WO2018077268A1 - 车辆的动力传动***和具有其的车辆 - Google Patents

车辆的动力传动***和具有其的车辆 Download PDF

Info

Publication number
WO2018077268A1
WO2018077268A1 PCT/CN2017/108361 CN2017108361W WO2018077268A1 WO 2018077268 A1 WO2018077268 A1 WO 2018077268A1 CN 2017108361 W CN2017108361 W CN 2017108361W WO 2018077268 A1 WO2018077268 A1 WO 2018077268A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
output
unit
gear
motor generator
Prior art date
Application number
PCT/CN2017/108361
Other languages
English (en)
French (fr)
Inventor
廉玉波
凌和平
翟震
徐友彬
黄威
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to EP17864926.5A priority Critical patent/EP3533646A1/en
Priority to US16/346,523 priority patent/US20190299992A1/en
Publication of WO2018077268A1 publication Critical patent/WO2018077268A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/182Selecting between different operative modes, e.g. comfort and performance modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/24Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/02Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of clutch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/06Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing of change-speed gearing
    • B60K17/08Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing of change-speed gearing of mechanical type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/16Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing of differential gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/442Series-parallel switching type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/448Electrical distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/52Driving a plurality of drive axles, e.g. four-wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/006Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion power being selectively transmitted by either one of the parallel flow paths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/08Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
    • F16H3/087Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears
    • F16H3/093Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears with two or more countershafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/04Combinations of toothed gearings only
    • F16H37/042Combinations of toothed gearings only change gear transmissions in group arrangement
    • F16H37/046Combinations of toothed gearings only change gear transmissions in group arrangement with an additional planetary gear train, e.g. creep gear, overdrive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/001Arrangement or mounting of electrical propulsion units one motor mounted on a propulsion axle for rotating right and left wheels of this axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4808Electric machine connected or connectable to gearbox output shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4825Electric machine connected or connectable to gearbox input shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4833Step up or reduction gearing driving generator, e.g. to operate generator in most efficient speed range
    • B60K2006/4841Step up or reduction gearing driving generator, e.g. to operate generator in most efficient speed range the gear provides shifting between multiple ratios
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K2006/542Transmission for changing ratio with overdrive ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/04Combinations of toothed gearings only
    • F16H37/042Combinations of toothed gearings only change gear transmissions in group arrangement
    • F16H37/043Combinations of toothed gearings only change gear transmissions in group arrangement without gears having orbital motion
    • F16H2037/045Combinations of toothed gearings only change gear transmissions in group arrangement without gears having orbital motion comprising a separate gearing unit for shifting between high and low ratio range
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/36Differential gearings characterised by intentionally generating speed difference between outputs
    • F16H2048/366Differential gearings characterised by intentionally generating speed difference between outputs using additional non-orbital gears in combination with clutches or brakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/36Differential gearings characterised by intentionally generating speed difference between outputs
    • F16H2048/368Differential gearings characterised by intentionally generating speed difference between outputs using additional orbital gears in combination with clutches or brakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/0806Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with a plurality of driving or driven shafts
    • F16H37/0813Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with a plurality of driving or driven shafts with only one input shaft
    • F16H37/082Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with a plurality of driving or driven shafts with only one input shaft and additional planetary reduction gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/06Differential gearings with gears having orbital motion
    • F16H48/08Differential gearings with gears having orbital motion comprising bevel gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/06Differential gearings with gears having orbital motion
    • F16H48/10Differential gearings with gears having orbital motion with orbital spur gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/20Arrangements for suppressing or influencing the differential action, e.g. locking devices
    • F16H48/24Arrangements for suppressing or influencing the differential action, e.g. locking devices using positive clutches or brakes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the invention belongs to the field of transmission technology, and in particular to a power transmission system of a vehicle and a vehicle having the power transmission system.
  • Hybrid vehicles as one of the new energy vehicles, are driven by engines and/or motors and have multiple modes to improve transmission efficiency and fuel economy.
  • some hybrid vehicles have fewer driving modes and lower drive transmission efficiency, which cannot meet the requirements of the vehicle to adapt to various road conditions, especially when the hybrid vehicle is fed (when the battery power is insufficient).
  • the vehicle's power and passing ability are insufficient.
  • it is necessary to additionally increase the transmission mechanism the integration degree is low, and the power generation efficiency is low.
  • the present invention aims to solve at least one of the technical problems in the related art to some extent. To this end, it is an object of the present invention to provide a power transmission system for a vehicle having a variety of operating modes.
  • Another object of the present invention is to provide a vehicle having the above power transmission system.
  • a power transmission system for a vehicle includes: a power source; a first motor generator unit; a shifting unit adapted to be selectively coupled to the power source, the The shifting unit includes a shifting unit output portion adapted to output power from at least one of the power source and the first motor generator unit; a system power output portion; a mode switching device
  • the shifting unit output unit and the system power output unit are dynamically coupled or disconnected by the mode switching device, and the shifting unit output unit (201) and the system power output unit (401) pass through the mode switching device.
  • the power coupling is coupled such that the mode switching device is adapted to output the power received from the shifting unit output to the system power output.
  • the operation mode of the power transmission system can be increased, especially in the L-stop mode, the gear position of the power transmission system is increased, and the gear position is increased.
  • a vehicle according to an embodiment of the second aspect of the present invention is provided with a power transmission system according to any of the first aspects.
  • 1 to 6 are schematic structural views of a power transmission system according to an embodiment of the present invention.
  • FIG. 7 to 20 are schematic structural views of a power transmission system according to an embodiment of the present invention.
  • FIG. 21 to FIG. 26 are schematic diagrams showing a connection structure of a mode conversion device, a system power output portion, and a half shaft according to an embodiment of the present invention
  • 27 to 32 are schematic diagrams showing a mounting structure of an electric drive system according to an embodiment of the present invention.
  • 33 to 38 are structural views of a power transmission system according to an embodiment of the present invention.
  • the vehicle On a hybrid vehicle, the vehicle may be provided with a plurality of drive systems, such as a powertrain 1000, which may be used to drive the front or rear wheels of the vehicle, with the front wheels of the vehicle driven by the powertrain 1000
  • a powertrain 1000 which may be used to drive the front or rear wheels of the vehicle, with the front wheels of the vehicle driven by the powertrain 1000
  • the vehicle may also drive the rear wheel rotation of the vehicle in conjunction with other drive systems such that the vehicle is a four-wheel drive vehicle, such as the vehicle may also drive the vehicle in conjunction with the electric drive system 700.
  • the rear wheel turns.
  • a power transmission system 1000 according to an embodiment of the present invention which may be applied to a vehicle, such as a hybrid vehicle, will be described in detail below with reference to the accompanying drawings.
  • the powertrain system 1000 may include a power source 100, a first motor generator unit 300, a system power output portion 401, and a mode switching device 402.
  • the powertrain system 1000 may further include other mechanisms.
  • Components for example, the second motor generator 600, the first clutch device L1, and the like.
  • the power source 100 may be an engine, and the powertrain 1000 may further include a shifting unit 200 adapted to be selectively coupled to the power source 100, as shown in FIGS. 1-6, the power source 100 and the shifting unit 200.
  • the first clutch device L1 may be disposed between the power source 100 and the shifting unit 200, and the first clutch device L1 may control the engaged and disconnected state between the power source 100 and the shifting unit 200.
  • the first clutch device L1 may be the dual clutch 202 in FIGS. 23-31.
  • the shifting unit 200 is coupled to the final drive driven gear Z' in a power-coupled manner, thereby outputting power from the power source 100 to the final drive driven gear Z' via the shifting unit 200.
  • the shifting unit 200 includes a shifting unit output portion 201, and the shifting unit output portion 201 of the shifting unit 200 is adapted to output power from at least one of the power source 100 and the first motor generator unit 300, the shifting unit output portion 201, and the system power
  • the output unit 201 is dynamically coupled or disconnected by the mode switching device 402, and is coupled to the shifting unit output unit 201.
  • the mode switching device 402 is adapted to output the power received from the shifting unit output unit 201 to the system power output unit 401, that is, the mode switching device.
  • the 402 has an L range, and the power of the shifting unit output unit 201 can be decelerated again.
  • the shifting unit 200 only needs to realize the shifting torque of the engine power, and can completely borrow the shifting of the ordinary fuel vehicle, and does not require additional design changes, which is advantageous for miniaturization of the shifting unit 200, and can reduce the development cost of the entire vehicle and shorten the development cycle.
  • the shifting unit 200 can have various arrangements.
  • the shifting unit 200 can be a transmission, or can be other gear reducers that implement a shifting function.
  • the shifting unit 200 is further described as an example of a transmission, wherein the input shaft is further illustrated.
  • the new shifting unit 200 can be formed by changing the output shaft and the gear.
  • the shifting unit 200 in the powertrain 1000 shown in FIGS. 29 to 31 will be described in detail as an example.
  • the shifting unit 200 may include a shifting power input portion, a shifting power output portion, and a shifting unit output portion 201.
  • the shifting power input portion and the power source 100 are selectively engageable to transmit the power source 100.
  • a first clutch device L1 may be disposed between the variable speed power input portion and the power source 100.
  • the first clutch device L1 may include an input end and an output end. The input end is connected to the power source 100, and the output end and the variable speed power input. The portions are connected, and when the input end and the output end are engaged, the power source 100 and the shifting power input portion are engaged to transmit power.
  • the shifting power output portion is configured to output power to the shifting unit output portion 201 by synchronizing power from the shifting power input portion through the shifting unit synchronizer, the shifting unit output portion 201 being adapted to receive the power source 100 and the first
  • the power output of at least one of the motor generator units 300, the shifting unit output portion 201 is dynamically coupled to the mode switching device 402, thereby outputting power from at least one of the shifting power input portion and the first motor generator unit 300 to
  • the mode switching device 402 outputs the power from at least one of the variable speed power input unit and the first motor generator 302 to the conversion device input unit 4020.
  • the shifting power input portion may include at least one input shaft, each of which is selectively engageable with the power source 100, and is disposed on each of the input shafts. There is at least one drive gear.
  • the variable speed power output portion includes: at least one output shaft, each output shaft is provided with at least one driven gear, and the shifting unit synchronizer is disposed on the output shaft for selectively synchronizing between the driven gear and the output shaft, So that the driven gear rotates synchronously with the output shaft.
  • the driven gear meshes with the corresponding driving gear
  • the shifting unit output portion 201 is at least one final drive gear Z, and at least one final drive main gear Z is fixed to the at least one output shaft one by one, the main reducer drive gear Z meshes with the final drive driven gear Z'. That is, the shifting unit output portion 201 may be an output gear on the output shaft, which may be fixed to a corresponding output shaft, and the output gear meshes with the final drive driven gear Z' for power transmission.
  • the input shaft may be plural, and the plurality of input shafts may be coaxially nested in sequence.
  • the power source 100 transmits power to the input shaft, the power source 100 is selectively engageable with at least one of the plurality of input shafts. .
  • variable speed power input portion may include a first input shaft I and a The second input shaft II is coaxially sleeved on the first input shaft I.
  • the first input shaft I and the second input shaft II are respectively fixedly provided with at least one driving gear;
  • the variable speed power output portion comprises: The reverse gear output shaft V', the reverse gear output shaft V' is covered with the reverse gear driven gear Rb, and the reverse gear output shaft V' is fixedly provided with the final drive gear Z, the final drive gear Z and the mode conversion
  • the device 402 is dynamically coupled to output power from at least one of the reverse driven gear Rb and the first motor generator unit 300 to the mode switching device 402, and one of the at least one driving gear is a reverse driving gear, at least One of the driven gears is an idler IG, the reverse drive gear is coupled with the idler IG, and the reverse driven gear Rb is coupled with the idler IG.
  • the idler gear IG may be a double-toothed structure including a first gear tooth I 1 and a second gear tooth I2, the first gear tooth I 1 meshes with the reverse gear drive gear Ra, and the second gear tooth I2 Engages with the reverse driven gear Rb.
  • the variable speed power output portion may further include: a first output shaft III and a second output shaft IV, and the first output shaft III and the second output shaft IV are respectively sleeved with at least one driven gear, the first output shaft III and the first One of the two output shafts IV is sleeved with an idler gear IG, and the driven gear meshes with the drive gear.
  • the shifting unit 200 may be a seven-speed transmission, and the shifting power input portion may include a first input shaft I and a second input shaft II, and the first clutch device L1 may be a dual clutch 202.
  • the dual clutch 202 has an input, a first output, and a second output, and the input of the dual clutch 202 selectively engages at least one of the first output and the second output. That is, the input of the dual clutch 202 can engage the first output, or the input of the dual clutch 202 can engage the second output, or the input of the dual clutch 202 can simultaneously engage the first output and the second output. end.
  • the first output is connected to the first input shaft I
  • the second output is connected to the second input shaft II.
  • a first driving shaft 1a, a third gear driving gear 3a, a fifth gear driving gear 5a and a seven-speed driving gear 7a are fixedly disposed on the first input shaft I, and the second input shaft II is fixedly disposed.
  • Two reverse drive gears 2Ra and four or six gear drive gears 46a are fixedly disposed.
  • the second input shaft II is sleeved on the first input shaft I, so that the axial length of the power transmission system 1000 can be effectively shortened, thereby reducing the space occupied by the power transmission system 1000.
  • the above-mentioned two reverse gear drive gear 2Ra means that the gear can be used as both the second gear drive gear and the sixth gear drive gear.
  • the above-mentioned four-six-speed drive gear 46a means that the gear can be used as the fourth gear drive gear and the sixth gear at the same time.
  • the driving gear is used, which can shorten the axial length of the second input shaft II, so that the volume of the powertrain 1000 can be better reduced.
  • the arrangement order of the plurality of gear driving gears is the two reverse driving gear 2Ra, the four-sixth driving gear 46a, the seven-speed driving gear 7a, the third gear driving gear 3a, The fifth gear drive gear 5a and the first gear drive gear 1a.
  • the output shaft may include: a first output shaft III, a second output shaft IV, and a reverse output shaft V'.
  • the first output shaft III is sleeved with a driven driven gear 1b, a second driven driven gear 2b, and a third driven slave.
  • the gear 3b and the fourth-speed driven gear 4b are provided with a fifth-speed driven gear 5b, a sixth-speed driven gear 6b, a seven-speed driven gear 7b and an idler IG, and a reverse output shaft V'.
  • the upper sleeve is provided with a reverse driven gear Rb, and the first output shaft III, the second output shaft IV and the reverse output A final drive gear Z is fixedly disposed on the shaft V'.
  • the first gear drive gear 1a meshes with the first gear driven gear 1b
  • the second reverse drive gear 2Ra meshes with the second gear driven gear 2b
  • the third gear drive gear 3a meshes with the third gear driven gear 3b
  • the fourth and sixth gear drive gears 46a Engaged with the fourth-speed driven gear 4b
  • the fifth-speed driving gear 5a meshes with the fifth-speed driven gear 5b
  • the four-six-speed driving gear 46a meshes with the sixth-speed driven gear 6b
  • the two reverse drive gears 2Ra mesh with the first gear teeth I 1 of the idle gear IG
  • the second gear teeth I2 of the idle gear IG mesh with the reverse driven gear Rb.
  • a three-speed synchronizer S13 is disposed between the first-speed driven gear 1b and the third-speed driven gear 3b, and a three-speed synchronizer S13 can be used to synchronize the first-speed driven gear 1b and the first output shaft III, and can be used The synchronous third gear driven gear 3b and the first output shaft III are synchronized.
  • a second-fourth synchronizer S24 is disposed between the second-speed driven gear 2b and the fourth-speed driven gear 4b, and the second-fourth synchronizer S24 can be used to synchronize the second-speed driven gear 2b and the first output shaft III, and can be used The fourth gear driven gear 4b and the first output shaft III are synchronized.
  • a five-seven-speed synchronizer S57 is disposed between the fifth-speed driven gear 5b and the seventh-speed driven gear 7b, and the five-seven-speed synchronizer S57 can be used to synchronize the fifth-speed driven gear 5b and the second output shaft IV, and can be used The seventh-speed driven gear 7b and the second output shaft IV are synchronized.
  • a six-speed synchronizer S6 is provided on one side of the sixth-speed driven gear 6b, and the six-speed synchronizer S6 can be used to synchronize the sixth-speed driven gear 6b and the second output shaft IV.
  • a reverse synchronizer SR is provided on one side of the reverse driven gear Rb, and the reverse synchronizer SR can be used to synchronize the reverse driven gear Rb with the reverse output shaft V'.
  • the number of synchronizers disposed on the first output shaft III and the second output shaft IV is small, so that the axial lengths of the first output shaft III and the second output shaft IV can be shortened, and the cost of the powertrain 1000 can be reduced. .
  • shifting unit 200 is not limited thereto, and the arrangement of the other shifting unit 200 will be described in detail below with reference to FIGS. 33 to 38.
  • the variable speed power input portion includes a first input shaft I and a second input shaft II, and the second input shaft II is coaxially sleeved on the first input shaft I.
  • the first input shaft I and the second input shaft II are respectively fixedly disposed with at least one first driving gear, and the first input shaft I and the second input shaft II are respectively sleeved with at least one second driving gear, and second
  • the driving gear is selectively engaged with the corresponding input shaft, and one of the first input shaft I and the second input shaft II is also fixedly provided with a reverse driving gear Ra;
  • the variable power output portion includes a power output shaft III', and the power output shaft
  • the reverse driven gear Rb and the at least one first driven gear are disposed above the III', the first driven gear is correspondingly engaged with the first driving gear, and the power output shaft III' is fixedly provided with at least one second driven gear.
  • the second driven gear is correspondingly engaged with the second driving gear, and the reverse driven gear Rb and the first driven gear are selectively engaged with the power output shaft III';
  • the shifting unit 200 further includes a reverse intermediate shaft V, which is inverted Blocking intermediate shaft V Idle wheel IG is set, idler IG and reverse gear active
  • the gear Ra meshes and meshes with the reverse driven gear Rb.
  • the shifting unit 200 can be a six-speed transmission, and the shifting power input portion can include: a first input shaft I and a second input shaft II, the second input shaft II being coaxially sleeved on the first input On the shaft I, this can effectively shorten the axial length of the powertrain 1000, thereby reducing the space occupied by the powertrain 1000.
  • the first clutch device L1 may be a dual clutch 202 having an input end, a first output end K1 and a second output end K2, the input end selectively engaging at least one of the first output end and the second output end . That is to say, the input terminal can engage the first output terminal K1, or the input terminal can engage the second output terminal K2, or the input terminal can simultaneously engage the first output terminal K1 and the second output terminal K2.
  • the first input shaft I is fixedly provided with a driving gear 1a and a third gear driving gear 3a.
  • the first input shaft I is sleeved with a five-speed driving gear 5a
  • the second input shaft II is fixedly provided with a second gear driving gear 2a and The driving gear Ra is blocked
  • the fourth input shaft II is sleeved with a fourth gear driving gear 4a and a sixth gear driving gear 6a.
  • the second input shaft II is sleeved on the first input shaft I, so that the axial length of the power transmission system 1000 can be effectively shortened, thereby reducing the space occupied by the power transmission system 1000.
  • the arrangement order of the plurality of gear driving gears is the fourth gear driving gear 4a, the sixth gear driving gear 6a, the second gear driving gear 2a, the reverse gear driving gear Ra, and the first gear.
  • the power output shaft III' is provided with a driven gear 1b, a second driven driven gear 2b, a third driven driven gear 3b and a reverse driven gear Rb, and a five-speed driven gear is fixedly arranged on the power output shaft III'. 5b, a sixth gear driven gear 6b and a fourth gear driven gear 4b.
  • the first gear drive gear 1a meshes with the first gear driven gear 1b
  • the second gear drive gear 2a meshes with the second gear driven gear 2b
  • the third gear drive gear 3a meshes with the third gear driven gear 3b
  • the driven driven gear 4b is engaged
  • the fifth speed drive gear 5a is meshed with the fifth speed driven gear 5b
  • the sixth speed drive gear 6a is meshed with the sixth speed driven gear 6b.
  • a three-speed synchronizer S13 is disposed between the first-speed driven gear 1b and the third-speed driven gear 3b, and a three-speed synchronizer S13 can be used to synchronize the first-speed driven gear 1b and the power output shaft III', and can be used The synchronous third gear driven gear 3b and the power output shaft III' are synchronized. This can save the number of synchronizers arranged on the power output shaft III', so that the axial length of the power output shaft III' can be shortened, and the cost of the powertrain 1000 can be reduced.
  • a second reverse synchronizer S2R is disposed between the second-speed driven gear 2b and the reverse driven gear Rb, and the second reverse synchronizer S2R can be used for synchronizing the second-speed driven gear 2b and the power output shaft III', and can be used The reverse gear driven gear Rb and the power output shaft III' are synchronized. This can save the number of synchronizers arranged on the power output shaft III', so that the axial length of the power output shaft III' can be shortened, and the cost of the powertrain 1000 can be reduced.
  • a four-six-speed synchronizer S46 is disposed between the fourth-speed drive gear 4a and the sixth-speed drive gear 6a, and the four-six-speed synchronizer S46 can be used to synchronize the fourth-speed drive gear 4a and the second input shaft II, and can be used to synchronize six The driving gear 6a and the second input shaft II are blocked. This saves the number of synchronizers arranged on the second input shaft II, so that the axial length of the second input shaft II can be shortened and the cost of the powertrain 1000 can be reduced.
  • One side of the fifth-speed drive gear 5a is provided with a five-speed synchronizer S5, and the five-speed synchronizer S5 can be used to synchronize the fifth-speed drive gear 5a and the first input shaft I.
  • an idler gear IG is fixedly disposed on the reverse intermediate shaft V, and the idle gear IG meshes with the reverse drive gear Ra and meshes with the reverse driven gear Rb.
  • the mode switching device 402 is further adapted to output the power original speed received from the shifting unit output portion 201 to the system power output portion. 401.
  • the original speed herein means that the rotational speed of the input end of the input mode switching device 402 is the same as the rotational speed of the output end of the mode switching device 402.
  • the mode switching device 402 when the shifting unit output portion 201 is coupled to the system power output portion 401 by the mode switching device 402, the mode switching device 402 is further adapted to output the power deceleration or the original speed output from the shifting unit output portion 201.
  • the system power output unit 401 is provided.
  • the power output from the power source 100 is adapted to directly drive the first motor generator unit 300 to generate power through the shifting unit output unit 201.
  • the power transmission system 1000 has high power generation efficiency.
  • the mode conversion device 402 can include a conversion device input portion 4020 and a conversion device output portion 4022.
  • the conversion device input portion 4020 is selectively engaged with the conversion device output portion 4022, and the conversion device input portion 4020 and the power
  • the source 100 may be selectively coupled by the first motor-generator unit coupling portion 301 such that the first motor-generator unit coupling portion 301 may output power outputted by at least one of the power source 100 and the first motor-generator 302 to
  • the conversion device input unit 4020 is fixedly disposed on the system power output unit 401, and the conversion device input unit 4020 is selectively coupled to the power source 100, wherein the power transmission system 1000 includes the implementation of the speed change unit 200.
  • the conversion device input unit 4020 is dynamically coupled to the shifting unit 200.
  • the conversion device input unit 4020 is power-coupled to the transmission unit output unit 201, the conversion device output unit 4022 is connected to the input end of the system power output unit 401, and the conversion device input unit 4020 and the conversion device output unit 4022 are selectively and dynamically coupled.
  • the rotation speed of the conversion device input portion 4020 is higher than or equal to the rotation speed of the conversion device output portion 4022, so that the number of gears of the power transmission system 1000 can be expanded.
  • the first motor-generator unit coupling portion 301 is dynamically coupled to the power source 100, and the power output from the power source 100 is adapted to be coupled by the first motor-generator unit.
  • the joint portion 301 directly drives the first motor generator unit 300 to generate electricity, so that the power transmission path at the time of power generation is short, and the power generation efficiency is high.
  • the rotational speed of the conversion device input portion 4020 is adapted to be higher than the rotational speed of the conversion device output portion 4022, or the rotational speed of the conversion device input portion 4020 is adapted to be equal to the conversion device output portion 4022. Speed.
  • the rotation speed of the conversion device input portion 4020 is equal to the rotation speed of the conversion device output portion 4022
  • the other is For the speed reduction transmission mode, the rotation speed of the conversion device input portion 4020 is higher than the rotation speed of the conversion device output portion 4022.
  • the mode switching device 402 increases the gear position of the whole vehicle, and can enlarge the maximum output torque of the whole vehicle by N times, and improves the power and the passing ability (for example, the maximum climbing degree and the ability to remove the trap).
  • the power and the passing ability for example, the maximum climbing degree and the ability to remove the trap.
  • the hybrid vehicle using the mode conversion device 402 of the present invention can effectively improve the power and the passing ability.
  • these two transmission modes can obviously enrich the driving mode of the vehicle, so that the vehicle can be adapted to more different working conditions.
  • the above N is equal to the speed ratio of the L gear to the D gear, and when the vehicle is in the L gear, the conversion device input portion 4020 and the conversion device output portion 4022 are powered by the direct transmission mode, and the conversion device input portion 4020
  • the rotation speed is higher than the rotation speed of the conversion device output portion 4022; when the vehicle is in the D range, the conversion device input portion 4020 and the conversion device output portion 4022 are powered by the deceleration transmission mode, and the rotation speed of the conversion device input portion 4020 is equal to the conversion device.
  • the rotational speed of the output unit 4022 is equal to the speed ratio of the L gear to the D gear
  • the conversion device input 4020 can be nested over the axle half 2000 of the vehicle, and the conversion device output 4022 can be nested over the axle 2000 of the vehicle.
  • the first motor generator unit 300 includes a first motor generator unit coupling portion 301, and the first motor generator unit coupling portion 301 is at least a part of the speed shift unit output portion 201, and the speed shift unit output portion 201 is
  • the conversion device input portion 4020 is dynamically coupled so that the power output from at least one of the shifting unit 200 and the first motor generator unit 300 is output to the conversion device input portion 4020 through the shifting unit output portion 201.
  • the shifting unit output portion 201 can be the main reducer driving gear Z.
  • the first motor generator unit 300 includes a first motor generator unit coupling portion 301, the first motor generator unit coupling portion 301 is dynamically coupled to the mode conversion device 402, and the first motor generator unit coupling portion 301 is at least a speed change unit output. Part of the part 201.
  • the first motor generator unit 300 includes a first motor generator 302 and a first motor generator unit coupling portion 301, and the first motor generator unit coupling portion 301 and the speed shift unit output portion 201 are the same member.
  • the shifting unit output portion 201 can be the main reducer drive gear Z, the main reducer drive gear Z and the final drive follower gear Z' is engaged.
  • the shifting unit output portion 201 is power-coupled to the mode switching device 402 such that the power output from at least one of the shifting unit 200 and the first motor generator 302 is output to the mode switching device 402 through the shifting unit output portion 201.
  • the first motor generator unit 300 includes a first motor generator 302 and a first motor generator unit coupling portion 301
  • the speed shift unit output portion 201 includes a plurality of power output portions
  • the coupling portion 301 is one of the power output portions, and each power output portion is dynamically coupled to the mode conversion device 402.
  • Each of the power output portions is a main reducer drive gear Z, and the final drive gear Z and the final drive are The moving gear Z' meshes.
  • the first motor generator unit 300 includes a first motor generator 302 and a first motor generator unit coupling portion 301, a first motor generator unit coupling portion 301 and a power source. 100 is selectively connectable, the first motor generator 302 is coupled to the first motor generator unit coupling portion 301, and the first motor generator unit coupling portion 301 is coupled to the converter input unit 4020.
  • the first motor-generator unit coupling portion 301 is disposed coaxially with the first motor generator 302.
  • the rotating shaft of the first motor-generator unit coupling portion 301 is parallel to the rotating shaft of the first motor generator 302.
  • the first motor generator unit 300 further includes a speed reduction chain 303.
  • the first motor generator 302 is coupled to the first motor generator unit coupling portion 301 via a speed reduction chain 303, and the first motor generator unit coupling portion 301 and The conversion device input unit 4020 is dynamically coupled.
  • the deceleration chain 303 can have a variety of configurations.
  • the reduction chain 303 may include a pair of first gear Z1 and a second gear Z2 that are in mesh with each other.
  • the first gear Z1 is coaxially fixedly coupled to the first motor generator 302, and the first motor generator unit is coupled.
  • the portion 301 is coaxially fixed to the second gear Z2.
  • the deceleration chain 303 may include a deceleration chain input shaft 3031 and a deceleration chain output shaft 3032.
  • the deceleration chain input shaft 3031 is fixedly coupled to the motor shaft of the first motor generator 302, and the deceleration chain input shaft 3031 is fixedly connected.
  • There is a first gear Z1, a second gear Z2 and a first motor-generator unit coupling portion 301 are fixedly coupled to the deceleration chain output shaft 3032, and the first motor-generator unit coupling portion 301 is meshed with the final drive driven gear Z'.
  • the first gear Z1 meshes with the second gear Z2, and the diameter and the number of teeth of the second gear Z2 are both larger than the diameter and the number of teeth of the first gear Z1.
  • the deceleration chain 303 may include a pair of first gear Z1 and a second gear Z2 that are in mesh with each other.
  • the first gear Z1 is coaxially fixedly coupled to the first motor generator 302, and the second gear Z2 may be the first motor power generation.
  • the deceleration chain 303 may include a deceleration chain input shaft 3031 and a deceleration chain output shaft 3032.
  • the deceleration chain input shaft 3031 is fixedly connected to the motor shaft of the first motor generator 302, and the first gear Z1 is fixedly connected to the deceleration chain input shaft 3031, and is decelerated.
  • a second gear Z2 is fixedly coupled to the chain output shaft 3032, and the first gear Z1 is meshed with the second gear Z2, and the second gear Z2 is The diameter and the number of teeth are both larger than the diameter and the number of teeth of the first gear Z1, and the second gear Z2 may be the first motor-generator unit coupling portion 301, and the first motor-generator unit coupling portion 301 is meshed with the final drive driven gear Z'. .
  • the reduction chain 303 includes a first gear Z1, a second gear Z2, and an intermediate idler Zm.
  • the intermediate idler Zm meshes with the first gear Z1 and meshes with the second gear Z2, and the first gear Z1 and
  • a motor generator 302 is coaxially fixedly coupled, and a second gear Z2 is coaxially fixedly coupled to the first motor generator unit coupling portion 301.
  • the first motor-generator unit 300 may not be disposed with the deceleration chain 303. As shown in FIG. 33-FIG. 35, the first motor-generator unit coupling portion 301 directly meshes with the final drive gear Z'.
  • mode conversion device 402 has a high degree of integration. Some alternative configurations of the mode conversion device 402 in accordance with an embodiment of the present invention are described below.
  • the mode conversion device 402 may further include a first conversion portion 4021a and a second conversion portion 4021b, and the conversion device output portion 4022 is selectively coupled to the first conversion portion 4021a.
  • the conversion device input portion 4020 is fixedly coupled to the first conversion portion 4021a, and the conversion device output portion 4022 is engaged with the second conversion portion 4021b so as to be adapted to cause the rotation speed of the conversion device input portion 4020 to be output. After being lowered, it is output to the input end of the system power output unit 401.
  • the rotation speed suitable for outputting the conversion device input unit 4020 is the same as the input end rotation speed of the system power output unit 401.
  • the conversion device input portion 4020 can transmit power to the first conversion portion 4021a and the first The two conversion unit 4021b, by the selection of the first conversion unit 4021a and the second conversion unit 4021b, can control the rotational speed transmitted to the wheel, thereby controlling the vehicle speed, so that the vehicle speed is more suitable for the current vehicle condition. It can improve the running stability and power of the vehicle.
  • the power source 100 is adapted to drive the first motor generator unit 300 to generate electricity through the conversion device input portion 4020. It can be understood that when both the first converting portion 4021a and the second converting portion 4021b are disconnected from the converting device output portion 4022, the power source 100 cannot transmit power to the system power output portion 401, and the power of the power source 100 can pass through the converting device.
  • the input unit 4020 is transmitted to the first motor generator unit 300, and the first motor generator 302 of the first motor generator unit 300 can be used as a generator to generate electricity. In this way, the parking power generation mode of the vehicle can be realized, thereby avoiding waste of energy, saving energy, and improving the power and economy of the vehicle.
  • the mode switching device 402 may include: a final drive driven gear Z', a planetary gear mechanism P, and a shifting device adapter S, wherein the main deceleration
  • the driven gear Z' is the conversion device input portion 4020
  • the planetary gear mechanism P may include a first element P1, a second element P2, and a third element P3,
  • the first component P1 is fixed to the final drive gear Z', so that power can be transmitted between the first component P1 and the final drive follower gear Z', and the second component P2 is fixedly disposed, and the first component P1 is
  • the conversion unit 4021a and the third element P3 are the second conversion unit 4021b.
  • the first element P1 can be driven with the third element P3, during which the rotational speed of the first element P1 is higher than the rotational speed of the third element P3.
  • the planetary gear mechanism P may include: a sun gear, a planetary gear, a carrier and a ring gear, the planetary gear is mounted on the planet carrier, and the planetary gear is meshed between the sun gear and the ring gear such that the sun gear, the planet carrier and the tooth
  • the circle may be one of the first element P1, the second element P2, and the third element P3.
  • the first element P1 is a sun gear
  • the sun gear is directly fixedly coupled to the final drive driven gear Z'
  • the second element P2 is a ring gear
  • the third element P3 is a carrier.
  • the first element P1 is a ring gear
  • the ring gear is directly fixedly coupled to the final drive driven gear Z'
  • the second element P2 is a sun gear
  • the third element P3 is a carrier.
  • the first element P1 is a sun gear
  • the sun gear is directly fixedly coupled to the final drive driven gear Z'
  • the second element P2 is a carrier
  • the third element P3 is a ring gear.
  • the mode conversion device 402 may further include: a conversion device adapter S22 that selectively engages one of the first element P1 and the third element P3 by the conversion device adapter S.
  • the switching engagement device can be a conversion device synchronizer.
  • the switching device synchronizer can selectively engage the switching device output portion 4022 with the first component P1 and the third component P3.
  • the rotational speed of the converting device input portion 4020 is the same as the rotational speed of the converting device output portion 4022, and when the converting device synchronizer engages the third member P3, the rotational speed of the converting device input portion 4020 is greater than the conversion The rotational speed of the device output unit 4022.
  • the switching device adapter S is located between the first member P1 and the third member P3 in the axial direction of the central axis of the planetary gear mechanism P. This saves a switching device synchronizer, which makes the mode switching device 402 simple in structure and simple in control logic.
  • the conversion device output portion 4022 can be a sleeve, and the sleeve can be sleeved on the half shaft 2000. One end of the sleeve is fixedly connected with the input end of the system power output portion 401, and the conversion device adapter S is fixedly disposed on the sleeve. another side. Thus, the switching device output portion 4022 can output power to the system power output portion 401 in a timely and reliable manner.
  • the conversion device output portion 4022 is a sleeve, and one end of the sleeve is fixedly connected to the input end of the system power output portion 401, and the conversion portion of the first conversion portion 4021a and the second conversion portion 4021b near the input end of the system power output portion 401
  • the conversion device input portion 4020 is sleeved on the sleeve, and the sleeve is sleeved on the half shaft 2000 of the vehicle, and the conversion portion of the first conversion portion 4021a and the second conversion portion 4021b away from the input end of the system power output portion 401
  • the air is placed over the half shaft 2000 of the vehicle.
  • the component of the first component P1 and the third component P3 that is close to the input end of the system power output portion 401 and the final drive driven gear Z' are all sleeved on the sleeve, and the sleeve is sleeved on the axle of the vehicle. 2000, the first component P1 and the first The component of the three component P3 that is remote from the input of the system power output 401 is vacant on the half shaft 2000 of the vehicle.
  • the third component P3 is closer to the system power output portion 401, and the third component P3 is sleeved on the sleeve.
  • the first component P1 is closer to the system power output portion 401, the first component.
  • P1 is sleeved on the sleeve, as shown in Fig. 9, the third element P3 is closer to the system power output 401, and the third element P3 is sleeved on the sleeve. This can make the mode switching device 402 compact and well arranged.
  • the planetary gear mechanism P further includes a joint portion of the first member P1 and a joint portion of the third member P3, the joint portion of the first member P1 is fixedly coupled to the first member P1, and the joint portion of the first member P1 is adapted to selectively engage the adapter device S-engaged, the third element P3 joint is fixedly coupled to the third element P3, and the third element P3 joint is adapted to selectively engage with the shifting device adapter S, in the axial direction of the central axis of the planetary gear mechanism P,
  • the device adapter S is located in a space defined by the joint of the first element P1 and the joint of the third element P3.
  • the first element P1 joint may facilitate the disconnection of the first element P1 and the switching device synchronizer
  • the third element P3 joint may facilitate the disconnection of the third element P3 and the switching device adapter S.
  • the switching device adapter S is located between the joint portion of the first member P1 and the joint portion of the third member P3.
  • the conversion device adapter S may include first and second spaced apart portions.
  • the joint, the first joint is adapted to selectively engage the converter output 4022 with the first element P1
  • the second joint is adapted to selectively engage the converter output 4022 and the third element P3.
  • the rotational speed of the converting device input portion 4020 is the same as the rotational speed of the converting device output portion 4022, and when the second engaging portion engages the switching device output portion 4022 When the third element P3 is used, the rotation speed of the conversion device input portion 4020 is greater than the rotation speed of the conversion device output portion 4022.
  • the conversion device output portion 4022 may be a sleeve, one end of the sleeve is fixedly connected with the input end of the system power output portion 401, and the other end of the sleeve passes through the planetary gear structure, One of the engaging portion and the second engaging portion is fixedly disposed at the other end of the sleeve, and the other of the first engaging portion and the second engaging portion is fixedly disposed on a portion of the sleeve that does not pass through the planetary gear mechanism P.
  • the arrangement positions of the first joint portion and the second joint portion are adjusted according to the first element P1 and the third element P3, and the first element P1 is away from the system power output portion 401 as compared with the third element P3.
  • An engaging portion is fixed to the other end of the sleeve, and the second engaging portion is fixedly disposed on a portion of the sleeve that does not pass through the planetary gear mechanism P.
  • the first element P1 is closer to the system power output portion 401 than the third element P3
  • the second joint portion is fixed to the other end of the sleeve, and the first joint portion is fixedly disposed at a portion of the sleeve that does not pass through the planetary gear mechanism P. on.
  • the conversion device output portion 4022 is a sleeve, one end of the sleeve is fixedly connected to the input end of the system power output portion 401, and the first conversion portion 4021a and the second conversion portion 4021b are all sleeved on the sleeve, and the sleeve is sleeved on the vehicle.
  • Half shaft 2000 is a sleeve, one end of the sleeve is fixedly connected to the input end of the system power output portion 401, and the first conversion portion 4021a and the second conversion portion 4021b are all sleeved on the sleeve, and the sleeve is sleeved on the vehicle.
  • Half shaft 2000 is a sleeve
  • the planetary gear mechanism P may further include a joint portion of the first element P1 and a joint portion of the third member P3, the joint portion of the first member P1 being fixedly connected to the first member P1, and first Component P1 joint is suitable for selection
  • the third member P3 is fixedly coupled to the third member P3, and the third member P3 is adapted to selectively engage the shifting device adapter S at the center of the planetary gear mechanism P.
  • the first element P1 joint portion and the third element P3 joint portion are both located between the first joint portion and the second joint portion.
  • the device 402 has a simple structure, a reasonable layout, and a simple control logic.
  • the first component P1, the third component P3, and the final drive driven gear Z' may be sleeved on the sleeve, and the sleeve is sleeved on the axle half 2000 of the vehicle.
  • the sleeve can rotate relative to the half shaft 2000, and the first component P1, the third component P3, and the final drive driven gear Z' can be rotated relative to the sleeve, so that the space on the half shaft 2000 can be reasonably utilized, and the sleeve can be ensured.
  • the arrangement reliability of the first element P1, the third element P3, and the final drive driven gear Z' can further reduce the difficulty in arranging the powertrain 1000.
  • the switching device adapter S may include a direct gear synchronizer SD and a low gear synchronizer SL, the first engaging portion being a part of the direct gear synchronizer SD, and the second engaging portion being a part of the low gear synchronizer SL.
  • the direct-gear synchronizer SD engages the first component P1 engagement portion and the conversion device output portion 4022 to ensure that the rotational speeds of the conversion device input portion 4020 and the conversion device output portion 4022 are the same
  • the low-range synchronizer SL engages the third component P3 engagement portion and the conversion device
  • the output portion 4022 can ensure that the rotational speed of the conversion device input portion 4020 is greater than the rotational speed of the conversion device output portion 4022.
  • the third embodiment of the present invention is substantially the same as the first embodiment, and the specific differences are referred to the following.
  • the switching device adapter S is located on one side of the planetary gear mechanism P.
  • the switching device adapter S is located on the right side of the planetary gear mechanism P.
  • the switching device adapter S is located on the left side of the planetary gear mechanism P.
  • the planetary gear mechanism P and the switching device adapter S are spaced apart, so that the arrangement of the fork mechanism can be facilitated, the arrangement of the fork mechanism can be reduced, and the arrangement convenience of the power transmission system 1000 can be improved. And control convenience.
  • the conversion device adapter S is disposed on the conversion device output portion 4022, and the conversion device output portion 4022 and the conversion device adapter S are both located on one side of the planetary gear mechanism P. That is, the conversion device output portion 4022 and the conversion device adapter S may be located on the same side of the planetary gear mechanism P, for example, on the right side. This makes it possible to arrange the planetary gear mechanism P, the switching device adapter S, and the switching device output portion 4022 in an axial position, so that the arrangement of the fork mechanism can be facilitated, and the structural reliability of the mode switching device 402 can be improved.
  • the first component in the axial direction of the central axis of the planetary gear mechanism P, from one end remote from the adapter fitting S to one end close to the converter adapter S, the first component is sequentially disposed.
  • the lands of the one located on the outer side of P1 and the third element P3 correspond to the lands portion corresponding to the one of the first element P1 and the third element P3.
  • the first and the first are sleeved from the outside to the inside.
  • the sleeve portion of the element located on the inner side of the element P1 and the third element P3 corresponds to the sleeve portion corresponding to the element located outside the first element P1 and the third element P3.
  • the conversion device output portion 4022 is a sleeve, one end of the sleeve is fixed to the input end of the system power output portion 401, the conversion device adapter S is disposed at the other end of the sleeve, and the sleeve is located at the planetary gear mechanism.
  • the conversion device output portion 4022 is a sleeve, one end of the sleeve is fixed to the input end of the system power output portion 401, and the conversion device adapter S is disposed at the other end of the sleeve, and the other end of the sleeve is worn. Pass the planetary gear mechanism P.
  • the power transmission system 1000 shown in FIG. 13 is taken as an example for description.
  • a sleeve portion corresponding to the first member P1 and a sleeve portion corresponding to the third member P3 are sleeved in order from the outside to the inside, so that the joint portion of the first member P1 can be made
  • the joint with the third member P3 is arranged in both the axial direction and the radial direction, so that the mode switching device 402 can be arranged reasonably.
  • a portion of the conversion device output 4022 can pass through the planetary gear mechanism P, and the conversion device adapter S is disposed on the aforementioned portion of the conversion device output 4022. That is, the conversion device adapter S and the system power output portion 401 are respectively located on both sides of the planetary gear mechanism P, and the planetary gear mechanism P can be sleeved on the conversion device output portion 4022, so that the mode conversion device 402 can be utilized reasonably. Axial space and radial space. Specifically, the conversion device output portion 4022 may be a sleeve that is sleeved on the half shaft 2000 of the vehicle.
  • the planetary gear mechanism P may further include a joint portion of the first element P1 and a joint portion of the third member P3, the joint portion of the first member P1 is fixedly connected to the first member P1, and the first member The P1 joint is adapted to selectively engage the shifting device adapter S, the third member P3 joint is fixedly coupled to the third member P3, and the third member P3 joint is adapted to selectively engage the shifting device adapter S.
  • the first element P1 joint portion and the third element P3 joint portion it is possible to facilitate the selective engagement of the conversion device output portion 4022 with the first element P1 and the third element P3, respectively.
  • the first element P1 joint portion and the third element P3 joint portion may each include a lands portion and a sleeve portion, the lands portion being perpendicular to a central axis of the planetary gear mechanism P, The sleeve portion is parallel to the central axis of the planetary gear mechanism P.
  • the outer edge of the land portion is fixedly coupled to the corresponding member, the inner edge of the land portion is coupled to one end of the sleeve portion, and the other end of the sleeve portion is adapted to selectively engage the adapter assembly S.
  • the first component in the axial direction of the central axis of the planetary gear mechanism P, from one end remote from the adapter fitting S to one end close to the converter adapter S, the first component is sequentially disposed.
  • the lands of the one located on the inner side of P1 and the third element P3 correspond to the lands portion corresponding to the one of the first element P1 and the third element P3.
  • the first and the first are sleeved from the outside to the inside.
  • the sleeve portion of the element located on the outer side of the element P1 and the third element P3 corresponds to the sleeve portion corresponding to the element located inside the first element P1 and the third element P3.
  • the power transmission system 1000 shown in FIG. 16 is taken as an example for description.
  • a lands corresponding to the third member P3 are sequentially disposed.
  • a portion and a land portion corresponding to the first member P1 in the radial direction of the central axis of the planetary gear mechanism P, a sleeve portion corresponding to the third member P3 and a corresponding portion of the first member P1 are sequentially sleeved from the outside to the inside.
  • each of the switching device adapters S may be a switching device synchronizer.
  • the mode conversion device 402 may further include a first conversion portion 4021a and a second conversion portion 4021b, and the conversion device output portion 4022 is selectively coupled to the first conversion portion 4021a and the second One of the conversion portions 4021b is engaged, the conversion device input portion 4020 is fixedly coupled to the first conversion portion 4021a, and the conversion device output portion 4022 is coupled to the second conversion portion 4021b, so that the rotation speed of the conversion device output portion 4022 is sequentially passed through the first The conversion unit 4021a and the second conversion unit 4021b are lowered and output to the input end of the system power output unit 401.
  • the rotation speed suitable for outputting the conversion device input unit 4020 is the same as the input end rotation speed of the system power output unit 401.
  • the conversion device input portion 4020 can transmit power to the first conversion portion 4021a and the first The two conversion unit 4021b, by the selection of the first conversion unit 4021a and the second conversion unit 4021b, can control the rotational speed transmitted to the wheel, thereby controlling the vehicle speed, so that the vehicle speed is more suitable for the current vehicle condition. It can improve the running stability and power of the vehicle.
  • the power source 100 is adapted to drive the first motor generator unit 300 to generate electricity through the conversion device input portion 4020. It can be understood that when both the first converting portion 4021a and the second converting portion 4021b are disconnected from the converting device output portion 4022, the power source 100 cannot transmit power to the system power output portion 401, and the power of the power source 100 can pass through the converting device.
  • the input unit 4020 is transmitted to the first motor generator unit 300, and the first motor generator 302 of the first motor generator unit 300 can be used as a generator to generate electricity. In this way, the parking power generation mode of the vehicle can be realized, thereby avoiding waste of energy, saving energy, and improving the power and economy of the vehicle.
  • the conversion device output portion 4022 is adapted to engage the first conversion portion 4021a such that the rotational speed of the conversion device input portion 4020 is the same as the rotational speed of the input end of the system power output portion 401; the conversion device output portion 4022 is adapted to be engaged
  • the two conversion unit 4021b sequentially lowers the rotation speed of the conversion device input unit 4020 by the first conversion unit 4021a and the second conversion unit 4021b, and outputs the result to the system power output unit 401.
  • the switching device input portion 4020 is the main reducer driven gear Z'
  • the first conversion portion 4021a is the first conversion gear ZZ1
  • the second conversion portion 4021b is the second conversion gear ZZ2.
  • the mode conversion device 402 further includes: the conversion device shaft VII, the final drive driven gear Z', and the first conversion.
  • the gear ZZ1 and the second conversion gear ZZ2 are both sleeved on the half shaft 2000 of the vehicle, and the third conversion gear ZZ3 and the fourth conversion gear ZZ4 are fixed to the shaft VII of the conversion device, and the first conversion gear ZZ1 is meshed with the third conversion gear ZZ3.
  • the second shifting gear ZZ2 is meshed with the fourth shifting gear ZZ4.
  • a first-stage deceleration is formed between the first conversion gear ZZ1 and the third conversion gear ZZ3, and a second-stage deceleration is formed between the second conversion gear ZZ2 and the fourth conversion gear ZZ4, so that the rotation speed of the first conversion gear ZZ1 can be made high.
  • the final drive driven gear Z' may constitute a double-coupling structure with the first shift gear ZZ1, in other words, one of the double-connected tooth structures constitutes the final drive driven gear Z' and The other gear constitutes the first shifting gear ZZ1, so that the mode switching device 402 can be made simple in structure and reliable in operation, and the power transmission system 1000 can be made simple in structure and reliable in operation.
  • the mode switching device 402 may further include a conversion device adapter S22 that selectively engages the first conversion portion 4021a or the second conversion portion 4021b by the conversion device adapter S.
  • the conversion device output portion 4022 can selectively engage and disengage the first conversion portion 4021a
  • the conversion device output portion 4022 can selectively engage and disengage the second conversion portion 4021b.
  • the conversion device adapter S may be a conversion device synchronizer disposed between the first conversion gear ZZ1 and the second conversion gear ZZ2, so that the number of synchronizers can be reduced, and the mode conversion device 402 structure can be made Simple and low cost.
  • the conversion device output portion 4022 may be a sleeve, one end of which is fixedly coupled to the input end of the system power output portion 401, and the conversion device adapter S is disposed at the other end of the sleeve.
  • This ensures the synchronization reliability between the conversion device output portion 4022 and the corresponding first conversion gear ZZ1 and second conversion gear ZZ2.
  • the space of the mode switching device 402 can be effectively saved by a reasonable radial sleeve arrangement, so that the mode conversion device 402 can be made compact, small in size, and occupying a small space of the power transmission system 1000.
  • the sleeve can be sleeved on the half shaft 2000 of the vehicle, and the second conversion gear ZZ2 can be sleeved on the sleeve. This makes it possible to make the arrangement position of the second conversion gear ZZ2 reasonable, and the structural reliability of the mode conversion device 402 can be ensured.
  • the switching device output portion 4022 is adapted to be disconnected from both the first converting portion 4021a and the second converting portion 4021b, thereby making the power source 100 adapted to directly drive the first motor-generator unit 300 to generate electricity through the shifting unit 200.
  • the transmission path of power generation is short, and the efficiency of power generation is high.
  • the mode conversion device 402 may further include a first conversion portion 4021a. And a second conversion portion 4021b, the conversion device output portion 4022 is connected to an input end of the system power output portion 401, and the conversion device input portion 4020 is adapted to output power from at least one of the power source 100 and the first motor generator unit 300
  • the conversion device input portion 4020 is selectively engaged with one of the first conversion portion 4021a and the second conversion portion 4021b, and both the first conversion portion 4021a and the second conversion portion 4021b are coupled to the conversion device output portion 4022 for transmission. That is, at the time of power transmission, the conversion device input unit 4020 can transmit power to the conversion device output unit 4022 via the first conversion unit 4021a or the second conversion unit 4021b.
  • the conversion device input portion 4020 is adapted to engage the first conversion portion 4021a such that the rotational speed of the conversion device input portion 4020 is the same as the rotational speed of the input end of the system power output portion 401, and the conversion device input portion 4020 is adapted to engage the second conversion portion 4021b to The rotation speed of the conversion device input unit 4020 is lowered and output to the system power output unit 401.
  • the conversion device input portion 4020 is the main reducer driven gear Z'
  • the mode conversion device 402 may further include: a conversion device shaft VII, and the final drive driven gear Z' is fixedly disposed on the conversion device.
  • the direct drive gear Da and the low gear drive gear La are disposed over the shaft VII of the shifting device, and the shaft VII of the shifting device is parallel to the half shaft 2000 of the vehicle.
  • the direct-drive driving gear Da may be the first converting portion 4021a
  • the low-speed driving gear La may be the second converting portion 4021b
  • the conversion device output portion 4022 may include a direct-drive driven gear Db and a low-speed driven gear Lb, the direct-driven driven gear Db meshes with the direct-drive driving gear Da, and the low-speed driven gear Lb meshes with the low-speed driving gear La, directly Both the driven driven gear Db and the low driven driven gear Lb are fixedly coupled to the input end of the system power output portion 401. This makes the power transmission reliable and the transmission efficiency high.
  • the conversion device input portion 4020 is adapted to be disconnected from both the first conversion portion 4021a and the second conversion portion 4021b, so that the power source 100 is adapted to sequentially drive the first motor generator unit through the shifting unit 200 and the conversion device input portion 4020. 300 power generation.
  • the mode conversion device 402 may further include a conversion device adapter S22 that selectively engages the first conversion portion 4021a or the second conversion portion 4021b by the conversion device adapter S.
  • a conversion device adapter S22 that selectively engages the first conversion portion 4021a or the second conversion portion 4021b by the conversion device adapter S.
  • the conversion device output portion 4022 can selectively engage and disengage the first conversion portion 4021a
  • the conversion device output portion 4022 can selectively engage and disengage the second conversion portion 4021b.
  • the conversion device adapter S can be a conversion device synchronizer.
  • the conversion device synchronizer may be fixed on the conversion device shaft VII.
  • the conversion device synchronizer may be located between the direct drive drive gear Da and the low range drive gear La, which may reduce the number of synchronizers and may
  • the mode conversion device 402 has a simple structure and low cost.
  • the system power output 401 can be a differential and includes two side gears, two halves.
  • the shaft gear corresponds to the two half shafts 2000 of the vehicle
  • the power transmission system 1000 of the vehicle further includes: a power switching device 500, wherein the power switching device 500 is adapted to selectively engage at least one of the two side gears The half shaft 2000 of the corresponding vehicle. It can be understood that if the power on/off device 500 is disposed between the half shaft 2000 on one side and the corresponding side gear, the power switching device 500 can control the joint between the half shaft 2000 and the side gear of the side.
  • each of the power switching devices 500 can control the engagement disconnection state of the corresponding side.
  • the power switching device 500 is disposed between the right half shaft 2000 and the corresponding side gear.
  • the power switching device 500 may be Two, one power switching device 500 may be disposed between the left side shaft 2000 and the corresponding side shaft gear, and the other power switching device 500 may be disposed on the right side shaft 2000 and the corresponding side shaft gear between.
  • the power switching device 500 may be a clutch.
  • the clutch may be a jaw clutch.
  • the power switching device 500 can also be of other types.
  • the power switching device 500 can be a synchronizer.
  • system power output portion 401 may be a conventional open differential, for example, a bevel gear differential or a spur gear differential, but is not limited thereto; of course, the differential 401 may also be a lock type Differentials, for example, mechanical lock differentials, electronic lock differentials, etc., the powertrain 1000 selects different differential types according to different models, such selection is mainly based on the cost of the entire vehicle, the whole vehicle is light. Quantification, vehicle off-road performance, etc.
  • the powertrain 1000 of the vehicle has a variety of operating modes, some of which are detailed below.
  • the power transmission system 1000 of the vehicle has a parking power generation mode.
  • the power source 100 operates, and the power transmission unit 200 and the system power output unit 401 are dynamically coupled and disconnected by the mode conversion device 402.
  • a motor generator unit 300 and the system power output unit 401 are mechanically coupled and disconnected by the mode switching device 402, the vehicle power output is interrupted, and the power output from the power source 100 is adapted to directly drive the first motor generator unit through the shifting unit output unit 201. 300 power generation to replenish the system.
  • the power source 100 operates, the conversion device input portion 4020 is disconnected from the conversion device output portion 4022, and the vehicle power output is interrupted, and the power is interrupted.
  • the source 100 is adapted to directly drive the first motor generator unit 300 to generate electricity to supplement the system with power. In this way, the parking power generation does not need to add an additional power transmission chain, and the mode switching device 402 can realize the switching of the parking power generation mode, the switching control is simple, and the transmission efficiency is high.
  • the parking power generation function of the power transmission system 1000 of the vehicle not only can replenish the power battery after the feeding, but also ensures the reliable operation of the electric four-wheel drive and the whole vehicle, and can also realize the function of the mobile energy storage power station, the mobile energy storage.
  • the power station converts the vehicle into a charging treasure and a power station, and can realize the 220V AC discharge function (VTOL) outside the vehicle, the vehicle-to-grid power supply function (VTOG) and the vehicle-to-vehicle interaction.
  • Charging function (VTOV) pole The earth enriches the use of vehicles.
  • the powertrain 1000 of the vehicle has a first power source driving mode.
  • the first motor generator unit 300 does not operate, and the shifting unit 200 is coupled to the power source 100 in a dynamic mode.
  • the conversion device 402 is coupled to the transmission unit output unit 201 and the system power output unit 401, and the power output from the power source 100 is sequentially output to the system power output unit 401 through the transmission unit output unit 201 and the mode conversion unit 402, and the mode conversion unit 402 will The power original speed received from the shifting unit output unit 201 is output to the system power output unit 401.
  • the conversion device input portion 4020 is dynamically coupled to the power source 100, and the conversion device input portion 4020 is coupled to the conversion device output portion 4022.
  • the power output from the power source 100 is sequentially outputted to the system power output unit 401 through the conversion device input unit 4020 and the conversion device output unit 4022, and the rotation speed of the conversion device input unit 4020 is the same as the rotation speed of the input end of the system power output unit 401; or the conversion device
  • the input unit 4020 is dynamically coupled to the power source 100 via the first motor generator unit coupling unit 301, and the power output from the power source 100 sequentially passes through the first motor generator unit coupling unit 301, the conversion device input unit 4020, and the conversion device output unit 4022.
  • the output to the system power output unit 401 is the same as the number of revolutions of the input end of the system power output unit 401.
  • the vehicle in the first power source driving mode, the vehicle is driven by the power source 100, and the input end of the system power output unit 401 is driven at a 1:1 speed ratio to the input end of the mode switching device 402, that is, the mode switching device 402 switches into D gear, this is the normal drive.
  • the powertrain 1000 of the vehicle has a second power source driving mode.
  • the first motor generator unit 300 does not operate, and the shifting unit 200 is dynamically coupled to the power source 100, and the mode
  • the conversion device 402 is coupled to the transmission unit output unit 201 and the system power output unit 401, and the power output from the power source 100 is sequentially output to the input end of the system power output unit 401 through the transmission unit output unit 201 and the mode conversion unit 402, and the mode is switched.
  • the device 402 outputs the power deceleration received from the shift unit output unit 201 to the system power output unit 401.
  • the vehicle in the second power source driving mode, the vehicle is driven by the power source 100, and the power output from the shifting unit output portion 201 is decelerated by the mode switching device 402 and output to the input end of the system power output portion 401, and the vehicle can enter the super
  • the low speed running mode that is, the mode switching device 402 is switched into the L range.
  • the input end of the system power output unit 401 and the shifting unit output unit 201 are driven by the large speed ratio reduction, and the vehicle is enhanced in the ability to remove the vehicle, for example, in the vehicle.
  • the vehicle has better passability.
  • the conversion device input portion 4020 is dynamically coupled to the power source 100, and the conversion device input portion 4020 is coupled to the conversion device output portion 4022.
  • the power output from the power source 100 is sequentially output to the system power output unit 401 through the conversion device input unit 4020 and the conversion device output unit 4022, and the rotation speed of the conversion device input unit 4020 is higher than the rotation speed of the input end of the system power output unit 401; or the conversion device
  • the input unit 4020 is dynamically coupled to the power source 100 via the first motor generator unit coupling unit 301, and the power output from the power source 100 sequentially passes through the first motor generator unit coupling unit 301, the conversion device input unit 4020, and the conversion device output unit 4022.
  • Output to system power output The input end of 401, and the rotational speed of the conversion device input portion 4020 is higher than the rotational speed of the input end of the system power output portion 401.
  • the power transmission system 1000 of the vehicle has a first pure electric drive mode.
  • the power source 100 does not operate, and the mode conversion device 402 is coupled to the transmission unit output portion 201 and the system power output.
  • the power output from the first motor generator unit 300 is sequentially output to the system power output unit 401 through the speed change unit output unit 201 and the mode conversion device 402, and the mode conversion device 402 receives the power source from the speed change unit output unit 201.
  • the speed is output to the system power output unit 401.
  • the vehicle in the first pure electric driving mode, the vehicle is driven by the first motor-generator unit 300, and the input end of the system power output portion 401 and the shifting unit output portion 201 can be driven at a 1:1 speed ratio, that is, the mode switching device 402 switches into the D gear, this time is the normal drive, the transmission efficiency is high, and the control strategy is easy to implement.
  • the conversion device input portion 4020 is dynamically coupled to the first motor generator unit 300, and the conversion device input portion 4020 and the conversion device output The portion 4022 is joined, and the power output from the first motor generator unit 300 is sequentially output to the system power output unit 401 through the conversion device input unit 4020 and the conversion device output unit 4022, and the rotational speed of the conversion device input unit 4020 and the system power output unit 401 are The input speed is the same.
  • the power transmission system 1000 of the vehicle has a second pure electric driving mode.
  • the power source 100 does not work, and the mode switching device 402 is coupled to the transmission unit output portion 201 and the system power output.
  • the power output from the first motor generator unit 300 is sequentially output to the input end of the system power output unit 401 through the speed change unit output unit 201 and the mode switching device 402, and the mode switching device 402 receives the power from the shift unit output unit 201.
  • the power reduction speed is output to the system power output unit 401.
  • the vehicle in the second pure electric drive mode, the vehicle is driven by the first motor-generator unit 300, and the power output from the shifting unit output portion 201 is decelerated by the mode switching device 402 and output to the input of the system power output portion 401.
  • the vehicle can enter the ultra-low speed running mode, that is, the mode switching device 402 switches into the L gear position, and the input end of the system power output portion 401 and the final drive driven gear Z' pass the large speed ratio reduction transmission, Improve the output torque of the electric drive, and enhance the vehicle's ability to get out of the trap. For example, when the vehicle climbs a steep slope, the vehicle's passability is better.
  • the conversion device input portion 4020 is dynamically coupled to the first motor generator unit 300, and the conversion device input portion 4020 and the conversion device output The portion 4022 is joined, and the power output from the first motor generator unit 300 is sequentially output to the system power output unit 401 through the conversion device input unit 4020 and the conversion device output unit 4022, and the rotation speed of the conversion device input unit 4020 is higher than the system power output unit 401.
  • the speed of the input is the speed of the input.
  • the powertrain 1000 of the vehicle has a first hybrid driving mode.
  • both the power source 100 and the first motor generator unit 300 are operated, and the shifting unit 200 and the power source 100 are powered.
  • the mode conversion device 402 is coupled to the transmission unit output unit 201 and the system power output unit 401, and the power output from the power source 100 is sequentially output to the system power output unit 401 through the transmission unit output unit 201 and the mode conversion device 402.
  • the power output by the motor generator unit 300 sequentially passes through the shifting unit output unit 201 and the mode conversion device.
  • the set 402 is output to the system power output unit 401, and the power source 100 and the power output from the first motor generator unit 300 are coupled to the mode conversion device 402, and the mode conversion device 402 receives the power source from the speed change unit output unit 201.
  • the speed is output to the system power output unit 401. That is to say, in the first hybrid driving mode, the mode switching device 402 switches into the D range, and the input end of the system power output portion 401 and the shifting unit output portion 201 can be driven in a 1:1 ratio, and the vehicle depends on the power source.
  • the output of the power source 100 and the first motor generator 302 are relatively independent, and the change is small on the basis of the conventional fuel vehicle powertrain, even the power source 100 and the first motor generator A failure in one of the units 300 causes a power interruption and does not affect the operation of the other.
  • the conversion device input portion 4020 is dynamically coupled to the power source 100 and the first motor generator unit 300, and the conversion device input portion 4020
  • the power output from the power source 100 and the power output from the first motor generator unit 300 are sequentially output to the system power output unit 401 through the conversion device input unit 4020 or the conversion device output unit 4022, or the conversion device is coupled to the conversion device output unit 4022.
  • the input unit 4020 is dynamically coupled to the power source 100 via the first motor generator unit coupling unit 301, and the power output from the power source 100 sequentially passes through the first motor generator unit coupling unit 301, the conversion device input unit 4020, and the conversion device output unit 4022.
  • the output to the system power output unit 401 is the same as the number of revolutions of the input end of the system power output unit 401.
  • the power transmission system 1000 of the vehicle has a second hybrid driving mode.
  • both the power source 100 and the first motor generator unit 300 operate, and the power transmission unit 200 and the power source 100 are powered.
  • the mode conversion device 402 is coupled to the transmission unit output unit 201 and the system power output unit 401, and the power output from the power source 100 is sequentially output to the system power output unit 401 through the transmission unit output unit 201 and the mode conversion device 402.
  • the power output from the motor generator unit 300 is sequentially output to the system power output unit 401 through the speed change unit output unit 201 and the mode conversion device 402, and the power output from the power source 100 and the first motor generator unit 300 is coupled to the mode conversion device 402.
  • the mode conversion device 402 outputs the power deceleration received from the transmission unit output unit 201 to the system power output unit 401. That is, in the second hybrid driving mode, the vehicle is driven by the power source 100 and the first motor generator unit 300, and the power output from the shifting unit output unit 201 is decelerated by the mode switching device 402 and output to the system power output unit.
  • the respective gear ratios of the power source 100 and the output speed ratio of the first motor generator unit 300 are amplified to achieve an output of an additional plurality of gears in off-road conditions, so that the hybrid power unit of the vehicle With double power source 100 gear and electric drive gear, the vehicle has better passability.
  • the conversion device input portion 4020 is dynamically coupled to the power source 100 and the first motor generator unit 300, and the conversion device input portion 4020
  • the power output from the power source 100 and the power output from the first motor generator unit 300 are sequentially output to the system power output unit 401 through the conversion device input unit 4020 or the conversion device output unit 4022, or the conversion device is coupled to the conversion device output unit 4022.
  • the input unit 4020 is dynamically coupled to the power source 100 via the first motor-generator unit coupling unit 301, and the power source 100 outputs
  • the power is sequentially output to the system power output unit 401 through the first motor generator unit coupling unit 301, the conversion device input unit 4020, and the conversion device output unit 4022, and the rotation speed of the conversion device input unit 4020 is higher than the input end of the system power output unit 401. Rotating speed.
  • the power transmission system 1000 of the vehicle has a first driving power generation mode.
  • the power source 100 operates, the shifting unit 200 is dynamically coupled to the power source 100, and the mode switching device 402 is dynamically coupled.
  • the transmission unit output unit 201 and the system power output unit 401 and a part of the power output from the power source 100 are sequentially output to the system power output unit 401 through the speed change unit output unit 201 and the mode conversion device 402, and the mode conversion device 402 will output the output unit from the transmission unit.
  • the power original speed received by the 201 is output to the system power output unit 401, and another part of the power output from the power source 100 is output to the first motor generator unit 300 through the speed change unit output unit 201, and the first motor generator unit 300 is driven to generate power. That is to say, in the first driving mode, the vehicle is driven by the power source 100, the mode switching device 402 is switched into the D range, and the input of the system power output unit 401 and the shifting unit output unit 201 can be driven by a 1:1 ratio.
  • the power source 100 output power is divided into two branches at the main reducer driven gear Z', and a part of the power is output to the input end of the system power output portion 401 through the second element P2, the vehicle enters the normal driving mode, and the other part is used for power.
  • the first motor generator unit 300 is driven to generate electricity.
  • the conversion device input portion 4020 is dynamically coupled to the power source 100, and the conversion device input portion 4020 is coupled to the conversion device output portion 4022.
  • a part of the power output from the power source 100 is sequentially output to the system power output unit 401 through the conversion device input unit 4020 and the conversion device output unit 4022, or the conversion device input unit 4020 and the power source 100 are dynamically coupled by the first motor generator unit coupling unit 301.
  • a part of the power outputted by the power source 100 is sequentially output to the system power output unit 401 through the first motor generator unit coupling unit 301, the conversion device input unit 4020, and the conversion device output unit 4022, and the rotation speed and the system of the conversion device input unit 4020
  • the rotational speed of the input end of the power output unit 401 is the same, and another part of the power output from the power source 100 is output to the first motor generator unit 300 through the first motor generator unit coupling unit 301, and the first motor generator unit 300 is driven to generate power.
  • the powertrain 1000 of the vehicle has a second driving mode.
  • the power source 100 operates, the shifting unit 200 is dynamically coupled to the power source 100, and the mode switching device 402 is dynamically coupled.
  • the transmission unit output unit 201 and the system power output unit 401 and a part of the power output from the power source 100 are sequentially output to the system power output unit 401 through the speed change unit output unit 201 and the mode conversion device 402, and the mode conversion device 402 will output the output unit from the transmission unit.
  • the power-down rate received by the 201 is output to the system power output unit 401, and another part of the power output from the power source 100 is output to the first motor-generator unit 300 through the speed-shift unit output unit 201, and the first motor-generator unit 300 is driven to generate power. That is to say, in the second driving mode, the vehicle is driven by the power source 100, the mode switching device 402 is switched into the L range, and the power output of the power source 100 is divided into two branches at the driven gear Z' of the final drive.
  • a part of the power is decelerated again by the mode switching device 402 and output to the input end of the system power output portion 401, the vehicle can enter the ultra-low speed running mode, the vehicle has better passability, and another part of the power can be used to drive the first electric hair.
  • the motor unit 300 generates electricity.
  • the mode conversion device 402 includes the conversion device input portion 4020 and the conversion device output portion 4022
  • the conversion device input portion 4020 is dynamically coupled to the power source 100, and the conversion device input portion 4020 is coupled to the conversion device output portion 4022.
  • a part of the power output from the power source 100 is sequentially output to the system power output unit 401 through the conversion device input unit 4020 and the conversion device output unit 4022, or the conversion device input unit 4020 and the power source 100 are dynamically coupled by the first motor generator unit coupling unit 301.
  • a part of the power output from the power source 100 is sequentially output to the system power output unit 401 through the first motor generator unit coupling unit 301, the conversion device input unit 4020, and the conversion device output unit 4022, and the rotation speed of the conversion device input unit 4020 is higher than
  • the rotational speed of the input end of the system power output unit 401 and the other part of the power output from the power source 100 are output to the first motor generator unit 300 through the first motor generator unit coupling unit 301, and the first motor generator unit 300 is driven to generate power.
  • the powertrain 1000 of the vehicle has a first braking energy recovery mode.
  • the mode switching device 402 is coupled to the transmission unit output portion 201 and the system power output portion 401.
  • the power from the wheels of the vehicle sequentially drives the first motor generator unit 300 to generate power through the system power output unit 401, the mode conversion device 402, and the shift unit output unit 201, and the mode conversion device 402 receives power from the system power output unit 401.
  • the original speed is output to the shifting unit output unit 201.
  • the mode switching device 402 switches into the D range, a part of the power of the wheel is dissipated by the braking system, and a part of the driving power can be driven by the first motor generator unit 300, the power transmission system 1000 is more environmentally friendly.
  • the mode conversion device 402 includes the conversion device input portion 4020 and the conversion device output portion 4022
  • the conversion device input portion 4020 is engaged with the conversion device output portion 4022, and the power from the wheels of the vehicle sequentially passes through the system power output portion 401.
  • the conversion device input unit 4020 and the first motor generator unit coupling unit 301 drive the first motor generator unit 300 to generate electric power, and the rotation speed of the conversion device input unit 4020 is the same as the rotation speed of the input end of the system power output unit 401.
  • the powertrain 1000 of the vehicle has a second braking energy recovery mode.
  • the mode switching device 402 is coupled to the transmission unit output unit 201 and the system power output unit 401.
  • the power from the wheels of the vehicle sequentially drives the first motor generator unit 300 to generate power through the system power output unit 401, the mode conversion device 402, and the shift unit output unit 201, and the mode conversion device 402 receives power from the system power output unit 401.
  • the speed increase is output to the shifting unit output unit 201.
  • the mode conversion device 402 includes the conversion device input portion 4020 and the conversion device output portion 4022
  • the conversion device input portion 4020 is engaged with the conversion device output portion 4022, and the power from the wheels of the vehicle sequentially passes through the system power output portion 401.
  • the conversion device input unit 4020 and the first motor generator unit coupling unit 301 drive the first motor generator unit 300 to generate electric power, and the rotation speed of the conversion device input unit 4020 is higher than the rotation speed of the input end of the system power output unit 401.
  • the power transmission system 1000 of the vehicle has a reverse drag start mode.
  • the power output by the first motor generator unit 300 is output to the power source 100 through the shifting unit output unit 201 to drive the power source 100. start up. Thereby, the startup time of the power source 100 can be shortened, and a quick start can be realized.
  • the operation mode of the power transmission system 1000 can be increased, and particularly in the L-stop mode, the gear position of the power transmission system 1000 is increased. Improved motivation and passing ability.
  • the arrangement of the mode switching device 402 separates the shifting unit 200, the wheel and the first motor generator 302 such that any two of the three can work around the third party. In addition, this can also avoid the problem of requiring a pure electric operating condition in a complex hybrid transmission system that requires complicated shifting and transmission chains in the shifting, and is particularly suitable for use in a plug-in hybrid vehicle. Of course, the three can work at the same time.
  • the mode switching device 402 is also capable of achieving an ultra low gear output of the powertrain system 1000, i.e., in an embodiment having the shifting unit 200, the power from the power source 100 is first decelerated by the shifting unit 200, and then passed through the L gear. At the speed, the ultra-low speed gear output of the powertrain 1000 can be realized. This greatly enlarges the torque output of the engine.
  • the powertrain system 1000 may further include a second motor generator 600, and the second motor generator 600 is located between the power source 100 and the shifting unit 200, One end of the second motor generator 600 is directly coupled to the power source 100, and the other end of the second motor generator 600 is selectively coupled to the shifting unit 200.
  • the second motor generator 600 and the input end of the first clutch device L1 may be coaxially connected.
  • the second motor generator 600 may be disposed between the input end of the first clutch device L1 and the engine, such that the power of the engine must pass through the second motor generator 600 when transmitting to the input end, and the second motor generator 600 may Used as a generator for parking power generation.
  • the second motor generator 600 and the first clutch device L1 may be disposed in parallel, the motor shaft of the second motor generator 600 may be connected to the first transmission gear, and the second transmission may be disposed at the input end of the first clutch device L1.
  • the gear, the first transmission gear meshes with the second transmission gear.
  • the power of the engine can be transmitted to the second motor generator 600 through the first transmission gear and the second transmission gear, such that the second motor generator 600 can be used as a generator for parking power generation.
  • the powertrain system 1000 may further include: a second motor generator 600 located between the power source 100 and the shifting unit 200 One end of the second motor generator 600 is selectively coupled to the power source 100, and the other end of the second motor generator 600 is selectively coupled to the shifting unit 200.
  • a second clutch device L2 may be disposed between the second motor generator 600 and the engine.
  • First The two clutch device L2 may be a single clutch that controls the engagement disconnection between the engine and the second motor generator 600, and may control the engagement between the engine and the input.
  • the parking power generation state of the second motor generator 600 can be reasonably controlled, so that the power transmission system 1000 can be simple in structure and reliable in drive mode conversion.
  • the second clutch device L2 may be built inside the rotor of the second motor generator 600. This can better shorten the axial length of the powertrain 1000, thereby reducing the volume of the powertrain 1000 and improving the flexibility of the powertrain 1000 on the vehicle.
  • the second motor generator 600 can also be used as a starter.
  • the input ends of the power source 100, the second clutch device L2, and the dual clutch 202 are coaxially arranged. This makes the powertrain 1000 compact and compact.
  • the second motor generator 600 may be located between the power source 100 and the first clutch device L1 in the axial direction, which can effectively reduce the power transmission.
  • the axial length of the system 1000, and the position of the second motor generator 600 can be properly arranged, and the structural compactness of the powertrain 1000 can be improved.
  • the first motor generator 302 can be the main drive motor of the powertrain 1000, so the capacity and volume of the first motor generator 302 is relatively large, For the first motor generator 302 and the second motor generator 600, the rated power of the first motor generator 302 is greater than the rated power of the second motor generator 600.
  • the second motor generator 600 can select a motor generator having a small volume and a small rated power, so that the power transmission system 1000 can be simple in structure and small in size, and in the parking power generation, the second motor generator 600 and the power source 100
  • the transmission path is short and the power generation efficiency is high, so that a part of the power of the power source 100 can be effectively converted into electric energy.
  • the peak power of the first motor generator 302 is also greater than the peak power of the second motor generator 600.
  • the rated power of the first motor generator 302 may be twice or more than the rated power of the second motor generator 600.
  • the peak power of the first motor generator 302 may be twice or more than the peak power of the second motor generator 600.
  • the rated power of the first motor generator 302 may be 60 kW
  • the rated power of the second motor generator 600 may be 24 kW
  • the peak power of the first motor generator 302 may be 120 kW
  • the powertrain 1000 of the vehicle also has a plurality of modes of operation accordingly.
  • the powertrain 1000 of the vehicle has a first parking power generation mode.
  • the second motor generator 600 is dynamically coupled to the power source 100, and the mode switching device 402 is turned off.
  • the unit output unit 201 and the system power output unit 401 and the power output from the power source 100 directly drive the second motor generator 600 to generate electric power. Since the transmission path of the second motor generator 600 and the power source 100 is short, the efficiency of power generation is high.
  • the powertrain 1000 of the vehicle has a second parking power generation mode.
  • the second motor generator 600 is dynamically coupled to the power source 100, and the second motor generator 600 is coupled to
  • the shifting unit 200 is dynamically coupled, and the mode switching device 402 opens the shifting unit output unit 201 and the system power output unit 401.
  • a part of the power output from the power source 100 directly drives the second motor generator 600 to generate electricity, and another part of the power output from the power source 100.
  • the second motor generator 600, the shifting unit output unit 201, and the mode switching device 402 are sequentially output to the first motor generator unit 300 and drive the first motor generator unit 300 to generate electric power. In this way, the power generated is large.
  • the powertrain 1000 of the vehicle has a third driving mode.
  • the power source 100 operates, the second motor generator 600 is coupled to the power source 100, and the second motor is generated.
  • the machine 600 is coupled to the shifting unit 200, and the mode switching device 402 is coupled to the shifting unit output unit 201 and the system power output unit 401.
  • the power output from the power source 100 is sequentially output to the shifting unit output unit 201 and the mode switching unit 402.
  • the system power output unit 401, and the mode switching device 402 outputs the power original speed or the speed reduction received from the speed change unit output unit 201 to the system power output unit 401, and another part of the power output from the power source 100 directly drives the second motor generator. 600 power generation. Since the transmission path of the second motor generator 600 and the power source 100 is short, the efficiency of power generation is high.
  • the power transmission system 1000 of the vehicle has a fourth driving power generation mode.
  • the power source 100 operates, the second motor generator 600 is coupled to the power source 100, and the second motor power generation
  • the machine 600 is coupled to the shifting unit 200, and the mode switching device 402 is coupled to the shifting unit output unit 201 and the system power output unit 401.
  • the first part of the power output by the power source 100 is sequentially outputted through the shifting unit output unit 201 and the mode switching unit 402.
  • the system power output unit 401 is output to the system power output unit 401, and the second part of the power output from the power source 100 passes through the speed unit output unit.
  • the 201 is output to the first motor-generator unit 300, and drives the first motor-generator unit 300 to generate electricity.
  • the third portion of the power output by the power source 100 directly drives the second motor-generator 600 to generate electricity.
  • the first motor generator unit 300 and the second motor generator 600 simultaneously generate power, and the power generated is large.
  • the powertrain 1000 of the vehicle has a third braking energy recovery mode.
  • the mode switching device 402 is coupled to the transmission unit output unit 201 and the system power output unit 401.
  • the second motor generator 600 is disconnected from the engine 100, and the power from the wheels of the vehicle sequentially drives the second motor generator 600 to generate electricity through the system power output unit 401, the mode conversion device 402, and the speed change unit output unit 201, and the mode conversion device 402
  • the power original speed received from the system power output unit 401 is output to the speed change unit output unit 201.
  • the mode switching device 402 switches into the D range, a part of the power of the wheel is dissipated by the braking system, and a part of the driving power can be driven by the second motor generator 600, the power transmission system 1000 More environmentally friendly.
  • the powertrain 1000 of the vehicle has a fourth braking energy recovery mode.
  • the mode switching device 402 is coupled to the transmission unit output portion 201 and the system power output.
  • the second motor generator 600 is disconnected from the engine 100, and the power from the wheels of the vehicle sequentially drives the second motor generator 600 to generate electricity through the system power output unit 401, the mode conversion device 402, and the speed change unit output unit 201, and the mode
  • the conversion device 402 outputs the power up-speed received from the system power output unit 401 to the speed change unit output unit 201.
  • the fourth braking energy recovery mode a part of the power of the wheel is dissipated by the braking system, and a part of the driving power of the second motor generator 600 can be driven, and the power transmission system 1000 is more environmentally friendly, and passes through the mode switching device 402.
  • the speed is increased, the speed of the main reducer driven gear Z' transmitted to the second motor generator 600 is high, and the power generation efficiency is high.
  • the powertrain 1000 of the vehicle has a quick start mode.
  • the second motor generator 600 is dynamically coupled to the power source 100, and the power output by the second motor generator 600 directly drives the power source. 100 starts.
  • the starting time of the engine can be shortened and a quick start can be achieved.
  • the power transmitted by the power transmission system 1000 described above is output to the two wheels of the vehicle through the system power output unit 401, but the power transmission system 1000 is not limited thereto.
  • the power transmission system 1000 An electric drive system 700 can also be included, which can be used to drive the other two wheels of the vehicle so that a four-wheel drive of the vehicle can be achieved.
  • the electric drive system 700 can include a drive system input and a drive system output adapted to output power from the drive system input to the other two wheels, such as the rear wheels.
  • the electric drive system 700 further includes an electric drive system power output portion 710, and the drive system output portion is adapted to output power from the drive system input portion to the other two wheels through the electric drive system power output portion 710. .
  • the electric drive system power output portion 710 can facilitate distributing the power transmitted from the drive system output portion to the two wheels on both sides, so that the vehicle can be smoothly driven.
  • the drive system input portion may be a drive motor generator 720
  • the drive system output portion is a gear reducer 730. Therefore, when the motor generator 720 is driven to operate, the power generated by the driving motor generator 720 can be transmitted to the electric drive system power output portion 710 after being decelerated and increased by the gear reducer 730, and the electric drive system power output portion 710 can be facilitated.
  • the power transmitted from the output of the drive system is distributed to the two wheels on both sides, so that the vehicle can be driven smoothly.
  • the drive system input portion includes two drive motor generators 720
  • the drive system output portion includes two drive system sub-outputs, each drive system sub-output portion adapted to be from a corresponding drive
  • the power output of motor generator 720 is output to a corresponding one of the other two wheels. That is to say, each wheel corresponds to one driving motor generator 720 and the driving system sub-output portion, so that the electric drive system power output portion 710 can be omitted, and the two driving motor generators 720 can adjust their own rotational speeds to achieve two
  • the differential between the wheels allows the powertrain 1000 to be simple and reliable in construction.
  • the other two wheels are selectively synchronized.
  • one of the half shafts 2000 can be provided with a half shaft A synchronizer is adapted to selectively engage the other half shaft 2000.
  • the same direction of the two wheels can be rotated at the same speed, and the differential motion of the two wheels can also be realized, so that the running stability of the vehicle can be ensured.
  • the two drive motor generators 720 are selectively synchronized.
  • a motor output shaft 721 may be provided with a motor output shaft synchronizer to selectively engage another motor output shaft 721, so that the same direction of the two wheels can be rotated at the same speed, and the differential speed of the two wheels can also be realized. Movement, so as to ensure the smooth running of the vehicle.
  • the two drive system sub-outputs are selectively synchronized. That is to say, one of the two drive system sub-outputs may be provided with a sub-output synchronizer for synchronizing the other drive system sub-outputs, so that the two wheels can rotate in the same direction at the same speed. It is also possible to achieve differential motion of the two wheels, so that the running stability of the vehicle can be ensured.
  • the drive system sub-output can include a secondary gear reducer 730 through which the power of the motor generator 720 can be transmitted to the wheels to drive the wheels to rotate.
  • the drive system sub-output may comprise a second speed transmission.
  • the driving motor generator 720 selectively engages one of the gears, and by setting the second speed transmission, the rotational speed of driving the output of the motor generator 720 to the wheels can be changed, thereby enriching the driving mode of the powertrain 1000, and improving the economy of the vehicle. Sex and motivation.
  • the driving motor generator 720 may include a motor output shaft 721, and the two-speed gear reducer 730 or the second-speed transmission may each include a driving system sub-output portion input shaft, and the driving system sub-output portion input shaft is fixedly coupled to the motor output shaft 721. And coaxial settings.
  • the motor generator 720 is thus driven to transmit power to the drive system sub-output input shaft through the motor output shaft 721, and then transmits power to the wheels through the drive system sub-output to drive the vehicle to move.
  • the electric drive system 700 can include two wheel motors, each of which directly drives a corresponding one of the other two wheels, with the other two wheels selectively synchronized.
  • a half shaft synchronizer 2000 may be provided with a half shaft synchronizer to selectively engage the other half shaft 2000, so that the wheel side motor can respectively drive the corresponding wheel rotation, and by breaking the half shaft synchronizer, two wheel wheels can be realized. Differential motion, so as to ensure the smooth running of the vehicle.
  • the powertrain of the vehicle includes: a power source 100; a dual clutch 202 having an input end, a first output end, and a second output end, The output end of the power source 100 is connected to the input end of the dual clutch; the first input shaft I and the second input shaft II, the first input shaft I is connected to the first output end, and the second input shaft II is connected to the second output end,
  • the second input shaft II is coaxially sleeved on the first input shaft I, and the first input shaft I and the second input shaft II are respectively fixedly provided with at least one driving gear;
  • at least one driven gear is respectively sleeved on the first output shaft III and the second output shaft IV, and at least one driven gear is correspondingly engaged with the at least one driving gear, and one of the at least one driving gear is a reverse driving gear
  • One of the at least one driven gear is an idler IG, the reverse drive gear and the idle
  • a second output gear a motor output gear fixedly disposed on the reverse output shaft V', and a motor output gear coupled to the first motor generator 302; a final drive driven gear Z', a final drive driven gear Z 'Intermeshing with each main reducer drive gear Z; a system power output portion in which the final drive follower gear Z' is selectively coupled to the input end 4011 of the system power output portion 401, thereby receiving the final drive driven gear Z'
  • the obtained power is adapted to be output to the system power output unit 401 after the original speed or the speed reduction, and the system power output unit 401 is adapted to output the power of the independent reducer driven gear Z' to the two front wheels; the rear wheel motor generator, Rear wheel motor generator The two rear wheels are driven by a speed reduction mechanism.
  • the powertrain of the vehicle includes: a power source 100; a dual clutch 202 having an input end, a first output end, and a second output end, The output end of the power source 100 is connected to the input end of the dual clutch 202; the first input shaft I and the second input shaft II, the first input shaft I is connected to the first output end and the second input shaft II is connected to the second output end.
  • the second input shaft II is coaxially sleeved on the first input shaft I.
  • the first input shaft I and the second input shaft II are respectively fixedly provided with at least one first driving gear, and each of the empty input sleeves has at least one a second driving gear, one of the second input shaft II and the first input shaft I is also fixedly provided with a reverse driving gear Ra, and at least one second driving gear is selectively engaged with the corresponding input shaft; the power output shaft III',
  • the power output shaft III' is overlaid with a reverse driven gear Rb and at least one first driven gear, and at least one first driven gear is correspondingly engaged with the at least one first driving gear, and the power output shaft III' is fixedly disposed.
  • At least one second driven gear the at least one second driven gear is correspondingly engaged with the at least one second driving gear, and the reverse driven gear Rb and the at least one first driven gear are selectively engaged with the power output shaft III'
  • the reverse intermediate shaft V is fixedly provided with an idler gear IG.
  • the idle gear IG meshes with the reverse drive gear Ra and meshes with the reverse driven gear Rb; the first motor generator 302, the first electric motor
  • the generator 302 is dynamically coupled with the power output shaft III'; the main reducer drive gear Z, the main reducer drive gear Z is fixedly disposed on the power output shaft III'; the final drive driven gear Z', the final drive is driven
  • the gear Z' meshes with the main reducer drive gear Z; the system power output portion 401, wherein the final drive follower gear Z' and the input end 4011 of the system power output portion 401 are selectively connected, thereby the final drive follower gear Z'
  • the received power is adapted to be output to the system power output unit 401 after the original speed or the speed reduction, and the system power output unit 401 is adapted to output the power of the independent reducer driven gear Z′ to the two front wheels; the rear wheel motor generator ,Rear Motor generator drives the two rear wheels through a reduction mechanism.
  • the driving mode of the vehicle can be enriched, and the economy and power of the vehicle can be improved, and the vehicle can adapt to different road conditions, and It can significantly improve the vehicle's passability and ability to get out of the way, which can improve the driver's driving experience.
  • the power transmission system 1000 can realize the function of parking power generation, which ensures the power transmission when the first motor generator unit 300 is driven and fed back. Direct transmission, high transmission efficiency, and ensure the simple and reliable switching of the parking mode.
  • the shifting unit applied to the engine can completely adopt the transmission of the original conventional fuel vehicle without any modification, the first motor generator.
  • the power output of unit 300 is fully implemented by switching of mode switching device 402.
  • Such a powertrain 1000 is designed such that each drive mode control is relatively independent, compact, and easy to implement.
  • the present invention also discloses a vehicle, which includes the powertrain system 1000 of any of the above embodiments.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
  • the meaning of "a plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated and defined otherwise. Or in one piece; it may be a mechanical connection, or it may be an electrical connection or a communication with each other; it may be directly connected or indirectly connected through an intermediate medium, and may be an internal connection of two elements or an interaction relationship between two elements. Unless otherwise expressly defined. For those skilled in the art, the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • the first feature "on” or “under” the second feature may be a direct contact of the first and second features, or the first and second features may be indirectly through an intermediate medium, unless otherwise explicitly stated and defined. contact.
  • the first feature "above”, “above” and “above” the second feature may be that the first feature is directly above or above the second feature, or merely that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or merely that the first feature level is less than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Arrangement Of Transmissions (AREA)
  • Structure Of Transmissions (AREA)

Abstract

一种车辆的动力传动***(1000)和具有其的车辆,所述车辆的动力传动***(1000)包括:动力源(100);第一电动发电机单元(300);变速单元(200),所述变速单元(200)适于选择性地与所述动力源(100)动力耦合连接,所述变速单元(200)包括变速单元输出部(201),所述变速单元输出部(201)适于将来自所述动力源(100)和所述第一电动发电机单元(300)中的至少一个的动力输出;***动力输出部(401);模式转换装置(402),其中所述变速单元输出部(201)与所述***动力输出部(401)通过所述模式转换装置(402)动力耦合连接或断开,从而所述模式转换装置(402)适于将从所述变速单元输出部(201)接收到的动力降速后输出给所述***动力输出部(401)。由此可以增加动力传动***(1000)的工作模式,增加了动力传动***(1000)的挡位,提高了动力性和通过能力。

Description

车辆的动力传动***和具有其的车辆 技术领域
本发明属于传动技术领域,具体而言,涉及一种车辆的动力传动***和具有该动力传动***的车辆。
背景技术
随着能源的不断消耗,新能源车型的开发和利用已逐渐成为一种趋势。混合动力汽车作为新能源车型中的一种,通过发动机和/或电机进行驱动,具有多种模式,可以改善传动效率和燃油经济性。
但是,发明人所了解的相关技术中,部分混合动力汽车驱动模式少,驱动传动效率较低,不能满足车辆适应各种路况的要求,尤其是混合动力汽车馈电(电池电量不足时)后,整车动力性和通过能力不足。而且为了实现驻车发电工况,需要额外地增加传动机构,集成度低,发电效率低。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本发明的一个目的在于提出一种工作模式多样的车辆的动力传动***。
本发明的另一个目的在于提出一种具有上述动力传动***的车辆。
根据本发明第一方面实施例的车辆的动力传动***,包括:动力源;第一电动发电机单元;变速单元,所述变速单元适于选择性地与所述动力源动力耦合连接,所述变速单元包括变速单元输出部,所述变速单元输出部适于将来自所述动力源和所述第一电动发电机单元中的至少一个的动力输出;***动力输出部;模式转换装置,其中所述变速单元输出部与所述***动力输出部通过所述模式转换装置动力耦合连接或断开,所述变速单元输出部(201)与所述***动力输出部(401)通过所述模式转换装置(402)动力耦合连接,从而所述模式转换装置适于将从所述变速单元输出部接收到的动力降速后输出给所述***动力输出部。
根据本发明第一方面实施例的动力传动***,通过设置上述结构形式的模式转换装置,可以增加动力传动***的工作模式,特别是在L挡模式下,增加了动力传动***的挡位,提高了动力性和通过能力。
根据本发明第二方面实施例的车辆设置有根据第一方面任一种实施例的动力传动***。
所述车辆与上述的动力传动***相对于现有技术所具有的优势相同,在此不再赘述。
附图说明
图1-图6是根据本发明实施例的动力传动***的结构简图;
图7-图20是根据本发明实施例的动力传动***的结构示意图;
图21-图26是根据本发明实施例的模式转换装置、***动力输出部与半轴的连结构示意图;
图27-图32是根据本发明实施例的电驱动***的安装结构示意图;
图33-图38是根据本发明实施例的动力传动***的结构示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
在混合动力车辆上,车辆可以布置多个驱动***,例如,动力传动***1000,该动力传动***1000可以用于驱动车辆的前轮或者后轮,下面以动力传动***1000驱动车辆的前轮为例进行详细说明,当然,在一些可选的实施例中,车辆还可以结合其他驱动***驱动车辆的后轮转动,从而使得车辆为四驱车辆,比如车辆还可以结合电驱动***700驱动车辆的后轮转动。
下面参考附图详细描述根据本发明实施例的动力传动***1000,动力传动***1000可以应用在车辆上,例如混合动力汽车。
如图1-图6所示,动力传动***1000可以包括:动力源100、第一电动发电机单元300、***动力输出部401和模式转换装置402,当然,动力传动***1000还可以包括其他机械部件,例如,第二电动发电机600、第一离合装置L1等。
动力源100可以为发动机,动力传动***1000还可以包括变速单元200,变速单元200适于选择性地与动力源100进行耦合连接,如图1-图6所示,动力源100和变速单元200可以轴向相连,其中动力源100和变速单元200之间可以设置有第一离合装置L1,第一离合装置L1可以控制动力源100和变速单元200之间的接合、断开状态。具体地,第一离合装置L1可以为图23-图31中的双离合器202。变速单元200与主减速器从动齿轮Z’动力耦合连接,从而将来自动力源100的动力经过变速单元200输出给主减速器从动齿轮Z’。
变速单元200包括变速单元输出部201,变速单元200的变速单元输出部201适于将来自动力源100和第一电动发电机单元300中的至少一个的动力输出,变速单元输出部201和***动力输出部201通过模式转换装置402动力耦合连接或断开,在变速单元输出部201与 ***动力输出部401通过模式转换装置402动力耦合连接时,模式转换装置402适于将从变速单元输出部201接收到的动力降速后输出给***动力输出部401,也就是说,模式转换装置402具有L挡,可以将变速单元输出部201的动力再次降速。
变速单元200仅需要对发动机动力实现变速变矩,可以完全借用普通燃油车的变速,不需要额外的设计变更,有利于变速单元200的小型化,以及可以减少整车开发成本,缩短开发周期。当然,变速单元200可以具有多种布置形式,比如变速单元200可以为变速器,也可以是其他一些实现变速功能的齿轮减速机,下面以变速单元200为变速器为例作进一步地说明,其中输入轴、输出轴、挡位的变化均可以形成新的变速单元200,首先以图29-图31所示的动力传动***1000中的变速单元200为例进行详细说明。
如图29-图31所示,变速单元200可以包括:变速动力输入部、变速动力输出部和变速单元输出部201,变速动力输入部与动力源100可以选择性地接合,以传输动力源100所产生的动力。可选地,变速动力输入部与动力源100之间可以设有第一离合装置L1,第一离合装置L1可以包括输入端和输出端,输入端和动力源100相连,输出端与变速动力输入部相连,当输入端和输出端接合时,动力源100和变速动力输入部接合以传递动力。
变速动力输出部构造成适于将来自变速动力输入部上的动力通过变速单元同步器的同步而将动力输出至变速单元输出部201,变速单元输出部201适于将来自动力源100和第一电动发电机单元300中的至少一个的动力输出,变速单元输出部201与模式转换装置402动力耦合连接,从而使来自变速动力输入部和第一电动发电机单元300中的至少一个的动力输出给模式转换装置402,也就是使来自变速动力输入部和第一电动发电机302中的至少一个的动力输出给转换装置输入部4020。
具体地,如图7-图20和图33-图38所示,变速动力输入部可以包括至少一个输入轴,每个输入轴均与动力源100可选择性地接合,每个输入轴上设置有至少一个主动齿轮。
变速动力输出部包括:至少一个输出轴,每个输出轴上设置有至少一个从动齿轮,变速单元同步器设置在输出轴上,用于在从动齿轮和输出轴之间可选择地同步,以使从动齿轮随输出轴同步转动。从动齿轮与对应的主动齿轮啮合,变速单元输出部201为至少一个主减速器主动齿轮Z,至少一个主减速器主动齿轮Z一一对应地固定在至少一个输出轴上,主减速器主动齿轮Z与主减速器从动齿轮Z’啮合。也就是说,变速单元输出部201可以为输出轴上的输出齿轮,该输出齿轮可以固定在对应的输出轴上,输出齿轮与主减速器从动齿轮Z’啮合以进行动力传动。
其中,输入轴可以为多个,而且多个输入轴可以依次同轴嵌套设置,在动力源100给输入轴传送动力时,动力源100可选择性地与多个输入轴中的至少一个接合。
在一些可选的实施例中,参考图7-图20,变速动力输入部可以包括第一输入轴Ⅰ和第 二输入轴Ⅱ,第二输入轴Ⅱ同轴地套设在第一输入轴Ⅰ上,第一输入轴Ⅰ和第二输入轴Ⅱ上分别固定设置有至少一个主动齿轮;变速动力输出部包括:倒挡输出轴V’,倒挡输出轴V’上空套有倒挡从动齿轮Rb,且倒挡输出轴V’上固定设置有主减速器主动齿轮Z,主减速器主动齿轮Z与模式转换装置402动力耦合连接,从而使来自倒挡从动齿轮Rb和第一电动发电机单元300中的至少一个的动力输出给模式转换装置402,至少一个主动齿轮中的一个为倒挡主动齿轮,至少一个从动齿轮中的一个为惰轮IG,倒挡主动齿轮与惰轮IG配合传动,倒挡从动齿轮Rb与惰轮IG配合传动。优选地,惰轮IG可以为双联齿结构,双联齿结构包括第一轮齿I 1和第二轮齿I2,第一轮齿I 1与倒挡主动齿轮Ra啮合,第二轮齿I2与倒挡从动齿轮Rb啮合。变速动力输出部还可以包括:第一输出轴Ⅲ和第二输出轴Ⅳ,第一输出轴Ⅲ上和第二输出轴Ⅳ上分别空套有至少一个从动齿轮,第一输出轴Ⅲ和第二输出轴Ⅳ中的一个上空套有惰轮IG,从动齿轮与主动齿轮对应地啮合。
具体地,如图7-图20所示,变速单元200可以为七挡变速器,变速动力输入部可以包括:第一输入轴Ⅰ和第二输入轴Ⅱ,第一离合装置L1可以为双离合器202,双离合器202具有输入端、第一输出端和第二输出端,双离合器202的输入端可选择性地接合第一输出端和第二输出端中的至少一个。也就是说,双离合器202的输入端可以接合第一输出端,或者,双离合器202的输入端可以接合第二输出端,或者双离合器202的输入端可以同时接合第一输出端和第二输出端。第一输出端与第一输入轴Ⅰ相连,第二输出端与第二输入轴Ⅱ相连。
如图7-图20所示,第一输入轴Ⅰ上固定设置有一挡主动齿轮1a、三挡主动齿轮3a、五挡主动齿轮5a和七挡主动齿轮7a,第二输入轴Ⅱ上固定设置有二倒挡主动齿轮2Ra和四六挡主动齿轮46a。其中,第二输入轴Ⅱ套设在第一输入轴Ⅰ上,这样可以有效缩短动力传动***1000的轴向长度,从而可以降低动力传动***1000占用车辆的空间。上述的二倒挡主动齿轮2Ra指的是该齿轮可以同时作为二挡主动齿轮和六挡主动齿轮使用,上述的四六挡主动齿轮46a指的是该齿轮可以同时作为四挡主动齿轮和六挡主动齿轮使用,这样可以缩短第二输入轴Ⅱ的轴向长度,从而可以更好地减小动力传动***1000的体积。
其中,按照与动力源100距离近远的方式,多个挡位主动齿轮的排布顺序为二倒挡主动齿轮2Ra、四六挡主动齿轮46a、七挡主动齿轮7a、三挡主动齿轮3a、五挡主动齿轮5a和一挡主动齿轮1a。通过合理布置多个挡位主动齿轮的位置,可以使得多个挡位从动齿轮和多个输出轴的位置布置合理,从而可以使得动力传动***1000结构简单,体积小。
输出轴可以包括:第一输出轴Ⅲ、第二输出轴Ⅳ和倒挡输出轴V’,第一输出轴Ⅲ上空套设置有一挡从动齿轮1b、二挡从动齿轮2b、三挡从动齿轮3b和四挡从动齿轮4b,第二输出轴Ⅳ上空套设置有五挡从动齿轮5b、六挡从动齿轮6b、七挡从动齿轮7b和惰轮IG,倒挡输出轴V’上空套设置有倒挡从动齿轮Rb,且第一输出轴Ⅲ、第二输出轴Ⅳ和倒挡输出 轴V’上均固定设置有主减速器主动齿轮Z。
其中一挡主动齿轮1a与一挡从动齿轮1b啮合,二倒挡主动齿轮2Ra与二挡从动齿轮2b啮合,三挡主动齿轮3a与三挡从动齿轮3b啮合,四六挡主动齿轮46a与四挡从动齿轮4b啮合,五挡主动齿轮5a与五挡从动齿轮5b啮合,四六挡主动齿轮46a与六挡从动齿轮6b啮合,七挡主动齿轮7a与七挡从动齿轮7b啮合,二倒挡主动齿轮2Ra与惰轮IG的第一轮齿I 1啮合,惰轮IG的第二轮齿I2与倒挡从动齿轮Rb啮合。
一挡从动齿轮1b与三挡从动齿轮3b之间设置有一三挡同步器S13,一三挡同步器S13可以用于同步一挡从动齿轮1b和第一输出轴Ⅲ,以及可以用于同步三挡从动齿轮3b和第一输出轴Ⅲ。
二挡从动齿轮2b与四挡从动齿轮4b之间设置有二四挡同步器S24,二四挡同步器S24可以用于同步二挡从动齿轮2b和第一输出轴Ⅲ,以及可以用于同步四挡从动齿轮4b和第一输出轴Ⅲ。
五挡从动齿轮5b与七挡从动齿轮7b之间设置有五七挡同步器S57,五七挡同步器S57可以用于同步五挡从动齿轮5b和第二输出轴Ⅳ,以及可以用于同步七挡从动齿轮7b和第二输出轴Ⅳ。
六挡从动齿轮6b的一侧设置有六挡同步器S6,六挡同步器S6可以用于同步六挡从动齿轮6b和第二输出轴Ⅳ。
倒挡从动齿轮Rb的一侧设置有倒挡同步器SR,倒挡同步器SR可以用于同步倒挡从动齿轮Rb与倒挡输出轴V’。
这样第一输出轴Ⅲ和第二输出轴Ⅳ上布置的同步器的数量较少,从而可以缩短第一输出轴Ⅲ和第二输出轴Ⅳ的轴向长度,以及可以降低动力传动***1000的成本。
当然,变速单元200的具体布置形式并不限于此,下面结合图33-图38详细描述另一种变速单元200的布置形式。
在另一些可选的实施例中,参考图33-图38,变速动力输入部包括第一输入轴Ⅰ和第二输入轴Ⅱ,第二输入轴Ⅱ同轴地套设在第一输入轴Ⅰ上,第一输入轴Ⅰ和第二输入轴Ⅱ上分别固定设置有至少一个第一主动齿轮,第一输入轴Ⅰ和第二输入轴Ⅱ上分别空套有至少一个第二主动齿轮,第二主动齿轮选择性与对应的输入轴接合,第一输入轴Ⅰ和第二输入轴Ⅱ中的一个上还固定设置有倒挡主动齿轮Ra;变速动力输出部包括动力输出轴Ⅲ’,动力输出轴Ⅲ’上空套有倒挡从动齿轮Rb和至少一个第一从动齿轮,第一从动齿轮与第一主动齿轮对应地啮合,动力输出轴Ⅲ’上固定设置有至少一个第二从动齿轮,第二从动齿轮与第二主动齿轮对应地啮合,倒挡从动齿轮Rb和第一从动齿轮均选择性与动力输出轴Ⅲ’接合;变速单元200还包括倒挡中间轴V,倒挡中间轴V上固定设置有惰轮IG,惰轮IG与倒挡主动 齿轮Ra啮合且与倒挡从动齿轮Rb啮合。
如图33-图38所示,变速单元200可以为六挡变速器,变速动力输入部可以包括:第一输入轴Ⅰ和第二输入轴Ⅱ,第二输入轴Ⅱ同轴套设在第一输入轴Ⅰ上,这样可以有效缩短动力传动***1000的轴向长度,从而可以降低动力传动***1000占用车辆的空间。
第一离合装置L1可以为双离合器202,双离合器202具有输入端、第一输出端K1和第二输出端K2,输入端可选择性地接合第一输出端和第二输出端中的至少一个。也就是说,输入端可以接合第一输出端K1,或者,输入端可以接合第二输出端K2,或者输入端可以同时接合第一输出端K1和第二输出端K2。
第一输入轴Ⅰ上固定设置有一挡主动齿轮1a和三挡主动齿轮3a,第一输入轴Ⅰ上空套有五挡主动齿轮5a,第二输入轴Ⅱ上固定设置有二挡主动齿轮2a和倒挡主动齿轮Ra,第二输入轴Ⅱ上空套有四挡主动齿轮4a和六挡主动齿轮6a。其中,第二输入轴Ⅱ套设在第一输入轴Ⅰ上,这样可以有效缩短动力传动***1000的轴向长度,从而可以降低动力传动***1000占用车辆的空间。
其中,按照与动力源100距离近远的方式,多个挡位主动齿轮的排布顺序为四挡主动齿轮4a、六挡主动齿轮6a、二挡主动齿轮2a、倒挡主动齿轮Ra、一挡主动齿轮1a、三挡主动齿轮3a和五挡主动齿轮5a。通过合理布置多个挡位主动齿轮的位置,可以使得多个挡位从动齿轮和多个输出轴的位置布置合理,从而可以使得动力传动***1000结构简单,体积小。
动力输出轴Ⅲ’上空套设置有一挡从动齿轮1b、二挡从动齿轮2b、三挡从动齿轮3b和倒挡从动齿轮Rb,动力输出轴Ⅲ’上固定设置有五挡从动齿轮5b、六挡从动齿轮6b和四挡从动齿轮4b。
其中一挡主动齿轮1a与一挡从动齿轮1b啮合,二挡主动齿轮2a与二挡从动齿轮2b啮合,三挡主动齿轮3a与三挡从动齿轮3b啮合,四挡主动齿轮4a与四挡从动齿轮4b啮合,五挡主动齿轮5a与五挡从动齿轮5b啮合,六挡主动齿轮6a与六挡从动齿轮6b啮合。
一挡从动齿轮1b与三挡从动齿轮3b之间设置有一三挡同步器S13,一三挡同步器S13可以用于同步一挡从动齿轮1b和动力输出轴Ⅲ’,以及可以用于同步三挡从动齿轮3b和动力输出轴Ⅲ’。这样可以节省动力输出轴Ⅲ’上布置的同步器的数量,从而可以缩短动力输出轴Ⅲ’的轴向长度,以及可以降低动力传动***1000的成本。
二挡从动齿轮2b与倒挡从动齿轮Rb之间设置有二倒挡同步器S2R,二倒挡同步器S2R可以用于同步二挡从动齿轮2b和动力输出轴Ⅲ’,以及可以用于同步倒挡从动齿轮Rb和动力输出轴Ⅲ’。这样可以节省动力输出轴Ⅲ’上布置的同步器的数量,从而可以缩短动力输出轴Ⅲ’的轴向长度,以及可以降低动力传动***1000的成本。
四挡主动齿轮4a和六挡主动齿轮6a之间设置有四六挡同步器S46,四六挡同步器S46可以用于同步四挡主动齿轮4a和第二输入轴Ⅱ,以及可以用于同步六挡主动齿轮6a和第二输入轴Ⅱ。这样可以节省第二输入轴Ⅱ上布置的同步器的数量,从而可以缩短第二输入轴Ⅱ的轴向长度,以及可以降低动力传动***1000的成本。
五挡主动齿轮5a的一侧设置有五挡同步器S5,五挡同步器S5可以用于同步五挡主动齿轮5a和第一输入轴Ⅰ。
进一步地,倒挡中间轴V上固定设置有惰轮IG,惰轮IG与倒挡主动齿轮Ra啮合且与倒挡从动齿轮Rb啮合。
优选地,变速单元输出部201与***动力输出部401通过模式转换装置402动力耦合连接时,模式转换装置402还适于将从变速单元输出部201接收到的动力原速输出给***动力输出部401。需要说明的是,此处的原速是指输入模式转换装置402的输入端的转速与模式转换装置402的输出端的转速相同。
也就是说,在变速单元输出部201与***动力输出部401通过模式转换装置402动力耦合连接时,模式转换装置402还适于将从变速单元输出部201接收到的动力降速或原速输出给***动力输出部401。
可选地,变速单元输出部201与***动力输出部401通过模式转换装置402断开时,动力源100输出的动力适于通过变速单元输出部201直接驱动第一电动发电机单元300发电。这样,动力传动***1000的发电效率高。
优选地,参考图7-图26,模式转换装置402可以包括转换装置输入部4020和转换装置输出部4022,转换装置输入部4020与转换装置输出部4022选择性接合,转换装置输入部4020与动力源100可通过第一电动发电机单元耦合部301选择性动力耦合连接,从而第一电动发电机单元耦合部301可将动力源100和第一电动发电机302中的至少一个输出的动力输出给转换装置输入部4020,转换装置输出部4022固定设在***动力输出部401上,转换装置输入部4020选择性地与动力源100动力耦合连接,其中,在动力传动***1000包括变速单元200的实施例中,转换装置输入部4020与变速单元200动力耦合连接。
转换装置输入部4020与变速单元输出部201动力耦合连接,转换装置输出部4022与***动力输出部401的输入端相连,转换装置输入部4020和转换装置输出部4022选择性动力耦合连接。
其中,转换装置输入部4020和转换装置输出部4022动力耦合连接时,转换装置输入部4020的转速高于或等于转换装置输出部4022的转速,这样可以扩展动力传动***1000的挡位数目。转换装置输入部4020和转换装置输出部4022断开时,第一电动发电机单元耦合部301与动力源100动力耦合连接,动力源100输出的动力适于通过第一电动发电机单元耦 合部301直接驱动第一电动发电机单元300发电,这样,发电时的动力传递路径短,发电效率高。
在转换装置输入部4020与变速单元200动力耦合连接时,转换装置输入部4020的转速适于高于转换装置输出部4022的转速,或者转换装置输入部4020的转速适于等于转换装置输出部4022的转速。
转换装置输入部4020和转换装置输出部4022之间进行动力传动时有两种传动模式,一种为直接传递模式,即转换装置输入部4020的转速等于转换装置输出部4022的转速,另一种为降速传递模式,即转换装置输入部4020的转速高于转换装置输出部4022的转速。
这样模式转换装置402增加了整车的挡位,能使整车最大输出扭矩放大N倍,提高了动力性、通过能力(例如最大爬坡度,脱困能力)。尤其是对于传统的混合动力车型,由于增加了电池包、电机、电控***,导致整车质量大,馈电后仅能依托于发动机的动力输出,这时通过能力和动力性会大打折扣,而采用本发明中的模式转换装置402的混合动力车型,可以有效提升动力性和通过能力。而且这两种传动模式,明显可以丰富车辆的驱动模式,从而可以使得车辆适应更多不同的工况。
其中,上述的N等于L挡相对于D挡的速比,在车辆处于L挡时,转换装置输入部4020和转换装置输出部4022之间通过直接传递模式进行动力传动,转换装置输入部4020的转速高于转换装置输出部4022的转速;在车辆处于D挡时,转换装置输入部4020和转换装置输出部4022之间通过降速传递模式进行动力传动,转换装置输入部4020的转速等于转换装置输出部4022的转速。
参考图7-图26,转换装置输入部4020可以空套在车辆的半轴2000上,转换装置输出部4022可以套设在车辆的半轴2000上。
参考图23-图31,第一电动发电机单元300包括第一电动发电机单元耦合部301,第一电动发电机单元耦合部301至少为变速单元输出部201的一部分,变速单元输出部201与转换装置输入部4020动力耦合连接,从而使变速单元200和第一电动发电机单元300中的至少一个输出的动力通过变速单元输出部201输出给转换装置输入部4020。其中,变速单元输出部201可以为主减速器主动齿轮Z。
第一电动发电机单元300包括第一电动发电机单元耦合部301,第一电动发电机单元耦合部301与模式转换装置402动力耦合连接,第一电动发电机单元耦合部301至少为变速单元输出部201的一部分。
参考图33-图38,第一电动发电机单元300包括第一电动发电机302和第一电动发电机单元耦合部301,第一电动发电机单元耦合部301与变速单元输出部201为同一部件,比如变速单元输出部201可以为主减速器主动齿轮Z,主减速器主动齿轮Z与主减速器从动齿轮 Z’啮合。变速单元输出部201与模式转换装置402动力耦合连接,从而使变速单元200和第一电动发电机302中的至少一个输出的动力通过变速单元输出部201输出给模式转换装置402。
参考图7-图20,第一电动发电机单元300包括第一电动发电机302和第一电动发电机单元耦合部301,变速单元输出部201包括多个动力输出部,第一电动发电机单元耦合部301为其中一个动力输出部,每个动力输出部均与模式转换装置402动力耦合连接,每个动力输出部均为主减速器主动齿轮Z,主减速器主动齿轮Z与主减速器从动齿轮Z’啮合。
参考图7-图20和图33-图38,第一电动发电机单元300包括第一电动发电机302和第一电动发电机单元耦合部301,第一电动发电机单元耦合部301与动力源100可选择性动力耦合连接,第一电动发电机302与第一电动发电机单元耦合部301动力耦合连接,第一电动发电机单元耦合部301与转换装置输入部4020动力耦合连接。
可选地,参考图33-图35,第一电动发电机单元耦合部301与第一电动发电机302同轴布置。
可选地,参考图7-图20和图36-图38,第一电动发电机单元耦合部301的转轴与第一电动发电机302的转轴平行。
进一步地,第一电动发电机单元300还包括减速链303,第一电动发电机302通过减速链303与第一电动发电机单元耦合部301动力耦合连接,第一电动发电机单元耦合部301与转换装置输入部4020动力耦合连接。
在本发明的实施例中,减速链303可以有多种结构形式。
参考图36-图38,减速链303可以包括一对相互啮合的第一齿轮Z1和第二齿轮Z2,第一齿轮Z1与第一电动发电机302同轴固定相连,第一电动发电机单元耦合部301与第二齿轮Z2同轴固定设置。
参考图36-图38,减速链303可以包括减速链输入轴3031和减速链输出轴3032,减速链输入轴3031与第一电动发电机302的电机轴固定连接,减速链输入轴3031上固定连接有第一齿轮Z1,减速链输出轴3032上固定连接有第二齿轮Z2和第一电动发电机单元耦合部301,第一电动发电机单元耦合部301与主减速器从动齿轮Z’啮合,第一齿轮Z1与第二齿轮Z2啮合,第二齿轮Z2的直径和齿数均大于第一齿轮Z1的直径和齿数。
可选地,减速链303可以包括一对相互啮合的第一齿轮Z1和第二齿轮Z2,第一齿轮Z1与第一电动发电机302同轴固定相连,第二齿轮Z2可以为第一电动发电机单元耦合部301。减速链303可以包括减速链输入轴3031和减速链输出轴3032,减速链输入轴3031与第一电动发电机302的电机轴固定连接,减速链输入轴3031上固定连接有第一齿轮Z1,减速链输出轴3032上固定连接有第二齿轮Z2,第一齿轮Z1与第二齿轮Z2啮合,第二齿轮Z2的 直径和齿数均大于第一齿轮Z1的直径和齿数,且第二齿轮Z2可以为第一电动发电机单元耦合部301,第一电动发电机单元耦合部301与主减速器从动齿轮Z’啮合。
参考图7-图20,减速链303包括第一齿轮Z1、第二齿轮Z2和中间惰轮Zm,中间惰轮Zm与第一齿轮Z1啮合且与第二齿轮Z2啮合,第一齿轮Z1与第一电动发电机302同轴固定相连,第二齿轮Z2与第一电动发电机单元耦合部301同轴固定相连。
当然,第一电动发电机单元300也可以不布置减速链303,如33-图35所示,第一电动发电机单元耦合部301直接与主减速器从动齿轮Z’啮合。
前面这些优势都是通过该模式转换装置402实现的,并且具有很高的集成度。下面描述根据本发明实施例的模式转换装置402的一些可选的结构形式。
根据本发明的第一实施例,如图7-图19所示,模式转换装置402还可以包括第一转换部4021a和第二转换部4021b,转换装置输出部4022选择性与第一转换部4021a和第二转换部4021b中的一个接合,转换装置输入部4020与第一转换部4021a固定相连,转换装置输出部4022与第二转换部4021b接合,从而适于使转换装置输入部4020输出的转速降低后输出给***动力输出部401的输入端。
这样在转换装置输出部4022与第一转换部4021a接合时,适于使转换装置输入部4020输出的转速与***动力输出部401的输入端转速相同。
由此,可以理解的是,动力源100和/或第一电动发电机单元300产生的动力传递至转换装置输入部4020后,转换装置输入部4020可以将动力传递给第一转换部4021a和第二转换部4021b,转换装置输出部4022通过合理选取第一转换部4021a和第二转换部4021b,可以控制传递给车轮的转速,进而可以控制车辆的车速,使得车辆的车速更加适于目前的车况,可以提高车辆的行驶平稳性和动力性。
在第一转换部4021a和第二转换部4021b均与转换装置输出部4022断开时,动力源100适于通过转换装置输入部4020驱动第一电动发电机单元300发电。可以理解的是,当第一转换部4021a和第二转换部4021b均与转换装置输出部4022断开时,动力源100无法向***动力输出部401传递动力,动力源100的动力可以经过转换装置输入部4020传递给第一电动发电机单元300,第一电动发电机单元300中的第一电动发电机302可以作为发电机使用以进行发电。这样可以实现车辆的驻车发电模式,进而可以避免能源的浪费,可以节省能源,可以提高车辆的动力性和经济性。
根据本发明的第一优选实施例,如图7-图18所示,模式转换装置402可以包括:主减速器从动齿轮Z’、行星齿轮机构P和转换装置接合器S,其中,主减速器从动齿轮Z’即转换装置输入部4020,行星齿轮机构P可以包括第一元件P1、第二元件P2和第三元件P3, 第一元件P1与主减速器从动齿轮Z’固定,这样的话,第一元件P1和主减速器从动齿轮Z’之间可以传递动力,第二元件P2固定设置,第一元件P1为第一转换部4021a,第三元件P3为第二转换部4021b。也就是说,第一元件P1可以与第三元件P3传动,在此传动过程中,第一元件P1的转速高于第三元件P3的转速。而且,行星齿轮机构P可以包括:太阳轮、行星轮、行星架和齿圈,行星轮安装在行星架上,而且行星轮啮合在太阳轮和齿圈之间,这样太阳轮、行星架和齿圈均可以为第一元件P1、第二元件P2和第三元件P3中的一个。
如图7所示,第一元件P1为太阳轮,太阳轮直接与主减速器从动齿轮Z’固定连接,第二元件P2为齿圈,第三元件P3为行星架。
如图8所示,第一元件P1为齿圈,齿圈直接与主减速器从动齿轮Z’固定连接,第二元件P2为太阳轮,第三元件P3为行星架。
如图9所示,第一元件P1为太阳轮,太阳轮直接与主减速器从动齿轮Z’固定连接,第二元件P2为行星架,第三元件P3为齿圈。
进一步地,模式转换装置402还可以包括:转换装置接合器S,转换装置输出部4022通过转换装置接合器S选择性接合第一元件P1和第三元件P3中的一个。优选地,转换接合装置可以为转换装置同步器。这样转换装置同步器可以将转换装置输出部4022选择性地接合第一元件P1和第三元件P3。当转换装置同步器接合第一元件P1时,转换装置输入部4020的转速与转换装置输出部4022的转速相同,当转换装置同步器接合第三元件P3时,转换装置输入部4020的转速大于转换装置输出部4022的转速。
转换装置接合器S的布置形式有多种,下面结合附图详细描述。
根据本发明的第一具体实施例,如图7-图9所示,在行星齿轮机构P的中心轴线的轴向上,转换装置接合器S位于第一元件P1和第三元件P3之间。这样可以节省一个转换装置同步器,从而可以使得模式转换装置402结构简单,控制逻辑简单。
其中,转换装置输出部4022可以为轴套,轴套可以套设在半轴2000上,轴套的一端与***动力输出部401的输入端固定相连,转换装置接合器S固定设置在轴套的另一端。这样转换装置输出部4022可以及时且可靠地将动力输出给***动力输出部401。
转换装置输出部4022为轴套,轴套的一端与***动力输出部401的输入端固定相连,第一转换部4021a和第二转换部4021b中的靠近***动力输出部401的输入端的那个转换部、转换装置输入部4020均空套在轴套上,轴套套设在车辆的半轴2000上,第一转换部4021a和第二转换部4021b中的远离***动力输出部401的输入端的那个转换部空套在车辆的半轴2000上。
具体地,第一元件P1和第三元件P3中的靠近***动力输出部401的输入端的那个元件、主减速器从动齿轮Z’均空套在轴套上,轴套套设在车辆的半轴2000上,第一元件P1和第 三元件P3中的远离***动力输出部401的输入端的那个元件空套在车辆的半轴2000上。
如图7所示,第三元件P3更靠近***动力输出部401,第三元件P3空套在轴套上,如图8所示,第一元件P1更靠近***动力输出部401,第一元件P1空套在轴套上,如图9所示,第三元件P3更靠近***动力输出部401,第三元件P3空套在轴套上。这样可以使得模式转换装置402结构紧凑,且布置合理。
行星齿轮机构P还包括第一元件P1接合部和第三元件P3接合部,第一元件P1接合部与第一元件P1固定相连,而且第一元件P1接合部适于选择性与转换装置接合器S接合,第三元件P3接合部与第三元件P3固定相连,而且第三元件P3接合部适于选择性与转换装置接合器S接合,在行星齿轮机构P的中心轴线的轴向上,转换装置接合器S位于第一元件P1接合部和第三元件P3接合部限定的空间内。第一元件P1接合部可以便于第一元件P1和转换装置同步器的接合断开,第三元件P3接合部可以便于第三元件P3和转换装置接合器S的接合断开。而且转换装置接合器S位于第一元件P1接合部和第三元件P3接合部之间。
根据本发明的第二具体实施例,与上述的第一具体实施例主要不同的是,如图10-图12所示,转换装置接合器S可以包括间隔开设置的第一接合部和第二接合部,第一接合部适于选择性接合转换装置输出部4022与第一元件P1,第二接合部适于选择性接合转换装置输出部4022与第三元件P3。也就是说,当第一接合部接合转换装置输出部4022与第一元件P1时,转换装置输入部4020的转速和转换装置输出部4022的转速相同,当第二接合部接合转换装置输出部4022和第三元件P3时,转换装置输入部4020的转速大于转换装置输出部4022的转速。这样通过分开布置第一接合部和第二接合部,可以使得转换装置接合器S布置简单,而且可以便于拨叉机构与第一接合部和第二接合部之间的配合。
进一步地,如图10-图12所示,转换装置输出部4022可以为轴套,轴套的一端与***动力输出部401的输入端固定相连,轴套的另一端穿过行星齿轮结构,第一接合部和第二接合部中的一个固定设在轴套的另一端,第一接合部和第二接合部中的另一个固定设置在轴套的未穿过行星齿轮机构P的部分上。需要说明的是,第一接合部和第二接合部的布置位置根据第一元件P1和第三元件P3进行调节,第一元件P1相较于第三元件P3远离***动力输出部401时,第一接合部固定在轴套的另一端,第二接合部固定设置在轴套的未穿过行星齿轮机构P的部分上。第一元件P1相较于第三元件P3靠近***动力输出部401时,第二接合部固定在轴套的另一端,第一接合部固定设置在轴套的未穿过行星齿轮机构P的部分上。
转换装置输出部4022为轴套,轴套的一端与***动力输出部401的输入端固定相连,第一转换部4021a和第二转换部4021b均空套在轴套上,轴套套设在车辆的半轴2000上。
具体地,如图10-图12所示,行星齿轮机构P还可以包括第一元件P1接合部和第三元件P3接合部,第一元件P1接合部与第一元件P1固定相连,而且第一元件P1接合部适于选 择性与转换装置接合器S接合,第三元件P3接合部与第三元件P3固定相连,而且第三元件P3接合部适于选择性与转换装置接合器S接合,在行星齿轮机构P的中心轴线的轴向上,第一元件P1接合部和第三元件P3接合部均位于第一接合部和第二接合部之间。这样一方面可以便于转换装置接合器S控制第一元件P1和转换装置输出部4022之间的接合,以及可以便于控制第三元件P3和转换装置输出部4022之间的接合,从而可以使得模式转换装置402结构简单,布局合理,控制逻辑简单。
可选地,如图10-图12所示,第一元件P1、第三元件P3、主减速器从动齿轮Z’可以均空套在轴套上,轴套套设在车辆的半轴2000上。轴套相对半轴2000可以转动,第一元件P1、第三元件P3、主减速器从动齿轮Z’相对轴套可以转动,这样可以合理利用半轴2000上的空间,而且可以保证轴套、第一元件P1、第三元件P3、主减速器从动齿轮Z’的布置可靠性,进一步地可以降低动力传动***1000的布置难度。
其中,转换装置接合器S可以包括直接挡同步器SD和低挡同步器SL,第一接合部为直接挡同步器SD的一部分,第二接合部为低挡同步器SL的一部分。直接挡同步器SD接合第一元件P1接合部和转换装置输出部4022可以保证转换装置输入部4020和转换装置输出部4022的转速相同,低挡同步器SL接合第三元件P3接合部和转换装置输出部4022可以保证转换装置输入部4020的转速大于转换装置输出部4022的转速。
本发明的第三具体实施例与第一具体实施例大致相同,具体区别点参照下面内容。如图13-图18所示,在行星齿轮机构P的中心轴线的轴向上,转换装置接合器S位于行星齿轮机构P的一侧。具体地,如图13-图15所示,在行星齿轮机构P的中心轴线的轴向上,转换装置接合器S位于行星齿轮机构P的右侧。如图16-图18所示,在行星齿轮机构P的中心轴线的轴向上,转换装置接合器S位于行星齿轮机构P的左侧。这样在轴向方向上,行星齿轮机构P和转换装置接合器S间隔开设置,从而可以便于拨叉机构的布置,可以降低拨叉机构的布置难度,进而可以提高动力传动***1000的布置便利性,以及控制便利性。
可选地,如图13-图15所示,转换装置接合器S设置在转换装置输出部4022上,转换装置输出部4022和转换装置接合器S均位于行星齿轮机构P的一侧。也就是说,转换装置输出部4022和转换装置接合器S可以位于行星齿轮机构P的同一侧,例如,右侧。这样可以使得行星齿轮机构P、转换装置接合器S和转换装置输出部4022轴向位置布置合理,从而可以便于拨叉机构的布置,以及可以提高模式转换装置402的结构可靠性。
其中,如图13-图15所示,在行星齿轮机构P的中心轴线的轴向上,从远离转换装置接合器S的一端向靠近转换装置接合器S的一端,依次设置有与第一元件P1和第三元件P3中位于外侧的那个元件对应的连接盘部分、与第一元件P1和第三元件P3中位于内侧的那个元件对应的连接盘部分。在行星齿轮机构P的中心轴线的径向上,从外向内依次套设有与第一 元件P1和第三元件P3中位于内侧的那个元件对应的套筒部分、与第一元件P1和第三元件P3中位于外侧的那个元件对应的套筒部分。
参考图13-图15,转换装置输出部4022为轴套,轴套的一端与***动力输出部401的输入端固定,转换装置接合器S设置在轴套的另一端,轴套位于行星齿轮机构P的一侧。
参考图16-图18,转换装置输出部4022为轴套,轴套的一端与***动力输出部401的输入端固定,转换装置接合器S设置在轴套的另一端,轴套的另一端穿过行星齿轮机构P。
下面以图13所示的动力传动***1000为例进行举例描述。
如图13所示,在行星齿轮机构P的中心轴线的轴向上,从远离转换装置接合器S的一端向靠近转换装置接合器S的一端,第三元件P3的连接盘部分、第一元件P1的连接盘部分依次排布。在行星齿轮机构P的中心轴线的径向上,从外向内依次套设有与第一元件P1对应的套筒部分、与第三元件P3对应的套筒部分,这样可以使得第一元件P1接合部和第三元件P3接合部在轴向上和径向上均布置合理,从而可以使得模式转换装置402布置合理。
另外可选地,如图16-图18所示,转换装置输出部4022的一部分可以穿过行星齿轮机构P,转换装置接合器S设置在转换装置输出部4022的上述一部分上。也就是说,转换装置接合器S和***动力输出部401分别位于行星齿轮机构P的两侧,而且行星齿轮机构P可以套设在转换装置输出部4022上,从而可以合理利用模式转换装置402的轴向空间和径向空间。具体地,转换装置输出部4022可以为轴套,轴套套设在车辆的半轴2000上。
其中,如图16-图18所示,行星齿轮机构P还可以包括第一元件P1接合部和第三元件P3接合部,第一元件P1接合部与第一元件P1固定相连,而且第一元件P1接合部适于选择性与转换装置接合器S接合,第三元件P3接合部与第三元件P3固定相连,而且第三元件P3接合部适于选择性与转换装置接合器S接合。通过设置第一元件P1接合部和第三元件P3接合部,可以便于转换装置输出部4022分别与第一元件P1和第三元件P3选择性地接合。
可选地,如图16-图18所示,第一元件P1接合部和第三元件P3接合部均可以包括连接盘部分和套筒部分,连接盘部分与行星齿轮机构P的中心轴线垂直,套筒部分与行星齿轮机构P的中心轴线平行。连接盘部分的外沿与对应的元件固定相连,连接盘部分的内沿与套筒部分的一端相连,套筒部分的另一端适于选择性与转换装置接合器S接合。这样通过设置连接盘部分和套筒部分,可以保证第一元件P1和转换装置接合器S之间的接合断开可靠性,以及可以保证第三元件P3和转换装置接合器S之间的接合断开可靠性。
其中,如图16-图18所示,在行星齿轮机构P的中心轴线的轴向上,从远离转换装置接合器S的一端向靠近转换装置接合器S的一端,依次设置有与第一元件P1和第三元件P3中位于内侧的那个元件对应的连接盘部分、与第一元件P1和第三元件P3中位于外侧的那个元件对应的连接盘部分。在行星齿轮机构P的中心轴线的径向上,从外向内依次套设有与第一 元件P1和第三元件P3中位于外侧的那个元件对应的套筒部分、与第一元件P1和第三元件P3中位于内侧的那个元件对应的套筒部分。
下面以图16所示的动力传动***1000为例进行举例描述。
如图16所示,在行星齿轮机构P的中心轴线的轴向上,从远离转换装置接合器S的一端向靠近转换装置接合器S的一端,依次设置有与第三元件P3对应的连接盘部分和与第一元件P1对应的连接盘部分,在行星齿轮机构P的中心轴线的径向上,从外向内依次套设有与第三元件P3对应的套筒部分和与第一元件P1对应的套筒部分。
其中,如图13-图18所示,转换装置接合器S均可以为转换装置同步器。
根据本发明的第二实施例,如图19所示,模式转换装置402还可以包括第一转换部4021a和第二转换部4021b,转换装置输出部4022选择性与第一转换部4021a和第二转换部4021b中的一个接合,转换装置输入部4020与第一转换部4021a固定相连,转换装置输出部4022与第二转换部4021b接合,从而适于使转换装置输出部4022的转速依次通过第一转换部4021a和第二转换部4021b降低后输出给***动力输出部401的输入端。
这样在转换装置输出部4022与第一转换部4021a接合时,适于使转换装置输入部4020输出的转速与***动力输出部401的输入端转速相同。
由此,可以理解的是,动力源100和/或第一电动发电机单元300产生的动力传递至转换装置输入部4020后,转换装置输入部4020可以将动力传递给第一转换部4021a和第二转换部4021b,转换装置输出部4022通过合理选取第一转换部4021a和第二转换部4021b,可以控制传递给车轮的转速,进而可以控制车辆的车速,使得车辆的车速更加适于目前的车况,可以提高车辆的行驶平稳性和动力性。
在第一转换部4021a和第二转换部4021b均与转换装置输出部4022断开时,动力源100适于通过转换装置输入部4020驱动第一电动发电机单元300发电。可以理解的是,当第一转换部4021a和第二转换部4021b均与转换装置输出部4022断开时,动力源100无法向***动力输出部401传递动力,动力源100的动力可以经过转换装置输入部4020传递给第一电动发电机单元300,第一电动发电机单元300中的第一电动发电机302可以作为发电机使用以进行发电。这样可以实现车辆的驻车发电模式,进而可以避免能源的浪费,可以节省能源,可以提高车辆的动力性和经济性。
如图19所示,转换装置输出部4022适于接合第一转换部4021a,以使转换装置输入部4020的转速与***动力输出部401的输入端的转速相同;转换装置输出部4022适于接合第二转换部4021b,以使转换装置输入部4020的转速依次通过第一转换部4021a、第二转换部4021b降低后输出给***动力输出部401。
如图19所示,在模式转换装置402中,转换装置输入部4020为主减速器从动齿轮Z’, 第一转换部4021a为第一转换齿轮ZZ1,第二转换部4021b为第二转换齿轮ZZ2,但是,模式转换装置402还包括:转换装置轴Ⅶ,主减速器从动齿轮Z’、第一转换齿轮ZZ1和第二转换齿轮ZZ2均空套在车辆的半轴2000上,转换装置轴Ⅶ上固定有第三转换齿轮ZZ3和第四转换齿轮ZZ4,第一转换齿轮ZZ1与第三转换齿轮ZZ3啮合,第二转换齿轮ZZ2与第四转换齿轮ZZ4啮合。这样在第一转换齿轮ZZ1和第三转换齿轮ZZ3之间形成一级减速,在第二转换齿轮ZZ2和第四转换齿轮ZZ4之间形成二级减速,从而可以使得第一转换齿轮ZZ1的转速高于第二转换齿轮ZZ2的转速。
具体地,如图19所示,主减速器从动齿轮Z’可以与第一转换齿轮ZZ1构成双联齿结构,换言之,双联齿结构中的一个齿轮构成主减速器从动齿轮Z’且另一个齿轮构成第一转换齿轮ZZ1,这样通过设置双联齿结构,可以使得模式转换装置402结构简单,工作可靠,而且可以使得动力传动***1000结构简单,工作可靠。
进一步地,如图19所示,模式转换装置402还可以包括转换装置接合器S,转换装置输出部4022通过转换装置接合器S选择性与第一转换部4021a或第二转换部4021b接合。此处,可以理解的是,转换装置输出部4022可以选择性地接合和断开第一转换部4021a,以及转换装置输出部4022可以选择性地接合和断开第二转换部4021b。通过切换转换装置接合器S的状态和接合目标,可以改变传递给转换装置输出部4022的输出转速,从而可以改变车轮的转速,进而可以丰富车辆的驱动模式,可以提高车辆的经济性和动力性。其中,转换装置接合器S可以为转换装置同步器,该转换装置同步器设置在第一转换齿轮ZZ1和第二转换齿轮ZZ2之间,从而可以减少同步器的数量,可以使得模式转换装置402结构简单,成本低。
如图19所示,转换装置输出部4022可以为轴套,轴套的一端与***动力输出部401的输入端固定相连,转换装置接合器S设置在轴套的另一端。这样可以保证转换装置输出部4022和对应的第一转换齿轮ZZ1和第二转换齿轮ZZ2之间的同步可靠性。而且通过合理的径向套设布置,可以有效节省模式转换装置402的空间,从而可以使得模式转换装置402结构紧凑,体积小,占用动力传动***1000的空间小。
进一步地,轴套可以套设在车辆的半轴2000上,第二转换齿轮ZZ2可以空套在轴套上。这样可以使得第二转换齿轮ZZ2的布置位置合理,而且可以保证模式转换装置402的结构可靠性。
转换装置输出部4022适于与第一转换部4021a和第二转换部4021b均断开,从而使动力源100适于通过变速单元200直接驱动第一电动发电机单元300发电。这样,发电的传动路径短,发电的效率高。
根据本发明的第三实施例,如图20所示,模式转换装置402还可以包括第一转换部4021a 和第二转换部4021b,转换装置输出部4022与***动力输出部401的输入端相连,转换装置输入部4020适于将来自动力源100和第一电动发电机单元300中的至少一个的动力输出,转换装置输入部4020选择性与第一转换部4021a和第二转换部4021b中的一个接合,第一转换部4021a和第二转换部4021b均与转换装置输出部4022配合传动。也就是说,在动力传递时,转换装置输入部4020可以通过第一转换部4021a或者第二转换部4021b向转换装置输出部4022传递动力。
转换装置输入部4020适于接合第一转换部4021a,以使转换装置输入部4020的转速与***动力输出部401的输入端的转速相同,转换装置输入部4020适于接合第二转换部4021b,以使转换装置输入部4020的转速降低后输出给***动力输出部401。
具体地,如图20所示,转换装置输入部4020为主减速器从动齿轮Z’,模式转换装置402还可以包括:转换装置轴Ⅶ,主减速器从动齿轮Z’固定设在转换装置轴Ⅶ上,转换装置轴Ⅶ上空套有直接挡主动齿轮Da和低挡主动齿轮La,转换装置轴Ⅶ与车辆的半轴2000平行。
其中,直接挡主动齿轮Da可以为第一转换部4021a,低挡主动齿轮La可以为第二转换部4021b。转换装置输出部4022可以包括直接挡从动齿轮Db和低挡从动齿轮Lb,直接挡从动齿轮Db与直接挡主动齿轮Da啮合,低挡从动齿轮Lb与低挡主动齿轮La啮合,直接挡从动齿轮Db和低挡从动齿轮Lb均与***动力输出部401的输入端固定相连。这样可以使得动力传递可靠,传动效率高。
而且,转换装置输入部4020适于与第一转换部4021a和第二转换部4021b均断开,从而使动力源100适于依次通过变速单元200、转换装置输入部4020驱动第一电动发电机单元300发电。
模式转换装置402还可以包括转换装置接合器S,转换装置输出部4022通过转换装置接合器S选择性与第一转换部4021a或第二转换部4021b接合。此处,可以理解的是,转换装置输出部4022可以选择性地接合和断开第一转换部4021a,以及转换装置输出部4022可以选择性地接合和断开第二转换部4021b。通过切换转换装置接合器S的状态和接合目标,可以改变传递给转换装置输出部4022的输出转速,从而可以改变车轮的转速,进而可以丰富车辆的驱动模式,可以提高车辆的经济性和动力性。
其中,转换装置接合器S可以为转换装置同步器。可选地,转换装置同步器可以固定在转换装置轴Ⅶ上,优选地,转换装置同步器可以位于直接挡主动齿轮Da和低挡主动齿轮La之间,这样可以减少同步器的数量,可以使得模式转换装置402结构简单,成本低。
如图21-图26所示,***动力输出部401可以为差速器,且包括两个半轴齿轮,两个半 轴齿轮与车辆的两个半轴2000一一对应,车辆的动力传动***1000还包括:动力通断装置500,动力通断装置500适于选择性地接合两个半轴齿轮中的至少一个与对应的车辆的半轴2000。可以理解的是,如果一侧的半轴2000和对应的半轴齿轮之间设置有动力通断装置500,该动力通断装置500可以控制该侧的半轴2000和半轴齿轮之间的接合断开状态,如果两侧的半轴2000分别和对应的半轴齿轮之间设置有动力通断装置500,每个动力通断装置500可以控制对应侧的接合断开状态。如图11-图13和图15所示,动力通断装置500设置在右侧的半轴2000和对应的半轴齿轮之间,如图14和图16所示,动力通断装置500可以为两个,一个动力通断装置500可以设置在左侧的半轴2000和对应的半轴齿轮之间,另一个动力通断装置500可以设置在右侧的半轴2000和对应的半轴齿轮之间。
其中,动力通断装置500的类型也有多种,例如,如图11-图12所示,动力通断装置500可以为离合器。优选地,如图13和图14所示,离合器可以为牙嵌式离合器。
当然,动力通断装置500还可以为其他类型,例如,如图15和图16所示,动力通断装置500可以为同步器。
需要说明的是,***动力输出部401可以为常规的开放式差速器,例如,锥齿轮差速器或圆柱齿轮差速器,但不限于此;当然,差速器401也可以是锁式差速器,例如,机械锁式差速器、电子锁式差速器等,动力传动***1000依据不同的车型选择不同的差速器类型,这样的选择主要依据包括整车成本、整车轻量化、整车越野性能等。
车辆的动力传动***1000具有多种工作模式,下面详细介绍一些工作模式。
车辆的动力传动***1000具有驻车发电模式,车辆的动力传动***1000处于驻车发电模式时,动力源100工作,变速单元200与***动力输出部401通过模式转换装置402动力耦合断开以及第一电动发电机单元300与***动力输出部401通过模式转换装置402动力耦合断开,整车动力输出中断,动力源100输出的动力适于通过变速单元输出部201直接驱动第一电动发电机单元300发电,为***补充电量。其中,在模式转换装置402包括转换装置输入部4020和转换装置输出部4022的实施例中,动力源100工作,转换装置输入部4020与转换装置输出部4022断开,整车动力输出中断,动力源100适于直接驱动第一电动发电机单元300发电,为***补充电量。这样驻车发电不需要增加额外的动力传动链,仅通过模式转换装置402即可实现驻车发电模式的切换,切换控制简单,传动效率高。
车辆的动力传动***1000的驻车发电功能,不仅可以为馈电后的动力电池补充电量,确保电四驱和整车用电的可靠运行,还可以实现移动储能电站功能,该移动储能电站通过增加驻车发电挡和逆放电功能,将车辆转化为充电宝和发电站,随时可以实现车外220V交流放电功能(VTOL)、车辆对电网的供电功能(VTOG)和车辆对车辆的互充电功能(VTOV),极 大地丰富了车辆的用途。
车辆的动力传动***1000具有第一动力源驱动模式,车辆的动力传动***处于第一动力源驱动模式时,第一电动发电机单元300不工作,变速单元200与动力源100动力耦合连接,模式转换装置402动力耦合连接变速单元输出部201与***动力输出部401,动力源100输出的动力依次通过变速单元输出部201、模式转换装置402输出给***动力输出部401,且模式转换装置402将从变速单元输出部201接收到的动力原速输出给***动力输出部401。其中,在模式转换装置402包括转换装置输入部4020和转换装置输出部4022的实施例中,转换装置输入部4020与动力源100动力耦合连接,转换装置输入部4020与转换装置输出部4022接合,动力源100输出的动力依次通过转换装置输入部4020、转换装置输出部4022输出给***动力输出部401,且转换装置输入部4020的转速与***动力输出部401的输入端的转速相同;或者转换装置输入部4020与动力源100通过第一电动发电机单元耦合部301动力耦合连接,动力源100输出的动力依次通过第一电动发电机单元耦合部301、转换装置输入部4020和转换装置输出部4022输出给***动力输出部401,且转换装置输入部4020的转速与***动力输出部401的输入端的转速相同。也就是说,在第一动力源驱动模式中,车辆依靠动力源100驱动,***动力输出部401的输入端与模式转换装置402的输入端1:1速比传动,即模式转换装置402切换入D挡位,此时为正常驱动。
车辆的动力传动***1000具有第二动力源驱动模式,车辆的动力传动***处于第二动力源驱动模式时,第一电动发电机单元300不工作,变速单元200与动力源100动力耦合连接,模式转换装置402动力耦合连接变速单元输出部201与***动力输出部401,动力源100输出的动力依次通过变速单元输出部201、模式转换装置402输出给***动力输出部401的输入端,且模式转换装置402将从变速单元输出部201接收到的动力降速输出给***动力输出部401。也就是说,在第二动力源驱动模式中,车辆依靠动力源100驱动,变速单元输出部201输出的动力被模式转换装置402减速后输出给***动力输出部401的输入端,车辆可以进入超低速行驶模式,即模式转换装置402切换入L挡位,此时***动力输出部401的输入端与变速单元输出部201之间通过大速比的减速传动,整车脱困能力增强,比如在车辆大坡度爬坡时,车辆的通过性更好。其中,在模式转换装置402包括转换装置输入部4020和转换装置输出部4022的实施例中,转换装置输入部4020与动力源100动力耦合连接,转换装置输入部4020与转换装置输出部4022接合,动力源100输出的动力依次通过转换装置输入部4020、转换装置输出部4022输出给***动力输出部401,且转换装置输入部4020的转速高于***动力输出部401的输入端的转速;或者转换装置输入部4020与动力源100通过第一电动发电机单元耦合部301动力耦合连接,动力源100输出的动力依次通过第一电动发电机单元耦合部301、转换装置输入部4020和转换装置输出部4022输出给***动力输出部 401的输入端,且转换装置输入部4020的转速高于***动力输出部401的输入端的转速。
车辆的动力传动***1000具有第一纯电动驱动模式,车辆的动力传动***处于第一纯电动驱动模式时,动力源100不工作,模式转换装置402动力耦合连接变速单元输出部201与***动力输出部401,第一电动发电机单元300输出的动力依次通过变速单元输出部201、模式转换装置402输出给***动力输出部401,且模式转换装置402将从变速单元输出部201接收到的动力原速输出给***动力输出部401。也就是说,在第一纯电动驱动模式中,车辆依靠第一电动发电机单元300驱动,***动力输出部401的输入端与变速单元输出部201可以1:1速比传动,即模式转换装置402切换入D挡位,此时为正常驱动,传动效率高,控制策略易实现。其中,在模式转换装置402包括转换装置输入部4020和转换装置输出部4022的实施例中,转换装置输入部4020与第一电动发电机单元300动力耦合连接,转换装置输入部4020与转换装置输出部4022接合,第一电动发电机单元300输出的动力依次通过转换装置输入部4020、转换装置输出部4022输出给***动力输出部401,且转换装置输入部4020的转速与***动力输出部401的输入端的转速相同。
车辆的动力传动***1000具有第二纯电动驱动模式,车辆的动力传动***处于第二纯电动驱动模式时,动力源100不工作,模式转换装置402动力耦合连接变速单元输出部201与***动力输出部401,第一电动发电机单元300输出的动力依次通过变速单元输出部201、模式转换装置402输出给***动力输出部401的输入端,且模式转换装置402将从变速单元输出部201接收到的动力降速输出给***动力输出部401。也就是说,在第二纯电动驱动模式中,车辆依靠第一电动发电机单元300驱动,且变速单元输出部201输出的动力被模式转换装置402减速后输出给***动力输出部401的输入端,车辆可以进入超低速行驶模式,即模式转换装置402切换入L挡位,此时***动力输出部401的输入端与主减速器从动齿轮Z’之间通过大速比的减速传动,可以提高电动驱动的输出扭矩,整车脱困能力增强,比如在车辆大坡度爬坡时,车辆的通过性更好。其中,在模式转换装置402包括转换装置输入部4020和转换装置输出部4022的实施例中,转换装置输入部4020与第一电动发电机单元300动力耦合连接,转换装置输入部4020与转换装置输出部4022接合,第一电动发电机单元300输出的动力依次通过转换装置输入部4020、转换装置输出部4022输出给***动力输出部401,且转换装置输入部4020的转速高于***动力输出部401的输入端的转速。
车辆的动力传动***1000具有第一混动驱动模式,车辆的动力传动***处于第一混动驱动模式时,动力源100和第一电动发电机单元300均工作,变速单元200与动力源100动力耦合连接,模式转换装置402动力耦合连接变速单元输出部201与***动力输出部401,动力源100输出的动力依次通过变速单元输出部201、模式转换装置402输出给***动力输出部401,第一电动发电机单元300输出的动力依次通过变速单元输出部201、模式转换装 置402输出给***动力输出部401,动力源100和第一电动发电机单元300输出的动力耦合后输出给模式转换装置402,且模式转换装置402将从变速单元输出部201接收到的动力原速输出给***动力输出部401。也就是说,在第一混动驱动模式中,模式转换装置402切换入D挡位,且***动力输出部401的输入端与变速单元输出部201可以1:1速比传动,车辆依靠动力源100和第一电动发电机单元300共同驱动,动力源100和第一电动发电机302的输出相对独立,在传统燃油车动力总成基础上改动很小,即便动力源100和第一电动发电机单元300中的一个出现故障导致动力中断,也不会影响另一个的工作。其中,在模式转换装置402包括转换装置输入部4020和转换装置输出部4022的实施例中,转换装置输入部4020与动力源100及第一电动发电机单元300动力耦合连接,转换装置输入部4020与转换装置输出部4022接合,动力源100输出的动力和第一电动发电机单元300输出的动力均依次通过转换装置输入部4020、转换装置输出部4022输出给***动力输出部401,或者转换装置输入部4020与动力源100通过第一电动发电机单元耦合部301动力耦合连接,动力源100输出的动力依次通过第一电动发电机单元耦合部301、转换装置输入部4020和转换装置输出部4022输出给***动力输出部401,且转换装置输入部4020的转速与***动力输出部401的输入端的转速相同。
车辆的动力传动***1000具有第二混动驱动模式,车辆的动力传动***处于第二混动驱动模式时,动力源100和第一电动发电机单元300均工作,变速单元200与动力源100动力耦合连接,模式转换装置402动力耦合连接变速单元输出部201与***动力输出部401,动力源100输出的动力依次通过变速单元输出部201、模式转换装置402输出给***动力输出部401,第一电动发电机单元300输出的动力依次通过变速单元输出部201、模式转换装置402输出给***动力输出部401,动力源100和第一电动发电机单元300输出的动力耦合后输出给模式转换装置402,且模式转换装置402将从变速单元输出部201接收到的动力降速输出给***动力输出部401。也就是说,在第二混动驱动模式中,车辆依靠动力源100和第一电动发电机单元300共同驱动,变速单元输出部201输出的动力被模式转换装置402减速后输出给***动力输出部401的输入端,动力源100的各个挡位速比与第一电动发电机单元300的输出速比被放大,实现越野工况下的额外的多个挡位的输出,令整车混合动力单元具备双倍的动力源100挡位和电驱挡位,车辆的通过性更好。其中,在模式转换装置402包括转换装置输入部4020和转换装置输出部4022的实施例中,转换装置输入部4020与动力源100及第一电动发电机单元300动力耦合连接,转换装置输入部4020与转换装置输出部4022接合,动力源100输出的动力和第一电动发电机单元300输出的动力均依次通过转换装置输入部4020、转换装置输出部4022输出给***动力输出部401,或者转换装置输入部4020与动力源100通过第一电动发电机单元耦合部301动力耦合连接,动力源100输出的 动力依次通过第一电动发电机单元耦合部301、转换装置输入部4020和转换装置输出部4022输出给***动力输出部401,且转换装置输入部4020的转速高于***动力输出部401的输入端的转速。
车辆的动力传动***1000具有第一行车发电模式,车辆的动力传动***1000处于第一行车发电模式时,动力源100工作,变速单元200与动力源100动力耦合连接,模式转换装置402动力耦合连接变速单元输出部201与***动力输出部401,动力源100输出的一部分动力依次通过变速单元输出部201、模式转换装置402输出给***动力输出部401,且模式转换装置402将从变速单元输出部201接收到的动力原速输出给***动力输出部401,动力源100输出的另一部分动力通过变速单元输出部201输出给第一电动发电机单元300,驱动第一电动发电机单元300发电。也就是说,在第一行车发电模式中,车辆依靠动力源100驱动,模式转换装置402切换入D挡位,***动力输出部401的输入端与变速单元输出部201可以1:1速比传动,动力源100输出动力在主减速器从动齿轮Z’处分成两个支路,一部分动力通过第二元件P2输出给***动力输出部401的输入端,车辆进入正常行驶模式,另一部分动力用于驱动第一电动发电机单元300发电。其中,在模式转换装置402包括转换装置输入部4020和转换装置输出部4022的实施例中,转换装置输入部4020与动力源100动力耦合连接,转换装置输入部4020与转换装置输出部4022接合,动力源100输出的一部分动力依次通过转换装置输入部4020、转换装置输出部4022输出给***动力输出部401,或者转换装置输入部4020与动力源100通过第一电动发电机单元耦合部301动力耦合连接,动力源100输出的一部分动力依次通过第一电动发电机单元耦合部301、转换装置输入部4020和转换装置输出部4022输出给***动力输出部401,且转换装置输入部4020的转速与***动力输出部401的输入端的转速相同,动力源100输出的另一部分动力通过第一电动发电机单元耦合部301输出给第一电动发电机单元300,驱动第一电动发电机单元300发电。
车辆的动力传动***1000具有第二行车发电模式,车辆的动力传动***1000处于第二行车发电模式时,动力源100工作,变速单元200与动力源100动力耦合连接,模式转换装置402动力耦合连接变速单元输出部201与***动力输出部401,动力源100输出的一部分动力依次通过变速单元输出部201、模式转换装置402输出给***动力输出部401,且模式转换装置402将从变速单元输出部201接收到的动力降速输出给***动力输出部401,动力源100输出的另一部分动力通过变速单元输出部201输出给第一电动发电机单元300,驱动第一电动发电机单元300发电。也就是说,在第二行车发电模式中,车辆依靠动力源100驱动,模式转换装置402切换入L挡位,动力源100输出动力在主减速器从动齿轮Z’处分成两个支路,一部分动力被模式转换装置402再次减速后输出给***动力输出部401的输入端,车辆可以进入超低速行驶模式,车辆的通过性更好,另一部分动力可以用于驱动第一电动发 电机单元300发电。其中,在模式转换装置402包括转换装置输入部4020和转换装置输出部4022的实施例中,转换装置输入部4020与动力源100动力耦合连接,转换装置输入部4020与转换装置输出部4022接合,动力源100输出的一部分动力依次通过转换装置输入部4020、转换装置输出部4022输出给***动力输出部401,或者转换装置输入部4020与动力源100通过第一电动发电机单元耦合部301动力耦合连接,动力源100输出的一部分动力依次通过第一电动发电机单元耦合部301、转换装置输入部4020和转换装置输出部4022输出给***动力输出部401,且转换装置输入部4020的转速高于***动力输出部401的输入端的转速,动力源100输出的另一部分动力通过第一电动发电机单元耦合部301输出给第一电动发电机单元300,驱动第一电动发电机单元300发电。
车辆的动力传动***1000具有第一制动能回收模式,车辆的动力传动***1000处于第一制动能回收模式时,模式转换装置402动力耦合连接变速单元输出部201与***动力输出部401,来自车辆的车轮的动力依次通过***动力输出部401、模式转换装置402、变速单元输出部201驱动第一电动发电机单元300发电,且模式转换装置402将从***动力输出部401接收到的动力原速输出给变速单元输出部201。也就是说,在第一制动能回收模式中,模式转换装置402切换入D挡位,车轮的动力一部分被制动***耗散,一部分可以驱动第一电动发电机单元300发电,动力传动***1000更环保。其中,在模式转换装置402包括转换装置输入部4020和转换装置输出部4022的实施例中,转换装置输入部4020与转换装置输出部4022接合,来自车辆的车轮的动力依次通过***动力输出部401、转换装置输入部4020、第一电动发电机单元耦合部301驱动第一电动发电机单元300发电,且转换装置输入部4020的转速与***动力输出部401的输入端的转速相同。
车辆的动力传动***1000具有第二制动能回收模式,车辆的动力传动***1000处于第二制动能回收模式时,模式转换装置402动力耦合连接变速单元输出部201与***动力输出部401,来自车辆的车轮的动力依次通过***动力输出部401、模式转换装置402、变速单元输出部201驱动第一电动发电机单元300发电,且模式转换装置402将从***动力输出部401接收到的动力升速输出给变速单元输出部201。也就是说,在第二制动能回收模式中,车轮的动力一部分被制动***耗散,一部分可以驱动第一电动发电机单元300发电,动力传动***1000更环保,且通过模式转换装置402的升速,变速单元输出部201传递给第一电动发电机单元300的转速高,发电效率高。其中,在模式转换装置402包括转换装置输入部4020和转换装置输出部4022的实施例中,转换装置输入部4020与转换装置输出部4022接合,来自车辆的车轮的动力依次通过***动力输出部401、转换装置输入部4020、第一电动发电机单元耦合部301驱动第一电动发电机单元300发电,且转换装置输入部4020的转速高于***动力输出部401的输入端的转速。
车辆的动力传动***1000具有反拖启动模式,车辆的动力传动***处于反拖启动模式时,第一电动发电机单元300输出的动力通过变速单元输出部201输出给动力源100,带动动力源100启动。由此,可以缩短动力源100的启动时间,实现快速启动。
根据本发明实施例的动力传动***1000,通过设置上述结构形式的模式转换装置402,可以增加动力传动***1000的工作模式,特别是在L挡模式下,增加了动力传动***1000的挡位,提高了动力性和通过能力。
模式转换装置402的设置隔开了变速单元200、车轮和第一电动发电机302三者,使得三者中的任意两者可以绕开第三者工作。另外,这样还可以避免一般混合动力传动***中需要经过变速中复杂的换挡和传动链实现纯电动工况的问题,尤其适用于插电式混合动力车辆中。当然,三者也可以同时工作。
同时,模式转换装置402还能够实现动力传动***1000的超低速挡位输出,即在具有变速单元200的实施例中,来自动力源100的动力先经过变速单元200降速,再经过L挡降速,可以实现动力传动***1000的超低速挡位输出。由此可很大限度地放大发动机的扭矩输出。
根据本发明的一个优选实施例,如图2和图5所示,动力传动***1000还可以包括第二电动发电机600,第二电动发电机600位于动力源100与变速单元200之间,第二电动发电机600的一端直接与动力源100动力耦合连接,而且第二电动发电机600的另一端选择性地与变速单元200动力耦合连接。
如图2和图5所示,第二电动发电机600与第一离合装置L1的输入端可以同轴相连。第二电动发电机600可以设置在第一离合装置L1的输入端和发动机之间,这样发动机的动力在向输入端传递时必然经过第二电动发电机600,此时第二电动发电机600可以作为发电机使用以进行驻车发电。
当然,第二电动发电机600与第一离合装置L1可以平行设置,第二电动发电机600的电机轴可以与第一传动齿轮相连,第一离合装置L1的输入端上可以设置有第二传动齿轮,第一传动齿轮与第二传动齿轮啮合。这样发动机的动力可以通过第一传动齿轮与第二传动齿轮传递给第二电动发电机600,这样第二电动发电机600可以作为发电机使用以进行驻车发电。
根据本发明的另一个优选实施例,如图3和图6所示,动力传动***1000还可以包括:第二电动发电机600,第二电动发电机600位于动力源100和变速单元200之间,第二电动发电机600的一端选择性地与动力源100动力耦合连接,第二电动发电机600的另一端选择性地与变速单元200动力耦合连接。
如图3和图6所示,第二电动发电机600与发动机之间可以设置有第二离合装置L2。第 二离合装置L2可以为单离合器,单离合器可以控制发动机和第二电动发电机600之间的接合断开,以及可以控制发动机和输入端之间的接合断开。通过设置第二离合装置L2,可以合理控制第二电动发电机600的驻车发电状态,从而可以使得动力传动***1000结构简单且驱动模式转换可靠。
优选地,第二离合装置L2可以内置在第二电动发电机600的转子内部。这样可以更好地缩短动力传动***1000的轴向长度,从而可以减小动力传动***1000的体积,提高动力传动***1000在车辆上的布置灵活性。另外,第二电动发电机600还可以作为启动机使用。
优选地,动力源100、第二离合装置L2以及双离合器202的输入端同轴布置。这样可以使得动力传动***1000结构紧凑,体积小。
需要说明的是,对于上述几个实施例的动力传动***1000,在轴向方向上,第二电动发电机600可以均位于动力源100和第一离合装置L1之间,这样可以有效减少动力传动***1000的轴向长度,而且可以使得第二电动发电机600的位置布置合理,可以提高动力传动***1000的结构紧凑性。
在动力传动***1000具有第二电动发电机600的实施例中,第一电动发电机302可以为动力传动***1000的主驱动电机,所以第一电动发电机302的容量和体积相对较大,对于第一电动发电机302和第二电动发电机600来说,第一电动发电机302的额定功率大于第二电动发电机600的额定功率。这样第二电动发电机600可以选取体积小且额定功率小的电动发电机,从而可以使得动力传动***1000结构简单,体积小,而且在驻车发电时,第二电动发电机600和动力源100之间传动路径短,发电效率高,从而可以有效将动力源100的一部分动力转化成电能。其中第一电动发电机302的峰值功率同样大于第二电动发电机600的峰值功率。
优选地,第一电动发电机302的额定功率可以为第二电动发电机600的额定功率的两倍或两倍以上。第一电动发电机302的峰值功率可以为第二电动发电机600的峰值功率的两倍或两倍以上。例如,第一电动发电机302的额定功率可以为60kw,第二电动发电机600的额定功率可以为24kw,第一电动发电机302的峰值功率可以为120kw,第二电动发电机600的峰值功率可以为44kw。
在动力传动***1000具有第二电动发电机600的实施例中,车辆的动力传动***1000还相应地具有多种工作模式。
车辆的动力传动***1000具有第一驻车发电模式,车辆的动力传动***1000处于第一驻车发电模式时,第二电动发电机600与动力源100动力耦合连接,模式转换装置402断开变速单元输出部201与***动力输出部401,动力源100输出的动力直接驱动第二电动发电机600发电。由于第二电动发电机600与动力源100的传动路径短,发电的效率较高。
车辆的动力传动***1000具有第二驻车发电模式,车辆的动力传动***1000处于第二驻车发电模式时,第二电动发电机600与动力源100动力耦合连接,第二电动发电机600与变速单元200动力耦合连接,模式转换装置402断开变速单元输出部201与***动力输出部401,动力源100输出的一部分动力直接驱动第二电动发电机600发电,动力源100输出的另一部分动力依次通过第二电动发电机600、变速单元输出部201、模式转换装置402输出给第一电动发电机单元300并驱动第一电动发电机单元300发电。这样,发电的功率较大。
车辆的动力传动***1000具有第三行车发电模式,车辆的动力传动***1000处于第三行车发电模式时,动力源100工作,第二电动发电机600与动力源100动力耦合连接,第二电动发电机600与变速单元200动力耦合连接,模式转换装置402动力耦合连接变速单元输出部201与***动力输出部401,动力源100输出的一部分动力依次通过变速单元输出部201、模式转换装置402输出给***动力输出部401,且模式转换装置402将从变速单元输出部201接收到的动力原速或降速输出给***动力输出部401,动力源100输出的另一部分动力直接驱动第二电动发电机600发电。由于第二电动发电机600与动力源100的传动路径短,发电的效率较高。
车辆的动力传动***1000具有第四行车发电模式,车辆的动力传动***1000处于第四行车发电模式时,动力源100工作,第二电动发电机600与动力源100动力耦合连接,第二电动发电机600与变速单元200动力耦合连接,模式转换装置402动力耦合连接变速单元输出部201与***动力输出部401,动力源100输出的第一部分动力依次通过变速单元输出部201、模式转换装置402输出给***动力输出部401,且模式转换装置402将从变速单元输出部201接收到的动力原速或降速输出给***动力输出部401,动力源100输出的第二部分动力通过变速单元输出部201输出给第一电动发电机单元300,驱动第一电动发电机单元300发电,动力源100输出的第三部分动力直接驱动第二电动发电机600发电。这样,在第四行车发电模式中,第一电动发电机单元300和第二电动发电机600同时发电,发电的功率较大。
车辆的动力传动***1000具有第三制动能回收模式,车辆的动力传动***1000处于第三制动能回收模式时,模式转换装置402动力耦合连接变速单元输出部201与***动力输出部401,第二电动发电机600与发动机100断开,来自车辆的车轮的动力依次通过***动力输出部401、模式转换装置402、变速单元输出部201驱动第二电动发电机600发电,且模式转换装置402将从***动力输出部401接收到的动力原速输出给变速单元输出部201。也就是说,在第三制动能回收模式中,模式转换装置402切换入D挡位,车轮的动力一部分被制动***耗散,一部分可以驱动第二电动发电机600发电,动力传动***1000更环保。
车辆的动力传动***1000具有第四制动能回收模式,车辆的动力传动***1000处于第四制动能回收模式时,模式转换装置402动力耦合连接变速单元输出部201与***动力输出 部401,第二电动发电机600与发动机100断开,来自车辆的车轮的动力依次通过***动力输出部401、模式转换装置402、变速单元输出部201驱动第二电动发电机600发电,且模式转换装置402将从***动力输出部401接收到的动力升速输出给变速单元输出部201。也就是说,在第四制动能回收模式中,车轮的动力一部分被制动***耗散,一部分可以驱动第二电动发电机600发电,动力传动***1000更环保,且通过模式转换装置402的升速,主减速器从动齿轮Z’传递给第二电动发电机600的转速高,发电效率高。
车辆的动力传动***1000具有快速启动模式,车辆的动力传动***1000处于快速启动模式时,第二电动发电机600与动力源100动力耦合连接,第二电动发电机600输出的动力直接驱动动力源100启动。由此,可以缩短发动机的启动时间,实现快速启动。
优选地,上述的动力传动***1000所传输的动力均是通过***动力输出部401输出给车辆的两个车轮,但是动力传动***1000并不限于此,参考图27-图32,动力传动***1000还可以包括电驱动***700,电驱动***700可以用于驱动车辆的另外两个车轮,从而可以实现车辆的四驱。
下面详细描述根据本发明实施例的电驱动***700的多种布置形式。
电驱动***700可以包括驱动***输入部和驱动***输出部,驱动***输出部适于将来自驱动***输入部的动力输出给另外两个车轮,例如后轮。
例如,如图27所示,电驱动***700还包括电驱动***动力输出部710,驱动***输出部适于将来自驱动***输入部的动力通过电驱动***动力输出部710输出给另外两个车轮。电驱动***动力输出部710可以便于将驱动***输出部传递来的动力分配给两侧的两个车轮,从而可以平稳地驱动车辆。
具体地,驱动***输入部可以为驱动电动发电机720,驱动***输出部为齿轮减速器730。由此,当驱动电动发电机720工作时,驱动电动发电机720产生的动力可以经过齿轮减速器730的减速增矩之后传递给电驱动***动力输出部710,电驱动***动力输出部710可以便于将驱动***输出部传递来的动力分配给两侧的两个车轮,从而可以平稳地驱动车辆。
又如,参考图28-图31,驱动***输入部包括两个驱动电动发电机720,驱动***输出部包括两个驱动***子输出部,每个驱动***子输出部适于将来自对应的驱动电动发电机720的动力输出给另外两个车轮中对应的一个车轮。也就是说,每个车轮对应有一个驱动电动发电机720和驱动***子输出部,这样可以省略电驱动***动力输出部710,而且两个驱动电动发电机720可以调节自身的转速以实现两个车轮之间的差速,从而可以使得动力传动***1000结构简单且可靠。
如图28所示,另外两个车轮选择性同步。例如,其中一个半轴2000上可以设置有半轴 同步器以适于选择性地接合另一个半轴2000。这样可以实现两个车轮的同向同速转动,也可以实现两个车轮的差速运动,从而可以保证车辆的行驶平稳性。
如图29所示,两个驱动电动发电机720选择性同步。例如,一个电机输出轴721上可以设置有电机输出轴同步器以选择性地接合另一个电机输出轴721,这样可以实现两个车轮的同向同速转动,也可以实现两个车轮的差速运动,从而可以保证车辆的行驶平稳性。
如图30和图31所示,两个驱动***子输出部选择性同步。也就是说,两个驱动***子输出部中的一个输出轴上可以设置有子输出部同步器以用于同步另一个驱动***子输出部,这样可以实现两个车轮的同向同速转动,也可以实现两个车轮的差速运动,从而可以保证车辆的行驶平稳性。
如图30和图31所示,驱动***子输出部可以包括二级齿轮减速器730,经过二级减速的驱动电动发电机720的动力可以传递给车轮以驱动车轮转动。
或者驱动***子输出部可以包括二挡变速器。驱动电动发电机720选择性地接合其中一个挡位,通过设置二挡变速器,可以改变驱动电动发电机720的输出给车轮的转速,从而可以丰富动力传动***1000的驱动模式,可以提高车辆的经济性和动力性。
具体地,驱动电动发电机720可以包括电机输出轴721,二级齿轮减速器730或者二挡变速器均可以包括驱动***子输出部输入轴,驱动***子输出部输入轴与电机输出轴721固定相连且同轴设置。这样驱动电动发电机720可以通过电机输出轴721将动力传递给驱动***子输出部输入轴,然后通过驱动***子输出部将动力传递给车轮以驱动车辆运动。
再如,如图32所示,电驱动***700可以包括两个轮边电机,每个轮边电机直接驱动另外两个车轮中的对应的一个车轮,另外两个车轮选择性同步。一个半轴2000上可以设置有半轴同步器以选择性地接合另一个半轴2000,这样轮边电机可以分别驱动对应的车轮转动,而且通过断开半轴同步器,可以实现两个车轮的差速运动,从而可以保证车辆的行驶平稳性。
在本发明的一个具体的实施例中,参考图7-图20,车辆的动力传动***包括:动力源100;双离合器202,双离合器202具有输入端、第一输出端和第二输出端,动力源100的输出端与双离合器的输入端相连;第一输入轴Ⅰ和第二输入轴Ⅱ,第一输入轴Ⅰ与第一输出端相连且第二输入轴Ⅱ与第二输出端相连,第二输入轴Ⅱ同轴地套设在第一输入轴Ⅰ上,第一输入轴Ⅰ和第二输入轴Ⅱ上分别固定设置有至少一个主动齿轮;第一输出轴Ⅲ和第二输出轴Ⅳ,第一输出轴Ⅲ上和第二输出轴Ⅳ上分别空套有至少一个从动齿轮,至少一个从动齿轮与至少一个主动齿轮对应地啮合,至少一个主动齿轮中的一个为倒挡主动齿轮,至少一个从动齿轮中的一个为惰轮IG,倒挡主动齿轮与惰轮IG配合传动;倒挡输出轴V’,倒挡输出轴 V’上空套有倒挡从动齿轮Rb,倒挡从动齿轮Rb与惰轮IG配合传动,非惰轮IG的从动齿轮以及倒挡从动齿轮Rb均选择性与对应的输出轴接合;第一电动发电机302;三个主减速器主动齿轮Z,三个主减速器主动齿轮Z包括固定设置在第一输出轴Ⅲ上的第一输出齿轮、固定设置在第二输出轴Ⅳ上的第二输出齿轮,固定设置在倒挡输出轴V’上的电机输出齿轮,电机输出齿轮与第一电动发电机302动力耦合连接;主减速器从动齿轮Z’,主减速器从动齿轮Z’与每个主减速器主动齿轮Z啮合;***动力输出部,其中主减速器从动齿轮Z’和***动力输出部401的输入端4011选择性相连,从而主减速器从动齿轮Z’接收到的动力适于原速或降速后输出给***动力输出部401,***动力输出部401适于将来自主减速器从动齿轮Z’的动力输出给两个前轮;后轮电动发电机,后轮电动发电机通过减速机构驱动两个后轮。
在本发明的另一个具体的实施例中,参考图33-图38,车辆的动力传动***包括:动力源100;双离合器202,双离合器具有输入端、第一输出端和第二输出端,动力源100的输出端与双离合器202的输入端相连;第一输入轴Ⅰ和第二输入轴Ⅱ,第一输入轴Ⅰ与第一输出端相连且第二输入轴Ⅱ与第二输出端相连,第二输入轴Ⅱ同轴地套设在第一输入轴Ⅰ上,第一输入轴Ⅰ和第二输入轴Ⅱ上分别固定设置有至少一个第一主动齿轮,且分别空套有至少一个第二主动齿轮,第二输入轴Ⅱ和第一输入轴Ⅰ中的一个上还固定设置有倒挡主动齿轮Ra,至少一个第二主动齿轮选择性与对应的输入轴接合;动力输出轴Ⅲ’,动力输出轴Ⅲ’上空套有倒挡从动齿轮Rb和至少一个第一从动齿轮,至少一个第一从动齿轮与至少一个第一主动齿轮对应地啮合,动力输出轴Ⅲ’上固定设置有至少一个第二从动齿轮,至少一个第二从动齿轮与至少一个第二主动齿轮对应地啮合,倒挡从动齿轮Rb和至少一个第一从动齿轮均选择性与动力输出轴Ⅲ’接合;倒挡中间轴V,倒挡中间轴V上固定设置有惰轮IG,惰轮IG与倒挡主动齿轮Ra啮合且与倒挡从动齿轮Rb啮合;第一电动发电机302,第一电动发电机302与动力输出轴Ⅲ’动力耦合连接;主减速器主动齿轮Z,主减速器主动齿轮Z固定设置在动力输出轴Ⅲ’上;主减速器从动齿轮Z’,主减速器从动齿轮Z’与主减速器主动齿轮Z啮合;***动力输出部401,其中主减速器从动齿轮Z’和***动力输出部401的输入端4011选择性相连,从而主减速器从动齿轮Z’接收到的动力适于原速或降速后输出给***动力输出部401,***动力输出部401适于将来自主减速器从动齿轮Z’的动力输出给两个前轮;后轮电动发电机,后轮电动发电机通过减速机构驱动两个后轮。
综上所述,根据本发明的车辆的动力传动***1000,通过该模式转换装置402,可以丰富车辆的驱动模式,而且可以提高车辆的经济性和动力性,并且车辆能够适应不同的路况,以及可以显著提高车辆的通过性和脱困能力,可以提升驾驶员的驾驶体验。且动力传动***1000可以实现驻车发电的功能,既保证了第一电动发电机单元300驱动和回馈时,动力传 输直接,传动效率高,又保证驻车发电模式切换的简单和可靠。同时,由于发动机动力和第一电动发电机单元300动力在模式转换装置402处耦合,应用于发动机的变速单元完全可以采用原有传统燃油车的变速器,不需要做任何更改,第一电动发电机单元300的动力输出完全依靠模式转换装置402的切换来实现。这样的动力传动***1000设计使得各个驱动模式控制相对独立,结构紧凑,易于实现。
本发明还公开了一种车辆,本发明实施例的车辆包括上述任一种实施例的动力传动***1000。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“前”、“后”、“左”、“右”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接或彼此可通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的, 不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (69)

  1. 一种车辆的动力传动***,其特征在于,包括:
    动力源;
    第一电动发电机单元;
    变速单元,所述变速单元适于选择性地与所述动力源动力耦合连接,所述变速单元包括变速单元输出部,所述变速单元输出部适于将来自所述动力源和所述第一电动发电机单元中的至少一个的动力输出;
    ***动力输出部;
    模式转换装置,其中所述变速单元输出部与所述***动力输出部通过所述模式转换装置动力耦合连接或断开,所述变速单元输出部与所述***动力输出部通过所述模式转换装置动力耦合连接,从而所述模式转换装置适于将从所述变速单元输出部接收到的动力降速后输出给所述***动力输出部。
  2. 根据权利要求1所述的车辆的动力传动***,其特征在于,所述变速单元输出部与所述***动力输出部通过所述模式转换装置断开时,所述动力源输出的动力适于通过所述变速单元输出部直接驱动所述第一电动发电机单元发电。
  3. 根据权利要求1所述的车辆的动力传动***,其特征在于,所述变速单元输出部与所述***动力输出部通过所述模式转换装置动力耦合连接时,所述模式转换装置还适于将从所述变速单元输出部接收到的动力原速输出给所述***动力输出部。
  4. 根据权利要求1所述的车辆的动力传动***,其特征在于,所述模式转换装置包括转换装置输入部和转换装置输出部,所述转换装置输入部与所述变速单元输出部动力耦合连接,所述转换装置输出部与所述***动力输出部的输入端相连,所述转换装置输入部和所述转换装置输出部选择性动力耦合连接。
  5. 根据权利要求4所述的车辆的动力传动***,其特征在于,所述转换装置输入部和所述转换装置输出部动力耦合连接时,所述转换装置输入部的转速高于或等于所述转换装置输出部的转速。
  6. 根据权利要求4所述的车辆的动力传动***,其特征在于,所述转换装置输入部和所述转换装置输出部断开时,所述动力源输出的动力适于通过所述变速单元输出部直接驱动所述第一电动发电机单元发电。
  7. 根据权利要求1所述的车辆的动力传动***,其特征在于,所述第一电动发电机单元包括第一电动发电机单元耦合部,所述第一电动发电机单元耦合部与所述模式转换装置动力耦合连接,所述第一电动发电机单元耦合部至少为所述变速单元输出部的一部分。
  8. 根据权利要求7所述的车辆的动力传动***,其特征在于,所述第一电动发电机单 元包括第一电动发电机和第一电动发电机单元耦合部,所述第一电动发电机单元耦合部与所述变速单元输出部为同一部件,所述变速单元输出部与所述模式转换装置动力耦合连接,从而使所述变速单元和所述第一电动发电机中的所述至少一个输出的动力通过所述变速单元输出部输出给所述模式转换装置。
  9. 根据权利要求7所述的车辆的动力传动***,其特征在于,所述第一电动发电机单元包括第一电动发电机和第一电动发电机单元耦合部,所述变速单元输出部包括多个动力输出部,所述第一电动发电机单元耦合部为其中一个所述动力输出部,每个所述动力输出部均与所述模式转换装置动力耦合连接。
  10. 根据权利要求4所述的车辆的动力传动***,其特征在于,所述模式转换装置还包括第一转换部和第二转换部,所述转换装置输出部选择性与所述第一转换部和第二转换部中的一个接合,所述转换装置输入部与所述第一转换部固定相连。
  11. 根据权利要求10所述的车辆的动力传动***,其特征在于,
    所述转换装置输出部适于接合第一转换部,以使所述转换装置输入部的转速与所述***动力输出部的输入端的转速相同;
    所述转换装置输出部适于接合第二转换部,以使所述转换装置输入部的转速降低后输出给所述***动力输出部。
  12. 根据权利要求11所述的车辆的动力传动***,其特征在于,所述模式转换装置包括:
    主减速器从动齿轮,所述主减速器从动齿轮为所述转换装置输入部;
    行星齿轮机构,所述行星齿轮机构包括第一元件、第二元件和第三元件,所述第一元件与所述主减速器从动齿轮固定,所述第二元件固定设置,所述第一元件为所述第一转换部,所述第三元件为所述第二转换部。
  13. 根据权利要求12所述的车辆的动力传动***,其特征在于,所述模式转换装置还包括:转换装置接合器,所述转换装置输出部通过所述转换装置接合器选择性接合所述第一元件和所述第三元件中的一个。
  14. 根据权利要求13所述的车辆的动力传动***,其特征在于,在所述行星齿轮机构的中心轴线的轴向上,所述转换装置接合器位于所述第一元件和所述第三元件之间。
  15. 根据权利要求14所述的车辆的动力传动***,其特征在于,所述转换装置输出部为轴套,所述轴套的一端与所述***动力输出部的输入端固定相连,所述转换装置接合器固定设置在所述轴套的另一端。
  16. 根据权利要求13所述的车辆的动力传动***,其特征在于,在所述行星齿轮机构的中心轴线的轴向上,所述转换装置接合器位于所述行星齿轮机构的一侧。
  17. 根据权利要求16所述的用于车辆的动力***,其特征在于,所述转换装置输出部为轴套,所述轴套的一端与所述***动力输出部的输入端固定,所述转换装置接合器设置在所述轴套的另一端,所述轴套位于所述行星齿轮机构的一侧。
  18. 根据权利要求17所述的用于车辆的动力***,其特征在于,所述转换装置输出部为轴套,所述轴套的一端与所述***动力输出部的输入端固定,所述转换装置接合器设置在所述轴套的另一端,所述轴套的另一端穿过所述行星齿轮机构。
  19. 根据权利要求13所述的用于车辆的动力***,其特征在于,所述转换装置接合器包括间隔开设置的第一接合部和第二接合部,所述第一接合部适于选择性接合所述转换装置输出部与所述第一元件,所述第二接合部适于选择性接合所述转换装置输出部与所述第三元件。
  20. 根据权利要求19所述的用于车辆的动力***,其特征在于,所述转换装置接合器包括直接挡同步器和低挡同步器,所述第一接合部为所述直接挡同步器的一部分,所述第二接合部为所述低挡同步器的一部分。
  21. 根据权利要求10所述的车辆的动力传动***,其特征在于,所述转换装置输出部适于接合所述第一转换部,以使所述转换装置输入部的转速与所述***动力输出部的输入端的转速相同;
    所述转换装置输出部适于接合所述第二转换部,以使所述转换装置输入部的转速依次通过所述第一转换部、所述第二转换部降低后输出给所述***动力输出部。
  22. 根据权利要求21所述的用于车辆的动力***,其特征在于,所述模式转换装置包括:
    主减速器从动齿轮,所述主减速器从动齿轮为所述转换装置输入部;
    第一转换齿轮和第二转换齿轮,所述主减速器从动齿轮、所述第一转换齿轮和所述第二转换齿轮均空套在所述车辆的半轴上;
    转换装置轴,所述转换装置轴上固定有第三转换齿轮和第四转换齿轮,所述第一转换齿轮与所述第三转换齿轮啮合,所述第二转换齿轮与所述第四转换齿轮啮合;
    所述第一转换齿轮为所述第一转换部,所述第二转换齿轮为所述第二转换部。
  23. 根据权利要求10所述的车辆的动力传动***,其特征在于,所述转换装置输出部适于与所述第一转换部和第二转换部均断开,从而使所述动力源适于通过所述变速单元直接驱动所述第一电动发电机单元发电。
  24. 根据权利要求11所述的车辆的动力***,其特征在于,所述转换装置输出部为轴套,所述轴套的一端与所述***动力输出部的输入端固定相连,所述第一转换部和所述第二转换部中的靠近所述***动力输出部的输入端的那个转换部、所述转换装置输入部均空套在 所述轴套上,所述轴套套设在所述车辆的半轴上,所述第一转换部和所述第二转换部中的远离所述***动力输出部的输入端的那个转换部空套在所述车辆的半轴上。
  25. 根据权利要求11所述的车辆的动力***,其特征在于,所述转换装置输出部为轴套,所述轴套的一端与所述***动力输出部的输入端固定相连,所述第一转换部和所述第二转换部均空套在所述轴套上,所述轴套套设在所述车辆的半轴上。
  26. 根据权利要求4所述的车辆的动力传动***,其特征在于,所述模式转换装置还包括第一转换部和第二转换部,所述转换装置输入部选择性与所述第一转换部和第二转换部中的一个接合,所述第一转换部和第二转换部均与所述转换装置输出部配合传动。
  27. 根据权利要求26所述的车辆的动力传动***,其特征在于,
    所述转换装置输入部适于接合第一转换部,以使所述转换装置输入部的转速与所述***动力输出部的输入端的转速相同;
    转换装置输入部适于接合第二转换部,以使所述转换装置输入部的转速降低后输出给所述***动力输出部。
  28. 根据权利要求27所述的车辆的动力***,其特征在于,
    所述模式转换装置包括:
    主减速器从动齿轮,所述主减速器从动齿轮为所述转换装置输入部;
    转换装置轴,所述主减速器从动齿轮固定设在所述转换装置轴上,所述转换装置轴上空套有直接挡主动齿轮和低挡主动齿轮,所述转换装置轴与所述车辆的半轴平行;
    所述直接挡主动齿轮为所述第一转换部,所述低挡主动齿轮为所述第二转换部;
    所述转换装置输出部包括直接挡从动齿轮和低挡从动齿轮,所述直接挡从动齿轮与所述直接挡主动齿轮啮合,所述低挡从动齿轮与所述低挡主动齿轮啮合,所述直接挡从动齿轮和所述低挡从动齿轮均与所述***动力输出部的输入端固定相连。
  29. 根据权利要求26所述的车辆的动力传动***,其特征在于,所述转换装置输入部适于与所述第一转换部和第二转换部均断开,从而使所述动力源适于通过所述变速单元直接驱动所述第一电动发电机单元发电。
  30. 根据权利要求12、22、28中任一项所述的车辆的动力传动***,其特征在于,所述变速单元输出部为主减速器主动齿轮,所述主减速器主动齿轮与所述主减速器从动齿轮啮合。
  31. 根据权利要求4所述的车辆的动力传动***,其特征在于,所述第一电动发电机单元包括第一电动发电机和第一电动发电机单元耦合部,所述第一电动发电机与所述第一电动发电机单元耦合部动力耦合连接,所述第一电动发电机单元耦合部与所述转换装置输入部动力耦合连接。
  32. 根据权利要求31所述的车辆的动力传动***,其特征在于,所述第一电动发电机单元还包括减速链,所述第一电动发电机通过所述减速链与所述第一电动发电机单元耦合部动力耦合连接,所述第一电动发电机单元耦合部与所述转换装置输入部动力耦合连接。
  33. 根据权利要求1所述的车辆的动力传动***,其特征在于,所述变速单元包括:
    变速动力输入部,所述变速动力输入部与所述动力源可选择性地接合,以传输所述动力源所产生的动力;
    变速动力输出部;
    其中所述变速动力输出部构造成适于将来自所述变速动力输入部上的动力通过变速单元同步器的同步而输出至所述变速单元输出部。
  34. 根据权利要求33所述的车辆的动力传动***,其特征在于,所述变速动力输入部包括至少一个输入轴,每个所述输入轴均与所述动力源可选择性地接合,每个所述输入轴上设置有至少一个主动齿轮;
    所述变速动力输出部包括:至少一个输出轴,每个所述输出轴上设置有至少一个从动齿轮,所述从动齿轮与对应的所述主动齿轮啮合,所述变速单元输出部为至少一个主减速器主动齿轮,所述至少一个主减速器主动齿轮一一对应地固定在所述至少一个输出轴上。
  35. 根据权利要求34所述的车辆的动力传动***,其特征在于,所述输入轴为多个且依次同轴嵌套设置,在所述动力源给所述输入轴传送动力时,所述动力源可选择性地与多个所述输入轴中的一个接合。
  36. 根据权利要求34所述的车辆的动力传动***,其特征在于,所述变速动力输出部还包括:倒挡输出轴,所述倒挡输出轴上空套有倒挡从动齿轮,且所述倒挡输出轴上固定设置有主减速器主动齿轮,所述主减速器主动齿轮与所述模式转换装置动力耦合连接,从而使来自所述倒挡从动齿轮和所述第一电动发电机单元中的所述至少一个的动力输出给所述模式转换装置;
    所述至少一个主动齿轮中的一个为倒挡主动齿轮,所述至少一个从动齿轮中的一个为惰轮,所述倒挡主动齿轮与所述惰轮配合传动,所述倒挡从动齿轮与所述惰轮配合传动。
  37. 根据权利要求36所述的车辆的动力传动***,其特征在于,所述惰轮为双联齿结构,所述双联齿结构包括第一轮齿和第二轮齿,所述第一轮齿与所述倒挡主动齿轮啮合,所述第二轮齿与所述倒挡从动齿轮啮合。
  38. 根据权利要求1所述的车辆的动力传动***,其特征在于,所述***动力输出部为差速器,且包括两个半轴齿轮,两个所述半轴齿轮与所述车辆的两个半轴一一对应;
    所述车辆的动力传动***还包括:动力通断装置,所述动力通断装置适于选择性地接合两个所述半轴齿轮中的至少一个与对应的所述车辆的半轴。
  39. 根据权利要求38所述的车辆的动力传动***,其特征在于,所述动力通断装置为离合器或同步器。
  40. 根据权利要求1所述的车辆的动力传动***,其特征在于,还包括第二电动发电机,所述第二电动发电机位于所述动力源与变速单元之间,所述第二电动发电机的一端直接与所述动力源动力耦合连接,且所述第二电动发电机的另一端选择性地与所述变速单元动力耦合连接。
  41. 根据权利要求1所述的车辆的动力传动***,其特征在于,还包括第二电动发电机,所述第二电动发电机位于所述动力源与变速单元之间,所述第二电动发电机的一端选择性地与所述动力源动力耦合连接,所述第二电动发电机的另一端选择性地与所述变速单元动力耦合连接。
  42. 根据权利要求1所述的车辆的动力传动***,其特征在于,所述***动力输出部适于将动力输出至所述车辆的两个车轮;
    所述的车辆的动力传动***还包括电驱动***,所述电驱动***用于驱动所述车辆的另外两个车轮。
  43. 根据权利要求42所述的车辆的动力传动***,其特征在于,所述电驱动***包括驱动***输入部和驱动***输出部,所述驱动***输出部适于将来自所述驱动***输入部的动力输出给所述另外两个车轮。
  44. 根据权利要求43所述的车辆的动力传动***,其特征在于,所述电驱动***还包括电驱动***动力输出部,所述驱动***输出部适于将来自所述驱动***输入部的动力通过所述电驱动***动力输出部输出给所述另外两个车轮。
  45. 根据权利要求43所述的车辆的动力传动***,其特征在于,所述驱动***输入部为驱动电动发电机,所述驱动***输出部为齿轮减速器。
  46. 根据权利要求45所述的车辆的动力传动***,其特征在于,所述驱动***输入部包括两个驱动电动发电机;所述驱动***输出部包括两个驱动***子输出部,每个所述驱动***子输出部适于将来自对应的所述驱动电动发电机的动力输出给所述另外两个车轮中对应的一个车轮。
  47. 根据权利要求46所述的车辆的动力传动***,其特征在于,所述另外两个车轮选择性同步或者所述两个驱动电动发电机选择性同步或者所述两个驱动***子输出部选择性同步。
  48. 根据权利要求42所述的车辆的动力传动***,其特征在于,所述电驱动***包括两个轮边电机,每个所述轮边电机直接驱动所述另外两个车轮中的对应一个车轮,所述另外两个车轮选择性同步。
  49. 根据权利要求1所述的车辆的动力传动***,其特征在于,所述车辆的动力传动***具有第一动力源驱动模式,所述车辆的动力传动***处于所述第一动力源驱动模式时,所述第一电动发电机单元不工作,所述变速单元与所述动力源动力耦合连接,所述模式转换装置动力耦合连接所述变速单元输出部与所述***动力输出部,所述动力源输出的动力依次通过所述变速单元输出部、所述模式转换装置输出给所述***动力输出部,且所述模式转换装置将从所述变速单元输出部接收到的动力原速输出给所述***动力输出部。
  50. 根据权利要求1所述的车辆的动力传动***,其特征在于,所述车辆的动力传动***具有第二动力源驱动模式,所述车辆的动力传动***处于所述第二动力源驱动模式时,所述第一电动发电机单元不工作,所述变速单元与所述动力源动力耦合连接,所述模式转换装置动力耦合连接所述变速单元输出部与所述***动力输出部,所述动力源输出的动力依次通过所述变速单元输出部、所述模式转换装置输出给所述***动力输出部的输入端,且所述模式转换装置将从所述变速单元输出部接收到的动力降速输出给所述***动力输出部。
  51. 根据权利要求1所述的车辆的动力传动***,其特征在于,所述车辆的动力传动***具有第一纯电动驱动模式,所述车辆的动力传动***处于所述第一纯电动驱动模式时,所述动力源不工作,所述模式转换装置动力耦合连接所述变速单元输出部与所述***动力输出部,所述第一电动发电机单元输出的动力依次通过所述变速单元输出部、所述模式转换装置输出给所述***动力输出部,且所述模式转换装置将从所述变速单元输出部接收到的动力原速输出给所述***动力输出部。
  52. 根据权利要求1所述的车辆的动力传动***,其特征在于,所述车辆的动力传动***具有第二纯电动驱动模式,所述车辆的动力传动***处于所述第二纯电动驱动模式时,所述动力源不工作,所述模式转换装置动力耦合连接所述变速单元输出部与所述***动力输出部,所述第一电动发电机单元输出的动力依次通过所述变速单元输出部、所述模式转换装置输出给所述***动力输出部的输入端,且所述模式转换装置将从所述变速单元输出部接收到的动力降速输出给所述***动力输出部。
  53. 根据权利要求1所述的车辆的动力传动***,其特征在于,所述车辆的动力传动***具有第一混动驱动模式,所述车辆的动力传动***处于第一混动驱动模式时,所述动力源和所述第一电动发电机单元均工作,所述变速单元与所述动力源动力耦合连接,所述模式转换装置动力耦合连接所述变速单元输出部与所述***动力输出部,所述动力源输出的动力依次通过所述变速单元输出部、所述模式转换装置输出给所述***动力输出部,所述第一电动发电机单元输出的动力依次通过所述变速单元输出部、所述模式转换装置输出给所述***动力输出部,所述动力源和所述第一电动发电机单元输出的动力耦合后输出给所述模式转换装置,且所述模式转换装置将从所述变速单元输出部接收到的动力原速输出给所述***动力输 出部。
  54. 根据权利要求1所述的车辆的动力传动***,其特征在于,所述车辆的动力传动***具有第二混动驱动模式,所述车辆的动力传动***处于第二混动驱动模式时,所述动力源和所述第一电动发电机单元均工作,所述变速单元与所述动力源动力耦合连接,所述模式转换装置动力耦合连接所述变速单元输出部与所述***动力输出部,所述动力源输出的动力依次通过所述变速单元输出部、所述模式转换装置输出给所述***动力输出部,所述第一电动发电机单元输出的动力依次通过所述变速单元输出部、所述模式转换装置输出给所述***动力输出部,所述动力源和所述第一电动发电机单元输出的动力耦合后输出给所述模式转换装置,且所述模式转换装置将从所述变速单元输出部接收到的动力降速输出给所述***动力输出部。
  55. 根据权利要求1所述的车辆的动力传动***,其特征在于,所述车辆的动力传动***具有第一行车发电模式,所述车辆的动力传动***处于所述第一行车发电模式时,所述动力源工作,所述变速单元与所述动力源动力耦合连接,所述模式转换装置动力耦合连接所述变速单元输出部与所述***动力输出部,所述动力源输出的一部分动力依次通过所述变速单元输出部、所述模式转换装置输出给所述***动力输出部,且所述模式转换装置将从所述变速单元输出部接收到的动力原速输出给所述***动力输出部,所述动力源输出的另一部分动力通过所述变速单元输出部输出给所述第一电动发电机单元,驱动所述第一电动发电机单元发电。
  56. 根据权利要求1所述的车辆的动力传动***,其特征在于,所述车辆的动力传动***具有第二行车发电模式,所述车辆的动力传动***处于所述第二行车发电模式时,所述动力源工作,所述变速单元与所述动力源动力耦合连接,所述模式转换装置动力耦合连接所述变速单元输出部与所述***动力输出部,所述动力源输出的一部分动力依次通过所述变速单元输出部、所述模式转换装置输出给所述***动力输出部,且所述模式转换装置将从所述变速单元输出部接收到的动力降速输出给所述***动力输出部,所述动力源输出的另一部分动力通过所述变速单元输出部输出给所述第一电动发电机单元,驱动所述第一电动发电机单元发电。
  57. 根据权利要求1所述的车辆的动力传动***,其特征在于,所述车辆的动力传动***具有第一制动能回收模式,所述车辆的动力传动***处于所述第一制动能回收模式时,所述模式转换装置动力耦合连接所述变速单元输出部与所述***动力输出部,来自所述车辆的车轮的动力依次通过所述***动力输出部、所述模式转换装置、所述变速单元输出部驱动所述第一电动发电机单元发电,且所述模式转换装置将从所述***动力输出部接收到的动力原速输出给所述变速单元输出部。
  58. 根据权利要求1所述的车辆的动力传动***,其特征在于,所述车辆的动力传动***具有第二制动能回收模式,所述车辆的动力传动***处于所述第二制动能回收模式时,所述模式转换装置动力耦合连接所述变速单元输出部与所述***动力输出部,来自所述车辆的车轮的动力依次通过所述***动力输出部、所述模式转换装置、所述变速单元输出部驱动所述第一电动发电机单元发电,且所述模式转换装置将从所述***动力输出部接收到的动力升速输出给所述变速单元输出部。
  59. 根据权利要求1所述的车辆的动力传动***,其特征在于,所述车辆的动力传动***具有反拖启动模式,所述车辆的动力传动***处于所述反拖启动模式时,所述第一电动发电机单元输出的动力通过所述变速单元输出部输出给所述动力源,带动所述动力源启动。
  60. 根据权利要求40或41所述的车辆的动力传动***,其特征在于,所述车辆的动力传动***具有第一驻车发电模式,所述车辆的动力传动***处于所述第一驻车发电模式时,所述第二电动发电机与所述动力源动力耦合连接,所述模式转换装置断开所述变速单元输出部与所述***动力输出部,所述动力源输出的动力直接驱动所述第二电动发电机发电。
  61. 根据权利要求40或41所述的车辆的动力传动***,其特征在于,所述车辆的动力传动***具有第二驻车发电模式,所述车辆的动力传动***处于所述第二驻车发电模式时,所述第二电动发电机与所述动力源动力耦合连接,所述第二电动发电机与所述变速单元动力耦合连接,所述模式转换装置断开所述变速单元输出部与所述***动力输出部,所述动力源输出的一部分动力直接驱动所述第二电动发电机发电,所述动力源输出的另一部分动力依次通过所述第二电动发电机、所述变速单元输出部、所述模式转换装置输出给第一电动发电机单元并驱动第一电动发电机单元发电。
  62. 根据权利要求40或41所述的车辆的动力传动***,其特征在于,所述车辆的动力传动***具有第三行车发电模式,所述车辆的动力传动***处于所述第三行车发电模式时,所述动力源工作,所述第二电动发电机与所述动力源动力耦合连接,所述第二电动发电机与所述变速单元动力耦合连接,所述模式转换装置动力耦合连接所述变速单元输出部与所述***动力输出部,所述动力源输出的一部分动力依次通过所述变速单元输出部、所述模式转换装置输出给所述***动力输出部,且所述模式转换装置将从所述变速单元输出部接收到的动力原速或降速输出给所述***动力输出部,所述动力源输出的另一部分动力直接驱动所述第二电动发电机发电。
  63. 根据权利要求40或41所述的车辆的动力传动***,其特征在于,所述车辆的动力传动***具有第四行车发电模式,所述车辆的动力传动***处于所述第四行车发电模式时,所述动力源工作,所述第二电动发电机与所述动力源动力耦合连接,所述第二电动发电机与所述变速单元动力耦合连接,所述模式转换装置动力耦合连接所述变速单元输出部与所述系 统动力输出部,所述动力源输出的第一部分动力依次通过所述变速单元输出部、所述模式转换装置输出给所述***动力输出部,且所述模式转换装置将从所述变速单元输出部接收到的动力原速或降速输出给所述***动力输出部,所述动力源输出的第二部分动力通过所述变速单元输出部输出给所述第一电动发电机单元,驱动所述第一电动发电机单元发电,所述动力源输出的第三部分动力直接驱动所述第二电动发电机发电。
  64. 根据权利要求40或41所述的车辆的动力传动***,其特征在于,所述车辆的动力传动***具有快速启动模式,所述车辆的动力传动***处于所述快速启动模式时,所述第二电动发电机与所述动力源动力耦合连接,所述第二电动发电机输出的动力直接驱动所述动力源启动。
  65. 根据权利要求41所述的车辆的动力传动***,其特征在于,所述车辆的动力传动***具有第三制动能回收模式,所述车辆的动力传动***处于所述第三制动能回收模式时,所述模式转换装置动力耦合连接所述变速单元输出部与所述***动力输出部,所述第二电动发电机与所述发动机断开,来自所述车辆的车轮的动力依次通过所述***动力输出部、所述模式转换装置、所述变速单元输出部驱动所述第二电动发电机发电,且所述模式转换装置将从所述***动力输出部接收到的动力原速输出给所述变速单元输出部。
  66. 根据权利要求41所述的车辆的动力传动***,其特征在于,所述车辆的动力传动***具有第四制动能回收模式,所述车辆的动力传动***处于所述第四制动能回收模式时,所述模式转换装置动力耦合连接所述变速单元输出部与所述***动力输出部,所述第二电动发电机与所述发动机断开,来自所述车辆的车轮的动力依次通过所述***动力输出部、所述模式转换装置、所述变速单元输出部驱动所述第二电动发电机发电,且所述模式转换装置将从所述***动力输出部接收到的动力升速输出给所述变速单元输出部。
  67. 一种车辆的动力传动***,其特征在于,包括:
    动力源;
    双离合器,所述双离合器具有输入端、第一输出端和第二输出端,所述动力源的输出端与所述双离合器的输入端相连;
    第一输入轴和第二输入轴,所述第一输入轴与所述第一输出端相连且所述第二输入轴与所述第二输出端相连,所述第二输入轴同轴地套设在所述第一输入轴上,所述第一输入轴和所述第二输入轴上分别固定设置有至少一个主动齿轮;
    第一输出轴和第二输出轴,所述第一输出轴上和所述第二输出轴上分别空套有至少一个从动齿轮,所述至少一个从动齿轮与所述至少一个主动齿轮对应地啮合,所述至少一个主动齿轮中的一个为倒挡主动齿轮,所述至少一个从动齿轮中的一个为惰轮,所述倒挡主动齿轮与所述惰轮配合传动;
    倒挡输出轴,所述倒挡输出轴上空套有倒挡从动齿轮,所述倒挡从动齿轮与所述惰轮配合传动,非所述惰轮的所述从动齿轮以及所述倒挡从动齿轮均选择性与对应的输出轴接合;
    第一电动发电机;
    三个主减速器主动齿轮,三个所述主减速器主动齿轮包括固定设置在所述第一输出轴上的第一输出齿轮、固定设置在所述第二输出轴上的第二输出齿轮、固定设置在所述倒挡输出轴上的电机输出齿轮,所述电机输出齿轮与所述第一电动发电机动力耦合连接;
    主减速器从动齿轮,所述主减速器从动齿轮与每个所述主减速器主动齿轮啮合;
    ***动力输出部,其中所述主减速器从动齿轮和所述***动力输出部的输入端选择性相连,从而所述主减速器从动齿轮接收到的动力适于原速或降速后输出给所述***动力输出部,所述***动力输出部适于将来自所述主减速器从动齿轮的动力输出给两个前轮;
    后轮电动发电机,所述后轮电动发电机通过减速机构驱动两个后轮。
  68. 一种车辆的动力传动***,其特征在于,包括:
    动力源;
    双离合器,所述双离合器具有输入端、第一输出端和第二输出端,所述动力源的输出端与所述双离合器的输入端相连;
    第一输入轴和第二输入轴,所述第一输入轴与所述第一输出端相连且所述第二输入轴与所述第二输出端相连,所述第二输入轴同轴地套设在所述第一输入轴上,所述第一输入轴和所述第二输入轴上分别固定设置有至少一个第一主动齿轮,且分别空套有至少一个第二主动齿轮,所述第二输入轴和所述第一输入轴中的一个上还固定设置有倒挡主动齿轮,所述至少一个第二主动齿轮选择性与对应的输入轴接合;
    动力输出轴,所述动力输出轴上空套有倒挡从动齿轮和至少一个第一从动齿轮,所述至少一个第一从动齿轮与所述至少一个第一主动齿轮对应地啮合,所述动力输出轴上固定设置有至少一个第二从动齿轮,所述至少一个第二从动齿轮与所述至少一个第二主动齿轮对应地啮合,所述倒挡从动齿轮和所述至少一个第一从动齿轮均选择性与所述动力输出轴接合;
    倒挡中间轴,所述倒挡中间轴上固定设置有惰轮,所述惰轮与所述倒挡主动齿轮啮合且与所述倒挡从动齿轮啮合;
    第一电动发电机,所述第一电动发电机与所述动力输出轴动力耦合连接;
    主减速器主动齿轮,所述主减速器主动齿轮固定设置在所述动力输出轴上;
    主减速器从动齿轮,所述主减速器从动齿轮与所述主减速器主动齿轮啮合;
    ***动力输出部,其中所述主减速器从动齿轮和所述***动力输出部的输入端选择性相连,从而所述主减速器从动齿轮接收到的动力适于原速或降速后输出给所述***动力输出部,所述***动力输出部适于将来自所述主减速器从动齿轮的动力输出给两个前轮;
    后轮电动发电机,所述后轮电动发电机通过减速机构驱动两个后轮。
  69. 一种车辆,其特征在于,包括根据权利要求1-68中任一项所述的车辆的动力传动***。
PCT/CN2017/108361 2016-10-31 2017-10-30 车辆的动力传动***和具有其的车辆 WO2018077268A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17864926.5A EP3533646A1 (en) 2016-10-31 2017-10-30 Vehicle power transmission system and vehicle provided with same
US16/346,523 US20190299992A1 (en) 2016-10-31 2017-10-30 Power transmission system and vehicle having same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610934252.0A CN108016275B (zh) 2016-10-31 2016-10-31 车辆的动力传动***和具有其的车辆
CN201610934252.0 2016-10-31

Publications (1)

Publication Number Publication Date
WO2018077268A1 true WO2018077268A1 (zh) 2018-05-03

Family

ID=62024372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/108361 WO2018077268A1 (zh) 2016-10-31 2017-10-30 车辆的动力传动***和具有其的车辆

Country Status (4)

Country Link
US (1) US20190299992A1 (zh)
EP (1) EP3533646A1 (zh)
CN (1) CN108016275B (zh)
WO (1) WO2018077268A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108001186B (zh) * 2016-10-31 2020-07-10 比亚迪股份有限公司 动力传动***以及具有其的车辆
KR102588935B1 (ko) * 2018-08-29 2023-10-16 현대자동차주식회사 차량의 파워트레인
CN113942384A (zh) * 2021-11-23 2022-01-18 一汽解放汽车有限公司 一种动力总成***及车辆

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2136512C1 (ru) * 1998-05-12 1999-09-10 Тюменский государственный нефтегазовый университет Главная передача
CN1910065A (zh) * 2004-01-23 2007-02-07 易通公司 包括平滑换挡自动变速器的混合动力***
CN2910658Y (zh) * 2006-05-12 2007-06-13 深圳市五洲龙汽车有限公司 一种并联混合动力电动车
CN102085795A (zh) * 2009-12-04 2011-06-08 上海汽车集团股份有限公司 一种车用离合器动力藕合同步器换档混合动力驱动***
CN102259583A (zh) * 2010-05-31 2011-11-30 比亚迪股份有限公司 混合动力驱动***及具有该***的车辆
CN204055300U (zh) * 2014-01-30 2014-12-31 比亚迪股份有限公司 用于车辆的动力传动***及具有其的车辆

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102463886B (zh) * 2010-11-04 2015-04-15 上海捷能汽车技术有限公司 混合动力传动***及其控制方法
DE102012202652A1 (de) * 2012-02-21 2013-08-22 Zf Friedrichshafen Ag Getriebe für ein Kraftfahrzeug
KR101491251B1 (ko) * 2013-05-22 2015-02-11 현대자동차주식회사 하이브리드 차량용 동력전달장치
CN105501047B (zh) * 2014-09-26 2018-06-26 比亚迪股份有限公司 混合动力汽车及其控制方法和动力传动***
CN104742730B (zh) * 2015-04-03 2017-05-31 重庆大学 一种增程式电动汽车多模耦合动力传动***

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2136512C1 (ru) * 1998-05-12 1999-09-10 Тюменский государственный нефтегазовый университет Главная передача
CN1910065A (zh) * 2004-01-23 2007-02-07 易通公司 包括平滑换挡自动变速器的混合动力***
CN2910658Y (zh) * 2006-05-12 2007-06-13 深圳市五洲龙汽车有限公司 一种并联混合动力电动车
CN102085795A (zh) * 2009-12-04 2011-06-08 上海汽车集团股份有限公司 一种车用离合器动力藕合同步器换档混合动力驱动***
CN102259583A (zh) * 2010-05-31 2011-11-30 比亚迪股份有限公司 混合动力驱动***及具有该***的车辆
CN204055300U (zh) * 2014-01-30 2014-12-31 比亚迪股份有限公司 用于车辆的动力传动***及具有其的车辆

Also Published As

Publication number Publication date
CN108016275B (zh) 2020-08-25
EP3533646A1 (en) 2019-09-04
US20190299992A1 (en) 2019-10-03
CN108016275A (zh) 2018-05-11

Similar Documents

Publication Publication Date Title
WO2018077265A1 (zh) 动力传动***以及具有其的车辆
WO2018077267A1 (zh) 动力传动***以及具有其的车辆
WO2018077269A1 (zh) 动力传动***以及具有其的车辆
WO2018077268A1 (zh) 车辆的动力传动***和具有其的车辆
WO2018077264A1 (zh) 动力传动***以及具有其的车辆
WO2018077273A1 (zh) 动力传动***以及具有其的车辆
CN108001198B (zh) 车辆的动力传动***和具有其的车辆
CN108001203B (zh) 车辆的动力传动***和具有其的车辆
CN108001197B (zh) 车辆的动力传动***和具有其的车辆
CN108001191B (zh) 车辆的动力传动***和具有其的车辆
CN108001201B (zh) 车辆的动力传动***和具有其的车辆
WO2018077272A1 (zh) 动力传动***以及具有其的车辆
WO2018077270A1 (zh) 动力传动***以及具有其的车辆
CN108001196B (zh) 车辆的动力传动***和具有其的车辆
WO2018077271A1 (zh) 动力传动***以及具有其的车辆
CN108001192B (zh) 动力传动***以及具有其的车辆
CN108001184B (zh) 动力传动***以及具有其的车辆
WO2018077274A1 (zh) 动力传动***以及具有其的车辆
CN108001190B (zh) 动力传动***以及具有其的车辆
WO2018077247A1 (zh) 动力传动***以及具有其的车辆
WO2018077248A1 (zh) 动力传动***以及具有其的车辆
CN108001185B (zh) 车辆的动力传动***和具有其的车辆
CN108016274B (zh) 车辆的动力传动***和具有其的车辆
CN108016284B (zh) 车辆的动力传动***和具有其的车辆
CN108001202B (zh) 车辆的动力传动***和具有其的车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17864926

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017864926

Country of ref document: EP

Effective date: 20190531