WO2018079261A1 - 発泡成形用ポリプロピレン系樹脂組成物、ポリプロピレン系発泡成形体、ポリプロピレン系多層発泡成形体およびポリプロピレン系発泡成形体の製造方法 - Google Patents

発泡成形用ポリプロピレン系樹脂組成物、ポリプロピレン系発泡成形体、ポリプロピレン系多層発泡成形体およびポリプロピレン系発泡成形体の製造方法 Download PDF

Info

Publication number
WO2018079261A1
WO2018079261A1 PCT/JP2017/036833 JP2017036833W WO2018079261A1 WO 2018079261 A1 WO2018079261 A1 WO 2018079261A1 JP 2017036833 W JP2017036833 W JP 2017036833W WO 2018079261 A1 WO2018079261 A1 WO 2018079261A1
Authority
WO
WIPO (PCT)
Prior art keywords
polypropylene
molded article
foam
inorganic filler
resin composition
Prior art date
Application number
PCT/JP2017/036833
Other languages
English (en)
French (fr)
Inventor
智也 又吉
孝行 渡辺
江里口 真男
Original Assignee
三井化学東セロ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学東セロ株式会社 filed Critical 三井化学東セロ株式会社
Priority to JP2018547537A priority Critical patent/JP6790110B2/ja
Publication of WO2018079261A1 publication Critical patent/WO2018079261A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene

Definitions

  • the present invention relates to a polypropylene resin composition for foam molding, a polypropylene foam molded article, a polypropylene multilayer foam molded article, and a method for producing a polypropylene foam molded article.
  • Wooden boards such as hardboards and medium density fiberboards are used as, for example, building materials, furniture, partitioning materials, heat insulating materials, packing materials and the like because they are lightweight and have excellent mechanical properties.
  • Patent Document 1 Japanese Patent Laid-Open No. 2014-151599
  • Patent Document 2 Japanese Patent Laid-Open No. 2010-643066
  • Patent Document 1 includes a wood board formed by adhering a wood chip or wood fiber with an adhesive, and containing a parenchyma-removed bamboo fiber obtained by removing parenchyma cells from bamboo fiber obtained by crushing bamboo. The characteristic wood board is described.
  • Patent Document 2 discloses a wood board obtained by hot pressing a wood material together with an adhesive.
  • the wood board is made of a fine powder of sodium sulfite having an average particle size of 40 ⁇ m or more and 180 ⁇ m or less.
  • a wood board characterized by containing 0.1 to 30% by weight based on the dry weight is described.
  • the present inventors examined using a polypropylene foam sheet containing a polypropylene resin and an inorganic filler as an alternative to the wooden board.
  • the polypropylene foam sheet containing the polypropylene resin and the inorganic filler may have uneven appearance such as color unevenness and vertical stripes (flow pattern) on the surface, which may deteriorate the appearance. .
  • the present invention has been made in view of the above circumstances, and has an excellent appearance and can be used as a substitute for a wooden board.
  • a resin composition is provided.
  • the present inventors diligently studied to realize a polypropylene-based foam molded product and a polypropylene-based multilayer foamed molded product that have an excellent appearance and can be used as a substitute for a wooden board.
  • the present inventors have a resin composition in which an inorganic filler having a moisture content of a specific value or less is blended with a polypropylene resin, has an excellent appearance, and can be used as a substitute for a wooden board. It has been found that a polypropylene-based foam molded body and a polypropylene-based multilayer foam molded body can be realized.
  • the following polypropylene molding resin composition for foam molding, a polypropylene foam molding, a polypropylene multilayer foam molding, and a method for producing a polypropylene foam molding are provided.
  • a polypropylene resin composition for foam molding according to the above [1] A polypropylene resin composition for foam molding, wherein the inorganic filler contains talc.
  • a polypropylene-based resin composition for foam molding having a mass% or less.
  • the polypropylene resin composition for foam molding according to any one of the above [1] to [4] In accordance with ASTM D1238, the polypropylene resin composition for foam molding, wherein the melt flow rate of the polypropylene resin measured at 230 ° C. and a load of 2.16 kg is from 0.5 g / 10 min to 20 g / 10 min. .
  • a polypropylene resin composition for foam molding wherein the polypropylene resin has a Z average molecular weight (Mz) / weight average molecular weight (Mw) of 7 to 20 as measured by gel permeation chromatography (GPC).
  • Mz Z average molecular weight
  • Mw weight average molecular weight
  • GPC gel permeation chromatography
  • a polypropylene-based foam-molded article comprising the foam-molded polypropylene-based resin composition according to any one of [1] to [6].
  • polypropylene foam molded body used as an alternative to wood boards.
  • a polypropylene foam layer composed of the polypropylene foam molded article according to any one of the above [7] to [13];
  • a first non-foaming resin layer provided on one surface of the polypropylene-based foam layer and containing a thermoplastic resin and an inorganic filler;
  • a second non-foaming resin layer provided on the other surface of the polypropylene-based foam layer and containing a thermoplastic resin and an inorganic filler;
  • a polypropylene-based multilayer foamed molded article A polypropylene-based multilayer foamed molded article.
  • the ratio of the thickness of the first non-foamable resin layer to the thickness of the entire polypropylene-based multilayer foamed molded article is 0.01 or more and 0.5 or less
  • a polypropylene-based multilayer foamed molded article, wherein a ratio of the thickness of the second non-foamable resin layer to the thickness of the entire polypropylene-based multilayer foamed molded article is 0.01 or more and 0.5 or less.
  • a polypropylene-based multilayer foamed molded article wherein the inorganic filler in the first non-foamable resin layer and the second non-foamable resin layer includes one or more selected from talc, mica, and silica, respectively.
  • the first non-foamable resin layer and the second non-foamable resin layer have the same composition and have the same thickness, and are a polypropylene-based multilayer foamed molded article.
  • a production method for producing a polypropylene-based foamed molded article comprising a polypropylene-based resin and an inorganic filler,
  • the inorganic filler contains at least one selected from talc and silica, Adjusting the moisture content of the inorganic filler to 0.10% by mass or less based on the whole inorganic filler by heating the inorganic filler;
  • the manufacturing method of the polypropylene-type foaming molding containing this.
  • the polypropylene resin composition for foam molding according to this embodiment includes a polypropylene resin and an inorganic filler. And the said inorganic filler contains at least 1 type selected from a talc and a silica, and the moisture content of the said inorganic filler is 0.10 mass% or less with respect to the said whole inorganic filler.
  • the water content of the inorganic filler according to this embodiment is preferably 0.08% by mass or less, more preferably 0.07% by mass or less, still more preferably 0.06% by mass or less, particularly with respect to the entire inorganic filler. Preferably it is 0.05 mass% or less.
  • the minimum of the moisture content rate of the inorganic filler which concerns on this embodiment is not specifically limited, For example, it is 0.001 mass% or more with respect to the whole inorganic filler.
  • the moisture content of the inorganic filler can be calculated, for example, by quantifying the moisture generated by heating the inorganic filler in a nitrogen stream and by the Karl Fischer coulometric titration method.
  • the present inventors examined using a polypropylene foam sheet containing a polypropylene resin and an inorganic filler as an alternative to the wooden board.
  • the polypropylene foam sheet containing the polypropylene resin and the inorganic filler may have uneven appearance such as color unevenness and vertical stripes (flow pattern) on the surface, which may deteriorate the appearance. .
  • the present inventors have intensively studied to realize a polypropylene-based foam molded product and a polypropylene-based multilayer foamed molded product that are excellent in appearance and can be used as a substitute for a wooden board.
  • the present inventors have a resin composition in which an inorganic filler having a moisture content of a specific value or less is blended with a polypropylene resin, has an excellent appearance, and can be used as a substitute for a wooden board. It has been found that a polypropylene-based foam molded body and a polypropylene-based multilayer foam molded body can be realized.
  • an inorganic filler having a moisture content of not more than the above upper limit when used, the occurrence of unevenness such as gloss unevenness, color unevenness and vertical stripes (flow pattern) on the surface is suppressed, and the uniformity of the foamed cells is further improved. Therefore, it is possible to obtain a polypropylene-based foam molded article having an excellent appearance.
  • the inorganic filler having a moisture content of not more than the above upper limit value is, for example, obtained by heating the inorganic filler at 80 to 150 ° C. for about 0.5 to 48 hours using a dehumidifying dryer or a vacuum dryer. It can be obtained by removing moisture adsorbed inside.
  • the polypropylene resin composition for foam molding according to the present embodiment by containing at least one selected from talc and silica as the inorganic filler, for example, compared with the case where calcium carbonate is used as the inorganic filler, etc.
  • talc and silica as the inorganic filler
  • by containing at least one selected from talc and silica as the inorganic filler for example, compared with the case where glass fiber is used as the inorganic filler, etc.
  • the appearance of the polypropylene-based foamed molded product can be improved.
  • the polypropylene resin composition for foam molding according to the present embodiment uses a polypropylene resin that is a plastic, the resulting polypropylene foam molded article has excellent water resistance compared to a wooden board and is wet with water. Excellent mechanical properties can be maintained even when left in a humid environment for a long time.
  • the polypropylene-based foam-molded article composed of the foam-molded polypropylene-based resin composition according to the present embodiment is unlikely to be chipped like a wood board and is excellent in handleability.
  • the total content of the polypropylene resin and the inorganic filler in the polypropylene resin composition for foam molding according to the present embodiment is preferably 50% by weight or more when the entire polypropylene foam molded body 100 is 100% by weight. 100 mass% or less, More preferably, it is 70 mass% or more and 100 mass% or less, More preferably, it is 90 mass% or more and 100 mass% or less, Most preferably, it is 95 mass% or more and 100 mass% or less.
  • the polypropylene resin composition for foam molding according to the present embodiment contains a polypropylene resin as an essential component.
  • examples of the polypropylene resin according to the present embodiment include a propylene homopolymer, a copolymer of propylene and ethylene or an ⁇ -olefin having 4 to 20 carbon atoms.
  • Examples of the ⁇ -olefin having 4 to 20 carbon atoms include 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, Examples include 1-hexadecene, 1-octadecene, 1-eicosene and the like.
  • ethylene or an ⁇ -olefin having 4 to 10 carbon atoms is preferable, and ethylene is more preferable.
  • These ⁇ -olefins may form a random copolymer with propylene or may form a block copolymer.
  • the content of structural units derived from these ⁇ -olefins is preferably 5 mol% or less, more preferably 2 mol% or less in the polypropylene resin.
  • the polypropylene resin in the polypropylene resin composition for foam molding may be used alone or in combination of two or more. Among these, a propylene homopolymer is preferable as the polypropylene resin from the viewpoint of obtaining a polypropylene-based foam molded article having higher rigidity.
  • the polypropylene resin according to the present embodiment can be manufactured by various methods. For example, it can be produced using a known catalyst such as a Ziegler-Natta catalyst or a metallocene catalyst.
  • the melt flow rate (MFR) of the polypropylene resin according to this embodiment measured under conditions of 230 ° C. and 2.16 kg load in accordance with ASTM D1238 is preferably 0.5 g from the viewpoint of fluidity and moldability. / 10 minutes or more, more preferably 1 g / 10 minutes or more. From the viewpoint of further stabilizing the moldability and further suppressing foam breakage of the foamed cells, preferably 20 g / 10 minutes or less, more preferably 10 g / 10. Min. Or less, more preferably 7 g / 10 min or less.
  • the polypropylene resin according to this embodiment has a Z average molecular weight (Mz) / weight average molecular weight (Mw) measured by gel permeation chromatography (GPC). Preferably they are 7 or more and 20 or less, More preferably, they are 10 or more and 20 or less.
  • Mz Z average molecular weight
  • Mw weight average molecular weight measured by gel permeation chromatography
  • Polypropylene resins having a Mz / Mw value within the above range show a wide molecular weight distribution and contain a large amount of high molecular weight components. Therefore, the melt tension and melt elongation are high, and the moldability including foaming is excellent.
  • the foam moldability of the polypropylene resin composition for foam molding can be improved. Even if the inorganic filler is highly filled, foaming is possible. Cell uniformity can be made better, and perforation and sheet breakage of the polypropylene-based foamed molded product can be further suppressed. As a result, a polypropylene-based foamed molded product that is superior in appearance can be realized.
  • the content of the polypropylene resin having an Mz / Mw value within the above range is preferably 50% by mass or more when the total amount of the polypropylene resin contained in the polypropylene resin composition for foam molding is 100% by mass. Preferably it is 60 mass% or more.
  • the polypropylene resin composition for foam molding according to this embodiment contains an inorganic filler as an essential component.
  • the inorganic filler includes at least one selected from talc and silica from the viewpoint of obtaining a polypropylene-based foam-molded article excellent in lightness, mechanical properties, recyclability, handleability and appearance.
  • talc is preferable from the viewpoints of compatibility with polypropylene resin, foamability, moldability, colorability, low cost, safety, and the like.
  • the content of the inorganic filler in the polypropylene resin composition for foam molding according to the present embodiment is preferably 5 parts by mass or more when the total amount of the polypropylene resin and the inorganic filler is 100 parts by mass.
  • the amount is preferably 15 parts by mass or more, more preferably 25 parts by mass or more, still more preferably 35 parts by mass or more, and particularly preferably 45 parts by mass or more.
  • the content of the inorganic filler in the polypropylene resin composition for foam molding according to the present embodiment is preferably 90 parts by mass or less when the total amount of the polypropylene resin and the inorganic filler is 100 parts by mass. More preferably, it is 80 mass parts or less, More preferably, it is 70 mass parts or less, Most preferably, it is 65 mass parts or less.
  • the content of the inorganic filler By making the content of the inorganic filler more than the above lower limit value, it is possible to further improve mechanical properties such as bending properties and tensile properties, heat resistance, moisture resistance, dimensional stability, etc. of the obtained polypropylene-based foam molded article. it can. Moreover, by making the content of the inorganic filler not more than the above upper limit value, the balance of light weight and high rigidity of the obtained polypropylene foam molded article can be improved, and the moldability and foam cell of the polypropylene foam molded article can be improved. The uniformity of the resin can be further improved, and the perforation and sheet breakage of the polypropylene-based foam molded product can be further suppressed. As a result, a polypropylene-based foam molded product that is more excellent in appearance can be realized. .
  • the inorganic filler may be used without treatment, in order to improve the interfacial adhesion with the polypropylene resin and improve the dispersibility with respect to the polypropylene resin, a silane coupling agent, a titanium coupling agent,
  • the surface may be treated with a surfactant or the like.
  • the polypropylene resin composition for foam molding according to the present embodiment includes a heat stabilizer, an antioxidant, an ultraviolet absorber, a pigment, an antistatic agent, a copper damage inhibitor, a flame retardant, a neutralizing agent, if necessary.
  • FIG. 1 is a cross-sectional view schematically showing an example of the structure of a polypropylene foam molded body 100 according to an embodiment of the present invention.
  • the polypropylene-based foam molded body 100 according to the present embodiment is constituted by the above-described polypropylene-based resin composition for foam molding according to the present embodiment, and can be obtained by foam-molding the polypropylene-based resin composition for foam molding.
  • the shape of the polypropylene-type foaming molding 100 which concerns on this embodiment is not specifically limited, For example, it is a sheet form.
  • the density of the polypropylene-based foamed molded article 100 is preferably 1.0 g / cm 3 or less, less than 1.0 g / cm 3 is more preferable.
  • the density is not more than the above upper limit value or less than the above upper limit value, an even lighter polypropylene-based foam molded article 100 can be obtained.
  • a polypropylene-type foaming molding can float in water as a density is below the said upper limit or less, it becomes easy to fractionate a structural component and can improve recyclability.
  • the density of the polypropylene-based foamed molded article 100 is preferably 0.35 g / cm 3 or more, 0.40 g / cm 3 or more, more preferably, 0.45 g / cm 3 or more and more preferably, 0.50 g / cm 3 or more Is particularly preferred.
  • the density is equal to or higher than the lower limit, mechanical properties such as bending properties and tensile properties of the polypropylene foamed molded product 100 can be further improved.
  • the density of the polypropylene-based foam molded body 100 is controlled within the above range by appropriately controlling, for example, the type and blending amount of the polypropylene-based resin, inorganic filler, and the like, and the expansion ratio of the polypropylene-based foam molded body 100, respectively. be able to.
  • the flexural modulus of the polypropylene foam molded body 100 according to this embodiment measured in an environment of 23 ° C. and 50% RH is preferably 1.0 GPa or more, more preferably 1.5 GPa or more, and further 2.0 GPa or more. Preferably, 2.5 GPa or more is even more preferable, and 3.0 GPa or more is particularly preferable.
  • the rigidity of the polypropylene foam molded body 100 can be further improved. As a result, deformation of the polypropylene foam molded body 100 with respect to external stress can be suppressed, or It is possible to improve the scratch resistance, heat resistance, dimensional stability, etc. of the foam molded body 100.
  • the bending elastic modulus of the polypropylene-type foaming molding 100 which concerns on this embodiment, 9 GPa or less is more preferable.
  • the flexural modulus By setting the flexural modulus to be equal to or less than the above upper limit value, the balance between the deformation resistance against external stress and the toughness of the polypropylene foam molded body 100 can be improved.
  • the bending elastic modulus of the polypropylene-based foam molded body 100 can be measured by a three-point bending test. For example, with reference to the bending strength test described in JIS A5905, the specimen thickness t: 3 mm, specimen width b: 50 mm, specimen length: 150 mm, and span in an environment of 23 ° C.
  • the amount of deflection Y [mm] with respect to the test load F [N] is measured under the conditions of the distance L: 100 mm and the bending speed: 50 mm / min.
  • the gradient ⁇ F / ⁇ Y of the initial straight line portion in the obtained load-deflection diagram is obtained, and the flexural modulus: E [GPa] is obtained from the following equation (1).
  • E ⁇ L 3 / (4b ⁇ t 3 ) ⁇ ⁇ ( ⁇ F / ⁇ Y) (1)
  • One point is measured for each of the MD direction and the TD direction, and the average value thereof can be adopted as the bending elastic modulus.
  • the flexural modulus of the polypropylene-based foam molded body 100 is within the above range by appropriately controlling, for example, the type and blending amount of the polypropylene-based resin, inorganic filler, and the like, and the expansion ratio of the polypropylene-based foam molded body 100, respectively. Can be controlled.
  • the Young's modulus of the polypropylene foam molded body 100 is preferably 0.3 GPa or more, more preferably 0.5 GPa or more, further preferably 0.8 GPa or more, and particularly preferably 1.0 GPa or more.
  • the rigidity of the polypropylene foam molded body 100 can be further improved.
  • deformation of the polypropylene foam molded body 100 with respect to external stress can be suppressed, or the polypropylene foam can be expanded.
  • the scratch resistance, heat resistance, dimensional stability, and the like of the molded body 100 can be improved.
  • the Young's modulus of the polypropylene foam molded body 100 is preferably 5 GPa or less, and more preferably 3 GPa or less.
  • the Young's modulus of the polypropylene-based foam molded body 100 is an environment of 23 ° C. and 50% RH, and the shape of the test piece: strip shape, the width of the test piece: 10 mm, the distance between chucks: 50 mm, and the tensile speed: 20 mm.
  • the Young's modulus of the polypropylene-based foam molded body 100 is controlled within the above range by appropriately controlling, for example, the type and blending amount of the polypropylene-based resin, inorganic filler, and the like, and the expansion ratio of the polypropylene-based foam molded body 100, respectively. can do.
  • the arithmetic average roughness Ra of the surface of the polypropylene-based foamed molded product 100 is 2 from the viewpoint of further suppressing unevenness such as gloss unevenness and color unevenness on the surface and occurrence of vertical stripes (flow pattern) and improving the appearance. It is preferable that it is 5 ⁇ m or less.
  • the lower limit of the arithmetic average roughness Ra on the surface of the polypropylene-based foamed molded product 100 is not particularly limited, but is, for example, 0.1 ⁇ m or more.
  • the arithmetic average roughness Ra of the surface of the polypropylene-based foamed molded product 100 can be measured according to JIS-B0601-1994.
  • the types and blending amounts of polypropylene-based resin and inorganic filler, the expansion ratio of the polypropylene-based foamed molded product 100, etc. It is important to use an inorganic filler having a low moisture content while appropriately selecting each.
  • the thickness of the polypropylene foam molded body 100 is not particularly limited, but is, for example, from 0.5 mm to 30 mm, preferably from 1.0 mm to 20 mm, more preferably from 1.5 mm to 12 mm, and still more preferably. It is 2.0 mm or more and 9.0 mm or less. When the thickness of the polypropylene-based foam molded body 100 is within this range, the balance of lightness, mechanical properties, recyclability, handleability, appearance, moldability, etc. is more excellent.
  • the polypropylene-based foam molded body 100 can be obtained, for example, by foam-molding the polypropylene-based resin composition for foam molding according to the present embodiment into a predetermined shape.
  • the molding apparatus and molding conditions are not particularly limited, and conventionally known molding apparatuses and foam molding conditions can be employed.
  • each component is mixed or melted / kneaded by dry blending, tumbler mixer, Banbury mixer, single screw extruder, twin screw extruder, high speed twin screw extruder, hot roll, etc. Can be prepared.
  • the polypropylene-based foam-molded body 100 can be obtained, for example, by foam-molding the above-described foam-molded polypropylene-based resin composition into a predetermined shape using an extrusion molding machine or an injection molding machine.
  • the foaming agent for molding the polypropylene-based foam molded body 100 include a chemical foaming agent and carbon dioxide gas.
  • Chemical foaming agents include sodium bicarbonate, ammonium bicarbonate, various carboxylates, sodium borohydride, azodicarboxamide, N, N-dinitrosopentamethylenetetramine, P, P-oxybis (benzenesulfonylhydrazide) Azobisisobutyronitrile, paratoluenesulfonyl hydrazide and the like.
  • Carbon dioxide gas can be supplied in a gaseous state, a liquid state, or a supercritical state.
  • the chemical foaming agent is blended with the polypropylene resin composition for foam molding and mixed uniformly before being introduced into the extruder.
  • carbon dioxide gas is used as the foaming agent, it is preferable that the polypropylene resin composition for foam molding is kneaded and plasticized in the extruder and then directly pressed into the extruder.
  • the expansion ratio of the polypropylene resin composition for foam molding is not particularly limited, and can be appropriately determined in consideration of various physical properties of the polypropylene foam molded body 100 to be obtained.
  • Polypropylene-based foam molded article 100 has an excellent appearance, and also has a good balance between lightness and mechanical properties, so it can be used as a substitute for wood boards, especially hard boards, medium-density fiber boards, and other high-rigidity wood boards. It can be used as a product.
  • FIG. 2 is a cross-sectional view schematically showing an example of the structure of a polypropylene-based multilayer foamed molded product 200 according to an embodiment of the present invention.
  • the polypropylene-based multilayer foamed molded product 200 according to this embodiment is provided on one surface of the polypropylene-based foamed layer 100 constituted by the polypropylene-based foamed molded product 100 according to this embodiment, and the polypropylene-based foamed layer 100, and The first non-foamable resin layer 110 containing a thermoplastic resin and an inorganic filler, and the second non-foamable resin layer 120 provided on the other surface of the polypropylene foam layer 100 and containing a thermoplastic resin and an inorganic filler.
  • the machine Since the polypropylene-based multilayer foamed molded product 200 according to the present embodiment has an unfoamed inorganic filler-containing resin layer on the surface, the machine has bending characteristics, tensile properties, and the like compared to the polypropylene-based foamed molded product 100 according to the present embodiment. Characteristics can be improved.
  • the shape of the polypropylene-based multilayer foamed molded product 200 according to the present embodiment is not particularly limited, and is, for example, a sheet shape.
  • the thickness of the polypropylene-based multilayer foamed molded product 200 according to the present embodiment is not particularly limited, but is, for example, 0.5 mm to 30 mm, preferably 1.0 mm to 20 mm, and more preferably 1.5 mm to 12 mm. More preferably, it is 2.0 mm or more and 9.0 mm or less. When the thickness of the polypropylene-based multilayer foamed molded product 200 is within this range, the balance of lightness, mechanical properties, recyclability, handleability, appearance, moldability, etc. is more excellent.
  • the thickness of the first non-foamable resin layer 110 and the second non-foamable resin layer 120 is not particularly limited, but is preferably 0.05 mm or more and 5 mm or less, and preferably 0.1 mm or more and 3 mm or less. More preferred. Further, the ratio of the thickness of the first non-foamable resin layer 110 to the thickness of the polypropylene-based multilayer foamed molded article 200 is preferably 0.01 or more and 0.5 or less, more preferably 0.02 or more and 0.3 or less. Yes, more preferably 0.05 or more and 0.2 or less.
  • the ratio of the thickness of the second non-foamable resin layer 120 to the thickness of the polypropylene-based multilayer foamed molded article 200 is preferably 0.01 or more and 0.5 or less, more preferably 0.02 or more and 0.3 or less. Yes, more preferably 0.05 or more and 0.2 or less.
  • the first non-foamable resin layer 110 and the second non-foamable resin layer 120 according to the present embodiment include a thermoplastic resin as an essential component.
  • a thermoplastic resin for example, a polyolefin resin can be used.
  • polyolefin resins include homopolymers of ⁇ -olefins such as ethylene, propylene, butene-1,3-methylbutene-1,3-methylpentene-1,4-methylpentene-1, and copolymers thereof. Or the copolymer of these and other copolymerizable unsaturated monomers, etc. are mentioned.
  • high-density polyethylene More specifically, high-density polyethylene, medium-density polyethylene, low-density polyethylene, linear low-density polyethylene, ultrahigh molecular weight polyethylene, ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, and other polyethylene-based polymers
  • examples thereof include resin; polypropylene resin; polybutene-1; poly-4-methylpentene-1.
  • One type of polyolefin resin may be used, or two or more types may be used in combination.
  • a polypropylene resin is preferable because it is excellent in lightness, rigidity, tensile strength, scratch resistance, low water absorption, and heat resistance.
  • a polypropylene resin the thing similar to the polypropylene resin used with the polypropylene foaming molding 100 which concerns on this embodiment mentioned above can be mentioned, for example.
  • the first non-foamable resin layer 110 and the second non-foamable resin layer 120 according to the present embodiment include an inorganic filler as an essential component.
  • the inorganic filler include talc, mica, clay, wollastonite, calcium carbonate, magnesium carbonate, aluminum hydroxide, magnesium hydroxide, kaolin, perlite, calcium sulfate, barium sulfate, potassium titanate, barium sulfate, calcium sulfite, Calcium silicate, silica, diatomaceous earth, alumina, titanium oxide, glass fiber, glass bead, glass balloon, milled fiber, montmorillonite, bentonite, guffite, aluminum powder, glass flake, carbon fiber, carbon flake, carbon balun, carbon Beads, carbon milled fiber, carbon black, graphite, carbon nanotube, ceramic fiber, molybdenum sulfide, aramid particles, aramid fiber, boron fiber, silicon
  • the inorganic filler in the first non-foamable resin layer 110 and the second non-foamable resin layer 120 a polypropylene-based multilayer foam molding excellent in lightness, mechanical properties, recyclability, handleability and appearance.
  • talc talc
  • mica talc
  • silica talc
  • talc and mica are preferable from the viewpoint of low cost
  • talc is more preferable from the viewpoint of compatibility with polypropylene resin, foamability, moldability, colorability, low price, safety, and the like.
  • the inorganic filler may be used without treatment, in order to improve the interfacial adhesion with the thermoplastic resin and improve the dispersibility to the thermoplastic resin, a silane coupling agent, a titanium coupling agent,
  • the surface may be treated with a surfactant or the like.
  • the water content of the inorganic filler according to this embodiment is preferably 0.10% by mass or less, more preferably 0.08% by mass or less, further preferably 0.07% by mass or less, based on the entire inorganic filler. More preferably, it is 0.06 mass% or less, Most preferably, it is 0.05 mass% or less.
  • the minimum of the moisture content rate of the inorganic filler which concerns on this embodiment is not specifically limited, For example, it is 0.001 mass% or more with respect to the whole inorganic filler.
  • the moisture content of the inorganic filler can be calculated, for example, by quantifying the moisture generated by heating the inorganic filler in a nitrogen stream and by the Karl Fischer coulometric titration method.
  • the inorganic filler having a moisture content of not more than the above upper limit value is, for example, obtained by heating the inorganic filler at 80 to 150 ° C. for about 0.5 to 48 hours using a dehumidifying dryer or a vacuum dryer. It can be obtained by removing moisture adsorbed inside.
  • the content of the inorganic filler in the first non-foamable resin layer 110 and the second non-foamable resin layer 120 is such that the thermoplastic resin contained in the first non-foamable resin layer 110 and the second non-foamable resin layer 120 and
  • each is preferably 5 parts by mass or more, more preferably 15 parts by mass or more, still more preferably 25 parts by mass or more, still more preferably 35 parts by mass or more, particularly preferably. Is 45 parts by mass or more.
  • the content of the inorganic filler in the first non-foamable resin layer 110 and the second non-foamable resin layer 120 is the thermoplasticity contained in the first non-foamable resin layer 110 and the second non-foamable resin layer 120.
  • each is preferably 90 parts by mass or less, more preferably 80 parts by mass or less, still more preferably 70 parts by mass or less, and particularly preferably 65 parts by mass or less. .
  • the content of the inorganic filler in the first non-foamable resin layer 110 and the second non-foamable resin layer 120 is obtained. Characteristics, heat resistance, moisture resistance, and dimensional stability can be further improved. Further, by setting the content of the inorganic filler in the first non-foamable resin layer 110 and the second non-foamable resin layer 120 to be equal to or lower than the above upper limit value, the light weight and high rigidity of the polypropylene-based multilayer foamed molded body 200 can be improved.
  • the balance can be further improved, the moldability of the polypropylene-based multilayer foamed molded product 200 can be improved, and perforation and cutting of the polypropylene-based multilayer foamed molded product 200 can be suppressed.
  • a polypropylene-based multilayer foamed molded product 200 can be realized.
  • the first non-foamable resin layer 110 and the second non-foamable resin layer 120 have the same composition and have the same thickness.
  • the linear expansion coefficients of the first non-foamable resin layer 110 and the second non-foamable resin layer 120 can be made to be the same value, so that the dimensions are due to deformation such as warpage due to thermal stress or moisture absorption. It is possible to obtain a polypropylene-based multilayer foamed molded product 200 that can suppress the change more effectively and that is further superior in mechanical properties such as bending properties and tensile properties and heat resistance.
  • the first non-foamable resin layer 110 and the second non-foamable resin layer 120 include a heat stabilizer, an antioxidant, an ultraviolet absorber, a pigment, an antistatic agent, and copper damage prevention as necessary.
  • the polypropylene-based multilayer foamed molded product 200 according to the present embodiment is composed of, for example, an inorganic filler-containing thermoplastic resin composition containing an inorganic filler and a thermoplastic resin on both surfaces of the polypropylene-based foamed molded product 100 according to the present embodiment. It can be obtained by forming a resin layer.
  • inorganic filler-containing thermoplastic resin composition according to the present embodiment, each component is mixed or melted by dry blend, tumbler mixer, Banbury mixer, single screw extruder, twin screw extruder, high speed twin screw extruder, hot roll, etc. -It can be prepared by kneading.
  • the method for molding the polypropylene-based multilayer foamed molded product 200 according to the present embodiment can be performed by a known method using, for example, a multilayer extruder or a lamination molding machine.
  • the polypropylene-based multilayer foamed molded product 200 forms, for example, a foam-molded polypropylene-based resin composition for forming the polypropylene-based foamed layer 100, and the first non-foamable resin layer 110 and the second non-foamable resin layer 120.
  • the inorganic filler-containing thermoplastic resin composition to be obtained is supplied from the main extruder of the multilayer extruder and the hopper of the sub-extruder and is multilayer-extruded into a sheet form from the tip of the T die.
  • the polypropylene-based multilayer foamed molded body 200 is formed by separately molding the polypropylene-based foamed layer 100, the first non-foamable resin layer 110, and the second non-foamable resin layer 120, and laminating them to heat-mold them. Can also be obtained.
  • a polyolefin resin having a low melting point is formed between the polypropylene foam layer 100 and the first non-foamable resin layer 110 or between the polypropylene foam layer 100 and the second non-foamable resin layer 120.
  • a thermal adhesive layer may be interposed.
  • the polyolefin resin having such a low melting point is not particularly limited.
  • a polypropylene resin can be used, and a random copolymer of propylene and ⁇ -olefin is preferable.
  • the polypropylene-based multilayer foamed molded product 200 Since the polypropylene-based multilayer foamed molded product 200 according to the present embodiment has an excellent performance balance between lightness and mechanical properties, it is an alternative to a wooden board, particularly a high-rigidity wooden board such as a hard board or a medium density fiber board. It can be used as a product.
  • the separation column two trade names “TSKgel GMH6-HT” and two trade names “TSKgel GMH6-HTL” were used.
  • the column sizes are 7.5 mm in inner diameter and 300 mm in length, the column temperature is 140 ° C., the mobile phase is o-dichlorobenzene (manufactured by Wako Pure Chemical Industries, Ltd.), and the antioxidant is BHT (Wako Pure Chemical Industries, Ltd.). (0.025% by weight).
  • the mobile phase was moved at a rate of 1.0 ml / min, the sample injection volume was 400 ⁇ l, and a differential refractometer was used as a detector.
  • Standard polystyrene was manufactured by Tosoh Corporation.
  • the molecular weight is a value converted into a polypropylene resin after universal calibration.
  • flexural modulus of polypropylene-based foamed (multilayer) sheet was determined by referring to the flexural strength test described in JIS A5905 at an environment of 23 ° C. and 50% RH. Below, test piece thickness: 3 mm, test piece width: 50 mm, test piece length: 150 mm, span distance: 100 mm, bending speed: 50 mm / min. The average value was adopted.
  • Young's modulus of the polypropylene-based foamed (multilayer) sheet is 23 ° C. and 50% RH environment, and the specimen shape: strip shape, specimen width: 10 mm The distance between chucks was 50 mm, the tensile speed was 20 mm / min, one point was measured for each of the MD direction and the TD direction, and the average value thereof was adopted.
  • Arithmetic mean roughness Ra of the polypropylene-based foamed (multi-layer) sheet surface The arithmetic average roughness Ra of the surface of the polypropylene-based foamed (multilayer) sheet is based on JIS-B0601-1994, and is a surface roughness measuring machine manufactured by Tokyo Seimitsu Co., Ltd. (model: E-MD-S189A, stylus tip shape (tip Radius: 2 ⁇ m, 60 ° cone, material: diamond)), evaluation length: 10 mm, measurement speed: 0.3 mm / second, cut-off value: 0.8 mm, measurement direction: parallel to the TD direction of the sheet surface Measured under various orientation conditions.
  • Water content of inorganic filler was calculated by the following method. First, moisture generated by heating the inorganic filler at 200 ° C. for 15 minutes in a nitrogen stream (100 ml / min) was quantified by Karl Fischer coulometric titration. Next, the moisture content of the inorganic filler was calculated from the obtained moisture content.
  • Polypropylene resin PP1 Propylene homopolymer (VP103W manufactured by Prime Polymer, MFR: 3 g / 10 min, Mz / Mw value: 14)
  • PP Mica MB manufactured by Shiraishi Calcium Co., Ltd., Brand: HIFILLMER MAT-MPH80-60 (MFR: 3 g / 10 min, composition: containing 20% by mass of polypropylene composed of block copolymer and 80% by mass of mica, water content of mica) : 0.20% by mass) was heated at 120 ° C. for 18 hours, and the water content of mica was reduced to 0.075% by mass)
  • PP calcium carbonate MB produced by Toyo Ink Co., Ltd., brand: PPM10245AL (containing 20% by mass of propylene homopolymer and 80% by mass of calcium carbonate) heated at 120 ° C. for 18 hours
  • PPM10245AL containing 20% by mass of propylene homopolymer and 80% by mass of calcium carbonate
  • each raw material was dry blended with the formulation shown in Table 1 (the unit in the table is parts by mass), the resulting mixture was put into a hopper, and further from the carbon dioxide supply device to the middle of the cylinder of the extruder (position) 17.5D) was injected with carbon dioxide at a pressure of 10 to 19 MPa. At this time, the injection amount of carbon dioxide gas was adjusted to 0.17 to 0.33 mass% with respect to the extrusion amount.
  • Each component raw material is melted and kneaded under the conditions of a temperature of 173 to 193 ° C.
  • Example 7 to 10 Each raw material was put into the hopper with the formulation shown in Table 2 (units in the table are parts by mass) into the extrusion molding machine used in Examples 1 to 6, cylinder temperature 205 to 215 ° C, die temperature 220 ° C, screw rotation Each raw material was melted and kneaded under the condition of several 22 to 28 rpm, and extruded from a T-die at a resin temperature of 229 to 231 ° C. of the cylinder head so that the extrusion rate was 8 to 13 kg / hour.
  • the extruded foam sheet was taken up at a take-up speed of 1.0 m / min using a take-up machine, and polypropylene-based non-foamed sheets 1 to 4 having a sheet width of 290 to 300 mm were obtained.
  • polypropylene-based foamed multilayer sheets having the layer structure shown in Table 3 were produced and evaluated. The obtained results are shown in Table 3, respectively.
  • the polypropylene-based foamed multilayer sheet was laminated by inserting a thermal adhesive layer (a polypropylene film made of a random copolymer having a melting point of 139 ° C., thickness: 0.07 mm) between the layers.
  • a polyimide film having a mirror surface (arithmetic mean roughness Ra is 0.1 ⁇ m or less and thickness is 0.1 mm).
  • the hot pressing was performed at a temperature of 150 ° C. and a pressure of 2.5 MPa for 8 minutes, and then the hot pressing was performed at a temperature of 150 ° C. and a pressure of 10 MPa for 1 minute. Then, the multilayer sheet containing the upper and lower polyimide films was inserted into a cooling press apparatus and cooled at a temperature of 25 ° C.
  • the metal frame of thickness 3mm used as a spacer was previously arrange
  • the polypropylene foamed sheets of Examples 1 to 6 and the polypropylene foamed multilayer sheets of Examples 7 to 10 using talc having a water content of 0.10% by mass or less are It was found that the appearance was excellent. In addition, the density and flexural modulus showed the same level as that of wood boards such as hard boards and medium density fiber boards, and it was found that the performance balance of light weight and mechanical properties was excellent. That is, it can be understood that the polypropylene foam molded body 100 according to the present embodiment is suitable as a substitute for the wooden board. On the other hand, the polypropylene foam sheets of Comparative Examples 1 to 8 were all inferior in appearance. In addition, the polypropylene foam sheet of Comparative Example 9 had a poor performance balance between lightness and mechanical properties, and was not suitable as a substitute for a wooden board.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明の発泡成形用ポリプロピレン系樹脂組成物は、ポリプロピレン系樹脂と、無機フィラーとを含む。そして、上記無機フィラーがタルクおよびシリカから選択される少なくとも一種を含み、上記無機フィラーの水分含有率が上記無機フィラー全体に対して0.10質量%以下である。

Description

発泡成形用ポリプロピレン系樹脂組成物、ポリプロピレン系発泡成形体、ポリプロピレン系多層発泡成形体およびポリプロピレン系発泡成形体の製造方法
 本発明は、発泡成形用ポリプロピレン系樹脂組成物、ポリプロピレン系発泡成形体、ポリプロピレン系多層発泡成形体およびポリプロピレン系発泡成形体の製造方法に関する。
 ハードボード、中密度繊維板等の木質ボードは、軽量で、かつ、機械的特性に優れることから、例えば、建材、家具、仕切材、断熱材、梱包材等として用いられている。
 このような木質ボードに関する技術としては、例えば、特許文献1(特開2014-151599号公報)および特許文献2(特開2010-64306号公報)に記載のものが挙げられる。
 特許文献1には、木質チップまたは木質繊維を接着剤により接着して成形してなる木質ボードであって、竹を破砕した竹繊維から柔細胞を除去した柔細胞除去竹繊維を含有することを特徴とする木質ボードが記載されている。
 また、特許文献2には木質材料を接着剤とともに熱圧成形して得られる木質ボードであって、上記木質ボードは平均粒径が40μm以上180μm以下である亜硫酸ナトリウムの微粉末を木質材料の全乾重量に対し0.1重量%~30重量%で含むことを特徴とする木質ボードが記載されている。
特開2014-151599号公報 特開2010-64306号公報
 地球環境保護の観点から、森林伐採が抑制され木材資源の入手が困難になっていくことが予想されているため、木質ボードの代替品が求められている。
 本発明者らは木質ボードの代替として、ポリプロピレン系樹脂と、無機フィラーとを含むポリプロピレン系発泡シートを用いることを検討した。しかし、ポリプロピレン系樹脂と、無機フィラーとを含むポリプロピレン系発泡シートは、表面に色ムラ等のムラや縦筋(流れ模様)等が発生し、外観が悪化する場合があることが明らかになった。
 本発明は、上記事情に鑑みてなされたものであり、外観に優れ、木質ボードの代替品として使用することが可能なポリプロピレン系発泡成形体およびポリプロピレン系多層発泡成形体を実現できる発泡成形用ポリプロピレン系樹脂組成物を提供するものである。
 本発明者らは、外観に優れ、木質ボードの代替品として使用することが可能なポリプロピレン系発泡成形体およびポリプロピレン系多層発泡成形体を実現するために鋭意検討した。その結果、本発明者らは、水分含有率が特定値以下である無機フィラーをポリプロピレン系樹脂に対して配合させた樹脂組成物が外観に優れ、木質ボードの代替品として使用することが可能なポリプロピレン系発泡成形体およびポリプロピレン系多層発泡成形体を実現することができることを見出した。
 すなわち、本発明によれば、以下に示す発泡成形用ポリプロピレン系樹脂組成物、ポリプロピレン系発泡成形体、ポリプロピレン系多層発泡成形体およびポリプロピレン系発泡成形体の製造方法が提供される。
[1]
 ポリプロピレン系樹脂と、無機フィラーとを含む発泡成形用ポリプロピレン系樹脂組成物であって、
 上記無機フィラーがタルクおよびシリカから選択される少なくとも一種を含み、
 上記無機フィラーの水分含有率が上記無機フィラー全体に対して0.10質量%以下である発泡成形用ポリプロピレン系樹脂組成物。
[2]
 上記[1]に記載の発泡成形用ポリプロピレン系樹脂組成物において、
 上記無機フィラーがタルクを含む発泡成形用ポリプロピレン系樹脂組成物。
[3]
 上記[1]または[2]に記載の発泡成形用ポリプロピレン系樹脂組成物において、
 当該ポリプロピレン系樹脂組成物中の上記無機フィラーの含有量が、上記ポリプロピレン系樹脂および上記無機フィラーの合計量を100質量部としたとき、5質量部以上90質量部以下である発泡成形用ポリプロピレン系樹脂組成物。
[4]
 上記[1]乃至[3]のいずれか一つに記載の発泡成形用ポリプロピレン系樹脂組成物において、
 当該発泡成形用ポリプロピレン系樹脂組成物中の上記ポリプロピレン系樹脂および上記無機フィラーの含有量の合計が、当該発泡成形用ポリプロピレン系樹脂組成物の全体を100質量%としたとき、50質量%以上100質量%以下である発泡成形用ポリプロピレン系樹脂組成物。
[5]
 上記[1]乃至[4]のいずれか一つに記載の発泡成形用ポリプロピレン系樹脂組成物において、
 ASTM D1238に準拠し、230℃、2.16kg荷重の条件で測定される上記ポリプロピレン系樹脂のメルトフローレートが0.5g/10分以上20g/10分以下である発泡成形用ポリプロピレン系樹脂組成物。
[6]
 上記[1]乃至[5]のいずれか一つに記載の発泡成形用ポリプロピレン系樹脂組成物において、
 ゲル浸透クロマトグラフィー(GPC)により測定される、上記ポリプロピレン系樹脂のZ平均分子量(Mz)/重量平均分子量(Mw)が7以上20以下である発泡成形用ポリプロピレン系樹脂組成物。
[7]
 上記[1]乃至[6]のいずれか一つに記載の発泡成形用ポリプロピレン系樹脂組成物により構成されたポリプロピレン系発泡成形体。
[8]
 上記[7]に記載のポリプロピレン系発泡成形体において、
 当該ポリプロピレン系発泡成形体の密度が1.0g/cm以下であるポリプロピレン系発泡成形体。
[9]
 上記[7]または[8]に記載のポリプロピレン系発泡成形体において、
 23℃、50%RHの環境下で測定される当該ポリプロピレン系発泡成形体の曲げ弾性率が1.0GPa以上であるポリプロピレン系発泡成形体。
[10]
 上記[7]乃至[9]のいずれか一つに記載のポリプロピレン系発泡成形体において、
 23℃、50%RHの環境下で、かつ、試験片形状:短冊状、試験片幅:10mm、チャック間距離:50mm、引張速度:20mm/分の条件で測定される当該ポリプロピレン系発泡成形体のヤング率が0.3GPa以上であるポリプロピレン系発泡成形体。
[11]
 上記[7]乃至[10]のいずれか一つに記載のポリプロピレン系発泡成形体において、
 JIS-B0601-1994に準拠して測定される、当該ポリプロピレン系発泡成形体表面の算術平均粗さRaが2.5μm以下であるポリプロピレン系発泡成形体。
[12]
 上記[7]乃至[11]のいずれか一つに記載のポリプロピレン系発泡成形体において、
 当該ポリプロピレン系発泡成形体の厚みが0.5mm以上30mm以下であるポリプロピレン系発泡成形体。
[13]
 上記[7]乃至[12]のいずれか一つに記載のポリプロピレン系発泡成形体において、
 木質ボードの代替品として用いられるポリプロピレン系発泡成形体。
[14]
 上記[7]乃至[13]のいずれか一つに記載のポリプロピレン系発泡成形体により構成されたポリプロピレン系発泡層と、
 上記ポリプロピレン系発泡層の一方の面に設けられ、かつ、熱可塑性樹脂および無機フィラーを含む第1非発泡性樹脂層と、
 上記ポリプロピレン系発泡層の他方の面に設けられ、かつ、熱可塑性樹脂および無機フィラーを含む第2非発泡性樹脂層と、
を備えるポリプロピレン系多層発泡成形体。
[15]
 上記[14]に記載のポリプロピレン系多層発泡成形体において、
 上記第1非発泡性樹脂層および上記第2非発泡性樹脂層の厚みがそれぞれ0.05mm以上5mm以下であるポリプロピレン系多層発泡成形体。
[16]
 上記[14]または[15]に記載のポリプロピレン系多層発泡成形体において、
 上記ポリプロピレン系多層発泡成形体全体の厚みに対する上記第1非発泡性樹脂層の厚みの比が0.01以上0.5以下であり、
 上記ポリプロピレン系多層発泡成形体全体の厚みに対する上記第2非発泡性樹脂層の厚みの比が0.01以上0.5以下であるポリプロピレン系多層発泡成形体。
[17]
 上記[14]乃至[16]のいずれか一つに記載のポリプロピレン系多層発泡成形体において、
 上記第1非発泡性樹脂層および上記第2非発泡性樹脂層中の上記無機フィラーが、それぞれタルク、マイカおよびシリカから選択される一種または二種以上を含むポリプロピレン系多層発泡成形体。
[18]
 上記[14]乃至[17]のいずれか一つに記載のポリプロピレン系多層発泡成形体において、
 上記第1非発泡性樹脂層および上記第2非発泡性樹脂層中の上記無機フィラーの含有量が、上記第1非発泡性樹脂層および上記第2非発泡性樹脂層に含まれる上記熱可塑性樹脂および上記無機フィラーの合計量を100質量部としたとき、それぞれ5質量部以上90質量部以下であるポリプロピレン系多層発泡成形体。
[19]
 上記[14]乃至[18]のいずれか一つに記載のポリプロピレン系多層発泡成形体において、
 上記第1非発泡性樹脂層および上記第2非発泡性樹脂層は同一の組成を有し、かつ、同じ厚みであるポリプロピレン系多層発泡成形体。
[20]
 上記[14]乃至[19]のいずれか一つに記載のポリプロピレン系多層発泡成形体において、
 木質ボードの代替品として用いられるポリプロピレン系多層発泡成形体。
[21]
 ポリプロピレン系樹脂と、無機フィラーとを含むポリプロピレン系発泡成形体を製造するための製造方法であって、
 上記無機フィラーがタルクおよびシリカから選択される少なくとも一種を含み、
 無機フィラーを加熱することにより上記無機フィラーの水分含有率を上記無機フィラー全体に対して0.10質量%以下に調整する工程と、
 得られた水分含有率が0.10質量%以下である上記無機フィラーと、ポリプロピレン系樹脂とを含むポリプロピレン系樹脂組成物を発泡成形する工程と、
を含むポリプロピレン系発泡成形体の製造方法。
 本発明によれば、外観に優れ、木質ボードの代替品として使用することが可能なポリプロピレン系発泡成形体およびポリプロピレン系多層発泡成形体を実現することができる。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
本発明に係る実施形態のポリプロピレン系発泡成形体の構造の一例を模式的に示した断面図である。 本発明に係る実施形態のポリプロピレン系多層発泡成形体の構造の一例を模式的に示した断面図である。
 以下、本発明の実施の形態について、図面を用いて説明する。なお、数値範囲の「A~B」は特に断りがなければ、A以上B以下を表す。
1.発泡成形用ポリプロピレン系樹脂組成物について
 本実施形態に係る発泡成形用ポリプロピレン系樹脂組成物は、ポリプロピレン系樹脂と、無機フィラーとを含む。そして、上記無機フィラーがタルクおよびシリカから選択される少なくとも一種を含み、上記無機フィラーの水分含有率が上記無機フィラー全体に対して0.10質量%以下である。
 また、本実施形態に係る無機フィラーの水分含有率は無機フィラー全体に対して好ましくは0.08質量%以下、より好ましくは0.07質量%以下、さらに好ましくは0.06質量%以下、特に好ましくは0.05質量%以下である。本実施形態に係る無機フィラーの水分含有率の下限は特に限定されないが、例えば、無機フィラー全体に対して0.001質量%以上である。
 ここで、無機フィラーの水分含有率は、例えば、窒素気流中で、無機フィラーを加熱することにより発生した水分をカールフィッシャー電量滴定法により定量し、得られた水分量から算出することができる。
 前述したように、地球環境保護の観点から、森林伐採が抑制され木材資源の入手が困難になっていくことが予想されているため、木質ボードの代替品が求められている。
 本発明者らは木質ボードの代替として、ポリプロピレン系樹脂と、無機フィラーとを含むポリプロピレン系発泡シートを用いることを検討した。しかし、ポリプロピレン系樹脂と、無機フィラーとを含むポリプロピレン系発泡シートは、表面に色ムラ等のムラや縦筋(流れ模様)等が発生し、外観が悪化する場合があることが明らかになった。
 そこで、本発明者らは、外観に優れ、木質ボードの代替品として使用することが可能なポリプロピレン系発泡成形体およびポリプロピレン系多層発泡成形体を実現するために鋭意検討した。その結果、本発明者らは、水分含有率が特定値以下である無機フィラーをポリプロピレン系樹脂に対して配合させた樹脂組成物が外観に優れ、木質ボードの代替品として使用することが可能なポリプロピレン系発泡成形体およびポリプロピレン系多層発泡成形体を実現することができることを見出した。
 すなわち、水分含有率が上記上限値以下である無機フィラーを用いると、表面における艶ムラ、色ムラ等のムラや縦筋(流れ模様)等の発生が抑制されたり、発泡セルの均一性がより良好になったりするため、外観に優れたポリプロピレン系発泡成形体を得ることができる。
 水分含有率が上記上限値以下である無機フィラーは、例えば、除湿乾燥機や真空乾燥機等を用いて無機フィラーを80~150℃で、0.5~48時間程度加熱処理して無機フィラーの内部に吸着している水分を除去することにより得ることができる。
 さらに、本実施形態に係る発泡成形用ポリプロピレン系樹脂組成物によれば、無機フィラーとしてタルクおよびシリカから選択される少なくとも一種を含むことにより、例えば無機フィラーとして炭酸カルシウムを用いた場合等に比べて、得られるポリプロピレン系発泡成形体を軽量化することができる。
 また、本実施形態に係る発泡成形用ポリプロピレン系樹脂組成物によれば、無機フィラーとしてタルクおよびシリカから選択される少なくとも一種を含むことにより、例えば無機フィラーとしてガラス繊維を用いた場合等に比べて、ポリプロピレン系発泡成形体の外観を良好にすることができる。
 なお、ガラス繊維は毛羽立つため取扱いにくく、さらに成形体の表面や端部にガラス繊維が露出し、成形体の外観が悪化する場合があるため好ましくない。
 また、本実施形態に係る発泡成形用ポリプロピレン系樹脂組成物はプラスチックであるポリプロピレン系樹脂を用いているため、得られるポリプロピレン系発泡成形体は木質ボードに比べて耐水性に優れ、水にぬれたり、湿度が高い環境下に長時間置かれたりしても優れた機械的特性を維持することができる。また、本実施形態に係る発泡成形用ポリプロピレン系樹脂組成物により構成されたポリプロピレン系発泡成形体は木質ボードのように切りくずが生じ難く、取扱い性にも優れている。
 本実施形態に係る発泡成形用ポリプロピレン系樹脂組成物中のポリプロピレン系樹脂および無機フィラーの含有量の合計は、ポリプロピレン系発泡成形体100の全体を100質量%としたとき、好ましくは50質量%以上100質量%以下、より好ましくは70質量%以上100質量%以下、さらに好ましくは90質量%以上100質量%以下、特に好ましくは95質量%以上100質量%以下である。これにより、軽量性、機械的特性、リサイクル性、取扱い性、外観、成形性、耐湿性等のバランスにより優れたポリプロピレン系発泡成形体を得ることができる。
 以下、発泡成形用ポリプロピレン系樹脂組成物を構成する各成分について説明する。
<ポリプロピレン系樹脂>
 本実施形態に係る発泡成形用ポリプロピレン系樹脂組成物は必須成分としてポリプロピレン系樹脂を含む。
 本実施形態に係るポリプロピレン系樹脂としては、例えば、プロピレン単独重合体、プロピレンとエチレンまたは炭素数が4~20のα-オレフィンとの共重合体等が挙げられる。上記炭素数が4~20のα-オレフィンとしては、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセン等が挙げられる。これらの中ではエチレンまたは炭素数が4~10のα-オレフィンが好ましく、エチレンがより好ましい。これらのα-オレフィンは、プロピレンとランダム共重合体を形成してもよく、またブロック共重合体を形成してもよい。これらのα-オレフィンから導かれる構成単位の含有量は、ポリプロピレン系樹脂中に5モル%以下であることが好ましく、2モル%以下であることがより好ましい。発泡成形用ポリプロピレン系樹脂組成物中のポリプロピレン系樹脂は、1種類単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 これらの中でも、より高い剛性を有するポリプロピレン系発泡成形体が得られる観点から、ポリプロピレン系樹脂としてはプロピレン単独重合体が好ましい。
 本実施形態に係るポリプロピレン系樹脂は種々の方法により製造することができる。例えばチーグラー・ナッタ系触媒やメタロセン系触媒等の公知の触媒を用いて製造することができる。
 ASTM D1238に準拠し、230℃、2.16kg荷重の条件で測定される本実施形態に係るポリプロピレン系樹脂のメルトフローレート(MFR)は、流動性および成形性の観点から、好ましくは0.5g/10分以上、より好ましくは1g/10分以上であり、成形性をより安定化させ、発泡セルの破泡をより抑制する観点から、好ましくは20g/10分以下、より好ましくは10g/10分以下、さらに好ましくは7g/10分以下である。
 本実施形態に係るポリプロピレン系樹脂は、溶融張力および溶融伸びが高く、成形性に優れる観点から、ゲル浸透クロマトグラフィー(GPC)により測定されるZ平均分子量(Mz)/重量平均分子量(Mw)が好ましくは7以上20以下であり、より好ましくは10以上20以下である。
 Mz/Mw値が上記範囲内であるポリプロピレン系樹脂は広い分子量分布を示し、高分子量の成分を多く含んでいるため、溶融張力および溶融伸びが高く、発泡を含む成形性に優れている。そのため、Mz/Mw値が上記範囲内であるポリプロピレン系樹脂を用いることにより、発泡成形用ポリプロピレン系樹脂組成物の発泡成形性を向上させることができ、無機フィラーを高充填させたとしても、発泡セルの均一性をより良好にしたり、ポリプロピレン系発泡成形体の穴あきやシート切れをより抑制したりすることができ、その結果、外観により優れたポリプロピレン系発泡成形体を実現することができる。
 Mz/Mw値が上記範囲内であるポリプロピレン系樹脂の含有量は、発泡成形用ポリプロピレン系樹脂組成物に含まれるポリプロピレン系樹脂の全体を100質量%としたとき、好ましくは50質量%以上、より好ましくは60質量%以上である。
<無機フィラー>
 本実施形態に係る発泡成形用ポリプロピレン系樹脂組成物は必須成分として無機フィラーを含む。
 無機フィラーとしては、軽量性、機械的特性、リサイクル性、取扱い性および外観に優れたポリプロピレン系発泡成形体を得る観点から、タルクおよびシリカから選択される少なくとも一種を含む。これらの中でも、ポリプロピレン系樹脂との相性や発泡性、成形性、着色性、低価格、安全性等の観点から、タルクが好ましい。
 本実施形態に係る発泡成形用ポリプロピレン系樹脂組成物中の上記無機フィラーの含有量は、上記ポリプロピレン系樹脂および上記無機フィラーの合計量を100質量部としたとき、好ましくは5質量部以上、より好ましくは15質量部以上、さらに好ましくは25質量部以上であり、さらにより好ましくは35質量部以上、特に好ましくは45質量部以上である。
 また、本実施形態に係る発泡成形用ポリプロピレン系樹脂組成物中の上記無機フィラーの含有量は、上記ポリプロピレン系樹脂および上記無機フィラーの合計量を100質量部としたとき、好ましくは90質量部以下で、より好ましくは80質量部以下、さらに好ましくは70質量部以下、特に好ましくは65質量部以下である。
 無機フィラーの含有量を上記下限値以上にすることにより、得られるポリプロピレン系発泡成形体の曲げ特性や引張特性等の機械的特性や耐熱性、耐湿性、寸法安定性等をより向上させることができる。
 また、無機フィラーの含有量を上記上限値以下にすることにより、得られるポリプロピレン系発泡成形体の軽量性および高剛性のバランスをより良好にできるとともに、ポリプロピレン系発泡成形体の成形性や発泡セルの均一性をより向上させたり、ポリプロピレン系発泡成形体の穴あきやシート切れ等をより抑制したりすることができ、その結果、外観により一層優れたポリプロピレン系発泡成形体を実現することができる。
 また、無機フィラーは無処理のまま使用してもよく、ポリプロピレン系樹脂との界面接着性を向上させ、ポリプロピレン系樹脂に対する分散性を向上させるために、シランカップリング剤や、チタンカップリング剤、界面活性剤等で表面を処理して使用してもよい。
<その他の成分>
 本実施形態に係る発泡成形用ポリプロピレン系樹脂組成物は、必要に応じて、耐熱安定剤、酸化防止剤、紫外線吸収剤、顔料、帯電防止剤、銅害防止剤、難燃剤、中和剤、発泡剤、可塑剤、造核剤、気泡防止剤、架橋剤、耐候安定剤、耐光安定剤、老化防止剤、脂肪酸金属塩、軟化剤、分散剤、着色剤、滑剤、天然油、合成油、ワックス等の添加剤を配合してもよい。
2.ポリプロピレン系発泡成形体について
 図1は本発明に係る実施形態のポリプロピレン系発泡成形体100の構造の一例を模式的に示した断面図である。
 本実施形態に係るポリプロピレン系発泡成形体100は、前述した本実施形態に係る発泡成形用ポリプロピレン系樹脂組成物により構成され、発泡成形用ポリプロピレン系樹脂組成物を発泡成形することにより得ることができる。本実施形態に係るポリプロピレン系発泡成形体100の形状は特に限定されないが、例えば、シート状である。
 ポリプロピレン系発泡成形体100の密度は1.0g/cm以下が好ましく、1.0g/cm未満がより好ましい。密度が上記上限値以下または未満であると、より一層軽量なポリプロピレン系発泡成形体100を得ることができる。また、密度が上記上限値以下または未満であると、ポリプロピレン系発泡成形体は水に浮くことができるため、構成成分をより分別し易くなり、リサイクル性を向上させることができる。
 また、ポリプロピレン系発泡成形体100の密度は0.35g/cm以上が好ましく、0.40g/cm以上がより好ましく、0.45g/cm以上がさらに好ましく、0.50g/cm以上が特に好ましい。密度が上記下限値以上であると、ポリプロピレン系発泡成形体100の曲げ特性や引張特性等の機械的特性をより向上させることができる。
 ポリプロピレン系発泡成形体100の密度は、例えば、ポリプロピレン系樹脂、無機フィラー等の種類や配合量、ポリプロピレン系発泡成形体100の発泡倍率等をそれぞれ適切に制御することにより、上記範囲内に制御することができる。
 23℃、50%RHの環境下で測定される本実施形態に係るポリプロピレン系発泡成形体100の曲げ弾性率は1.0GPa以上が好ましく、1.5GPa以上がより好ましく、2.0GPa以上がさらに好ましく、2.5GPa以上がさらにより好ましく、3.0GPa以上が特に好ましい。
 曲げ弾性率を上記下限値以上とすることにより、ポリプロピレン系発泡成形体100の剛性をより向上させることができ、その結果、ポリプロピレン系発泡成形体100の外部応力に対する変形を抑制したり、ポリプロピレン系発泡成形体100の耐傷性や耐熱性、寸法安定性等を向上せたりすることができる。
 また、本実施形態に係るポリプロピレン系発泡成形体100の曲げ弾性率は10GPa以下が好ましく、9GPa以下がより好ましい。
 曲げ弾性率を上記上限値以下とすることにより、ポリプロピレン系発泡成形体100の外部応力に対する耐変形性と靱性とのバランスをより良好にすることができる。
 ここで、ポリプロピレン系発泡成形体100の曲げ弾性率は、3点曲げ試験により測定することができる。例えば、JIS A5905に記載された曲げ強さ試験を参考にして、23℃、50%RHの環境下で、試験片厚さt:3mm、試験片幅b:50mm、試験片長さ:150mm、スパン間距離L:100mm、曲げ速度:50mm/分の条件で試験荷重F[N]に対するたわみ量Y[mm]を測定する。得られた荷重-たわみ線図での初期の直線部分の勾配ΔF/ΔYを求め、下記式(1)より曲げ弾性率:E[GPa]を求める。
 E={L/(4b・t)}・(ΔF/ΔY)   (1)
 MD方向とTD方向に対しそれぞれ1点ずつ測定し、それらの平均値を曲げ弾性率として採用することができる。
 ポリプロピレン系発泡成形体100の曲げ弾性率は、例えば、ポリプロピレン系樹脂、無機フィラー等の種類や配合量、ポリプロピレン系発泡成形体100の発泡倍率等をそれぞれ適切に制御することにより、上記範囲内に制御することができる。
 ポリプロピレン系発泡成形体100のヤング率は0.3GPa以上が好ましく、0.5GPa以上がより好ましく、0.8GPa以上がさらに好ましく、1.0GPa以上が特に好ましい。
 ヤング率を上記下限値以上とすることにより、ポリプロピレン系発泡成形体100の剛性をより向上させることができ、その結果、ポリプロピレン系発泡成形体100の外部応力に対する変形を抑制したり、ポリプロピレン系発泡成形体100の耐傷性や耐熱性、寸法安定性等を向上させたりすることができる。
 また、本実施形態に係るポリプロピレン系発泡成形体100のヤング率は5GPa以下が好ましく、3GPa以下がより好ましい。
 ヤング率を上記上限値以下とすることにより、ポリプロピレン系発泡成形体100の外部応力に対する耐変形性と靱性とのバランスをより良好にすることができる。
 ここで、ポリプロピレン系発泡成形体100のヤング率は、23℃、50%RHの環境下で、かつ、試験片形状:短冊状、試験片幅:10mm、チャック間距離:50mm、引張速度:20mm/分の条件でMD方向とTD方向に対しそれぞれ1点ずつ測定し、それらの平均値を採用することができる。
 ポリプロピレン系発泡成形体100のヤング率は、例えば、ポリプロピレン系樹脂、無機フィラー等の種類や配合量、ポリプロピレン系発泡成形体100の発泡倍率等をそれぞれ適切に制御することにより、上記範囲内に制御することができる。
 ポリプロピレン系発泡成形体100表面の算術平均粗さRaは、表面における艶ムラ、色ムラ等のムラや縦筋(流れ模様)等の発生をより抑制し、外観をより良好にする観点から、2.5μm以下であることが好ましい。
 ポリプロピレン系発泡成形体100表面の算術平均粗さRaの下限は特に限定されないが、例えば、0.1μm以上である。
 ポリプロピレン系発泡成形体100表面の算術平均粗さRaは、JIS-B0601-1994に準拠して測定することができる。
 表面の算術平均粗さRaが上記範囲内であるポリプロピレン系発泡成形体100を実現するためには、ポリプロピレン系樹脂、無機フィラー等の種類や配合量、ポリプロピレン系発泡成形体100の発泡倍率等をそれぞれ適切に選択しつつ、水分含有率が低い無機フィラーを用いることが重要となる。
 ポリプロピレン系発泡成形体100の厚みは特に限定されないが、例えば0.5mm以上30mm以下であり、好ましくは1.0mm以上20mm以下であり、より好ましくは1.5mm以上12mm以下であり、さらに好ましくは2.0mm以上9.0mm以下である。ポリプロピレン系発泡成形体100の厚みがこの範囲内であると、軽量性、機械的特性、リサイクル性、取扱い性、外観、成形性等のバランスがより優れている。
<ポリプロピレン系発泡成形体の製造方法>
 ポリプロピレン系発泡成形体100は、例えば、本実施形態に係る発泡成形用ポリプロピレン系樹脂組成物を所定の形状に発泡成形することにより得ることができる。成形装置および成形条件としては特に限定されず、従来公知の成形装置および発泡成形条件を採用することができる。
(発泡成形用ポリプロピレン系樹脂組成物の調製方法)
 本実施形態に係るポリプロピレン系樹脂組成物は、各成分をドライブレンド、タンブラーミキサー、バンバリーミキサー、単軸押出機、二軸押出機、高速二軸押出機、熱ロール等により混合または溶融・混練することにより調製することができる。
(ポリプロピレン系発泡成形体の成形方法)
 ポリプロピレン系発泡成形体100は、例えば、押出成形機や射出成形機を用いて、上述した発泡成形用ポリプロピレン系樹脂組成物を所定の形状に発泡成形することにより得ることができる。
 ポリプロピレン系発泡成形体100の成形の際に発泡剤としては、化学発泡剤、炭酸ガス等が挙げられる。
 化学発泡剤としては、重炭酸ナトリウム、重炭酸アンモニウム、各種カルボン酸塩、水素化ホウ素ナトリウム、アゾジカルボアミド、N,N-ジニトロソペンタメチレンテトラミン、P,P-オキシビス(ベンゼンスルホニルヒドラジッド)、アゾビスイソブチロニトリル、パラトルエンスルホニルヒドラジッド等が挙げられる。
 炭酸ガスとしては、ガス状、液状または超臨界状態のいずれでも供給することが可能である。
 化学発泡剤は押出成形機に投入する前に発泡成形用ポリプロピレン系樹脂組成物と配合して均一に混合することが好ましい。
 また、発泡剤として炭酸ガスを使用する場合は、発泡成形用ポリプロピレン系樹脂組成物が押出成形機内で混練、可塑化された状態になった後、直接押出成形機内へ圧入することが好ましい。
 発泡成形用ポリプロピレン系樹脂組成物の発泡倍率は特に限定されず、得られるポリプロピレン系発泡成形体100の諸物性を考慮して適宜決定することができる。
<ポリプロピレン系発泡成形体の用途>
 ポリプロピレン系発泡成形体100は、外観に優れ、さらに軽量性および機械的特性の性能バランスにも優れるため、木質ボードの代替品、特にハードボード、中密度繊維板等の高剛性の木質ボードの代替品として用いることができる。
 より具体的には、床材や壁材、扉材、内装材、外装材、窓枠等の建材;家具;電気・電子部品;仕切材;断熱材;梱包材;自動車の内外装用部品;化粧シート;玩具;養生板;雑貨;スポーツ用品等として用いることができる。さらに具体的には、通函、物流容器、枕木、当て板、敷板、養生板、スペーサー、看板板、棚板、背板、底板、中敷、天井材、芯材、緩衝材、吸音材、補強板、下地板、畳床、コンテナ、部品治具、運搬用資材、デッキボード、イベント・災害向け部材、コンクリート型枠、ベッド、楽器等として用いることができる。
2.ポリプロピレン系多層発泡成形体について
 図2に、本発明に係る実施形態のポリプロピレン系多層発泡成形体200の構造の一例を模式的に示した断面図である。
 本実施形態に係るポリプロピレン系多層発泡成形体200は、本実施形態に係るポリプロピレン系発泡成形体100により構成されたポリプロピレン系発泡層100と、ポリプロピレン系発泡層100の一方の面に設けられ、かつ、熱可塑性樹脂および無機フィラーを含む第1非発泡性樹脂層110と、ポリプロピレン系発泡層100の他方の面に設けられ、かつ、熱可塑性樹脂および無機フィラーを含む第2非発泡性樹脂層120と、を備える。
 本実施形態に係るポリプロピレン系多層発泡成形体200は表面に未発泡の無機フィラー含有樹脂層を有するため、本実施形態に係るポリプロピレン系発泡成形体100に比べて、曲げ特性や引張特性等の機械的特性を向上させることができる。
 本実施形態に係るポリプロピレン系多層発泡成形体200の形状は特に限定されないが、例えば、シート状である。
 本実施形態に係るポリプロピレン系多層発泡成形体200の厚みは特に限定されないが、例えば0.5mm以上30mm以下であり、好ましくは1.0mm以上20mm以下であり、より好ましくは1.5mm以上12mm以下であり、さらに好ましくは2.0mm以上9.0mm以下である。ポリプロピレン系多層発泡成形体200の厚みがこの範囲内であると、軽量性、機械的特性、リサイクル性、取扱い性、外観、成形性等のバランスがより優れている。
 また、第1非発泡性樹脂層110および第2非発泡性樹脂層120の厚みは特に限定されないが、それぞれ0.05mm以上5mm以下であることが好ましく、0.1mm以上3mm以下であることがより好ましい。
 また、ポリプロピレン系多層発泡成形体200の厚みに対する第1非発泡性樹脂層110の厚みの比が好ましくは0.01以上0.5以下であり、より好ましくは0.02以上0.3以下であり、さらに好ましくは0.05以上0.2以下である。
 また、ポリプロピレン系多層発泡成形体200の厚みに対する第2非発泡性樹脂層120の厚みの比が好ましくは0.01以上0.5以下であり、より好ましくは0.02以上0.3以下であり、さらに好ましくは0.05以上0.2以下である。
 以下、本実施形態に係る第1非発泡性樹脂層110および第2非発泡性樹脂層120を構成する各成分について説明する。
<熱可塑性樹脂>
 本実施形態に係る第1非発泡性樹脂層110および第2非発泡性樹脂層120は必須成分として熱可塑性樹脂を含む。
 本実施形態に係る熱可塑性樹脂としては、例えば、ポリオレフィン系樹脂を用いることができる。ポリオレフィン系樹脂としては、例えばエチレン、プロピレン、ブテン-1、3-メチルブテン-1、3-メチルペンテン-1、4-メチルペンテン-1等のα-オレフィンの単独重合体やこれらの共重合体、あるいはこれらと他の共重合可能な不飽和単量体との共重合体等が挙げられる。
 より具体的には、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン、超高分子量ポリエチレン、エチレン-酢酸ビニル共重合体、エチレン-アクリル酸エチル共重合体等のポリエチレン系樹脂;ポリプロピレン系樹脂;ポリブテン-1;ポリ4-メチルペンテン-1等を挙げることができる。ポリオレフィン系樹脂は1種用いてもよいし、2種以上を組み合わせて用いてもよい。これらの中でも、軽量性、剛性、引張強度、耐傷付き性、低吸水性、耐熱性に優れている点から、ポリプロピレン系樹脂が好ましい。
 ポリプロピレン系樹脂としては、例えば、前述した本実施形態に係るポリプロピレン系発泡成形体100で用いるポリプロピレン系樹脂と同様のものを挙げることができる。
<無機フィラー>
 本実施形態に係る第1非発泡性樹脂層110および第2非発泡性樹脂層120は必須成分として無機フィラーを含む。
 無機フィラーとしては、例えばタルク、マイカ、クレー、ワラストナイト、炭酸カルシウム、炭酸マグネシウム、水酸化アルミニウム、水酸化マグネシウム、カオリン、パーライト、硫酸カルシウム、硫酸バリウム、チタン酸カリウム、硫酸バリウム、亜硫酸カルシウム、ケイ酸カルシウム、シリカ、ケイ藻土、アルミナ、酸化チタン、ガラス繊維、ガラスビーズ、ガラスバルーン、ミルドファイバー、モンモリロナイト、ベントナイト、グフファイト、アルミニウム粉、ガラスフレーク、炭素繊維、炭素フレーク、炭素バルン、カーボンビーズ、カーボンミルドファイバー、カーボンブラック、グラファイト、カーボンナノチューブ、セラミック繊維、硫化モリブデン、アラミド粒子、アラミド繊維、ボロン繊維、炭化ケイ素繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリエステル繊維、ポリアミド繊維、ポリアリレート繊維、各種ウィスカー、木粉、パルプ、セルロースナノファイバー、もみがら、ペーパースラッジ等が挙げられる。これらは、1種単独であるいは2種以上を組み合わせて用いることができる。
 これらの中でも、第1非発泡性樹脂層110および第2非発泡性樹脂層120中の無機フィラーとしては、軽量性、機械的特性、リサイクル性、取扱い性および外観に優れたポリプロピレン系多層発泡成形体200を得る観点から、それぞれタルク、マイカおよびシリカから選択される一種または二種以上を含むことが好ましい。これらの中でも、低価格の点からタルクおよびマイカが好ましく、ポリプロピレン系樹脂との相性や発泡性、成形性、着色性、低価格、安全性等の観点から、タルクがより好ましい。
 また、無機フィラーは無処理のまま使用してもよく、熱可塑性樹脂との界面接着性を向上させ、熱可塑性樹脂に対する分散性を向上させるために、シランカップリング剤や、チタンカップリング剤、界面活性剤等で表面を処理して使用してもよい。
 また、本実施形態に係る無機フィラーの水分含有率は無機フィラー全体に対して好ましくは0.10質量%以下、より好ましくは0.08質量%以下、さらに好ましくは0.07質量%以下、さらにより好ましくは0.06質量%以下、特に好ましくは0.05質量%以下である。本実施形態に係る無機フィラーの水分含有率の下限は特に限定されないが、例えば、無機フィラー全体に対して0.001質量%以上である。
 ここで、無機フィラーの水分含有率は、例えば、窒素気流中で、無機フィラーを加熱することにより発生した水分をカールフィッシャー電量滴定法により定量し、得られた水分量から算出することができる。
 水分含有率が上記上限値以下である無機フィラーを用いると、表面における艶ムラ、色ムラ等のムラや縦筋(流れ模様)等の発生が抑制され、外観により優れたポリプロピレン系多層発泡成形体200を得ることができる。
 水分含有率が上記上限値以下である無機フィラーは、例えば、除湿乾燥機や真空乾燥機等を用いて無機フィラーを80~150℃で、0.5~48時間程度加熱処理して無機フィラーの内部に吸着している水分を除去することにより得ることができる。
 第1非発泡性樹脂層110および第2非発泡性樹脂層120中の無機フィラーの含有量は、第1非発泡性樹脂層110および第2非発泡性樹脂層120に含まれる熱可塑性樹脂および無機フィラーの合計量を100質量部としたとき、それぞれ好ましくは5質量部以上、より好ましくは15質量部以上、さらに好ましくは25質量部以上であり、さらにより好ましくは35質量部以上、特に好ましくは45質量部以上である。
 また、第1非発泡性樹脂層110および第2非発泡性樹脂層120中の無機フィラーの含有量は、第1非発泡性樹脂層110および第2非発泡性樹脂層120に含まれる熱可塑性樹脂および無機フィラーの合計量を100質量部としたとき、それぞれ好ましくは90質量部以下であり、より好ましくは80質量部以下、さらに好ましくは70質量部以下、特に好ましくは65質量部以下である。
 第1非発泡性樹脂層110および第2非発泡性樹脂層120中の無機フィラーの含有量を上記下限値以上にすることにより、ポリプロピレン系多層発泡成形体200の曲げ特性や引張特性等の機械的特性、耐熱性、耐湿性、および寸法安定性をより一層向上させることができる。
 また、第1非発泡性樹脂層110および第2非発泡性樹脂層120中の無機フィラーの含有量を上記上限値以下にすることにより、ポリプロピレン系多層発泡成形体200の軽量性および高剛性のバランスをより良好にできるとともに、ポリプロピレン系多層発泡成形体200の成形性を向上させたり、ポリプロピレン系多層発泡成形体200の穴あきや切れを抑制したりすることができ、その結果、外観により優れたポリプロピレン系多層発泡成形体200を実現することができる。
 本実施形態に係るポリプロピレン系多層発泡成形体200において、第1非発泡性樹脂層110および第2非発泡性樹脂層120は同一の組成を有し、かつ、同じ厚みであることが好ましい。こうすることで、第1非発泡性樹脂層110および第2非発泡性樹脂層120の線膨張係数を同程度の値に揃えることができるため、熱応力や吸湿に伴う反り等の変形による寸法変化をより効果的に抑制でき、さらに曲げ特性や引張特性等の機械的特性および耐熱性により一層優れたポリプロピレン系多層発泡成形体200を得ることができる。
<その他の成分>
 本実施形態に係る第1非発泡性樹脂層110および第2非発泡性樹脂層120は、必要に応じて、耐熱安定剤、酸化防止剤、紫外線吸収剤、顔料、帯電防止剤、銅害防止剤、難燃剤、中和剤、発泡剤、可塑剤、造核剤、気泡防止剤、架橋剤、耐候安定剤、耐光安定剤、老化防止剤、脂肪酸金属塩、軟化剤、分散剤、着色剤、滑剤、天然油、合成油、ワックス等の添加剤を配合してもよい。
<ポリプロピレン系多層発泡成形体の製造方法>
 本実施形態に係るポリプロピレン系多層発泡成形体200は、例えば、本実施形態に係るポリプロピレン系発泡成形体100の両面に無機フィラーおよび熱可塑性樹脂を含む無機フィラー含有熱可塑性樹脂組成物により構成された樹脂層を形成することにより得ることができる。
(無機フィラー含有熱可塑性樹脂組成物の調製方法)
 本実施形態に係る無機フィラー含有熱可塑性樹脂組成物は、各成分をドライブレンド、タンブラーミキサー、バンバリーミキサー、単軸押出機、二軸押出機、高速二軸押出機、熱ロール等により混合または溶融・混練することにより調製することができる。
(ポリプロピレン系多層発泡成形体の成形方法)
 本実施形態に係るポリプロピレン系多層発泡成形体200の成形方法は、例えば、多層押出機あるいはラミネーション成形機等を用いる公知の方法によって行うことができる。ポリプロピレン系多層発泡成形体200は、例えば、ポリプロピレン系発泡層100を形成するための発泡成形用ポリプロピレン系樹脂組成物と、第1非発泡性樹脂層110および第2非発泡性樹脂層120を形成するための無機フィラー含有熱可塑性樹脂組成物と、を多層押出機の主押出機および従押出機のホッパーから供給してTダイ先端からシート状に多層押出成形することにより得ることができる。
 また、ポリプロピレン系多層発泡成形体200は、ポリプロピレン系発泡層100、第1非発泡性樹脂層110および第2非発泡性樹脂層120をそれぞれ別々に成形し、これらを積層して加熱成形することによっても得ることができる。この場合、ポリプロピレン系発泡層100と第1非発泡性樹脂層110との間や、ポリプロピレン系発泡層100と第2非発泡性樹脂層120との間に、例えば低融点のポリオレフィン樹脂により構成された熱接着層を介在させてもよい。このような低融点のポリオレフィン樹脂としては特に限定されないが、例えば、ポリプロピレン系樹脂を用いることができ、プロピレンとα-オレフィンとのランダム共重合体が好ましい。
<ポリプロピレン系多層発泡成形体の用途>
 本実施形態に係るポリプロピレン系多層発泡成形体200は、軽量性および機械的特性の性能バランスに優れるため、木質ボードの代替品、特にハードボード、中密度繊維板等の高剛性の木質ボードの代替品として用いることができる。
 より具体的には、床材や壁材、扉材、内装材、外装材、窓枠等の建材;家具;電気・電子部品;仕切材;断熱材;梱包材;自動車の内外装用部品;化粧シート;玩具;養生板;雑貨;スポーツ用品;等として用いることができる。さらに具体的には、通函、物流容器、枕木、当て板、敷板、養生板、スペーサー、看板板、棚板、背板、底板、中敷、天井材、芯材、緩衝材、吸音材、補強板、下地板、畳床、コンテナ、部品治具、運搬用資材、デッキボード、イベント・災害向け部材、コンクリート型枠、ベッド、楽器等として用いることができる。
 以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
 以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
1.測定方法
(1)ポリプロピレン系発泡(多層)シートの密度
 ポリプロピレン系発泡(多層)シートから試験片を切り出し、試験片質量(g)を、試験片の外形寸法から求められる体積(cm)で割って求めた。
(2)ポリプロピレン系樹脂のMFR
 ASTM D1238に準拠し、230℃、2.16kg荷重の条件で測定した。
(3)ポリプロピレン系樹脂のMz/Mw
 GPC測定用移動相20mlに試料20mgを145℃で溶解させ、得られた溶液を孔径が1.0μmの焼結フィルターでろ過し、測定サンプルを得た。
 次いで、東ソー社製のゲル浸透クロマトグラフ(商品名「HLC-8321 GPC/HT型」)を使用し、以下のようにしてポリプロピレン系樹脂のZ平均分子量(Mz)および重量平均分子量(Mw)を測定し、Mz/Mwを算出した。
 分離カラムには、商品名「TSKgel GMH6-HT」を2本、および商品名「TSKgel GMH6-HTL」を2本使用した。カラムサイズは、いずれも内径7.5mm、長さ300mmとし、カラム温度は140℃とし、移動相にはo-ジクロロベンゼン(和光純薬工業社製)および酸化防止剤としてBHT(和光純薬工業社製)0.025重量%を用いた。
 移動相を1.0ml/分の速度で移動させ、試料注入量は400μlとし、検出器として示差屈折計を用いた。標準ポリスチレンは東ソー社製のものを用いた。分子量は、ユニバーサル校正してポリプロピレン系樹脂に換算した値である。
(4)ポリプロピレン系発泡(多層)シートの曲げ弾性率
 ポリプロピレン系発泡(多層)シートの曲げ弾性率は、JIS A5905に記載された曲げ強さ試験を参考にして、23℃、50%RHの環境下で、試験片厚さ:3mm、試験片幅:50mm、試験片長さ:150mm、スパン間距離:100mm、曲げ速度:50mm/分の条件でMD方向とTD方向に対しそれぞれ1点ずつ測定し、それらの平均値を採用した。
(5)ポリプロピレン系発泡(多層)シートのヤング率
 ポリプロピレン系発泡(多層)シートのヤング率は、23℃、50%RHの環境下で、かつ、試験片形状:短冊状、試験片幅:10mm、チャック間距離:50mm、引張速度:20mm/分の条件でMD方向とTD方向に対しそれぞれ1点ずつ測定し、それらの平均値を採用した。
(6)ポリプロピレン系発泡(多層)シート表面の算術平均粗さRa
 ポリプロピレン系発泡(多層)シート表面の算術平均粗さRaは、JIS-B0601-1994に準拠し、東京精密社製の表面粗さ測定機(型式:E-MD-S189A、触針先端形状(先端半径:2μm、60度円錐、材質:ダイヤモンド))を用いて、評価長さ:10mm、測定速度:0.3mm/秒、カットオフ値:0.8mm、測定方向:シート表面のTD方向と平行な向きの条件で測定した。
(7)無機フィラーの水分含有率
 無機フィラーの水分含有率は以下の方法により算出した。まず、窒素気流中(100ml/分)で、無機フィラーを200℃で15分間加熱することにより発生した水分をカールフィッシャー電量滴定法により定量した。次いで、得られた水分量から無機フィラーの水分含有率を算出した。
(8)ポリプロピレン系発泡(多層)シートの外観評価
 ポリプロピレン系発泡(多層)シート表面に対し、目視にて縦筋(流れ模様)、ムラ(艶ムラ、色ムラ)の程度を観察し、以下の基準で評価した。
 ○:縦筋(流れ模様)、ムラ(艶ムラ、色ムラ)がなく、外観が良好である
 ×:縦筋(流れ模様)、ムラ(艶ムラ、色ムラ)が少し観察される
 ××:縦筋(流れ模様)、ムラ(艶ムラ、色ムラ)が目立つ
(9)ポリプロピレン系発泡(多層)シートの発泡セル形態の評価
 X線CTスキャンによりポリプロピレン系発泡(多層)シートにおける発泡セルの微細構造を観察し、以下の基準で発泡セル形態を評価した。
 ○:発泡セルが比較的均一で、セル形状が良好である
 ×:発泡セル同士が融合し、シート表面近傍に気泡(ボイド)が観察される
2.原料
 実施例および比較例で用いた原料について以下に示す。
(1)ポリプロピレン系樹脂
 PP1:プロピレン単独重合体(プライムポリマー社製VP103W、MFR:3g/10分、Mz/Mw値:14)
(2)無機フィラーおよびポリプロピレン系樹脂を含有するマスターバッチ
 PPタルクMB1(三福工業社製、銘柄:MFP-TP20、組成:プロピレン単独重合体20質量%及びタルク80質量%を含有、タルクの水分含有率:0.15質量%)
 PPタルクMB2(PPタルクMB1を105℃で18時間加熱処理し、タルクの水分含有率を0.05質量%まで低減したもの)
 PPマイカMB(白石カルシウム社製、銘柄:HIFILLMER MAT-MPH80-60(MFR:3g/10分、組成:ブロック共重合体からなるポリプロピレン20質量%及びマイカ80質量%を含有、マイカの水分含有率:0.20質量%)を120℃で18時間加熱処理し、マイカの水分含有率を0.075質量%まで低減したもの)
 PP炭酸カルシウムMB(東洋インキ社製、銘柄:PPM10245AL(プロピレン単独重合体20質量%及び炭酸カルシウム80質量%を含有)を120℃で18時間加熱処理したもの)
 なお、PPタルクMB1は市販されている汎用品の受取状態をそのまま用いた。
3.ポリプロピレン系発泡(多層)シートの作製
[実施例1~6および比較例1~8]
 成形機としては、単軸押出成形機(シリンダー内径D:50mm、フルフライトスクリュー、スクリュー有効長LとしたときL/D:32mm、炭酸ガス供給位置:スクリュー供給部側から17.5D)、Tダイ(ダイ幅:320mm、リップ開度:0.5mm)、冷却ロール(外径50mm、鏡面仕上げ硬質クロムメッキ表面処理付のスチール製、水冷式)、炭酸ガス供給装置、冷却ロール、及び引取機、とからなる装置を用いた。
 まず、各原料を表1に示す配合(表中の単位は質量部)でそれぞれドライブレンドし、得られた混合物をホッパーに投入し、さらに炭酸ガス供給装置から押出成形機のシリンダーの途中(位置17.5D)に炭酸ガスを10~19MPaの圧力で注入した。このとき炭酸ガスの注入量としては押出量に対して、0.17~0.33質量%となるよう調整にした。シリンダー各部の温度173~193℃、スクリュー回転数30~55rpmの条件で各成分原料を溶融・混練し、シリンダーヘッド部の樹脂温度186~215℃で、押出量10~19kg/時間となるようにTダイから押出した。押し出された発泡シートは、冷却ロール(ロール内部通水温度45℃)で冷却して、引取機を用いて引き取り(引取速度0.4~0.7m/分)、シート幅約300mmのポリプロピレン系発泡シートをそれぞれ得た。得られたポリプロピレン系発泡シートを用いて各評価をおこなった。得られた結果を表1にそれぞれ示す。
[比較例9]
 無機フィラーを含まないポリプロピレン系発泡シートとして三井化学東セロ社製のパロニア(登録商標)を用いて各評価をおこなった。得られた結果を表1に示す。
[実施例7~10]
 実施例1~6で用いた押出成形機に各原料を表2に示す配合(表中の単位は質量部)でホッパー内に投入し、シリンダー温度205~215℃、ダイ温度220℃、スクリュー回転数22~28rpmの条件で各原料を溶融・混練し、シリンダーヘッド部の樹脂温度229~231℃で、押出量8~13kg/時間となるようにTダイから押出した。押し出された発泡シートは、引取機を用いて引取速度1.0m/分で引き取り、シート幅290~300mmを有するポリプロピレン系非発泡性シート1~4をそれぞれ得た。
 次いで、表3に示す層構成でポリプロピレン系発泡多層シートをそれぞれ作製し、各評価をおこなった。得られた結果を表3にそれぞれ示す。
 ここで、ポリプロピレン系発泡多層シートは、各層の間に熱接着層(融点が139℃のランダム共重合体からなるポリプロピレンフィルム、厚さ:0.07mm)を挿入し積層した。さらに、加熱プレス装置及び冷却プレス装置の定盤と接する多層シートの上下の平坦部には、表面平滑性と定盤からの離型性を付与するため、重ね合せた多層シートの上下に、耐熱性と鏡面を有するポリイミドフィルム(算術平均粗さRaが0.1μm以下、厚さ0.1mm)を配置した。
 加熱プレス装置を用いて、温度150℃圧力2.5MPaで8分間加熱プレスし、次いで、温度150℃圧力10MPaで1分間加熱プレスした。その後、上下のポリイミドフィルムを含む多層シートを冷却プレス装置に挿入し、温度25℃圧力5MPaで冷却した。なお、加熱プレス前に予め、上下のポリイミドフィルムの内側、かつ各多層シートの外側周囲に、スペーサーとなる厚さ3mmの金枠を配置しておいた。このようにして、加熱接着・冷却後、総厚が約2.8~3.0mmのポリプロピレン系発泡多層シートをそれぞれ得た。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1および3から明らかなように、水分含有率が0.10質量%以下であるタルクを用いた実施例1~6のポリプロピレン系発泡シート、および実施例7~10のポリプロピレン系発泡多層シートは外観に優れていることがわかった。さらに、密度や曲げ弾性率がハードボードや中密度繊維板等の木質ボードと同レベルの値を示し、軽量性および機械的特性の性能バランスに優れていることがわかった。すなわち、本実施形態に係るポリプロピレン系発泡成形体100は木質ボードの代替品として好適であることが理解できる。
 一方、比較例1~8のポリプロピレン系発泡シートはいずれも外観に劣っていた。また、比較例9のポリプロピレン系発泡シートは軽量性および機械的特性の性能バランスが悪く、木質ボードの代替としては適していなかった。
 この出願は、2016年10月31日に出願された日本出願特願2016-213792号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (21)

  1.  ポリプロピレン系樹脂と、無機フィラーとを含む発泡成形用ポリプロピレン系樹脂組成物であって、
     前記無機フィラーがタルクおよびシリカから選択される少なくとも一種を含み、
     前記無機フィラーの水分含有率が前記無機フィラー全体に対して0.10質量%以下である発泡成形用ポリプロピレン系樹脂組成物。
  2.  請求項1に記載の発泡成形用ポリプロピレン系樹脂組成物において、
     前記無機フィラーがタルクを含む発泡成形用ポリプロピレン系樹脂組成物。
  3.  請求項1または2に記載の発泡成形用ポリプロピレン系樹脂組成物において、
     当該ポリプロピレン系樹脂組成物中の前記無機フィラーの含有量が、前記ポリプロピレン系樹脂および前記無機フィラーの合計量を100質量部としたとき、5質量部以上90質量部以下である発泡成形用ポリプロピレン系樹脂組成物。
  4.  請求項1乃至3のいずれか一項に記載の発泡成形用ポリプロピレン系樹脂組成物において、
     当該発泡成形用ポリプロピレン系樹脂組成物中の前記ポリプロピレン系樹脂および前記無機フィラーの含有量の合計が、当該発泡成形用ポリプロピレン系樹脂組成物の全体を100質量%としたとき、50質量%以上100質量%以下である発泡成形用ポリプロピレン系樹脂組成物。
  5.  請求項1乃至4のいずれか一項に記載の発泡成形用ポリプロピレン系樹脂組成物において、
     ASTM D1238に準拠し、230℃、2.16kg荷重の条件で測定される前記ポリプロピレン系樹脂のメルトフローレートが0.5g/10分以上20g/10分以下である発泡成形用ポリプロピレン系樹脂組成物。
  6.  請求項1乃至5のいずれか一項に記載の発泡成形用ポリプロピレン系樹脂組成物において、
     ゲル浸透クロマトグラフィー(GPC)により測定される、前記ポリプロピレン系樹脂のZ平均分子量(Mz)/重量平均分子量(Mw)が7以上20以下である発泡成形用ポリプロピレン系樹脂組成物。
  7.  請求項1乃至6のいずれか一項に記載の発泡成形用ポリプロピレン系樹脂組成物により構成されたポリプロピレン系発泡成形体。
  8.  請求項7に記載のポリプロピレン系発泡成形体において、
     当該ポリプロピレン系発泡成形体の密度が1.0g/cm以下であるポリプロピレン系発泡成形体。
  9.  請求項7または8に記載のポリプロピレン系発泡成形体において、
     23℃、50%RHの環境下で測定される当該ポリプロピレン系発泡成形体の曲げ弾性率が1.0GPa以上であるポリプロピレン系発泡成形体。
  10.  請求項7乃至9のいずれか一項に記載のポリプロピレン系発泡成形体において、
     23℃、50%RHの環境下で、かつ、試験片形状:短冊状、試験片幅:10mm、チャック間距離:50mm、引張速度:20mm/分の条件で測定される当該ポリプロピレン系発泡成形体のヤング率が0.3GPa以上であるポリプロピレン系発泡成形体。
  11.  請求項7乃至10のいずれか一項に記載のポリプロピレン系発泡成形体において、
     JIS-B0601-1994に準拠して測定される、当該ポリプロピレン系発泡成形体表面の算術平均粗さRaが2.5μm以下であるポリプロピレン系発泡成形体。
  12.  請求項7乃至11のいずれか一項に記載のポリプロピレン系発泡成形体において、
     当該ポリプロピレン系発泡成形体の厚みが0.5mm以上30mm以下であるポリプロピレン系発泡成形体。
  13.  請求項7乃至12のいずれか一項に記載のポリプロピレン系発泡成形体において、
     木質ボードの代替品として用いられるポリプロピレン系発泡成形体。
  14.  請求項7乃至13のいずれか一項に記載のポリプロピレン系発泡成形体により構成されたポリプロピレン系発泡層と、
     前記ポリプロピレン系発泡層の一方の面に設けられ、かつ、熱可塑性樹脂および無機フィラーを含む第1非発泡性樹脂層と、
     前記ポリプロピレン系発泡層の他方の面に設けられ、かつ、熱可塑性樹脂および無機フィラーを含む第2非発泡性樹脂層と、
    を備えるポリプロピレン系多層発泡成形体。
  15.  請求項14に記載のポリプロピレン系多層発泡成形体において、
     前記第1非発泡性樹脂層および前記第2非発泡性樹脂層の厚みがそれぞれ0.05mm以上5mm以下であるポリプロピレン系多層発泡成形体。
  16.  請求項14または15に記載のポリプロピレン系多層発泡成形体において、
     前記ポリプロピレン系多層発泡成形体全体の厚みに対する前記第1非発泡性樹脂層の厚みの比が0.01以上0.5以下であり、
     前記ポリプロピレン系多層発泡成形体全体の厚みに対する前記第2非発泡性樹脂層の厚みの比が0.01以上0.5以下であるポリプロピレン系多層発泡成形体。
  17.  請求項14乃至16のいずれか一項に記載のポリプロピレン系多層発泡成形体において、
     前記第1非発泡性樹脂層および前記第2非発泡性樹脂層中の前記無機フィラーが、それぞれタルク、マイカおよびシリカから選択される一種または二種以上を含むポリプロピレン系多層発泡成形体。
  18.  請求項14乃至17のいずれか一項に記載のポリプロピレン系多層発泡成形体において、
     前記第1非発泡性樹脂層および前記第2非発泡性樹脂層中の前記無機フィラーの含有量が、前記第1非発泡性樹脂層および前記第2非発泡性樹脂層に含まれる前記熱可塑性樹脂および前記無機フィラーの合計量を100質量部としたとき、それぞれ5質量部以上90質量部以下であるポリプロピレン系多層発泡成形体。
  19.  請求項14乃至18のいずれか一項に記載のポリプロピレン系多層発泡成形体において、
     前記第1非発泡性樹脂層および前記第2非発泡性樹脂層は同一の組成を有し、かつ、同じ厚みであるポリプロピレン系多層発泡成形体。
  20.  請求項14乃至19のいずれか一項に記載のポリプロピレン系多層発泡成形体において、
     木質ボードの代替品として用いられるポリプロピレン系多層発泡成形体。
  21.  ポリプロピレン系樹脂と、無機フィラーとを含むポリプロピレン系発泡成形体を製造するための製造方法であって、
     前記無機フィラーがタルクおよびシリカから選択される少なくとも一種を含み、
     無機フィラーを加熱することにより前記無機フィラーの水分含有率を前記無機フィラー全体に対して0.10質量%以下に調整する工程と、
     得られた水分含有率が0.10質量%以下である前記無機フィラーと、ポリプロピレン系樹脂とを含むポリプロピレン系樹脂組成物を発泡成形する工程と、
    を含むポリプロピレン系発泡成形体の製造方法。
PCT/JP2017/036833 2016-10-31 2017-10-11 発泡成形用ポリプロピレン系樹脂組成物、ポリプロピレン系発泡成形体、ポリプロピレン系多層発泡成形体およびポリプロピレン系発泡成形体の製造方法 WO2018079261A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018547537A JP6790110B2 (ja) 2016-10-31 2017-10-11 発泡成形用ポリプロピレン系樹脂組成物、ポリプロピレン系発泡成形体、ポリプロピレン系多層発泡成形体およびポリプロピレン系発泡成形体の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-213792 2016-10-31
JP2016213792 2016-10-31

Publications (1)

Publication Number Publication Date
WO2018079261A1 true WO2018079261A1 (ja) 2018-05-03

Family

ID=62023479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/036833 WO2018079261A1 (ja) 2016-10-31 2017-10-11 発泡成形用ポリプロピレン系樹脂組成物、ポリプロピレン系発泡成形体、ポリプロピレン系多層発泡成形体およびポリプロピレン系発泡成形体の製造方法

Country Status (2)

Country Link
JP (1) JP6790110B2 (ja)
WO (1) WO2018079261A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10330522A (ja) * 1997-05-29 1998-12-15 Denki Kagaku Kogyo Kk 熱可塑性樹脂発泡シート及び容器
JPH1180402A (ja) * 1997-09-05 1999-03-26 Denki Kagaku Kogyo Kk 熱可塑性樹脂発泡シート及び容器
JP2001192515A (ja) * 2000-01-11 2001-07-17 Du Pont Mitsui Polychem Co Ltd ポリプロピレン組成物
JP2002105874A (ja) * 2000-10-03 2002-04-10 Toppan Printing Co Ltd オレフィン系床材
JP2004122717A (ja) * 2002-10-07 2004-04-22 Kanegafuchi Chem Ind Co Ltd ポリプロピレン系樹脂押出発泡シート、その製造方法、およびその成形体
JP2004306405A (ja) * 2003-04-07 2004-11-04 Toppan Printing Co Ltd 木質樹脂発泡成形体及び化粧材

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10330522A (ja) * 1997-05-29 1998-12-15 Denki Kagaku Kogyo Kk 熱可塑性樹脂発泡シート及び容器
JPH1180402A (ja) * 1997-09-05 1999-03-26 Denki Kagaku Kogyo Kk 熱可塑性樹脂発泡シート及び容器
JP2001192515A (ja) * 2000-01-11 2001-07-17 Du Pont Mitsui Polychem Co Ltd ポリプロピレン組成物
JP2002105874A (ja) * 2000-10-03 2002-04-10 Toppan Printing Co Ltd オレフィン系床材
JP2004122717A (ja) * 2002-10-07 2004-04-22 Kanegafuchi Chem Ind Co Ltd ポリプロピレン系樹脂押出発泡シート、その製造方法、およびその成形体
JP2004306405A (ja) * 2003-04-07 2004-11-04 Toppan Printing Co Ltd 木質樹脂発泡成形体及び化粧材

Also Published As

Publication number Publication date
JP6790110B2 (ja) 2020-11-25
JPWO2018079261A1 (ja) 2019-03-14

Similar Documents

Publication Publication Date Title
JP4747827B2 (ja) 加熱発泡用押出ラミネート積層体
US6096831A (en) Olefin resin composition and sheets
JP2019042988A (ja) 間紙
JP2009067948A (ja) ポリプロピレン系樹脂押出発泡体及びその製造方法
WO2018079267A1 (ja) ポリプロピレン系発泡シートおよびポリプロピレン系発泡多層シート
JP5410221B2 (ja) ポリプロピレン系樹脂発泡体
JPWO2009001934A1 (ja) ポリオレフィン系樹脂の発泡ボード及びその製造方法
KR20080042046A (ko) 단열 건재용 발포 보드 및 그 제조 방법
JP2008239635A (ja) 帯電防止性樹脂組成物および熱可塑性樹脂製多層シート
WO2018079261A1 (ja) 発泡成形用ポリプロピレン系樹脂組成物、ポリプロピレン系発泡成形体、ポリプロピレン系多層発泡成形体およびポリプロピレン系発泡成形体の製造方法
JP2000094609A (ja) 化粧シート用被覆フィルムおよび化粧シート
JP6935427B2 (ja) ポリプロピレン系発泡シートおよび物品
KR101305391B1 (ko) 압출시트를 이용한 자동차용 복합기재의 제조방법
WO1999014266A1 (fr) Materiau de resine pour le moulage de mousse, feuille de mousse obtenue et son procede de fabrication
JP2006068919A (ja) 熱可塑性樹脂発泡シートの真空成形方法
JP7030598B2 (ja) 積層発泡シート及び成形体
JP7299555B2 (ja) ポリプロピレン系樹脂発泡粒子成形体及びその製造方法
JP2006248187A (ja) ポリプロピレン系樹脂積層発泡シート、その製造方法及びその成形体
JP4569238B2 (ja) 熱可塑性樹脂発泡シートの真空成形方法
WO2001030570A1 (en) Co-extruded thermoplastic laminate
JP4312649B2 (ja) ポリプロピレン系樹脂積層発泡シート及びその成形体
WO2022220258A1 (ja) 射出発泡成形体
JPH11189687A (ja) 発泡成形用樹脂材料及び発泡シート
WO2021132521A1 (ja) 多孔性断熱フィルム及びその製造方法
WO2024094860A1 (en) Foamed article

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018547537

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17865357

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17865357

Country of ref document: EP

Kind code of ref document: A1