WO2018082530A1 - 数据处理方法和发送设备 - Google Patents

数据处理方法和发送设备 Download PDF

Info

Publication number
WO2018082530A1
WO2018082530A1 PCT/CN2017/108401 CN2017108401W WO2018082530A1 WO 2018082530 A1 WO2018082530 A1 WO 2018082530A1 CN 2017108401 W CN2017108401 W CN 2017108401W WO 2018082530 A1 WO2018082530 A1 WO 2018082530A1
Authority
WO
WIPO (PCT)
Prior art keywords
modulation
matrix
transmitting device
dimension
mapping
Prior art date
Application number
PCT/CN2017/108401
Other languages
English (en)
French (fr)
Inventor
吴艺群
杜颖钢
陈雁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17867581.5A priority Critical patent/EP3531576B1/en
Priority to KR1020197015004A priority patent/KR102213563B1/ko
Priority to RU2019117026A priority patent/RU2750239C2/ru
Priority to JP2019523876A priority patent/JP6885659B2/ja
Publication of WO2018082530A1 publication Critical patent/WO2018082530A1/zh
Priority to US16/402,897 priority patent/US10727915B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03891Spatial equalizers
    • H04L25/03898Spatial equalizers codebook-based design
    • H04L25/03929Spatial equalizers codebook-based design with layer mapping, e.g. codeword-to layer design
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0689Hybrid systems, i.e. switching and simultaneous transmission using different transmission schemes, at least one of them being a diversity transmission scheme
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0697Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using spatial multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • H04B7/0473Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking constraints in layer or codeword to antenna mapping into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code

Definitions

  • the present application relates to the field of communications and, more particularly, to a multiple access based spatial diversity technique in a wireless communication system.
  • SCMA Sparse Code Multiple Access
  • OFDM Orthogonal Frequency Division Multiplexing
  • a multi-input multi-output (MIMO) technology that is, a transmitting device and a receiving device can perform data transmission through multiple antenna ports to improve system capacity and transmission reliability. Therefore, it is desirable to combine multiple input multiple output techniques with multiplexing techniques such as sparse code division multiple access or orthogonal frequency division multiplexing to further improve communication system performance.
  • MIMO multi-input multi-output
  • the data processing method provided by the embodiment of the present application can utilize spatial diversity gain in the code domain, thereby improving communication reliability.
  • an embodiment of the present application provides a data processing method, where a sending device processes a bit stream to be modulated to generate a layer of a modulation symbol sequence, and processes the generated modulation symbol sequence through a matrix to implement diversity processing.
  • the method includes: the transmitting device generates a layer of modulation symbol sequence according to the bit stream, the modulation symbol sequence includes N modulation vectors, and any one of the modulation vectors A i includes U modulation symbols, U ⁇ 2, N ⁇ i ⁇ 1, and N is positive Integer.
  • the transmitting device processes the modulation vector A i using the matrix B i to generate a modulation matrix y i , wherein each modulation matrix includes T elements in the first dimension, T is the number of spatial resources, T ⁇ 2, and the modulation matrix y i Mapping the bitstream to the T spatial domain resources.
  • the layer of modulation symbols can be transmitted through multiple antenna ports, thereby generating spatial diversity gain in the code domain and improving transmission reliability.
  • the matrix B i adopted for each modulation vector may be the same or may be different, so that for each modulation vector A i , a different mapping manner can be implemented by applying different matrices B i , thereby being able to adapt to different scenarios. .
  • the modulation vector A i includes V non-zero modulation symbols.
  • the matrix B i includes a sequence of T elements in the first dimension. Wherein at least one of the T element sequences is a non-zero element sequence, and the non-zero element sequence is a sequence of elements including at least one non-zero element.
  • the matrix B i includes V non-zero element sequences in the second dimension, U ⁇ V ⁇ 1.
  • the processing of the modulation vector A i by the transmitting device according to the matrix B i may be a mapping process on the modulation vector A i according to the matrix B i , so that the modulation symbol sequence can correspond to the T spatial resources after the mapping process.
  • the transmitting device maps the modulation vector A i according to the matrix B i , where B i is or
  • the transmission apparatus in addition to the modulation processing according to the matrix vector A i B i, for vector modulation process according to the matrix A j B j, the transmission apparatus further map the modulation vector according to the matrix A m B m, the m is not equal to i and is not equal to j, and the B m may be or N ⁇ m ⁇ 1, N ⁇ 3.
  • At least one non-zero modulation symbol and at least one zero modulation symbol are included in the U symbols.
  • the U modulation symbols may also be non-zero modulation symbols.
  • an embodiment of the present application further provides another data processing method, which is different from the first aspect in that a transmitting device can generate a multi-layer modulation symbol sequence according to a bit stream, and perform a multi-layer modulation symbol sequence. deal with.
  • the transmitting device may generate a multi-layer modulation symbol sequence according to the bit stream and process the multi-layer modulation symbol sequence.
  • the modulation vector include V non-zero modulation symbols, matrix In the first dimension, a sequence of T elements is included, at least one of which is a non-zero element sequence, and the non-zero element sequence includes at least one non-zero element, a matrix In the second dimension, V non-zero element sequences are included, U ⁇ V ⁇ 1.
  • the transmitting device is also based on a matrix Modulation vector Mapping, the m is not equal to i and is not equal to j, Can be or N ⁇ m ⁇ 1, N ⁇ 3.
  • the data processing method further includes: a modulation matrix generated by the transmitting device separately for the L layer modulation symbol sequence Superposition processing is performed to generate a matrix to be transmitted, wherein the matrix to be transmitted includes T element sequences in the first dimension, and the matrix to be transmitted includes i ⁇ U element sequences in the second dimension.
  • an embodiment of the present application provides a sending device, where the sending device has a function of implementing the steps in the method design of the first aspect or the second aspect.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the modules can be software and/or hardware.
  • an embodiment of the present application provides a transmitting device, where the transmitting device includes a modulation processor, a transmitter, a controller/processor, a memory, and an antenna, and the modulation processor is configured to perform the first aspect described in the foregoing aspect. Or the second aspect of the data processing method.
  • the modulation processor processes the bit stream to generate a sequence of modulation symbols, and processes the generated sequence of modulation symbols according to the matrix, thereby supporting the transmitting device to implement the solution in the method design of the first aspect and the second aspect described above.
  • an embodiment of the present application provides a computer storage medium for storing computer software instructions used by the sending device, which includes a program for executing the foregoing aspects.
  • the transmitting device of the foregoing aspects may be a network side device, such as a base station, or may be a terminal side device.
  • the solution provided by the present application can perform spatial diversity on resource mapping based on a symbol sequence, bringing diversity gain, thereby improving communication reliability.
  • FIG. 1 is a schematic diagram of a possible communication network of the present application.
  • FIG. 2 is a schematic flowchart of a data processing method according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a codebook mapping according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a modulation matrix mapping according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of another modulation matrix mapping according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of another modulation matrix mapping provided by an embodiment of the present application.
  • FIG. 7 is a schematic flowchart diagram of another data processing method according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of a modulation matrix mapping and superposition according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a unit of a sending device according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of another unit of a sending device according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a sending device according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of a receiving device according to an embodiment of the present disclosure.
  • a component can be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and a computing device can be a component.
  • One or more components can reside within a process and/or execution thread, and the components can be located on one computer and/or distributed between two or more computers.
  • These components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on signals having one or more data packets (eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems
  • a terminal may also be called a User Equipment (UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, and a user agent. Or user device.
  • the access terminal may be a cellular phone, a cordless phone, a SIP (Session Initiation Protocol) phone, a WLL (Wireless Local Loop) station, a PDA (Personal Digital Assistant), and a wireless communication.
  • the present application describes various embodiments in connection with a network device.
  • the network device may be a device on the network side for communicating with the mobile device, and the network device may be a BTS (Base in Global System of Mobile communication) or CDMA (Code Division Multiple Access).
  • the eNB NodeB, base station
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • An evolutionary Node B an evolved base station, or a relay station or an access point, or an in-vehicle device, a wearable device, and a network-side device in a future 5G network.
  • the network device in this specification uses a base station as an example.
  • the term "article of manufacture” as used in this application encompasses a computer program accessible from any computer-readable device, carrier, or media.
  • the computer readable medium may include, but is not limited to, a magnetic storage device (for example, a hard disk, a floppy disk, or a magnetic tape), and an optical disk (for example, a CD (Compact Disk), a DVD (Digital Versatile Disk). Etc.), smart cards and flash memory devices (eg, EPROM (Erasable Programmable Read-Only Memory), cards, sticks or key drivers, etc.).
  • various storage media described herein can represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, without limitation, a wireless channel and various other mediums capable of storing, containing, and/or carrying instructions and/or data.
  • the communication system 100 includes at least a transmitting device 101 and a receiving device 102.
  • the transmitting device 101 comprises at least two antennas, for example, the transmitting device 101 comprises transmitting antennas Tx 1 and Tx 2 .
  • the receiving device 102 includes at least one antenna, for example, the receiving device 102 includes a receiving antenna Rx 1 . Although a limited number of antennas are shown in FIG. 1 for the transmitting device 101 and the receiving device 102, more antennas may be used for both the transmitting device 101 and the receiving device 102.
  • the antenna may be a physical antenna or a logical port corresponding to a reference signal (which may be referred to as an antenna port).
  • the transmitting device 101 may be a network side device or may be a terminal device.
  • the sending device 101 is a network side device
  • the receiving device 102 is a terminal device; when the sending device 101 is a terminal device, the receiving device 102 is a network side device.
  • FIG. 2 is a schematic flowchart of a data processing method 200 according to an embodiment of the present application.
  • the data processing method 200 is mainly applied to a transmitting device.
  • the transmitting device can be a network device (eg, one of the aforementioned network devices), ie the method 200 can be applied to downlink transmission.
  • the transmitting device may be a terminal device (ie, one of the foregoing user devices), that is, the method 200 may be applied to uplink transmission.
  • the data processing method 200 includes:
  • the transmitting device generates a layer of modulation symbol sequence according to the bit stream, where the modulation symbol sequence includes N modulation vectors, and any one of the modulation vectors A i includes U modulation symbols, U ⁇ 2, N ⁇ i ⁇ 1, and N is a positive integer.
  • the transmitting device processes the modulation vector A i by using the matrix B i to generate a modulation matrix y i .
  • the modulation matrix y i includes T elements in a first dimension, T is the number of spatial domain resources used to transmit the bit stream, T ⁇ 2, and the modulation matrix y i is used to map the bit stream to T spatial domain resources.
  • the airspace resource may be an antenna or may be an antenna port.
  • the "antenna port" will be described as an example.
  • the transmitting device maps a layer of modulation symbol sequence to T antenna ports and transmits, and can generate spatial diversity gain in the code domain, thereby reducing the bit error rate, thereby improving communication reliability.
  • the receiving device receives the signal transmitted from the mapping result of the modulation matrix y i of the transmitting device, and completes the corresponding decoding according to the modulation and coding manner and mapping manner of each layer.
  • step S210 is further described.
  • the transmitting device may process the bit stream by using a multiple access method to generate a modulation symbol sequence, and the multiple access mode may be a sparse code division multiple access interface.
  • SCMA Orthogonal Frequency Division Multiplexing
  • FDMA Frequency Division Multiple Address
  • TDMA Time Division Multiple Address
  • CDMA Code Division Multiple Address
  • PDMA Pattern Division Multiple Access
  • NOMA Non-Orthogonal Multiple Access
  • MUSA Multiple User Shared Access
  • SCMA will be described as an example.
  • a bit stream is mapped to an SCMA codeword by multi-dimensional modulation and sparse spreading at a transmitting device, and the receiving device completes decoding by multi-user detection.
  • FIG. 3 is a simplified schematic diagram of SCMA codebook mapping.
  • the SCMA codebook includes a zero symbol (blank portion) and a non-zero symbol (shaded portion), and the respective SCMA codebooks are distinguished by the position of the non-zero symbol.
  • the factor diagram (English name: factor graph) can be used to represent the correspondence between the codebook and the resource unit (English name: Resource Elements, English abbreviation: RE).
  • the variable node (English name: Variable Node, English abbreviation: VN) corresponds to a transmitting device that uses different SCMA codebooks, and is represented by V1 to V6, respectively.
  • the function node (English name: Function Node, English abbreviation: FN) corresponds to different REs. When there is a connection between the VN and the FN, it indicates that the transmitting device sends a non-zero modulation symbol on the corresponding RE; when there is no connection between the VN and the FN, it indicates that the transmitting device sends a zero modulation on the corresponding RE. symbol.
  • the above uses six transmitting devices as an illustration to illustrate how to carry data of six transmitting devices on four resource units.
  • the bit stream can be processed by the same SCMA codebook to generate a layer of modulation symbol sequence, or the bit stream can be processed by a different SCMA codebook to generate a layer of modulation symbol sequence.
  • U modulation symbols may be included in the modulation vector A i , the U modulation symbols may include at least one non-zero modulation symbol and at least one zero modulation symbol.
  • the modulation vector A i of the codebook 1 may be in the form of [x 1 , 0, x 3 , 0]
  • the modulation vector A i of the codebook 2 may be [0, x 2 , 0, x.
  • the modulation vector A i using the codebook 3 may be in the form of [x 1 , x 2 , 0, 0]
  • the modulation vector A i using the codebook 4 may be [0, 0, x 3 , x
  • the modulation vector A i using the codebook 5 may be in the form of [x 1 , 0, 0, x 4 ]
  • the modulation vector A i using the codebook 6 may be [0, x 2 , x 3 , 0] form.
  • x 1 , x 2 , x 3 and x 4 in the present application are used to indicate that the corresponding position is a non-zero modulation symbol, and is not intended to limit the value thereof.
  • the U modulation symbols in the modulation vector A i are all non-zero modulation symbols.
  • the transmitting device sequentially processes a unit number of bits (for example, two bits, or four bits, etc.) in the bit stream by using one SCMA codebook to generate a layer of modulation symbol sequence.
  • the one layer of modulation symbol sequence includes N modulation vectors, and each modulation vector corresponds to one unit number of bits. Since each unit number of bits uses the same SCMA codebook, the positions of the non-zero elements in the generated modulation vectors are the same, and the abbreviations are of the same form.
  • the modulation vector A i may be in the form of [x 1 , 0, x 3 , 0], or both are in the form of [0, x 2 , 0, x 4 ], which is not limited in this application.
  • the transmitting device sequentially processes a unit number of bits in the bitstream by using multiple SCMA codebooks to generate a layer of modulation symbol sequences.
  • the plurality of SCMA codebooks may be used in a round robin manner or in a random manner.
  • the one layer of modulation symbol sequence includes N modulation vectors, and each modulation vector corresponds to one unit number of bits. Since the bits of each unit number may be different SCMA codebooks, the positions of the non-zero modulation symbols in the generated modulation vectors may also be different, and the abbreviations are different in form.
  • the modulation vector A 1 may be in the form of [x 1 , 0, x 3 , 0] and the modulation vector A 2 may be in the form of [0, x 2 , 0, x 4 ], which is not limited in this application.
  • step S220 the transmitting device processes the modulation vector A i using the matrix B i to generate a modulation matrix y i , and the modulation matrix y i includes T elements in the first dimension.
  • T is the number of antenna ports used to transmit the bitstream
  • the modulation matrix y i is used to map the bitstream to T antenna ports.
  • the transmitting device performs a mapping process using the matrix B i to generate a modulation matrix y i , wherein the first dimension of the modulation matrix y i includes T elements, in other words, the modulation matrix y i includes T in the first dimension.
  • the sequence of elements corresponds to one antenna port, thereby mapping the modulation matrix y i to T antenna ports.
  • the modulation vector A i can obtain spatial diversity gain on the code domain, reducing the bit error rate.
  • the matrix B i will be described, and the dimensions of the matrix B i include rows and columns.
  • the first dimension may be the row direction of the matrix B i
  • the second dimension is the column direction of the matrix; or the first dimension may be the column direction of the matrix, and the second dimension may be the row direction of the matrix, This is not particularly limited.
  • the first dimension of the matrix B i is the row direction, a second dimension B i of the matrix in the column direction.
  • the number of elements included in at least one dimension of each matrix B i is T, so that at least one dimension of the modulation matrix y i obtained after mapping includes T element sequences.
  • at least one of the T element sequences is a non-zero element sequence, wherein the non-zero element sequence refers to a sequence of elements including at least one non-zero element.
  • the matrix B i may comprise an element sequence that is inconsistent with the number of modulation symbols in the modulation vector A i (case 1), or in the second dimension, the matrix B i may comprise the number of modulation symbols in the modulation vector A i Consistent sequence of elements (case 2). The following are explained based on two cases:
  • the matrix B i includes a sequence of V elements in a second dimension, all of which are sequences of non-zero elements. Each non-zero element sequence corresponds to each non-zero modulation symbol in the modulation vector A i .
  • [x 1 , 0, x 3 , 0] is mapped onto the element sequence corresponding to the two antenna ports.
  • mapping process is further illustrated by taking [x 1 , 0, x 3 , 0] as an example.
  • the map operation is specifically such that each column in Q is obtained by multiplying the transposed R and C column vector points.
  • the transmitting device takes the non-zero modulation symbols [x 1 , x 3 ] in [x 1 , 0, x 3 , 0] and according to the matrix:
  • the first row of B i will be transposed after the row vector [x 1 , x 3 ] And the second column
  • the first column and the second column of A ' i are respectively obtained by dot multiplication, and the following map operations are similar.
  • the matrix A ′ i is zero-padded to generate a modulation matrix:
  • FIG. 4 is a schematic diagram of resource mapping of a modulation matrix y 1 , wherein a first column element in y i is mapped to a resource unit RE #1 ⁇ RE #4 corresponding to Tx 1 , and a second column element It is mapped to resource units RE#1 to RE#4 corresponding to Tx 2 .
  • the first column element in y i may also be mapped to Tx 2
  • the second column element may also be mapped to Tx 1 .
  • the matrix B i can also First, the transmitting device takes a non-zero modulation symbol [x 1 , x 3 ] in [x 1 , 0, x 3 , 0] and generates a matrix according to the matrix B i :
  • the matrix A ′ i is zero-padded to generate a modulation matrix:
  • the modulation matrix y i includes two columns of elements, and the transmitting device maps the two columns of elements to two antenna ports. Please refer to FIG. 5, which shows a resource mapping diagram of the modulation matrix y i .
  • the transmitting device may also process a sequence of modulation symbols by using two matrixes B i and B j in a round robin manner.
  • the form of each modulation vector processed may be the same or different, and is not limited thereto.
  • the two modulation vectors A i and A j in a sequence of one modulation symbol generated by using the same codebook are taken as an example.
  • the positional relationship between the two modulation vectors A i and A j may be adjacent or may be It is not adjacent.
  • the forms of the two modulation vectors A i and A j may be the same or different.
  • the modulation vectors A i and A j which are adjacent and identical in format will be described as an example.
  • the transmission apparatus using the modulation matrix B i A i mapping vector, a matrix B j A j of the modulation vector carry out mapping, modulation two vectors A i and A j are [x 1, 0, x 3 , 0 ]form.
  • the transmitting device takes the non-zero modulation symbols [x 1 , x 3 ] in [x 1 , 0, x 3 , 0] and according to the matrix:
  • the transmitting device performs zero-padding processing on the matrix A' i to generate the modulation matrix y i as:
  • the modulation matrix y i includes two columns of elements that are mapped to two antenna ports.
  • the first column element in y i is mapped to the resource elements RE#1 to RE#4 corresponding to Tx 1
  • the second column element is mapped to the resource elements RE#1 to RE#4 corresponding to Tx 2 .
  • the transmitting device takes the non-zero modulation symbol [x 1 , x 3 ] in the modulation vector A j and according to the matrix:
  • the transmitting device performs zero-padding processing on the matrix A' j to generate a modulation matrix:
  • the modulation matrix y j includes two columns of elements that are mapped to two antenna ports, respectively.
  • the first column element in y j is mapped to the resource unit RE#5 to RE#8 corresponding to Tx 1
  • the second column element is mapped to the resource unit RE#5 to RE#8 corresponding to Tx 2 .
  • FIG. 6 is a schematic diagram of resource mapping of modulation matrices y i and y j in the present embodiment.
  • the transmitting device may further map the modulation vector A m according to another matrix B m , where m is not equal to i and is not equal to j, N. ⁇ m ⁇ 1, N ⁇ 3.
  • the B m can be or
  • the transmitting device can map each modulation vector in the modulation symbol sequence by using three matrixes B i , B j and B m in a round robin manner.
  • the transmission apparatus using the modulation matrix B i A i mapping vector, a matrix B j A j of the modulation vector mapping, using the modulation vectors B m A m mapping.
  • the transmitting device After completing one cycle, the transmitting device continues to process the modulation vector after the modulation vector A m using the matrix B i . In other embodiments, the transmitting device may also process a sequence of modulation symbols using the aforementioned four or more matrices.
  • the matrix B i includes a sequence of U elements in the second dimension, the sequence of U elements corresponding to U modulation symbols in the modulation vector A i .
  • the sequence of the U elements includes V non-zero element sequences, and the positions of the V non-zero element sequences in the U element sequence are the same as the positions of the V non-zero modulation symbols in the U modulation symbols.
  • the matrix B i can be The matrix B i includes two element sequences in a first dimension (in the present embodiment, the first dimension is a row direction) to correspond to two antenna ports; in the second dimension (in the present embodiment, the second The dimension is the column direction) consisting of a sequence of four elements, where the first row and the third behave two non-zero element sequences to correspond to two non-zero modulation symbols in [x 1 , 0, x 3 , 0].
  • the following further instructions for the matrix B i, B 1 according to the position of the matrix [x 1, 0, x 3 , 0] zero elements, based on the diagonal matrix
  • the zero-padding process is performed so that non-zero modulation symbols in [x 1 , 0, x 3 , 0] can be mapped to different antenna ports.
  • the matrix B i can also be based on an anti-corner matrix or and A combination of the two is obtained. See Table 1, for an example of a matrix that can be used for different forms of modulation vectors:
  • the transmitting device when the matrix B i adopts the option 1, the transmitting device generates a modulation matrix according to the matrix B i :
  • the transmitting device maps the two column elements of the modulation matrix y i to the two antenna ports.
  • the transmitting device When the matrix B i adopts option 2, the transmitting device generates a modulation matrix according to the matrix B i :
  • the transmitting device maps the two column elements of the modulation matrix y i to the two antenna ports.
  • the transmission device for modulation symbol sequences in adjacent or non-adjacent two modulation vector A i and A j are mapped using a round robin.
  • two modulation vectors adjacent to each other in the form of [x 1 , 0, x 3 , 0] are taken as an example for further explanation.
  • the transmitting device processes the modulation vector A i according to the matrix B i to generate a modulation matrix:
  • the transmitting device maps the two column elements of the modulation matrix y i to the two antenna ports.
  • the transmitting device maps the modulation vector A j according to the matrix B j to generate a modulation matrix:
  • the transmitting device maps the two column elements of the modulation matrix y j to the two antenna ports.
  • FIG. 7 is another data processing method 700 according to an embodiment of the present application, which is different from the data processing method 200 shown in FIG. 2 in that the data processing method 700 can generate and process a multi-layer modulation symbol sequence based on a bit stream.
  • the transmitting device generates L-layer modulation symbol sequences using L codebooks respectively, and generates a six-layer modulation symbol sequence by using six codebooks as shown in FIG.
  • the transmitting device may also separately generate L-layer modulation symbol sequences by using L codebook combinations, wherein the L codebook combinations respectively include different codebooks.
  • L codebook combinations respectively include different codebooks.
  • Step S702 the sending device pairs the Using matrix Processing to generate a modulation matrix
  • Each modulation matrix includes T elements in the first dimension, T is the number of spatial resources, T ⁇ 2, modulation matrix And for mapping the bit stream to the T spatial domain resources.
  • the transmitting device can generate a multi-layer modulation symbol sequence according to the bit stream, and process the multi-layer modulation symbol sequence to implement spatial diversity gain.
  • the U modulation symbols include at least one non-zero modulation symbol and at least one zero modulation symbol. More specifically, the modulation vector It includes V non-zero modulation symbols, U ⁇ V ⁇ 1.
  • matrix A sequence of T elements is included in the first dimension, at least one of which is a sequence of non-zero elements, the sequence of non-zero elements comprising at least one non-zero element.
  • matrix In the second dimension V non-zero element sequences are included.
  • the transmitting device is based on a matrix Modulation vector Mapping, according to matrix Correct For mapping, i is not equal to j, N ⁇ j ⁇ 1, N ⁇ 2; for for
  • the transmitting device is based on a matrix Modulation vector Mapping, according to matrix Correct In addition to mapping, it is also based on matrix Modulation vector Mapping, the m is not equal to i and is not equal to j, Can be or N ⁇ m ⁇ 1, N ⁇ 3.
  • step 702 For a more detailed implementation of step 702, reference may be made to the related description of step 202 shown in FIG. 2, and details are not described herein again.
  • the data processing method 500 further includes a step 703, where the sending device separately generates a modulation matrix for the L layer modulation symbol sequence.
  • the superposition process is performed to generate a matrix to be transmitted.
  • the matrix to be transmitted includes a sequence of T elements in the first dimension, and the matrix to be transmitted includes a sequence of i ⁇ U elements in the second dimension.
  • FIG. 8 a modulation matrix generated separately for a two-layer modulation symbol sequence with Schematic diagram of the superposition process.
  • a more common execution subject is a terminal, that is, applied to uplink transmission; in some cases, when the system 100 includes multiple terminals, When a plurality of terminals transmit data or signals to the same network side device, they can form a superimposed effect in the process of propagation.
  • the more common execution subject is a network side device, that is, applied to downlink transmission.
  • the sending device may be a user equipment, such as a terminal, or may be a network side device, such as a base station.
  • each network element such as a terminal, a base station, etc., in order to implement the above functions, includes hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in hardware or a combination of hardware and computer software in combination with the unit machine algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods to implement the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present application.
  • Fig. 9 shows a possible unit schematic diagram of a transmitting device involved in the above embodiment.
  • the transmitting device includes a modulation processing unit 901 and a mapping unit 902.
  • the modulation processing unit 901 is configured to generate a layer of modulation symbol sequence according to the bit stream, where the modulation symbol sequence includes N modulation vectors, and any one of the modulation vectors A i includes U modulation symbols, U ⁇ 2, N ⁇ i ⁇ 1, N is a positive integer.
  • the modulation processing unit 901 For the action performed by the modulation processing unit 901, reference is also made to the specific description of step S201 shown in FIG. 2, and details are not described herein again.
  • the mapping unit 902 is configured to process the modulation vector A i by using the matrix B i to generate a modulation matrix y i , each modulation matrix includes T elements in the first dimension, T is the number of spatial resources, T ⁇ 2, and a modulation matrix y i is used to map the bit stream to the T spatial domain resources.
  • each modulation matrix includes T elements in the first dimension, T is the number of spatial resources, T ⁇ 2, and a modulation matrix y i is used to map the bit stream to the T spatial domain resources.
  • FIG. 10 shows a possible unit schematic diagram of another transmitting device involved in the above embodiment.
  • the transmitting device 100 includes a modulation processing unit 1001 and a mapping unit 1002.
  • Each modulation matrix includes T elements in a first dimension, the T being the number of spatial resources used to transmit the bit stream, T ⁇ 2, modulation matrix And for mapping the bit stream to the T spatial domain resources.
  • T being the number of spatial resources used to transmit the bit stream
  • T ⁇ 2 modulation matrix And for mapping the bit stream to the T spatial domain resources.
  • the sending device 100 may further include a superimposing unit 1003.
  • the superimposing unit 1003 is configured to send a modulation matrix generated by the device to the L layer modulation symbol sequence separately
  • the superposition process is performed to generate a matrix to be transmitted.
  • the matrix to be transmitted includes a sequence of T elements in the first dimension, and the matrix to be transmitted includes a sequence of i ⁇ U elements in the second dimension.
  • Fig. 11 is a simplified schematic diagram showing the design structure of the transmitting apparatus involved in the above embodiment.
  • the transmitting device includes a modulation processor 1101, a transmitter 1102, a controller/processor 1103, a memory 1104, and antennas Tx 1 and Tx 2 .
  • Modulation processor 1101 processes (e.g., symbol modulates) the encoded service data and signaling messages and provides output samples.
  • Transmitter 1102 conditions (eg, analog conversion, filtering, amplifying, upconverting, etc.) the output samples and generates a transmit signal that is transmitted to the receiving device via antennas Tx 1 and Tx 2 .
  • the modulation processor 1101 is configured to support the transmitting device to perform the processes 201 and 202 of FIG. 2; or the modulation processor 1101 is configured to support the transmitting device to perform the processes 701, 702, and 703 of FIG.
  • the controller/processor 1103 controls and manages the actions of the transmitting device for performing other processing by the transmitting device in the above embodiment. For example, other processes for controlling the transmitting device for data processing and/or the techniques described herein.
  • the antenna may be a physical antenna or a logical port corresponding to a reference signal (or called an antenna port).
  • an antenna port a plurality of antenna ports may correspond to one physical antenna, which is not limited in this application.
  • the sending device may be a terminal or other terminal device, or may be a base station or may be other network devices. Whether it is a terminal or a base station, it may include any number of transmitters, receivers, processors, controllers, memories, communication units, antennas (ie, T may be greater than 2), etc., and all transmitting devices that can implement the present application All are within the scope of this application.
  • Fig. 12 is a simplified schematic view showing the design structure of the receiving apparatus designed in the above embodiment.
  • the receiving device includes a modulation processor 1201, a receiver 1202, a control/processor 1203, a memory 1204, and an antenna Rx 1 .
  • Receiver 1202 adjusts the signal received from the antenna to provide input samples.
  • Modulation processor 1201 further processes the input samples and provides decoded data and signaling messages that are sent to the receiving device.
  • the modulation processor 1201 is configured to support the receiving device to perform a signal for receiving a mapping result transmission from the modulation matrix y i of the transmitting device.
  • the controller/processor 1203 performs corresponding decoding according to the modulation and coding mode and the mapping manner of each layer, and controls and manages the operation of the receiving device for performing other processing performed by the receiving device in the above embodiment.
  • the receiving device may be a terminal, or may be a base station, or may be another network device. Whether it is a terminal or a base station, it may include any number of transmitters, receivers, processors, controllers, memories, communication units, antennas (ie, may be greater than 1), etc., and all receiving devices that can implement the present application Within the scope of protection of this application.
  • the modulation processor, the controller/processor for performing the above base station or terminal in the embodiment of the present application may be a central processing unit (CPU), a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), and a field. Programmable Gate Array (FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the steps of a method or algorithm described in connection with the present disclosure may be implemented in a hardware or may be implemented by a processor executing software instructions.
  • the software instructions may be comprised of corresponding software modules that may be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable hard disk, CD-ROM, or any other form of storage well known in the art.
  • An exemplary A storage medium is coupled to the processor, such that the processor can read information from the storage medium and can write information to the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC. Additionally, the ASIC can be located in the user equipment.
  • the processor and the storage medium may also reside as discrete components in the user equipment.
  • the functions described herein can be implemented in hardware, software, firmware, or any combination thereof.
  • the functions may be stored in a computer readable medium or transmitted as one or more instructions or code on a computer readable medium.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

本申请涉及移动通信领域,尤其涉及无线通信***中的数据处理技术。在一种数据处理方法中,发送设备根据比特流生成一层包括N个调制向量的调制符号序列,任意一个调制向量Ai包括U个调制符号,U≥2,N≥i≥1,N为正整数。发送设备对调制向量Ai采用矩阵Bi进行处理生成调制矩阵yi,每一调制矩阵在第一维度上包括T个元素,T为空域资源的数量,T≥2,调制矩阵yi用于将比特流映射至T个空域资源。通过本申请提供的方案,可以在码域上实现空间分集,从而提高了传输的可靠性。

Description

数据处理方法和发送设备 技术领域
本申请涉及通信领域,并且更具体地,涉及无线通信***中的基于多址的空间分集技术。
背景技术
随着技术的发展进步,在例如,稀疏码分多址(SCMA,Sparse Code Multiple Access)技术或正交频分复用(OFDM,Orthogonal Frequency Division Multiplexing)等技术中,已经能够允许多个终端设备复用相同的时频资源进行数据传输,即,发送设备可以在对需要传输的比特流进行编码调制以生成调制符号序列,并通过空口发送给接收设备。
目前,已知一种多输入多输出(MIMO,Multi-Input Multi-Output)技术,即,发送设备和接收设备可以通过多个天线端口进行数据传输,以提高***容量和传输可靠性。因此,希望将多输入多输出技术与稀疏码分多址或正交频分复用等复用技术相结合,从而进一步提高通信***性能。
如何将上述多输入多输出技术和稀疏码分多址等技术结合,以更大限度的提高***容量和传输可靠性,是急需解决的问题。
发明内容
本申请实施例提供的数据处理方法,能够在码域利用空间分集增益,从而提高通信的可靠性。
第一方面,本申请的实施例提供一种数据处理方法,发送设备对待调制的比特流进行处理后生成一层调制符号序列,并通过矩阵对所生成的调制符号序列进行处理,实现分集处理。
该方法包括,发送设备根据比特流生成一层调制符号序列,调制符号序列包括N个调制向量,任意一个调制向量Ai包括U个调制符号,U≥2,N≥i≥1,N为正整数。发送设备对调制向量Ai采用矩阵Bi进行处理生成调制矩阵yi,其中每一调制矩阵在第一维度上包括T个元素,T为空域资源的数量,T≥2,调制矩阵yi用于将所述比特流映射至所述T个空域资源。
通过对一层调制符号序列进行映射处理,该一层调制符号序列可以通过多个天线端口发送,从而在码域上产生了空间分集增益,提高了传输可靠性。
上述对各个调制向量采用的矩阵Bi可以相同或者可以不同,从而对于每个调制向量Ai而言,其可以通过应用不同的矩阵Bi实现更为多样的映射方式,从而能够适应不同的场景。
在一个可能的设计中,调制向量Ai中包括V个非零调制符号。矩阵Bi在第一维度包括T个元素序列。其中,该T个元素序列中至少一个为非零元素序列,非零元素序列为包括至少一个非零元素的元素序列。矩阵Bi在第二维度上包括V个非零元素序列,U≥V≥1。
上述发送设备根据矩阵Bi对调制向量Ai的处理可以为根据矩阵Bi对调制向量Ai进行映射处理,使得调制符号序列在映射处理后能对应T个空域资源。
在一个可能的设计中,当第一维度为行且T=2时,发送设备根据矩阵Bi对调制向量Ai 进行映射,其中Bi
Figure PCTCN2017108401-appb-000001
或者
Figure PCTCN2017108401-appb-000002
在另一个可能的设计中,当第一维度为行且T=2时,发送设备根据矩阵Bi对调制向量Ai进行映射,根据矩阵Bj对Aj进行映射,i不等于j,N≥j≥1,N≥2;其中,Bi
Figure PCTCN2017108401-appb-000003
Bj
Figure PCTCN2017108401-appb-000004
在又一可能的设计中,除了根据矩阵Bi对调制向量Ai进行处理,根据矩阵Bj对调制向量Aj进行处理以外,发送设备还根据矩阵Bm对调制向量Am进行映射,所述m不等于i且不等于j,所述Bm可以为
Figure PCTCN2017108401-appb-000005
或者
Figure PCTCN2017108401-appb-000006
N≥m≥1,N≥3。
在上述几种可能的设计中,U个符号中包括至少一个非零调制符号和至少一个零调制符号。在其它可能的设计中,U个调制符号还可以均为非零调制符号。
第二方面,本申请的实施例还提供了另一种数据处理方法,其与第一方面的最大区别在于,发送设备可以根据比特流生成多层调制符号序列,并对多层调制符号序列进行处理。该数据处理方法包括,发送设备根据比特流生成L层调制符号序列,每层调制符号序列包括N个调制向量,其中任意一个调制向量
Figure PCTCN2017108401-appb-000007
包括U个调制符号,L为正整数且L≥2,N为正整数且N≥i≥1,U≥2,l=1…L。发送设备对调制向量
Figure PCTCN2017108401-appb-000008
采用矩阵
Figure PCTCN2017108401-appb-000009
进行处理生成调制矩阵
Figure PCTCN2017108401-appb-000010
每一调制矩阵在第一维度上包括T个元素,T为空域资源的数量,T≥2,调制矩阵
Figure PCTCN2017108401-appb-000011
用于将所述比特流映射至所述T个空域资源。
相对于第一方面的数据处理方法,发送设备可以根据比特流生成多层调制符号序列,并对该多层调制符号序列进行处理。
在一种可能的设计中,调制向量
Figure PCTCN2017108401-appb-000012
中包括V个非零调制符号,矩阵
Figure PCTCN2017108401-appb-000013
在第一维度包括T个元素序列,其中至少一个为非零元素序列,非零元素序列包括至少一个非零元素,矩阵
Figure PCTCN2017108401-appb-000014
在第二维度包括V个非零元素序列,U≥V≥1。
当第一维度为行且T=2时,发送设备根据矩阵
Figure PCTCN2017108401-appb-000015
对所述调制向量
Figure PCTCN2017108401-appb-000016
进行映射,其中
Figure PCTCN2017108401-appb-000017
Figure PCTCN2017108401-appb-000018
或者
Figure PCTCN2017108401-appb-000019
在另一种可能的设计中,当第一维度为行且T=2时,发送设备根据矩阵
Figure PCTCN2017108401-appb-000020
对调制向量
Figure PCTCN2017108401-appb-000021
进行映射,根据矩阵
Figure PCTCN2017108401-appb-000022
Figure PCTCN2017108401-appb-000023
进行映射,i不等于j,N≥j≥1,N≥2;其中,
Figure PCTCN2017108401-appb-000024
Figure PCTCN2017108401-appb-000025
Figure PCTCN2017108401-appb-000026
Figure PCTCN2017108401-appb-000027
在又一种可能的设计中,除了根据矩阵
Figure PCTCN2017108401-appb-000028
对调制向量
Figure PCTCN2017108401-appb-000029
进行映射,根据矩阵
Figure PCTCN2017108401-appb-000030
Figure PCTCN2017108401-appb-000031
进行映射以外,发送设备还根据矩阵
Figure PCTCN2017108401-appb-000032
对调制向量
Figure PCTCN2017108401-appb-000033
进行映射,所述m不等于i且不等于j,所述
Figure PCTCN2017108401-appb-000034
可以为
Figure PCTCN2017108401-appb-000035
或者
Figure PCTCN2017108401-appb-000036
N≥m≥1,N≥3。
在又一种可能的设计中,数据处理方法还包括,发送设备对L层调制符号序列分别生成的调制矩阵
Figure PCTCN2017108401-appb-000037
进行叠加处理,以生成待发送矩阵,其中,所述待发送矩阵在所述第一维 度上包括T个元素序列,所述待发送矩阵在所述第二维度上包括i×U个元素序列。
第三方面,本申请实施例提供了一种发送设备,该发送设备具有实现上述第一方面或者第二方面方法设计中步骤的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。所述模块可以是软件和/或硬件。
第四方面,本申请实施例提供了一种发送设备,该发送设备包括调制处理器、发射器,控制器/处理器,存储器,以及天线,调制处理器用于执行上述方面所述的第一方面或第二方面数据处理方法。该调制处理器对比特流进行处理生成调制符号序列,并根据矩阵对生成的调制符号序列进行处理,从而支持发送设备实现上述第一方面和第二方面方法设计中的方案。
第五方面,本申请实施例提供了一种计算机存储介质,用于储存为上述发送设备所用的计算机软件指令,其包含用于执行上述各方面所涉及的程序。
上述各方面的发送设备,可以是网络侧设备,例如基站;或者可以是终端侧设备。
相较于现有技术,本申请提供的方案可以基于符号序列在资源映射时进行空间分集,带来分集增益,从而提高通信的可靠性。
附图说明
下面将参照所示附图对本申请实施例进行更详细的描述:
图1为本申请的一种可能的通信网络示意图;
图2为本申请实施例提供的一种数据处理方法的流程示意图;
图3为本申请实施例提供的一种码本映射示意图;
图4为本申请实施例提供的一种调制矩阵映射示意图;
图5为本申请实施例提供的另一种调制矩阵映射示意图;
图6为本申请实施例提供的又一种调制矩阵映射示意图;
图7为本申请实施例提供的另一种数据处理方法的流程示意图;
图8为本申请实施例提供的一种调制矩阵映射及叠加示意图;
图9为本申请实施例提供的一种发送设备的单元示意图;
图10为本申请实施例提供的另一种发送设备的单元示意图;
图11为本申请实施例提供的一种发送设备的结构示意图;
图12为本申请实施例提供的一种接收设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本说明书中使用的术语“部件”、“模块”、“***”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外, 这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地***、分布式***和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它***交互的互联网)的信号通过本地和/或远程进程来通信。
本申请结合终端描述了各个实施例。终端也可以称为用户设备(UE,User Equipment)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、SIP(Session Initiation Protocol,会话启动协议)电话、WLL(Wireless Local Loop,无线本地环路)站、PDA(Personal Digital Assistant,个人数字处理)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及未来5G网络中的终端设备。
此外,本申请结合网络设备描述了各个实施例。网络设备可以是网络侧用于与移动设备通信的设备,网络侧设备可以是GSM(Global System of Mobile communication,全球移动通讯)或CDMA(Code Division Multiple Access,码分多址)中的BTS(Base Transceiver Station,基站),也可以是WCDMA(Wideband Code Division Multiple Access,宽带码分多址)中的NB(NodeB,基站),还可以是LTE(Long Term Evolution,长期演进)中的eNB或eNodeB(Evolutional Node B,演进型基站),或者中继站或接入点,或者车载设备、可穿戴设备以及未来5G网络中的网络侧设备,本说明书中网络设备以基站为例说明。
此外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,CD(Compact Disk,压缩盘)、DVD(Digital Versatile Disk,数字通用盘)等),智能卡和闪存器件(例如,EPROM(Erasable Programmable Read-Only Memory,可擦写可编程只读存储器)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
图1是使用本申请的数据处理的方法的通信***的示意图。如图1所示,该通信***100至少包括发送设备101和接收设备102。发送设备101包括至少两个天线,例如,发送设备101包括发送天线Tx1和Tx2。接收设备102包括至少一个天线,例如,接收设备102包括接收天线Rx1。图1中虽然对于发送设备101和接收设备102示出了有限数量的天线,然而对于发送设备101和接收设备102而言,均可使用更多的天线。作为采用多个天线的发送设备而言,其亦具有多个天线的接收能力;而作为采用多个天线的接收设备而言,其亦具有多个天线的发送能力。上述天线可以是物理天线,或者也可以是和某个参考信号对应的逻辑端口(可被称作天线端口(英文全称:antenna port))。
发送设备101可以为网络侧设备,或者可以为终端设备。当发送设备101为网络侧设备时,接收设备102则为终端设备;当发送设备101为终端设备时,接收设备102则为网络侧设备。
图2示出了本申请实施例的一种数据处理方法200的示意性流程图,数据处理方法200主要应用于发送设备。该发送设备可以为网络设备(例如,前述网络设备中的一种),即该方法200可以应用于下行传输。或者该发送设备可以为终端设备时(即前述用户设备中的一种),即该方法200可以应用于上行传输。如图2所示,数据处理方法200包括:
S210,发送设备根据比特流生成一层调制符号序列,调制符号序列包括N个调制向量,任意一个调制向量Ai包括U个调制符号,U≥2,N≥i≥1,N为正整数。
S220,发送设备对调制向量Ai采用矩阵Bi进行处理生成调制矩阵yi。调制矩阵yi在第一维度上包括T个元素,T为用于传输所述比特流的空域资源的数量,T≥2,调制矩阵yi 用于将比特流映射至T个空域资源。示例性地,该空域资源可以为天线,或者可以为天线端口。以下,以“天线端口”为例进行说明。
通过本实施例所提出的数据处理方法,发送设备将一层调制符号序列映射至T个天线端口并发送,可以在码域上产生空间分集增益,降低误码率,从而提高通信的可靠性。
在接收设备一侧,接收设备接收来自发送设备的调制矩阵yi的映射结果发送的信号,并根据各层的调制编码方式、映射方式完成相应的译码。
以下,以终端作为发送设备(即,本申请实施例的方法200的执行主体)为例,对上述方法200的流程进行详细说明。
首先,对步骤S210进行进一步的说明,在步骤S210中,发送设备可以采用多址接入的方式对比特流进行处理生成调制符号序列,该多址接入的方式可以为稀疏码分多址接入SCMA,正交频分复用OFDM技术,频分多址(Frequency Division Multiple Address,FDMA)方式,时分多址(Time Division Multiple Address,TDMA)方式,码分多址方式(Code Division Multiple Address,CDMA)方式、特征图样多址接入(Pattern Division Multiple Access,PDMA)、非正交多址接入(Non-Orthogonal Multiple Access,NOMA)、多用户共享接入(Multiple User Shared Access,MUSA)等各种正交或者非正交的多址接入技术,以使本申请实施例所涉及的通信***能够支持多个用户。以下,以SCMA为例进行说明。在使用SCMA的***中,在发送设备通过多维调制和稀疏扩频将比特流映射成SCMA码字,接收设备通过多用户检测完成译码。
下面,将先对SCMA码本作示例性地说明。请参照图3,为SCMA码本映射的简化示意图。SCMA码本包括零符号(空白部分)和非零符号(阴影部分),各个SCMA码本之间通过非零符号的位置进行区分。为了便于说明,可用因子图(英文名称:factor graph)表示码本和资源单元(英文全称:Resource Elements,英文简称:RE)之间的对应关系。变量节点(英文名称:Variable Node,英文简称:VN)对应采用不同SCMA码本的发送设备,分别用V1~V6表示。功能节点(英文名称:Function Node,英文简称:FN)对应不同的RE。当VN和FN之间存在连线时,表示该发送设备在对应的RE上发送非零调制符号;当VN和FN之间不存在连线时,表示该发送设备在对应的RE上发送零调制符号。以上采用六个发送设备作为示意,以说明如何在四个资源单元上承载六个发送设备的数据。
就一个发送设备而言,其可以采用相同的SCMA码本对比特流进行处理生成一层调制符号序列,或者,可以采用不同的SCMA码本对比特流进行处理生成一层调制符号序列。可选地,调制向量Ai中可以包括的U个调制符号,该U个调制符号可以包括至少一个非零调制符号和至少一个零调制符号。示例性地,根据采用的不同SCMA码本,调制符号序列中的调制向量Ai长度为4,即U=4。请参照图3,采用码本1的调制向量Ai可以为[x1,0,x3,0]的形式,采用码本2的调制向量Ai可以为[0,x2,0,x4]的形式,采用码本3的调制向量Ai可以为[x1,x2,0,0]的形式、采用码本4的调制向量Ai可以为[0,0,x3,x4]的形式、采用码本5的调制向量Ai可以为[x1,0,0,x4]的形式,采用码本6的调制向量Ai可以为[0,x2,x3,0]的形式。需要说明的是,本申请中的x1,x2,x3以及x4用于表示相应位置为非零调制符号,而并非用于限定其数值。在其他的实施方式中,调制向量Ai中的U个调制符号均为非零调制符号。
当采用相同的SCMA码本时,发送设备采用一个SCMA码本依次对比特流中单位数量的比特(例如两个比特,或者四个比特等)进行处理,生成一层调制符号序列。该一层调制符号序列中包括N个调制向量,每个调制向量对应一个单位数量的比特。由于每一单位数量的比特采用的是相同的SCMA码本,因此,所生成的各个调制向量中非零元素的位 置是相同的,简称形式相同。例如,调制向量Ai均可以为[x1,0,x3,0]的形式,或者均为[0,x2,0,x4]的形式,本申请对此不作限制。
当采用不同的SCMA码本时,发送设备采用多个SCMA码本依次对比特流中单位数量的比特进行处理,生成一层调制符号序列。该多个SCMA码本可以以轮循的方式使用,或者是随机的方式被使用。该一层调制符号序列中包括N个调制向量,每个调制向量对应一个单位数量的比特。由于各个单位数量的比特采用的可能是不同的SCMA码本,因此,所生成的各个调制向量中非零调制符号的位置也可能不同,简称形式不同。例如,调制向量A1可以为[x1,0,x3,0]的形式,调制向量A2可以为[0,x2,0,x4]的形式,本申请对此不作限制。
在步骤S220中,发送设备对调制向量Ai采用矩阵Bi进行处理生成调制矩阵yi,调制矩阵yi在第一维度上包括T个元素。其中,T为用于传输比特流的天线端口的数量,调制矩阵yi用于将比特流映射至T个天线端口。
具体地,发送设备采用矩阵Bi进行映射处理生成调制矩阵yi,其中,调制矩阵yi的第一维度上包括T个元素,换句话说,调制矩阵yi在第一维度上包括T个元素序列。其中,每一元素序列对应一个天线端口,从而将调制矩阵yi映射到T个天线端口。如此,通过采用矩阵Bi进行映射,调制向量Ai能够在码域上得到空间分集增益,降低误码率。
以下,对矩阵Bi进行说明,矩阵Bi的维度包括行和列。上述第一维度可以是矩阵Bi的行方向,则上述第二维度是矩阵的列方向;或者,上述第一维度可以是矩阵的列方向,则上述第二维度可以是矩阵的行方向,对此并未作特别限定。在本申请实施例中,第一维度为矩阵Bi的行方向,第二维度为矩阵Bi的列方向。
其中,各个矩阵Bi中至少一个维度(如,在本实施方式为第一维度)所包括的元素的数量均为T,以使映射后得到的调制矩阵yi至少一个维度包括T个元素序列。可选地,该T个元素序列中至少有一个为非零元素序列,其中非零元素序列是指包括至少一个非零元素的元素序列。
在第二维度上,矩阵Bi可以包括与调制向量Ai中调制符号数量不一致的元素序列(情况一),或者在第二维度上,矩阵Bi可以包括与调制向量Ai中调制符号数量一致的元素序列(情况二)。以下,分别基于两种情况进行说明:
情况一:
矩阵Bi在第二维度上包括V个元素序列,该V个元素序列均为非零元素序列。各个非零元素序列与调制向量Ai中的各个非零调制符号对应。
以调制向量Ai为[x1,0,x3,0]形式、T=2(即,两个天线端口)为例,矩阵Bi可以为
Figure PCTCN2017108401-appb-000038
此时,所有调制向量都采用相同的Bi。可见,该矩阵Bi为对角线矩阵,矩阵Bi在行方向上包括两个元素序列(即T=2),以对应两个天线端口。在列方向上包括两个元素序列,该两个元素序列均为非零元素序列且对应调制向量Ai中的两个非零调制符号。通过上述过程,使得[x1,0,x3,0]被映射到对应两个天线端口的元素序列上。
接着,以[x1,0,x3,0]为例对映射过程作进一步的说明。在以下映射过程中,会应用到公式Q=map(R,C),其中R为行向量,Q与C为矩阵,R的列数与C的行数相等。map运算具体为,Q中的每一列由转置后的R与C中各个列向量点乘而得。
首先,发送设备取[x1,0,x3,0]中非零调制符号[x1,x3],并根据矩阵:
Figure PCTCN2017108401-appb-000039
生成矩阵:
Figure PCTCN2017108401-appb-000040
即将行向量[x1,x3]转置后与Bi的第一列
Figure PCTCN2017108401-appb-000041
和第二列
Figure PCTCN2017108401-appb-000042
分别点乘得到A i的第一列和第二列,以下的map操作也类似。根据[x1,0,x3,0]中零调制符号的位置,对矩阵A i进行补零处理,生成调制矩阵:
Figure PCTCN2017108401-appb-000043
上述调制矩阵yi的包括两列元素,发送设备将两列元素映射到两个天线端口。请参照图4,图4示出了调制矩阵y1的资源映射示意图,其中,yi中的第一列元素被映射到Tx1对应的资源单元RE#1~RE#4,第二列元素被映射到Tx2对应的资源单元RE#1~RE#4。在其他的实施方式中,yi中的第一列元素还可以被映射到Tx2,第二列元素还可以被映射到Tx1
可选地,矩阵Bi还可以
Figure PCTCN2017108401-appb-000044
首先,发送设备取[x1,0,x3,0]中非零调制符号[x1,x3],并根据矩阵Bi生成矩阵:
Figure PCTCN2017108401-appb-000045
根据[x1,0,x3,0]中零调制符号的位置,对矩阵A i进行补零处理,生成调制矩阵:
Figure PCTCN2017108401-appb-000046
调制矩阵yi包括两列元素,发送设备将两列元素映射到两个天线端口。请参照图5,其示出了该调制矩阵yi的资源映射示意图。
在另一些实施方式中,发送设备还可以利用两个矩阵Bi和Bj轮循的方式,对一层调制符号序列进行处理。其中,所处理的各个调制向量的形式可以相同,也可以不同,对此不作限制。具体地,发送设备根据矩阵Bi对调制向量Ai进行处理,根据矩阵Bj对调制向量Aj进行处理,其中Bi与Bj不同,i不等于j,N≥j≥1,N≥2。以下,以采用相同码本生成的一层调制符号序列中的两个调制向量Ai和Aj为例进行说明,两个调制向量Ai和Aj的位置关系可以是相邻的,也可以是不相邻的。两个调制向量Ai和Aj的形式可以相同,也可以不同。以下,以相邻且形式相同的调制向量Ai和Aj为例进行说明。
具体地,发送设备采用矩阵Bi对调制向量Ai进行映射,采用矩阵Bj对调制向量Aj进 行映射,两个调制向量Ai和Aj均为[x1,0,x3,0]的形式。
对于调制向量Ai,发送设备取[x1,0,x3,0]中非零调制符号[x1,x3],并根据矩阵:
Figure PCTCN2017108401-appb-000047
生成矩阵:
Figure PCTCN2017108401-appb-000048
根据[x1,0,x3,0]中零调制符号的位置,发送设备对矩阵A'i进行补零处理,生成调制矩阵yi为:
Figure PCTCN2017108401-appb-000049
调制矩阵yi包括两列元素,该两列元素被映射到两个天线端口。其中,yi中第一列元素被映射到Tx1对应的资源单元RE#1~RE#4,第二列元素被映射到Tx2对应的资源单元RE#1~RE#4。
对于调制向量Aj,发送设备取调制向量Aj中非零调制符号[x1,x3],并根据矩阵:
Figure PCTCN2017108401-appb-000050
生成矩阵:
Figure PCTCN2017108401-appb-000051
根据[x1,0,x3,0]中零调制符号的位置,发送设备对矩阵A'j进行补零处理,生成调制矩阵:
Figure PCTCN2017108401-appb-000052
调制矩阵yj包括两列元素,该两列元素分别映射到两个天线端口。其中,yj中第一列元素被映射到Tx1对应的资源单元RE#5~RE#8,第二列元素被映射到Tx2对应的资源单元RE#5~RE#8。
请参照图6,图6示出了本实施方式中调制矩阵yi和yj的资源映射示意图。
在另一实施方式中,基于前述采用矩阵Bi和Bj轮循的方式,发送设备还可以根据另一矩阵Bm对调制向量Am进行映射,其中m不等于i且不等于j,N≥m≥1,N≥3。该Bm可以为
Figure PCTCN2017108401-appb-000053
或者
Figure PCTCN2017108401-appb-000054
发送设备可以采用三个矩阵Bi、Bj以及Bm轮循的方式,对调制符号序列中各个调制向量进行映射。示例性地,发送设备采用矩阵Bi对调制向量Ai进行映射,采用矩阵Bj对调制向量Aj进行映射,采用Bm对调制向量Am进行映射。在完成一个循环后, 发送设备继续采用矩阵Bi对调制向量Am之后的调制向量进行处理。在其它实施方式中,发送设备还可以采用前述四个或者更多矩阵对一层调制符号序列进行处理。
情况二:
矩阵Bi在第二维度上包括U个元素序列,该U个元素序列对应调制向量Ai中的U个调制符号。其中,该U个元素序列中包括V个非零元素序列,该V个非零元素序列在U个元素序列中的位置与V个非零调制符号在U个调制符号中的位置相同。
以[x1,0,x3,0]为例、两个天线端口(T=2)为例,矩阵Bi可以为
Figure PCTCN2017108401-appb-000055
该矩阵Bi在第一维度(在本实施方式中,第一维度为行方向)上包括两个元素序列,以对应两个天线端口;在第二维度上(在本实施方式中,第二维度为列方向)包括四个元素序列,其中第一行和第三行为两个非零元素序列,以对应[x1,0,x3,0]中的两个非零调制符号。
以下针对矩阵Bi作进一步的说明,该矩阵B1根据[x1,0,x3,0]中零元素的位置,基于对角线矩阵
Figure PCTCN2017108401-appb-000056
进行补零处理获得,从而使得[x1,0,x3,0]中非零调制符号能够被映射到不同的天线端口。可选地,矩阵Bi还可以基于反对角线矩阵
Figure PCTCN2017108401-appb-000057
或者
Figure PCTCN2017108401-appb-000058
Figure PCTCN2017108401-appb-000059
两者的组合获得。请参见表1,针对不同形式的调制向量时,其可采用的矩阵示例:
表1
Figure PCTCN2017108401-appb-000060
续表1
Figure PCTCN2017108401-appb-000061
以调制向量Ai采用[x1,0,x3,0]的形式为例,当矩阵Bi采用选项1时,发送设备根据矩阵Bi生成调制矩阵:
Figure PCTCN2017108401-appb-000062
发送设备将调制矩阵yi的两列元素映射至两个天线端口。
当矩阵Bi采用选项2时,发送设备根据矩阵Bi生成调制矩阵:
Figure PCTCN2017108401-appb-000063
发送设备将调制矩阵yi的两列元素映射至两个天线端口。
当采用选项3时,发送设备对调制符号序列中相邻或者非相邻的两个调制向量Ai及Aj 采用轮循的方式进行映射。以下,以相邻且均采用[x1,0,x3,0]形式的两个调制向量为例,作进一步的说明。
发送设备根据矩阵Bi对调制向量Ai进行处理,生成调制矩阵:
Figure PCTCN2017108401-appb-000064
发送设备将调制矩阵yi的两列元素映射至两个天线端口。
发送设备根据矩阵Bj对调制向量Aj进行映射,生成调制矩阵:
Figure PCTCN2017108401-appb-000065
发送设备将调制矩阵yj的两列元素映射至两个天线端口。
下面结合附图5,对本申请的另一实施例做进一步说明。
图7为本申请实施例提出的另一种数据处理方法700,与图2所示的数据处理方法200的区别在于,数据处理方法700可以基于比特流生成多层调制符号序列并进行处理。
步骤S701,发送设备根据比特流生成L层调制符号序列,每层所述调制符号序列包括N个调制向量,其中任意一个调制向量
Figure PCTCN2017108401-appb-000066
包括U个调制符号,L为正整数且L≥2,N为正整数且N≥i≥1,U≥2,l=1…L;
在一个示例中,发送设备采用L个码本分别生成L层调制符号序列,如采用图3所示的六个码本生成六层调制符号序列。在另一示例中,发送设备也可采用L个码本组合分别生成L层调制符号序列,其中该L个码本组合中分别包括不同的码本。就每一层调制符号序列而言,关于调制向量
Figure PCTCN2017108401-appb-000067
的更多细节可参照图2所示步骤S201中调制向量Ai的描述,在此不再赘述。
步骤S702,发送设备对所述
Figure PCTCN2017108401-appb-000068
采用矩阵
Figure PCTCN2017108401-appb-000069
进行处理生成调制矩阵
Figure PCTCN2017108401-appb-000070
每一调制矩阵在第一维度上包括T个元素,T为空域资源的数量,T≥2,调制矩阵
Figure PCTCN2017108401-appb-000071
用于将所述比特流映射至所述T个空域资源。
通过数据处理方法700,发送设备可以根据比特流生成多层调制符号序列,并对该多层调制符号序列进行处理,实现空间分集增益。
在一个示例中,U个调制符号中包括至少一个非零调制符号和至少一个零调制符号。更为具体地,调制向量
Figure PCTCN2017108401-appb-000072
中包括V个非零调制符号,U≥V≥1。矩阵
Figure PCTCN2017108401-appb-000073
在第一维度上包括T个元素序列,其中至少一个为非零元素序列,该非零元素序列包括至少一个非零元素。矩阵
Figure PCTCN2017108401-appb-000074
在第二维度包括V个非零元素序列。
当第一维度为行时并且发送设备具有两个天线端口(即,T=2)时,发送设备根据矩阵
Figure PCTCN2017108401-appb-000075
对调制向量
Figure PCTCN2017108401-appb-000076
进行映射,其中
Figure PCTCN2017108401-appb-000077
Figure PCTCN2017108401-appb-000078
或者
Figure PCTCN2017108401-appb-000079
在另一个示例中,发送设备根据矩阵
Figure PCTCN2017108401-appb-000080
对调制向量
Figure PCTCN2017108401-appb-000081
进行映射,根据矩阵
Figure PCTCN2017108401-appb-000082
Figure PCTCN2017108401-appb-000083
进 行映射,i不等于j,N≥j≥1,N≥2;其中,
Figure PCTCN2017108401-appb-000084
Figure PCTCN2017108401-appb-000085
Figure PCTCN2017108401-appb-000086
Figure PCTCN2017108401-appb-000087
在又一个实例中,发送设备根据矩阵
Figure PCTCN2017108401-appb-000088
对调制向量
Figure PCTCN2017108401-appb-000089
进行映射,根据矩阵
Figure PCTCN2017108401-appb-000090
Figure PCTCN2017108401-appb-000091
进行映射以外,还基于矩阵
Figure PCTCN2017108401-appb-000092
对调制向量
Figure PCTCN2017108401-appb-000093
进行映射,所述m不等于i且不等于j,所述
Figure PCTCN2017108401-appb-000094
可以为
Figure PCTCN2017108401-appb-000095
或者
Figure PCTCN2017108401-appb-000096
N≥m≥1,N≥3。
关于步骤702的更为细节的实施,可参照图2所示步骤202的相关描述,在此不再赘述。
可选地,数据处理方法500还包括步骤703,发送设备对L层调制符号序列分别生成的调制矩阵
Figure PCTCN2017108401-appb-000097
进行叠加处理,以生成待发送矩阵。其中,待发送矩阵在所述第一维度上包括T个元素序列,待发送矩阵在所述第二维度上包括i×U个元素序列。请参照图8,为两层调制符号序列分别生成的调制矩阵
Figure PCTCN2017108401-appb-000098
Figure PCTCN2017108401-appb-000099
的叠加处理示意图。
需要说明的是,对生成一层调制符号序列的数据处理方法而言,其更常见的执行主体为终端,即应用于上行传输;在一些情况下,当***100中包括多个终端时,该多个终端在向同一网络侧设备发送数据或者信号时,能够在传播的过程中形成叠加的效果。对生成多层调制符号序列的数据处理方法而言,其更常见的执行主体为网络侧设备,即应用于下行传输。可以理解的是,以上说明仅作为示意,并不作为本申请实施的限制。
上述主要从发送设备的角度对本申请实施例提供的方案进行介绍,该发送设备可以是用户设备,如终端;或者可以是网络侧设备,如基站。可以理解的是,各个网元,例如终端、基站等为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元机算法步骤,本申请能够以硬件或硬件和计算机软件结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
图9示出了上述实施例中所涉及的发送设备的一种可能的单元示意图。发送设备包括调制处理单元901和映射单元902。
调制处理单元901,用于根据比特流生成一层调制符号序列,所述调制符号序列包括N个调制向量,任意一个调制向量Ai包括U个调制符号,U≥2,N≥i≥1,N为正整数。调制处理单元901所执行的动作,还参照图2所示步骤S201的具体描述,在此不再赘述。
映射单元902,用于对调制向量Ai采用矩阵Bi进行处理生成调制矩阵yi,每一调制矩阵在第一维度上包括T个元素,T为空域资源的数量,T≥2,调制矩阵yi用于将所述比特流映射至所述T个空域资源。映射单元902所执行的动作,还参照图2所示步骤S202的具体描述,在此不再赘述。
图10示出了上述实施例中所涉及的另一种发送设备的一种可能的单元示意图。如图所示,发送设备100包括调制处理单元1001和映射单元1002。
调制处理单元1001,用于根据比特流生成L层调制符号序列,每层所述调制符号序列包括N个调制向量,其中任意一个调制向量
Figure PCTCN2017108401-appb-000100
包括U个调制符号,L为正整数且L≥2,N为正整数且N≥i≥1,U≥2,l=1…L。调制处理单元1001所执行的动作,还参照图7所示步骤S701的具体描述,在此不再赘述。
映射单元1002,用于对所述
Figure PCTCN2017108401-appb-000101
采用矩阵
Figure PCTCN2017108401-appb-000102
进行处理生成调制矩阵
Figure PCTCN2017108401-appb-000103
每一调制矩阵在第一维度上包括T个元素,所述T为用于传输所述比特流的空域资源的数量,T≥2,调制矩阵
Figure PCTCN2017108401-appb-000104
用于将所述比特流映射至所述T个空域资源。映射单元1002所执行的动作,还 请参照图7所示步骤S702的具体描述,在此不再赘述。
可选地,发送设备100还可以包括叠加单元1003。叠加单元1003用于发送设备对L层调制符号序列分别生成的调制矩阵
Figure PCTCN2017108401-appb-000105
进行叠加处理,以生成待发送矩阵。其中,待发送矩阵在所述第一维度上包括T个元素序列,待发送矩阵在所述第二维度上包括i×U个元素序列。
图11示出了上述实施例中所涉及的发送设备的设计结构的一种简化示意图。发送设备包括调制处理器1101、发射器1102,控制器/处理器1103,存储器1104,以及天线Tx1和Tx2
调制处理器1101处理(例如,符号调制)编码后的业务数据和信令消息并提供输出采样。发射器1102调节(例如,模拟转换、滤波、放大和上变频等)该输出采样并生成发送信号,该发送信号经由天线Tx1和Tx2发射给接收设备。作为示例,调制处理器1101用于支持发送设备执行图2中过程201和202;或者,调制处理器1101用于支持发送设备执行图7中过程701、702和703。
控制器/处理器1103对发送设备的动作进行控制管理,用于执行上述实施例中由发送设备进行的其他处理。例如用于控制发送设备进行数据处理和/或本申请所描述的技术的其他过程。
上述天线可以是物理天线,也可以是和某个参考信号对应的逻辑端口(或者,称为天线端口(英文全称:antenna port))。作为天线端口而言,多个天线端口可对应一个物理天线,对此本申请不作限制。
可以理解的是,图11仅仅示出了发送设备的简化设计。在实际应用中,该发送设备可以为终端或者其他终端设备,或者可以为基站或者可以为其他网络设备。不管是终端或者基站,其均可以包括任意数量的发射器,接收器,处理器,控制器,存储器,通信单元,天线数量(即T可以大于2)等,而所有可以实现本申请的发送设备都在本申请的保护范围之内。
图12示出了上述实施例中所设计的接收设备的设计结构的一种简化示意图。接收设备包括调制处理器1201,接收器1202,控制/处理器1203,存储器1204,以及天线Rx1
接收器1202调节从天线接收的信号兵提供输入采样。调制处理器1201进一步处理该输入采样并提供发送给接收设备的已解码的数据和信令消息。具体地,调制处理器1201用于支持接收设备执行接收来自发送设备的调制矩阵yi的映射结果发送的信号。
控制器/处理器1203根据各层的调制编码方式、映射方式完成相应的译码,并对接收设备的动作进行控制管理,用于执行上述实施例中由接收设备进行的其他处理。
可以理解的是,图12仅仅示出了接收设备的简化设计。在实际应用中,该接收设备可以为终端,或者可以为基站,或者可以为其他网络设备。不管是终端或者基站,其均可以包括任意数量的发射器,接收器,处理器,控制器,存储器,通信单元,天线数量(即可以大于1)等,而所有可以实现本申请的接收设备都在本申请的保护范围之内。
用于执行本申请实施例上述基站或终端的调制处理器、控制器/处理器可以是中央处理器(CPU),通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC),现场可编程门阵列(FPGA)或者其他可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
结合本申请公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的 存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于用户设备中。当然,处理器和存储介质也可以作为分立组件存在于用户设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述的具体实施方式,对本申请的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请的具体实施方式而已,并不用于限定本申请的保护范围,凡在本申请的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请的保护范围之内。

Claims (27)

  1. 一种数据处理方法,其特征在于,所述方法包括:
    发送设备根据比特流生成一层调制符号序列,所述调制符号序列包括N个调制向量,任意一个调制向量Ai包括U个调制符号,U≥2,N≥i≥1,N为正整数;
    发送设备对所述Ai采用矩阵Bi进行处理生成调制矩阵yi,每一调制矩阵在第一维度上包括T个元素,所述T为空域资源的数量,T≥2,所述调制矩阵yi用于将所述比特流映射至所述T个空域资源。
  2. 如权利要求1所述的数据处理方法,其特征在于,所述调制向量Ai中包括V个非零调制符号,所述矩阵Bi在所述第一维度包括T个元素序列,其中至少一个为非零元素序列,所述非零元素序列包括至少一个非零元素,所述矩阵Bi在第二维度包括V个非零元素序列,U≥V≥1。
  3. 如权利要求2所述的数据处理方法,其特征在于,当所述第一维度为行且T=2时,发送设备根据矩阵Bi对所述调制向量Ai进行映射,其中Bi
    Figure PCTCN2017108401-appb-100001
    或者
    Figure PCTCN2017108401-appb-100002
  4. 如权利要求2所述的数据处理方法,其特征在于,当所述第一维度为行且T=2时,发送设备根据矩阵Bi对调制向量Ai进行映射,根据矩阵Bj对Aj进行映射,所述i不等于j,N≥j≥1,N≥2;其中,所述Bi
    Figure PCTCN2017108401-appb-100003
    所述Bj
    Figure PCTCN2017108401-appb-100004
  5. 如权利要求4所述的数据处理方法,其特征在于,所述发送设备还根据矩阵Bm对调制向量Am进行映射,所述m不等于i且不等于j,所述Bm可以为
    Figure PCTCN2017108401-appb-100005
    或者
    Figure PCTCN2017108401-appb-100006
    N≥m≥1,N≥3。
  6. 如权利要求1-5任一项所述的数据处理方法,其特征在于,所述U个调制符号包括至少一个非零调制符号和至少一个零调制符号。
  7. 一种数据处理方法,其特征在于,所述方法包括:
    发送设备根据比特流生成L层调制符号序列,每层所述调制符号序列包括N个调制向量,其中任意一个调制向量
    Figure PCTCN2017108401-appb-100007
    包括U个调制符号,L为正整数且L≥2,N为正整数且N≥i≥1,U≥2,l=1…L;
    发送设备对所述
    Figure PCTCN2017108401-appb-100008
    采用矩阵
    Figure PCTCN2017108401-appb-100009
    进行处理生成调制矩阵
    Figure PCTCN2017108401-appb-100010
    每一调制矩阵在第一维度上包括T个元素,所述T为空域资源的数量,T≥2,所述调制矩阵
    Figure PCTCN2017108401-appb-100011
    用于将所述比特流映射至所述T个空域资源。
  8. 如权利要求7所述的数据处理方法,其特征在于,所述调制向量
    Figure PCTCN2017108401-appb-100012
    中包括V个非零调制符号,所述矩阵
    Figure PCTCN2017108401-appb-100013
    在所述第一维度包括T个元素序列,其中至少一个为非零元素序列,所述非零元素序列包括至少一个非零元素,所述矩阵
    Figure PCTCN2017108401-appb-100014
    在第二维度包括V个非零元素 序列,U≥V≥1。
  9. 如权利要求8所述的数据处理方法,其特征在于,当所述第一维度为行且T=2时,发送设备根据矩阵
    Figure PCTCN2017108401-appb-100015
    对所述调制向量
    Figure PCTCN2017108401-appb-100016
    进行映射,其中
    Figure PCTCN2017108401-appb-100017
    Figure PCTCN2017108401-appb-100018
    或者
    Figure PCTCN2017108401-appb-100019
  10. 如权利要求8所述的数据处理方法,其特征在于,当所述第一维度为行且T=2时,发送设备根据矩阵
    Figure PCTCN2017108401-appb-100020
    对调制向量
    Figure PCTCN2017108401-appb-100021
    进行映射,根据矩阵
    Figure PCTCN2017108401-appb-100022
    Figure PCTCN2017108401-appb-100023
    进行映射,所述i不等于j,N≥j≥1,N≥2;其中,所述
    Figure PCTCN2017108401-appb-100024
    Figure PCTCN2017108401-appb-100025
    所述
    Figure PCTCN2017108401-appb-100026
    Figure PCTCN2017108401-appb-100027
  11. 如权利要求10所述的数据处理方法,发送设备还根据矩阵
    Figure PCTCN2017108401-appb-100028
    对调制向量
    Figure PCTCN2017108401-appb-100029
    进行映射,所述m不等于i且不等于j,所述
    Figure PCTCN2017108401-appb-100030
    可以为
    Figure PCTCN2017108401-appb-100031
    或者
    Figure PCTCN2017108401-appb-100032
    N≥m≥1,N≥3。
  12. 如权利要求7所述的数据处理方法,其特征在于,所述方法还包括:
    发送设备对L层调制符号序列分别生成的调制矩阵
    Figure PCTCN2017108401-appb-100033
    进行叠加处理,以生成待发送矩阵,其中,所述待发送矩阵在所述第一维度上包括T个元素序列,所述待发送矩阵在所述第二维度上包括i×U个元素序列。
  13. 一种发送设备,其特征在于,所述发送设备包括:
    调制处理单元,用于根据比特流生成一层调制符号序列,所述调制符号序列包括N个调制向量,任意一个调制向量Ai包括U个调制符号,U≥2,N≥i≥1,N为正整数;
    映射单元,用于对所述Ai采用矩阵Bi进行处理生成调制矩阵yi,每一调制矩阵在第一维度上包括T个元素,所述T为空域资源的数量,T≥2,所述调制矩阵yi用于将所述比特流映射至所述T个空域资源。
  14. 如权利要求13所述的发送设备,其特征在于,所述调制向量Ai中包括V个非零调制符号,所述矩阵Bi在所述第一维度包括T个元素序列,其中至少一个为非零元素序列,所述非零元素序列包括至少一个非零元素,所述矩阵Bi在所述第二维度包括V个非零元素序列,U≥V≥2。
  15. 如权利要求14所述的发送设备,其特征在于,当所述第一维度为行且T=2时,映射单元用于根据矩阵Bi对所述调制向量Ai进行映射,其中Bi
    Figure PCTCN2017108401-appb-100034
    或者
    Figure PCTCN2017108401-appb-100035
  16. 如权利要求14所述的发送设备,其特征在于,当所述第一维度为行且T=2时,映射单元根据矩阵Bi对调制向量Ai进行映射,根据矩阵Bj对Aj进行映射,所述i不等于j,N≥j≥1,N≥2;其中,所述Bi
    Figure PCTCN2017108401-appb-100036
    所述Bj
    Figure PCTCN2017108401-appb-100037
  17. 如权利要求16所述的发送设备,其特征在于,所述映射单元还根据矩阵Bm对调 制向量Am进行映射,所述m不等于i且不等于j,所述Bm可以为
    Figure PCTCN2017108401-appb-100038
    或者
    Figure PCTCN2017108401-appb-100039
    N≥m≥1,N≥3。
  18. 一种发送设备,其特征在于,所述发送设备包括:
    调制处理单元,用于根据比特流生成L层调制符号序列,每层所述调制符号序列包括N个调制向量,其中任意一个调制向量
    Figure PCTCN2017108401-appb-100040
    包括U个调制符号,L为正整数且L≥2,N为正整数且N≥i≥1,U≥2,l=1…L;
    映射单元,用于对所述
    Figure PCTCN2017108401-appb-100041
    采用矩阵
    Figure PCTCN2017108401-appb-100042
    进行处理生成调制矩阵
    Figure PCTCN2017108401-appb-100043
    每一调制矩阵在第一维度上包括T个元素,所述T为空域资源的数量,T≥2,所述调制矩阵
    Figure PCTCN2017108401-appb-100044
    用于将所述比特流映射至所述T个空域资源。
  19. 如权利要求18所述的发送设备,其特征在于,所述调制向量
    Figure PCTCN2017108401-appb-100045
    中包括V个非零调制符号,所述矩阵
    Figure PCTCN2017108401-appb-100046
    在所述第一维度包括T个元素序列,其中至少一个为非零元素序列,所述非零元素序列包括至少一个非零元素,所述矩阵Bi在第二维度包括V个非零元素序列,U≥V≥1。
  20. 如权利要求19所述的发送设备,其特征在于,当所述第一维度为行且T=2时,所述映射单元用于根据矩阵
    Figure PCTCN2017108401-appb-100047
    对所述调制向量
    Figure PCTCN2017108401-appb-100048
    进行映射,其中
    Figure PCTCN2017108401-appb-100049
    Figure PCTCN2017108401-appb-100050
    或者
    Figure PCTCN2017108401-appb-100051
  21. 如权利要求19所述的发送设备,其特征在于,当所述第一维度为行且T=2时,所述映射单元根据矩阵
    Figure PCTCN2017108401-appb-100052
    对调制向量
    Figure PCTCN2017108401-appb-100053
    进行映射,根据矩阵
    Figure PCTCN2017108401-appb-100054
    Figure PCTCN2017108401-appb-100055
    进行映射,所述i不等于j,N≥j≥1,N≥2;其中,所述
    Figure PCTCN2017108401-appb-100056
    Figure PCTCN2017108401-appb-100057
    所述
    Figure PCTCN2017108401-appb-100058
    Figure PCTCN2017108401-appb-100059
  22. 如权利要求21所述的发送设备,其特征在于,所述映射单元还根据矩阵
    Figure PCTCN2017108401-appb-100060
    对调制向量
    Figure PCTCN2017108401-appb-100061
    进行映射,所述m不等于i且不等于j,所述
    Figure PCTCN2017108401-appb-100062
    可以为
    Figure PCTCN2017108401-appb-100063
    或者
    Figure PCTCN2017108401-appb-100064
    N≥m≥1,N≥3。
  23. 如权利要求18所述的发送设备,其特征在于,所述发送设备还包括叠加单元,所述叠加单元对L层调制符号序列分别生成的调制矩阵
    Figure PCTCN2017108401-appb-100065
    进行叠加处理,以生成待发送矩阵,其中,所述待发送矩阵在所述第一维度上包括T个元素序列,所述待发送矩阵在所述第二维度上包括i×U个元素序列。
  24. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1-6任意一项所述的方法。
  25. 一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行如权利要求1-6任意一项所述的方法。
  26. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权利要求7-12任意一项所述的方法。
  27. 一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行如权利要求7-12任意一项所述的方法。
PCT/CN2017/108401 2016-11-04 2017-10-30 数据处理方法和发送设备 WO2018082530A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP17867581.5A EP3531576B1 (en) 2016-11-04 2017-10-30 Data processing method and transmitting device
KR1020197015004A KR102213563B1 (ko) 2016-11-04 2017-10-30 데이터 처리 방법 및 송신 디바이스
RU2019117026A RU2750239C2 (ru) 2016-11-04 2017-10-30 Способ обработки данных и передающее устройство
JP2019523876A JP6885659B2 (ja) 2016-11-04 2017-10-30 データ処理方法および送信デバイス
US16/402,897 US10727915B2 (en) 2016-11-04 2019-05-03 Data processing method and transmitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610978455.X 2016-11-04
CN201610978455.XA CN108023632B (zh) 2016-11-04 2016-11-04 数据处理方法和发送设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/402,897 Continuation US10727915B2 (en) 2016-11-04 2019-05-03 Data processing method and transmitting device

Publications (1)

Publication Number Publication Date
WO2018082530A1 true WO2018082530A1 (zh) 2018-05-11

Family

ID=62075511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/108401 WO2018082530A1 (zh) 2016-11-04 2017-10-30 数据处理方法和发送设备

Country Status (7)

Country Link
US (1) US10727915B2 (zh)
EP (1) EP3531576B1 (zh)
JP (1) JP6885659B2 (zh)
KR (1) KR102213563B1 (zh)
CN (1) CN108023632B (zh)
RU (1) RU2750239C2 (zh)
WO (1) WO2018082530A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110582954A (zh) * 2017-05-02 2019-12-17 Lg电子株式会社 用于执行基于mm的noma通信的方法及其装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102138287A (zh) * 2008-07-30 2011-07-27 Lg电子株式会社 在多天线***中发射数据的方法
CN104823384A (zh) * 2012-12-14 2015-08-05 华为技术有限公司 用于scma通信***中开环mimo通信的***和方法
US20150327095A1 (en) * 2014-05-09 2015-11-12 Samsung Electronics Co., Ltd. Interference measurement method and apparatus for use in mobile communication system
WO2016090588A1 (zh) * 2014-12-11 2016-06-16 华为技术有限公司 传输数据的方法、发送端设备和接收端设备

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI20002845A (fi) * 2000-12-22 2002-06-23 Nokia Corp Digitaalisen signaalin lähettäminen
US7773699B2 (en) * 2001-10-17 2010-08-10 Nortel Networks Limited Method and apparatus for channel quality measurements
US7564915B2 (en) 2004-06-16 2009-07-21 Samsung Electronics Co., Ltd. Apparatus and method for coding/decoding pseudo orthogonal space-time block code in a mobile communication system using multiple input multiple output scheme
WO2006002550A1 (en) * 2004-07-07 2006-01-12 Nortel Networks Limited System and method for mapping symbols for mimo transmission
US7949064B2 (en) * 2006-08-14 2011-05-24 Texas Instruments Incorporated Codebook and pre-coder selection for closed-loop mimo
KR101328961B1 (ko) * 2008-03-14 2013-11-13 엘지전자 주식회사 개루프 공간 다중화 모드에서 신호 송수신 방법
US20100034310A1 (en) 2008-08-08 2010-02-11 Samsung Electronics Co., Ltd. Transmit diversity schemes in OFDM systems
KR20100019948A (ko) * 2008-08-11 2010-02-19 엘지전자 주식회사 공간 다중화 기법을 이용한 데이터 전송방법
US20110158342A1 (en) * 2009-06-30 2011-06-30 Qualcomm Incorporated Time tracking for a communication system utilizing a cyclic prefix
KR20110009025A (ko) * 2009-07-20 2011-01-27 엘지전자 주식회사 상향링크 제어정보 전송 방법 및 장치
CN102546119B (zh) * 2010-08-10 2015-01-21 华为技术有限公司 信息比特的发送方法、装置及***
CN102404072B (zh) * 2010-09-08 2013-03-20 华为技术有限公司 一种信息比特发送方法、装置和***
KR102534519B1 (ko) * 2011-02-18 2023-05-18 선 페이턴트 트러스트 신호생성방법 및 신호생성장치
KR102069538B1 (ko) 2012-07-12 2020-03-23 삼성전자주식회사 멀티미디어 요소의 배치를 위한 마크업을 구성하는 방법
US20140169409A1 (en) 2012-12-14 2014-06-19 Futurewei Technologies, Inc. Systems and Methods for Open-loop Spatial Multiplexing Schemes for Radio Access Virtualization
US10630352B2 (en) * 2014-11-07 2020-04-21 Lg Electronics Inc. Signal transmission method and apparatus of apparatus having plurality of antennas in wireless communication system
WO2016090587A1 (zh) * 2014-12-11 2016-06-16 华为技术有限公司 数据处理的方法、装置和设备
EP3264659B1 (en) * 2015-03-19 2019-09-18 Huawei Technologies Co., Ltd. Information transmission method, terminal device, network device and device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102138287A (zh) * 2008-07-30 2011-07-27 Lg电子株式会社 在多天线***中发射数据的方法
CN104823384A (zh) * 2012-12-14 2015-08-05 华为技术有限公司 用于scma通信***中开环mimo通信的***和方法
US20150327095A1 (en) * 2014-05-09 2015-11-12 Samsung Electronics Co., Ltd. Interference measurement method and apparatus for use in mobile communication system
WO2016090588A1 (zh) * 2014-12-11 2016-06-16 华为技术有限公司 传输数据的方法、发送端设备和接收端设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3531576A4 *

Also Published As

Publication number Publication date
EP3531576A1 (en) 2019-08-28
RU2750239C2 (ru) 2021-06-24
EP3531576B1 (en) 2023-08-09
RU2019117026A3 (zh) 2020-12-04
CN108023632B (zh) 2022-06-28
KR102213563B1 (ko) 2021-02-08
US10727915B2 (en) 2020-07-28
EP3531576A4 (en) 2019-10-09
JP6885659B2 (ja) 2021-06-16
JP2020501414A (ja) 2020-01-16
KR20190073489A (ko) 2019-06-26
RU2019117026A (ru) 2020-12-04
US20190260439A1 (en) 2019-08-22
CN108023632A (zh) 2018-05-11

Similar Documents

Publication Publication Date Title
WO2021043058A1 (zh) 数据传输方法、装置、传输接收节点、终端及介质
US10158404B2 (en) Data transmission method, transmit end device, and receive end device
WO2016090587A1 (zh) 数据处理的方法、装置和设备
WO2017000291A1 (zh) 传输上行数据的方法和设备
CN106922213B (zh) 传输信息的方法、装置和设备
KR20170102173A (ko) 데이터 전송 방법 및 디바이스
US10171142B2 (en) Data transmission method, apparatus, and device
WO2016070428A1 (zh) Dm-rs信息的指示方法、装置以及通信***
WO2016082123A1 (zh) 处理数据的方法、网络节点和终端
WO2021104020A1 (zh) 数据传输方法、发送设备和接收设备
WO2018082530A1 (zh) 数据处理方法和发送设备
EP3284184A1 (en) Multi-stream faster-than-nyquist transmission using bandwidth partitioning
JP6218305B2 (ja) 無線通信方法及び無線通信装置
WO2016070395A1 (zh) 传输信息的方法、接入点和用户设备
WO2022205022A1 (zh) 用于传输参考信号的方法和装置
WO2022104656A1 (zh) 控制信道的传输及接收方法、装置、通信设备
WO2015100546A1 (zh) 一种数据传输方法及装置
WO2019090787A1 (zh) 一种用于无线通信的方法、装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17867581

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019523876

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197015004

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017867581

Country of ref document: EP

Effective date: 20190520