WO2018084198A1 - 方向性電磁鋼板の製造方法 - Google Patents

方向性電磁鋼板の製造方法 Download PDF

Info

Publication number
WO2018084198A1
WO2018084198A1 PCT/JP2017/039612 JP2017039612W WO2018084198A1 WO 2018084198 A1 WO2018084198 A1 WO 2018084198A1 JP 2017039612 W JP2017039612 W JP 2017039612W WO 2018084198 A1 WO2018084198 A1 WO 2018084198A1
Authority
WO
WIPO (PCT)
Prior art keywords
slab
steel sheet
less
heating
grain
Prior art date
Application number
PCT/JP2017/039612
Other languages
English (en)
French (fr)
Inventor
今村 猛
有衣子 江橋
雅紀 竹中
山口 広
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to RU2019116290A priority Critical patent/RU2716053C1/ru
Priority to BR112019008260-3A priority patent/BR112019008260B1/pt
Priority to KR1020197014715A priority patent/KR102251592B1/ko
Priority to US16/344,441 priority patent/US20190323100A1/en
Priority to JP2018549052A priority patent/JP6631724B2/ja
Priority to CN201780065934.5A priority patent/CN109906277B/zh
Priority to EP17866924.8A priority patent/EP3536814B1/en
Publication of WO2018084198A1 publication Critical patent/WO2018084198A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/42Induction heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab
    • C21D8/1211Rapid solidification; Thin strip casting
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1266Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14791Fe-Si-Al based alloys, e.g. Sendust
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method of manufacturing a grain-oriented electrical steel sheet suitable for a transformer core material.
  • inhibitors In the production of grain-oriented electrical steel sheets, it is a common technique to use secondary precipitates called inhibitors to recrystallize grains having Goss orientation during purification annealing.
  • Using an inhibitor is useful for stably developing secondary recrystallized grains, but in order to finely disperse the inhibitor in steel, slab heating is performed at a high temperature of 1300 ° C. or higher, and the inhibitor forming component Needed to be dissolved once. Inhibitors cause deterioration of magnetic properties after secondary recrystallization, so that the annealing temperature is 1100 ° C or higher and the atmosphere is controlled to control precipitates such as inhibitors and intervening materials from the steel. It was necessary to remove things.
  • Patent Document 1 proposes a method in which Al is removed as much as possible and an inhibitor containing only a small amount of MnS or MnSe is used.
  • Patent Document 2 proposes a technique for developing goss-oriented crystal grains by secondary recrystallization without containing an inhibitor-forming component.
  • This is a technique for secondary recrystallization of grains, and the effect is called the texture inhibition effect.
  • the step of purifying the inhibitor is unnecessary, it is not necessary to increase the temperature of the purification annealing, and further, fine dispersion of the inhibitor in steel is not necessary. It is a method that offers great advantages both in terms of cost and maintenance, such as not requiring high-temperature slab heating. Furthermore, since the problem at the time of the slab heating as described above is solved, this method is considered to be advantageously applicable to a technique for producing a thin slab for the purpose of cost reduction and performing direct hot rolling. .
  • JP 2002-212639 A JP 2000-129356 JP
  • the present invention has been made in view of the above circumstances, and provides a way to stably obtain excellent magnetic properties when producing a grain-oriented electrical steel sheet from a thin slab without using an inhibitor-forming component. With the goal.
  • hot rolling was started in about 35 seconds.
  • a thin slab was hot-rolled to obtain a hot-rolled steel sheet having a thickness of 2.2 mm.
  • hot-rolled sheet annealing was performed at 1000 ° C. for 30 seconds, and then finished to a thickness of 0.27 mm by cold rolling.
  • primary recrystallization annealing also serving as decarburization in an atmosphere of soaking conditions of 850 ° C for 60 seconds and 50% H 2 + 50% N 2 and dew point of 50 ° C
  • an annealing separator mainly composed of MgO Was applied and purified annealing was performed at 1200 ° C. for 10 hours in an H 2 atmosphere.
  • FIG. 1 shows the result of arranging the obtained magnetic flux density B 8 in relation to the heating temperature and the heating time in the heating process before hot rolling.
  • FIG. 1 shows that the magnetic flux density is increased by setting the temperature of the heating process to 1000 ° C. to 1300 ° C. and the time to 10 seconds to 600 seconds.
  • a characteristic of thin slabs is that the slab structure is almost columnar. This is presumably because a thin slab has a faster cooling at the time of casting, a large temperature gradient at the solidified shell interface, and is less likely to generate equiaxed crystals from the center of the plate thickness as compared to a thick slab.
  • the slab structure of columnar crystals is known to generate a hot-rolled processed structure that is difficult to recrystallize even after the subsequent heat treatment after hot rolling. Deteriorate the magnetic properties of the product. That is, it is presumed that the cause of magnetic deterioration is that the columnar crystal structure becomes the main slab structure before hot rolling.
  • the slab is cast in the vertical direction, but after that, the slab is corrected by changing its direction by about 90 ° with a certain curvature, and is conveyed in the horizontal direction.
  • a normal slab having a slab thickness of about 200 mm has a low curvature because it is difficult to deform.
  • the curvature is increased at the time of this correction, and the space required for the bending correction is reduced to reduce the manufacturing cost. At this time, there is a feature that considerable strain is accumulated in the slab structure.
  • the heating temperature is too high, such as when the heating temperature in the heating process exceeds 1300 ° C, or when the heating time is too long, such as when the heating time exceeds 600 seconds, crystal grains generated instead of the columnar crystal structure As the columnar crystal structure becomes too coarse, a hot-rolled texture that is difficult to recrystallize even by heat treatment is generated, which is considered to have deteriorated the magnetic properties of the product plate.
  • the present invention is a novel technique that can suppress the increase in cost as much as possible by combining the characteristics of the structure of the grain-oriented electrical steel sheet and the characteristics of the thin slab continuous casting method and providing new equipment.
  • the present inventors when producing a grain-oriented electrical steel sheet from a thin slab, control the temperature and time of the heating process before hot rolling, thereby reducing the magnetic properties. Succeeded in preventing.
  • the present invention is based on the above-described novel findings, and the gist of the present invention is as follows. 1. % By mass C: 0.002% to 0.100%, Si: 2.00% to 8.00% and Mn: 0.005% to 1.000%, Al: less than 0.0100%, N: less than 0.0050%, S: less than 0.0050% and Se: less than 0.0050%, the balance is Fe and molten steel having a component composition of unavoidable impurities is subjected to continuous casting to a thickness of 25 mm A slab of 100 mm or less is formed, and the slab is heated and then hot-rolled to form a hot-rolled steel sheet, The hot-rolled steel sheet is subjected to two or more cold-rolling sandwiching one cold rolling or intermediate annealing to obtain a cold-rolled steel sheet having a final sheet thickness, Subjecting the cold-rolled steel sheet to primary recrystallization annealing, A method for producing a grain-oriented electrical steel sheet that performs secondary recrystallization annea
  • the component composition is The manufacturing method of the grain-oriented electrical steel sheet according to 1 or 2 above, wherein the mass% is S: less than 0.0030% and Se: less than 0.0030%.
  • the component composition further includes: % By mass Cr: 0.01% to 0.50%, Cu: 0.01% or more and 0.50% or less, P: 0.005% to 0.50%, Ni: 0.001% to 0.50%, Sb: 0.005% to 0.50%, Sn: 0.005% to 0.50%, Bi: 0.005% to 0.50%, Mo: 0.005% or more and 0.100% or less, B: 0.0002% to 0.0025%, 4.
  • the method for producing a grain-oriented electrical steel sheet according to any one of 1 to 3 above, which comprises one or more selected from Nb: 0.0010% to 0.0100% and V: 0.0010% to 0.0100%.
  • C 0.002% or more and 0.100% or less
  • C is contained in excess of 0.100%, it becomes difficult to reduce to 0.005% or less where no magnetic aging occurs after decarburization annealing, so the content is limited to 0.100% or less.
  • C is 0.002% or more and 0.100% or less.
  • it is 0.010% or more and 0.050% or less.
  • Si 2.00% to 8.00% Si is an element necessary for increasing the specific resistance of steel and improving iron loss. For that purpose, the content of 2.00% or more is necessary. On the other hand, if it exceeds 8.00%, the workability of the steel deteriorates and rolling becomes difficult. Therefore, Si is 2.00% or more and 8.00% or less. Preferably, it is 2.50% or more and 4.50% or less.
  • Mn 0.005% or more and 1.000% or less
  • Mn is an element necessary for improving hot workability. For that purpose, 0.005% or more of content is required. On the other hand, if it exceeds 1.000%, the magnetic flux density of the product plate decreases. Therefore, Mn is set to 0.005% or more and 1.000% or less. Preferably, it is 0.040% or more and 0.200% or less.
  • Al As described above, the contents of Al, N, S and Se as inhibitor forming components are reduced as much as possible. Specifically, it is limited to Al: less than 0.0100%, N: less than 0.0050%, S: less than 0.0050%, and Se: less than 0.0050%.
  • Al is less than 0.0080%, N is less than 0.0040%, S is less than 0.0030%, and Se is less than 0.0030%.
  • the basic components in the present invention are as described above, and the balance is Fe and inevitable impurities.
  • unavoidable impurities include impurities inevitably mixed from raw materials, production facilities, and the like.
  • other elements described below can be appropriately contained.
  • Cr 0.01% to 0.50%
  • Cu 0.01% to 0.50%
  • P 0.005% to 0.50%
  • Ni 0.001% to 0.50%
  • Sb 0.005% to 0.50%
  • Sn 0.005% to 0.50%
  • Bi 0.005% to 0.50%
  • Mo 0.005% to 0.100%
  • B 0.0002% to 0.0025%
  • Nb 0.0010% to 0.0100%
  • V 0.0010% or more and 0.0100% or less
  • the manufacturing method of the grain-oriented electrical steel sheet of this invention is demonstrated.
  • slab thickness From the molten steel which has the said component, a slab is manufactured by a continuous casting method.
  • the thickness of the manufactured slab shall be 100mm or less for cost reduction.
  • the thickness of the slab should be 25 mm or more.
  • it is 40 mm or more and 80 mm or less.
  • the heating conditions are indispensable conditions that the heating temperature is 1000 ° C. or more and 1300 ° C. or less and the heating time is 10 seconds or more and 600 seconds or less.
  • the heating temperature is set to 1250 ° C. or less and the heating time to 300 seconds or less from the viewpoint of cost reduction.
  • the heating temperature is 1110 ° C. or higher and 1200 ° C. or lower and the heating time is 10 seconds or longer and 200 seconds or shorter.
  • the said heating process is good also as performing at least one part of a heating by an induction heating system.
  • the induction heating method is, for example, a method in which an alternating magnetic field is applied to a slab and heated by self-heating.
  • a heating method is heat-held during conveyance using the equipment called the tunnel furnace which integrated the conveyance table and the heating furnace. By this method, it is possible to suppress temperature fluctuation in the slab.
  • the conventional slab heating method has a skid in the heating furnace, and during heating, it is common to lift the slab intermittently with a walking beam etc. and convey it in the slab width direction, but in a thin slab Due to its thinness, a problem arises in that the slab will sag when lifted in the furnace. Further, the temperature drop of the skid portion becomes significant, and this portion is directly connected to the magnetic deterioration of the product plate. Therefore, the above method is inappropriate for a thin slab. For this reason, in this invention, the method of heating, conveying in parallel with the casting direction of a slab like a tunnel furnace system is desirable.
  • the conveyance speed be 10 m / min or more because slab sagging can be suppressed and heat removal from the roll can be prevented.
  • Hot rolling After the heating, hot rolling is performed. Since the slab is thin, it is desirable from the viewpoint of cost to omit rough rolling and perform only finish rolling with a tandem mill. At that time, from the viewpoint of suppressing temperature variation, it is preferable to start hot rolling within 100 seconds after the heating process of the previous step. More preferably, hot rolling is started at an elapsed time of more than 30 seconds and not more than 70 seconds. As for the hot rolling temperature, it is desirable that the start temperature is 900 ° C. or more and the end temperature is 700 ° C. or more in order to improve the final magnetism in a component system not containing an inhibitor. However, if the end temperature is too high, the shape after rolling tends to deteriorate.
  • the hot-rolled steel sheet obtained by hot rolling is subjected to hot-rolled sheet annealing as necessary.
  • the hot-rolled sheet annealing temperature is preferably 800 ° C or higher and 1150 ° C or lower.
  • the hot-rolled sheet annealing temperature is less than 800 ° C., a band structure in hot rolling remains, and it becomes difficult to realize a primary recrystallized structure of sized particles, which hinders the development of secondary recrystallization.
  • the hot-rolled sheet annealing temperature exceeds 1150 ° C.
  • the grain size after the hot-rolled sheet annealing is excessively coarsened, which is extremely disadvantageous for realizing a primary recrystallized structure of sized particles.
  • the temperature is from 950 ° C to 1080 ° C.
  • the annealing time is preferably 10 seconds or more and 200 seconds or less. If it is less than 10 seconds, the band structure tends to remain, and if it exceeds 200 seconds, segregation elements and the like segregate at the grain boundaries, and there is a concern that defects such as cracks are likely to occur in the subsequent cold rolling.
  • the intermediate annealing temperature is preferably 900 ° C. or higher and 1200 ° C. or lower.
  • this temperature is less than 900 ° C., the recrystallized grains become finer, the Goss nuclei in the primary recrystallized structure decrease, and the magnetism deteriorates.
  • the temperature exceeds 1200 ° C., the grain size becomes too coarse as in the case of hot-rolled sheet annealing, which is extremely disadvantageous in realizing a primary recrystallized structure of sized particles.
  • the intermediate annealing temperature is more preferably about 900 ° C. to 1150 ° C.
  • the cold rolling temperature is raised to 100 ° C to 300 ° C, and during the cold rolling, 100 to 300 ° C. It is effective to perform the aging treatment in the range of once or a plurality of times.
  • Primary recrystallization annealing is performed after the cold rolling.
  • the primary recrystallization annealing may also serve as decarburization annealing.
  • An annealing temperature of 800 ° C. or higher and 900 ° C. or lower is effective from the viewpoint of decarburization.
  • the atmosphere is desirably a wet atmosphere from the viewpoint of decarburization.
  • the annealing time is preferably about 30 to 300 seconds. However, this is not the case when it contains only C: 0.005% or less which does not require decarburization.
  • An annealing separator is applied to the steel sheet after the primary recrystallization annealing as necessary.
  • an annealing separation agent mainly composed of MgO is applied, and then secondary recrystallization annealing is performed to also perform purification annealing. While developing a crystal structure, a forsterite film is formed.
  • the annealing separator is not applied, or even when it is applied, MgO that forms the forsterite film is not used, but silica, alumina, or the like is used.
  • these annealing separators are applied, it is effective to perform electrostatic application or the like that does not bring in moisture.
  • a heat resistant inorganic material sheet (silica, alumina, mica) may be used.
  • Secondary recrystallization annealing is performed after the primary recrystallization annealing or after application of the annealing separator. Secondary recrystallization annealing may also serve as purification annealing.
  • the secondary recrystallization annealing that also serves as the purification annealing is desirably performed at 800 ° C. or higher for the purpose of secondary recrystallization. In order to complete the secondary recrystallization, it is desirable to hold at a temperature of 800 ° C. or higher for 20 hours or longer.
  • a magnetic domain refinement process After the flattening annealing, a magnetic domain refinement process can be performed to reduce iron loss.
  • the processing methods include, for example, a method of making a groove in the final product plate as commonly practiced, a method of introducing thermal strain and impact strain linearly by a laser or an electron beam, and a final finished plate thickness. For example, a method of previously grooved intermediate products such as cold rolled sheets. Other manufacturing conditions may follow the general direction of the grain-oriented electrical steel sheet.
  • Example 1 Slab with 60% thickness from molten steel with mass of C: 0.015%, Si: 3.25%, Mn: 0.040%, Al: 0.0020%, N: 0.0009% and S: 0.0012%, the balance being Fe and inevitable impurities Is manufactured by continuous casting, and heated as a heating process before hot rolling using a regenerative burner heating type tunnel furnace under the conditions shown in Table 1, and after 45 seconds, hot rolled and 2.2 mm thick. Finished. Subsequently, hot-rolled sheet annealing was performed at 975 ° C. for 30 seconds, and then finished to a sheet thickness of 0.23 mm by cold rolling.
  • Example 2 A tunnel that contains the components listed in Table 2 and the balance of Fe and unavoidable impurities is produced by continuous casting of slabs with a thickness of 45mm and is maintained at 1200 ° C in a tunnel furnace as a heating process before hot rolling.
  • the furnace was passed through a furnace and held at 1200 ° C. for 150 seconds, and 65 seconds later, it was hot-rolled to a thickness of 3.0 mm.
  • the slab conveyance speed during the heating process in the tunnel furnace was 25 m / min.
  • heating up to 700 ° C. was performed by an induction heating method, and thereafter, heating and holding were performed by a gas burner.
  • the sheet thickness was 0.9 mm by cold rolling.
  • intermediate annealing at 1000 ° C. for 100 seconds, it was finished to a thickness of 0.23 mm by cold rolling.
  • the present invention not only can stably obtain excellent magnetic properties for a grain-oriented electrical steel sheet produced from a thin slab without using an inhibitor-forming component, but also has an ⁇ single-phase structure similar to that for a grain-oriented electrical steel sheet. It is also possible to apply to stainless steel having

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

インヒビター形成成分を使用せずに薄スラブから製造された方向性電磁鋼板について、優れた磁気特性を安定して得ることができる。 質量%で、C:0.002%以上0.100%以下、Si:2.00%以上8.00%以下およびMn:0.005%以上1.000%以下を含有し、Al:0.0100%未満、N:0.0050%未満、S:0.0050%未満およびSe:0.0050%未満に抑制し、残部はFeおよび不可避的不純物である成分組成を有する溶鋼を連続鋳造に供して厚さ25mm以上100mm以下のスラブを形成し、該スラブを加熱してから熱間圧延を施して熱延鋼板とする方向性電磁鋼板の製造方法において、前記スラブを加熱する工程は温度を1000℃以上1300℃以下かつ時間を10秒以上600秒以下とする。

Description

方向性電磁鋼板の製造方法
 本発明は、変圧器の鉄心材料に好適な方向性電磁鋼板の製造方法に関する。
 方向性電磁鋼板の製造には、インヒビターと呼ばれる析出物を使用して、純化焼鈍中にGoss方位を有する粒を二次再結晶させることが一般的な技術として使用されている。インヒビターを用いることは、安定して二次再結晶粒を発達させるのに有用であるが、インヒビターを鋼中に微細分散させるために、1300℃以上の高温でのスラブ加熱を行い、インヒビター形成成分を一度固溶させることが必要であった。また、インヒビターは、二次再結晶後に磁気特性を劣化させる原因となることから、純化焼鈍を1100℃以上の高温とし、かつ、雰囲気を制御することで地鉄中からインヒビターなどの析出物および介在物を除去することが必要であった。
 ところで、近年、コストダウンを目的として、スラブ厚みを薄くし、直接熱間圧延を行う技術が開発されている。しかしながら、上述の通り、インヒビターを利用するには、熱間圧延前に高温スラブ加熱によるインヒビターの再固溶が必要であるところ、厚みを薄くした薄スラブを作製して直接熱間圧延を行う方法では、熱間圧延前の搬送中に加熱するとしても、スラブが十分に高温化されないという欠点がある。このため、特許文献1では、Alを極力除いて少量のMnSやMnSeだけのインヒビターを利用する方法が提案されている。
 一方、インヒビター形成成分を含有させずに、ゴス方位結晶粒を二次再結晶により発達させる技術が特許文献2に提案されている。これは、インヒビター形成成分のような不純物を極力排除する事で、一次再結晶時の結晶が持つ粒界エネルギーの粒界方位差角依存性を顕在化させ、インヒビターを用いずともGoss方位を有する粒を二次再結晶させる技術であり、その効果をテクスチャーインヒビション効果と呼んでいる。この方法では、インヒビターを純化する工程が不必要となるために、純化焼鈍を高温化する必要がないこと、さらにインヒビターの鋼中微細分散が必要ではないため、当該微細分散のために必須であった高温スラブ加熱も必要としないことなど、コスト面でもメンテナンス面でも大きなメリットを供する方法である。さらに、上記のようなスラブ加熱時の問題が解消されるため、コストダウンを目的とした薄スラブを作製して直接熱間圧延を行う技術にも、この方法は、有利に適用できると考えられる。
特開2002-212639号公報 特開2000-129356号公報
 上述のように、インヒビター形成成分を用いずに方向性電磁鋼板を製造する技術は、コストダウンを目的とした薄スラブによる製造技術と相性が良いことが期待される。しかしながら、これらの製造技術を組み合わせて方向性電磁鋼板を製造したところ、磁気特性が劣化するという問題が新たに明らかとなった。
 本発明は上記の事情に鑑みてなされたものであり、インヒビター形成成分を使用せずに薄スラブから方向性電磁鋼板を製造する際、優れた磁気特性を安定して得るための方途を与えることを目的とする。
 本発明者らは、上記の課題を解消する方途について鋭意検討を重ねた結果、熱間圧延前の加熱過程の温度および時間を制御することによって、インヒビター形成成分を使用せずに薄スラブから製造された方向性電磁鋼板であっても、良好な磁気特性が安定して得られることを新規に知見した。以下、本発明を導くに至った実験について説明する。
<実験>
 質量%でC:0.012%、Si:3.30%、Mn:0.050%、Al:0.0027%、N:0.0010%、S:0.0009%およびSe:0.0010%を含んだ溶鋼から厚さ64mmの薄いスラブを連続鋳造法にて製造し、該スラブを熱間圧延工程まで搬送する途中に、当該スラブをトンネル炉に通過させることにより、熱間圧延前のスラブ加熱を行った。上記加熱過程の加熱温度および加熱時間を種々に変化させて上記スラブの加熱を行った。
 上記スラブ加熱過程が終了した後、約35秒で熱間圧延を開始した。薄スラブを熱間圧延することにより厚さ2.2mmの熱延鋼板とした。その後、1000℃で30秒の熱延板焼鈍を施した後、冷間圧延により0.27mmの板厚に仕上げた。その後、均熱条件が850℃で60秒、50%H2+50%N2で露点50℃の雰囲気において、脱炭を兼ねた一次再結晶焼鈍を施した後、MgOを主体とする焼鈍分離剤を塗布し、1200℃で10時間、H2雰囲気で保定する純化焼鈍を行った。
 その後、リン酸マグネシウムとクロム酸を主体とした張力付与コーティング形成を兼ねた平坦化焼鈍を800℃で15秒の条件で施した。得られたサンプルの磁束密度B8をJIS C2550に記載の方法に従って測定した。得られた磁束密度B8を、熱間圧延前の加熱過程の加熱温度および加熱時間との関係で整理した結果について図1に示す。図1から、加熱過程の温度を1000℃以上1300℃以下、かつ時間を10秒以上600秒以下の条件とすることによって、磁束密度が高くなることがわかる。
 このように、熱間圧延前の加熱過程の温度と時間が磁気特性に影響を及ぼすメカニズムは必ずしも明らかにはなってはいないが、発明者らは次のように考えている。
 薄いスラブの特徴として、スラブの組織がほぼ柱状晶であることが挙げられる。これは、厚いスラブの場合と比較して薄いスラブは、鋳込み時の冷却が速く、凝固シェル界面の温度勾配が大きく、板厚中央部から等軸晶が発生しにくいためと考えられる。柱状晶のスラブ組織は、熱間圧延後に、その後の熱処理でも再結晶しにくい熱延加工組織を発生することが知られており、この再結晶しにくい組織の影響により、方向性電磁鋼板の最終製品の磁気特性を劣化させる。すなわち、熱間圧延前の状態で、柱状晶組織がスラブ組織の主体となることが磁性劣化の原因と推定される。
 この問題を解決するためには、柱状晶組織を低減させることが必要である。電磁鋼板以外の一般的な鋼製品は、α-γ変態を伴うため、高温のα相の温度域で形成された柱状晶組織でも、γ相の温度域にて変態再結晶が生じ、柱状晶組織を低減することが可能である。しかしながら、方向性電磁鋼板は、二次再結晶後のγ変態によるGoss方位粒組織の破壊を防止するため、γ相分率が著しく低く、場合によってはα単相組織となる。このため、上記γ相の温度域における変態再結晶により、柱状晶組織を低減することは困難である。
 そこで、薄スラブ製造における別の特徴、すなわち、薄スラブの組織に蓄積される歪に着目する。通常、スラブは、鉛直方向に鋳込まれるが、その後、ある曲率を持っておよそ90°向きを変える形で矯正され、水平方向に搬送される。スラブ厚みが200mm程度の通常のスラブは、変形しにくいことから、その曲率が小さい。しかし、薄スラブは、厚みが薄くて曲げやすいことから、この矯正時に曲率を大きくし、曲げ矯正に必要なスペースを小さくして製造コストを下げている。この際、スラブ組織にかなりの歪が蓄積されるという特徴がある。
 この歪が蓄積された状態で、ある程度高温の熱処理を施すこと、具体的には1000℃以上の温度域に10秒以上は加熱する熱処理を施すことにより、部分的な歪誘起粒成長もしくは、柱状晶とは異なる組織(等軸)の再結晶を誘発し、柱状晶組織が低減された結果、製品板の磁気特性が改善された可能性が高いと考えている。この現象は、α-γ変態を伴う一般的な鋼製品では、たとえ歪が蓄積されても、変態時に歪が解放されることから、方向性電磁鋼板のようなα相が主体の鋼種に特有である可能性がある。
 また、加熱過程の加熱温度が1300℃を超えるなど、加熱温度が高すぎた場合や加熱時間が600秒を超えるなど、加熱時間が長すぎた場合は、柱状晶組織に代わって発生した結晶粒が粗大になりすぎて、柱状晶組織と同様に、熱処理でも再結晶しにくい熱延加工組織が発生し、これにより、製品板の磁気特性が劣化したと考えられる。
 薄スラブの柱状晶組織の問題を解決する方法としては、製造設備に、組織の等軸晶化を図るための機能を有する設備を新たに追加して設けることも考えられるが、そのような設備の追加は、コストがかなり増大するというデメリットがある。これに対し、本発明は、方向性電磁鋼板の組織の特徴と薄スラブ連続鋳造法の特徴をうまく融合させ、新たな設備を設けるといったコスト増大を極力抑えることもできる、新規な技術である。
 以上のように、本発明者らは、インヒビターレス素材において、薄スラブから方向性電磁鋼板を製造する際に、熱間圧延前の加熱過程の温度および時間を制御することにより、磁気特性劣化を防止することに成功した。
 本発明は、上記の新規な知見に立脚するものであり、その要旨構成は、以下のとおりである。
1.質量%で、
 C:0.002%以上0.100%以下、
 Si:2.00%以上8.00%以下および
 Mn:0.005%以上1.000%以下を含有し、
 Al:0.0100%未満、N:0.0050%未満、S:0.0050%未満およびSe:0.0050%未満に抑制し、残部はFeおよび不可避的不純物である成分組成を有する溶鋼を連続鋳造に供して厚さ25mm以上100mm以下のスラブを形成し、該スラブを加熱してから熱間圧延を施して熱延鋼板とし、
 該熱延鋼板に、1回の冷間圧延または中間焼鈍を挟む2回以上の冷間圧延を施して最終板厚を有する冷延鋼板とし、
 該冷延鋼板に一次再結晶焼鈍を施し、
 該一次再結晶焼鈍後の冷延鋼板に二次再結晶焼鈍を施す方向性電磁鋼板の製造方法であって、
 前記スラブを加熱する工程は、温度を1000℃以上1300℃以下かつ時間を10秒以上600秒以下とする方向性電磁鋼板の製造方法。
2.前記スラブを加熱する工程は、該スラブを鋳造方向に10m/min以上の速度で搬送しながら加熱する、上記1に記載の方向性電磁鋼板の製造方法。
3.前記成分組成は、
 質量%で、S:0.0030%未満およびSe:0.0030%未満である、上記1または2に記載の方向性電磁鋼板の製造方法。
4.前記成分組成は、さらに、
 質量%で、
 Cr:0.01%以上0.50%以下、
 Cu:0.01%以上0.50%以下、
 P:0.005%以上0.50%以下、
 Ni:0.001%以上0.50%以下、
 Sb:0.005%以上0.50%以下、
 Sn:0.005%以上0.50%以下、
 Bi:0.005%以上0.50%以下、
 Mo:0.005%以上0.100%以下、
 B:0.0002%以上0.0025%以下、
 Nb:0.0010%以上0.0100%以下および
 V:0.0010%以上0.0100%以下
のうちから選ばれる1種または2種以上を含有する、上記1から3のいずれかに記載の方向性電磁鋼板の製造方法。
5.前記スラブを加熱する工程は、該加熱の少なくとも一部を誘導加熱方式で行う、上記1から4のいずれかに記載の方向性電磁鋼板の製造方法。
 本発明によれば、インヒビター形成成分を使用せずに薄スラブから方向性電磁鋼板を製造する場合に、優れた磁気特性を安定して得ることができる。
加熱過程における加熱温度および加熱時間と磁束密度B8との関係を示すグラフである。
[成分組成]
 以下、本発明の一実施形態による方向性電磁鋼板およびその製造方法について説明する。まず、鋼の成分組成の限定理由について述べる。なお、本明細書において、各成分元素の含有量を表す「%」は、特に断らない限り「質量%」を意味する。
C:0.002%以上0.100%以下
 Cは0.100%を超えて含有すると、脱炭焼鈍後に磁気時効の起こらない0.005%以下に低減することが困難になるため、0.100%以下に限定される。一方、0.002%未満では、Cによる粒界強化効果が失われ、スラブにクラックが生じるなど、操業性に支障がでる欠陥を引き起こす。従って、Cは0.002%以上0.100%以下とする。好ましくは、0.010%以上0.050%以下である。
Si:2.00%以上8.00%以下
 Siは鋼の比抵抗を高め、鉄損を改善させるために必要な元素である。そのためには、2.00%以上の含有が必要である。一方、8.00%を超えると鋼の加工性が劣化し、圧延が困難となる。従って、Siは2.00%以上8.00%以下とする。好ましくは、2.50%以上4.50%以下である。
Mn:0.005%以上1.000%以下
 Mnは熱間加工性を良好にするために必要な元素である。そのためには、0.005%以上の含有が必要である。一方、1.000%を超えると製品板の磁束密度が低下する。従って、Mnは0.005%以上1.000%以下とする。好ましくは、0.040%以上0.200%以下である。
 上記の通り、インヒビター形成成分であるAl、N、SおよびSeの含有量は極力低減する。具体的には、Al:0.0100%未満、N:0.0050%未満、S:0.0050%未満およびSe:0.0050%未満に制限される。好ましくは、Al:0.0080%未満、N:0.0040%未満、S:0.0030%未満、Se:0.0030%未満である。
 本発明における基本成分は、上記したとおりであり、残部はFeおよび不可避的不純物である。かかる不可避的不純物としては、原料、製造設備等から不可避的に混入する不純物が挙げられる。また、本発明では、その他にも以下に述べる元素を適宜含有させることができる。
 本発明では、磁気特性の改善を目的として、Cr:0.01%以上0.50%以下、Cu:0.01%以上0.50%以下、P:0.005%以上0.50%以下、Ni:0.001%以上0.50%以下、Sb:0.005%以上0.50%以下、Sn:0.005%以上0.50%以下、Bi:0.005%以上0.50%以下、Mo:0.005%以上0.100%以下、B:0.0002%以上0.0025%以下、Nb:0.0010%以上0.0100%以下およびV:0.0010%以上0.0100%以下のうちから選ばれる1種または2種以上を適宜含有させることができる。各成分組成の添加量が下限量より少ない場合には、磁気特性の向上効果がなく、上限量を超える場合には、二次再結晶粒の発達が抑制されて磁気特性が劣化する。
 次に、本発明の方向性電磁鋼板の製造方法について説明する。
[スラブの厚さ]
 上記成分を有する溶鋼から、連続鋳造法によりスラブを製造する。製造されるスラブの厚さは、コストダウンのため、100mm以下とする。一方、スラブの厚さが薄くなると冷却時に中心まで凝固するのが早くなり、その後スラブを矯正し難くなるため、スラブの厚さは25mm以上とする。好ましくは、40mm以上80mm以下とする。
[加熱]
 溶鋼から製造された上記スラブは、熱間圧延前の加熱過程により加熱される。加熱条件は、加熱温度を1000℃以上1300℃以下、かつ加熱時間を10秒以上600秒以下とすることが、上述の図1の実験結果に示した通り、必須の条件である。
 上記加熱過程では、インヒビターを固溶させるための長時間の高温焼鈍を必要としないため、コスト低減の観点からは、加熱温度を1250℃以下かつ加熱時間を300秒以下とすることが好ましい。さらに、磁気特性の観点からは、加熱温度を1110℃以上1200℃以下かつ加熱時間を10秒以上200秒以下とすることが好ましい。また、上記加熱過程は、加熱の少なくとも一部を誘導加熱方式で行うこととしてもよい。誘導加熱方式とは、例えば、スラブに交流磁場を印加して自己発熱により加熱する方式である。
 なお、加熱方法は、トンネル炉と呼ばれる、搬送テーブルと加熱炉が一体となった設備を用いて、搬送中に加熱保持されることが好ましい。この方法により、スラブ内の温度変動を抑制することが可能である。
 ここで、従来のスラブ加熱方法は、加熱炉にスキッドを有し、加熱中は間欠的にウォーキングビーム等でスラブを持ち上げてスラブ幅方向に搬送するのが一般的であるが、薄いスラブにおいては、その薄さのために炉内で持ち上げた際にスラブがたれるという問題が生じる。また、スキッド部の温度低下が著しくなり、その部位が製品板の磁性劣化に直結するため、上記のような方法は、薄スラブにおいては不適切である。このため、本発明では、トンネル炉方式のような、スラブの鋳込み方向に対して並行に搬送しつつ加熱する方法が望ましい。このような場合でも、通常、スラブはテーブルロール上を搬送されるため、ロール間でのたれが発生し、表面欠陥等の原因になることが懸念される。このため、加熱しながら搬送する場合、搬送速度を10m/min以上とすることが、スラブのたれ抑制やロールからの抜熱を防止できるため望ましい。
[熱間圧延]
 上記加熱後に、熱間圧延を行う。スラブが薄いため、粗圧延を省略して、タンデムミルによる仕上圧延のみ実施することがコストの観点から望ましい。その際、温度バラツキを抑制する観点から、前工程の加熱過程を経てから100秒以内に熱間圧延を開始することが好ましい。より好ましくは、30秒超70秒以下の経過時間で熱間圧延を開始する。
 熱間圧延温度は、開始温度を900℃以上、終了温度を700℃以上とすることが、インヒビターを含まない成分系で最終磁性を良好にするため望ましい。ただし、終了温度は高すぎると圧延後の形状が悪くなりやすいため、1000℃以下とすることが望ましい。
[熱延板焼鈍]
 熱間圧延して得た熱延鋼板は、必要に応じて熱延板焼鈍が施される。良好な磁性を得るためには、熱延板焼鈍温度は800℃以上1150℃以下が好適である。熱延板焼鈍温度が800℃未満であると熱間圧延でのバンド組織が残留し、整粒の一次再結晶組織を実現することが困難になり、二次再結晶の発達が阻害される。熱延板焼鈍温度が1150℃を超えると、熱延板焼鈍後の粒径が粗大化しすぎるため、整粒の一次再結晶組織を実現する上で極めて不利である。望ましくは950℃以上1080℃以下である。焼鈍時間は10秒以上200秒以下が好適である。10秒未満であると、バンド組織が残留しやすく、200秒を超えると、粒界に偏析元素等が偏析してその後の冷間圧延にて割れ等の欠陥が発生しやすくなる懸念が生じる。
[冷間圧延]
 熱間圧延後または熱延板焼鈍後に、必要に応じて中間焼鈍を挟む1回以上の冷間圧延を施して最終板厚を有する冷延鋼板とする。中間焼鈍温度は900℃以上1200℃以下が好適である。この温度が900℃未満であると再結晶粒が細かくなり、一次再結晶組織におけるGoss核が減少して磁性が劣化する。一方、1200℃を超えると、熱延板焼鈍と同様に粒径が粗大化しすぎるため、整粒の一次再結晶組織を実現する上で極めて不利である。
 また、中間焼鈍温度は、900℃~1150℃程度とすることがより好ましい。最終冷間圧延では、再結晶集合組織を変化させて磁気特性を向上させるために、冷間圧延の温度を100℃~300℃に上昇させて行うこと、および冷間圧延途中で100~300℃の範囲での時効処理を1回または複数回行うことが有効である。
[一次再結晶焼鈍]
 上記冷間圧延後に一次再結晶焼鈍を施す。当該一次再結晶焼鈍は、脱炭焼鈍を兼ねることとしてもよい。焼鈍温度は、800℃以上900℃以下が脱炭性の観点から有効である。雰囲気は、脱炭性の観点から、湿潤雰囲気とすることが望ましい。また、焼鈍時間は、30~300秒程度とすることが好ましい。ただし、脱炭が不要なC:0.005%以下しか含有していない場合はこの限りではない。
[焼鈍分離剤の塗布]
 上記一次再結晶焼鈍後の鋼板に、必要に応じて焼鈍分離剤を塗布する。ここで、鉄損を重視してフォルステライト被膜を形成させる場合には、MgOを主体とする焼鈍分離剤を適用し、その後、純化焼鈍を兼ねて二次再結晶焼鈍を施すことにより二次再結晶組織を発達させると共に、フォルステライト被膜を形成する。打ち抜き加工性を重視してフォルステライト被膜を形成しない場合には、焼鈍分離剤を適用しないか、適用する場合でもフォルステライト被膜を形成するMgOは使用せずに、シリカやアルミナ等を用いる。これらの焼鈍分離剤を塗布する際は、水分を持ち込まない静電塗布等を行うことが有効である。耐熱無機材料シート(シリカ、アルミナ、マイカ)を用いてもよい。
[二次再結晶焼鈍]
 上記一次再結晶焼鈍後または焼鈍分離剤塗布後に二次再結晶焼鈍を行う。二次再結晶焼鈍は、純化焼鈍を兼ねることとしてもよい。純化焼鈍を兼ねた二次再結晶焼鈍は、二次再結晶発現のために800℃以上で行うことが望ましい。また、二次再結晶を完了させるために800℃以上の温度で20時間以上保持させることが望ましい。上記した打ち抜き性を重視してフォルステライト被膜を形成させない場合には、二次再結晶が完了すればよいことから、850~950℃の温度域での保持にて焼鈍を終了することも可能である。一方、上記した鉄損を重視したり、トランスの騒音を低下するためにフォルステライト被膜を形成する場合は、1200℃程度まで昇温することが望ましい。
[平坦化焼鈍]
 上記二次再結晶焼鈍後は、さらに平坦化焼鈍を行うことができる。その際、焼鈍分離剤を適用した場合には、水洗やブラッシング、酸洗を行い、付着した焼鈍分離剤を除去する。その後、平坦化焼鈍を行って形状を矯正することが、鉄損低減のために有効である。平坦化焼鈍温度は、700~900℃程度が形状矯正の観点から好適である。
[絶縁コーティング]
 鋼板を積層して使用する場合には、鉄損を改善するために、平坦化焼鈍前もしくは後に、鋼板表面に絶縁コーティングを施すことが有効である。コーティングとしては、鉄損低減のために鋼板に張力を付与できるものが望ましい。バインダーを介した張力コーティング塗布方法や、物理蒸着法や化学蒸着法により無機物を鋼板表層に蒸着させてコーティングする方法を採用することが好ましい。なぜなら、これらの方法は、コーティング密着性に優れ、かつ著しい鉄損低減効果が得られるためである。
[磁区細分化処理]
 上記平坦化焼鈍後に、鉄損低減のために、磁区細分化処理を行うことができる。処理方法としては、例えば、一般的に実施されているような、最終製品板に溝をいれる方法、レーザーや電子ビームにより線状に熱歪や衝撃歪を導入する方法、最終仕上板厚に達した冷間圧延板などの中間製品にあらかじめ溝をいれる方法が挙げられる。
 その他の製造条件は、方向性電磁鋼板の一般に従えばよい。
 (実施例1)
 質量%で、C:0.015%、Si:3.25%、Mn:0.040%、Al:0.0020%、N:0.0009%およびS:0.0012%を含み、残部がFeおよび不可避的不純物の溶鋼から厚み60mmのスラブを連続鋳造にて製造し、熱間圧延前の加熱過程としてリジェネバーナー加熱方式のトンネル炉により表1に記載の条件で加熱処理を施し、その45秒後に熱間圧延を施して2.2mmの厚さに仕上げた。次いで、975℃で30秒の熱延板焼鈍を施した後、冷間圧延により0.23mmの板厚に仕上げた。
 その後、均熱条件が840℃で60秒、50%H2+50%N2で露点55℃の脱炭焼鈍を兼ねた一次再結晶焼鈍を施した後、MgOを主体とする焼鈍分離剤を塗布し、1200℃で10時間、H2雰囲気で保定する純化焼鈍を兼ねた、二次再結晶焼鈍を行った。その後、リン酸マグネシウムとクロム酸を主体とした張力付与コーティングの形成を兼ねた平坦化焼鈍を820℃で15秒の条件で施した。かくして得られたサンプルの磁束密度B8をJIS C2550に記載の方法で測定した結果について表1に併記する。表1から明らかなように、本発明に従って得られた鋼板は、良好な磁気特性を有することが分かる。
Figure JPOXMLDOC01-appb-T000001
 (実施例2)
 表2に記載の成分を含み、残部がFeおよび不可避的不純物の溶鋼から厚み45mmのスラブを連続鋳造にて製造し、熱間圧延前の加熱過程としてトンネル炉により1200℃に保持してあるトンネル炉を通過させて1200℃で150秒の保持をし、その65秒後に熱間圧延を施して3.0mmの厚さに仕上げた。トンネル炉での加熱過程におけるスラブ搬送速度は25m/minとした。また、700℃までの加熱は誘導加熱方式で加熱し、その後はガスバーナーで加熱および保持を行った。その後、1000℃で60秒の熱延板焼鈍を施した後、冷間圧延により0.9mmの板厚とした。さらに、1000℃で100秒の中間焼鈍を施した後、冷間圧延により0.23mm厚に仕上げた。
 その後、均熱条件が820℃で20秒、50%H2+50%N2で露点55℃の脱炭焼鈍を兼ねた一次再結晶焼鈍を施した後、MgOを主体とする焼鈍分離剤を塗布し、1150℃で3時間、H2雰囲気で保定する純化焼鈍を兼ねた二次再結晶焼鈍を行った。その後、リン酸マグネシウムとクロム酸を主体とした張力付与コーティングの形成を兼ねた、平坦化焼鈍を850℃で10秒の条件で施した。かくして得られたサンプルの磁束密度B8をJIS C2550に記載の方法で測定した結果について、表2に併記する。表2から明らかなように、本発明に従って得られた鋼板は、良好な磁気特性を有することが分かる。
Figure JPOXMLDOC01-appb-T000002
 本発明は、インヒビター形成成分を使用せずに薄スラブから製造された方向性電磁鋼板について、優れた磁気特性を安定して得ることができるだけでなく、方向性電磁鋼板と同様のα単相組織を有するステンレス鋼にも適用することが可能である。

Claims (5)

  1.  質量%で、
     C:0.002%以上0.100%以下、
     Si:2.00%以上8.00%以下および
     Mn:0.005%以上1.000%以下を含有し、
     Al:0.0100%未満、N:0.0050%未満、S:0.0050%未満およびSe:0.0050%未満に抑制し、残部はFeおよび不可避的不純物である成分組成を有する溶鋼を連続鋳造に供して厚さ25mm以上100mm以下のスラブを形成し、該スラブを加熱してから熱間圧延を施して熱延鋼板とし、
     該熱延鋼板に、1回の冷間圧延または中間焼鈍を挟む2回以上の冷間圧延を施して最終板厚を有する冷延鋼板とし、
     該冷延鋼板に一次再結晶焼鈍を施し、
     該一次再結晶焼鈍後の冷延鋼板に二次再結晶焼鈍を施す方向性電磁鋼板の製造方法であって、
     前記スラブを加熱する工程は、温度を1000℃以上1300℃以下かつ時間を10秒以上600秒以下とする方向性電磁鋼板の製造方法。
  2.  前記スラブを加熱する工程は、該スラブを鋳造方向に10m/min以上の速度で搬送しながら加熱する、請求項1に記載の方向性電磁鋼板の製造方法。
  3.  前記成分組成は、質量%で、
     S:0.0030%未満およびSe:0.0030%未満である、請求項1または2に記載の方向性電磁鋼板の製造方法。
  4.  前記成分組成は、さらに、質量%で、
     Cr:0.01%以上0.50%以下、
     Cu:0.01%以上0.50%以下、
     P:0.005%以上0.50%以下、
     Ni:0.001%以上0.50%以下、
     Sb:0.005%以上0.50%以下、
     Sn:0.005%以上0.50%以下、
     Bi:0.005%以上0.50%以下、
     Mo:0.005%以上0.100%以下、
     B:0.0002%以上0.0025%以下、
     Nb:0.0010%以上0.0100%以下および
     V:0.0010%以上0.0100%以下
    のうちから選ばれる1種または2種以上を含有する、請求項1から3のいずれかに記載の方向性電磁鋼板の製造方法。
  5.  前記スラブを加熱する工程は、該加熱の少なくとも一部を誘導加熱方式で行う、請求項1から4のいずれかに記載の方向性電磁鋼板の製造方法。
PCT/JP2017/039612 2016-11-01 2017-11-01 方向性電磁鋼板の製造方法 WO2018084198A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
RU2019116290A RU2716053C1 (ru) 2016-11-01 2017-11-01 Способ производства текстурированной электротехнической листовой стали
BR112019008260-3A BR112019008260B1 (pt) 2016-11-01 2017-11-01 Método para produzir lâmina de aço elétrico de grão orientado
KR1020197014715A KR102251592B1 (ko) 2016-11-01 2017-11-01 방향성 전자 강판의 제조 방법
US16/344,441 US20190323100A1 (en) 2016-11-01 2017-11-01 Method for producing grain-oriented electrical steel sheet
JP2018549052A JP6631724B2 (ja) 2016-11-01 2017-11-01 方向性電磁鋼板の製造方法
CN201780065934.5A CN109906277B (zh) 2016-11-01 2017-11-01 取向性电磁钢板的制造方法
EP17866924.8A EP3536814B1 (en) 2016-11-01 2017-11-01 Method for producing grain-oriented electrical steel sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016214613 2016-11-01
JP2016-214613 2016-11-01

Publications (1)

Publication Number Publication Date
WO2018084198A1 true WO2018084198A1 (ja) 2018-05-11

Family

ID=62076010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/039612 WO2018084198A1 (ja) 2016-11-01 2017-11-01 方向性電磁鋼板の製造方法

Country Status (8)

Country Link
US (1) US20190323100A1 (ja)
EP (1) EP3536814B1 (ja)
JP (1) JP6631724B2 (ja)
KR (1) KR102251592B1 (ja)
CN (1) CN109906277B (ja)
BR (1) BR112019008260B1 (ja)
RU (1) RU2716053C1 (ja)
WO (1) WO2018084198A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220090226A1 (en) * 2019-01-16 2022-03-24 Nippon Steel Corporation Method for producing grain-oriented electrical steel sheet
US20220098691A1 (en) * 2019-01-16 2022-03-31 Nippon Steel Corporation Method for manufacturing grain-oriented electrical steel sheet
US20220106661A1 (en) * 2019-01-16 2022-04-07 Nippon Steel Corporation Method for producing grain oriented electrical steel sheet

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6455468B2 (ja) 2016-03-09 2019-01-23 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JP6512386B2 (ja) * 2017-02-20 2019-05-15 Jfeスチール株式会社 方向性電磁鋼板の製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05105956A (ja) * 1991-07-25 1993-04-27 Kawasaki Steel Corp 板幅方向に均一な磁気特性を有する一方向性けい素鋼板の製造方法
JP2000129354A (ja) * 1998-10-27 2000-05-09 Kawasaki Steel Corp 磁束密度の高い方向性電磁鋼板の製造方法
JP2001303214A (ja) * 2000-04-25 2001-10-31 Kawasaki Steel Corp 高周波磁気特性に優れた方向性電磁鋼板およびその製造方法
JP2005146295A (ja) * 2003-11-11 2005-06-09 Jfe Steel Kk 磁気特性に優れた方向性電磁鋼板の製造方法
JP2008069391A (ja) * 2006-09-13 2008-03-27 Nippon Steel Corp 高磁束密度方向性珪素鋼板の製造方法
US20120018049A1 (en) * 2008-11-18 2012-01-26 Centro Sviluppo Materiali S.P.A. Process for the production of grain-oriented magnetic sheet starting from thin slab
JP2013512332A (ja) * 2009-11-25 2013-04-11 タタ、スティール、アイモイデン、ベスローテン、フェンノートシャップ 方向性電磁鋼帯を製造する方法およびそれにより製造された方向性電磁鋼

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2038389C1 (ru) * 1991-10-25 1995-06-27 Армко Инк. Способ производства кремнистой текстурованной стали
IT1284268B1 (it) * 1996-08-30 1998-05-14 Acciai Speciali Terni Spa Procedimento per la produzione di lamierino magnetico a grano orientato, con elevate caratteristiche magnetiche, a partire da
JP3707268B2 (ja) 1998-10-28 2005-10-19 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JP2002212639A (ja) 2001-01-12 2002-07-31 Nippon Steel Corp 磁気特性に優れた一方向性珪素鋼板の製造方法
SI1752549T1 (sl) * 2005-08-03 2016-09-30 Thyssenkrupp Steel Europe Ag Postopek za proizvodnjo zrnato usmerjene magnetne jeklene vzmeti
DE102007005015A1 (de) * 2006-06-26 2008-01-03 Sms Demag Ag Verfahren und Anlage zur Herstellung von Warmband-Walzgut aus Siliziumstahl auf der Basis von Dünnbrammen
US9187798B2 (en) * 2010-06-18 2015-11-17 Jfe Steel Corporation Method for manufacturing grain oriented electrical steel sheet
WO2014020369A1 (en) * 2012-07-31 2014-02-06 Arcelormittal Investigación Y Desarrollo Sl Method of production of grain-oriented silicon steel sheet grain oriented electrical steel sheet and use thereof
JP5939156B2 (ja) * 2012-12-28 2016-06-22 Jfeスチール株式会社 方向性電磁鋼板の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05105956A (ja) * 1991-07-25 1993-04-27 Kawasaki Steel Corp 板幅方向に均一な磁気特性を有する一方向性けい素鋼板の製造方法
JP2000129354A (ja) * 1998-10-27 2000-05-09 Kawasaki Steel Corp 磁束密度の高い方向性電磁鋼板の製造方法
JP2001303214A (ja) * 2000-04-25 2001-10-31 Kawasaki Steel Corp 高周波磁気特性に優れた方向性電磁鋼板およびその製造方法
JP2005146295A (ja) * 2003-11-11 2005-06-09 Jfe Steel Kk 磁気特性に優れた方向性電磁鋼板の製造方法
JP2008069391A (ja) * 2006-09-13 2008-03-27 Nippon Steel Corp 高磁束密度方向性珪素鋼板の製造方法
US20120018049A1 (en) * 2008-11-18 2012-01-26 Centro Sviluppo Materiali S.P.A. Process for the production of grain-oriented magnetic sheet starting from thin slab
JP2013512332A (ja) * 2009-11-25 2013-04-11 タタ、スティール、アイモイデン、ベスローテン、フェンノートシャップ 方向性電磁鋼帯を製造する方法およびそれにより製造された方向性電磁鋼

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3536814A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220090226A1 (en) * 2019-01-16 2022-03-24 Nippon Steel Corporation Method for producing grain-oriented electrical steel sheet
US20220098691A1 (en) * 2019-01-16 2022-03-31 Nippon Steel Corporation Method for manufacturing grain-oriented electrical steel sheet
US20220106661A1 (en) * 2019-01-16 2022-04-07 Nippon Steel Corporation Method for producing grain oriented electrical steel sheet

Also Published As

Publication number Publication date
RU2716053C1 (ru) 2020-03-05
CN109906277A (zh) 2019-06-18
BR112019008260A2 (pt) 2019-07-02
JPWO2018084198A1 (ja) 2019-02-28
BR112019008260B1 (pt) 2022-10-04
CN109906277B (zh) 2021-01-15
EP3536814A1 (en) 2019-09-11
JP6631724B2 (ja) 2020-01-15
EP3536814A4 (en) 2019-09-11
US20190323100A1 (en) 2019-10-24
EP3536814B1 (en) 2020-12-23
KR20190075985A (ko) 2019-07-01
KR102251592B1 (ko) 2021-05-12

Similar Documents

Publication Publication Date Title
EP2878687B1 (en) Method for producing grain-oriented electrical steel sheet
WO2018084198A1 (ja) 方向性電磁鋼板の製造方法
CN109844156B (zh) 用于制造电磁钢板的热轧钢板及其制造方法
WO2014013615A1 (ja) 方向性電磁鋼板の製造方法
EP3214188B1 (en) Production method for oriented grain-electromagnetic steel sheet
JP6512386B2 (ja) 方向性電磁鋼板の製造方法
JP6418226B2 (ja) 方向性電磁鋼板の製造方法
JP6631725B2 (ja) 方向性電磁鋼板の製造方法
JP6813143B1 (ja) 方向性電磁鋼板の製造方法
WO2020218329A1 (ja) 方向性電磁鋼板の製造方法
JP6947147B2 (ja) 方向性電磁鋼板の製造方法
JP6607176B2 (ja) 方向性電磁鋼板の製造方法
JP6866901B2 (ja) 方向性電磁鋼板の製造方法
JP6866869B2 (ja) 方向性電磁鋼板の製造方法
JP2018090851A (ja) 方向性電磁鋼板の製造方法
JP6544344B2 (ja) 方向性電磁鋼板の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018549052

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17866924

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019008260

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20197014715

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017866924

Country of ref document: EP

Effective date: 20190603

ENP Entry into the national phase

Ref document number: 112019008260

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190424