiconductor substrate was immersed in an 80 ° C. KOH solution (50 wt%) for 10 minutes, and then observed with a cross-sectional TEM.
  • the AlN layer immediately above the recess was hardly etched, and the portion immediately above the recess of the AlN layer was crystal-grown along the Al polar face (Group III polar face).
  • the portion immediately above the flat portion of the AlN layer also grew along the Al polar face (Group III polar face).
  • ⁇ H the difference in height between the surface of the AlN layer on the sapphire substrate side and the surface directly in contact with the flat surface
  • Example 4 A nitride semiconductor substrate was produced by the same method as in Example 1 except that the annealing time was 20 minutes.
  • the sapphire substrate on which the recess forming film (AlN layer) was formed was measured by a cross-sectional TEM, the distribution density of the recesses was 3 ⁇ 10 10 cm ⁇ 2 .
  • the surface (AlN layer) of the obtained nitride semiconductor substrate was immersed in an 80 ° C. KOH solution (50 wt%) for 10 minutes, and then observed with a cross-sectional TEM.
  • the AlN layer immediately above the recess was hardly etched, and the portion immediately above the recess of the AlN layer was crystal-grown along the Al polar face (Group III polar face).
  • the portion immediately above the flat portion of the AlN layer also grew along the Al polar face (Group III polar face).
  • ⁇ H the difference in height between the surface of the AlN layer on the sapphire substrate side and the surface directly in contact with the flat surface
  • Example 5 A nitride semiconductor substrate was fabricated in the same manner as in Example 1 except that the annealing time was 5 minutes.
  • the sapphire substrate on which the recess forming film (AlN layer) was formed was measured by a cross-sectional TEM, the distribution density of the recesses was 3 ⁇ 10 10 cm ⁇ 2 .
  • the surface (AlN layer) of the obtained nitride semiconductor substrate was immersed in an 80 ° C. KOH solution (50 wt%) for 10 minutes, and then observed with a cross-sectional TEM.
  • the AlN layer immediately above the recess was hardly etched, and the portion immediately above the recess of the AlN layer was crystal-grown along the Al polar face (Group III polar face).
  • the portion immediately above the flat portion of the AlN layer also grew along the Al polar face (Group III polar face).
  • ⁇ H the difference in height between the surface of the AlN layer on the sapphire substrate side and the surface directly in contact with the flat surface
  • Example 1 A nitride semiconductor substrate was fabricated in the same manner as in Example 1 except that the recess forming film was not formed.
  • the obtained nitride semiconductor substrate was subjected to cross-sectional TEM measurement, there was no recess at the interface between the sapphire and the AlN layer.
  • Example 2 A nitride semiconductor substrate was produced in the same manner as in Example 1 except that the annealing time was 2 minutes.
  • the sapphire substrate on which the film for forming recesses (AlN layer) was formed was measured by cross-sectional TEM, the distribution density of the recesses was 4 ⁇ 10 7 cm ⁇ 2 .
  • the root mean square roughness (Rq) of the surface (AlN layer) of the obtained nitride semiconductor was measured by AFM, and it was 2.3 nm.
  • the surface (AlN layer) of the obtained nitride semiconductor substrate was immersed in an 80 ° C. KOH solution (50 wt%) for 10 minutes, and then observed with a cross-sectional TEM.
  • the AlN layer immediately above the recess was hardly etched, and the portion immediately above the recess of the AlN layer was crystal-grown along the Al polar face (Group III polar face).
  • the portion immediately above the flat portion of the AlN layer also grew along the Al polar face (Group III polar face).
  • ⁇ H the difference in height between the surface of the AlN layer on the sapphire substrate side and the surface directly in contact with the flat surface
  • a nitride semiconductor substrate was fabricated in the same manner as in Example 1 except that the first layer formation temperature was 1050 ° C.
  • the sapphire substrate on which the recess forming film (AlN layer) was formed was measured by a cross-sectional TEM, the distribution density of the recesses was 3 ⁇ 10 10 cm ⁇ 2 .
  • the surface (AlN layer) of the obtained nitride semiconductor substrate was immersed in an 80 ° C. KOH solution (50 wt%) for 10 minutes, and then observed with a cross-sectional TEM.
  • the AlN layer immediately above the recess was hardly etched, and the portion immediately above the recess of the AlN layer was crystal-grown along the Al polar face (Group III polar face).
  • the portion immediately above the flat portion of the AlN layer also grew along the Al polar face (Group III polar face).
  • ⁇ H the difference in height between the surface of the AlN layer on the sapphire substrate side and the surface directly in contact with the flat surface
  • Example 5 A nitride semiconductor substrate was fabricated in the same manner as in Example 1 except that the formation temperature of the recess formation film was 750 ° C., the film thickness was 1.0 nm, and the annealing temperature was 1300 ° C. When the sapphire substrate on which the film for forming recesses (AlN layer) was formed was measured by cross-sectional TEM, the distribution density of the recesses was 3 ⁇ 10 12 cm ⁇ 2 .
  • the surface (AlN layer) of the obtained nitride semiconductor substrate was immersed in an 80 ° C. KOH solution (50 wt%) for 10 minutes, and then observed with a cross-sectional TEM.
  • the AlN layer immediately above the recess was hardly etched, and the portion immediately above the recess of the AlN layer was crystal-grown along the Al polar face (Group III polar face).
  • the portion immediately above the flat portion of the AlN layer also grew along the Al polar face (Group III polar face).
  • ⁇ H the difference in height between the surface of the AlN layer on the sapphire substrate side and the surface directly in contact with the flat surface
  • Example 6 A nitride semiconductor substrate was fabricated in the same manner as in Example 1 except that the formation temperature of the recess formation film was 770 ° C., the film thickness was 0.7 nm, and the annealing temperature was 1300 ° C. When the sapphire substrate on which the recess forming film (AlN layer) was formed was measured by a cross-sectional TEM, the distribution density of the recesses was 3 ⁇ 10 11 cm ⁇ 2 .
  • the surface (AlN layer) of the obtained nitride semiconductor substrate was immersed in an 80 ° C. KOH solution (50 wt%) for 10 minutes, and then observed with a cross-sectional TEM.
  • the AlN layer immediately above the recess was hardly etched, and the portion immediately above the recess of the AlN layer was crystal-grown along the Al polar face (Group III polar face).
  • the portion immediately above the flat portion of the AlN layer also grew along the Al polar face (Group III polar face).
  • ⁇ H the difference in height between the surface of the AlN layer on the sapphire substrate side and the surface directly in contact with the flat surface
  • a nitride semiconductor substrate was produced in the same manner as in Example 1 except that the annealing temperature was 1050 ° C.
  • the sapphire substrate on which the recess forming film (AlN layer) was formed was measured by a cross-sectional TEM, the distribution density of the recesses was 6 ⁇ 10 8 cm ⁇ 2 .
  • the surface (AlN layer) of the obtained nitride semiconductor substrate was immersed in an 80 ° C. KOH solution (50 wt%) for 10 minutes, and then observed with a cross-sectional TEM. As a result, it was confirmed that the AlN layer immediately above the recess was hardly etched, and the portion immediately above the recess of the AlN layer was crystal-grown along the Al polar face (Group III polar face). Further, it was confirmed that the portion immediately above the flat portion of the AlN layer also grew along the Al polar face (Group III polar face).
  • Table 1 shows the following.
  • the crystallinity of the AlN layer is in the range of 45 arcsec to 70 arcsec in the (0002) plane, and in the range of 240 arcsec to 290 arcsec in the (10-12) plane.
  • the crystallinity of the AlN layer is outside these ranges.
  • the root mean square roughness (Rq) of the surface is in the range of 0.15 nm to 1 nm.
  • Rq is outside this range. That is, in the nitride semiconductor substrates of Examples 1 to 5, the nitride semiconductor layer having excellent crystallinity and surface flatness is formed on the sapphire substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Led Devices (AREA)
  • Recrystallisation Techniques (AREA)
  • Light Receiving Elements (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

窒化物半導体基板(1)は、サファイア基板(2)と、その上に形成され、Alを含むIII 族元素および窒素を主成分とする窒化物半導体層(3)とを備える。サファイア基板の窒化物半導体層が形成されている側の面(21)は、最大開口寸法が2nm以上60nm以下である凹部(211)を1cm2当たり1×109個以上1×1011個以下の割合で有する。凹部(211)と凹部の直上の面(311)とで形成される空間(4)を有する。窒化物半導体層のサファイア基板側の面(31)のうち、凹部(211)の直上の面(311)と平坦面(212)に接触する面(312)との高さの差ΔHが10nm以下である。窒化物半導体層の凹部(211)の上側の部分(32)はIII族元素の極性面に沿った成長で生じた結晶構造を有する。

Description

窒化物半導体基板とその製造方法
 本発明は、サファイア基板上に窒化物半導体層が形成された窒化物半導体基板に関する。
 サファイア基板上に窒化物半導体層を形成する方法としては、特許文献1に記載された方法が知られている。
 特許文献1に記載された方法は、分子線エピタキシ(MBE)法による窒化物半導体の成長方法であって、基板上にバッファー層を形成する工程と、バッファー層上に、第1の温度で第1の窒化物結晶を形成する工程と、第1の窒化物結晶上に第1の温度よりも高温の第2の温度で第1の窒化物結晶を形成する工程とを含む。
 特許文献1に記載された方法は、残留不純物濃度が低いなどの利点を有するMBE法によって、サファイア基板上などに結晶欠陥密度の低い窒化物半導体を成長させることを目的としている。
特開2015-168594号公報
 現状では、サファイア基板上に結晶性と表面平坦性を両立させた窒化物半導体層を形成する技術について、十分な検討が行われていない。
 本発明の課題は、サファイア基板上に、結晶性と表面平坦性に優れた窒化物半導体層が形成された基板を提供することである。
 上記課題を解決するために、本発明の第一態様は、下記の構成(1) ~(5) を有する窒化物半導体基板を提供する。
(1) サファイア基板と、前記サファイア基板上に形成され、Alを含むIII 族元素および窒素を主成分とする窒化物半導体層と、を備えた窒化物半導体基板である。
(2) サファイア基板の窒化物半導体層が形成されている側の面は、最大開口寸法が2nm以上60nm以下である凹部を、1cm2当たり1×109個以上1×1011個以下の割合で有する。
(3) 上記凹部と、窒化物半導体層の上記凹部の直上の面と、で形成される空間を有する。
(4) 窒化物半導体層のサファイア基板側の面のうち、凹部の直上の面と平坦面に接触する面との高さの差が、10nm以下である。
(5) 窒化物半導体層の上記凹部の上側の部分は、Alを含むIII族元素の極性面に沿った成長で生じた結晶構造を有する。
 本発明の第二態様は、下記の(11)~(13)に示す第一工程~第三工程を有する窒化物半導体基板の製造方法を提供する。
(11)サファイア基板上に、Alを含むIII 族元素および窒素からなる窒化物半導体を主成分とする厚さ0.1nm以上10nm以下の凹部形成用膜を形成する第一工程。
(12)第一工程後のサファイア基板を1100℃以上1350℃以下の温度でアニールすることで、凹部形成用膜に貫通穴を形成するとともに、サファイア基板の凹部形成用膜が形成されている面に、最大開口寸法が2nm以上60nm以下である凹部を、1cm2当たり3×109個以上1×1011個以下の割合で形成する第二工程。
(13)第二工程後のサファイア基板の凹部形成用膜上に、Alを含むIII族元素および窒素を主成分とする窒化物半導体層を形成する第三工程。
 本発明の態様によれば、サファイア基板上に、結晶性と表面平坦性に優れた窒化物半導体層が形成された窒化物半導体基板を提供することができる。
実施形態の窒化物半導体基板を示す断面図である。 実施形態の窒化物半導体基板の製造方法を説明する断面図である。
〔本発明の態様についての説明〕
 従来の一般的な方法では、凹部が形成されたサファイア基板上に窒化物半導体層を形成した場合、窒化物半導体層の凹部の上側の部分は、V族元素である窒素の極性面に沿った成長で生じた結晶構造となる傾向にある。また、窒化物半導体層のサファイア基板側の面のうち凹部の直上の面と平坦面に接触する面との高さの差は10nmよりも大きくなる傾向にある。いずれの場合も、窒化物半導体層の表面は良好な平坦性が得られない傾向にある。つまり、従来技術では、結晶性と表面平坦性の両立が困難であった。
 これに対して、本発明の第二態様の方法によれば、第一工程および第二工程により、サファイア基板の主面(第三工程で窒化物半導体層を形成する面)に、最大開口寸法が2nm以上60nm以下である凹部が、1cm2当たり1×109個以上1×1011個以下の割合で形成される。これにより、第三工程で窒化物半導体層を形成する際に、初期の段階で形成される部分に転位が集中するため、その後に形成される部分の結晶性が向上する。
 また、第一工程で、サファイア基板上に、上記構成の凹部形成用膜を形成することにより、第二工程で上記構成の凹部を上記割合で形成することができるとともに、第三工程で初期の段階で形成される窒化物半導体層を、下記の構成(a) (b) を満たすものとすることができる。
(a) 窒化物半導体層のサファイア基板側の面のうち、凹部の直上の面と平坦面に接触する面との高さの差が、10nm以下となる。
(b) 窒化物半導体層の上記凹部の上側の部分は、Alを含むIII族元素の極性面に沿った成長で生じた結晶構造を有する。
 これにより、窒化物半導体層の初期段階後に形成される部分は、島状成長する割合が低くなるため、第三工程で、表面(サファイア基板とは反対側の面)の平坦性に優れた窒化物半導体層が形成される。
 また、得られる窒化物半導体基板は、窒化物半導体層の上記構成の凹部の直上の面とこの凹部とで形成される空間を有する。
〔実施形態〕
 以下、この発明の実施形態について説明するが、この発明は以下に示す実施形態に限定されない。以下に示す実施形態では、この発明を実施するために技術的に好ましい限定がなされているが、この限定はこの発明の必須要件ではない。
 なお、以下の説明で使用する図において、図示されている各部の寸法関係は、実際の寸法関係と異なる場合がある。
<窒化物半導体基板>
 図1に示すように、この実施形態の窒化物半導体基板1は、サファイア基板2と、サファイア基板2上に形成された窒化物半導体層3とからなる。窒化物半導体層3は、Alを含むIII族元素および窒素を主成分とする窒化物半導体層である。
 サファイア基板2の窒化物半導体層3が形成されている主面21は、最大開口寸法が2nm以上60nm以下である凹部211を、1cm2当たり1×109個以上1×1011個以下の割合で、好ましくは3×109cm-2以上1×1011cm-2以下の割合で有する。
 窒化物半導体基板1は、凹部211と、窒化物半導体層3の凹部211の直上の面311と、で形成される空間4を有する。窒化物半導体層3のサファイア基板側の面31のうち、凹部211の直上の面311と平坦面212に接触する面312との高さの差ΔHが、10nm以下である。
 窒化物半導体層3の凹部211の上側の部分32は、Alを含むIII族元素の極性面に沿った成長で生じた結晶構造を有する。
<窒化物半導体基板の製造方法>
 この実施形態の窒化物半導体基板の製造方法を、図2を用いて説明する。
 先ず、サファイア基板2の略平坦な主面21上に、有機金属堆積法(MOCVD法)を用いて、Alを含むIII族元素および窒素からなる窒化物半導体を主成分とし、厚さが0.1nm以上2nm以下の凹部形成用膜301を成膜する(第一工程)。図2(a)はこの状態を示す。凹部形成用膜301としては、例えば、AlN、GaN及びInNのうちの少なくともいずれか1つ、又はこれらの混晶を500℃以上900℃以下の範囲で成膜する。
 次に、第一工程後のサファイア基板2を1100℃以上1250℃以下の温度でアニールする(第二工程)。これにより、凹部形成用膜301に貫通穴301aが形成され、サファイア基板2の主面21に凹部211が形成される。図2(b)はこの状態を示す。凹部211は、最大開口寸法が2nm以上60nm以下であり、1cm2当たり1×109個以上1×1011個以下の割合で形成される。第二工程のアニール時間は、600秒以上1200秒以下の範囲とすることが好ましい。
 なお、第一工程および第二工程の条件を例えば以下のようにすることで、サファイア基板2の主面21に、最大開口寸法が2nm以上60nm以下である凹部211を、1cm2当たり3×109個以上1×1011個以下の割合で形成することができる。
 凹部形成用膜301としては、例えば、AlN、GaN及びInNのうちの少なくともいずれか1つ、又はこれらの混晶を500℃以上1050℃以下の範囲で成膜する。第二工程のアニール温度を1100℃以上1350℃以下に、好ましくは1200℃以上1300℃以下にする。第二工程のアニール時間を600秒以上1800秒以下の範囲とする。
 次に、図2(b)の状態のサファイア基板2の凹部形成用膜301上に、Alを含むIII 族元素および窒素を主成分とする窒化物半導体層を形成する(第三工程)。この実施形態の第三工程では、図2(c)に示すように、窒化物半導体層3として、初期層302、第一層303、および第二層304をこの順に形成する。その結果、図1に示す窒化物半導体基板1が得られる。
 初期層302の形成は、サファイア基板2の表面温度を800℃以上900℃以下に保った状態で、MOCVD法により形成する。初期層302としてAlNを形成する場合には、初期層302の膜厚を0.5nm以上10nm以下にすることが好ましい。
 第一層303の形成は、MOCVD法により行い、その際の表面温度は例えば1200℃以上1350℃以下の範囲とする。第一層303の膜厚は50nm以上200nm以下とすることが好ましい。
 第二層304の形成はMOCVD法により行い、その際の表面温度は、例えば1050℃以上1150℃以下または1000℃以上1150℃以下の範囲とする。第二層304の膜厚は1500nm以上4500nm以下または1500nm以上5000nm以下とすることが好ましい。
 なお、初期層302の形成は行わなくてもよい。
 上記各工程において、Al原料としては、例えばトリメチルアルミニウム(TMAl)を用いることができる。Ga原料としては、例えばトリメチルガリウム(TMGa)を用いることができる。N原料としては、例えば、アンモニア(NH3)を用いることができる。In原料としては、例えば、トリメチルインジウム(TMIn)を用いることができる。
 上記各工程を行うことにより、サファイア基板2上に、第一層303および第二層304を含み、第二層304の方が第一層303よりも転位密度の小さい窒化物半導体層3が形成された窒化物半導体基板を得ることができる。
 この実施形態の方法によれば、本発明の第二態様の方法が実施されることで、第三工程で、表面(サファイア基板とは反対側の面)33の平坦性に優れた窒化物半導体層3が形成される。その結果、図1に示すように、サファイア基板2上に、結晶性と表面33の平坦性に優れた窒化物半導体層3が形成された窒化物半導体基板1が得られる。
 以下に、窒化物半導体基板の構成要素と、紫外線発光装置およびこれを備える装置について説明する。
<サファイア基板>
 サファイア基板は、主面に、最大開口寸法が2nm以上60nm以下であり、分布密度が1×109cm-2以上1×1011cm-2以下である凹部と、平坦部と、を有する。凹部の分布密度は、3×109cm-2以上1×1011cm-2以下であることが好ましく、7×10cm-2以上1×1011cm-2以下であることがより好ましく、1×1010cm-2以上1×1011cm-2以下であることがさらに好ましい。
 ここで、凹部とは、サファイア基板の主面に複数形成されており、主面に対して窪んだ部分を意味する。また、窪みの内部は空洞となっており、窒化物半導体層との界面の間には、空間が形成されている。また、平坦部とは、サファイア基板の主面の平坦な部分を意味する。
 また、凹部の最大開口寸法は、凹部の開口端の開口内側に引くことが可能な直線の最大長さで定義される。例えば凹部の開口端が円形である場合には、円の直径が凹部の最大開口寸法となる。また凹部の開口端が多角形状である場合には、多角形の対角線の最大長さが凹部の最大開口寸法となる。
 凹部の有無、凹部の最大開口寸法及び凹部の分布密度については、サファイア基板の主面を断面透過型電子顕微鏡(TEM)又は平面TEMで観察することによって、観察又は測定することができる。
 なお、この場合には、断面図中に存在する凹部の横方向、つまり、サファイア基板の主面に平行な方向に延びる凹部の長さを凹部の最大開口寸法として定義する。
 また、この場合、分布密度については、平面TEM測定から観測される凹部の個数を測定面積で除したものの平均値、または断面TEM測定から断面中の凹部の個数を測定範囲及び測定試料奥行長さで除した値のうち、密度の多い方を分布密度とし、5断面の平均値を、サファイア基板の凹部の分布密度として定義する。
 また、凹部の深さは5nm以上50nm以下であることが好ましい。これにより、サファイア基板の主面上に窒化物半導体層を形成する際に、初期の段階で形成される窒化物半導体層部分への転位集中の度合いをさらに高め、その後に形成される窒化物半導体層部分の結晶性がさらに向上する。ここで、凹部の深さとは、凹部の、開口端を含む面に垂直な方向の最大深さを意味する。凹部の深さは、前述の断面透過型電子顕微鏡(TEM)により測定が可能である。
 また、凹部の底面の最大寸法(T)は凹部の最大開口寸法(K)の1/10以下、つまり、T/K≦0.1であることが好ましい。
 これにより、サファイア基板の主面上に窒化物半導体層を形成する際に、初期の段階で形成される窒化物半導体層部分への転位集中の度合いをさらに高め、その後に形成される窒化物半導体層部分の結晶性がさらに向上する。
 ここで、凹部の底面とは、凹部の開口端から最も深い位置にあり、サファイア基板の主面に対して略平行な面を意味する。また、底面の最大寸法とは、凹部の最大開口寸法と同じく、底面の内側に引くことが可能な直線の最大長さで定義される。凹部の開口端から最も深い位置にサファイア基板の主面に対して平行な面が存在しない場合、つまり例えば凹部の先端が尖っている場合や、凹部の底面がサファイア基板の主面に対して傾斜している場合等には、底面の最大寸法は零とする。
<窒化物半導体層>
 窒化物半導体層は、前述のサファイア基板の主面上に形成され、Alを含む層である。また、窒化物半導体層のサファイア基板の凹部上の部分はIII族元素の極性面に沿った成長で生じた結晶構造(以下、「III族極性面の部分」、「III族極性面」とも称する)を有し、窒化物半導体層のサファイア基板側の面のうち、凹部の直上の面と、平坦部面に接触する面との高さの差が10nm以下である。
 ここで、窒化物半導体層の凹部上の部分がIII族極性面であることの確認方法は、以下の通りである。
 まず、窒化物半導体基板を、80℃に加熱された50wt%のKOH溶液に10分浸漬する。その後、KOH溶液から取り出した窒化物半導体基板の窒化物半導体層の表面を、走査型電子顕微鏡(SEM)や原子間力顕微鏡(AFM)で観察し、窒化物半導体基板の断面を断面透過型電子顕微鏡(TEM)により観察する。
 窒化物半導体層のV族極性面の部分は、III族極性面の部分と比べてKOH溶液に対するエッチングレートが早いため、窒化物半導体基板をKOH溶液に浸漬させると、窒化物半導体層のV族極性面の部分が大きくエッチングされることとなる。
 窒化物半導体層の極性面は、III族極性面か、V族極性面のいずれかとなるため、上記の条件を用いて窒化物半導体層の表面を観察することで、KOH溶液でエッチングされていない部分が、窒化物半導体層のIII族極性面であると確認することができる。
 そして、窒化物半導体基板の断面を断面透過型電子顕微鏡(TEM)により観察することにより、窒化物半導体層のうち、サファイア基板の凹部上の部分がIII族極性面であることを確認することができる。ここでは、5断面を観察し、凹部上の部分の9割以上がIII族極性面である場合に、「窒化物半導体層の凹部上の部分がIII族極性面である」とする。
 また、窒化物半導体基板の表面(サファイア基板とは反対側の面)に窒化物半導体層以外の層が形成されている場合は、表面を物理的に研削研磨し、窒化物半導体層を露出させることで、上記のKOH溶液による判別が可能となる。
 また、「窒化物半導体層のサファイア基板側の面のうち、凹部の直上の面と平坦面に接触する面との高さの差」が10nm以下であることは、断面透過型電子顕微鏡(TEM)による観察より確認が可能である。
 ここでは、窒化物半導体基板の断面を5断面で「窒化物半導体層のサファイア基板側の面のうち、凹部の直上の面と平坦面に接触する面との高さの差」を観察し、その平均値を「窒化物半導体層のサファイア基板側の面のうち、凹部の直上の面と平坦面に接触する面との高さの差」とする。
 窒化物半導体層の材料としては、Alを含むIII族元素と窒素との化合物であれば特に限定されないが、AlN、AlGaN、AlInN等が例示できる。
 窒化物半導体層がAlを含むことは、蛍光X線元素分析法(XRF)、ラザフォード後方散乱分光(RBS)、二次イオン質量測定SIMSおよびX線光電子分光(XPS)により確認することが可能である。
 Al原料としては、例えば、トリメチルアルミニウム(TMAl)を用いることができる。Ga原料としては、例えば、トリメチルガリウム(TMGa)やトリエチルガリウム(TEGa)を用いることができる。またN原料としては例えば、アンモニア(NH3)を用いることができる。In原料としては、例えば、トリメチルインジウム(TMIn)を用いることができる。
 また、窒化物半導体層の結晶性が、(0002)面において45arcsec以上70arcsec以下であり、(10-12)面において240arcsec以上290arcsec以下であることが好ましい。これにより、窒化物半導体層の上に形成する層の結晶性を向上させることが可能となる。ここで、窒化物半導体層の結晶性については、X線ロッキングカーブ法(ωスキャン)により評価することが可能である。
 また、窒化物半導体層の表面の二乗平均平方根粗さ(Rq)が0.15nm以上1nm以下であることが好ましい。これにより、窒化物半導体層の上に形成する層の結晶性を向上させることが可能となる。ここで、窒化物半導体層の表面の二乗平均平方根粗さ(Rq)は、AFM(Atomic Force Microscope)用いて測定することが可能である。AFMの測定範囲は例えば一辺が4μmの正方形とする。
 また、窒化物半導体層の平坦部上の部分はIII 族極性面であることが好ましい。これにより、窒化物半導体層の表面平坦性をさらに向上させることが可能となる。
<紫外線発光素子>
 この実施形態の紫外線発光素子は、上述した実施形態の窒化物半導体基板を備える。
 この実施形態の紫外線発光素子は、窒化物半導体層の主成分がAlNである窒化物半導体基板と、窒化物半導体層上に形成された窒化物半導体積層部であって、窒化物半導体層側から、n型窒化物半導体層、発光層、およびp型窒化物半導体層を、この順に有する窒化物半導体積層部と、を備える。
 窒化物半導体層が、本実施形態に係るサファイア基板上に形成されたAlN層であることで、この窒化物半導体層の上に結晶性の良好な窒化物半導体積層部を形成することができる。従って、本発明の窒化物半導体基板を利用することで、発光効率の優れた紫外線発光素子を得ることができる。窒化物半導体積層部の形成方法の一例としては、有機金属堆積法(MOCVD法)を用いることが可能である。
<紫外線発光装置>
 この実施形態の紫外線発光素子は、各種の装置に適用することができる。例えば、紫外線ランプが用いられている既存の全ての装置に適用することができ、用いられている紫外線ランプと置き換えることができる。特に、波長300nm以下の深紫外線を用いている装置に適用することができる。
 また、例えば、医療及びライフサイエンス分野、環境分野、産業及び工業分野、生活及び家電分野、農業分野、その他分野の装置に適用することができる。
 さらに、薬品や化学物質の合成・分解装置、液体・気体・固体(容器、食品、医療機器等)殺菌装置、半導体等の洗浄装置、フィルム・ガラス・金属等の表面改質装置、半導体・フラットパネルディスプレイ(FPD)・プリント基板(PCB)・その他電子品製造用の露光装置、印刷・コーティング装置、接着・シール装置、フィルム・パターン・モックアップ等の転写・成形装置、紙幣・傷・血液・化学物質等の測定・検査装置に適用可能である。
 液体殺菌装置の例としては、冷蔵庫内の自動製氷装置・製氷皿及び貯氷容器・製氷機用の給水タンク、冷凍庫、製氷機、加湿器、除湿器、ウォーターサーバの冷水タンク・温水タンク・流路配管、据置型浄水器、携帯型浄水器、給水器、給湯器、排水処理装置、ディスポーザ、便器の排水トラップ、洗濯機、透析用水殺菌モジュール、腹膜透析のコネクタ殺菌器、災害用貯水システム等が挙げられるがこの限りではない。
 気体殺菌装置の例としては、空気清浄器、エアコン、天井扇、床面用や寝具用の掃除機、布団乾燥機、靴乾燥機、洗濯機、衣類乾燥機、室内殺菌灯、保管庫の換気システム、靴箱、タンス等が挙げられるがこの限りではない。
 固体殺菌装置(表面殺菌装置を含む)の例としては、真空パック器、ベルトコンベヤ、医科用・歯科用・床屋用・美容院用のハンドツール殺菌装置、歯ブラシ、歯ブラシ入れ、箸箱、化粧ポーチ、排水溝のふた、便器の局部洗浄器、便器フタ等が挙げられるがこの限りではない。
<紫外線受光素子>
 この実施形態の紫外線受光素子は、上述した実施形態の窒化物半導体基板を備える。
 この実施形態の紫外線受光素子は、窒化物半導体層の主成分がAlNである窒化物半導体基板と、窒化物半導体層上に形成され、AlおよびGaを含む第一の窒化物半導体層と、前記第一の窒化物半導体層上に形成され、AlおよびGaを含み、Al含有率が前記第一の窒化物半導体層よりも多い第二の窒化物半導体層と、第二の窒化物半導体層上に形成された電極対と、を備える。
 窒化物半導体層が、本実施形態に係るサファイア基板上に形成されたAlN層であることで、この窒化物半導体層の上に結晶性の良好な第一および第二の窒化物半導体層を形成することができる。従って、本発明の窒化物半導体基板を利用することで、受光効率の優れた紫外線受光素子を得ることができる。第一および第二の窒化物半導体層の形成方法の一例としては、有機金属堆積法(MOCVD法)を用いることが可能である。
<紫外線受光装置>
 この実施形態の紫外線発光素子は、各種の装置に適用することができる。例えば、紫外線センサが用いられている既存の全ての装置に適用することができ、用いられている紫外線センサと置き換えることができる。特に、波長300nm以下の深紫外線を用いている装置に適用することができる。
 適用例としては、炎センサ、一酸化窒素センサ、オゾンセンサ、尿素センサなどが挙げられるが、この限りではない。
 以下、本発明の窒化物半導体基板の実施例及び比較例について説明する。
[実施例1]
 以下の方法で窒化物半導体基板を作製した。
 先ず、サファイア基板の略平坦な主面上に、有機金属堆積法(MOCVD法)でAlN層(凹部形成用膜)を0.3nm成膜した。このときのサファイア基板の表面温度は800℃とした。
 次に、このAlN層(凹部形成用膜)が成膜されたサファイア基板を、1100℃で10分間アニールすることで、主面に最大開口寸法が2nm以上60nm以下の凹部を形成した。断面TEMによる測定を行ったところ、凹部の分布密度は3×1010cm-2であった。
 次に、サファイア基板の表面温度を850℃に保った状態で、サファイア基板の凹部形成用膜(AlN層)上に、AlN層(初期層)を3nm、MOCVD法で成膜した。
 次に、サファイア基板の表面温度を1250℃に保った状態で、AlN層(初期層)の上に、AlN層(第一層)を100nm、MOCVD法で成膜した。
 次に、AlN層(第一層)の上に、サファイア基板の表面温度を1100℃に保った状態で、AlN層(第二層)を3500nm、MOCVD法で成膜した。
 上記のMOCVD法による成膜の際には、Al原料としてトリメチルアルミニウム(TMAl)、N原料としてアンモニア(NH3)を用いた。
 得られた窒化物半導体基板について、AlN層の結晶性をX線ロッキングカーブ法(ωスキャン)で評価した結果、(0002)面においてFWHM=50arcsec、(10-12)面においてFWHM=250arcsecを得た。この評価は、(株)リガクの全自動水平型多目的X線回折装置「SmartLab」を用いて行った。
 また、AFMにより、得られた窒化物半導体基板の表面(AlN層)の二乗平均平方根粗さ(Rq)を測定したところ、0.5nmであった。この測定は、AFMとして、エスアイアイ・ナノテクノロジー(株)製の「Nanocute」を用い、一辺が4μmの正方形を測定範囲とし、oper-ated in the noncontact modeで行った。
 また、得られた窒化物半導体基板の表面(AlN層)を80℃のKOH溶液(50wt%)に10分間浸漬させた後に、断面TEMで観察した。その結果、凹部直上のAlN層はほぼエッチングされず、AlN層の凹部の直上の部分はAl極性面(III族極性面)に沿って結晶成長していることが確認された。さらに、AlN層の平坦部の直上の部分もAl極性面(III族極性面)に沿って結晶成長していることが確認された。
 また、断面TEMで観察したところ、ΔH(AlN層のサファイア基板側の面のうち、凹部の直上の面と平坦面に接触する面との高さの差)は3.0nmであった。
[実施例2]
 凹部形成用膜の膜厚を4nmとした以外は、上記の実施例1と同じ方法で窒化物半導体基板を作製した。
 凹部形成用膜(AlN層)が成膜されたサファイア基板について、断面TEMによる測定を行ったところ、凹部の分布密度は5×1010cm-2であった。
 得られた窒化物半導体基板について、AlN層の結晶性をX線ロッキングカーブ法(ωスキャン)により評価した結果、(0002)面においてFWHM=60arcsec、(10-12)面においてFWHM=270arcsecを得た。
 また、AFMにより、得られた窒化物半導体基板の表面(AlN層)の二乗平均平方根粗さ(Rq)を測定したところ、0.5nmであった。
 また、得られた窒化物半導体基板の表面(AlN層)を80℃のKOH溶液(50wt%)に10分間浸漬させた後に、断面TEMで観察した。その結果、凹部直上のAlN層はほぼエッチングされず、AlN層の凹部の直上の部分はAl極性面(III族極性面)に沿って結晶成長していることが確認された。さらに、AlN層の平坦部の直上の部分もAl極性面(III族極性面)に沿って結晶成長していることが確認された。
 また、断面TEMで観察したところ、ΔH(AlN層のサファイア基板側の面のうち、凹部の直上の面と平坦面に接触する面との高さの差)は3.0nmであった。
[実施例3]
 凹部形成用膜の膜厚を10nmとした以外は、上記の実施例1と同じ方法で窒化物半導体基板を作製した。
 凹部形成用膜(AlN層)が成膜されたサファイア基板について、断面TEMによる測定を行ったところ、凹部の分布密度は8×1010cm-2であった。
 得られた窒化物半導体基板について、AlN層の結晶性をX線ロッキングカーブ法(ωスキャン)により評価した結果、(0002)面においてFWHM=70arcsec、(10-12)面においてFWHM=290arcsecを得た。
 また、AFMにより、得られた窒化物半導体基板の表面(AlN層)の二乗平均平方根粗さ(Rq)を測定したところ、0.8nmであった。
 また、得られた窒化物半導体基板の表面(AlN層)を80℃のKOH溶液(50wt%)に10分間浸漬させた後に、断面TEMで観察した。その結果、凹部直上のAlN層はほぼエッチングされず、AlN層の凹部の直上の部分はAl極性面(III族極性面)に沿って結晶成長していることが確認された。さらに、AlN層の平坦部の直上の部分もAl極性面(III族極性面)に沿って結晶成長していることが確認された。
 また、断面TEMで観察したところ、ΔH(AlN層のサファイア基板側の面のうち、凹部の直上の面と平坦面に接触する面との高さの差)は3.5nmであった。
[実施例4]
 アニールの時間を20分間とした以外は、上記の実施例1と同じ方法で窒化物半導体基板を作製した。
 凹部形成用膜(AlN層)が成膜されたサファイア基板について、断面TEMによる測定を行ったところ、凹部の分布密度は3×1010cm-2であった。
 得られた窒化物半導体基板について、AlN層の結晶性をX線ロッキングカーブ法(ωスキャン)により評価した結果、(0002)面においてFWHM=45arcsec、(10-12)面においてFWHM=245arcsecを得た。
 また、AFMにより、得られた窒化物半導体基板の表面(AlN層)の二乗平均平方根粗さ(Rq)を測定したところ、0.3nmであった。
 また、得られた窒化物半導体基板の表面(AlN層)を80℃のKOH溶液(50wt%)に10分間浸漬させた後に、断面TEMで観察した。その結果、凹部直上のAlN層はほぼエッチングされず、AlN層の凹部の直上の部分はAl極性面(III族極性面)に沿って結晶成長していることが確認された。さらに、AlN層の平坦部の直上の部分もAl極性面(III族極性面)に沿って結晶成長していることが確認された。
 また、断面TEMで観察したところ、ΔH(AlN層のサファイア基板側の面のうち、凹部の直上の面と平坦面に接触する面との高さの差)は2.5nmであった。
[実施例5]
 アニールの時間を5分間とした以外は、上記の実施例1と同じ方法で窒化物半導体基板を作製した。
 凹部形成用膜(AlN層)が成膜されたサファイア基板について、断面TEMによる測定を行ったところ、凹部の分布密度は3×1010cm-2であった。
 得られた窒化物半導体基板について、AlN層の結晶性をX線ロッキングカーブ法(ωスキャン)により評価した結果、(0002)面においてFWHM=45arcsec、(10-12)面においてFWHM=240arcsecを得た。
 また、AFMにより、得られた窒化物半導体基板の表面(AlN層)の二乗平均平方根粗さ(Rq)を測定したところ、0.2nmであった。
 また、得られた窒化物半導体基板の表面(AlN層)を80℃のKOH溶液(50wt%)に10分間浸漬させた後に、断面TEMで観察した。その結果、凹部直上のAlN層はほぼエッチングされず、AlN層の凹部の直上の部分はAl極性面(III族極性面)に沿って結晶成長していることが確認された。さらに、AlN層の平坦部の直上の部分もAl極性面(III族極性面)に沿って結晶成長していることが確認された。
 また、断面TEMで観察したところ、ΔH(AlN層のサファイア基板側の面のうち、凹部の直上の面と平坦面に接触する面との高さの差)は3.0nmであった。
[比較例1]
 凹部形成用膜を形成しなかった以外は、上記の実施例1と同じ方法で窒化物半導体基板を作製した。
 得られた窒化物半導体基板について、断面TEM測定を実施したところ、サファイアとAlN層の界面に凹部は存在しなかった。
 得られた窒化物半導体基板について、AlN層の結晶性をX線ロッキングカーブ法(ωスキャン)により評価した結果、(0002)面においてFWHM=350arcsec、(10-12)面においてFWHM=850arcsecを得た。
 また、AFMにより、得られた窒化物半導体の表面(AlN層)の二乗平均平方根粗さ(Rq)を測定したところ、3.3nmであった。
[比較例2]
 アニールの時間を2分間とした以外は、上記の実施例1と同じ方法で窒化物半導体基板を作製した。
 凹部形成用膜(AlN層)が成膜されたサファイア基板について、断面TEMによる測定を行ったところ、凹部の分布密度は4×107cm-2であった。
 AlN層の結晶性をX線ロッキングカーブ法(ωスキャン)により評価した結果、(0002)面においてFWHM=280arcsec、(10-12)面においてFWHM=700arcsecを得た。また、AFMにより、得られた窒化物半導体の表面(AlN層)の二乗平均平方根粗さ(Rq)を測定したところ、2.3nmであった。
 また、得られた窒化物半導体基板の表面(AlN層)を80℃のKOH溶液(50wt%)に10分間浸漬させた後に、断面TEMで観察した。その結果、凹部直上のAlN層はほぼエッチングされず、AlN層の凹部の直上の部分はAl極性面(III族極性面)に沿って結晶成長していることが確認された。さらに、AlN層の平坦部の直上の部分もAl極性面(III族極性面)に沿って結晶成長していることが確認された。
 また、断面TEMで観察したところ、ΔH(AlN層のサファイア基板側の面のうち、凹部の直上の面と平坦面に接触する面との高さの差)は3.0nmであった。
[比較例3]
 凹部が形成されたサファイア基板上に、サファイア基板の表面温度を850℃に保った状態で、NH3を30秒間照射した後に、AlN層(初期層)を3nm、MOCVD法で成膜した。これ以外の点は実施例1と同じ方法で窒化物半導体基板を作製した。
 凹部形成用膜(AlN層)が成膜されたサファイア基板について、断面TEMによる測定を行ったところ、凹部の分布密度は3×1010cm-2であった。
 AlN層の結晶性をX線ロッキングカーブ法(ωスキャン)により評価した結果、(0002)面においてFWHM=235arcsec、(10-12)面においてFWHM=430arcsecを得た。また、AFMにより成膜後の表面の二乗平均平方根粗さ(Rq)を測定したところ、3.1nmであった。
 また、成膜後の表面は複数の六角形のピラー状構造が確認された。このAlN層を80℃のKOH溶液(50wt%)に10分間浸漬させ、表面SEMを観察したところ、前述の六角形ピラー部はエッチングされたことを確認した。その六角形にエッチングされた個所を断面TEMで観察したところ、凹部の直上の部分に形成されており、AlN層の凹部の直上の部分はN極性面(V族極性面)に沿って結晶成長していることが確認された。
 また、断面TEMで観察したところ、ΔH(AlN層のサファイア基板側の面のうち、凹部の直上の面と平坦面に接触する面との高さの差)は3.1nmであった。
[比較例4]
 第一層の形成温度を1050℃とした以外は、上記の実施例1と同じ方法で窒化物半導体基板を作製した。
 凹部形成用膜(AlN層)が成膜されたサファイア基板について、断面TEMによる測定を行ったところ、凹部の分布密度は3×1010cm-2であった。
 得られた窒化物半導体基板について、AlN層の結晶性をX線ロッキングカーブ法(ωスキャン)により評価した結果、(0002)面においてFWHM=90arcsec、(10-12)面においてFWHM=330arcsecを得た。
 また、AFMにより、得られた窒化物半導体基板の表面(AlN層)の二乗平均平方根粗さ(Rq)を測定したところ、2.2nmであった。
 また、得られた窒化物半導体基板の表面(AlN層)を80℃のKOH溶液(50wt%)に10分間浸漬させた後に、断面TEMで観察した。その結果、凹部直上のAlN層はほぼエッチングされず、AlN層の凹部の直上の部分はAl極性面(III族極性面)に沿って結晶成長していることが確認された。さらに、AlN層の平坦部の直上の部分もAl極性面(III族極性面)に沿って結晶成長していることが確認された。
 また、断面TEMで観察したところ、ΔH(AlN層のサファイア基板側の面のうち、凹部の直上の面と平坦面に接触する面との高さの差)は15.0nmであった。
[比較例5]
 凹部形成用膜の形成温度を750℃、膜厚を1.0nmとし、アニール温度を1300℃とした以外は、上記の実施例1と同じ方法で窒化物半導体基板を作製した。
 凹部形成用膜(AlN層)が成膜されたサファイア基板について、断面TEMによる測定を行ったところ、凹部の分布密度は3×1012cm-2であった。
 得られた窒化物半導体基板について、AlN層の結晶性をX線ロッキングカーブ法(ωスキャン)により評価した結果、(0002)面においてFWHM=160arcsec、(10-12)面においてFWHM=520arcsecを得た。
 また、AFMにより、得られた窒化物半導体基板の表面(AlN層)の二乗平均平方根粗さ(Rq)を測定したところ、3.5nmであった。
 また、得られた窒化物半導体基板の表面(AlN層)を80℃のKOH溶液(50wt%)に10分間浸漬させた後に、断面TEMで観察した。その結果、凹部直上のAlN層はほぼエッチングされず、AlN層の凹部の直上の部分はAl極性面(III族極性面)に沿って結晶成長していることが確認された。さらに、AlN層の平坦部の直上の部分もAl極性面(III族極性面)に沿って結晶成長していることが確認された。
 また、断面TEMで観察したところ、ΔH(AlN層のサファイア基板側の面のうち、凹部の直上の面と平坦面に接触する面との高さの差)は2.5nmであった。
[比較例6]
 凹部形成用膜の形成温度を770℃、膜厚を0.7nmとし、アニール温度を1300℃とした以外は、上記の実施例1と同じ方法で窒化物半導体基板を作製した。
 凹部形成用膜(AlN層)が成膜されたサファイア基板について、断面TEMによる測定を行ったところ、凹部の分布密度は3×1011cm-2であった。
 得られた窒化物半導体基板について、AlN層の結晶性をX線ロッキングカーブ法(ωスキャン)により評価した結果、(0002)面においてFWHM=140arcsec、(10-12)面においてFWHM=440arcsecを得た。
 また、AFMにより、得られた窒化物半導体基板の表面(AlN層)の二乗平均平方根粗さ(Rq)を測定したところ、2.7nmであった。
 また、得られた窒化物半導体基板の表面(AlN層)を80℃のKOH溶液(50wt%)に10分間浸漬させた後に、断面TEMで観察した。その結果、凹部直上のAlN層はほぼエッチングされず、AlN層の凹部の直上の部分はAl極性面(III 族極性面)に沿って結晶成長していることが確認された。さらに、AlN層の平坦部の直上の部分もAl極性面(III 族極性面)に沿って結晶成長していることが確認された。
 また、断面TEMで観察したところ、ΔH(AlN層のサファイア基板側の面のうち、凹部の直上の面と平坦面に接触する面との高さの差)は3.5nmであった。
[比較例7]
 アニール温度を1050℃とした以外は、上記の実施例1と同じ方法で窒化物半導体基板を作製した。
 凹部形成用膜(AlN層)が成膜されたサファイア基板について、断面TEMによる測定を行ったところ、凹部の分布密度は6×108cm-2であった。
 得られた窒化物半導体基板について、AlN層の結晶性をX線ロッキングカーブ法(ωスキャン)により評価した結果、(0002)面においてFWHM=230arcsec、(10-12)面においてFWHM=610arcsecを得た。
 また、AFMにより、得られた窒化物半導体基板の表面(AlN層)の二乗平均平方根粗さ(Rq)を測定したところ、2.5nmであった。
 また、得られた窒化物半導体基板の表面(AlN層)を80℃のKOH溶液(50wt%)に10分間浸漬させた後に、断面TEMで観察した。その結果、凹部直上のAlN層はほぼエッチングされず、AlN層の凹部の直上の部分はAl極性面(III族極性面)に沿って結晶成長していることが確認された。さらに、AlN層の平坦部の直上の部分もAl極性面(III族極性面)に沿って結晶成長していることが確認された。
 また、断面TEMで観察したところ、ΔH(AlN層のサファイア基板側の面のうち、凹部の直上の面と平坦面に接触する面との高さの差)は3.0nmであった。
 これらの結果を表1にまとめた。表1では、本発明の態様から外れる構成に下線を施した。
Figure JPOXMLDOC01-appb-T000001
 表1から以下のことが分かる。
 実施例1~5の窒化物半導体基板では、AlN層の結晶性が(0002)面において45arcsec以上70arcsec以下の範囲内であり、(10-12)面において240arcsec以上290arcsec以下の範囲内となっているが、比較例1~7の窒化物半導体基板では、AlN層の結晶性がこれらの範囲外となっている。
 実施例1~5の窒化物半導体基板では、表面(窒化物半導体層のサファイア基板とは反対側の面)の二乗平均平方根粗さ(Rq)が0.15nm以上1nm以下の範囲内となっているが、比較例1~7の窒化物半導体基板では、Rqがこの範囲外となっている。
 つまり、実施例1~5の窒化物半導体基板では、サファイア基板上に結晶性と表面平坦性に優れた窒化物半導体層が形成されている。
 1 窒化物半導体基板
 2 サファイア基板
 21 サファイア基板の窒化物半導体層が形成されている側の面
 211 凹部
 212 平坦面
 3 窒化物半導体層
 301 窒化物半導体層を構成する凹部形成用膜
 302 窒化物半導体層を構成する初期層
 303 窒化物半導体層を構成する第一層
 304 窒化物半導体層を構成する第二層
 31 窒化物半導体層のサファイア基板側の面
 311 凹部の直上の面
 312 平坦面に接触する面
 32 窒化物半導体層の凹部の上側の部分
 33 窒化物半導体層の表面(サファイア基板とは反対側の面)
 4 凹部と凹部の直上の面とで形成される空間
 ΔH 凹部の直上の面と平坦面に接触する面との高さの差

Claims (12)

  1.  サファイア基板と、前記サファイア基板上に形成され、Alを含むIII族元素および窒素を主成分とする窒化物半導体層と、を備えた窒化物半導体基板であって、
     前記サファイア基板の前記窒化物半導体層が形成されている側の面は、最大開口寸法が2nm以上60nm以下である凹部を、1cm2当たり1×109個以上1×1011個以下の割合で有し、
     前記凹部と、前記窒化物半導体層の前記凹部の直上の面と、で形成される空間を有し、
     前記窒化物半導体層の前記サファイア基板側の面のうち、前記凹部の直上の面と、平坦面に接触する面との高さの差が10nm以下であり、
     前記窒化物半導体層の前記凹部の上側の部分は、前記III族元素の極性面に沿った成長で生じた結晶構造を有する窒化物半導体基板。
  2.  前記サファイア基板の前記窒化物半導体層が形成されている側の面は、最大開口寸法が2nm以上60nm以下である凹部を、1cm2当たり3×109個以上1×1011個以下の割合で有する請求項1記載の窒化物半導体基板。
  3.  前記窒化物半導体層の結晶性が、
     (0002)面において45arcsec以上70arcsec以下であり、
     (10-12)面において240arcsec以上290arcsec以下である請求項1または請求項2に記載の窒化物半導体基板。
  4.  前記窒化物半導体層の前記サファイア基板とは反対側の面の二乗平均平方根粗さ(Rq)が0.15nm以上1nm以下である請求項1から請求項3の何れか一項に記載の窒化物半導体基板。
  5.  前記窒化物半導体層の前記平坦面の上側の部分は、前記III族元素の極性面に沿った成長で生じた結晶構造を有する請求項1から請求項4の何れか一項に記載の窒化物半導体基板。
  6.  前記凹部の深さが5nm以上50nm以下である請求項1から請求項5の何れか一項に記載の窒化物半導体基板。
  7.  前記凹部の底面の最大寸法は前記凹部の最大開口寸法の1/10以下である請求項1から請求項6の何れか一項に記載の窒化物半導体基板。
  8.  請求項1から請求項7の何れか一項に記載の窒化物半導体基板であって、前記窒化物半導体層の主成分がAlNである窒化物半導体基板と、
     前記窒化物半導体層上に形成された窒化物半導体積層部であって、前記窒化物半導体層側から、n型窒化物半導体層、発光層、およびp型窒化物半導体層を、この順に有する窒化物半導体積層部と、
    を備える紫外線発光素子。
  9.  請求項8に記載の紫外線発光素子を備える紫外線発光装置。
  10.  請求項1から請求項7の何れか一項に記載の窒化物半導体基板であって、前記窒化物半導体層の主成分がAlNである窒化物半導体基板と、
     前記窒化物半導体層上に形成され、AlおよびGaを含む第一の窒化物半導体層と、
     前記第一の窒化物半導体層上に形成され、AlおよびGaを含み、Al含有率が前記第一の窒化物半導体層よりも多い第二の窒化物半導体層と、
     前記第二の窒化物半導体層上に形成された電極対と、
    を備える紫外線受光素子。
  11.  請求項10に記載の紫外線受光素子を備える紫外線受光装置。
  12.  サファイア基板上に、Alを含むIII族元素および窒素からなる窒化物半導体を主成分とする厚さ0.1nm以上10nm以下の凹部形成用膜を形成する第一工程と、
     前記第一工程後のサファイア基板を1100℃以上1350℃以下の温度でアニールすることで、前記凹部形成用膜に貫通穴を形成するとともに、前記サファイア基板の前記凹部形成用膜が形成されている面に、最大開口寸法が2nm以上60nm以下である凹部を、1cm2当たり3×109個以上1×1011個以下の割合で形成する第二工程と、
     前記第二工程後の前記サファイア基板の前記凹部形成用膜上に、Alを含むIII族元素および窒素を主成分とする窒化物半導体層を形成する第三工程と、
    を有する窒化物半導体基板の製造方法。
PCT/JP2017/040313 2016-11-08 2017-11-08 窒化物半導体基板とその製造方法 WO2018088441A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/347,928 US10734225B2 (en) 2016-11-08 2017-11-08 Nitride semiconductor substrate and method for manufacturing same
JP2018550233A JP6819969B2 (ja) 2016-11-08 2017-11-08 窒化物半導体基板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-218299 2016-11-08
JP2016218299 2016-11-08

Publications (1)

Publication Number Publication Date
WO2018088441A1 true WO2018088441A1 (ja) 2018-05-17

Family

ID=62110686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040313 WO2018088441A1 (ja) 2016-11-08 2017-11-08 窒化物半導体基板とその製造方法

Country Status (3)

Country Link
US (1) US10734225B2 (ja)
JP (1) JP6819969B2 (ja)
WO (1) WO2018088441A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6727186B2 (ja) * 2017-12-28 2020-07-22 日機装株式会社 窒化物半導体素子の製造方法
US11901484B2 (en) * 2021-06-11 2024-02-13 Applied Materials, Inc. Methods and systems for UV LED structures

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009190960A (ja) * 2008-01-16 2009-08-27 Tokyo Univ Of Agriculture & Technology 積層体およびその製造方法
JP2016064928A (ja) * 2014-09-22 2016-04-28 Dowaエレクトロニクス株式会社 AlNテンプレート基板およびその製造方法
JP2016100363A (ja) * 2014-11-18 2016-05-30 日亜化学工業株式会社 窒化物半導体素子及びその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101020961B1 (ko) * 2008-05-02 2011-03-09 엘지이노텍 주식회사 반도체 발광소자 및 그 제조방법
KR20100093872A (ko) * 2009-02-17 2010-08-26 삼성엘이디 주식회사 질화물 반도체 발광소자 및 그 제조방법
JP5230522B2 (ja) 2009-05-14 2013-07-10 株式会社トクヤマ 積層体の製造方法、および該積層体を有する半導体デバイス
JP5813448B2 (ja) * 2011-10-07 2015-11-17 シャープ株式会社 窒化物半導体素子の製造方法
JP2015168594A (ja) 2014-03-06 2015-09-28 日本電信電話株式会社 窒化物半導体の成長方法
WO2015152228A1 (ja) * 2014-03-31 2015-10-08 ウシオ電機株式会社 半導体発光素子、半導体発光素子の製造方法、led素子、電子線励起型光源装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009190960A (ja) * 2008-01-16 2009-08-27 Tokyo Univ Of Agriculture & Technology 積層体およびその製造方法
JP2016064928A (ja) * 2014-09-22 2016-04-28 Dowaエレクトロニクス株式会社 AlNテンプレート基板およびその製造方法
JP2016100363A (ja) * 2014-11-18 2016-05-30 日亜化学工業株式会社 窒化物半導体素子及びその製造方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
HAO, M. ET AL.: "Formation chemistry of high-density nanocraters on the surface of sapphire substrates with an in situ etching and growth mechanism of device-quality GaN films on the etched substrates", APPLIED PHYSICS LETTERS, vol. 84, no. 20, 17 May 2004 (2004-05-17), pages 4041 - 4043, XP012061508, Retrieved from the Internet <URL:https://doi.org/10.1063/1.1751607> *
KUMAGAI, YOSHINAO ET AL.: "Investigation of void formation beneath thin A1N layers by decomposition of sapphire substrates for self-separation of thick A1N layers grown by HVPE", JOURNAL OF CRYSTAL GROWTH, vol. 312, no. 18, 9 April 2010 (2010-04-09), pages 2530 - 2536, XP027184343, Retrieved from the Internet <URL:DOI:10.1016/j.jcrysgro.2010.04.008> *
LI, XIAO-HANG ET AL.: "Growth of high-quality A1N layers on sapphire substrates at relatively low temperatures by metalorganic chemical vapor deposition", PHYSICA STATUS SOLIDI B, vol. 252, no. 5, 21 January 2015 (2015-01-21), pages 1089 - 1095, XP055484321 *
NISHIO, TAKESHI ET AL.: "Annealing in N2-CO of A1N buffer layers on sapphire and high temperature growth of A1N layers by MOVPE", IEICE TECHNICAL REPORT. LASERS AND QUANTUM ELECTRONICS, vol. 113, no. 331, 21 November 2013 (2013-11-21), pages 75 - 78, ISSN: 0913-5685 *
YOSHIKAWA, AKIRA ET AL.: "High-quality A1N film grown onananosizedconcave-convex surface sapphire substrate by metalorganic vapor phase epitaxy", APPLIED PHYSICS LETTERS, vol. 111, no. 16, 16 October 2017 (2017-10-16), pages 162102-1 - 162102-4, XP012222932, Retrieved from the Internet <URL:https://doi.org/10.1063/1.5008258> *

Also Published As

Publication number Publication date
US10734225B2 (en) 2020-08-04
US20190355571A1 (en) 2019-11-21
JP6819969B2 (ja) 2021-01-27
JPWO2018088441A1 (ja) 2019-10-03

Similar Documents

Publication Publication Date Title
JP6819969B2 (ja) 窒化物半導体基板
JP2019110195A (ja) 窒化物半導体発光素子
Demir et al. AlGaN/AlN MOVPE heteroepitaxy: pulsed co-doping SiH4 and TMIn
JP6699063B2 (ja) サファイア基板及び窒化物半導体基板
Park et al. Polarity determination for GaN/AlGaN/GaN heterostructures grown on (0001) sapphire by molecular beam epitaxy
JP6998146B2 (ja) 紫外線発光素子及び紫外線照射モジュール
Moszak et al. Verification of threading dislocations density estimation methods suitable for efficient structural characterization of AlxGa1− xN/GaN heterostructures grown by MOVPE
Tang et al. Coalescence overgrowth of GaN nano-columns with metalorganic chemical vapor deposition
JP2006240895A (ja) アルミニウム系窒化物結晶の製造方法および積層基板
WO2023163230A1 (ja) レーザダイオード
JP2020167321A (ja) 窒化物半導体発光素子
JP6813308B2 (ja) 紫外線発光素子及び紫外線照射モジュール
JP7388859B2 (ja) 窒化物半導体素子
JP2020068283A (ja) 受発光装置
JP7492885B2 (ja) 紫外線発光素子
WO2024047917A1 (ja) レーザダイオード
JP7141803B2 (ja) 窒化物半導体素子
JP7489269B2 (ja) 紫外線発光素子
JP2023141196A (ja) 発光素子の製造方法および発光素子
JP7470607B2 (ja) 窒化物半導体素子
JP2021057528A (ja) 紫外線発光素子
JP2017168640A (ja) 紫外線発光素子
Fang et al. Crack‐free GaN grown by using maskless epitaxial lateral overgrowth on Si substrate with thin SiC intermediate layer
JP2023127193A (ja) 紫外線発光素子
JP2023125769A (ja) レーザダイオード

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17869907

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018550233

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17869907

Country of ref document: EP

Kind code of ref document: A1