WO2018084474A1 - 나노입자 집중 장치 및 그의 구동 방법 - Google Patents

나노입자 집중 장치 및 그의 구동 방법 Download PDF

Info

Publication number
WO2018084474A1
WO2018084474A1 PCT/KR2017/011647 KR2017011647W WO2018084474A1 WO 2018084474 A1 WO2018084474 A1 WO 2018084474A1 KR 2017011647 W KR2017011647 W KR 2017011647W WO 2018084474 A1 WO2018084474 A1 WO 2018084474A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
type
magnetic
nanoparticle
concentrator
Prior art date
Application number
PCT/KR2017/011647
Other languages
English (en)
French (fr)
Inventor
이용흠
Original Assignee
연세대학교 원주산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 원주산학협력단 filed Critical 연세대학교 원주산학협력단
Publication of WO2018084474A1 publication Critical patent/WO2018084474A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0069Devices for implanting pellets, e.g. markers or solid medicaments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N2/00Magnetotherapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N2/00Magnetotherapy
    • A61N2/004Magnetotherapy specially adapted for a specific therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N2/00Magnetotherapy
    • A61N2/02Magnetotherapy using magnetic fields produced by coils, including single turn loops or electromagnets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/02Radiation therapy using microwaves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/02Radiation therapy using microwaves
    • A61N5/022Apparatus adapted for a specific treatment
    • A61N5/025Warming the body, e.g. hyperthermia treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M2037/0007Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin having means for enhancing the permeation of substances through the epidermis, e.g. using suction or depression, electric or magnetic fields, sound waves or chemical agents

Definitions

  • the present application relates to a nanoparticle concentrator and a driving method thereof.
  • the user's body should be administered with substantially more amount of anticancer agent than the amount of anticancer agent that is needed where the cancer occurred due to the human blood circulation. If the anticancer drug is administered to the human body more than necessary, it adversely affects other tissues and organs, causing a number of side effects, such as nausea, vomiting, hair loss, infection, fatigue, anemia, bleeding, diarrhea, skin and nails. There is discoloration, a heat phenomenon.
  • DDS drug delivery systems
  • a drug delivery system is a system that improves administration techniques and formulations and controls the in vivo transport of drugs to increase the stability, effectiveness or reliability of the drug to the living body, which selectively delivers the minimum amount of drug required to the site of action. It is also desired to administer so that the desired concentration is maintained.
  • One of the various methods of implementing a drug delivery system is the use of nanoparticles, which injects drugs into nanoparticles attracted to a magnet, and induces a substance to a desired lesion using a single magnet. to be.
  • the ratio of inducing a substance to a desired position in the human body is extremely low, which lowers the targeting efficiency of the drug.
  • the conventional method is only capable of inducing the substance only in the affected part of the skin surface, there is a problem that does not induce the substance to the organs existing in the deep (deep) in the human body. Therefore, it is effective in the treatment of diseases such as skin cancer present on the skin surface, but the effect is less effective in the treatment of diseases occurring in the deep inside of the human body.
  • the present invention is to solve the above-mentioned problems of the prior art, to provide a nanoparticle concentrating device and a driving method thereof that can significantly increase the rate of drug induction by concentrating the nanoparticles in the affected area to maximize the drug treatment effect
  • a nanoparticle concentrating device and a driving method thereof that can significantly increase the rate of drug induction by concentrating the nanoparticles in the affected area to maximize the drug treatment effect
  • the present application is to solve the above-mentioned problems of the prior art, and to provide a nanoparticle concentrating device and a driving method thereof capable of conducting heat to the nanoparticles concentrated on the affected area to suppress the proliferation of cancer cells and necrosis the cancer cells. do.
  • the nanoparticle concentrator according to an embodiment of the present application, at least one magnetic field generating unit for generating a magnetic field, at least one magnetic material magnetized by the magnetic field and the magnetic field generation And a control unit configured to generate a control signal for controlling a negative operation, wherein the magnetic body may concentrate nanoparticles including a drug introduced into a living body as magnetized by the magnetic field to affected areas in the region of the magnetic field.
  • the controller may control at least one of the strength, frequency, time, and pattern of the magnetic field as a type of the magnetic field generated from the magnetic field generator.
  • controller may control the type of the magnetic field to concentrate the nanoparticles or conduct heat to the nanoparticles.
  • the control unit controls the frequency of the magnetic field to any one of 100 kHz to 300 kHz, and the magnetic material is magnetized or demagnetized by a magnetic field having any one of the frequencies of 100 kHz to 300 kHz to generate heat. It can conduct heat to nanoparticles.
  • the nanoparticle concentrator further comprises a sensor unit for measuring the number of nanoparticles concentrated on the affected part, the control unit, whether the number of nanoparticles concentrated on the affected part exceeds a predetermined criterion Depending on whether or not the type of the magnetic field can be changed from the first type to the second type.
  • the control unit may control the type of the magnetic field to a frequency of 30 Hz or less as a first type to concentrate the nanoparticles, and when it is determined that the number of nanoparticles concentrated on the affected part exceeds a predetermined criterion.
  • the type of the magnetic field is controlled as a second type at a frequency between 100 kHz and 300 kHz, and the magnetic material is magnetized or demagnetized by a magnetic field having the frequency of the second type to generate heat to heat the nanoparticles. I can evangelize.
  • the control unit may control the type of the magnetic field to a frequency of 30 Hz or less as a first type for a preset first time to concentrate the nanoparticles, and set a second preset time after the first time has elapsed. While the type of the magnetic field is controlled to a frequency between 100 kHz and 300 kHz as a second type, and the magnetic material is magnetized or demagnetized by a magnetic field having a frequency of the second type to generate heat to the nanoparticles. Can evangelize.
  • the magnetic body may be located in the affected part by being located in the magnetic field generating part or by at least one of attachment, insertion, and implantation.
  • the magnetic body located in the magnetic field generating unit may include a magnetic needle and a spherical magnetic body coupled to the end of the magnetic needle.
  • the magnetic field generating unit may include a magnetic field core having a through hole and a coil wound around the magnetic field core, and the magnetic material may be positioned through the through hole.
  • the magnetic body may be a spherical magnetic body.
  • the controller may change the frequency of the magnetic field at predetermined time intervals.
  • the controller may control different types of magnetic fields generated from each of the plurality of magnetic field generators.
  • the magnetic field generating unit may generate a pulsed electro-magnetic field (PEMF).
  • PEMF pulsed electro-magnetic field
  • the magnetic field generating unit may include a first magnetic field generating unit, a second magnetic field generating unit, and a third magnetic field generating unit, and the first magnetic field generating unit, the second magnetic field generating unit, and the third magnetic field generating unit respectively generate a magnetic field. It can be arranged at a triangular angle so that the regions of cross each other.
  • the driving method of the nanoparticle concentrator includes generating a magnetic field control signal, generating a magnetic field based on the magnetic field control signal and magnetizing the magnetic body by the magnetic field can do.
  • the generating of the magnetic field control signal may include: (a) generating a control signal for controlling the type of the magnetic field at a frequency of 30 Hz or less as a first type, and (b) the magnetic field after the step (a). Generating a control signal for controlling the type of to be a frequency between 100 kHz and 300 kHz as a second type, wherein the method for driving the nanoparticle concentrator is provided from a magnetic material magnetized by the magnetic field of the second type. The method may further include generating heat.
  • the magnetic material is magnetized by the magnetic field, by concentrating the nanoparticles containing the drug introduced into the living body in the affected area in the magnetic field region, the rate at which the drug is induced (targeting ratio) is significantly increased. It is effective to maximize the drug treatment effect.
  • FIG. 1 is a schematic block diagram of a nanoparticle concentrator according to an embodiment of the present disclosure.
  • FIG. 2A is a view schematically illustrating a configuration of a magnetic field generator according to a first embodiment in a nanoparticle concentrator according to an embodiment of the present disclosure.
  • Figure 2b is a view showing the configuration of a magnetic body in the nanoparticle concentrator according to an embodiment of the present application.
  • FIG 3 is a view schematically showing the configuration of the magnetic field generating unit according to the second embodiment in the nanoparticle concentrator according to the embodiment of the present application.
  • FIG. 4 is a view showing an example of the magnetic field stimulation mode method in the nanoparticle concentrator according to an embodiment of the present application.
  • FIG. 5 is a view showing a concentrated mode and a heating mode in the nanoparticle concentrator according to an embodiment of the present application.
  • FIG. 6 is a view showing the configuration of a plurality of magnetic field generating unit in the nanoparticle concentrator according to an embodiment of the present application.
  • FIG. 7 is a view showing another configuration of the plurality of magnetic field generating unit in the nanoparticle concentrator according to an embodiment of the present application.
  • FIG. 8 is a schematic operation flowchart of a method of driving a nanoparticle concentrator according to an embodiment of the present application.
  • the present application focuses nanoparticles including drugs introduced into a living body to the affected area, and controls the type of magnetic field to differently control the type of magnetic field to conduct heat to the concentrated nanoparticles, thereby inhibiting the proliferation of cancer cells and necrotic cancer cells. And a driving method thereof.
  • FIG. 1 is a schematic block diagram of a nanoparticle concentrator according to an embodiment of the present disclosure.
  • the nanoparticle concentrator 100 may include a magnetic field generator 110, a magnetic body 120, and a controller 130.
  • the magnetic field generator 110 may generate a magnetic field based on a control signal from the controller 130, and the nanoparticle concentrator 100 may include at least one magnetic field generator 110.
  • the magnetic field generated from the magnetic field generating unit 110 may be a pulsed electro-magnetic field (PEMF).
  • PEMF pulsed electro-magnetic field
  • the magnetic body 120 may be magnetized by a magnetic field generated from the magnetic field generator 110, and the nanoparticle concentrator 100 may include at least one magnetic body 120.
  • the nanoparticles containing the drug introduced into the user's body (or living body) 1 concentrate on the affected part in the magnetic field s region. You can. A more detailed description is as follows.
  • the magnetic field generating unit 110 and the magnetic body 120 may be formed in the shape as shown in FIGS. 2A and 2B according to the first embodiment, or may be formed in the shape as shown in FIG. 3 according to the second embodiment. have.
  • the shapes of the magnetic field generating unit 110 ′ and the magnetic body 120 ′ according to the first embodiment may be more easily understood with reference to FIGS. 2A and 2B.
  • FIG. 2A is a view schematically showing the configuration of the magnetic field generating unit 110 ′ according to the first embodiment in the nanoparticle concentrator 100 according to an embodiment of the present disclosure, and FIG. In the nanoparticle concentrator 100, the magnetic body 120 ′ according to the first embodiment is illustrated.
  • the magnetic field generating unit 110 ′ may include a magnetic field core having a through hole 110a formed at a central portion thereof. 110b) and a coil 110c wound around the magnetic field core 110b.
  • the magnetic field core 110b may be, for example, a cylindrical shape, but is not limited thereto.
  • the coil 110c may be provided in a form wound on the magnetic field core 110b.
  • the magnetic body 120 ′ according to the first embodiment is a magnetic needle 120a and a spherical magnetic body 120b coupled to one end of the magnetic needle 120a. It may include.
  • the spherical magnetic body 120b may be formed with a diameter larger than the diameter of the magnetic needle 120a so that the nanoparticles can be concentrated in the magnetic field region as much as possible, and the term 'diameter' refers to a diameter of a circular shape. Rather than narrowly interpreted, it can be interpreted broadly to mean various widths (widths).
  • the magnetic body 120 ′ according to the first embodiment of the present disclosure is illustrated as having a spherical magnetic body 120b formed in a spherical shape, but is not limited thereto. The shape may be variously modified.
  • the magnetic body 120 ′ may be located in the through hole 110 a of the magnetic field generating unit 110 ′, and a portion of the magnetic needle 120 a passes through the through hole 110 a. can do.
  • the magnetic needle 120a may serve as an injection needle.
  • the spherical magnetic body 120b formed at the end of the magnetic body 120 ′ and a portion of the magnetic body needle 120a may be part of the user's body 1. ) May be inserted as an injection needle.
  • FIG. 2A illustrates an example in which a part of the magnetic body 120 ′ is inserted into the body 1 of the user.
  • the magnetic field region s may be formed in the peripheral region around the spherical magnetic body 120b formed at the end of the magnetic body 120 '.
  • the nanoparticles 2 including the drug introduced into the living body 1 are affected by the affected area, particularly in the magnetic field region s. It can be concentrated in cancerous tissues.
  • the shapes of the magnetic field generating unit 110 ′′ and the magnetic body 120 ′′ according to the second embodiment may be more easily understood with reference to FIG. 3.
  • FIG 3 is a view schematically showing the configuration of the magnetic field generating unit according to the second embodiment in the nanoparticle concentrator according to the embodiment of the present application.
  • the magnetic field generator 110 ′′ according to the second embodiment may be formed in the magnetic field core 110b ′ and the magnetic field core 110b ′. It may include a wound coil (110c ').
  • the magnetic field core 110b 'of the magnetic field generating unit 110' 'according to the second embodiment has a through-hole in the center of the magnetic field core 110b of the magnetic field generating unit 110' according to the first embodiment. It may be missing.
  • the magnetic field core 110b ' may be, for example, a cylindrical shape, but is not limited thereto.
  • the coil 110c ' may be provided in a form wound on the magnetic field core 110b'.
  • the magnetic body 120 ′′ according to the second embodiment may be a spherical magnetic body.
  • the magnetic body 120 ′′ according to the second embodiment may be located at the affected part of the user's body 1 by at least one of attachment, insertion, and implantation. That is, the magnetic body 120 ′′ may be attached to the surface of the user's body 1 or may be inserted or implanted in the user's body 1.
  • the shape of the magnetic body 120 ′′ is illustrated as being spherical, the shape of the magnetic body 120 ′′ is not limited thereto.
  • FIG 3 illustrates a case where the magnetic body 120 ′′ is attached to the surface of the user's body 1 as an example, and generates a magnetic field through the magnetic field generating unit 110 ′′ in this state.
  • a magnetic field region s dl may be formed in the peripheral region around the magnetic body 120 ′′.
  • the magnetic body 120 '' is magnetized by the magnetic field generated from the magnetic field generating unit 110 '' so that the nanoparticles 2 including the drug introduced into the living body 1 may be affected by the affected part in the magnetic field region s. , Especially in cancerous tissues.
  • the controller 130 may generate a control signal for controlling the operation of the magnetic field generator 120.
  • the controller 130 may generate a control signal based on the user input.
  • the magnetic body 120 is nano-containing a drug introduced into the user's body (or living body, 1) as it is magnetized by the magnetic field Particles 2 can be concentrated in the affected area in the magnetic field s region.
  • the controller 130 may control the type of the magnetic field generated from the magnetic field generator 110, and may control at least one of the strength, frequency, time, and pattern of the magnetic field as the type of the magnetic field.
  • controller 130 may control the magnetic field generator 110 to generate the magnetic field stimulus corresponding to the magnetic field stimulation mode information input from the user.
  • the magnetic field stimulation mode can be more easily understood through FIG.
  • FIG. 4 is a view showing an example of the magnetic field stimulation mode method in the nanoparticle concentrator according to an embodiment of the present application.
  • the nanoparticle concentrator 100 may receive magnetic field stimulation mode information from a user.
  • the N pulse stimulation mode, the S pulse stimulation mode, Any one of an alternating stimulation mode of an N pulse and an S pulse, an N pulse continuous stimulation mode, and an S pulse continuous stimulation mode may be input.
  • the control unit 130 is a magnetic field stimulus corresponding to any one of the N pulse stimulation, S pulse stimulation, alternating stimulation of N pulses and S pulses, N pulse continuous stimulation and S pulse continuous stimulation from the magnetic field generating unit 110
  • the magnetic field generating unit 110 may be controlled to be generated.
  • controller 130 may control at least one of the strength, frequency, time, and pattern of the magnetic field as the type of the magnetic field, thereby concentrating the nanoparticles to the affected part or conducting heat to the concentrated nanoparticles. This can be more readily understood with reference to FIG. 5.
  • FIG. 5 is a view showing a concentrated mode and a heating mode in the nanoparticle concentrator according to an embodiment of the present application.
  • the controller 130 controls the type of the magnetic field of the magnetic field generating unit 110 ′ to concentrate the mode of the magnetic field generating unit 110 ′ and concentrate the nanoparticles on the affected area. It can be controlled in the exothermic mode to conduct heat to the nanoparticles.
  • FIG. 5A illustrates the concentrated mode and FIG. 5B illustrates the heating mode.
  • the controller 130 may control the type of the magnetic field of the magnetic field generator 110 ′ at a frequency of 30 Hz or less in order to concentrate the nanoparticles.
  • the controller 130 may control the type of the magnetic field of the magnetic field generator 110 ′ at a high frequency frequency to conduct heat to the concentrated nanoparticles. 130 may be controlled to any one of 100 kHz to 300 kHz as a high frequency. At this time, as the magnetic field having a frequency of any one of 100 kHz to 300 kHz is generated from the magnetic field generating unit 110 ′, the magnetic body 120 ′ may be quickly magnetized or demagnetized to generate heat. Heat generated from the magnetic body 120 ′ ′′ may be transferred to the nanoparticles 2 located in the magnetic field region s. Therefore, in the exothermic mode, heat generated from the exothermic magnetic material 120 ′ ′′ may be transmitted to the nanoparticles 2, thereby necrosing the cancer cells in the cancer tissue or suppressing the proliferation of the cancer cells.
  • the nanoparticle concentrator 100 may include a sensor unit (not shown) for measuring the number of nanoparticles concentrated on the affected part.
  • the sensor unit may count the number of nanoparticles 2 concentrated in the magnetic field region s of the affected part.
  • the nanoparticles may be fluorescent materials, and the sensor unit may include a fluorescent sensor, an image sensor, an infrared sensor, and the like, which are capable of detecting nanoparticles, but are not limited thereto.
  • the controller 130 may control the type of the magnetic field of the magnetic field generator 110 in consideration of the measured value of the number of nanoparticles through the sensor unit.
  • the controller 130 may change the type of the magnetic field of the magnetic field generator 110 from the first type to the second type according to whether the number of nanoparticles concentrated on the affected area exceeds a predetermined criterion.
  • the first type may be a type of concentrated mode in which the frequency of the magnetic field of the magnetic field generator 110 is 30 Hz or less
  • the second type is a frequency in which the frequency of the magnetic field of the magnetic field generator 110 is between 100 kHz and 300 kHz
  • Phosphorus heating mode may be a type, but is not limited thereto.
  • the controller 130 controls the type of the magnetic field of the magnetic field generating unit 110 to a first type having a frequency of 30 Hz or less in order to concentrate the nanoparticles 2 in the affected area or the magnetic field area s, and the affected area or the magnetic field area. If it is determined that the number of nanoparticles concentrated in (s) exceeds a predetermined criterion, the controller 130 may change the type of the magnetic field from the first type to the second type, which is a frequency between 100 kHz and 300 kHz.
  • the magnetic body 120 ' which is generated by the magnetic field having the frequency of the second type, may be changed into a heating magnetic body 120' '' that generates heat as it is magnetized or de-magnetically, and thus the heating magnetic body 120 '' 'may conduct heat to the nanoparticles concentrated within the affected or magnetic field region s.
  • the controller 130 controls the type of the magnetic field of the magnetic field generating unit 110 to be the first type during the first predetermined time for concentrating the nanoparticles, and during the second predetermined time after the first time has elapsed.
  • the type of the magnetic field of the magnetic field generator 110 may be controlled as the second type.
  • the controller 130 may control the type of the magnetic field of the magnetic field generating unit 110 to be the first type for 10 minutes and to the second type for 3 minutes after 10 minutes have elapsed.
  • the controller 130 may change the frequency of the magnetic field generated from the magnetic field generator 110 at predetermined time intervals. In this case, the controller 130 may control the time interval in which the frequency is changed according to the type of the magnetic field. For example, when controlling the type of the magnetic field generated from the magnetic field generating unit 110 in the heating mode, the controller 130 may control the frequency to be changed every 10 seconds within a frequency between 100 kHz and 300 kHz. . Specifically, the controller 130 controls the frequency of the magnetic field to 100 kHz for 10 seconds, then to 230 kHz for 10 seconds, then to 150 kHz for 10 seconds, and then to 280 kHz for 10 seconds. The frequency can be controlled to change every 10 seconds. In this case, the frequency may be changed regularly or irregularly.
  • the controller 130 may control the frequency to be changed every 30 seconds within a frequency of 30 Hz or less.
  • the frequency may be changed regularly or irregularly as described above.
  • the nanoparticle concentrator 100 may include a plurality of magnetic field generating unit 110, the position and number of the plurality of magnetic field generating unit 110 can be variously implemented.
  • a configuration example of the plurality of magnetic field generators 110 may be more easily understood with reference to FIGS. 6 and 7.
  • FIG. 6 is a view showing the configuration of a plurality of magnetic field generating unit in the nanoparticle concentrator according to an embodiment of the present application.
  • the nanoparticle concentrator 100 may include a first magnetic field generator 110 ′ A and a second magnetic field generator 110 ′ B as a plurality of magnetic field generators 110. ) And the third magnetic field generator 110 ′ C.
  • the first magnetic field generating unit 110 ′ A, the second magnetic field generating unit 110 ′ B, and the third magnetic field generating unit 110 ′ C each have a triangular angle so that the regions of the magnetic field generated by each of them cross each other. It can be arranged as. Specifically, the first magnetic field region s1 formed by the first magnetic body 120'A located in the first magnetic field generating unit 110'A and the second magnetic body located in the second magnetic field generating unit 110'B.
  • the first magnetic field generator 110 ′ A to the third magnetic field generator 110 ′ C may be arranged at three angles.
  • the nanoparticle concentrator 100 according to an embodiment of the present application concentrates the nanoparticles to the treatment site (or affected part) of the desired user as much as possible, and then conducts heat to the nanoparticles more effectively, thereby necrosing the cancer cells. You can.
  • the controller 130 may control different types of magnetic fields generated from each of the plurality of magnetic field generators 110.
  • the controller 130 controls the type of the magnetic field to be the first type of the first magnetic field generator 110 ′ A, and the second magnetic field generator 110 ′ B is the second type.
  • Type control, and the third magnetic field generating unit 110 ′ C may be controlled by a third type different from the first type and the second type.
  • the first magnetic field generating unit 110'A and the second magnetic field generating unit 110'B may be controlled by the first type
  • the third magnetic field generating unit 110'C may be controlled by the second type.
  • the controller 130 may change not only the type of magnetic field but also the frequency change time, magnetic field stimulation time, and magnetic field strength of the magnetic field generated from each of the plurality of magnetic field generators 11. Can be controlled differently.
  • FIG. 6 the shapes of the plurality of magnetic field generators 110'A, 110'B and 110'C and the plurality of magnetic bodies 120'A, 120'B and 120'C located in the respective embodiments are shown in FIG. Although only the shape of the magnetic field generating unit 110 'and the magnetic body 120' is illustrated, the shape of the magnetic field generating unit 110 '' and the magnetic body 120 '' according to the second embodiment is not limited thereto. May be applied.
  • FIG. 7 is a view showing another configuration of the plurality of magnetic field generating unit in the nanoparticle concentrator according to an embodiment of the present application.
  • the nanoparticle concentrator 100 may include four magnetic field generators 110 ′′ as a plurality of magnetic field generators 110. Can be placed.
  • three magnetic bodies may be attached, inserted, or implanted as a plurality of spherical magnetic bodies 120 ′′ to a user's body, and nanoparticles may be concentrated around the three spherical magnetic bodies 120 ′′ as much as possible.
  • Four magnetic field generating units 110 ′′ may be positioned in up, down, left, and right, front and rear directions.
  • the controller 1300 may differently control the type of magnetic field, the stimulus time, the stimulus frequency change time, and the like for each of the four magnetic field generators 110 ′′.
  • FIG. 8 is a schematic operation flowchart of a method of driving a nanoparticle concentrator according to an embodiment of the present application.
  • the method of driving the nanoparticle concentrator shown in FIG. 8 may be performed by the nanoparticle concentrator 100 described above. Therefore, even if omitted below, the content described with respect to the nanoparticle concentrator 100 may be equally applied to FIG. 8.
  • the magnetic field control signal may be generated through the controller 130.
  • the controller 130 may generate a control signal for controlling the type of the magnetic field generated from the magnetic field generator 110 at a frequency of 30 Hz or less as the first type. Thereafter, the controller 130 may generate a control signal for controlling at a frequency of 30 Hz or less, and then generate a control signal for controlling the type of the magnetic field as a second type at a frequency between 100 kHz and 300 kHz.
  • a magnetic field may be generated through the magnetic field generator 110 based on the magnetic field control signal generated in step S810.
  • a magnetic field corresponding to a frequency of 30 Hz or less may be generated through the magnetic field generator 110 based on the first type of control signal.
  • a magnetic field corresponding to a frequency between 100 kHz and 300 kHz may be generated through the magnetic field generator 110 based on the second type of control signal.
  • step S830 the magnetic body 120 may be magnetized by the magnetic field generated in step S820.
  • step S830 the magnetic body 120 is magnetized by the magnetic field corresponding to the first type, so that the nanoparticles containing the drug may be concentrated in the magnetic field region s formed by the magnetic body 120.
  • the magnetic material 120 may be magnetized or demagnetized by a magnetic field corresponding to the second type, thereby generating heat from the magnetic material 120. Accordingly, heat generated from the magnetic body 120 may be conducted to the nanoparticles concentrated in the magnetic field region s, thereby more effectively inhibiting the proliferation of cancer cells and necrosis the cancer cells.
  • the method of driving the nanoparticle concentrator according to an embodiment of the present application may further include changing a type of the magnetic field generated from the magnetic field generator 110.
  • the type of the magnetic field may be changed based on the number of nanoparticles concentrated on the affected part.
  • the type of magnetic field may also be controlled to operate with the type of preset magnetic field for a preset time.
  • the type of the magnetic field may be controlled to change the frequency of the magnetic field at predetermined time intervals. More specific examples thereof have been described in more detail above, and thus will be omitted below.
  • steps S810 to S830 may be further divided into additional steps or combined into fewer steps, according to an embodiment of the present disclosure.
  • some steps may be omitted as necessary, and the order between the steps may be changed.
  • the method for driving a nanoparticle concentrator may be implemented in the form of program instructions that may be executed by various computer means and may be recorded in a computer readable medium.
  • the computer readable medium may include program instructions, data files, data structures, etc. alone or in combination.
  • Program instructions recorded on the media may be those specially designed and constructed for the purposes of the present invention, or they may be of the kind well-known and available to those having skill in the computer software arts.
  • Examples of computer-readable recording media include magnetic media such as hard disks, floppy disks, and magnetic tape, optical media such as CD-ROMs, DVDs, and magnetic disks, such as floppy disks.
  • Magneto-optical media and hardware devices specifically configured to store and execute program instructions, such as ROM, RAM, flash memory, and the like.
  • program instructions include not only machine code generated by a compiler, but also high-level language code that can be executed by a computer using an interpreter or the like.
  • the hardware device described above may be configured to operate as one or more software modules to perform the operations of the present invention, and vice versa.
  • the method of driving the above-described nanoparticle concentrator may be implemented in the form of a computer program or an application executed by a computer stored in a recording medium.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Dermatology (AREA)
  • Medical Informatics (AREA)
  • Anesthesiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Pathology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicinal Preparation (AREA)
  • Magnetic Treatment Devices (AREA)

Abstract

나노입자 집중 장치에 관한 것이며, 나노입자 집중 장치는 자기장을 발생시키는 적어도 하나의 자기장 발생부, 상기 자기장에 의하여 자화되는 적어도 하나의 자성체 및 상기 자기장 발생부의 동작을 제어하는 제어 신호를 생성하는 제어부를 포함하되, 상기 자성체는, 상기 자기장에 의하여 자화됨에 따라 생체 내로 유입된 약물을 포함하는 나노입자(nanoparticle)를 상기 자기장의 영역 내의 환부에 집중시킬 수 있다.

Description

나노입자 집중 장치 및 그의 구동 방법
본원은 나노입자 집중 장치 및 그의 구동 방법에 관한 것이다.
암 치료 시 사용자의 인체에는, 인체의 혈액 순환으로 인해 암이 발생한 곳에서 필요로 하는 항암제의 양 보다 실제로 더 많은 양의 항암제가 투여되어야 한다. 이때 인체에 필요 이상의 항암제가 투여될 경우, 다른 조직과 기관에 악영향을 미쳐 수많은 부작용을 초래하게 되며, 부작용의 예로는 구역질, 구토, 탈모, 감염, 피로, 빈혈, 출혈, 설사, 피부 및 손톱의 변색, 열감 현상 등이 있다.
이러한 문제를 극복하기 위해, 관련 분야에서는 필요 이상의 항암제 투여를 막기 위하여, 항암제의 타겟팅(targeting) 효율성을 증가시키고자 하는 약물 전달 시스템(Drug Delivery System, DDS)에 대한 연구 개발이 활발히 이루어지고 있다.
약물 전달 시스템은 생체에 대한 약물의 안정성, 유효성 혹은 신뢰성을 높이기 위해 투여 기술과 제형(劑形)을 개선하고 약물의 생체 내 이동을 제어하는 시스템으로서, 이는 필요 최소량의 약물을 작용 부위에 선택적으로 또한 바람직한 농도가 유지될 수 있도록 투여하는 것이 요구된다.
약물 전달 시스템을 구현하는 다양한 방법들 중 하나로는 나노입자(Nanoparticle)를 이용하는 방법이 있으며, 이는 자석에 이끌리는 나노입자에 약물을 넣고, 하나의 자석을 이용하여 물질을 원하는 환부로 유도시키는 방법이다.
하지만, 인체 내의 원하는 위치로 물질을 유도시키는 비율이 극히 낮아, 약물의 타겟팅 효율성이 떨어지는 단점이 있다. 또한, 종래의 방식은 피부 표면의 환부에서만 물질의 유도가 가능할 뿐, 인체 내 심부(深部)에 존재하는 장기로는 물질을 유도하지 못하는 문제가 있다. 따라서 피부 표면에 존재하는 피부암 등의 질병 치료에는 효과적이나, 인체 내 심부에서 발생한 질병의 치료에는 그 효과가 떨어지는 단점이 있다.
본원의 배경이 되는 기술은 한국등록특허공보 제10-1406632호(등록일: 2014.06.03)에 개시되어 있다.
본원은 전술한 종래 기술의 문제점을 해결하기 위한 것으로서, 약물 치료 효과가 극대화되도록 나노입자를 환부에 집중시킴으로써 약물이 유도되는 비율을 현저하게 증가시킬 수 있는 나노입자 집중 장치 및 그의 구동 방법을 제공하려는 것을 목적으로 한다.
본원은 전술한 종래 기술의 문제점을 해결하기 위한 것으로서, 환부에 집중된 나노입자에 열을 전도시켜 암세포의 증식을 억제하고 암세포를 괴사시킬 수 있는 나노입자 집중 장치 및 그의 구동 방법을 제공하려는 것을 목적으로 한다.
다만, 본원의 실시예가 이루고자 하는 기술적 과제는 상기된 바와 같은 기술적 과제들로 한정되지 않으며, 또 다른 기술적 과제들이 존재할 수 있다.
상기한 기술적 과제를 달성하기 위한 기술적 수단으로서, 본원의 일 실시예에 따른 나노입자 집중 장치는, 자기장을 발생시키는 적어도 하나의 자기장 발생부, 상기 자기장에 의하여 자화되는 적어도 하나의 자성체 및 상기 자기장 발생부의 동작을 제어하는 제어 신호를 생성하는 제어부를 포함하되, 상기 자성체는, 상기 자기장에 의하여 자화됨에 따라 생체 내로 유입된 약물을 포함하는 나노입자(nanoparticle)를 상기 자기장의 영역 내의 환부에 집중시킬 수 있다.
또한, 상기 제어부는, 상기 자기장 발생부로부터 발생되는 자기장의 유형으로서 자기장의 세기, 주파수, 시간 및 패턴 중 적어도 하나를 제어할 수 있다.
또한, 상기 제어부는, 상기 자기장의 유형을 제어하여 상기 나노입자를 집중시키거나 상기 나노입자에 열을 전도시킬 수 있다.
또한, 상기 제어부는 상기 자기장의 주파수를 100 kHz 내지 300 kHz 중 어느 하나로 제어하고, 상기 자성체는 상기 100 kHz 내지 300 kHz 중 어느 하나의 주파수를 가지는 자기장에 의해 자화 또는 탈자화되어 열을 발생시켜 상기 나노입자에 열을 전도할 수 있다.
또한, 본원의 일 실시예에 따른 나노입자 집중 장치는 상기 환부에 집중된 나노입자의 수를 측정하기 위한 센서부를 더 포함하고, 상기 제어부는, 상기 환부에 집중된 나노입자의 수가 기설정된 기준을 초과하는지 여부에 따라 상기 자기장의 유형을 제1 유형에서 제2 유형으로 변경할 수 있다.
또한, 상기 제어부는, 상기 나노입자를 집중시키기 위해 상기 자기장의 유형을 제1 유형으로서 30 Hz 이하의 주파수로 제어하고, 상기 환부에 집중된 나노입자의 수가 기설정된 기준을 초과하는 것으로 판단되는 경우에는 상기 자기장의 유형을 제2 유형으로서 100 kHz 내지 300 kHz 사이의 주파수로 제어하고, 상기 자성체는 상기 제2유형의 주파수를 가지는 자기장에 의해 자화 또는 탈자화되어 열을 발생시켜 상기 나노입자에 열을 전도할 수 있다.
또한, 상기 제어부는, 상기 나노입자를 집중시키기 위해 미리 설정된 제1시간 동안 상기 자기장의 유형을 제1 유형으로서 30 Hz 이하의 주파수로 제어하고, 상기 제1시간이 경과한 후 미리 설정된 제2시간 동안 상기 자기장의 유형을 제2 유형으로서 100 kHz 내지 300 kHz 사이의 주파수로 제어하고, 상기 자성체는 상기 제2유형의 주파수를 가지는 자기장에 의해 자화 또는 탈자화되어 열을 발생시켜 상기 나노입자에 열을 전도할 수 있다.
또한, 상기 자성체는, 상기 자기장 발생부 내에 위치하거나 부착, 삽입 및 이식 중 적어도 하나에 의하여 상기 환부에 위치할 수 있다.
또한, 상기 자기장 발생부 내에 위치한 자성체는, 자성체 바늘 및 상기 자성체 바늘의 끝에 결합하는 구형 자성체를 포함할 수 있다.
또한, 상기 자기장 발생부는 관통홀이 형성된 자기장 코어 및 상기 자기장 코어에 감긴 코일을 포함하고, 상기 자성체는 상기 관통홀을 통과하여 위치할 수 있다.
또한, 상기 자성체는 구형 자성체일 수 있다.
또한, 상기 제어부는 미리 설정된 시간 간격 마다 상기 자기장의 주파수를 변경할 수 있다.
또한, 상기 제어부는, 복수의 자기장 발생부가 포함되는 경우, 상기 복수의 자기장 발생부 각각로부터 발생되는 자기장의 유형을 각기 다르게 제어할 수 있다.
또한, 상기 자기장 발생부는, 펄스 전자기장(Pulsed Electro-Magnetic Field, PEMF)을 발생시킬 수 있다.
또한, 상기 자기장 발생부는 제1자기장 발생부, 제2자기장 발생부 및 제3자기장 발생부를 포함하고, 상기 제1자기장 발생부, 상기 제2자기장 발생부 및 상기 제3자기장 발생부는 각각 발생시키는 자기장의 영역이 상호 교차하도록 3각으로 배치될 수 있다.
한편, 본원의 일 실시예에 따른 나노입자 집중 장치의 구동 방법은 자기장 제어 신호를 생성하는 단계, 상기 자기장 제어 신호에 기초하여 자기장을 발생시키는 단계 및 상기 자기장에 의하여 상기 자성체를 자화시키는 단계를 포함할 수 있다.
또한, 상기 자기장 제어 신호를 생성하는 단계는, (a) 상기 자기장의 유형을 제1 유형으로서 30 Hz 이하의 주파수로 제어하는 제어 신호를 생성하는 단계 및 (b) 상기 (a) 단계 후에 상기 자기장의 유형을 제2 유형으로서 100 kHz 내지 300 kHz 사이의 주파수로 제어하는 제어 신호를 생성하는 단계를 포함하고, 상기 나노입자 집중 장치의 구동 방법은, 상기 제2유형의 자기장에 의하여 자화된 자성체로부터 열을 발생시키는 단계를 더 포함할 수 있다.
상술한 과제 해결 수단은 단지 예시적인 것으로서, 본원을 제한하려는 의도로 해석되지 않아야 한다. 상술한 예시적인 실시예 외에도, 도면 및 발명의 상세한 설명에 추가적인 실시예가 존재할 수 있다.
전술한 본원의 과제 해결 수단에 의하면, 자성체가 자기장에 의해 자화됨에 따라 생체 내로 유입된 약물을 포함하는 나노입자를 자기장 영역 내의 환부에 집중시킴으로써, 약물이 유도되는 비율(타겟팅 비율)을 현저하게 증가시켜 약물 치료 효과를 극대화할 수 있는 효과가 있다.
전술한 본원의 과제 해결 수단에 의하면, 나노입자를 환부에 집중시킨 후 자기장의 유형을 달리 제어하여 집중된 나노입자에 열을 전도시킴으로써 암세포의 증식을 억제하고 암세포를 괴사시킬 수 있는 효과가 있다.
또한 본원에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 본원의 일 실시예에 따른 나노입자 집중 장치의 개략적인 블록도이다.
도 2a는 본원의 일 실시예에 따른 나노입자 집중 장치에서 제1 실시예에 따른 자기장 발생부의 구성을 개략적으로 나타낸 도면이다.
도 2b는 본원의 일 실시예에 따른 나노입자 집중 장치에서 자성체의 구성을 나타낸 도면이다.
도 3은 본원의 일 실시예에 따른 나노입자 집중 장치에서 제2 실시예에 따른 자기장 발생부의 구성을 개략적으로 나타낸 도면이다.
도 4는 본원의 일 실시예에 따른 나노입자 집중 장치에서 자기장 자극 모드 방식의 예를 나타낸 도면이다.
도 5는 본원의 일 실시예에 따른 나노입자 집중 장치에서 집중 모드와 발열 모드를 나타낸 도면이다.
도 6은 본원의 일 실시예에 따른 나노입자 집중 장치에서 복수의 자기장 발생부의 구성을 나타낸 도면이다.
도 7은 본원의 일 실시예에 따른 나노입자 집중 장치에서 복수의 자기장 발생부의 또 다른 구성을 나타낸 도면이다.
도 8은 본원의 일 실시예에 따른 나노입자 집중 장치의 구동 방법에 대한 개략적인 동작 흐름도이다.
아래에서는 첨부한 도면을 참조하여 본원이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본원의 실시예를 상세히 설명한다. 그러나 본원은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본원을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
본원 명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결" 또는 "간접적으로 연결"되어 있는 경우도 포함한다.
본원 명세서 전체에서, 어떤 부재가 다른 부재 "상에", "상부에", "상단에", "하에", "하부에", "하단에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본원은 생체 내로 유입된 약물을 포함하는 나노입자를 환부에 집중시킴과 더불어 자기장의 유형을 달리 제어하여 집중된 나노입자에 열을 전도시킴으로써 암세포의 증식을 억제하고 암세포를 괴사시킬 수 있는 나노입자 집중 장치 및 그의 구동 방법에 관한 것이다.
도 1은 본원의 일 실시예에 따른 나노입자 집중 장치의 개략적인 블록도이다.
도 1을 참조하면, 본원의 일 실시예에 따른 나노입자 집중 장치(100)는 자기장 발생부(110), 자성체(120) 및 제어부(130)를 포함할 수 있다.
자기장 발생부(110)는 제어부(130)에 의한 제어 신호에 기초하여 자기장을 발생시킬 수 있으며, 나노입자 집중 장치(100)는 적어도 하나의 자기장 발생부(110)를 포함할 수 있다. 이때, 자기장 발생부(110)로부터 발생되는 자기장은 펄스 전자기장(Pulsed Electro-Magnetic Field, PEMF)일 수 있다.
자성체(120)는 자기장 발생부(110)로부터 발생되는 자기장에 의하여 자화될 수 있으며, 나노입자 집중 장치(100)는 적어도 하나의 자성체(120)를 포함할 수 있다.
또한, 자성체(120)는 자기장 발생부(110)로부터 발생되는 자기장에 의하여 자회됨에 따라 사용자의 신체(또는 생체, 1) 내로 유입된 약물을 포함하는 나노입자를 자기장(s) 영역 내의 환부에 집중시킬 수 있다. 보다 구체적인 설명은 다음과 같다.
본원에서 자기장 발생부(110) 및 자성체(120)는 제1 실시예에 따라 도 2a 및 도 2b와 같은 형상으로 형성될 수 있고, 또는 제2 실시예에 따라 도 3과 같은 형상으로 형성될 수 있다.
먼저 제1 실시예에 따른 자기장 발생부(110') 및 자성체(120')의 형상은 도 2a 및 도 2b를 참조하여 보다 쉽게 이해될 수 있다.
도 2a는 본원의 일 실시예에 따른 나노입자 집중 장치(100)에서 제1 실시예에 따른 자기장 발생부(110')의 구성을 개략적으로 나타낸 도면이고, 도 2b는 본원의 일 실시예에 따른 나노입자 집중 장치(100)에서 제1 실시예에 따른 자성체(120')의 구성을 나타낸 도면이다.
도 2a 및 도 2b를 참조하면, 본원의 일 실시예에 따른 나노입자 집중 장치(100)에서 제1 실시예에 따른 자기장 발생부(110')는 중심부에 관통홀(110a)이 형성된 자기장 코어(110b) 및 상기 자기장 코어(110b)에 감긴 코일(110c)을 포함할 수 있다. 자기장 코어(110b)는 일예로 원통형 형상일 수 있으며 이에 한정되는 것은 아니다. 또한 코일(110c)은 자기장 코어(110b)에 감긴 형태로 구비될 수 있다.
또한, 본원의 일 실시예에 따른 나노입자 집중 장치(100)에서 제1 실시예에 따른 자성체(120')는 자성체 바늘(120a) 및 자성체 바늘(120a)의 일단 끝에 결합되는 구형 자성체(120b)를 포함할 수 있다. 여기서, 구형 자성체(120b)는 나노입자가 자기장 영역 내에 최대한 집중될 수 있도록 자성체 바늘(120a)의 직경보다 큰 직경으로 형성될 수 있으며, 이때 '직경'이라는 용어는 원 형상의 지름을 의미하는 것으로 좁게 해석되기 보다는, 다양한 폭(너비)를 의미하는 것으로 넓게 해석될 수 있다. 또한, 본원의 제1 실시예에 따른 자성체(120')는 구형 자성체(120b)가 구형 형상으로 형성되는 것으로 예시하였으나 이에 한정되는 것은 아니고 그 모양은 다양하게 변형 가능하다.
또한, 제1 실시예에 따른 자성체(120')는 자기장 발생부(110')의 관통홀(110a) 내에 위치할 수 있으며, 자성체 바늘(120a)의 일부가 관통홀(110a)을 통과하도록 위치할 수 있다. 또한, 자성체 바늘(120a)은 주사 바늘과 같은 역할을 수행할 수 있으며, 이에 따라, 자성체(120')의 끝단에 형성된 구형 자성체(120b)와 자성체 바늘(120a)의 일부는 사용자의 신체(1) 내에 주사 바늘과 같이 삽입될 수 있다.
또한, 도 2a에 도시된 도면은 일예로 자성체(120')의 일부가 사용자의 신체(1) 내에 삽입된 경우를 나타낸 것으로서, 이러한 상태에서 자기장 발생부(110')를 통해 자기장을 발생시키면, 자성체(120')의 끝단에 형성된 구형 자성체(120b)를 중심으로 한 주변 영역에는 자기장 영역(s)이 형성될 수 있다. 그리고, 자성체(120')는 자기장 발생부(110')로부터 발생된 자기장에 의하여 자화됨에 때라 생체(1) 내로 유입된 약물을 포함하는 나노입자(2)를 자기장 영역(s) 내의 환부, 특히 암조직 내에 집중시킬 수 있다.
한편 제2 실시예에 따른 자기장 발생부(110'') 및 자성체(120'')의 형상은 도 3을 참조하여 보다 쉽게 이해될 수 있다.
도 3은 본원의 일 실시예에 따른 나노입자 집중 장치에서 제2 실시예에 따른 자기장 발생부의 구성을 개략적으로 나타낸 도면이다.
도 3을 참조하면, 본원의 일 실시예에 따른 나노입자 집중 장치(100)에서 제2 실시예에 따른 자기장 발생부(110'')는 자기장 코어(110b') 및 자기장 코어(110b')에 감긴 코일(110c')을 포함할 수 있다. 여기서, 제2 실시예에 따른 자기장 발생부(110'')의 자기장 코어(110b')는 제1 실시예에 따른 자기장 발생부(110')의 자기장 코어(110b)와는 달리 중심부에 관통홀이 없는 형태일 수 있다. 자기장 코어(110b')는 일예로 원통형 형상일 수 있으며 이에 한정되는 것은 아니다. 또한 코일(110c')은 자기장 코어(110b')에 감긴 형태로 구비될 수 있다.
또한, 본원의 일 실시예에 따른 나노입자 집중 장치(100)에서 제2 실시예에 따른 자성체(120'')는 구형 자성체일 수 있다. 제2 실시예에 따른 자성체(120'')는 부착, 삽입 및 이식 중 적어도 하나에 의하여 사용자 신체(1)의 환부에 위치할 수 있다. 즉, 자성체(120'')는 사용자의 신체(1) 표면에 부착되거나 또는 사용자의 신체(1) 내에 삽입 또는 이식될 수 있다. 자성체(120'')의 형상은 구형인 것으로 예시하였으나, 이에 한정되는 것은 아니고 그 모양은 다양하게 변형 가능하다.
또한, 도 3에 도시된 도면은 일예로 자성체(120'')가 사용자의 신체(1)의 표면에 부착된 경우를 나타낸 것으로서, 이러한 상태에서 자기장 발생부(110'')를 통해 자기장을 발생시키면, 자성체(120'')를 중심으로 한 주변 영역에는 자기장 영역(s)dl 형성될 수 있다. 그리고, 자성체(120'')는 자기장 발생부(110'')로부터 발생된 자기장에 의하여 자화됨에 때라 생체(1) 내로 유입된 약물을 포함하는 나노입자(2)를 자기장 영역(s) 내의 환부, 특히 암조직 내에 집중시킬 수 있다.
한편, 제어부(130)는 자기장 발생부(120)의 동작을 제어하는 제어 신호를 생성할 수 있다. 제어부(130)는 사용자 입력에 기초하여 제어 신호를 생성할 수 있다.
제어부(130)의 제어 신호에 기초하여 자기장 발생부(110)로부터 자기장이 발생되면, 자성체(120)는 자기장에 의하여 자화됨에 따라 사용자의 신체(또는 생체, 1) 내로 유입된 약물을 포함하는 나노입자(2)를 자기장(s) 영역 내의 환부에 집중시킬 수 있다.
제어부(130)는 자기장 발생부(110)로부터 발생되는 자기장의 유형을 제어할 수 있으며, 자기장의 유형으로서 자기장의 세기, 주파수, 시간 및 패턴 중 적어도 하나를 제어할 수 있다.
또한, 제어부(130)는 자기장 발생부(110)가 사용자로부터 입력된 자기장 자극 모드 정보에 대응하는 자기장 자극을 발생시키도록 자기장 발생부(110)를 제어할 수 있다. 자기장 자극 모드는 도 4를 통해 보다 쉽게 이해될 수 있다.
도 4는 본원의 일 실시예에 따른 나노입자 집중 장치에서 자기장 자극 모드 방식의 예를 나타낸 도면이다.
도 4를 참조하면, 본원의 일 실시예에 따른 나노입자 집중 장치(100)는 사용자로부터 자기장 자극 모드 정보를 입력받을 수 있으며, 일예로 자기장 자극 모드 정보로서 N 펄스 자극 모드, S 펄스 자극 모드, N 펄스와 S펄스의 교번 자극 모드, N 펄스 연속 자극 모드 및 S 펄스 연속 자극 모드 중 어느 하나를 입력받을 수 있다. 이에 따라, 제어부(130)는 자기장 발생부(110)로부터 N 펄스 자극, S 펄스 자극, N펄스와 S 펄스의 교번 자극, N 펄스 연속 자극 및 S 펄스 연속 자극 중 어느 하나에 대응하는 자기장 자극이 발생되도록, 자기장 발생부(110)를 제어할 수 있다.
또한, 제어부(130)는 자기장의 유형으로서 자기장의 세기, 주파수, 시간 및 패턴 중 적어도 하나를 제어함으로써, 나노입자를 환부에 집중시키거나 또는 집중된 나노입자에 열을 전도시킬 수 있다. 이는 도 5를 참조하여 보다 쉽게 이해될 수 있다.
도 5는 본원의 일 실시예에 따른 나노입자 집중 장치에서 집중 모드와 발열 모드를 나타낸 도면이다.
도 5를 참조하면, 제어부(130)는 자기장 발생부(110')의 자기장의 유형을 제어함에 따라 자기장 발생부(110')의 모드를 환부에 나노입자가 집중되도록 하는 집중모드와 환부에 집중된 나노입자에 열이 전도되도록 하는 발열모드로 제어할 수 있다.
구체적으로, 도 5(a)는 집중모드를 나타내고 도 5(b)는 발열모드를 나타낸다.
도 5(a)와 같이 집중모드의 경우, 제어부(130)는 나노입자를 집중시키기 위해 자기장 발생부(110')의 자기장의 유형을 30Hz 이하의 주파수로 제어할 수 있다.
도 5(b)와 같이 발열모드의 경우, 제어부(130)는 집중된 나노입자에 열을 전도하기 위해 자기장 발생부(110')의 자기장의 유형을 고주파의 주파수로 제어할 수 있으며, 일예로 제어부(130)는 고주파로서 100 kHz 내지 300 kHz 중 어느 하나로 제어할 수 있다. 이때, 자기장 발생부(110')로부터 100 kHz 내지 300 kHz 중 어느 하나의 주파수를 가지는 자기장이 발생됨에 따라, 자성체(120')는 빠르게 자화 또는 탈자화되어 열을 발생시킬 수 있으며, 이렇게 발열된 자성체(120''')로부터 발생된 열은 자기장 영역(s) 내에 위치한 나노입자(2)에 전달될 수 있다. 이로 인해 발열모드에서는 발열된 자성체(120''')로부터 발생된 열을 나노입자(2)에 전도시킴에 따라 암조직 내의 암세포를 괴사시키거나 또는 암세포의 증식을 억제할 수 있다.
한편,본원의 일 실시예에 따른 나노입자 집중 장치(100)는 환부에 집중된 나노입자의 수를 측정하기 위한 센서부(미도시)를 포함할 수 있다.
센서부(미도시)는 환부의 자기장 영역(s) 내에 집중된 나노입자(2)의 수를 카운팅할 수 있다. 일예로 나노입자는 형광 물질일 수 있으며, 센서부는 나노입자를 검출할 수 있는 형광 센서, 이미지 센서 및 적외선 센서 등을 포함할 수 있으며, 이에 한정되는 것은 아니다.
제어부(130)는 센서부를 통한 나노입자 수의 측정 값을 고려하여 자기장 발생부(110)의 자기장의 유형을 제어할 수 있다.
구체적으로, 제어부(130)는 환부에 집중된 나노입자의 수가 기설정된 기준을 초과하는지 여부에 따라 자기장 발생부(110)의 자기장의 유형을 제1 유형에서 제2 유형으로 변경할 수 있다.
일예로, 제1 유형은 자기장 발생부(110)의 자기장의 주파수가 30Hz 이하인 집중모드의 유형일 수 있고, 제2 유형은 자기장 발생부(110)의 자기장의 주파수가 100 kHz 내지 300 kHz 사이의 주파수인 발열모드의 유형일 수 있으며, 이에 한정되는 것은 아니다.
제어부(130)는 나노입자(2)를 환부 또는 자기장 영역(s) 내에 집중시키기 위해 자기장 발생부(110)의 자기장의 유형을 30 Hz 이하의 주파수인 제1 유형으로 제어하고, 환부 또는 자기장 영역(s) 내에 집중된 나노입자의 수가 기설정된 기준을 초과한 것으로 판단되는 경우 제어부(130)는 자기장의 유형을 제1 유형에서 100 kHz 내지 300 kHz 사이의 주파수인 제2 유형으로 변경할 수 있다. 이때, 제2 유형의 주파수를 가지는 자기장에 의해 발열된 자성체(120')는 자화 또는 탈자회됨에 따라 열을 발생시키는 발열 자성체(120''')로 상태가 변화할 수 있으며, 이에 따라 발열 자성체(120''')는 환부 또는 자기장 영역(s) 내에 집중된 나노입자에 열을 전도할 수 있다.
또한, 제어부(130)는 나노입자를 집중시키기 위해 미리 설정된 제1 시간 동안에는 자기장 발생부(110)의 자기장의 유형을 제1 유형으로 제어하고, 제1 시간이 경과한 이후 미리 설정된 제2 시간 동안에는 자기장 발생부(110)의 자기장의 유형을 제2 유형으로 제어할 수 있다. 예를 들어, 제어부(130)는 자기장 발생부(110)의 자기장의 유형을 10분 동안에는 제1 유형으로 제어하고, 10분이 경과된 이후 3분 동안에는 제2 유형으로 제어할 수 있다.
또한, 제어부(130)는 미리 설정된 시간 간격마다 자기장 발생부(110)로부터 발생되는 자기장의 주파수를 변경할 수 있다. 이때, 제어부(130)는 자기장의 유형에 따라 주파수가 변경되는 시간 간격을 달리 제어할 수 있다. 예를 들어, 제어부(130)는 자기장 발생부(110)로부터 발생되는 자기장의 유형을 발열모드로 제어하는 경우에는 100 kHz 내지 300kHz 사이의 주파수 내에서 10초 간격마다 주파수가 변경되도록 제어할 수 있다. 구체적으로 제어부(130)는 자기장의 주파수를 10초 동안에는 100 kHz 로 제어하고, 이후 10초 동안에는 230 kHz 로 제어하고, 이후 10초 동안에는 150 kHz로 제어하고, 이후 10초 동안에는 280 kHz로 제어하는 등 10초 간격 마다 주파수가 변경되도록 제어할 수 있다. 이때, 주파수의 변경은 규칙적으로 변경될 수도 있고, 불규칙 적으로 변경될 수도 있다. 또한, 일예로 제어부(130)는 자기장 발생부(110)로부터 발생되는 자기장의 유형을 집중모드로 제어하는 경우에는 30Hz 이하의 주파수 내에서 30초 간격마다 주파수가 변경되도록 제어할 수 있다. 이때, 주파수의 변경은 앞서 말한 바와 같이 규칙적 또는 불규칙 적으로 변경될 수 있다.
한편, 본원의 일 실시예에 따른 나노입자 집중 장치(100)는 복수의 자기장 발생부(110)를 포함할 수 있으며, 복수의 자기장 발생부(110)의 위치 및 개수는 다양하게 구현 가능하다. 일예로 복수의 자기장 발생부(110)의 구성 예는 도 6 및 도 7을 참조하여 보다 쉽게 이해될 수 있다.
도 6은 본원의 일 실시예에 따른 나노입자 집중 장치에서 복수의 자기장 발생부의 구성을 나타낸 도면이다.
도 6을 참조하면, 본원의 일 실시예에 따른 나노입자 집중 장치(100)는 복수의 자기장 발생부(110)로서 제1 자기장 발생부(110'A), 제2 자기장 발생부(110'B) 및 제3 자기장 발생부(110'C)를 포함할 수 있다.
이때, 일예로 제1 자기장 발생부(110'A), 제2 자기장 발생부(110'B) 및 제3 자기장 발생부(110'C)는 각각이 발생시키는 자기장의 영역이 상호 교차하도록 3각으로 배치될 수 있다. 구체적으로, 제1 자기장 발생부(110'A) 내에 위치한 제1 자성체(120'A)에 의하여 형성되는 제1 자기장 영역(s1), 제2 자기장 발생부(110'B) 내에 위치한 제2 자성체(120'B)에 의하여 형성되는 제2 자기장 영역(s2) 및 제3 자기장 발생부(110'C) 내에 위치한 제3 자성체(120'C)에 의하여 형성되는 제3 자기장 영역(s3)이 상호 교차하도록, 1 자기장 발생부(110'A) 내지 제3 자기장 발생부(110'C)는 3각으로 배치될 수 있다. 이러한 배치를 통해 본원의 일 실시예에 따른 나노입자 집중 장치(100)는 원하는 사용자의 치료부위(또는 환부)에 나노입자를 최대한 집중시킴과 더불어 이후 나노입자에 열을 전도함으로써 보다 효과적으로 암세포를 괴사시킬 수 있다.
또한, 복수의 자기장 발생부(110)가 포함된 경우, 제어부(130)는 복수의 자기장 발생부(110) 각각으로부터 발생되는 자기장의 유형을 각기 다르게 제어할 수 있다. 예를 들어, 도 6과 같은 경우, 제어부(130)는 자기장의 유형을 제1 자기장 발생부(110'A)은 제1 유형으로 제어하고, 제2 자기장 발생부(110'B)은 제2 유형으로 제어하고, 제3 자기장 발생부(110'C)는 제1 유형 및 제2 유형과는 또 다른 제3 유형으로 제어할 수 있다. 또는, 제1 자기장 발생부(110'A) 및 제2 자기장 발생부(110'B)는 제1 유형으로 제어하고, 제3 자기장 발생부(110'C)는 제2 유형으로 제어할 수 있다.
또한, 복수의 자기장 발생부(110)가 포함된 경우, 제어부(130)는 자기장의 유형 뿐만 아니라 복수의 자기장 발생부(11) 각각으로부터 발생되는 자기장의 주파수 변경 시간, 자기장 자극 시간, 자기장의 세기 등을 각기 다르게 제어할 수 있다.
도 6에서는 복수의 자기장 발생부(110'A, 110'B, 110'C) 및 각각 내에 위치한 복수의 자성체(120'A, 120'B, 120'C)의 모양이 제1 실시예에 따른 자기장 발생부(110')와 자성체(120')의 모양인 것으로만 예시하였으나, 이에 한정된 것은 아니고, 제2 실시예에 따른 자기장 발생부(110'')와 자성체(120'')의 모양이 적용될 수도 있다.
도 7은 본원의 일 실시예에 따른 나노입자 집중 장치에서 복수의 자기장 발생부의 또 다른 구성을 나타낸 도면이다.
도 7을 참조하면, 본원의 일 실시예에 따른 나노입자 집중 장치(100)는 복수의 자기장 발생부(110)로서 4개의 자기장 발생부(110'')를 포함할 수 있으며, 필요에 따라 다각도로 배치할 수 있다.
도 7에서는 일예로 사용자의 신체에 복수의 구형 자성체(120'')로서 3개의 자성체가 부착, 삽입 또는 이식될 수 있으며, 3개의 구형 자성체(120'')의 주위에 나노입자들이 최대한 집중될 수 있도록 4개의 자기장 발생부(110'')를 상하좌우 또는 전후좌우 방향에 위치시킬 수 있다. 앞서 말한 바와 같이, 제어부(1300는 4개의 자기장 발생부(110'') 각각에 대한 자기장의 유형, 자극 시간, 자극 주파수 변경 시간 등을 각기 다르게 제어할 수 있다.
이하에서는 상기에 자세히 설명된 내용을 기반으로, 본원의 동작 흐름을 간단히 살펴보기로 한다.
도 8은 본원의 일 실시예에 따른 나노입자 집중 장치의 구동 방법에 대한 개략적인 동작 흐름도이다.
도 8에 도시된 나노입자 집중 장치의 구동 방법은 앞서 설명된 나노입자 집중 장치(100)에 의하여 수행될 수 있다. 따라서, 이하 생략된 내용이라고 하더라도 나노입자 집중 장치(100)에 대하여 설명된 내용은 도 8에도 동일하게 적용될 수 있다.
도 8을 참조하면, 단계S810에서는, 제어부(130)를 통해 자기장 제어 신호를 생성할 수 있다.
이때, 단계S810에서 제어부(130)는 자기장 발생부(110)로부터 발생되는 자기장의 유형을 제1 유형으로서 30 Hz 이하의 주파수로 제어하는 제어 신호를 생성할 수 있다. 이후, 제어부(130)는 30 Hz 이하의 주파수로 제어하는 제어 신호를 생성한 후 자기장의 유형을 제2 유형으로서 100 kHz 내지 300 kHz 사이의 주파수로 제어하는 제어 신호를 생성할 수 있다.
다음으로, 단계S820에서는, 단계S810에서 생성된 자기장 제어 신호에 기초하여 자기장 발생부(110)를 통해 자기장을 발생시킬 수 있다.
이때, 단계S820에서는 제1 유형의 제어 신호에 기초하여 자기장 발생부(110)를 통해 30 Hz 이하의 주파수에 대응하는 자기장을 발생시킬 수 있다. 또한, 단계S820에서는 제2 유형의 제어 신호에 기초하여 자기장 발생부(110)를 통해 100 kHz 내지 300 kHz 사이의 주파수에 대응하는 자기장을 발생시킬 수 있다.
다음으로, 단계S830에서는, 단계S820에서 발생된 자기장에 의하여 자성체(120)를 자화시킬 수 있다.
이때, 단계S830에서는, 제1 유형에 대응하는 자기장에 의하여 자성체(120)가 자화됨으로써, 자성체(120)에 의하여 형성된 자기장 영역(s) 내에는 약물을 포함하는 나노입자가 집중될 수 있다.
또한, 단계S830에서는, 제2 유형에 대응하는 자기장에 의하여 자성체(120)가 자화 또는 탈자화됨으로써 자성체(120)로부터 열을 발생시키는 단계를 포함할 수 있다. 이에 따라 자기장 영역(s) 내에 집중된 나노입자에는 자성체(120)로부터 발생된 열이 전도될 수 있으며, 이에 따라 보다 효과적으로 암세포의 증식을 억제하고 암세포를 괴사시킬 수 있다.
또한, 도면에 도시하지는 않았으나, 본원의 일 실시예에 따른 나노입자 집중 장치의 구동 방법은, 자기장 발생부(110)로부터 발생되는 자기장의 유형을 변경하는 단계를 더 포함할 수 있다.
이때, 자기장의 유형은 환부에 집중된 나노입자의 수에 기초하여 그 유형이 변경될 수 있다. 또한 자기장의 유형은 미리 설정된 시간 동안에 미리 설정된 자기장의 유형으로 동작하도록 제어될 수 있다. 또한, 자기장의 유형은 미리 설정된 시간 간격 마다 자기장의 주파수가 변경되도록 제어될 수 있다. 이에 대한 보다 구체적은 예는 상기에 보다 자세히 설명했으므로, 이하 생략하기로 한다.
상술한 설명에서, 단계 S810 내지 S830은 본원의 구현예에 따라서, 추가적인 단계들로 더 분할되거나, 더 적은 단계들로 조합될 수 있다. 또한, 일부 단계는 필요에 따라 생략될 수도 있고, 단계 간의 순서가 변경될 수도 있다.
본원의 일 실시 예에 따른 나노입자 집중 장치의 구동 방법은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 매체에 기록되는 프로그램 명령은 본 발명을 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다. 컴퓨터 판독 가능 기록 매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(magnetic media), CD-ROM, DVD와 같은 광기록 매체(optical media), 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다. 상기된 하드웨어 장치는 본 발명의 동작을 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.
또한, 전술한 나노입자 집중 장치의 구동 방법은 기록 매체에 저장되는 컴퓨터에 의해 실행되는 컴퓨터 프로그램 또는 애플리케이션의 형태로도 구현될 수 있다.
전술한 본원의 설명은 예시를 위한 것이며, 본원이 속하는 기술분야의 통상의 지식을 가진 자는 본원의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.
본원의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본원의 범위에 포함되는 것으로 해석되어야 한다.

Claims (18)

  1. 자기장을 발생시키는 적어도 하나의 자기장 발생부;
    상기 자기장에 의하여 자화되는 적어도 하나의 자성체; 및
    상기 자기장 발생부의 동작을 제어하는 제어 신호를 생성하는 제어부,
    를 포함하되,
    상기 자성체는, 상기 자기장에 의하여 자화됨에 따라 생체 내로 유입된 약물을 포함하는 나노입자(nanoparticle)를 상기 자기장의 영역 내의 환부에 집중시키는 것인, 나노입자 집중 장치.
  2. 제1항에 있어서,
    상기 제어부는,
    상기 자기장 발생부로부터 발생되는 자기장의 유형으로서 자기장의 세기, 주파수, 시간 및 패턴 중 적어도 하나를 제어하는 것인, 나노입자 집중 장치.
  3. 제2항에 있어서,
    상기 제어부는,
    상기 자기장의 유형을 제어하여 상기 나노입자를 집중시키거나 상기 나노입자에 열을 전도시키는 것인, 나노입자 집중 장치.
  4. 제3항에 있어서,
    상기 제어부는 상기 자기장의 주파수를 100 kHz 내지 300 kHz 중 어느 하나로 제어하고,
    상기 자성체는 상기 100 kHz 내지 300 kHz 중 어느 하나의 주파수를 가지는 자기장에 의해 자화 또는 탈자화되어 열을 발생시켜 상기 나노입자에 열을 전도하는 것인, 나노입자 집중 장치.
  5. 제2항에 있어서,
    상기 환부에 집중된 나노입자의 수를 측정하기 위한 센서부,
    를 더 포함하고,
    상기 제어부는,
    상기 환부에 집중된 나노입자의 수가 기설정된 기준을 초과하는지 여부에 따라 상기 자기장의 유형을 제1 유형에서 제2 유형으로 변경하는 것인, 나노입자 집중 장치.
  6. 제5항에 있어서,
    상기 제어부는,
    상기 나노입자를 집중시키기 위해 상기 자기장의 유형을 제1 유형으로서 30 Hz 이하의 주파수로 제어하고,
    상기 환부에 집중된 나노입자의 수가 기설정된 기준을 초과하는 것으로 판단되는 경우에는 상기 자기장의 유형을 제2 유형으로서 100 kHz 내지 300 kHz 사이의 주파수로 제어하고,
    상기 자성체는 상기 제2유형의 주파수를 가지는 자기장에 의해 자화 또는 탈자화되어 열을 발생시켜 상기 나노입자에 열을 전도하는 것인, 나노입자 집중 장치.
  7. 제2항에 있어서,
    상기 제어부는,
    상기 나노입자를 집중시키기 위해 미리 설정된 제1시간 동안 상기 자기장의 유형을 제1 유형으로서 30 Hz 이하의 주파수로 제어하고,
    상기 제1시간이 경과한 후 미리 설정된 제2시간 동안 상기 자기장의 유형을 제2 유형으로서 100 kHz 내지 300 kHz 사이의 주파수로 제어하고,
    상기 자성체는 상기 제2유형의 주파수를 가지는 자기장에 의해 자화 또는 탈자화되어 열을 발생시켜 상기 나노입자에 열을 전도하는 것인, 나노입자 집중 장치.
  8. 제1항에 있어서,
    상기 자성체는,
    상기 자기장 발생부 내에 위치하거나 부착, 삽입 및 이식 중 적어도 하나에 의하여 상기 환부에 위치하는 것인, 나노입자 집중 장치.
  9. 제8항에 있어서,
    상기 자기장 발생부 내에 위치한 자성체는,
    자성체 바늘 및 상기 자성체 바늘의 끝에 결합하는 구형 자성체를 포함하는 것인, 나노입자 집중 장치.
  10. 제9항에 있어서,
    상기 자기장 발생부는,
    관통홀이 형성된 자기장 코어; 및
    상기 자기장 코어에 감긴 코일,
    을 포함하고,
    상기 자성체는 상기 관통홀을 통과하여 위치하는 것인, 나노입자 집중 장치.
  11. 제8항에 있어서,
    상기 자성체는 구형 자성체인 것인, 나노입자 집중 장치.
  12. 제2항에 있어서,
    상기 제어부는 미리 설정된 시간 간격 마다 상기 자기장의 주파수를 변경하는 것인, 나노입자 집중 장치.
  13. 제2항에 있어서,
    상기 제어부는,
    복수의 자기장 발생부가 포함되는 경우, 상기 복수의 자기장 발생부 각각로부터 발생되는 자기장의 유형을 각기 다르게 제어하는 것인, 나노입자 집중 장치.
  14. 제1항에 있어서,
    상기 자기장 발생부는,
    펄스 전자기장(Pulsed Electro-Magnetic Field, PEMF)을 발생시키는 것인, 나노입자 집중 장치.
  15. 제1항에 있어서,
    상기 자기장 발생부는 제1자기장 발생부, 제2자기장 발생부 및 제3자기장 발생부를 포함하고,
    상기 제1자기장 발생부, 상기 제2자기장 발생부 및 상기 제3자기장 발생부는 각각 발생시키는 자기장의 영역이 상호 교차하도록 3각으로 배치되는 것인, 나노입자 집중 장치.
  16. 제1항 내지 제15항 중 어느 한 항의 나노입자 집중 장치의 구동 방법에 있어서,
    자기장 제어 신호를 생성하는 단계;
    상기 자기장 제어 신호에 기초하여 자기장을 발생시키는 단계; 및
    상기 자기장에 의하여 상기 자성체를 자화시키는 단계,
    를 포함하는 것인, 나노입자 집중 장치의 구동 방법.
  17. 제16항에 있어서,
    상기 자기장 제어 신호를 생성하는 단계는,
    (a) 상기 자기장의 유형을 제1 유형으로서 30 Hz 이하의 주파수로 제어하는 제어 신호를 생성하는 단계; 및
    (b) 상기 (a) 단계 후에 상기 자기장의 유형을 제2 유형으로서 100 kHz 내지 300 kHz 사이의 주파수로 제어하는 제어 신호를 생성하는 단계,
    를 포함하고,
    상기 나노입자 집중 장치의 구동 방법은,
    상기 제2유형의 자기장에 의하여 자화된 자성체로부터 열을 발생시키는 단계,
    를 더 포함하는 것인, 나노입자 집중 장치의 구동 방법.
  18. 제16항 및 제17항 중 어느 한 항의 방법을 컴퓨터에서 실행하기 위한 프로그램을 기록한 컴퓨터에서 판독 가능한 기록매체.
PCT/KR2017/011647 2016-11-03 2017-10-20 나노입자 집중 장치 및 그의 구동 방법 WO2018084474A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0145654 2016-11-03
KR1020160145654A KR101916413B1 (ko) 2016-11-03 2016-11-03 나노입자 집중 장치 및 그의 구동 방법

Publications (1)

Publication Number Publication Date
WO2018084474A1 true WO2018084474A1 (ko) 2018-05-11

Family

ID=62076161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/011647 WO2018084474A1 (ko) 2016-11-03 2017-10-20 나노입자 집중 장치 및 그의 구동 방법

Country Status (2)

Country Link
KR (1) KR101916413B1 (ko)
WO (1) WO2018084474A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112439123A (zh) * 2019-08-28 2021-03-05 美国发现集团有限公司 纳米机器人控制***
CN112438835A (zh) * 2019-08-28 2021-03-05 美国发现集团有限公司 一种纳米机器人的控制装置及控制***

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102130327B1 (ko) * 2018-06-13 2020-07-06 (주) 비비비 자기장 기반 비침습적 자극방법
KR102655615B1 (ko) * 2021-01-22 2024-04-08 고려대학교 세종산학협력단 생체 삽입형 생체 생성물질 적정분화 유도장치 및 이를 포함하는 생체 삽입형 생체 생성물질 적정분화 유도시스템

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5921244A (en) * 1997-06-11 1999-07-13 Light Sciences Limited Partnership Internal magnetic device to enhance drug therapy
JP2007521109A (ja) * 2003-10-28 2007-08-02 トリトン バイオシステムズ、インク. ナノスケール粒子の標的送達による治療
US8001977B2 (en) * 2005-04-08 2011-08-23 Nanobiomagnetics, Inc. Device for moving magnetic nanoparticles through tissue
US20130139832A1 (en) * 2009-02-25 2013-06-06 Benjamin Shapiro Devices, systems and methods for magnetic-assisted therapeutic agent delivery
US8568286B2 (en) * 2006-06-14 2013-10-29 Cardiac Pacemakers, Inc. Methods to position therapeutic agents using a magnetic field

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2105163B1 (de) 2008-03-28 2011-06-08 MagForce Nanotechnologies AG Magnetwechselfeld-Applikationsvorrichtung zur Aufheizung von magnetischen oder magnetisierbaren Substanzen in biologischem Gewebe
JP2012517262A (ja) 2009-02-11 2012-08-02 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 医療処置においてトラッキング及びマッピングする方法並びにシステム
EP2671613A4 (en) 2011-02-01 2015-06-03 Univ Korea Res & Bus Found ROTARY NANOFIL AND METHOD FOR INDUCING CELL NECROSIS BY USING THE SAME

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5921244A (en) * 1997-06-11 1999-07-13 Light Sciences Limited Partnership Internal magnetic device to enhance drug therapy
JP2007521109A (ja) * 2003-10-28 2007-08-02 トリトン バイオシステムズ、インク. ナノスケール粒子の標的送達による治療
US8001977B2 (en) * 2005-04-08 2011-08-23 Nanobiomagnetics, Inc. Device for moving magnetic nanoparticles through tissue
US8568286B2 (en) * 2006-06-14 2013-10-29 Cardiac Pacemakers, Inc. Methods to position therapeutic agents using a magnetic field
US20130139832A1 (en) * 2009-02-25 2013-06-06 Benjamin Shapiro Devices, systems and methods for magnetic-assisted therapeutic agent delivery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112439123A (zh) * 2019-08-28 2021-03-05 美国发现集团有限公司 纳米机器人控制***
CN112438835A (zh) * 2019-08-28 2021-03-05 美国发现集团有限公司 一种纳米机器人的控制装置及控制***
CN112439123B (zh) * 2019-08-28 2022-08-09 美国发现集团有限公司 纳米机器人控制***
CN112438835B (zh) * 2019-08-28 2023-02-03 美国发现集团有限公司 一种纳米机器人的控制装置及控制***

Also Published As

Publication number Publication date
KR20180049580A (ko) 2018-05-11
KR101916413B1 (ko) 2018-11-07

Similar Documents

Publication Publication Date Title
WO2018084474A1 (ko) 나노입자 집중 장치 및 그의 구동 방법
JP4270786B2 (ja) 交流勾配電磁場の注入磁場粒子に影響を与えるための人間の組織の治療目的のための装置
US9629912B2 (en) Method, device and system for targetted cell lysis
Antal et al. Transcranial alternating current stimulation (tACS)
EP0788392B1 (en) Electroporetic gene and drug therapy by induced electric fields
EP2111169B1 (en) Apparatus for altering living membranes
Hight et al. Superior temporal resolution of Chronos versus channelrhodopsin-2 in an optogenetic model of the auditory brainstem implant
US20130108667A1 (en) Method, apparatus and system for electroporation
DE69332033D1 (de) Magnetotherapeutische vorrichtung
WO2016163776A1 (ko) 귀속 치료 장치 및 귀속 치료 장치의 구동 방법
WO2012009603A2 (en) Transcranial magnetic stimulation for altering susceptibility of tissue to pharmaceuticals and radiation
EP3654841B1 (en) Targeted osmotic lysis of malignant cancer cells using pulsed magnetic field gradients
Smith et al. Nanomedicine and nanobiotechnology applications of magnetoelectric nanoparticles
Pardo et al. Where do we stand now regarding treatment of psychiatric and neurodegenerative disorders? Considerations in using magnetoelectric nanoparticles as an innovative approach
US20190282400A9 (en) Device and methods for directing agents into an eye
Webber et al. The potential of brain stimulation techniques for substance use disorder treatment
Tian et al. “Magnetism‐Optogenetic” System for Wireless and Highly Sensitive Neuromodulation
US20070293810A1 (en) Apparatus For Facilitating Transdermal Delivery Of Therapeutic Substances And Method Of Transdermally Delivering Therapeutic Substances
JP2000229844A (ja) 磁気利用ドラッグデリバリーシステム
EP1030712B1 (en) Apparatus for altering the charge distribution upon living membranes with functional stabilization of the membrane physical electrical integrity
EP3013287A1 (en) Device and methods for directing agents into an eye
WO2023075014A1 (ko) 비침습적 전기 자극 방법 및 장치
Tseng et al. Anodal and cathodal tDCS over the right frontal eye fields impacts spatial probability processing differently in pro-and anti-saccades
CN112439123B (zh) 纳米机器人控制***
Inoue et al. Changes in jaw reflexes by stimulation of the hypothalamus in anesthetized rabbits

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17867962

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17867962

Country of ref document: EP

Kind code of ref document: A1