WO2018077272A1 - 动力传动***以及具有其的车辆 - Google Patents

动力传动***以及具有其的车辆 Download PDF

Info

Publication number
WO2018077272A1
WO2018077272A1 PCT/CN2017/108365 CN2017108365W WO2018077272A1 WO 2018077272 A1 WO2018077272 A1 WO 2018077272A1 CN 2017108365 W CN2017108365 W CN 2017108365W WO 2018077272 A1 WO2018077272 A1 WO 2018077272A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
output
conversion device
unit
input
Prior art date
Application number
PCT/CN2017/108365
Other languages
English (en)
French (fr)
Inventor
翟震
徐友彬
黄威
凌和平
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2018077272A1 publication Critical patent/WO2018077272A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to the field of vehicle technology, and in particular, to a power transmission system of a vehicle and a vehicle having the power transmission system.
  • Hybrid vehicles as one of the new energy vehicles, are driven by engines and/or motors and have multiple modes to improve transmission efficiency and fuel economy.
  • some hybrid vehicles have fewer driving modes and lower drive transmission efficiency, which cannot meet the requirements of the vehicle to adapt to various road conditions, especially when the hybrid vehicle is fed (when the battery power is insufficient).
  • the vehicle's power and passing ability are insufficient.
  • it is necessary to additionally increase the transmission mechanism the integration degree is low, and the power generation efficiency is low.
  • the present invention aims to solve at least one of the technical problems in the related art to some extent.
  • the present invention proposes a power transmission system for a vehicle that has a plurality of driving modes and can effectively adjust the power output to the wheels, thereby enabling the vehicle to adapt to various road conditions.
  • the invention further proposes a vehicle.
  • a power transmission system for a vehicle includes: a power source; a first motor generator unit; a system power output portion; a mode switching device, the mode conversion device including a conversion device input portion, a first conversion portion, and a second conversion And a conversion device output portion, the conversion device output portion being coupled to an input of the system power output portion, the conversion device input portion being adapted to be from the power source and the first motor generator unit At least one power output, the conversion device input portion is fixedly coupled to the first conversion portion, and the conversion device output portion is selectively engaged with the first conversion portion or the second conversion portion, the conversion device output portion Engaging with the second conversion portion is adapted to reduce the rotational speed output by the conversion device input portion and output to the input end of the system power output portion.
  • the driving mode of the vehicle can be enriched, and the economy and power of the vehicle can be improved, and the vehicle can be adapted to different Road conditions, as well as the ability to significantly improve the vehicle's passability and escape, can enhance the driver's driving experience.
  • the mode switching device not only the rotation speed and torque of the output portion of the conversion device but also the function of parking power generation can be realized. It not only ensures the power transmission directly when the first motor generator is driven and feedback, but also has high transmission efficiency and ensures the simple and reliable switching of the parking power generation mode.
  • the shifting unit applied to the engine can completely adopt the transmission of the original conventional fuel car, without any modification, the power output of the first motor generator It is completely realized by switching of the mode conversion device.
  • Such a powertrain design allows for relatively independent control of each drive mode, is compact, and is easy to implement.
  • a vehicle according to the present invention includes the power transmission system of the above-described vehicle.
  • FIG. 1 to 6 are schematic views of a power transmission system of a vehicle according to an embodiment of the present invention.
  • FIG. 7 to 20 are schematic structural views of a power transmission system of a vehicle according to an embodiment of the present invention.
  • 21 to 26 are schematic views of a mode switching device, a system power output portion, and a power switching device;
  • 27 to 32 are schematic views of an electric drive system
  • 33-64 are schematic structural views of a power transmission system of a vehicle according to an embodiment of the present invention.
  • the vehicle On a hybrid vehicle, the vehicle may be arranged with a plurality of systems, such as a powertrain 1000, which may be used to drive the front or rear wheels of the vehicle, with the powertrain 1000 driving the front wheels of the vehicle below as an example.
  • a powertrain 1000 can also be used in conjunction with other drive systems to drive the rear wheel rotation of the vehicle such that the vehicle is a four-wheel drive vehicle and the other systems can be an electric drive system 700.
  • a power transmission system 1000 according to an embodiment of the present invention will be described in detail below with reference to the accompanying drawings.
  • the powertrain 1000 can include a power source 100, a shifting unit 200, a first motor generator unit 300, a system power output assembly 400, and a system power output assembly 400 including system power.
  • the output portion 401 and the mode switching device 402 of course, the powertrain system 1000 may also include other mechanical components, such as the second motor generator 600, the first clutch device 202, the second clutch device L2, and the like.
  • the system power output portion 401 can be a differential.
  • the power source 100 may be an engine, and the shifting unit 200 is adapted to be selectively coupled to the power source 100. As shown in FIGS. 1-6, the power source 100 and the shifting unit 200 may be axially connected, wherein the power source 100 and the shifting speed A first clutch device 202 may be disposed between the units 200, and the first clutch device 202 may control an engaged or disconnected state between the power source 100 and the shifting unit 200.
  • the shifting unit 200 may be a transmission.
  • the present invention is not limited thereto, and the shifting unit 200 may also be another shifting mechanism such as a gear reduction transmission mechanism.
  • the transmission unit 200 will be described as an example of a transmission.
  • the shifting unit 200 can have various arrangements, and the input shaft, the output shaft, and the gear change can form a new shifting unit 200.
  • the shifting unit 200 in the powertrain system 1000 shown in FIG. 7 is taken as an example. Detailed description.
  • the shifting unit 200 may include a shifting power input portion, a shifting power output portion, and a shifting unit output portion 201.
  • the shifting power input portion and the power source 100 are selectively engageable to transmit the power source 100.
  • the first clutch device 202 can include an input end and an output end. The input end is connected to the power source 100, and the output end is connected to the variable speed power input portion. When the input end and the output end are engaged, the power source 100 and the variable speed power input portion are engaged to transmit. power.
  • the shifting power output portion is configured to output power to the shifting unit output portion 201, the shifting unit output portion 201, and the switching device input portion of the mode switching device 402 by synchronizing the power from the shifting power input portion through the shifting unit synchronizer. 4020 power coupling connection.
  • the shifting power input portion may include at least one input shaft, each of which is selectively engageable with the power source 100, and each of the input shafts is provided with at least one driving gear.
  • the variable speed power output portion includes: at least one output shaft, each output shaft is provided with at least one driven gear, the driven gear meshes with a corresponding driving gear, and the shifting unit output portion 201 is at least one final drive main gear Z, at least A main reducer drive gear Z is fixed to the at least one output shaft one by one. That is, the shifting unit output portion 201 may be an output gear on the output shaft, which may be fixed to a corresponding output shaft, and the output gear meshes with the final drive driven gear for power transmission.
  • the input shaft may be plural, and the plurality of input shafts are sequentially coaxially arranged, and the power source 100 may selectively engage with one of the plurality of input shafts when the power source 100 transmits power to the input shaft.
  • the shifting unit 200 can be compactly arranged, the axial length is small, and the radial size is small, so that the structural compactness of the shifting unit 200 can be improved.
  • the shifting unit 200 may be a six-speed shifting unit, and the shifting power input portion may include a first input shaft I and a second input shaft II, and the second input shaft II is sleeved on the first input shaft I.
  • the first clutch device 202 can be a dual clutch having an input end, a first output end, and a second output end, the input end selectively engaging at least one of the first output end and the second output end. That is, the input can engage the first output, or the input can engage the second output, or the input can simultaneously engage the first output and the second output.
  • the first output is connected to the first input shaft I
  • the second output is connected to the second input shaft II.
  • the first input shaft I and the second input shaft II are respectively fixedly provided with at least one driving gear.
  • the first input shaft I is provided with a driving gear 1Ra, a third gear driving gear 3a and a fifth gear.
  • the driving gear 5a is provided with a second-speed driving gear 2a and a four-six-speed driving gear 46a on the second input shaft II.
  • the second input shaft II is set in the first input Into the shaft I, this can effectively shorten the axial length of the powertrain 1000, thereby reducing the space occupied by the powertrain 1000.
  • the above-mentioned four-six-speed driving gear 46a means that the gear can be used as both the fourth-speed driving gear and the sixth-speed driving gear, so that the axial length of the second input shaft II can be shortened, thereby further reducing the power transmission system. 1000 volume.
  • the arrangement order of the plurality of gears is the second gear drive gear 2a, the four-six-speed drive gear 46a, the third gear drive gear 3a, the first gear drive gear 1Ra and the fifth gear active.
  • Gear 5a By properly arranging the positions of the plurality of gear driving gears, the positions of the plurality of gear driven gears and the plurality of output shafts can be arranged reasonably, so that the power transmission system 1000 can be simple in structure and small in size.
  • the output shaft includes: a first output shaft III and a second output shaft IV.
  • the first output shaft III and the second output shaft IV are respectively sleeved with at least one driven gear, and the first output shaft III is sleeved with a driven driven gear. 1b, the second gear driven gear 2b, the third gear driven gear 3b and the fourth gear driven gear 4b, and the second output shaft IV is provided with a fifth gear driven gear 5b and a sixth gear driven gear 6b.
  • the first gear drive gear 1Ra meshes with the first gear driven gear 1b
  • the second gear drive gear 2a meshes with the second gear driven gear 2b
  • the third gear drive gear 3a meshes with the third gear driven gear 3b
  • the fourth and sixth gear drive gears 46a and The fourth-speed driven gear 4b is engaged
  • the fifth-speed drive gear 5a is meshed with the fifth-speed driven gear 5b
  • the four-six-speed drive gear 46a is meshed with the sixth-speed driven gear 6b.
  • a three-speed synchronizer S13 is disposed between the first-speed driven gear 1b and the third-speed driven gear 3b, and a three-speed synchronizer S13 can be used to synchronize the first-speed driven gear 1b and the first output shaft III, and can be used The synchronous third gear driven gear 3b and the first output shaft III are synchronized.
  • a second-fourth synchronizer S24 is disposed between the second-speed driven gear 2b and the fourth-speed driven gear 4b, and the second-fourth synchronizer S24 can be used to synchronize the second-speed driven gear 2b and the first output shaft III, and can be used The fourth gear driven gear 4b and the first output shaft III are synchronized.
  • a five-speed synchronizer S5 is provided on one side of the fifth-speed driven gear 5b, and the fifth-speed synchronizer S5 can be used to synchronize the fifth-speed driven gear 5b and the second output shaft IV.
  • a six-speed synchronizer S6R is provided on one side of the sixth-speed driven gear 6b, and a six-speed synchronizer S6R can be used to synchronize the sixth-speed driven gear 6b and the second output shaft IV.
  • One of the plurality of output shafts is provided with a reverse driven gear Rb, and a corresponding one of the output shafts is further provided with a reverse synchronizer for engaging the reverse driven gear Rb. That is, one of the first output shaft III and the second output shaft IV is provided with a reverse driven gear Rb. As shown in FIG. 7, the second output shaft IV is provided with a reverse driven gear Rb. A reverse synchronizer on the second output shaft IV can be used to synchronize the reverse driven gear Rb and the second output shaft IV.
  • the power transmission system 1000 may further include: a reverse intermediate shaft V, and the reverse reverse intermediate gear V is fixedly disposed with a first reverse intermediate gear Rm1 and a second reverse intermediate gear Rm2, first The reverse intermediate gear Rm1 is meshed with one of the gear driving gears (ie, the driving gear), and the second reverse intermediate gear Rm2 is meshed with the reverse driven gear Rb.
  • One of the above-mentioned gear driving gears may be a first gear driving gear 1Ra, and transmitted to the first gear driving gear 1Ra.
  • the reverse synchronizer transmits power to the second output shaft IV, and the second output shaft IV can transmit power to the final drive driven gear Z' through the second output shaft IV output gear, and the final drive driven gear Z' can Power is transmitted to the wheels on both sides through the system power output 401 to drive the vehicle motion. That is, the first output gear and the second output gear may be main reducer drive gears Z, respectively, and the final drive drive gear Z meshes with the final drive driven gear Z'.
  • the reverse driven gear Rb Since the reverse driven gear Rb is sleeved on the second output shaft IV, the reverse driven gear Rb can share the reverse synchronizer with another adjacent gear driven gear. This saves the number of synchronizers arranged on the second output shaft IV, so that the axial length of the second output shaft IV can be shortened and the cost of the powertrain 1000 can be reduced.
  • the other gear driven gear may be a sixth gear driven gear 6b, in other words, the reverse gear synchronizer may constitute a six-speed synchronizer S6R.
  • the reverse synchronizer can be disposed between the sixth-speed driven gear 6b and the reverse driven gear Rb.
  • shifting unit 200 is not limited thereto, and the arrangement of the other shifting unit 200 will be described in detail below with reference to FIGS. 33 to 35.
  • the shifting unit 200 may be a six-speed shifting unit, and the shifting power input portion may include a first input shaft I and a second input shaft II, and the second input shaft II is sleeved on the first input shaft.
  • the first clutch device 202 can be a dual clutch having an input end, a first output end K1 and a second output end k2, the input end selectively engaging at least one of the first output end and the second output end One. That is, the input can engage the first output, or the input can engage the second output, or the input can simultaneously engage the first output and the second output.
  • the first output is connected to the first input shaft I
  • the second output is connected to the second input shaft II.
  • At least one first driving gear is fixed to the first input shaft I and the second input shaft II, respectively, and the first input shaft I and the second input shaft II are respectively sleeved with at least one second driving gear.
  • the first input shaft I is fixedly provided with a driving gear 1Ra and a third gear driving gear 3a.
  • the first input shaft I is provided with a five-speed driving gear 5a and a second input shaft II.
  • the second gear drive gear 2a is fixedly disposed, and the second input shaft II is provided with a fourth gear drive gear 4a and a sixth gear drive gear 6a, wherein the fourth gear drive gear 4a and the sixth gear drive gear 6a may be provided with four or six.
  • Block synchronizer S6R Block synchronizer S6R.
  • the second input shaft II is sleeved on the first input shaft I, so that the axial length of the power transmission system 1000 can be effectively shortened, thereby reducing the space occupied by the power transmission system 1000.
  • the output shaft is one, that is, the power output shaft, and the power output shaft is sleeved with the reverse driven gear Rb and the at least one first driven gear, and the at least one first driven gear is correspondingly engaged with the at least one first driving gear, and the power is At least one second driven gear is fixedly disposed on the output shaft, and at least one second driven gear is correspondingly engaged with the at least one second driving gear, and the reverse driven gear Rb and the at least one first driven gear are selectively coupled Power take-off shaft engagement.
  • the first output shaft III' is fixedly provided with a fourth-speed driven gear 4b, a fifth-speed driven gear 5b, and a sixth-speed driven gear 6b, and And the first output shaft III' is further provided with a driven driven gear 1b, a second driven driven gear 2b, a third driven driven gear 3b and a reverse driven gear Rb, and the first driven driven gear 1b and the third gear are driven.
  • a three-speed synchronizer S13 is disposed between the gears 3b, and a two-reverse synchronizer S2R is disposed between the second-speed driven gear 2b and the reverse driven gear Rb.
  • the reverse input driving gear Ra is fixedly disposed on the second input shaft II
  • the reverse output driven gear Rb is disposed on the first output shaft III'
  • the reverse driven gear Ra and the reverse driven gear Rb are disposed between
  • the idler IG the idler IG is meshed between the reverse drive gear Ra and the reverse driven gear Rb
  • the idler IG is fixed on the reverse intermediate shaft V.
  • the idler IG can ensure the reverse drive gear Ra and reverse gear from The moving gear Rb is interlocked in the same direction.
  • the output gear on the power take-off shaft can be the main reducer drive gear Z, and the final drive drive gear Z meshes with the final drive driven gear Z'.
  • the mode conversion device 402 includes a conversion device input portion 4020 and a conversion device output portion 4022, and the conversion device input portion 4020 is adapted to output power from at least one of the power source 100 and the first motor generator unit 300, and the conversion device output portion 4022 Connected to the input of the system power output 401, the conversion device input 4020 and the conversion device output 4022 are selectively power coupled.
  • the conversion device input portion 4020 can be the main reducer driven gear Z', and the shifting unit output portion 201 of the above-described shifting unit 200 can be driven by the main reducer drive gear Z, the final drive main gear Z and the final drive The gear Z' is engaged.
  • the power source 100 can transmit power to the conversion device input portion 4020 of the mode conversion device 402 through the shifting unit 200, and when the conversion device input portion 4020 and the conversion device output portion 4022 are engaged, the power source 100 transmits power to the system power output.
  • the portion 401 rotates to drive the front wheel of the vehicle.
  • first motor generator unit 300 can also be driven with the conversion device input portion 4020, for example, the first motor generator unit 300 is interlocked with the conversion device input portion 4020.
  • Coupled can be understood as a plurality of components (for example, two) associated motions. Taking two components as an example, when one of the components moves, the other component also moves.
  • the linkage of the gear to the shaft may be understood to mean that the shaft that is interlocked with the gear as it rotates will also rotate, or that the gear that is associated therewith will also rotate as the shaft rotates.
  • the linkage between the shaft and the shaft can be understood as the other shaft that is linked to and rotates when one of the shafts rotates.
  • linkage of a gear and a gear can be understood as the fact that the other gear that is interlocked with one of the gears will also rotate when it rotates.
  • the first motor generator unit 300 may include a first motor generator 302 and a first motor generator unit coupling portion 301, and a first motor generator 302 and a first motor generator unit coupling portion.
  • the 301 power coupling connection, the first motor generator unit coupling portion 301 may be the main reducer drive gear Z, and the first motor generator unit coupling portion 301 is coupled to the conversion device input portion 4020.
  • the main reducer drive gear Z can be A plurality of the shifting unit output portion 201 of the shifting unit 200 and the first motor-generator unit coupling portion 301 of the first motor-generator unit 300 may be the main reducer driving gear Z.
  • the first motor generator unit 300 may further include a speed reduction chain 303, and the first motor generator 302 is dynamically coupled to the first motor generator unit coupling portion 301 through the speed reduction chain 303.
  • the first motor generator unit coupling unit 301 is coupled to the conversion device input unit 4020 in a power coupling manner. That is, when the first motor generator 302 is used as a motor, the power generated by the first motor generator 302 can be transmitted to the converter input of the mode switching device 402 via the deceleration chain 303 and the first motor generator unit coupling unit 301. Department 4020.
  • the deceleration chain 303 can function as a deceleration and torque increase.
  • the deceleration chain 303 may include two gears, the gear one Z1 may be fixed on the motor output shaft of the first motor generator 302, the gear two Z2 meshes between the gear one and the final drive driven gear Z', and the gear two Z2 Both the diameter and the number of teeth are larger than the diameter and the number of teeth of the gear one Z1.
  • the first motor-generator unit 300 may not be disposed with the deceleration chain 303. As shown in FIG. 36, the first motor-generator 302 directly meshes with the final-driver driven gear Z' through the first motor-generator unit coupling portion 301. .
  • the rotation speed of the conversion device input unit 4020 is higher than or equal to the rotation speed of the conversion device output unit 4022. That is to say, when the power transmission is performed between the conversion device input portion 4020 and the conversion device output portion 4022, there are two transmission modes, one is a direct transmission mode, that is, the rotation speed of the conversion device input portion 4020 is equal to that of the conversion device output portion 4022.
  • the rotation speed is another speed reduction transmission mode, that is, the rotation speed of the conversion device input portion 4020 is higher than the rotation speed of the conversion device output portion 4022, so that the mode conversion device 402 increases the gear position of the whole vehicle, and can enlarge the maximum output torque of the whole vehicle.
  • the hybrid vehicle using the mode conversion device 402 of the present invention can effectively improve the power and the passing ability.
  • these two transmission modes can obviously enrich the driving mode of the vehicle, so that the vehicle can be adapted to more different working conditions.
  • the above N is equal to the speed ratio of the L gear to the D gear, and when the vehicle is in the L gear, the conversion device input portion 4020 and the conversion device output portion 4022 are powered by the direct transmission mode, and the conversion device input portion 4020
  • the rotation speed is higher than the rotation speed of the conversion device output portion 4022; when the vehicle is in the D range, the conversion device input portion 4020 and the conversion device output portion 4022 are powered by the deceleration transmission mode, and the rotation speed of the conversion device input portion 4020 is equal to the conversion device.
  • the rotational speed of the output unit 4022 is equal to the speed ratio of the L gear to the D gear
  • the mode switching device 402 can facilitate the intervention of the first motor generator unit 300 when the power source 100 is in operation, and the parallel power source 100 and the first motor generator unit 300 can be better through direct torque coupling.
  • the ground-exposed parallel structure has the advantages of strong dynamics, simple structure and easy realization of the vehicle space layout.
  • the first motor generator unit 300 has a high transmission efficiency, and the mode switching device 402
  • the arrangement is such that the shifting unit 200, the wheel and the first motor generator 302 are separated such that any two of the three can work around the third party.
  • the shifting unit 200 is powered by the mode switching device 402 and the wheel.
  • the power transmission between the mode switching device 402 and the wheel is at this time a pure electric working condition.
  • this can also avoid the problem of requiring a pure electric operating condition in a complex hybrid transmission system that requires complicated shifting and transmission chains in the shifting, and is particularly suitable for use in a plug-in hybrid vehicle.
  • the three can work at the same time.
  • the mode switching device 402 is also capable of achieving an ultra low gear output of the powertrain system 1000, i.e., in an embodiment having the shifting unit 200, the power from the power source 100 is first decelerated by the shifting unit 200, and then passed through the L gear. At the speed, the ultra-low speed gear output of the powertrain 1000 can be realized. This greatly enlarges the torque output of the engine.
  • the power transmission system 1000 proposed by the present invention does not change the basic structure of the dual clutch shifting and the shifting logic.
  • the intervention of the first motor generator unit 300 is only represented by the superposition of the torque at the output end, so the power source 100 and the shifting speed
  • the control logic of the unit 200 is independent of the control logic of the first motor generator unit 300, and the power output of the engine and the power output of the first motor generator 302 are relatively independent, and the power output control logic of each power source is simple and easy to implement, and thus It is beneficial to save the development time and cost of the manufacturer and avoid the high failure rate of the system. Even if the engine and the shifting unit 200 system failure, the power output of the first motor generator unit 300 when the electric motor is pure will not be affected.
  • the power output from the power source 100 is adapted to sequentially drive the first motor generator unit 300 to generate power through the shifting unit 200 and the switching device input unit 4020. That is to say, when the vehicle is in the parking condition, the power of the power source 100 can be transmitted to the first motor-generator unit 300 for the first motor-generator unit 300 to generate electricity, thereby enabling parking power generation, thus parking power generation. There is no need to add an additional power transmission chain, and the switching mode of the parking mode can be realized only by the mode switching device 402, the switching control is simple, and the transmission efficiency is high.
  • the first motor generator 302 is disposed as a direct mode switching device 402. The power output of the first motor generator 302 is directly high efficiency, and the braking energy feedback efficiency is high.
  • the shifting unit 200 only needs to realize the shifting torque for the engine power, so that the shifting unit 200 does not require additional design changes, which contributes to miniaturization of the shifting unit 200, and can reduce the development cost of the entire vehicle and shorten the development cycle.
  • the mode switching device 402 so the powertrain 1000 has a high degree of integration.
  • the system power output portion 401 may be a differential, and the differential may include two side gears, and the two side gears correspond to the two half shafts 2000 of the vehicle.
  • the powertrain 1000 further includes a power switching device 500 adapted to selectively engage at least one of the two side gears with a corresponding vehicle Half shaft 2000. It can be understood that if the power on/off device 500 is disposed between the half shaft 2000 on one side and the corresponding side gear, the power switching device 500 can control the joint between the half shaft 2000 and the side gear of the side.
  • each of the power switching devices 500 can control the engagement disconnection state of the corresponding side.
  • the power switching device 500 can facilitate the parking power generation of the vehicle during the parking condition, so that when the vehicle is in the parking condition, the first motor generator 302 is directly connected to the mode switching device 402, and the first motor generator 302 is powered.
  • the output is directly efficient and the braking energy feedback efficiency is high.
  • the power switching device 500 is disposed between the left half shaft 2000 and the corresponding side gear. As shown in FIG. 22, the power switching device 500 may be two, and one power switching device 500 It may be disposed between the half shaft 2000 on the left side and the corresponding side shaft gear, and the other power switching device 500 may be disposed between the right side shaft 2000 and the corresponding side shaft gear.
  • the power switching devices 500 may be clutches.
  • the clutch can be a jaw clutch.
  • the power switching device 500 can also be of other types.
  • the power switching device 500 can be a synchronizer.
  • the powertrain system 1000 may further include a second motor generator 600, and the second motor generator 600 is located between the power source 100 and the shifting unit 200, One end of the second motor generator 600 is directly coupled to the power source 100, and the other end of the second motor generator 600 is selectively coupled to the shifting unit 200.
  • the second motor generator 600 and the input end of the first clutch device 202 can be coaxially connected.
  • the second motor generator 600 may be disposed between the input end of the first clutch device 202 and the engine, such that the power of the engine must pass through the second motor generator 600 when transmitting to the input end, and the second motor generator 600 may Used as a generator for parking power generation.
  • the input end of the first clutch device 202 may be provided with an input external tooth Z602, and the second motor generator 600 is coupled with the input external tooth Z602.
  • the motor shaft of the second motor generator 600 is provided with a gear Z601, and the gear Z601 is meshed with the input outer teeth Z602.
  • the power of the engine can be transmitted to the second motor generator 600 through the input and input external teeth Z602, such that the second motor generator 600 can be used as a generator for parking power generation.
  • the powertrain system 1000 may further include: a second motor generator 600 located between the power source 100 and the shifting unit 200 One end of the second motor generator 600 is dynamically coupled to the power source 100. For example, one end of the second motor generator 600 is selectively coupled to the power source 100, and the other end of the second motor generator 600 is selectively It is coupled to the shifting unit 200 in a power coupling manner.
  • a second clutch device L2 may be disposed between the second motor generator 600 and the engine.
  • Second departure The coupling device L2 can be a single clutch that can control the engagement disconnection between the engine and the second motor generator 600, and can control the engagement between the engine and the input of the first clutch device 202.
  • the parking power generation state of the second motor generator 600 can be reasonably controlled, so that the power transmission system 1000 can be simple in structure and reliable in drive mode conversion.
  • the second clutch device L2 is built inside the rotor of the second motor generator 600. This can better shorten the axial length of the powertrain 1000, thereby reducing the volume of the powertrain 1000 and improving the flexibility of the powertrain 1000 on the vehicle.
  • the second motor generator 600 can also be used as a starter.
  • the input ends of the power source 100, the second clutch device L2, and the dual clutch are coaxially arranged. This makes the powertrain 1000 compact and compact.
  • the second motor generator 600 may be located between the power source 100 and the first clutch device 202 in the axial direction, which can effectively reduce the power transmission.
  • the axial length of the system 1000, and the position of the second motor generator 600 can be properly arranged, and the structural compactness of the powertrain 1000 can be improved.
  • the first motor generator 302 is the main drive motor of the powertrain 1000, so the capacity and volume of the first motor generator 302 are large. Wherein, for the first motor generator 302 and the second motor generator 600, the rated power of the first motor generator 302 is greater than the rated power of the second motor generator 600.
  • the second motor generator 600 can select a motor generator having a small volume and a small rated power, so that the power transmission system 1000 can be simple in structure and small in size, and in the parking power generation, the second motor generator 600 and the power source 100
  • the transmission path is short and the power generation efficiency is high, so that a part of the power of the power source 100 can be effectively converted into electric energy.
  • the peak power of the first motor generator 302 is also greater than the peak power of the second motor generator 600.
  • the rated power of the first motor generator 302 is twice or more than the rated power of the second motor generator 600.
  • the peak power of the first motor generator 302 is twice or more than the peak power of the second motor generator 600.
  • the rated power of the first motor generator 302 may be 60 kW
  • the rated power of the second motor generator 600 may be 24 kW
  • the peak power of the first motor generator 302 may be 120 kW
  • the differential may be a conventional open differential, for example, a bevel gear differential or a spur gear differential, but is not limited thereto; of course, the differential may also be a lock differential.
  • the differential may also be a lock differential.
  • mechanical lock differentials, electronic lock differentials, etc. the powertrain 1000 selects different differential types according to different models. The choices are mainly based on the cost of the entire vehicle, the weight of the whole vehicle, and the whole Off-road performance and so on.
  • the differential includes a housing 4011 that can be the input of the differential.
  • the powertrain 1000 shown in FIG. 1 will be described in detail below as an example.
  • the powertrain 1000 of the vehicle has a first power source driving mode.
  • the first motor generator unit 300 does not operate, and the shifting unit 200 is dynamically coupled to the power source 100.
  • the conversion device input unit 4020 and the conversion device output unit 4022 are dynamically coupled, and the power output from the power source 100 is sequentially output to the system power output unit 401 through the transmission unit 200, the conversion device input unit 4020, and the conversion device output unit 4022, and the conversion device inputs
  • the rotational speed of the portion 4020 is the same as the rotational speed of the input end of the system power output portion 401. This is the normal drive of the vehicle.
  • the powertrain 1000 of the vehicle has a second power source driving mode.
  • the first motor generator unit 300 does not operate, and the shifting unit 200 is dynamically coupled to the power source 100.
  • the conversion device input unit 4020 and the conversion device output unit 4022 are dynamically coupled, and the power output from the power source 100 is sequentially output to the input end of the system power output unit 401 through the transmission unit 200, the conversion device input unit 4020, and the conversion device output unit 4022, and
  • the rotation speed of the conversion device input portion 4020 is higher than the rotation speed of the input end of the system power output portion 401.
  • the power outputted by the power source 100 is decelerated again after the first speed reduction of the shifting unit 200, and then the speed is reduced by the mode switching device 402, so that the effect of deceleration and torque increase can be better, and the passing ability of the vehicle can be improved.
  • the power transmission system 1000 of the vehicle has a first pure electric drive mode.
  • the power source 100 does not work, and the conversion device input portion 4020 and the conversion device output portion 4022 are dynamically coupled.
  • the power output from the first motor generator unit 300 is sequentially output to the system power output unit 401 through the conversion device input unit 4020 and the conversion device output unit 4022, and the rotation speed of the conversion device input unit 4020 is the same as the rotation speed of the input end of the system power output unit 401. .
  • the power output path of the first motor generator 302 is short and the transmission efficiency is high, so that the driving efficiency of the first motor generator 302 can be improved, and the power of the vehicle can be improved.
  • the power transmission system 1000 of the vehicle has a second pure electric drive mode.
  • the power source 100 does not operate, and the conversion device input portion 4020 and the conversion device output portion 4022 are dynamically coupled.
  • the power output from the first motor generator unit 300 is sequentially output to the input end of the system power output unit 401 through the conversion device input unit 4020 and the conversion device output unit 4022, and the rotation speed of the conversion device input unit 4020 is higher than that of the system power output unit 401. The speed of the input.
  • the power output path of the first motor generator 302 is short, the transmission efficiency is high, and the speed of the mode conversion device 402 can enrich the driving mode of the power transmission system 1000, so that the wheel speed can be made appropriate, and the passing ability of the vehicle can be improved.
  • the power transmission system 1000 of the vehicle has an anti-trail start mode.
  • the power output by the first motor generator 302 is sequentially output to the power source 100 through the conversion device input unit 4020 to drive the power source. 100 starts.
  • the first motor generator 302 is used as a starter, so that the first motor generator 302 can quickly start the engine, the engine starting efficiency can be made fast, and the energy loss of the first motor generator 302 can be reduced.
  • the powertrain 1000 of the vehicle has a first hybrid drive mode, and the powertrain 1000 of the vehicle is at the first In the hybrid driving mode, both the power source 100 and the first motor generator unit 300 are operated, the shifting unit 200 is dynamically coupled to the power source 100, and the switching device input unit 4020 and the switching device output unit 4022 are dynamically coupled, and the power source 100 outputs
  • the power is sequentially output to the system power output unit 401 through the shifting unit 200, the conversion device input unit 4020, and the conversion device output unit 4022.
  • the power output by the first motor generator unit 300 sequentially passes through the conversion device input unit 4020 and the conversion device output unit 4022.
  • the power source 100 and the power output from the first motor generator unit 300 are coupled and output to the conversion device input unit 4020, and the rotational speed of the conversion device input unit 4020 and the rotational speed of the input end of the system power output unit 401. the same.
  • the power transmission efficiency of the power source 100 is high, the control strategy is simple, the output path of the first motor generator 302 is short, and the transmission efficiency is high, so that the driving efficiency of the first motor generator 302 can be improved, and the power of the vehicle can be improved.
  • the powertrain 1000 of the vehicle has a second hybrid drive mode.
  • both the power source 100 and the first motor generator unit 300 operate, and the shifting unit 200 and the power source 100
  • the power coupling connection, the conversion device input unit 4020 and the conversion device output unit 4022 are dynamically coupled, and the power output from the power source 100 is sequentially output to the system power output unit 401 through the transmission unit 200, the conversion device input unit 4020, and the conversion device output unit 4022.
  • the power outputted by the first motor generator unit 300 is sequentially output to the system power output unit 401 through the conversion device input unit 4020 and the conversion device output unit 4022, and the power output from the power source 100 and the first motor generator unit 300 is coupled and output to the conversion.
  • the device input unit 4020 and the rotation speed of the conversion device input unit 4020 are higher than the rotation speed of the input end of the system power output unit 401.
  • the power outputted by the power source 100 is decelerated again after the first speed reduction of the shifting unit 200, and then the speed is reduced by the mode switching device 402, so that the effect of deceleration and torque increase can be better, and the passing ability of the vehicle can be improved.
  • the power output path of the first motor generator 302 is short, and the transmission efficiency is appropriate, so that the driving efficiency of the first motor generator 302 can be improved, and the passing ability of the vehicle can be improved.
  • the power transmission system 1000 of the vehicle has a first driving power generation mode.
  • the power source 100 operates, the shifting unit 200 is dynamically coupled to the power source 100, and the switching device input unit 4020 and the conversion
  • the device output unit 4022 is dynamically coupled, and a part of the power output from the power source 100 is sequentially output to the system power output unit 401 through the shift unit 200, the conversion device input unit 4020, and the conversion device output unit 4022, and the rotation speed and system of the conversion device input unit 4020.
  • the rotational speed of the input end of the power output unit 401 is the same, and another part of the power output from the power source 100 is sequentially output to the first motor generator unit 300 through the shifting unit 200 and the converter input unit 4020, and the first motor generator unit 300 is driven to generate electric power.
  • the power source 100 can be formed while driving, and the power source 100 has high power output efficiency and a simple control strategy.
  • the powertrain 1000 of the vehicle has a second driving mode.
  • the power source 100 operates, the shifting unit 200 is dynamically coupled to the power source 100, and the switching device input unit 4020 and the conversion
  • the device output unit 4022 is dynamically coupled, and a part of the power output from the power source 100 is sequentially output to the system power output unit 401 through the shift unit 200, the conversion device input unit 4020, and the conversion device output unit 4022, and
  • the rotation speed of the conversion device input unit 4020 is higher than the rotation speed of the input end of the system power output unit 401, and another part of the power outputted by the power source 100 is sequentially output to the first motor generator unit 300 through the transmission unit 200 and the conversion device input unit 4020.
  • a motor generator unit 300 generates electricity. This can form a form in which the power source 100 generates power while driving, and the power of the power source 100 is decelerated twice, so that the passing ability of the vehicle can be improved, and the first motor generator 302 generates electric power.
  • the powertrain 1000 of the vehicle has a first braking energy recovery mode.
  • the switching device input 4020 and the switching device output 4022 are dynamically coupled, the wheels from the vehicle.
  • the power is sequentially driven by the system power output unit 401, the conversion device output unit 4022, the conversion device input unit 4020 to drive the first motor generator unit 300, and the rotation speed of the conversion device input unit 4020 is the same as the rotation speed of the input end of the system power output unit 401.
  • the first motor generator 302 can recover the energy from the wheel, which can reduce the waste of energy and can improve the mileage of the vehicle.
  • the powertrain 1000 of the vehicle has a second braking energy recovery mode.
  • the switching device input 4020 and the switching device output 4022 are dynamically coupled to each other from the wheels of the vehicle.
  • the power is sequentially driven by the system power output unit 401, the conversion device output unit 4022, the conversion device input unit 4020 to drive the first motor generator unit 300, and the rotation speed of the conversion device input unit 4020 is higher than the rotation speed of the input end of the system power output unit 401.
  • the first motor generator 302 can recover the energy from the wheel, the power generation efficiency is high, and the waste of energy can be reduced, and the mileage of the vehicle can be improved.
  • the power transmission system 1000 of the vehicle has a first parking power generation mode.
  • the second motor generator 600 is dynamically coupled to the power source 100, and the conversion device input unit 4020 and the conversion The device output unit 4022 is turned off, and the power output from the power source 100 directly drives the second motor generator 600 to generate electricity.
  • the transmission path between the second motor generator unit 600 and the power source 100 is short, and the power generation efficiency is high, which can reduce waste of energy.
  • the powertrain 1000 of the vehicle has a second parking power generation mode.
  • the second motor generator 600 is dynamically coupled to the power source 100, and the power source 100 and the shifting unit 200
  • the power coupling connection the conversion device input unit 4020 is disconnected from the conversion device output portion 4022, a part of the power outputted by the power source 100 directly drives the second motor generator 600 to generate electricity, and another part of the power output by the power source 100 passes through the transmission unit 200 in sequence.
  • the device input unit 4020 outputs the first motor generator unit 300 and drives the first motor generator unit 300 to generate power. At this time, the first motor generator unit 300 and the second motor generator unit 600 can simultaneously generate electricity, and the power generation efficiency is high.
  • the powertrain 1000 of the vehicle has a third driving mode.
  • the power source 100 operates, and the second motor generator 600 is coupled to the power source 100, and the power source 100 is
  • the transmission unit 200 is dynamically coupled, and the conversion device input portion 4020 and the conversion device output portion 4022 are dynamically coupled.
  • a part of the power outputted by the power source 100 is sequentially output to the system power output unit 401 through the shifting unit 200, the switching device input unit 4020, and the conversion device output unit 4022, and the rotation speed of the conversion device input unit 4020 is higher than or equal to the system power.
  • the rotational speed of the input end of the output unit 401 and the other part of the power output from the power source 100 directly drive the second motor generator 600 to generate electricity.
  • the power source 100 can be formed while driving, and the power output 100 has high power output efficiency, and the second motor generator 600 has high power generation efficiency.
  • the powertrain 1000 has a simple control strategy.
  • the powertrain 1000 of the vehicle has a fourth driving mode.
  • the power source 100 operates, and the second motor generator 600 is coupled to the power source 100, and the power source 100 is The variable speed power coupling connection, the conversion device input portion 4020 and the conversion device output portion 4022 are dynamically coupled, and the first partial power outputted by the power source 100 is sequentially output to the system power output through the shifting unit 200, the conversion device input portion 4020, and the conversion device output portion 4022.
  • the portion 401 and the rotation speed of the conversion device input portion 4020 are higher than or equal to the rotation speed of the input end of the system power output portion 401, and the second portion of the power output by the power source 100 is sequentially output to the first motor generator unit 300 through the conversion device input portion 4020.
  • the first motor generator unit 300 is driven to generate electricity, and the third portion of the power output by the power source 100 directly drives the second motor generator 600 to generate electricity.
  • This can form a form in which the power source 100 generates power while driving, and the first motor generator 302 and the second motor generator 600 have high power generation efficiency.
  • the powertrain 1000 of the vehicle has a quick start mode.
  • the second motor generator 600 is dynamically coupled to the power source 100, and the power output by the second motor generator 600 directly drives the power source. 100 starts.
  • the second motor generator 600 can be used as a starter and has high starting efficiency.
  • the power transmitted by the power transmission system 1000 described above is output to the two wheels of the vehicle through the system power output unit 401, but the power transmission system 1000 is not limited thereto, and the power transmission system 1000 may further include an electric drive system 700, which is electrically driven. System 700 can be used to drive the other two wheels of the vehicle so that a four-wheel drive of the vehicle can be achieved.
  • the electric drive system 700 can include a drive system input portion and a drive system output portion adapted to output power from the drive system input to the other two wheels, such as the rear wheels.
  • the driving mode of the vehicle can be increased.
  • the driving mode can be further divided into a front drive mode, a rear drive mode, and a four-wheel drive mode, thereby making the vehicle more suitable for different road conditions and improving the power of the vehicle. Sex.
  • the electric drive system 700 further includes an electric drive system power output portion 710, and the drive system output portion is adapted to output power from the drive system input portion to the other two wheels through the electric drive system power output portion 710. .
  • the electric drive system power output portion 710 can facilitate distributing the power transmitted from the drive system output portion to the two wheels on both sides, so that the vehicle can be smoothly driven.
  • the driving system input portion may be a driving motor generator 720
  • the driving motor generator 720 may be a rear wheel motor generator
  • the rear wheel motor generator may drive two rear wheels through a speed reducing mechanism
  • the driving system output portion may be a gear Reducer 730 (ie, speed reduction mechanism).
  • the motor generator 720 is driven to operate, the motor generator 720 is driven to produce
  • the generated power can be transmitted to the electric drive system power output portion 710 after the speed reduction of the gear reducer 730, and the electric drive system power output portion 710 can facilitate the distribution of the power transmitted from the drive system output portion to the two wheels on both sides. Therefore, the vehicle can be driven smoothly.
  • the drive system input portion includes two drive motor generators 720
  • the drive system output portion includes two drive system sub-output portions, each drive system sub-output portion adapted to be driven from a corresponding drive.
  • the power output of the generator 720 is output to a corresponding one of the other two wheels. That is to say, each wheel corresponds to one driving motor generator 720 and the driving system sub-output portion, so that the electric drive system power output portion 710 can be omitted, and the two driving motor generators 720 can adjust their own rotational speeds to achieve two
  • the differential between the wheels allows the powertrain 1000 to be simple and reliable in construction.
  • one of the half shafts 2000 may be provided with a half shaft synchronizer adapted to selectively engage the other half shaft 2000.
  • a half shaft synchronizer adapted to selectively engage the other half shaft 2000.
  • the two drive motor generators 720 are selectively synchronized.
  • a motor output shaft 721 may be provided with a motor output shaft 721 synchronizer to selectively engage another motor output shaft 721, so that the two wheels can rotate in the same direction at the same speed, and the difference between the two wheels can also be realized. Speed movement, so as to ensure the smooth running of the vehicle.
  • the two drive system sub-outputs are selectively synchronized. That is to say, one of the two drive system sub-outputs may be provided with a sub-output synchronizer for synchronizing the other drive system sub-outputs, so that the two wheels can rotate in the same direction at the same speed. It is also possible to achieve differential motion of the two wheels, so that the running stability of the vehicle can be ensured.
  • the drive system sub-output may include a two-stage gear reducer, and the power of the motor generator 720 that is driven by the two-stage deceleration may be transmitted to the wheels to drive the wheels to rotate.
  • the drive system sub-output may include a second speed transmission.
  • the driving motor generator 720 selectively engages one of the gears, and by setting the second speed transmission, the rotational speed of driving the output of the motor generator 720 to the wheels can be changed, thereby enriching the driving mode of the powertrain 1000, and improving the economy of the vehicle. Sex and motivation.
  • the driving motor generator 720 may include a motor output shaft 721, and the two-speed gear reducer 730 or the second-speed transmission may each include a driving system sub-output portion input shaft, and the driving system sub-output portion input shaft is fixedly coupled to the motor output shaft 721. And coaxial settings.
  • the motor generator 720 is thus driven to transmit power to the drive system sub-output input shaft through the motor output shaft 721, and then transmits power to the wheels through the drive system sub-output to drive the vehicle to move.
  • the electric drive system 700 includes two wheel motors, each of which directly drives a corresponding one of the other two wheels, the other two wheels being selectively synchronized.
  • a half shaft synchronizer 2000 may be provided with a half shaft synchronizer to selectively engage the other half shaft 2000, so that the wheel side motor can respectively drive the corresponding wheel rotation, and by breaking the half shaft synchronizer, two wheel wheels can be realized. Differential motion, so as to ensure the smooth running of the vehicle.
  • the mode conversion device 402 may further include a first conversion portion 4021a and a second conversion portion 4021b, and the conversion device output portion 4022 is selectively coupled to the first conversion portion 4021a.
  • the conversion device input portion 4020 is fixedly coupled to the first conversion portion 4021a, and the conversion device output portion 4022 is engaged with the second conversion portion 4021b so as to be adapted to cause the rotation speed of the conversion device input portion 4020 to be output. After being lowered, it is output to the input end of the system power output unit 401.
  • the rotation speed suitable for outputting the conversion device input unit 4020 is the same as the input end rotation speed of the system power output unit 401.
  • the conversion device input portion 4020 can transmit power to the first conversion portion 4021a and the first The two conversion unit 4021b, by the selection of the first conversion unit 4021a and the second conversion unit 4021b, can control the rotational speed transmitted to the wheel, thereby controlling the vehicle speed, so that the vehicle speed is more suitable for the current vehicle condition. It can improve the running stability and power of the vehicle.
  • the power source 100 is adapted to drive the first motor generator unit 300 to generate electricity through the conversion device input portion 4020. It can be understood that when both the first converting portion 4021a and the second converting portion 4021b are disconnected from the converting device output portion 4022, the power source 100 cannot transmit power to the system power output portion 401, and the power of the power source 100 can pass through the converting device.
  • the input unit 4020 is transmitted to the first motor generator unit 300, and the first motor generator 302 of the first motor generator unit 300 can be used as a generator to generate electricity. In this way, the parking power generation mode of the vehicle can be realized, thereby avoiding waste of energy, saving energy, and improving the power and economy of the vehicle.
  • the mode switching device 402 may include: a final drive driven gear Z', a planetary gear mechanism P, and a shifting device adapter S, wherein the main deceleration
  • the driven gear Z' is the switching device input portion 4020.
  • the planetary gear mechanism P may include a first member P1, a second member P2, and a third member P3.
  • the first member P1 is fixed to the final drive driven gear Z'. In this case, power can be transmitted between the first element P1 and the final drive gear Z', and the second element P2 is fixedly disposed.
  • the first element P1 is the first conversion portion 4021a
  • the third element P3 is the second conversion portion 4021b.
  • the first element P1 can be driven with the third element P3, during which the rotational speed of the first element P1 is higher than the rotational speed of the third element P3.
  • the planetary gear mechanism P may include: a sun gear, a planetary gear, a carrier and a ring gear, the planetary gear is mounted on the planet carrier, and the planetary gear is meshed between the sun gear and the ring gear such that the sun gear, the planet carrier and the tooth
  • the circle may be one of the first element P1, the second element P2, and the third element P3.
  • the first element P1 is a sun gear
  • the sun gear is directly fixedly coupled to the final drive driven gear Z'
  • the second element P2 is a ring gear
  • the third element P3 is a carrier.
  • the first component P1 is a ring gear, and the ring gear is directly connected to the final drive driven gear Z', and the second element is The piece P2 is a sun gear, and the third element P3 is a planet carrier.
  • the first element P1 is a sun gear
  • the sun gear is directly fixedly coupled to the final drive driven gear Z'
  • the second element P2 is a carrier
  • the third element P3 is a ring gear.
  • the mode conversion device 402 may further include: a conversion device adapter S22 that selectively engages one of the first element P1 and the third element P3 by the conversion device adapter S.
  • the switching engagement device can be a conversion device synchronizer.
  • the switching device synchronizer can selectively engage the switching device output portion 4022 with the first component P1 and the third component P3.
  • the rotational speed of the converting device input portion 4020 is the same as the rotational speed of the converting device output portion 4022, and when the converting device synchronizer engages the third member P3, the rotational speed of the converting device input portion 4020 is greater than the conversion The rotational speed of the device output unit 4022.
  • the switching device adapter S is located between the first member P1 and the third member P3 in the axial direction of the central axis of the planetary gear mechanism P. This saves a switching device synchronizer, which makes the mode switching device 402 simple in structure and simple in control logic.
  • the conversion device output portion 4022 can be a sleeve, and the sleeve can be sleeved on the half shaft 2000. One end of the sleeve is fixedly connected with the input end of the system power output portion 401, and the conversion device adapter S is fixedly disposed on the sleeve. another side. Thus, the switching device output portion 4022 can output power to the system power output portion 401 in a timely and reliable manner.
  • the component of the first component P1 and the third component P3 that is close to the input end of the system power output portion 401 and the final drive driven gear Z' are all sleeved on the sleeve, and the sleeve is sleeved on the axle of the vehicle.
  • the component of the first component P1 and the third component P3 that is remote from the input of the system power output 401 is vacant on the half shaft 2000 of the vehicle.
  • the third component P3 is closer to the system power output portion 401, and the third component P3 is sleeved on the sleeve.
  • the first component P1 is closer to the system power output portion 401, the first component.
  • P1 is sleeved on the sleeve, as shown in Fig. 9, the third element P3 is closer to the system power output 401, and the third element P3 is sleeved on the sleeve. This can make the mode switching device 402 compact and well arranged.
  • the planetary gear mechanism P further includes a first element joint portion P4 and a third element joint portion P5, the first element joint portion P4 being fixedly coupled to the first element P1, and the first element joint portion P4 being adapted to selectively engage with the conversion device adapter S-engagement, the third element joint portion P5 is fixedly coupled to the third element P3, and the third element joint portion P5 is adapted to selectively engage with the shifting device adapter S, in the axial direction of the central axis of the planetary gear mechanism P,
  • the device adapter S is located in a space defined by the first element joint portion P4 and the third element joint portion P5.
  • the first element joint portion P4 may facilitate the disconnection of the engagement of the first element P1 and the shifting device synchronizer
  • the third element joint portion P5 may facilitate the engagement of the third element P3 and the shifting device adapter S.
  • the switching device adapter S is located between the first element joint portion P4 and the third element joint portion P5.
  • the conversion device adapter S may include first and second spaced apart portions. a joint portion, the first joint portion is adapted to The switching device output portion 4022 is selectively coupled to the first member P1, and the second engaging portion is adapted to selectively engage the switching device output portion 4022 and the third member P3.
  • the rotational speed of the converting device input portion 4020 is the same as the rotational speed of the converting device output portion 4022, and when the second engaging portion engages the switching device output portion 4022 When the third element P3 is used, the rotation speed of the conversion device input portion 4020 is greater than the rotation speed of the conversion device output portion 4022.
  • the conversion device output portion 4022 may be a sleeve, one end of the sleeve is fixedly connected with the input end of the system power output portion 401, and the other end of the sleeve passes through the planetary gear structure, One of the engaging portion and the second engaging portion is fixedly disposed at the other end of the sleeve, and the other of the first engaging portion and the second engaging portion is fixedly disposed on a portion of the sleeve that does not pass through the planetary gear mechanism P.
  • the arrangement positions of the first joint portion and the second joint portion are adjusted according to the first element P1 and the third element P3, and the first element P1 is away from the system power output portion 401 as compared with the third element P3.
  • An engaging portion is fixed to the other end of the sleeve, and the second engaging portion is fixedly disposed on a portion of the sleeve that does not pass through the planetary gear mechanism P.
  • the first element P1 is closer to the system power output portion 401 than the third element P3
  • the second joint portion is fixed to the other end of the sleeve, and the first joint portion is fixedly disposed at a portion of the sleeve that does not pass through the planetary gear mechanism P. on.
  • the planetary gear mechanism P may further include a first element joint portion P4 and a third element joint portion P5, the first element joint portion P4 being fixedly coupled to the first element P1, and first The component joint portion P4 is adapted to selectively engage with the conversion device adapter S, the third component joint portion P5 is fixedly coupled to the third component P3, and the third component joint portion P5 is adapted to selectively engage with the conversion device adapter S, In the axial direction of the central axis of the planetary gear mechanism P, the first element joint portion P4 and the third element joint portion P5 are located between the first joint portion and the second joint portion.
  • the device 402 has a simple structure, a reasonable layout, and a simple control logic.
  • the first component P1, the third component P3, and the final drive driven gear Z' may be sleeved on the sleeve, and the sleeve is sleeved on the axle half 2000 of the vehicle.
  • the sleeve can rotate relative to the half shaft 2000, and the first component P1, the third component P3, and the final drive driven gear Z' can be rotated relative to the sleeve, so that the space on the half shaft 2000 can be reasonably utilized, and the sleeve can be ensured.
  • the arrangement reliability of the first element P1, the third element P3, and the final drive driven gear Z' can further reduce the difficulty in arranging the powertrain 1000.
  • the switching device adapter S may include a direct gear synchronizer SD and a low gear synchronizer SL, the first engaging portion being a part of the direct gear synchronizer SD, and the second engaging portion being a part of the low gear synchronizer SL.
  • the direct-gear synchronizer SD engages the first component engagement portion P4 and the conversion device output portion 4022 to ensure that the rotational speeds of the conversion device input portion 4020 and the conversion device output portion 4022 are the same
  • the low-range synchronizer SL engages the third component engagement portion P5 and the conversion device
  • the output portion 4022 can ensure that the rotational speed of the conversion device input portion 4020 is greater than the rotational speed of the conversion device output portion 4022.
  • the third embodiment of the present invention is substantially the same as the first embodiment, and the specific differences are referred to the following.
  • the switching device adapter S is located on one side of the planetary gear mechanism P.
  • the switching device adapter S is located on the right side of the planetary gear mechanism P.
  • the switching device adapter S is located on the left side of the planetary gear mechanism P.
  • the planetary gear mechanism P and the switching device adapter S are spaced apart, so that the arrangement of the fork mechanism can be facilitated, the arrangement of the fork mechanism can be reduced, and the arrangement convenience of the power transmission system 1000 can be improved. And control convenience.
  • the conversion device adapter S is disposed on the conversion device output portion 4022, and the conversion device output portion 4022 and the conversion device adapter S are both located on one side of the planetary gear mechanism P. That is, the conversion device output portion 4022 and the conversion device adapter S may be located on the same side of the planetary gear mechanism P, for example, on the right side. This makes it possible to arrange the planetary gear mechanism P, the switching device adapter S, and the switching device output portion 4022 in an axial position, so that the arrangement of the fork mechanism can be facilitated, and the structural reliability of the mode switching device 402 can be improved.
  • the first component is sequentially disposed in the axial direction of the central axis of the planetary gear mechanism P, from one end remote from the adapter fitting S to one end close to the converter adapter S.
  • the lands of the one located on the outer side of P1 and the third element P3 correspond to the lands portion corresponding to the one located inside the first element P1 and the third element P3.
  • a sleeve portion corresponding to the inner one of the first member P1 and the third member P3, and the first member P1 and the third member are sequentially sleeved from the outside to the inside.
  • the part of the sleeve located in the outer side of P3 corresponds to the sleeve portion.
  • the power transmission system 1000 shown in FIG. 13 is taken as an example for description.
  • a sleeve portion corresponding to the first member P1 and a sleeve portion corresponding to the third member P3 are sleeved in order from the outside to the inside, so that the first member joint portion P4 can be made
  • the third element joint portion P5 is arranged symmetrically in both the axial direction and the radial direction, so that the mode switching device 402 can be arranged reasonably.
  • a portion of the conversion device output 4022 can pass through the planetary gear mechanism P, and the conversion device adapter S is disposed on the aforementioned portion of the conversion device output 4022. That is, the conversion device adapter S and the system power output portion 401 are respectively located on both sides of the planetary gear mechanism P, and the planetary gear mechanism P can be sleeved on the conversion device output portion 4022, so that the mode conversion device 402 can be utilized reasonably. Axial space and radial space. Specifically, the conversion device output portion 4022 may be a sleeve that is sleeved on the half shaft 2000 of the vehicle.
  • the planetary gear mechanism P may further include a first component joint portion P4 and a third component joint portion P5, the first component joint portion P4 being fixedly connected to the first component P1, and the first component
  • the joint portion P4 is adapted to selectively engage with the conversion device adapter S
  • the third element joint portion P5 is fixedly coupled to the third member P3, and the third member is connected
  • the joint P5 is adapted to selectively engage the shifting device adapter S.
  • the first element joint portion P4 and the third element joint portion P5 may each include a land portion and a sleeve portion which are perpendicular to a central axis of the planetary gear mechanism P, The sleeve portion is parallel to the central axis of the planetary gear mechanism P.
  • the outer edge of the land portion is fixedly coupled to the corresponding member, the inner edge of the land portion is coupled to one end of the sleeve portion, and the other end of the sleeve portion is adapted to selectively engage the adapter assembly S.
  • the first component in the axial direction of the central axis of the planetary gear mechanism P, from one end remote from the adapter fitting S to one end close to the converter adapter S, the first component is sequentially disposed.
  • the lands of the one located on the inner side of P1 and the third element P3 correspond to the lands portion corresponding to the one of the first element P1 and the third element P3.
  • a sleeve portion corresponding to the one of the first member P1 and the third member P3 located outside, and the first member P1 and the third member are sequentially sleeved from the outside to the inside.
  • the part of the sleeve located in the inner side of P3 corresponds to the sleeve portion.
  • the power transmission system 1000 shown in FIG. 16 is taken as an example for description.
  • a lands corresponding to the third member P3 are sequentially disposed.
  • a portion and a land portion corresponding to the first member P1 in the radial direction of the central axis of the planetary gear mechanism P, a sleeve portion corresponding to the third member P3 and a corresponding portion of the first member P1 are sequentially sleeved from the outside to the inside.
  • each of the switching device adapters S may be a switching device synchronizer.
  • the mode conversion device 402 may further include a first conversion portion 4021a and a second conversion portion 4021b, and the conversion device output portion 4022 is selectively coupled to the first conversion portion 4021a and the second One of the conversion portions 4021b is engaged, the conversion device input portion 4020 is fixedly coupled to the first conversion portion 4021a, and the conversion device output portion 4022 is coupled to the second conversion portion 4021b, so that the rotation speed of the conversion device output portion 4022 is sequentially passed through the first The conversion unit 4021a and the second conversion unit 4021b are lowered and output to the input end of the system power output unit 401.
  • the rotation speed suitable for outputting the conversion device input unit 4020 is the same as the input end rotation speed of the system power output unit 401.
  • the conversion device input portion 4020 can be transmitted to the first conversion portion 4021a and the second conversion.
  • the switching device output portion 4022 can control the rotational speed transmitted to the wheel by appropriately selecting the first converting portion 4021a and the second converting portion 4021b, thereby controlling the vehicle speed of the vehicle, so that the vehicle speed is more suitable for the current vehicle condition, and Improve the smoothness and dynamics of the vehicle.
  • the power source 100 is adapted to drive the first motor generator unit 300 to generate electricity through the conversion device input portion 4020. It can be understood that when both the first converting portion 4021a and the second converting portion 4021b are disconnected from the converting device output portion 4022, the power source 100 cannot transmit power to the system power output portion 401, and the power of the power source 100 can pass through the converting device.
  • the input unit 4020 is transmitted to the first motor generator unit 300, and the first motor generator 302 of the first motor generator unit 300 can be used as a generator to generate electricity. In this way, the parking power generation mode of the vehicle can be realized, thereby avoiding waste of energy, saving energy, and improving the power and economy of the vehicle.
  • the conversion device input portion 4020 is the main reducer driven gear Z'
  • the first conversion portion 4021a is the first conversion gear ZZ1
  • the second conversion portion 4021b is the second conversion gear.
  • the mode switching device 402 further includes: a switching device shaft VII, the final drive driven gear Z', the first conversion gear ZZ1 and the second conversion gear ZZ2 are all vacant on the half shaft 2000 of the vehicle, and the conversion device shaft
  • the third conversion gear ZZ3 and the fourth conversion gear ZZ4 are fixed to the VII
  • the first conversion gear ZZ1 is meshed with the third conversion gear ZZ3
  • the second conversion gear ZZ2 is meshed with the fourth conversion gear ZZ4.
  • a first-stage deceleration is formed between the first conversion gear ZZ1 and the third conversion gear ZZ3, and a second-stage deceleration is formed between the second conversion gear ZZ2 and the fourth conversion gear ZZ4, so that the rotation speed of the first conversion gear ZZ1 can be made high.
  • the final drive driven gear Z' may constitute a double-coupling structure with the first shift gear ZZ1, in other words, one of the double-connected tooth structures constitutes the final drive driven gear Z' and The other gear constitutes the first shifting gear ZZ1, so that the mode switching device 402 can be made simple in structure and reliable in operation, and the power transmission system 1000 can be made simple in structure and reliable in operation.
  • the mode switching device 402 may further include a conversion device adapter S22 that selectively engages the first conversion portion 4021a or the second conversion portion 4021b by the conversion device adapter S.
  • the conversion device output portion 4022 can selectively engage and disengage the first conversion portion 4021a
  • the conversion device output portion 4022 can selectively engage and disengage the second conversion portion 4021b.
  • the conversion device adapter S may be a conversion device synchronizer disposed between the first conversion gear ZZ1 and the second conversion gear ZZ2, so that the number of synchronizers can be reduced, and the mode conversion device 402 structure can be made Simple and low cost.
  • the conversion device output portion 4022 may be a sleeve, one end of which is fixedly coupled to the input end of the system power output portion 401, and the conversion device adapter S is disposed at the other end of the sleeve.
  • This ensures the synchronization reliability between the conversion device output portion 4022 and the corresponding first conversion gear ZZ1 and second conversion gear ZZ2.
  • the space of the mode conversion device 402 can be effectively saved, so that the mode conversion device 402 can be made to
  • the utility model has the advantages of compact structure, small volume and small space occupied by the power transmission system 1000.
  • the sleeve can be sleeved on the half shaft 2000 of the vehicle, and the second conversion gear ZZ2 can be sleeved on the sleeve. This makes it possible to make the arrangement position of the second conversion gear ZZ2 reasonable, and the structural reliability of the mode conversion device 402 can be ensured.
  • the power transmission system 1000 of the vehicle has a first power source driving mode.
  • the first motor generator unit 300 does not operate, and the conversion device output portion 4022 and the first conversion portion 4021a
  • the power output from the power source 100 is sequentially outputted to the input end of the system power output unit 401 through the conversion device input unit 4020, the first conversion unit 4021a, and the conversion device output unit 4022, and the rotational speed and system power output output from the conversion device input unit 4020.
  • the rotational speed of the input of the portion 401 is the same.
  • the power transmission system 1000 of the vehicle has a second power source driving mode.
  • the first motor generator unit 300 does not operate, and the conversion device output portion 4022 and the second conversion portion 4021b
  • the power output from the power source 100 is sequentially outputted to the input end of the system power output unit 401 through the conversion device input unit 4020, the second conversion unit 4021b, and the conversion device output unit 4022.
  • the output speed of the conversion device input unit 4020 is higher than the system power.
  • the power transmission system 1000 of the vehicle has a first pure electric drive mode.
  • the power source 100 does not work, and the conversion device output portion 4022 is engaged with the first conversion portion 4021a.
  • the power output from the motor generator unit 300 is sequentially outputted to the input end of the system power output unit 401 through the conversion device input unit 4020, the first conversion unit 4021a, and the conversion device output unit 4022, and the rotational speed and system power output output from the conversion device input unit 4020.
  • the rotational speed of the input of the portion 401 is the same.
  • the power transmission system 1000 of the vehicle has a second pure electric drive mode.
  • the power source 100 does not operate, and the conversion device output portion 4022 is engaged with the second conversion portion 4021b.
  • the power output from the motor generator unit 300 is sequentially outputted to the input end of the system power output unit 401 through the conversion device input unit 4020, the second conversion unit 4021b, and the conversion device output unit 4022, and the output speed of the conversion device input unit 4020 is higher than the system power.
  • the rotational speed of the input end of the output unit 401 is performed by the power source 100 does not operate, and the conversion device output portion 4022 is engaged with the second conversion portion 4021b.
  • the power output from the motor generator unit 300 is sequentially outputted to the input end of the system power output unit 401 through the conversion device input unit 4020, the second conversion unit 4021b, and the conversion device output unit 4022, and the output speed of the conversion device input unit 4020 is higher than the system power.
  • the power transmission system 1000 of the vehicle has a first hybrid driving mode.
  • both the power source 100 and the first motor generator unit 300 operate, and the conversion device output portion 4022 and the
  • the conversion unit 4021a is engaged, the power output from the power source 100 and the first motor generator unit 300 is sequentially output to the input end of the system power output unit 401 through the conversion device input unit 4020, the first conversion unit 4021a, and the conversion device output unit 4022.
  • the rotational speed output by the conversion device input unit 4020 is the same as the rotational speed of the input end of the system power output unit 401.
  • the power transmission system 1000 of the vehicle has a second hybrid driving mode.
  • both the power source 100 and the first motor generator unit 300 operate, and the conversion device output portion 4022 and The second conversion unit 4021b is engaged, and the power output from the power source 100 and the first motor generator unit 300 is sequentially output to the input of the system power output unit 401 through the conversion device input unit 4020, the second conversion unit 4021b, and the conversion device output unit 4022.
  • the rotational speed output by the conversion device input unit 4020 is higher than the rotational speed of the input end of the system power output unit 401.
  • the power transmission system 1000 of the vehicle has a first driving power generation mode.
  • the power source 100 operates, and the switching device output portion 4022 is engaged with the first converting portion 4021a, and the power source 100 outputs A part of the power is sequentially outputted to the input end of the system power output unit 401 through the conversion device input unit 4020, the first conversion unit 4021a, and the conversion device output unit 4022, and the rotational speed output by the conversion device input unit 4020 and the rotational speed of the input end of the system power output unit 401.
  • another part of the power output from the power source 100 drives the first motor generator unit 300 to generate electricity through the conversion device input unit 4020.
  • the power transmission system 1000 of the vehicle has a second driving power generation mode.
  • the power source 100 operates, the switching device output portion 4022 is engaged with the second converting portion 4021b, and the power source 100 outputs A part of the power is sequentially outputted to the input end of the system power output unit 401 through the conversion device input unit 4020, the second conversion unit 4021b, and the conversion device output unit 4022, and the rotation speed output by the conversion device input unit 4020 is higher than the input end of the system power output unit 401.
  • the rotational speed; another portion of the power output by the power source 100 drives the first motor-generator unit 300 to generate electricity through the conversion device input portion 4020.
  • the powertrain 1000 of the vehicle has a first braking energy recovery mode.
  • the switching device output 4022 is engaged with the first converting portion 4021a, and the power from the wheels of the vehicle.
  • the system power output unit 401, the conversion device output unit 4022, the first conversion unit 4021a, and the conversion device input unit 4020 are sequentially output to the first motor generator unit 300, and the first motor generator unit 300 is driven to generate power, and the conversion device input unit is driven.
  • the rotational speed of the 4020 output is the same as the rotational speed of the input of the system power output unit 401.
  • the powertrain 1000 of the vehicle has a second braking energy recovery mode.
  • the switching device output 4022 engages with the second converting portion 4021b, and the power from the wheels of the vehicle
  • the system power output unit 401, the conversion device output unit 4022, the second conversion unit 4021b, and the conversion device input unit 4020 are sequentially output to the first motor generator unit 300, and the first motor generator unit 300 is driven to generate power, and the conversion device input unit is driven.
  • the rotational speed of the 4020 output is higher than the rotational speed of the input of the system power output portion 401.
  • the mode conversion device 402 may further include a first conversion portion 4021a and a second conversion portion 4021b, and the conversion device output portion 4022 is connected to an input end of the system power output portion 401.
  • the conversion device input portion 4020 is adapted to output power from at least one of the power source 100 and the first motor generator unit 300, and the conversion device input portion 4020 is selectively coupled to one of the first conversion portion 4021a and the second conversion portion 4021b.
  • the first conversion portion 4021a and the second conversion portion 4021b are both coupled to the conversion device output portion 4022 for transmission. That is, at the time of power transmission, the conversion device input unit 4020 can transmit power to the conversion device output unit 4022 via the first conversion unit 4021a or the second conversion unit 4021b.
  • the conversion device input portion 4020 is adapted to engage the first conversion portion 4021a such that the rotational speed of the conversion device input portion 4020 is the same as the rotational speed of the input end of the system power output portion 401, and the conversion device input portion 4020 is adapted to engage the second conversion portion 4021b to The rotation speed of the conversion device input unit 4020 is lowered and output to the system power output unit 401.
  • the conversion device input portion 4020 is the main reducer driven gear Z'
  • the mode conversion device 402 may further include: a conversion device shaft VII, and the final drive driven gear Z' is fixedly disposed on the conversion device.
  • the direct drive gear Da and the low gear drive gear La are disposed over the shaft VII of the shifting device, and the shaft VII of the shifting device is parallel to the half shaft 2000 of the vehicle.
  • the direct-drive driving gear Da may be the first converting portion 4021a
  • the low-speed driving gear La may be the second converting portion 4021b
  • the conversion device output portion 4022 may include a direct-drive driven gear Db and a low-speed driven gear Lb, the direct-driven driven gear Db meshes with the direct-drive driving gear Da, and the low-speed driven gear Lb meshes with the low-speed driving gear La, directly Both the driven driven gear Db and the low driven driven gear Lb are fixedly coupled to the input end of the system power output portion 401. This makes the power transmission reliable and the transmission efficiency high.
  • the conversion device input portion 4020 is adapted to be disconnected from both the first conversion portion 4021a and the second conversion portion 4021b, so that the power source 100 is adapted to sequentially drive the first motor generator unit through the shifting unit 200 and the conversion device input portion 4020. 300 power generation.
  • the mode conversion device 402 may further include a conversion device adapter S22 that selectively engages the first conversion portion 4021a or the second conversion portion 4021b by the conversion device adapter S.
  • a conversion device adapter S22 that selectively engages the first conversion portion 4021a or the second conversion portion 4021b by the conversion device adapter S.
  • the conversion device output portion 4022 can selectively engage and disengage the first conversion portion 4021a
  • the conversion device output portion 4022 can selectively engage and disengage the second conversion portion 4021b.
  • the conversion device adapter S can be a conversion device synchronizer.
  • the conversion device synchronizer may be fixed on the conversion device shaft VII.
  • the conversion device synchronizer may be located between the direct drive drive gear Da and the low range drive gear La, which may reduce the number of synchronizers and may
  • the mode conversion device 402 has a simple structure and low cost.
  • the powertrain 1000 of the vehicle has a first power source driving mode.
  • the first motor generator 302 does not operate, and the first converting portion 4021a and the switching device input portion 4020 are engaged.
  • the power output from the power source 100 is sequentially output to the system power output unit 401 through the conversion device input unit 4020, the first conversion unit 4021a, and the conversion device output unit 4022.
  • the powertrain 1000 of the vehicle has a second power source driving mode.
  • the first motor generator 302 does not operate, and the second converting portion 4021b and the switching device input portion 4020 are engaged.
  • the power output from the power source 100 sequentially passes through the conversion device input unit 4020, the second conversion unit 4021b, and the rotation.
  • the converter output unit 4022 outputs the input to the system power output unit 401.
  • the power transmission system 1000 of the vehicle has a first pure electric drive mode.
  • the power source 100 does not work, and the first conversion portion 4021a and the conversion device input portion 4020 are engaged, and the switching module is
  • the first motor generator 302 is coupled to the first motor generator unit coupling unit 301, and the power output by the first motor generator 302 is sequentially passed through the switching module, the first motor generator unit coupling unit 301, the conversion device input unit 4020, The first conversion unit 4021a and the conversion device output unit 4022 are output to the system power output unit 401.
  • the power transmission system 1000 of the vehicle has a second pure electric drive mode.
  • the power source 100 does not work, and the second conversion portion 4021b and the conversion device input portion 4020 are engaged.
  • the power output from the motor generator 302 is sequentially output to the input end of the system power output unit 401 through the conversion device input unit 4020, the second conversion unit 4021b, and the conversion device output unit 4022.
  • the power transmission system 1000 of the vehicle has an anti-trail start mode.
  • the power output by the first motor generator 302 is sequentially output to the power source 100 through the conversion device input unit 4020 to drive the power source. 100 starts.
  • the power transmission system 1000 of the vehicle has a first hybrid driving mode, and when the power transmission system 1000 of the vehicle is in the first hybrid driving mode, both the power source 100 and the first motor generator 302 operate, the first converting portion 4021a and the converting device
  • the input unit 4020 is engaged, and the power output from the power source 100 is sequentially output to the system power output unit 401 through the conversion device input unit 4020, the first conversion unit 4021a, and the conversion device output unit 4022, and the power output from the first motor generator 302 is sequentially converted.
  • the device input unit 4020, the first conversion unit 4021a, and the conversion device output unit 4022 are output to the system power output unit 401, and the power output from the power source 100 and the first motor generator 302 is coupled to the conversion device input unit 4020.
  • the power transmission system 1000 of the vehicle has a second hybrid driving mode.
  • both the power source 100 and the first motor generator 302 operate, and the second converting portion 4021b and the switching device
  • the input unit 4020 is engaged, and the power output from the power source 100 is sequentially output to the system power output unit 401 through the conversion device input unit 4020, the second conversion unit 4021b, and the conversion device output unit 4022, and the power output by the first motor generator 302 is sequentially converted.
  • the device input unit 4020, the second conversion unit 4021b, and the conversion device output unit 4022 are output to the system power output unit 401, and the power source 100 and the rotational speed output from the first motor generator 302 are coupled and output to the conversion device input unit 4020.
  • the power transmission system 1000 of the vehicle has a first driving power generation mode.
  • the power source 100 operates, and the first conversion portion 4021a and the conversion device input portion 4020 are engaged.
  • a part of the power output from the power source 100 is sequentially output to the system power output unit 401 through the conversion device input unit 4020, the first conversion unit 4021a, and the conversion device output unit 4022, and another part of the power output from the power source 100 is sequentially output through the conversion device input unit 4020.
  • the first motor generator 302 is driven to drive the first motor generator 302 to generate electricity.
  • the powertrain 1000 of the vehicle has a second driving mode.
  • the power source 100 operates, and the second converting portion 4021b and the switching device input portion 4020 are engaged.
  • a part of the power output from the power source 100 is sequentially output to the system power output unit 401 through the conversion device input unit 4020, the second conversion unit 4021b, and the conversion device output unit 4022, and another part of the power output from the power source 100 is sequentially output through the conversion device input unit 4020.
  • the first motor generator 302 is driven to drive the first motor generator 302 to generate electricity.
  • the powertrain 1000 of the vehicle has a first braking energy recovery mode.
  • the first converting portion 4021a and the switching device input portion 4020 are engaged, and the power from the wheels of the vehicle
  • the system power output unit 401, the conversion device output unit 4022, the first conversion unit 4021a, the conversion device input unit 4020, the first motor generator unit coupling unit 301, and the switching module drive the first motor generator 302 to generate electric power.
  • the powertrain 1000 of the vehicle has a second braking energy recovery mode.
  • the second converting portion 4021b and the switching device input portion 4020 are engaged, and the power from the wheels of the vehicle
  • the first motor generator 302 is driven to generate electric power by the system power output unit 401, the conversion device output unit 4022, the second conversion unit 4021b, and the conversion device input unit 4020 in this order.
  • portions of the powertrain 1000 shown in Figures 1-6 can be used to drive the front wheels of the vehicle, and portions of the powertrain 1000 shown in Figures 27-32 can be used to drive the rear wheels, Figure 1 - Any of 6 may constitute a new powertrain 1000 with any of Figures 27-32.
  • the powertrain system 1000 shown in FIG. 1 may incorporate a second motor generator 600 to form a new powertrain system 1000, and the second motor generator 600 may be in the vehicle.
  • the second motor generator 600 may be in the vehicle. In the case of parking, power generation is achieved.
  • the second motor generator 600 is arranged in various forms. As shown in FIG. 34, the second motor generator 600 may be coaxially connected to the power source 100, and, as shown in FIG. 51, the second motor power generation.
  • the machine 600 can be coupled to the input of the dual clutch, and the arrangement of the two second motor generators 600 described above can be interchanged.
  • the shifting unit 200 of the powertrain 1000 has various arrangements, and the shifting unit 200 in the powertrain 1000 shown in FIG. 7 is completely different in structure from the shifting unit 200 of the powertrain 1000 shown in FIG. Both can be replaced with each other.
  • mode switching devices 402 of the powertrain system 1000 shown in FIGS. 7-20 are different, and any two of the mode switching devices 402 described above can be replaced with each other.
  • a vehicle according to an embodiment of the present invention includes the powertrain system 1000 of the above embodiment.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
  • the meaning of "a plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated and defined otherwise. Or in one piece; it may be a mechanical connection, or it may be an electrical connection or a communication with each other; it may be directly connected or indirectly connected through an intermediate medium, and may be an internal connection of two elements or an interaction relationship between two elements. Unless otherwise expressly defined. For those skilled in the art, the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • the first feature "on” or “under” the second feature may be a direct contact of the first and second features, or the first and second features may be indirectly through an intermediate medium, unless otherwise explicitly stated and defined. contact.
  • the first feature "above”, “above” and “above” the second feature may be that the first feature is directly above or above the second feature, or merely that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or merely that the first feature level is less than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Structure Of Transmissions (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

一种动力传动***,包括:动力源(100);第一电动发电机单元(300);***动力输出部(401);模式转换装置(402),模式转换装置包括转换装置输入部(4020)、第一转换部(4021a)、第二转换部(4021b)和转换装置输出部(4022),转换装置与***动力输出部的输入端相连,转换装置输入部适于将来自动力源和第一电动发电机单元中的至少一个的动力输出,转换装置输入部与第一转换部固定相连,转换装置输出部选择性与第一转换部或第二转换部接合,转换装置输出部与第二转换部接合,从而适于使转换装置输入部输出的转速降低后输出给***动力输出部的输入端。这样可以丰富车辆的驱动模式,并且车辆能够适应不同的路况。还公开了一种具有动力传动***的车辆。

Description

动力传动***以及具有其的车辆 技术领域
本发明涉及车辆技术领域,尤其涉及一种车辆的动力传动***以及具有该动力传动***的车辆。
背景技术
随着能源的不断消耗,新能源车型的开发和利用已逐渐成为一种趋势。混合动力汽车作为新能源车型中的一种,通过发动机和/或电机进行驱动,具有多种模式,可以改善传动效率和燃油经济性。
但是,发明人所了解的相关技术中,部分混合动力汽车驱动模式少,驱动传动效率较低,不能满足车辆适应各种路况的要求,尤其是混合动力汽车馈电(电池电量不足时)后,整车动力性和通过能力不足。而且为了实现驻车发电工况,需要额外地增加传动机构,集成度低,发电效率低。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本发明提出一种车辆的动力传动***,该动力传动***驱动模式多,而且可以有效调节输出给车轮的动力,从而可以使得车辆能够适应各种路况。
本发明进一步地提出了一种车辆。
根据本发明的车辆的动力传动***,包括:动力源;第一电动发电机单元;***动力输出部;模式转换装置,所述模式转换装置包括转换装置输入部、第一转换部、第二转换部和转换装置输出部,所述转换装置输出部与所述***动力输出部的输入端相连,所述转换装置输入部适于将来自所述动力源和所述第一电动发电机单元中的至少一个的动力输出,所述转换装置输入部与所述第一转换部固定相连,所述转换装置输出部选择性与所述第一转换部或第二转换部接合,所述转换装置输出部与第二转换部接合,从而适于使所述转换装置输入部输出的转速降低后输出给所述***动力输出部的输入端。
根据本发明的车辆的动力传动***,通过调节转换装置输入部传递至转换装置输出部的输出转速,可以丰富车辆的驱动模式,而且可以提高车辆的经济性和动力性,并且车辆能够适应不同的路况,以及可以显著提高车辆的通过性和脱困能力,可以提升驾驶员的驾驶体验。 而且通过该模式转换装置,不仅可以调节转换装置输出部的转速和扭矩,还可以实现驻车发电的功能。既保证了第一电动发电机驱动和回馈时,动力传输直接,传动效率高,又保证驻车发电模式切换的简单和可靠。同时,由于发动机动力和第一电动发电机动力在模式转换装置处耦合,应用于发动机的变速单元完全可以采用原有传统燃油车的变速器,不需要做任何更改,第一电动发电机的动力输出完全依靠模式转换装置的切换来实现。这样的动力传动***设计使得各个驱动模式控制相对独立,结构紧凑,易于实现。
根据本发明的车辆,包括上述的车辆的动力传动***。
附图说明
图1-图6是根据本发明实施例的车辆的动力传动***的示意图;
图7-图20是根据本发明实施例的车辆的动力传动***的结构示意图;
图21-图26是模式转换装置、***动力输出部和动力通断装置的示意图;
图27-图32是电驱动***的示意图;
图33-图64是根据本发明实施例的车辆的动力传动***的结构示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
在混合动力车辆上,车辆可以布置多个***,例如,动力传动***1000,该动力传动***1000可以用于驱动车辆的前轮或者后轮,下面以动力传动***1000驱动车辆的前轮为例进行详细说明,当然,动力传动***1000还可以结合其他驱动***驱动车辆的后轮转动,从而使得车辆为四驱车辆,其他***可以为电驱动***700。
下面参考附图详细描述根据本发明实施例的动力传动***1000。
如图1-图6所示,动力传动***1000可以包括:动力源100、变速单元200、第一电动发电机单元300、***动力输出部总成400,***动力输出部总成400包括***动力输出部401和模式转换装置402,当然,动力传动***1000还可以包括其他机械部件,例如,第二电动发电机600、第一离合装置202和第二离合装置L2等。***动力输出部401可以为差速器。
动力源100可以为发动机,变速单元200适于选择性地与动力源100进行耦合连接,如图1-图6所示,动力源100和变速单元200可以轴向相连,其中动力源100和变速单元200之间可以设置有第一离合装置202,第一离合装置202可以控制动力源100和变速单元200之间的接合、断开状态。
变速单元200可以为变速器,当然,本发明并不限于此,变速单元200还可以为其他变速机构,例如齿轮减速传动机构。下面以变速单元200是变速器为例进行详细说明。
其中,变速单元200可以具有多种布置形式,输入轴、输出轴、挡位的变化均可以形成新的变速单元200,下面以图7所示的动力传动***1000中的变速单元200为例进行详细说明。
如图7所示,变速单元200可以包括:变速动力输入部、变速动力输出部和变速单元输出部201,变速动力输入部与动力源100可以选择性地接合,以传输动力源100所产生的动力。第一离合装置202可以包括输入端和输出端,输入端和动力源100相连,输出端与变速动力输入部相连,当输入端和输出端接合时,动力源100和变速动力输入部接合以传递动力。
变速动力输出部构造成适于将来自变速动力输入部上的动力通过变速单元同步器的同步而将动力输出至变速单元输出部201,变速单元输出部201与模式转换装置402的转换装置输入部4020动力耦合连接。
具体地,如图7所示,变速动力输入部可以包括至少一个输入轴,每个输入轴均与动力源100可选择性地接合,每个输入轴上设置有至少一个主动齿轮。
变速动力输出部包括:至少一个输出轴,每个输出轴上设置有至少一个从动齿轮,从动齿轮与对应的主动齿轮啮合,变速单元输出部201为至少一个主减速器主动齿轮Z,至少一个主减速器主动齿轮Z一一对应地固定在至少一个输出轴上。也就是说,变速单元输出部201可以为输出轴上的输出齿轮,该输出齿轮可以固定在对应的输出轴上,输出齿轮与主减速器从动齿轮啮合以进行动力传递。
其中,输入轴可以为多个,而且多个输入轴依次同轴嵌套设置,在动力源100给输入轴传送动力时,动力源100可以选择性地与多个输入轴中的一个接合。通过将多个输入轴同轴嵌套设置,可以使得变速单元200布置紧凑,轴向长度小,径向尺寸小,从而可以提高变速单元200的结构紧凑性。
例如,如图7所示,变速单元200可以为六挡变速单元,变速动力输入部可以包括:第一输入轴Ⅰ和第二输入轴Ⅱ,第二输入轴Ⅱ套设在第一输入轴Ⅰ上,第一离合装置202可以为双离合器,双离合器具有输入端、第一输出端和第二输出端,输入端可选择性地接合第一输出端和第二输出端中的至少一个。也就是说,输入端可以接合第一输出端,或者,输入端可以接合第二输出端,或者输入端可以同时接合第一输出端和第二输出端。第一输出端与第一输入轴Ⅰ相连,第二输出端与第二输入轴Ⅱ相连。
第一输入轴Ⅰ和第二输入轴Ⅱ分别固定设置有至少一个主动齿轮,具体地,如图7所示,第一输入轴Ⅰ上设置有一挡主动齿轮1Ra、三挡主动齿轮3a和五挡主动齿轮5a,第二输入轴Ⅱ上设置有二挡主动齿轮2a和四六挡主动齿轮46a。其中,第二输入轴Ⅱ套设在第一输 入轴Ⅰ上,这样可以有效缩短动力传动***1000的轴向长度,从而可以降低动力传动***1000占用车辆的空间。上述的四六挡主动齿轮46a指的是该齿轮可以同时作为四挡主动齿轮和六挡主动齿轮使用,这样可以缩短第二输入轴Ⅱ的轴向长度,从而可以更好地减小动力传动***1000的体积。
其中,按照与发动机距离近远的方式,多个挡位主动齿轮的排布顺序为二挡主动齿轮2a、四六挡主动齿轮46a、三挡主动齿轮3a、一挡主动齿轮1Ra和五挡主动齿轮5a。通过合理布置多个挡位主动齿轮的位置,可以使得多个挡位从动齿轮和多个输出轴的位置布置合理,从而可以使得动力传动***1000结构简单,体积小。
输出轴包括:第一输出轴Ⅲ和第二输出轴Ⅳ,第一输出轴Ⅲ和第二输出轴Ⅳ分别空套有至少一个从动齿轮,第一输出轴Ⅲ上空套设置有一挡从动齿轮1b、二挡从动齿轮2b、三挡从动齿轮3b和四挡从动齿轮4b,第二输出轴Ⅳ上空套设置有五挡从动齿轮5b和六挡从动齿轮6b。其中一挡主动齿轮1Ra与一挡从动齿轮1b啮合,二挡主动齿轮2a与二挡从动齿轮2b啮合,三挡主动齿轮3a与三挡从动齿轮3b啮合,四六挡主动齿轮46a与四挡从动齿轮4b啮合,五挡主动齿轮5a与五挡从动齿轮5b啮合,四六挡主动齿轮46a与六挡从动齿轮6b啮合。
一挡从动齿轮1b与三挡从动齿轮3b之间设置有一三挡同步器S13,一三挡同步器S13可以用于同步一挡从动齿轮1b和第一输出轴Ⅲ,以及可以用于同步三挡从动齿轮3b和第一输出轴Ⅲ。
二挡从动齿轮2b与四挡从动齿轮4b之间设置有二四挡同步器S24,二四挡同步器S24可以用于同步二挡从动齿轮2b和第一输出轴Ⅲ,以及可以用于同步四挡从动齿轮4b和第一输出轴Ⅲ。
五挡从动齿轮5b的一侧设置有五挡同步器S5,五挡同步器S5可以用于同步五挡从动齿轮5b和第二输出轴Ⅳ。六挡从动齿轮6b的一侧设置有六挡同步器S6R,六挡同步器S6R可以用于同步六挡从动齿轮6b和第二输出轴Ⅳ。
多个输出轴中的一个上空套设置有倒挡从动齿轮Rb,而且对应的一个输出轴上还设置有用于接合倒挡从动齿轮Rb的倒挡同步器。也就是说,第一输出轴Ⅲ和第二输出轴Ⅳ中的一个上空套设置有倒挡从动齿轮Rb,如图7所示,第二输出轴Ⅳ上设置有倒挡从动齿轮Rb,第二输出轴Ⅳ上的倒挡同步器可以用于同步倒挡从动齿轮Rb和第二输出轴Ⅳ。
进一步地,如图7所示,动力传动***1000还可以包括:倒挡中间轴V,倒挡中间轴V上固定设置有第一倒挡中间齿轮Rm1和第二倒挡中间齿轮Rm2,第一倒挡中间齿轮Rm1与其中一个挡位主动齿轮(即主动齿轮)啮合,第二倒挡中间齿轮Rm2与倒挡从动齿轮Rb啮合。上述的其中一个挡位主动齿轮可以为一挡主动齿轮1Ra,传递到一挡主动齿轮1Ra上的动力 可以通过第一倒挡中间齿轮Rm1传递给倒挡中间轴V,倒挡中间轴V可以通过第二倒挡中间齿轮Rm2将动力传递给倒挡从动齿轮Rb,倒挡从动齿轮Rb可以通过倒挡同步器将动力传递给第二输出轴Ⅳ,第二输出轴Ⅳ可以通过第二输出轴Ⅳ输出齿轮将动力传递给主减速器从动齿轮Z’,主减速器从动齿轮Z’可以通过***动力输出部401将动力传递给两侧的车轮以驱动车辆运动。也就是说,第一输出齿轮和第二输出齿轮可以分别为主减速器主动齿轮Z,该主减速器主动齿轮Z与主减速器从动齿轮Z’啮合。
由于倒挡从动齿轮Rb套设在第二输出轴Ⅳ上,倒挡从动齿轮Rb可以与相邻的另外一个挡位从动齿轮共用倒挡同步器。这样可以节省第二输出轴Ⅳ上布置的同步器的数量,从而可以缩短第二输出轴Ⅳ的轴向长度,以及可以降低动力传动***1000的成本。例如,另外一个挡位从动齿轮可以为六挡从动齿轮6b,换言之,倒挡同步器可以构成六挡同步器S6R。倒挡同步器可以设置在六挡从动齿轮6b和倒挡从动齿轮Rb之间。
当然,变速单元200的具体布置形式并不限于此,下面结合图33-图35详细描述另一种变速单元200的布置形式。
如图33-图35所示,变速单元200可以为六挡变速单元,变速动力输入部可以包括:第一输入轴Ⅰ和第二输入轴Ⅱ,第二输入轴Ⅱ套设在第一输入轴Ⅰ上,第一离合装置202可以为双离合器,双离合器具有输入端、第一输出端K1和第二输出端k2,输入端可选择性地接合第一输出端和第二输出端中的至少一个。也就是说,输入端可以接合第一输出端,或者,输入端可以接合第二输出端,或者输入端可以同时接合第一输出端和第二输出端。第一输出端与第一输入轴Ⅰ相连,第二输出端与第二输入轴Ⅱ相连。
第一输入轴Ⅰ和第二输入轴Ⅱ上分别固定有至少一个第一主动齿轮,而且第一输入轴Ⅰ和第二输入轴Ⅱ分别空套有至少一个第二主动齿轮。
如图33-图35所示,第一输入轴Ⅰ上固定设置有一挡主动齿轮1Ra、三挡主动齿轮3a,第一输入轴Ⅰ上空套设置有五挡主动齿轮5a,第二输入轴Ⅱ上固定设置有二挡主动齿轮2a,第二输入轴Ⅱ上空套设置有四挡主动齿轮4a和六挡主动齿轮6a,其中,四挡主动齿轮4a和六挡主动齿轮6a之间可以设置有四六挡同步器S6R。第二输入轴Ⅱ套设在第一输入轴Ⅰ上,这样可以有效缩短动力传动***1000的轴向长度,从而可以降低动力传动***1000占用车辆的空间。
输出轴为一个,即动力输出轴,动力输出轴上空套有倒挡从动齿轮Rb和至少一个第一从动齿轮,至少一个第一从动齿轮与至少一个第一主动齿轮对应地啮合,动力输出轴上固定设置有至少一个第二从动齿轮,至少一个第二从动齿轮与至少一个第二主动齿轮对应地啮合,倒挡从动齿轮Rb和至少一个第一从动齿轮选择性地与动力输出轴接合。
第一输出轴Ⅲ’固定设置有四挡从动齿轮4b、五挡从动齿轮5b、六挡从动齿轮6b,而 且第一输出轴Ⅲ’上还套设有一挡从动齿轮1b、二挡从动齿轮2b、三挡从动齿轮3b和倒挡从动齿轮Rb,一挡从动齿轮1b和三挡从动齿轮3b之间设置有一三挡同步器S13,二挡从动齿轮2b和倒挡从动齿轮Rb之间设置有二倒挡同步器S2R。
其中,第二输入轴Ⅱ上还固定设置有倒挡主动齿轮Ra,第一输出轴Ⅲ’上空套有倒挡从动齿轮Rb,倒挡主动齿轮Ra和倒挡从动齿轮Rb之间设置有惰轮IG,惰轮IG啮合在倒挡主动齿轮Ra和倒挡从动齿轮Rb之间,惰轮IG固定在倒挡中间轴V上,惰轮IG可以保证倒挡主动齿轮Ra和倒挡从动齿轮Rb的同方向联动。
动力输出轴上的输出齿轮可以为主减速器主动齿轮Z,主减速器主动齿轮Z与主减速器从动齿轮Z’啮合。
模式转换装置402包括转换装置输入部4020和转换装置输出部4022,转换装置输入部4020适于将来自动力源100和第一电动发电机单元300中的至少一个的动力输出,转换装置输出部4022与***动力输出部401的输入端相连,转换装置输入部4020和转换装置输出部4022选择性动力耦合连接。
其中,转换装置输入部4020可以为主减速器从动齿轮Z’,上述的变速单元200的变速单元输出部201可以为主减速器主动齿轮Z,主减速器主动齿轮Z和主减速器从动齿轮Z’啮合。由此,动力源100可以通过变速单元200向模式转换装置402的转换装置输入部4020传递动力,而且当转换装置输入部4020和转换装置输出部4022接合,动力源100将动力传递给***动力输出部401以驱动车辆的前轮转动。
而且,第一电动发电机单元300还可以与转换装置输入部4020传动,例如,第一电动发电机单元300与转换装置输入部4020联动。
需要说明的是,上述的“联动”可以理解为多个部件(例如,两个)关联运动,以两个部件联动为例,在其中一个部件运动时,另一个部件也随之运动。
例如,在本发明的一些实施例中,齿轮与轴联动可以理解为是在齿轮旋转时、与其联动的轴也将旋转,或者在该轴旋转时、与其联动的齿轮也将旋转。
又如,轴与轴联动可以理解为是在其中一根轴旋转时、与其联动的另一根轴也将旋转。
再如,齿轮与齿轮联动可以理解为是在其中一个齿轮旋转时、与其联动的另一个齿轮也将旋转。
在本发明下面有关“联动”的描述中,如果没有特殊说明,均作此理解。
如图7-图20所示,第一电动发电机单元300可以包括第一电动发电机302和第一电动发电机单元耦合部301,第一电动发电机302与第一电动发电机单元耦合部301动力耦合连接,第一电动发电机单元耦合部301可以为主减速器主动齿轮Z,第一电动发电机单元耦合部301与转换装置输入部4020动力耦合连接。可以理解的是,主减速器主动齿轮Z可以为 多个,变速单元200的变速单元输出部201和第一电动发电机单元300的第一电动发电机单元耦合部301均可以为主减速器主动齿轮Z。
进一步地,如图7-图20所示,第一电动发电机单元300还可以包括减速链303,第一电动发电机302通过减速链303与第一电动发电机单元耦合部301动力耦合连接,第一电动发电机单元耦合部301与转换装置输入部4020动力耦合连接。也就是说,当第一电动发电机302作为电动机使用时,第一电动发电机302产生的动力可以经过减速链303、第一电动发电机单元耦合部301传递给模式转换装置402的转换装置输入部4020。减速链303可以起到减速增矩的作用。
减速链303可以包括两个齿轮,齿轮一Z1可以固定在第一电动发电机302的电机输出轴上,齿轮二Z2啮合在齿轮一和主减速器从动齿轮Z’之间,齿轮二Z2的直径和齿数均大于齿轮一Z1的直径和齿数。
当然,第一电动发电机单元300也可以不布置减速链303,如图36所示,第一电动发电机302直接通过第一电动发电机单元耦合部301与主减速器从动齿轮Z’啮合。
转换装置输入部4020和转换装置输出部4022动力耦合连接时,转换装置输入部4020的转速高于或等于转换装置输出部4022的转速。也就是说,在转换装置输入部4020和转换装置输出部4022之间进行动力传动时有两种传动模式,一种为直接传递模式,即转换装置输入部4020的转速等于转换装置输出部4022的转速,另一种为降速传递模式,即转换装置输入部4020的转速高于转换装置输出部4022的转速,这样模式转换装置402增加了整车的挡位,能使整车最大输出扭矩放大N倍,而且提高了动力性、通过能力(例如最大爬坡度,脱困能力)。尤其是对于传统混合动力车型,由于增加了电池包、电机、电控***,导致整车质量大,馈电后仅能依托于发动机的动力输出,这时通过能力和动力性会大打折扣,而采用本发明中的模式转换装置402的混合动力车型,可以有效提升动力性和通过能力。而且这两种传动模式,明显可以丰富车辆的驱动模式,从而可以使得车辆适应更多不同的工况。
其中,上述的N等于L挡相对于D挡的速比,在车辆处于L挡时,转换装置输入部4020和转换装置输出部4022之间通过直接传递模式进行动力传动,转换装置输入部4020的转速高于转换装置输出部4022的转速;在车辆处于D挡时,转换装置输入部4020和转换装置输出部4022之间通过降速传递模式进行动力传动,转换装置输入部4020的转速等于转换装置输出部4022的转速。
其中,模式转换装置402可以有利于动力源100在工作时实现第一电动发电机单元300的介入,并联式的动力源100和第一电动发电机单元300,通过直接的扭矩耦合,能够更好地突出并联式结构动力性强、结构简单和整车空间布置易实现的优势。
在纯电动工况下,第一电动发电机单元300具有很高的传动效率,模式转换装置402的 设置隔开了变速单元200、车轮和第一电动发电机302三者,使得三者中的任意两者可以绕开第三者工作,例如,变速单元200通过模式转换装置402与车轮之间动力传递,此时为纯燃油工况;又如,变速单元200通过模式转换装置402与第一电动发电机302动力传递,此时为驻车发电工况;再如,第一电动发电机302通过模式转换装置402与车轮之间动力传递,此时为纯电动工况。另外,这样还可以避免一般混合动力传动***中需要经过变速中复杂的换挡和传动链实现纯电动工况的问题,尤其适用于插电式混合动力车辆中。当然,三者也可以同时工作。
同时,模式转换装置402还能够实现动力传动***1000的超低速挡位输出,即在具有变速单元200的实施例中,来自动力源100的动力先经过变速单元200降速,再经过L挡降速,可以实现动力传动***1000的超低速挡位输出。由此可很大限度地放大发动机的扭矩输出。
在控制逻辑上,本发明提出的动力传动***1000,没有改变双离合变速基本架构和换挡逻辑,第一电动发电机单元300的介入仅表现为在输出端的扭矩叠加,因此动力源100及变速单元200的控制逻辑与第一电动发电机单元300的控制逻辑是独立的,发动机的动力输出和第一电动发电机302的动力输出相对独立,各个动力源输出控制逻辑简单易实现,而且这样有利于节省厂家的开发时间和成本,避免***较高的故障率,即便发动机与变速单元200***故障也不会影响纯电动时第一电动发电机单元300的动力输出。
而且,在转换装置输入部4020和转换装置输出部4022断开时,动力源100输出的动力适于依次通过变速单元200、转换装置输入部4020驱动第一电动发电机单元300发电。也就是说,在车辆处于驻车工况时,动力源100的动力可以传递给第一电动发电机单元300以供第一电动发电机单元300发电,从而可以实现驻车发电,这样驻车发电不需要增加额外的动力传动链,仅通过模式转换装置402即可实现驻车发电模式的切换,切换控制简单,传动效率高。其中第一电动发电机302设置成直连模式转换装置402,第一电动发电机302动力输出直接高效,制动能回馈效率高。
还有,变速单元200仅需要对发动机动力实现变速变矩,这样变速单元200不需要额外的设计变更,有利于变速单元200的小型化,以及可以减少整车开发成本,缩短开发周期。
最后,前面这些优势都是通过该模式转换装置402实现的,所以动力传动***1000具有很高的集成度。
其中,模式转换装置402的布置形式有多种,后面内容再一一详细描述。
如图21-图26所示,***动力输出部401可以为差速器,差速器可以包括两个半轴齿轮,两个半轴齿轮与车辆的两个半轴2000一一对应,车辆的动力传动***1000还包括:动力通断装置500,动力通断装置500适于选择性地接合两个半轴齿轮中的至少一个与对应的车辆 的半轴2000。可以理解的是,如果一侧的半轴2000和对应的半轴齿轮之间设置有动力通断装置500,该动力通断装置500可以控制该侧的半轴2000和半轴齿轮之间的接合断开状态,如果两侧的半轴2000分别和对应的半轴齿轮之间设置有动力通断装置500,每个动力通断装置500可以控制对应侧的接合断开状态。动力通断装置500可以有利于车辆在驻车工况时进行驻车发电,这样在车辆处于驻车工况时,第一电动发电机302直连模式转换装置402,第一电动发电机302动力输出直接高效,制动能回馈效率高。
如图21所示,动力通断装置500设置在左侧的半轴2000和对应的半轴齿轮之间,如图22所示,动力通断装置500可以为两个,一个动力通断装置500可以设置在左侧的半轴2000和对应的半轴齿轮之间,另一个动力通断装置500可以设置在右侧的半轴2000和对应的半轴齿轮之间。
其中,动力通断装置500的类型也有多种,例如,如图21和图22所示,动力通断装置500可以为离合器。优选地,如图23和图24所示,离合器可以为牙嵌式离合器。
当然,动力通断装置500还可以为其他类型,例如,如图25和图26所示,动力通断装置500可以为同步器。
根据本发明的一个优选实施例,如图2和图5所示,动力传动***1000还可以包括第二电动发电机600,第二电动发电机600位于动力源100与变速单元200之间,第二电动发电机600的一端直接与动力源100动力耦合连接,而且第二电动发电机600的另一端选择性地与变速单元200动力耦合连接。
如图34所示,第二电动发电机600与第一离合装置202的输入端可以同轴相连。第二电动发电机600可以设置在第一离合装置202的输入端和发动机之间,这样发动机的动力在向输入端传递时必然经过第二电动发电机600,此时第二电动发电机600可以作为发电机使用以进行驻车发电。
如图52-图64所示,第一离合装置202的输入端上可以设置有输入端外齿Z602,第二电动发电机600与输入端外齿Z602联动。第二电动发电机600的电机轴上设置有齿轮Z601,齿轮Z601与输入端外齿Z602啮合。这样发动机的动力可以通过输入端和输入端外齿Z602传递给第二电动发电机600,这样第二电动发电机600可以作为发电机使用以进行驻车发电。
根据本发明的另一个优选实施例,如图34-图64所示,动力传动***1000还可以包括:第二电动发电机600,第二电动发电机600位于动力源100和变速单元200之间,第二电动发电机600的一端与动力源100动力耦合连接,例如,第二电动发电机600的一端选择性地与动力源100动力耦合连接,第二电动发电机600的另一端选择性地与变速单元200动力耦合连接。
如图35所示,第二电动发电机600与发动机之间可以设置有第二离合装置L2。第二离 合装置L2可以为单离合器,单离合器可以控制发动机和第二电动发电机600之间的接合断开,以及可以控制发动机和第一离合装置202的输入端之间的接合断开。通过设置第二离合装置L2,可以合理控制第二电动发电机600的驻车发电状态,从而可以使得动力传动***1000结构简单且驱动模式转换可靠。
优选地,第二离合装置L2内置在第二电动发电机600的转子内部。这样可以更好地缩短动力传动***1000的轴向长度,从而可以减小动力传动***1000的体积,可以提高动力传动***1000在车辆上的布置灵活性。另外,第二电动发电机600还可以作为启动机使用。
优选地,动力源100、第二离合装置L2以及双离合器的输入端同轴布置。这样可以使得动力传动***1000结构紧凑,体积小。
需要说明的是,对于上述三个实施例的动力传动***1000,在轴向方向上,第二电动发电机600均可以位于动力源100和第一离合装置202之间,这样可以有效减少动力传动***1000的轴向长度,而且可以使得第二电动发电机600的位置布置合理,可以提高动力传动***1000的结构紧凑性。
第一电动发电机302为动力传动***1000的主驱动电机,所以第一电动发电机302的容量和体积较大。其中,对于第一电动发电机302和第二电动发电机600来说,第一电动发电机302的额定功率大于第二电动发电机600的额定功率。这样第二电动发电机600可以选取体积小且额定功率小的电动发电机,从而可以使得动力传动***1000结构简单,体积小,而且在驻车发电时,第二电动发电机600和动力源100之间传动路径短,发电效率高,从而可以有效将动力源100的一部分动力转化成电能。其中第一电动发电机302的峰值功率同样大于第二电动发电机600的峰值功率。
优选地,第一电动发电机302的额定功率为第二电动发电机600的额定功率的两倍或两倍以上。第一电动发电机302的峰值功率为第二电动发电机600的峰值功率的两倍或两倍以上。例如,第一电动发电机302的额定功率可以为60kw,第二电动发电机600的额定功率可以为24kw,第一电动发电机302的峰值功率可以为120kw,第二电动发电机600的峰值功率可以为44kw。
需要说明的是,差速器可以为常规的开放式差速器,例如,锥齿轮差速器或圆柱齿轮差速器,但不限于此;当然,差速器也可以是锁式差速器,例如,机械锁式差速器、电子锁式差速器等,动力传动***1000依据不同的车型选择不同的差速器类型,这样的选择主要依据包括整车成本、整车轻量化、整车越野性能等。差速器包括壳体4011,壳体4011可以为差速器的输入端。
车辆的动力传动***1000的驱动模式有多种,下面以图1所示动力传动***1000为例进行详细说明。
车辆的动力传动***1000具有第一动力源驱动模式,车辆的动力传动***1000处于第一动力源驱动模式时,第一电动发电机单元300不工作,变速单元200与动力源100动力耦合连接,转换装置输入部4020和转换装置输出部4022动力耦合连接,动力源100输出的动力依次通过变速单元200、转换装置输入部4020和转换装置输出部4022输出给***动力输出部401,而且转换装置输入部4020的转速与***动力输出部401的输入端的转速相同。此为车辆的正常驱动。
车辆的动力传动***1000具有第二动力源驱动模式,车辆的动力传动***1000处于第二动力源驱动模式时,第一电动发电机单元300不工作,变速单元200与动力源100动力耦合连接,转换装置输入部4020和转换装置输出部4022动力耦合连接,动力源100输出的动力依次通过变速单元200、转换装置输入部4020和转换装置输出部4022输出给***动力输出部401的输入端,而且转换装置输入部4020的转速高于***动力输出部401的输入端的转速。这样动力源100输出的动力经过变速单元200的一次降速后再经过模式转换装置402再次降速,从而可以更好地起到减速增矩的效果,进而可以提高车辆的通过能力。
车辆的动力传动***1000具有第一纯电动驱动模式,车辆的动力传动***1000处于第一纯电动驱动模式时,动力源100不工作,转换装置输入部4020和转换装置输出部4022动力耦合连接,第一电动发电机单元300输出的动力依次通过转换装置输入部4020和转换装置输出部4022输出给***动力输出部401,而且转换装置输入部4020的转速与***动力输出部401的输入端的转速相同。这样第一电动发电机302的动力输出路径短,传动效率高,从而可以提高第一电动发电机302的驱动效率,可以提高车辆的动力性。
车辆的动力传动***1000具有第二纯电动驱动模式,车辆的动力传动***1000处于第二纯电动驱动模式时,动力源100不工作,转换装置输入部4020和转换装置输出部4022动力耦合连接,第一电动发电机单元300输出的动力依次通过转换装置输入部4020和转换装置输出部4022输出给***动力输出部401的输入端,而且转换装置输入部4020的转速高于***动力输出部401的输入端的转速。这样第一电动发电机302的动力输出路径短,传动效率高,而且经过模式转换装置402的降速,可以丰富动力传动***1000的驱动模式,可以使得车轮转速适宜,可以提高车辆的通过能力。
车辆的动力传动***1000具有反拖启动模式,车辆的动力传动***1000处于反拖启动模式时,第一电动发电机302输出的动力依次通过转换装置输入部4020输出给动力源100,带动动力源100启动。此时,第一电动发电机302作为启动机使用,这样第一电动发电机302可以快速启动发动机,可以使得发动机启动效率快,而且可以减少第一电动发电机302能量损耗。
车辆的动力传动***1000具有第一混动驱动模式,车辆的动力传动***1000处于第一 混动驱动模式时,动力源100和第一电动发电机单元300均工作,变速单元200与动力源100动力耦合连接,转换装置输入部4020和转换装置输出部4022动力耦合连接,动力源100输出的动力依次通过变速单元200、转换装置输入部4020和转换装置输出部4022输出给***动力输出部401,第一电动发电机单元300输出的动力依次通过转换装置输入部4020和转换装置输出部4022输出给***动力输出部401,动力源100和第一电动发电机单元300输出的动力耦合后输出给转换装置输入部4020,而且转换装置输入部4020的转速与***动力输出部401的输入端的转速相同。这样,动力源100的动力传动效率高,控制策略简单,第一电动发电机302输出路径短,传动效率高,从而可以提高第一电动发电机302的驱动效率,可以提高车辆的动力性。
车辆的动力传动***1000具有第二混动驱动模式,车辆的动力传动***1000处于第二混动驱动模式时,动力源100和第一电动发电机单元300均工作,变速单元200与动力源100动力耦合连接,转换装置输入部4020和转换装置输出部4022动力耦合连接,动力源100输出的动力依次通过变速单元200、转换装置输入部4020和转换装置输出部4022输出给***动力输出部401,第一电动发电机单元300输出的动力依次通过转换装置输入部4020和转换装置输出部4022输出给***动力输出部401,动力源100和第一电动发电机单元300输出的动力耦合后输出给转换装置输入部4020,而且转换装置输入部4020的转速高于***动力输出部401的输入端的转速。这样动力源100输出的动力经过变速单元200的一次降速后再经过模式转换装置402再次降速,从而可以更好地起到减速增矩的效果,进而可以提高车辆的通过能力。而且,第一电动发电机302的动力输出路径短,传动效率适宜,从而可以提高第一电动发电机302的驱动效率,可以提高车辆的通过能力。
车辆的动力传动***1000具有第一行车发电模式,车辆的动力传动***1000处于第一行车发电模式时,动力源100工作,变速单元200与动力源100动力耦合连接,转换装置输入部4020和转换装置输出部4022动力耦合连接,动力源100输出的一部分动力依次通过变速单元200、转换装置输入部4020和转换装置输出部4022输出给***动力输出部401,且转换装置输入部4020的转速与***动力输出部401的输入端的转速相同,动力源100输出的另一部分动力依次通过变速单元200、转换装置输入部4020输出给第一电动发电机单元300,驱动第一电动发电机单元300发电。这样可以形成动力源100边驱车边发电的形式,而且动力源100的动力输出效率高,控制策略简单。
车辆的动力传动***1000具有第二行车发电模式,车辆的动力传动***1000处于第二行车发电模式时,动力源100工作,变速单元200与动力源100动力耦合连接,转换装置输入部4020和转换装置输出部4022动力耦合连接,动力源100输出的一部分动力依次通过变速单元200、转换装置输入部4020和转换装置输出部4022输出给***动力输出部401,且 转换装置输入部4020的转速高于***动力输出部401的输入端的转速,动力源100输出的另一部分动力依次通过变速单元200、转换装置输入部4020输出给第一电动发电机单元300,驱动第一电动发电机单元300发电。这样可以形成动力源100边驱车边发电的形式,而且动力源100的动力经过两次降速,从而可以提高车辆的通过能力,而且第一电动发电机302发电。
车辆的动力传动***1000具有第一制动能回收模式,车辆的动力传动***1000处于第一制动能回收模式时,转换装置输入部4020和转换装置输出部4022动力耦合连接,来自车辆的车轮的动力依次通过***动力输出部401、转换装置输出部4022、转换装置输入部4020驱动第一电动发电机单元300发电,而且转换装置输入部4020的转速与***动力输出部401的输入端的转速相同。此时,第一电动发电机302可以回收来自车轮的能量,可以减少能量的浪费,可以提高车辆的行驶里程。
车辆的动力传动***1000具有第二制动能回收模式,车辆的动力传动***1000处于第二制动能回收模式时,转换装置输入部4020和转换装置输出部4022动力耦合连接,来自车辆的车轮的动力依次通过***动力输出部401、转换装置输出部4022、转换装置输入部4020驱动第一电动发电机单元300发电,而且转换装置输入部4020的转速高于***动力输出部401的输入端的转速。此时,第一电动发电机302可以回收来自车轮的能量,发电效率高,而且可以减少能量的浪费,可以提高车辆的行驶里程。
车辆的动力传动***1000具有第一驻车发电模式,车辆的动力传动***1000处于第一驻车发电模式时,第二电动发电机600与动力源100动力耦合连接,转换装置输入部4020与转换装置输出部4022断开,动力源100输出的动力直接驱动第二电动发电机600发电。第二电动发电机单元600和动力源100之间的传动路径短,发电效率高,可以减少能量的浪费。
车辆的动力传动***1000具有第二驻车发电模式,车辆的动力传动***1000处于第二驻车发电模式时,第二电动发电机600与动力源100动力耦合连接,动力源100与变速单元200动力耦合连接,转换装置输入部4020与转换装置输出部4022断开,动力源100输出的一部分动力直接驱动第二电动发电机600发电,动力源100输出的另一部分动力依次通过变速单元200、转换装置输入部4020输出给第一电动发电机单元300并驱动第一电动发电机单元300发电。此时,第一电动发电机单元300和第二电动发电机单元600可以同时发电,发电效率高。
车辆的动力传动***1000具有第三行车发电模式,车辆的动力传动***1000处于第三行车发电模式时,动力源100工作,第二电动发电机600与动力源100动力耦合连接,动力源100与变速单元200动力耦合连接,转换装置输入部4020和转换装置输出部4022动力耦 合连接,动力源100输出的一部分动力依次通过变速单元200、转换装置输入部4020和转换装置输出部4022输出给***动力输出部401单元,且转换装置输入部4020的转速高于或等于***动力输出部401的输入端的转速,动力源100输出的另一部分动力直接驱动第二电动发电机600发电。这样可以形成动力源100边驱车边发电的形式,而且动力源100的动力输出效率高,第二电动发电机600的发电效率高,另外,动力传动***1000控制策略简单。
车辆的动力传动***1000具有第四行车发电模式,车辆的动力传动***1000处于第四行车发电模式时,动力源100工作,第二电动发电机600与动力源100动力耦合连接,动力源100与变速动力耦合连接,转换装置输入部4020和转换装置输出部4022动力耦合连接,动力源100输出的第一部分动力依次通过变速单元200、转换装置输入部4020和转换装置输出部4022输出给***动力输出部401,且转换装置输入部4020的转速高于或等于***动力输出部401的输入端的转速,动力源100输出的第二部分动力依次通过转换装置输入部4020输出给第一电动发电机单元300,驱动第一电动发电机单元300发电,动力源100输出的第三部分动力直接驱动第二电动发电机600发电。这样可以形成动力源100边驱车边发电的形式,而且第一电动发电机302和第二电动发电机600的发电效率高。
车辆的动力传动***1000具有快速启动模式,车辆的动力传动***1000处于快速启动模式时,第二电动发电机600与动力源100动力耦合连接,第二电动发电机600输出的动力直接驱动动力源100启动。第二电动发电机600可以作为启动机使用,而且启动效率高。
上述的动力传动***1000所传输的动力均是通过***动力输出部401输出给车辆的两个车轮,但是动力传动***1000并不限于此,动力传动***1000还可以包括电驱动***700,电驱动***700可以用于驱动车辆的另外两个车轮,从而可以实现车辆的四驱。
下面详细描述一下根据电驱动***700的多种布置形式。
如图27所示,电驱动***700可以包括驱动***输入部和驱动***输出部,驱动***输出部适于将来自驱动***输入部的动力输出给另外两个车轮,例如后轮。这样通过增加电驱动***700,可以增加车辆的驱动模式,例如驱动模式可以进一步地分为前驱模式、后驱模式和四驱模式,从而可以使得车辆更加适用于不同的路况,可以提高车辆的动力性。
例如,如图27所示,电驱动***700还包括电驱动***动力输出部710,驱动***输出部适于将来自驱动***输入部的动力通过电驱动***动力输出部710输出给另外两个车轮。电驱动***动力输出部710可以便于将驱动***输出部传递来的动力分配给两侧的两个车轮,从而可以平稳地驱动车辆。
具体地,驱动***输入部可以为驱动电动发电机720,驱动电动发电机720可以为后轮电动发电机,后轮电动发电机可以通过减速机构驱动两个后轮,驱动***输出部可以为齿轮减速器730(即减速机构)。由此,当驱动电动发电机720工作时,驱动电动发电机720产 生的动力可以经过齿轮减速器730的减速增矩之后传递给电驱动***动力输出部710,电驱动***动力输出部710可以便于将驱动***输出部传递来的动力分配给两侧的两个车轮,从而可以平稳地驱动车辆。
又如,如图28所示,驱动***输入部包括两个驱动电动发电机720,驱动***输出部包括两个驱动***子输出部,每个驱动***子输出部适于将来自对应的驱动电动发电机720的动力输出给另外两个车轮中对应的一个车轮。也就是说,每个车轮对应有一个驱动电动发电机720和驱动***子输出部,这样可以省略电驱动***动力输出部710,而且两个驱动电动发电机720可以调节自身的转速以实现两个车轮之间的差速,从而可以使得动力传动***1000结构简单且可靠。
如图28所示,上述的另外两个车轮选择性同步。例如,其中一个半轴2000上可以设置有半轴同步器以适于选择性地接合另一个半轴2000。这样可以实现两个车轮的同向同速转动,也可以实现两个车轮的差速运动,从而可以保证车辆的行驶平稳性。
如图29所示,两个驱动电动发电机720选择性同步。例如,一个电机输出轴721上可以设置有电机输出轴721同步器以选择性地接合另一个电机输出轴721,这样可以实现两个车轮的同向同速转动,也可以实现两个车轮的差速运动,从而可以保证车辆的行驶平稳性。
如图30和图31所示,两个驱动***子输出部选择性同步。也就是说,两个驱动***子输出部中的一个输出轴上可以设置有子输出部同步器以用于同步另一个驱动***子输出部,这样可以实现两个车轮的同向同速转动,也可以实现两个车轮的差速运动,从而可以保证车辆的行驶平稳性。
如图27-图30所示,驱动***子输出部可以包括二级齿轮减速器,经过二级减速的驱动电动发电机720的动力可以传递给车轮以驱动车轮转动。
或者如图31所示,驱动***子输出部可以包括二挡变速器。驱动电动发电机720选择性地接合其中一个挡位,通过设置二挡变速器,可以改变驱动电动发电机720的输出给车轮的转速,从而可以丰富动力传动***1000的驱动模式,可以提高车辆的经济性和动力性。
具体地,驱动电动发电机720可以包括电机输出轴721,二级齿轮减速器730或者二挡变速器均可以包括驱动***子输出部输入轴,驱动***子输出部输入轴与电机输出轴721固定相连且同轴设置。这样驱动电动发电机720可以通过电机输出轴721将动力传递给驱动***子输出部输入轴,然后通过驱动***子输出部将动力传递给车轮以驱动车辆运动。
再如,如图32所示,电驱动***700包括两个轮边电机,每个轮边电机直接驱动另外两个车轮中的对应一个车轮,另外两个车轮选择性同步。一个半轴2000上可以设置有半轴同步器以选择性地接合另一个半轴2000,这样轮边电机可以分别驱动对应的车轮转动,而且通过断开半轴同步器,可以实现两个车轮的差速运动,从而可以保证车辆的行驶平稳性。
下面再结合多个附图详细描述模式转换装置402的多个布置形式。
根据本发明的第一实施例,如图7-图19所示,模式转换装置402还可以包括第一转换部4021a和第二转换部4021b,转换装置输出部4022选择性与第一转换部4021a和第二转换部4021b中的一个接合,转换装置输入部4020与第一转换部4021a固定相连,转换装置输出部4022与第二转换部4021b接合,从而适于使转换装置输入部4020输出的转速降低后输出给***动力输出部401的输入端。
这样在转换装置输出部4022与第一转换部4021a接合时,适于使转换装置输入部4020输出的转速与***动力输出部401的输入端转速相同。
由此,可以理解的是,动力源100和/或第一电动发电机单元300产生的动力传递至转换装置输入部4020后,转换装置输入部4020可以将动力传递给第一转换部4021a和第二转换部4021b,转换装置输出部4022通过合理选取第一转换部4021a和第二转换部4021b,可以控制传递给车轮的转速,进而可以控制车辆的车速,使得车辆的车速更加适于目前的车况,可以提高车辆的行驶平稳性和动力性。
在第一转换部4021a和第二转换部4021b均与转换装置输出部4022断开时,动力源100适于通过转换装置输入部4020驱动第一电动发电机单元300发电。可以理解的是,当第一转换部4021a和第二转换部4021b均与转换装置输出部4022断开时,动力源100无法向***动力输出部401传递动力,动力源100的动力可以经过转换装置输入部4020传递给第一电动发电机单元300,第一电动发电机单元300中的第一电动发电机302可以作为发电机使用以进行发电。这样可以实现车辆的驻车发电模式,进而可以避免能源的浪费,可以节省能源,可以提高车辆的动力性和经济性。
根据本发明的第一优选实施例,如图7-图18所示,模式转换装置402可以包括:主减速器从动齿轮Z’、行星齿轮机构P和转换装置接合器S,其中,主减速器从动齿轮Z’即转换装置输入部4020,行星齿轮机构P可以包括第一元件P1、第二元件P2和第三元件P3,第一元件P1与主减速器从动齿轮Z’固定,这样的话,第一元件P1和主减速器从动齿轮Z’之间可以传递动力,第二元件P2固定设置,第一元件P1为第一转换部4021a,第三元件P3为第二转换部4021b。也就是说,第一元件P1可以与第三元件P3传动,在此传动过程中,第一元件P1的转速高于第三元件P3的转速。而且,行星齿轮机构P可以包括:太阳轮、行星轮、行星架和齿圈,行星轮安装在行星架上,而且行星轮啮合在太阳轮和齿圈之间,这样太阳轮、行星架和齿圈均可以为第一元件P1、第二元件P2和第三元件P3中的一个。
如图7所示,第一元件P1为太阳轮,太阳轮直接与主减速器从动齿轮Z’固定连接,第二元件P2为齿圈,第三元件P3为行星架。
如图8所示,第一元件P1为齿圈,齿圈直接与主减速器从动齿轮Z’固定连接,第二元 件P2为太阳轮,第三元件P3为行星架。
如图9所示,第一元件P1为太阳轮,太阳轮直接与主减速器从动齿轮Z’固定连接,第二元件P2为行星架,第三元件P3为齿圈。
进一步地,模式转换装置402还可以包括:转换装置接合器S,转换装置输出部4022通过转换装置接合器S选择性接合第一元件P1和第三元件P3中的一个。优选地,转换接合装置可以为转换装置同步器。这样转换装置同步器可以将转换装置输出部4022选择性地接合第一元件P1和第三元件P3。当转换装置同步器接合第一元件P1时,转换装置输入部4020的转速与转换装置输出部4022的转速相同,当转换装置同步器接合第三元件P3时,转换装置输入部4020的转速大于转换装置输出部4022的转速。
转换装置接合器S的布置形式有多种,下面结合附图详细描述。
根据本发明的第一具体实施例,如图7-图9所示,在行星齿轮机构P的中心轴线的轴向上,转换装置接合器S位于第一元件P1和第三元件P3之间。这样可以节省一个转换装置同步器,从而可以使得模式转换装置402结构简单,控制逻辑简单。
其中,转换装置输出部4022可以为轴套,轴套可以套设在半轴2000上,轴套的一端与***动力输出部401的输入端固定相连,转换装置接合器S固定设置在轴套的另一端。这样转换装置输出部4022可以及时且可靠地将动力输出给***动力输出部401。
具体地,第一元件P1和第三元件P3中的靠近***动力输出部401的输入端的那个元件、主减速器从动齿轮Z’均空套在轴套上,轴套套设在车辆的半轴2000上,第一元件P1和第三元件P3中的远离***动力输出部401的输入端的那个元件空套在车辆的半轴2000上。
如图7所示,第三元件P3更靠近***动力输出部401,第三元件P3空套在轴套上,如图8所示,第一元件P1更靠近***动力输出部401,第一元件P1空套在轴套上,如图9所示,第三元件P3更靠近***动力输出部401,第三元件P3空套在轴套上。这样可以使得模式转换装置402结构紧凑,且布置合理。
行星齿轮机构P还包括第一元件接合部P4和第三元件接合部P5,第一元件接合部P4与第一元件P1固定相连,而且第一元件接合部P4适于选择性与转换装置接合器S接合,第三元件接合部P5与第三元件P3固定相连,而且第三元件接合部P5适于选择性与转换装置接合器S接合,在行星齿轮机构P的中心轴线的轴向上,转换装置接合器S位于第一元件接合部P4和第三元件接合部P5限定的空间内。第一元件接合部P4可以便于第一元件P1和转换装置同步器的接合断开,第三元件接合部P5可以便于第三元件P3和转换装置接合器S的接合断开。而且转换装置接合器S位于第一元件接合部P4和第三元件接合部P5之间。
根据本发明的第二具体实施例,与上述的第一具体实施例主要不同的是,如图10-图12所示,转换装置接合器S可以包括间隔开设置的第一接合部和第二接合部,第一接合部适于 选择性接合转换装置输出部4022与第一元件P1,第二接合部适于选择性接合转换装置输出部4022与第三元件P3。也就是说,当第一接合部接合转换装置输出部4022与第一元件P1时,转换装置输入部4020的转速和转换装置输出部4022的转速相同,当第二接合部接合转换装置输出部4022和第三元件P3时,转换装置输入部4020的转速大于转换装置输出部4022的转速。这样通过分开布置第一接合部和第二接合部,可以使得转换装置接合器S布置简单,而且可以便于拨叉机构与第一接合部和第二接合部之间的配合。
进一步地,如图10-图12所示,转换装置输出部4022可以为轴套,轴套的一端与***动力输出部401的输入端固定相连,轴套的另一端穿过行星齿轮结构,第一接合部和第二接合部中的一个固定设在轴套的另一端,第一接合部和第二接合部中的另一个固定设置在轴套的未穿过行星齿轮机构P的部分上。需要说明的是,第一接合部和第二接合部的布置位置根据第一元件P1和第三元件P3进行调节,第一元件P1相较于第三元件P3远离***动力输出部401时,第一接合部固定在轴套的另一端,第二接合部固定设置在轴套的未穿过行星齿轮机构P的部分上。第一元件P1相较于第三元件P3靠近***动力输出部401时,第二接合部固定在轴套的另一端,第一接合部固定设置在轴套的未穿过行星齿轮机构P的部分上。
具体地,如图10-图12所示,行星齿轮机构P还可以包括第一元件接合部P4和第三元件接合部P5,第一元件接合部P4与第一元件P1固定相连,而且第一元件接合部P4适于选择性与转换装置接合器S接合,第三元件接合部P5与第三元件P3固定相连,而且第三元件接合部P5适于选择性与转换装置接合器S接合,在行星齿轮机构P的中心轴线的轴向上,第一元件接合部P4和第三元件接合部P5均位于第一接合部和第二接合部之间。这样一方面可以便于转换装置接合器S控制第一元件P1和转换装置输出部4022之间的接合,以及可以便于控制第三元件P3和转换装置输出部4022之间的接合,从而可以使得模式转换装置402结构简单,布局合理,控制逻辑简单。
可选地,如图10-图12所示,第一元件P1、第三元件P3、主减速器从动齿轮Z’可以均空套在轴套上,轴套套设在车辆的半轴2000上。轴套相对半轴2000可以转动,第一元件P1、第三元件P3、主减速器从动齿轮Z’相对轴套可以转动,这样可以合理利用半轴2000上的空间,而且可以保证轴套、第一元件P1、第三元件P3、主减速器从动齿轮Z’的布置可靠性,进一步地可以降低动力传动***1000的布置难度。
其中,转换装置接合器S可以包括直接挡同步器SD和低挡同步器SL,第一接合部为直接挡同步器SD的一部分,第二接合部为低挡同步器SL的一部分。直接挡同步器SD接合第一元件接合部P4和转换装置输出部4022可以保证转换装置输入部4020和转换装置输出部4022的转速相同,低挡同步器SL接合第三元件接合部P5和转换装置输出部4022可以保证转换装置输入部4020的转速大于转换装置输出部4022的转速。
本发明的第三具体实施例与第一具体实施例大致相同,具体区别点参照下面内容。如图13-图18所示,在行星齿轮机构P的中心轴线的轴向上,转换装置接合器S位于行星齿轮机构P的一侧。具体地,如图13-图15所示,在行星齿轮机构P的中心轴线的轴向上,转换装置接合器S位于行星齿轮机构P的右侧。如图16-图18所示,在行星齿轮机构P的中心轴线的轴向上,转换装置接合器S位于行星齿轮机构P的左侧。这样在轴向方向上,行星齿轮机构P和转换装置接合器S间隔开设置,从而可以便于拨叉机构的布置,可以降低拨叉机构的布置难度,进而可以提高动力传动***1000的布置便利性,以及控制便利性。
可选地,如图13-图15所示,转换装置接合器S设置在转换装置输出部4022上,转换装置输出部4022和转换装置接合器S均位于行星齿轮机构P的一侧。也就是说,转换装置输出部4022和转换装置接合器S可以位于行星齿轮机构P的同一侧,例如,右侧。这样可以使得行星齿轮机构P、转换装置接合器S和转换装置输出部4022轴向位置布置合理,从而可以便于拨叉机构的布置,以及可以提高模式转换装置402的结构可靠性。
其中,如图13-图15所示,在行星齿轮机构P的中心轴线的轴向上,从远离转换装置接合器S的一端向靠近转换装置接合器S的一端,依次设置有与第一元件P1和第三元件P3中位于外侧的那个元件对应的连接盘部分、与位于第一元件P1和第三元件P3中位于内侧的那个元件对应的连接盘部分。在行星齿轮机构P的中心轴线的径向上,从外向内依次套设有与第一元件P1和第三元件P3中位于内侧的那个元件对应的套筒部分、与第一元件P1和第三元件P3中位于外侧的那个元件对应的套筒部分。
下面以图13所示的动力传动***1000为例进行举例描述。
如图13所示,在行星齿轮机构P的中心轴线的轴向上,从远离转换装置接合器S的一端向靠近转换装置接合器S的一端,第三元件P3的连接盘部分、第一元件P1的连接盘部分依次排布。在行星齿轮机构P的中心轴线的径向上,从外向内依次套设有与第一元件P1对应的套筒部分、与第三元件P3对应的套筒部分,这样可以使得第一元件接合部P4和第三元件接合部P5在轴向上和径向上均布置合理,从而可以使得模式转换装置402布置合理。
另外可选地,如图16-图18所示,转换装置输出部4022的一部分可以穿过行星齿轮机构P,转换装置接合器S设置在转换装置输出部4022的上述一部分上。也就是说,转换装置接合器S和***动力输出部401分别位于行星齿轮机构P的两侧,而且行星齿轮机构P可以套设在转换装置输出部4022上,从而可以合理利用模式转换装置402的轴向空间和径向空间。具体地,转换装置输出部4022可以为轴套,轴套套设在车辆的半轴2000上。
其中,如图16-图18所示,行星齿轮机构P还可以包括第一元件接合部P4和第三元件接合部P5,第一元件接合部P4与第一元件P1固定相连,而且第一元件接合部P4适于选择性与转换装置接合器S接合,第三元件接合部P5与第三元件P3固定相连,而且第三元件接 合部P5适于选择性与转换装置接合器S接合。通过设置第一元件接合部P4和第三元件接合部P5,可以便于转换装置输出部4022分别与第一元件P1和第三元件P3选择性地接合。
可选地,如图16-图18所示,第一元件接合部P4和第三元件接合部P5均可以包括连接盘部分和套筒部分,连接盘部分与行星齿轮机构P的中心轴线垂直,套筒部分与行星齿轮机构P的中心轴线平行。连接盘部分的外沿与对应的元件固定相连,连接盘部分的内沿与套筒部分的一端相连,套筒部分的另一端适于选择性与转换装置接合器S接合。这样通过设置连接盘部分和套筒部分,可以保证第一元件P1和转换装置接合器S之间的接合断开可靠性,以及可以保证第三元件P3和转换装置接合器S之间的接合断开可靠性。
其中,如图16-图18所示,在行星齿轮机构P的中心轴线的轴向上,从远离转换装置接合器S的一端向靠近转换装置接合器S的一端,依次设置有与第一元件P1和第三元件P3中位于内侧的那个元件对应的连接盘部分、与第一元件P1和第三元件P3中位于外侧的那个元件对应的连接盘部分。在行星齿轮机构P的中心轴线的径向上,从外向内依次套设有与第一元件P1和第三元件P3中位于外侧的那个元件对应的套筒部分、与第一元件P1和第三元件P3中位于内侧的那个元件对应的套筒部分。
下面以图16所示的动力传动***1000为例进行举例描述。
如图16所示,在行星齿轮机构P的中心轴线的轴向上,从远离转换装置接合器S的一端向靠近转换装置接合器S的一端,依次设置有与第三元件P3对应的连接盘部分和与第一元件P1对应的连接盘部分,在行星齿轮机构P的中心轴线的径向上,从外向内依次套设有与第三元件P3对应的套筒部分和与第一元件P1对应的套筒部分。
其中,如图13-图18所示,转换装置接合器S均可以为转换装置同步器。
根据本发明的第二实施例,如图19所示,模式转换装置402还可以包括第一转换部4021a和第二转换部4021b,转换装置输出部4022选择性与第一转换部4021a和第二转换部4021b中的一个接合,转换装置输入部4020与第一转换部4021a固定相连,转换装置输出部4022与第二转换部4021b接合,从而适于使转换装置输出部4022的转速依次通过第一转换部4021a和第二转换部4021b降低后输出给***动力输出部401的输入端。
这样在转换装置输出部4022与第一转换部4021a接合时,适于使转换装置输入部4020输出的转速与***动力输出部401的输入端转速相同。
由此,可以理解的是,动力源100和/或第一电动发电机单元300产生的动力传递至转换装置输入部4020后,转换装置输入部4020可以传递给第一转换部4021a和第二转换部4021b,转换装置输出部4022通过合理选取第一转换部4021a和第二转换部4021b,可以控制传递给车轮的转速,进而可以控制车辆的车速,使得车辆的车速更加适于目前的车况,可以提高车辆的行驶平稳性和动力性。
在第一转换部4021a和第二转换部4021b均与转换装置输出部4022断开时,动力源100适于通过转换装置输入部4020驱动第一电动发电机单元300发电。可以理解的是,当第一转换部4021a和第二转换部4021b均与转换装置输出部4022断开时,动力源100无法向***动力输出部401传递动力,动力源100的动力可以经过转换装置输入部4020传递给第一电动发电机单元300,第一电动发电机单元300中的第一电动发电机302可以作为发电机使用以进行发电。这样可以实现车辆的驻车发电模式,进而可以避免能源的浪费,可以节省能源,可以提高车辆的动力性和经济性。
如图19所示,在模式转换装置402中,转换装置输入部4020为主减速器从动齿轮Z’,第一转换部4021a为第一转换齿轮ZZ1,第二转换部4021b为第二转换齿轮ZZ2,但是,模式转换装置402还包括:转换装置轴Ⅶ,主减速器从动齿轮Z’、第一转换齿轮ZZ1和第二转换齿轮ZZ2均空套在车辆的半轴2000上,转换装置轴Ⅶ上固定有第三转换齿轮ZZ3和第四转换齿轮ZZ4,第一转换齿轮ZZ1与第三转换齿轮ZZ3啮合,第二转换齿轮ZZ2与第四转换齿轮ZZ4啮合。这样在第一转换齿轮ZZ1和第三转换齿轮ZZ3之间形成一级减速,在第二转换齿轮ZZ2和第四转换齿轮ZZ4之间形成二级减速,从而可以使得第一转换齿轮ZZ1的转速高于第二转换齿轮ZZ2的转速。
具体地,如图19所示,主减速器从动齿轮Z’可以与第一转换齿轮ZZ1构成双联齿结构,换言之,双联齿结构中的一个齿轮构成主减速器从动齿轮Z’且另一个齿轮构成第一转换齿轮ZZ1,这样通过设置双联齿结构,可以使得模式转换装置402结构简单,工作可靠,而且可以使得动力传动***1000结构简单,工作可靠。
进一步地,如图19所示,模式转换装置402还可以包括转换装置接合器S,转换装置输出部4022通过转换装置接合器S选择性与第一转换部4021a或第二转换部4021b接合。此处,可以理解的是,转换装置输出部4022可以选择性地接合和断开第一转换部4021a,以及转换装置输出部4022可以选择性地接合和断开第二转换部4021b。通过切换转换装置接合器S的状态和接合目标,可以改变传递给转换装置输出部4022的输出转速,从而可以改变车轮的转速,进而可以丰富车辆的驱动模式,可以提高车辆的经济性和动力性。其中,转换装置接合器S可以为转换装置同步器,该转换装置同步器设置在第一转换齿轮ZZ1和第二转换齿轮ZZ2之间,从而可以减少同步器的数量,可以使得模式转换装置402结构简单,成本低。
如图19所示,转换装置输出部4022可以为轴套,轴套的一端与***动力输出部401的输入端固定相连,转换装置接合器S设置在轴套的另一端。这样可以保证转换装置输出部4022和对应的第一转换齿轮ZZ1和第二转换齿轮ZZ2之间的同步可靠性。而且通过合理的径向套设布置,可以有效节省模式转换装置402的空间,从而可以使得模式转换装置402结 构紧凑,体积小,占用动力传动***1000的空间小。
进一步地,轴套可以套设在车辆的半轴2000上,第二转换齿轮ZZ2可以空套在轴套上。这样可以使得第二转换齿轮ZZ2的布置位置合理,而且可以保证模式转换装置402的结构可靠性。
下面详细描述一下图7-图19中所示的动力传动***1000所对应的多种驱动模式。
车辆的动力传动***1000具有第一动力源驱动模式,车辆的动力传动***1000处于第一动力源驱动模式时,第一电动发电机单元300不工作,转换装置输出部4022与第一转换部4021a接合,动力源100输出的动力依次通过转换装置输入部4020、第一转换部4021a、转换装置输出部4022输出给***动力输出部401的输入端,转换装置输入部4020输出的转速与***动力输出部401的输入端的转速相同。
车辆的动力传动***1000具有第二动力源驱动模式,车辆的动力传动***1000处于第二动力源驱动模式时,第一电动发电机单元300不工作,转换装置输出部4022与第二转换部4021b接合,动力源100输出的动力依次通过转换装置输入部4020、第二转换部4021b、转换装置输出部4022输出给***动力输出部401的输入端,转换装置输入部4020输出的转速高于***动力输出部401的输入端的转速。
车辆的动力传动***1000具有第一纯电动驱动模式,车辆的动力传动***1000处于第一纯电动驱动模式时,动力源100不工作,转换装置输出部4022与第一转换部4021a接合,第一电动发电机单元300输出的动力依次通过转换装置输入部4020、第一转换部4021a、转换装置输出部4022输出给***动力输出部401的输入端,转换装置输入部4020输出的转速与***动力输出部401的输入端的转速相同。
车辆的动力传动***1000具有第二纯电动驱动模式,车辆的动力传动***1000处于第二纯电动驱动模式时,动力源100不工作,转换装置输出部4022与第二转换部4021b接合,第一电动发电机单元300输出的动力依次通过转换装置输入部4020、第二转换部4021b、转换装置输出部4022输出给***动力输出部401的输入端,转换装置输入部4020输出的转速高于***动力输出部401的输入端的转速。
车辆的动力传动***1000具有第一混动驱动模式,车辆的动力传动***1000处于第一混动驱动模式时,动力源100和第一电动发电机单元300均工作,转换装置输出部4022与第一转换部4021a接合,动力源100和第一电动发电机单元300输出的动力均依次通过转换装置输入部4020、第一转换部4021a、转换装置输出部4022输出给***动力输出部401的输入端,转换装置输入部4020输出的转速与***动力输出部401的输入端的转速相同。
车辆的动力传动***1000具有第二混动驱动模式,车辆的动力传动***1000处于第二混动驱动模式时,动力源100和第一电动发电机单元300均工作,转换装置输出部4022与 第二转换部4021b接合,动力源100和第一电动发电机单元300输出的动力均依次通过转换装置输入部4020、第二转换部4021b、转换装置输出部4022输出给***动力输出部401的输入端,转换装置输入部4020输出的转速高于***动力输出部401的输入端的转速。
车辆的动力传动***1000具有第一行车发电模式,车辆的动力传动***1000处于第一行车发电模式时,动力源100工作,转换装置输出部4022与第一转换部4021a接合,动力源100输出的一部分动力依次通过转换装置输入部4020、第一转换部4021a、转换装置输出部4022输出给***动力输出部401的输入端,转换装置输入部4020输出的转速与***动力输出部401的输入端的转速相同;动力源100输出的另一部分动力通过转换装置输入部4020驱动第一电动发电机单元300发电。
车辆的动力传动***1000具有第二行车发电模式,车辆的动力传动***1000处于第二行车发电模式时,动力源100工作,转换装置输出部4022与第二转换部4021b接合,动力源100输出的一部分动力依次通过转换装置输入部4020、第二转换部4021b、转换装置输出部4022输出给***动力输出部401的输入端,转换装置输入部4020输出的转速高于***动力输出部401的输入端的转速;动力源100输出的另一部分动力通过转换装置输入部4020驱动第一电动发电机单元300发电。
车辆的动力传动***1000具有第一制动能回收模式,车辆的动力传动***1000处于第一制动能回收模式时,转换装置输出部4022与第一转换部4021a接合,来自车辆的车轮的动力依次通过***动力输出部401、转换装置输出部4022、第一转换部4021a、转换装置输入部4020输出给第一电动发电机单元300,并驱动第一电动发电机单元300发电,转换装置输入部4020输出的转速与***动力输出部401的输入端的转速相同。
车辆的动力传动***1000具有第二制动能回收模式,车辆的动力传动***1000处于第二制动能回收模式时,转换装置输出部4022与第二转换部4021b接合,来自车辆的车轮的动力依次通过***动力输出部401、转换装置输出部4022、第二转换部4021b、转换装置输入部4020输出给第一电动发电机单元300,并驱动第一电动发电机单元300发电,转换装置输入部4020输出的转速高于***动力输出部401的输入端的转速。
根据本发明的第三实施例,如图20所示,模式转换装置402还可以包括第一转换部4021a和第二转换部4021b,转换装置输出部4022与***动力输出部401的输入端相连,转换装置输入部4020适于将来自动力源100和第一电动发电机单元300中的至少一个的动力输出,转换装置输入部4020选择性与第一转换部4021a和第二转换部4021b中的一个接合,第一转换部4021a和第二转换部4021b均与转换装置输出部4022配合传动。也就是说,在动力传递时,转换装置输入部4020可以通过第一转换部4021a或者第二转换部4021b向转换装置输出部4022传递动力。
转换装置输入部4020适于接合第一转换部4021a,以使转换装置输入部4020的转速与***动力输出部401的输入端的转速相同,转换装置输入部4020适于接合第二转换部4021b,以使转换装置输入部4020的转速降低后输出给***动力输出部401。
具体地,如图20所示,转换装置输入部4020为主减速器从动齿轮Z’,模式转换装置402还可以包括:转换装置轴Ⅶ,主减速器从动齿轮Z’固定设在转换装置轴Ⅶ上,转换装置轴Ⅶ上空套有直接挡主动齿轮Da和低挡主动齿轮La,转换装置轴Ⅶ与车辆的半轴2000平行。
其中,直接挡主动齿轮Da可以为第一转换部4021a,低挡主动齿轮La可以为第二转换部4021b。转换装置输出部4022可以包括直接挡从动齿轮Db和低挡从动齿轮Lb,直接挡从动齿轮Db与直接挡主动齿轮Da啮合,低挡从动齿轮Lb与低挡主动齿轮La啮合,直接挡从动齿轮Db和低挡从动齿轮Lb均与***动力输出部401的输入端固定相连。这样可以使得动力传递可靠,传动效率高。
而且,转换装置输入部4020适于与第一转换部4021a和第二转换部4021b均断开,从而使动力源100适于依次通过变速单元200、转换装置输入部4020驱动第一电动发电机单元300发电。
模式转换装置402还可以包括转换装置接合器S,转换装置输出部4022通过转换装置接合器S选择性与第一转换部4021a或第二转换部4021b接合。此处,可以理解的是,转换装置输出部4022可以选择性地接合和断开第一转换部4021a,以及转换装置输出部4022可以选择性地接合和断开第二转换部4021b。通过切换转换装置接合器S的状态和接合目标,可以改变传递给转换装置输出部4022的输出转速,从而可以改变车轮的转速,进而可以丰富车辆的驱动模式,可以提高车辆的经济性和动力性。
其中,转换装置接合器S可以为转换装置同步器。可选地,转换装置同步器可以固定在转换装置轴Ⅶ上,优选地,转换装置同步器可以位于直接挡主动齿轮Da和低挡主动齿轮La之间,这样可以减少同步器的数量,可以使得模式转换装置402结构简单,成本低。
下面详细描述一下图20所示的动力传动***1000的驱动模式。
车辆的动力传动***1000具有第一动力源驱动模式,车辆的动力传动***1000处于第一动力源驱动模式时,第一电动发电机302不工作,第一转换部4021a和转换装置输入部4020接合,动力源100输出的动力依次通过转换装置输入部4020、第一转换部4021a和转换装置输出部4022输出给***动力输出部401。
车辆的动力传动***1000具有第二动力源驱动模式,车辆的动力传动***1000处于第二动力源驱动模式时,第一电动发电机302不工作,第二转换部4021b和转换装置输入部4020接合,动力源100输出的动力依次通过转换装置输入部4020、第二转换部4021b和转 换装置输出部4022输出给***动力输出部401的输入端。
车辆的动力传动***1000具有第一纯电动驱动模式,车辆的动力传动***1000处于第一纯电动驱动模式时,动力源100不工作,第一转换部4021a和转换装置输入部4020接合,切换模块动力耦合连接第一电动发电机302与第一电动发电机单元耦合部301,第一电动发电机302输出的动力依次通过切换模块、第一电动发电机单元耦合部301、转换装置输入部4020、第一转换部4021a和转换装置输出部4022输出给***动力输出部401。
车辆的动力传动***1000具有第二纯电动驱动模式,车辆的动力传动***1000处于第二纯电动驱动模式时,动力源100不工作,第二转换部4021b和转换装置输入部4020接合,第一电动发电机302输出的动力依次通过转换装置输入部4020、第二转换部4021b和转换装置输出部4022输出给***动力输出部401的输入端。
车辆的动力传动***1000具有反拖启动模式,车辆的动力传动***1000处于反拖启动模式时,第一电动发电机302输出的动力依次通过转换装置输入部4020输出给动力源100,带动动力源100启动。
车辆的动力传动***1000具有第一混动驱动模式,车辆的动力传动***1000处于第一混动驱动模式时,动力源100和第一电动发电机302均工作,第一转换部4021a和转换装置输入部4020接合,动力源100输出的动力依次通过转换装置输入部4020、第一转换部4021a和转换装置输出部4022输出给***动力输出部401,第一电动发电机302输出的动力依次通过转换装置输入部4020、第一转换部4021a和转换装置输出部4022输出给***动力输出部401,动力源100和第一电动发电机302输出的动力耦合后输出给转换装置输入部4020。
车辆的动力传动***1000具有第二混动驱动模式,车辆的动力传动***1000处于第二混动驱动模式时,动力源100和第一电动发电机302均工作,第二转换部4021b和转换装置输入部4020接合,动力源100输出的动力依次通过转换装置输入部4020、第二转换部4021b和转换装置输出部4022输出给***动力输出部401,第一电动发电机302输出的动力依次通过转换装置输入部4020、第二转换部4021b和转换装置输出部4022输出给***动力输出部401,动力源100和第一电动发电机302输出的转速耦合后输出给转换装置输入部4020。
车辆的动力传动***1000具有第一行车发电模式,车辆的动力传动***1000处于第一行车发电模式时,动力源100工作,第一转换部4021a和转换装置输入部4020接合,
动力源100输出的一部分动力依次通过转换装置输入部4020、第一转换部4021a和转换装置输出部4022输出给***动力输出部401,动力源100输出的另一部分动力依次通过转换装置输入部4020输出给第一电动发电机302,驱动第一电动发电机302发电。
车辆的动力传动***1000具有第二行车发电模式,车辆的动力传动***1000处于第二行车发电模式时,动力源100工作,第二转换部4021b和转换装置输入部4020接合,
动力源100输出的一部分动力依次通过转换装置输入部4020、第二转换部4021b和转换装置输出部4022输出给***动力输出部401,动力源100输出的另一部分动力依次通过转换装置输入部4020输出给第一电动发电机302,驱动第一电动发电机302发电。
车辆的动力传动***1000具有第一制动能回收模式,车辆的动力传动***1000处于第一制动能回收模式时,第一转换部4021a和转换装置输入部4020接合,来自车辆的车轮的动力依次通过***动力输出部401、转换装置输出部4022、第一转换部4021a、转换装置输入部4020、第一电动发电机单元耦合部301、切换模块驱动第一电动发电机302发电。
车辆的动力传动***1000具有第二制动能回收模式,车辆的动力传动***1000处于第二制动能回收模式时,第二转换部4021b和转换装置输入部4020接合,来自车辆的车轮的动力依次通过***动力输出部401、转换装置输出部4022、第二转换部4021b、转换装置输入部4020驱动第一电动发电机302发电。
需要说明的是,上述的动力传动***1000的内容在互不冲突的情况下可以相互结合或者替换,从而组成新的实施例,新的实施例同样在本申请的保护范围内,结合和替换方式有多种,下面举几个示例以作说明。
例如,图1-图6所示的动力传动***1000的部分可以用于驱动车辆的前轮,图27-图32所示的动力传动***1000的部分可以用于驱动后轮,图1-图6中的任意一个可以与图27-图32中的任意一个组成新的动力传动***1000。
又如,为了提高驻车发电效率,图1所示的动力传动***1000可以结合一个第二电动发电机600以形成新的动力传动***1000,第二电动发电机600可以在车辆处于驻车工况时实现驻车发电。
再如,第二电动发电机600的布置形式有多种,如图34所示,第二电动发电机600可以与动力源100同轴相连,又如,如图51所示,第二电动发电机600可以与双离合器的输入端相连,上述两种第二电动发电机600的布置形式可以相互替换。
再如,动力传动***1000的变速单元200有多种布置形式,图7所示的动力传动***1000中的变速单元200与图33所示的动力传动***1000的变速单元200的结构完全不同,两者可以相互替换。
再如,图7-图20中所示的动力传动***1000的模式转换装置402均不同,上述的任意两个模式转换装置402均可以相互替换。
根据本发明实施例的车辆,包括上述实施例的动力传动***1000。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示 的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接或彼此可通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (34)

  1. 一种车辆的动力传动***,其特征在于,包括:
    动力源;
    第一电动发电机单元;
    ***动力输出部;
    模式转换装置,所述模式转换装置包括转换装置输入部、第一转换部、第二转换部和转换装置输出部,所述转换装置输出部与所述***动力输出部的输入端相连,所述转换装置输入部适于将来自所述动力源和所述第一电动发电机单元中的至少一个的动力输出,所述转换装置输入部与所述第一转换部固定相连,所述转换装置输出部选择性与所述第一转换部或第二转换部接合,所述转换装置输出部与第二转换部接合,从而适于使所述转换装置输入部输出的转速降低后输出给所述***动力输出部的输入端。
  2. 根据权利要求1所述的车辆的动力传动***,其特征在于,所述转换装置输出部与所述第一转换部接合,从而适于使转换装置输入部输出的转速与所述***动力输出部的输入端转速相同。
  3. 根据权利要求1所述的车辆的动力传动***,其特征在于,
    所述第一转换部和第二转换部均与所述转换装置输出部断开,所述动力源适于通过所述转换装置输入部驱动所述第一电动发电机单元发电。
  4. 根据权利要求1所述的车辆的动力传动***,其特征在于,所述模式转换装置包括:
    主减速器从动齿轮,所述主减速器从动齿轮为所述转换装置输入部;
    行星齿轮机构,所述行星齿轮机构包括第一元件、第二元件和第三元件,所述第一元件与所述主减速器从动齿轮固定,所述第二元件固定设置,所述第一元件为所述第一转换部,所述第三元件为所述第二转换部。
  5. 根据权利要求4所述的车辆的动力传动***,其特征在于,所述模式转换装置还包括:转换装置接合器,所述转换装置输出部通过所述转换装置接合器选择性接合所述第一元件和所述第三元件中的一个。
  6. 根据权利要求5所述的车辆的动力传动***,其特征在于,在所述行星齿轮机构的中心轴线的轴向上,所述转换装置接合器位于所述第一元件和所述第三元件之间。
  7. 根据权利要求6所述的车辆的动力传动***,其特征在于,所述转换装置输出部为轴套,所述轴套的一端与所述***动力输出部的输入端固定相连,所述转换装置接合器固定设置在所述轴套的另一端。
  8. 根据权利要求7所述的车辆的动力传动***,其特征在于,所述第一元件和所述第三元件中的靠近所述***动力输出部的输入端的那个元件、所述主减速器从动齿轮均空套在 所述轴套上,所述轴套套设在所述车辆的半轴上,所述第一元件和所述第三元件中的远离所述***动力输出部的输入端的那个元件空套在所述车辆的半轴上。
  9. 根据权利要求6所述的车辆的动力传动***,其特征在于,所述行星齿轮机构还包括第一元件接合部和第三元件接合部,所述第一元件接合部与所述第一元件固定相连且适于选择性与所述转换装置接合器接合,所述第三元件接合部与所述第三元件固定相连且适于选择性与所述转换装置接合器接合,在所述行星齿轮机构的中心轴线的轴向上,所述转换装置接合器位于所述第一元件接合部和所述第三元件接合部限定的空间内。
  10. 根据权利要求5-9中任一项所述的车辆的动力传动***,其特征在于,所述转换装置接合器为转换装置同步器。
  11. 根据权利要求5所述的车辆的动力***,其特征在于,所述转换装置接合器包括间隔开设置的第一接合部和第二接合部,所述第一接合部适于选择性接合所述转换装置输出部与所述第一元件,所述第二接合部适于选择性接合所述转换装置输出部与所述第三元件。
  12. 根据权利要求11所述的车辆的动力***,其特征在于,所述转换装置输出部为轴套,所述轴套的一端与所述***动力输出部的输入端固定相连,所述轴套的另一端穿过所述行星齿轮结构,所述第一接合部和所述第二接合部中的一个固定设在所述轴套的另一端,所述第一接合部和所述第二接合部中的另一个固定设置在所述轴套的未穿过所述行星齿轮机构的部分上。
  13. 根据权利要求12所述的车辆的动力***,其特征在于,所述行星齿轮机构还包括第一元件接合部和第三元件接合部,所述第一元件接合部与所述第一元件固定相连且适于选择性与所述转换装置接合器接合,所述第三元件接合部与所述第三元件固定相连且适于选择性与所述转换装置接合器接合,在所述行星齿轮机构的中心轴线的轴向上,所述第一元件接合部和所述第三元件接合部均位于所述第一接合部和第二接合部之间。
  14. 根据权利要求12所述的车辆的动力***,其特征在于,所述第一元件、所述第三元件、所述主减速器从动齿轮均空套在所述轴套上,所述轴套套设在所述车辆的半轴上。
  15. 根据权利要求11所述的车辆的动力***,其特征在于,所述转换装置接合器包括直接挡同步器和低挡同步器,所述第一接合部为所述直接挡同步器的一部分,所述第二接合部为所述低挡同步器的一部分。
  16. 根据权利要求2-15中任一项所述的车辆的动力传动***,其特征在于,还包括变速单元,所述变速单元与所述动力源选择性动力耦合连接,所述变速单元与所述转换装置输入部动力耦合连接,从而将来自所述动力源的动力经过所述变速单元输出给所述转换装置输入部。
  17. 根据权利要求16所述的车辆的动力传动***,其特征在于,所述变速单元包括变 速单元输出部,所述第一电动发电机单元包括第一电动发电机单元耦合部,所述变速单元输出部和所述第一电动发电机单元耦合部均为主减速器主动齿轮,所述主减速器主动齿轮与所述主减速器从动齿轮啮合。
  18. 根据权利要求16所述的车辆的动力传动***,其特征在于,所述变速单元包括:
    变速动力输入部,所述变速动力输入部与所述动力源可选择性地接合,以传输所述动力源所产生的动力;
    变速动力输出部;
    所述变速单元输出部,其中所述变速动力输出部构造成适于将来自所述变速动力输入部上的动力通过变速单元同步器的同步而输出至变速单元输出部,所述变速单元输出部与所述转换装置输入部动力耦合连接。
  19. 根据权利要求18所述的车辆的动力传动***,其特征在于,所述变速动力输入部包括至少一个输入轴,每个所述输入轴均与所述动力源可选择性地接合,每个所述输入轴上设置有至少一个主动齿轮;
    所述变速动力输出部包括:至少一个输出轴,每个所述输出轴上设置有至少一个从动齿轮,所述从动齿轮与对应的所述主动齿轮啮合,所述变速单元输出部为至少一个主减速器主动齿轮,所述至少一个主减速器主动齿轮一一对应地固定在所述至少一个输出轴上。
  20. 根据权利要求19所述的车辆的动力传动***,其特征在于,所述输入轴为多个且依次同轴嵌套设置,在所述动力源给所述输入轴传送动力时,所述动力源可选择性地与多个所述输入轴中的一个接合。
  21. 根据权利要求20所述的车辆的动力传动***,其特征在于,所述变速单元同步器设置在所述输出轴上,用于在所述从动齿轮和所述输出轴之间可选择地同步,以使所述从动齿轮随所述输出轴同步转动。
  22. 根据权利要求1所述的车辆的动力传动***,其特征在于,所述第一电动发电机单元包括第一电动发电机和第一电动发电机单元耦合部,所述第一电动发电机与所述第一电动发电机单元耦合部动力耦合连接,所述第一电动发电机单元耦合部与所述转换装置输入部动力耦合连接。
  23. 根据权利要22所述的车辆的动力传动***,其特征在于,所述第一电动发电机单元还包括减速链,所述第一电动发电机通过减速链与所述第一电动发电机单元耦合部动力耦合连接,所述第一电动发电机单元耦合部与所述转换装置输入部动力耦合连接。
  24. 根据权利要求1所述的车辆的动力传动***,其特征在于,所述车辆的动力传动***具有第一动力源驱动模式,所述车辆的动力传动***处于所述第一动力源驱动模式时,所述第一电动发电机单元不工作,所述转换装置输出部与所述第一转换部接合,所述动力源输 出的动力依次通过所述转换装置输入部、所述第一转换部、所述转换装置输出部输出给所述***动力输出部的输入端,所述转换装置输入部输出的转速与所述***动力输出部的输入端的转速相同。
  25. 根据权利要求1所述的车辆的动力传动***,其特征在于,所述车辆的动力传动***具有第二动力源驱动模式,所述车辆的动力传动***处于所述第二动力源驱动模式时,所述第一电动发电机单元不工作,所述转换装置输出部与所述第二转换部接合,所述动力源输出的动力依次通过所述转换装置输入部、所述第二转换部、所述转换装置输出部输出给所述***动力输出部的输入端,所述转换装置输入部输出的转速高于所述***动力输出部的输入端的转速。
  26. 根据权利要求1所述的车辆的动力传动***,其特征在于,所述车辆的动力传动***具有第一纯电动驱动模式,所述车辆的动力传动***处于所述第一纯电动驱动模式时,所述动力源不工作,所述转换装置输出部与所述第一转换部接合,所述第一电动发电机单元输出的动力依次通过所述转换装置输入部、所述第一转换部、所述转换装置输出部输出给所述***动力输出部的输入端,所述转换装置输入部输出的转速与所述***动力输出部的输入端的转速相同。
  27. 根据权利要求1所述的车辆的动力传动***,其特征在于,所述车辆的动力传动***具有第二纯电动驱动模式,所述车辆的动力传动***处于所述第二纯电动驱动模式时,所述动力源不工作,所述转换装置输出部与所述第二转换部接合,所述第一电动发电机单元输出的动力依次通过所述转换装置输入部、所述第二转换部、所述转换装置输出部输出给所述***动力输出部的输入端,所述转换装置输入部输出的转速高于所述***动力输出部的输入端的转速。
  28. 根据权利要求1所述的车辆的动力传动***,其特征在于,所述车辆的动力传动***具有第一混动驱动模式,所述车辆的动力传动***处于第一混动驱动模式时,所述动力源和所述第一电动发电机单元均工作,所述转换装置输出部与所述第一转换部接合,所述动力源和所述第一电动发电机单元输出的动力均依次通过所述转换装置输入部、所述第一转换部、所述转换装置输出部输出给所述***动力输出部的输入端,所述转换装置输入部输出的转速与所述***动力输出部的输入端的转速相同。
  29. 根据权利要求1所述的车辆的动力传动***,其特征在于,所述车辆的动力传动***具有第二混动驱动模式,所述车辆的动力传动***处于第二混动驱动模式时,所述动力源和所述第一电动发电机单元均工作,所述转换装置输出部与所述第二转换部接合,所述动力源和所述第一电动发电机单元输出的动力均依次通过所述转换装置输入部、所述第二转换部、所述转换装置输出部输出给所述***动力输出部的输入端,所述转换装置输入部输出的 转速高于所述***动力输出部的输入端的转速。
  30. 根据权利要求1所述的车辆的动力传动***,其特征在于,所述车辆的动力传动***具有第一行车发电模式,所述车辆的动力传动***处于第一行车发电模式时,所述动力源工作,所述转换装置输出部与所述第一转换部接合,所述动力源输出的一部分动力依次通过所述转换装置输入部、所述第一转换部、所述转换装置输出部输出给所述***动力输出部的输入端,所述转换装置输入部输出的转速与所述***动力输出部的输入端的转速相同;所述动力源输出的另一部分动力通过所述转换装置输入部驱动所述第一电动发电机单元发电。
  31. 根据权利要求1所述的车辆的动力传动***,其特征在于,所述车辆的动力传动***具有第二行车发电模式,所述车辆的动力传动***处于第二行车发电模式时,所述动力源工作,所述转换装置输出部与所述第二转换部接合,所述动力源输出的一部分动力依次通过所述转换装置输入部、所述第二转换部、所述转换装置输出部输出给所述***动力输出部的输入端,所述转换装置输入部输出的转速高于所述***动力输出部的输入端的转速;所述动力源输出的另一部分动力通过所述转换装置输入部驱动所述第一电动发电机单元发电。
  32. 根据权利要求1所述的车辆的动力传动***,其特征在于,所述车辆的动力传动***具有第一制动能回收模式,所述车辆的动力传动***处于所述第一制动能回收模式时,所述转换装置输出部与所述第一转换部接合,来自所述车辆的车轮的动力依次通过所述***动力输出部、所述转换装置输出部、所述第一转换部、所述转换装置输入部输出给所述第一电动发电机单元,并驱动所述第一电动发电机单元发电,所述转换装置输入部输出的转速与所述***动力输出部的输入端的转速相同。
  33. 根据权利要求1所述的车辆的动力传动***,其特征在于,所述车辆的动力传动***具有第二制动能回收模式,所述车辆的动力传动***处于所述第二制动能回收模式时,所述转换装置输出部与所述第二转换部接合,来自所述车辆的车轮的动力依次通过所述***动力输出部、所述转换装置输出部、所述第二转换部、所述转换装置输入部输出给所述第一电动发电机单元,并驱动所述第一电动发电机单元发电,所述转换装置输入部输出的转速高于所述***动力输出部的输入端的转速。
  34. 一种车辆,其特征在于,包括根据权利要求1-33中任一项所述的车辆的动力传动***。
PCT/CN2017/108365 2016-10-31 2017-10-30 动力传动***以及具有其的车辆 WO2018077272A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610940819.5 2016-10-31
CN201610940819.5A CN108001207B (zh) 2016-10-31 2016-10-31 动力传动***以及具有其的车辆

Publications (1)

Publication Number Publication Date
WO2018077272A1 true WO2018077272A1 (zh) 2018-05-03

Family

ID=62023103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/108365 WO2018077272A1 (zh) 2016-10-31 2017-10-30 动力传动***以及具有其的车辆

Country Status (2)

Country Link
CN (1) CN108001207B (zh)
WO (1) WO2018077272A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201457025U (zh) * 2009-04-10 2010-05-12 北汽福田汽车股份有限公司 一种混合动力***及安装有该混合动力***的车辆
CN102303517A (zh) * 2011-06-23 2012-01-04 苏州安远新能源动力有限公司 采用同步器实现模式切换的增程式混合动力汽车动力***
US20140148291A1 (en) * 2012-11-26 2014-05-29 Hyundai Motor Company Power transmission system of hybrid electric vehicle
CN104276025A (zh) * 2014-01-30 2015-01-14 比亚迪股份有限公司 用于车辆的动力传动***及具有其的车辆
CN104608612A (zh) * 2014-09-10 2015-05-13 比亚迪股份有限公司 用于车辆的动力传动***及具有它的车辆
CN104853970A (zh) * 2012-12-12 2015-08-19 丰田自动车株式会社 混合动力车辆的控制装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4145849B2 (ja) * 2004-07-30 2008-09-03 本田技研工業株式会社 ハイブリッド車両におけるパーキング装置
JP2008247155A (ja) * 2007-03-30 2008-10-16 Mazda Motor Corp ハイブリッド車両の制御装置
JP2014144666A (ja) * 2013-01-28 2014-08-14 Aisin Seiki Co Ltd 車両駐車装置および車両の駐車方法
CN104608621B (zh) * 2014-09-10 2015-12-02 比亚迪股份有限公司 变速器、动力传动***及车辆
CN204284320U (zh) * 2014-12-01 2015-04-22 重庆先友科技开发有限公司 一种车用二级变速主减速器总成
CN104455239A (zh) * 2014-12-01 2015-03-25 重庆先友科技开发有限公司 一种后置同轴式车用变速器
CN104773063B (zh) * 2015-01-16 2015-12-02 比亚迪股份有限公司 变速器、动力传动***和车辆
CN205009988U (zh) * 2015-07-24 2016-02-03 重庆隆旺机电有限责任公司 具有多挡主减速器的后桥总成
CN205047816U (zh) * 2015-07-24 2016-02-24 重庆隆旺机电有限责任公司 高精度换挡多档主减速器
CN205573605U (zh) * 2016-02-04 2016-09-14 重庆青山工业有限责任公司 一种混合动力汽车变速器总成
CN105774521B (zh) * 2016-03-15 2019-05-10 上海纳铁福传动***有限公司 混合动力汽车用动力总成

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201457025U (zh) * 2009-04-10 2010-05-12 北汽福田汽车股份有限公司 一种混合动力***及安装有该混合动力***的车辆
CN102303517A (zh) * 2011-06-23 2012-01-04 苏州安远新能源动力有限公司 采用同步器实现模式切换的增程式混合动力汽车动力***
US20140148291A1 (en) * 2012-11-26 2014-05-29 Hyundai Motor Company Power transmission system of hybrid electric vehicle
CN104853970A (zh) * 2012-12-12 2015-08-19 丰田自动车株式会社 混合动力车辆的控制装置
CN104276025A (zh) * 2014-01-30 2015-01-14 比亚迪股份有限公司 用于车辆的动力传动***及具有其的车辆
CN104608612A (zh) * 2014-09-10 2015-05-13 比亚迪股份有限公司 用于车辆的动力传动***及具有它的车辆

Also Published As

Publication number Publication date
CN108001207B (zh) 2020-07-10
CN108001207A (zh) 2018-05-08

Similar Documents

Publication Publication Date Title
JP6517865B2 (ja) 自動車両用ハイブリッド伝動装置
WO2018077267A1 (zh) 动力传动***以及具有其的车辆
WO2018077265A1 (zh) 动力传动***以及具有其的车辆
WO2018000965A1 (zh) 动力驱动***和车辆
WO2018077269A1 (zh) 动力传动***以及具有其的车辆
WO2018077264A1 (zh) 动力传动***以及具有其的车辆
WO2018077273A1 (zh) 动力传动***以及具有其的车辆
WO2018077268A1 (zh) 车辆的动力传动***和具有其的车辆
CN108001198B (zh) 车辆的动力传动***和具有其的车辆
WO2018077272A1 (zh) 动力传动***以及具有其的车辆
WO2018077270A1 (zh) 动力传动***以及具有其的车辆
WO2018077271A1 (zh) 动力传动***以及具有其的车辆
CN108001197B (zh) 车辆的动力传动***和具有其的车辆
CN108001203B (zh) 车辆的动力传动***和具有其的车辆
CN108001192B (zh) 动力传动***以及具有其的车辆
CN108001184B (zh) 动力传动***以及具有其的车辆
CN108001205B (zh) 动力传动***以及具有其的车辆
CN108001190B (zh) 动力传动***以及具有其的车辆
WO2018077247A1 (zh) 动力传动***以及具有其的车辆
WO2018077274A1 (zh) 动力传动***以及具有其的车辆
WO2018077248A1 (zh) 动力传动***以及具有其的车辆
CN108001204B (zh) 动力传动***以及具有其的车辆
CN108001202B (zh) 车辆的动力传动***和具有其的车辆
CN108001206B (zh) 车辆的动力传动***和具有其的车辆
CN108001196B (zh) 车辆的动力传动***和具有其的车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17864104

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17864104

Country of ref document: EP

Kind code of ref document: A1