WO2018076173A1 - 限幅振荡电路 - Google Patents

限幅振荡电路 Download PDF

Info

Publication number
WO2018076173A1
WO2018076173A1 PCT/CN2016/103225 CN2016103225W WO2018076173A1 WO 2018076173 A1 WO2018076173 A1 WO 2018076173A1 CN 2016103225 W CN2016103225 W CN 2016103225W WO 2018076173 A1 WO2018076173 A1 WO 2018076173A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
mos transistor
comparator
oscillating circuit
signal
Prior art date
Application number
PCT/CN2016/103225
Other languages
English (en)
French (fr)
Inventor
张孟文
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to PCT/CN2016/103225 priority Critical patent/WO2018076173A1/zh
Priority to KR1020187002738A priority patent/KR102083233B1/ko
Priority to EP16910785.1A priority patent/EP3340460B1/en
Priority to CN201680001376.1A priority patent/CN106537767B/zh
Priority to US15/871,427 priority patent/US10608585B2/en
Publication of WO2018076173A1 publication Critical patent/WO2018076173A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1234Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device and comprising means for varying the output amplitude of the generator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1206Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device using multiple transistors for amplification
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1206Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device using multiple transistors for amplification
    • H03B5/1212Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device using multiple transistors for amplification the amplifier comprising a pair of transistors, wherein an output terminal of each being connected to an input terminal of the other, e.g. a cross coupled pair
    • H03B5/1215Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device using multiple transistors for amplification the amplifier comprising a pair of transistors, wherein an output terminal of each being connected to an input terminal of the other, e.g. a cross coupled pair the current source or degeneration circuit being in common to both transistors of the pair, e.g. a cross-coupled long-tailed pair
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1228Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device the amplifier comprising one or more field effect transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/20Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising resistance and either capacitance or inductance, e.g. phase-shift oscillator
    • H03B5/24Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising resistance and either capacitance or inductance, e.g. phase-shift oscillator active element in amplifier being semiconductor device
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/30Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator
    • H03B5/32Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator
    • H03B5/36Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator active element in amplifier being semiconductor device
    • H03B5/364Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator active element in amplifier being semiconductor device the amplifier comprising field effect transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K7/00Modulating pulses with a continuously-variable modulating signal
    • H03K7/08Duration or width modulation ; Duty cycle modulation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L5/00Automatic control of voltage, current, or power
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B2200/00Indexing scheme relating to details of oscillators covered by H03B
    • H03B2200/006Functional aspects of oscillators
    • H03B2200/0088Reduction of noise
    • H03B2200/009Reduction of phase noise
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/30Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator
    • H03B5/32Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/001Digital control of analog signals
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K4/00Generating pulses having essentially a finite slope or stepped portions
    • H03K4/06Generating pulses having essentially a finite slope or stepped portions having triangular shape
    • H03K4/08Generating pulses having essentially a finite slope or stepped portions having triangular shape having sawtooth shape
    • H03K4/48Generating pulses having essentially a finite slope or stepped portions having triangular shape having sawtooth shape using as active elements semiconductor devices

Definitions

  • the present invention relates to the field of information technology and, more particularly, to a limiting oscillating circuit.
  • Such an oscillation circuit has the following disadvantages: 1.
  • the oscillation waveform of the oscillation circuit is distorted, and its rising edge and the falling edge are asymmetrical.
  • the noise inflection point of the 1/f 3 of the oscillating circuit is shifted to the high frequency, which causes the low frequency phase noise to be poor.
  • the large amplitude of the oscillation causes the current flowing through the inductor to be very large, so that the core of the inductor is saturated, resulting in an inductance value. Change, ultimately affecting the stability of the frequency.
  • the method of limiting the amplitude is to use an amplitude or peak detecting circuit to detect the amplitude of the oscillation, and then output a control voltage to control the bias current of the oscillating circuit, thereby achieving the effect of limiting the amplitude of the oscillating circuit, but this practice also has the following disadvantages:
  • the loop gain of this method is relatively large, which easily leads to the instability of the control loop. 2.
  • the control loop itself introduces a large noise, which causes the phase noise of the oscillating circuit to deteriorate. 3.
  • Most of the amplitude detection The circuit does not accurately control the amplitude of the oscillation, which limits its practicality.
  • the embodiment of the invention provides a limiting oscillating circuit, which can improve the performance of the limiting oscillating circuit.
  • a limiting oscillating circuit comprising:
  • An oscillating circuit 110 configured to generate an oscillating signal
  • a pulse width modulation circuit 120 configured to generate a pulse width modulation signal according to an amplitude of the oscillation signal
  • the low pass filter circuit 130 is configured to convert the pulse width modulation signal into a DC control voltage signal, and the DC control voltage signal is used to control the voltage control resistor circuit 140;
  • the voltage control resistor circuit 140 is configured to change the resistance value of the voltage control resistor circuit 140 according to the control of the DC control voltage signal to control the amplitude of the oscillation signal.
  • the limiting oscillating circuit of the embodiment of the invention uses a voltage-controlled resistor circuit to perform negative feedback and control loop No additional noise is introduced, so the limiting oscillating circuit has lower phase noise, which can improve the performance of the limiting oscillating circuit.
  • the oscillating circuit 110 is an LC oscillating circuit, a crystal oscillating circuit, or a relaxation oscillating circuit.
  • the pulse width modulation circuit 120 includes a comparator for generating a pulse width modulated signal by comparing the amplitudes of the reference signal and the oscillating signal.
  • the amplitude of the limiting oscillating circuit depends on the reference voltage of the comparator, that is, the amplitude range of the final limiting oscillating circuit will be very close to the reference voltage of the comparator, and therefore, the limiting oscillating circuit of the embodiment of the present invention
  • the amplitude of the oscillation is easy to control.
  • the low pass filter circuit 130 is a passive filter or an active filter.
  • the resistance of the voltage controlled resistor circuit 140 is a linear resistor or a non-linear resistor operating in a linear region.
  • the voltage controlled resistor circuit 140 includes a metal oxide semiconductor field effect transistor MOS.
  • the oscillating circuit 110 has a positive output and a negative output.
  • the oscillating circuit 110 includes:
  • the inductor 111, the first capacitor 112, the inductor 111 and the first capacitor 112 form a resonant circuit
  • the first MOS transistor 113, the second MOS transistor 114, the third MOS transistor 115, the fourth MOS transistor 116, the first MOS transistor 113, the second MOS transistor 114, the third MOS transistor 115, and the fourth MOS transistor 116 are resonant circuits Providing a negative resistance, the drain of the first MOS transistor 113 and the gate of the second MOS 114 transistor are the positive output terminals of the oscillating circuit 110, and the gate of the third MOS transistor 115 and the drain of the fourth MOS transistor 116 are negative of the oscillating circuit 110. Output.
  • the pulse width modulation circuit 120 includes:
  • a first comparator 121 the positive input end of the first comparator 121 is connected to the positive output end of the oscillating circuit 110, and the negative input end of the first comparator 121 is used for inputting the first reference signal;
  • the second comparator 122 has a positive input terminal connected to the negative input terminal of the oscillation circuit 110, and a negative input terminal of the second comparator 122 for inputting the second reference signal.
  • the limiting oscillating circuit further includes:
  • the switching circuit 150 is configured to switch the connection between the positive output terminal and the negative output terminal and the pulse width modulation circuit 120.
  • the switching circuit 150 includes:
  • a third comparator 151 an inverter 152, a first switch 153, a second switch 154, a third switch 155 and a fourth switch 156;
  • the positive input terminal of the third comparator 151 is connected to the positive output terminal of the oscillating circuit 110, the negative input terminal of the third comparator 151 is connected to the negative output terminal of the oscillating circuit 110, and the input terminal of the inverter 152 is connected to the third comparator 151.
  • the output signal of the third comparator 151 is used to control the first switch 153 and the fourth switch 156, and the output signals of the inverter 152 are used to control the second switch 154 and the third switch 155.
  • the pulse width modulation circuit 120 includes:
  • the first comparator 121 has a positive input terminal connected to the positive output terminal of the oscillating circuit 110 through the first switch 153, and a negative output terminal of the oscillating circuit 110 through the second switch 154.
  • the negative of the first comparator 121 The input end is used to input the first reference signal;
  • the second comparator 122 has a positive input terminal connected to the positive output terminal of the oscillation circuit 110 through the third switch 155, a negative output terminal connected to the oscillation circuit 110 through the fourth switch 156, and a negative output terminal of the second comparator 122.
  • the input is used to input a second reference signal.
  • the limiting oscillation circuit of the embodiment of the invention adopts a switching circuit, and the adjustable range can be expanded.
  • the low pass filter circuit 130 includes:
  • the first low pass filter includes a first resistor 131 and a second capacitor 132.
  • the input end of the first low pass filter is connected to the output end of the first comparator 121, and the output end of the first low pass filter is connected to the fifth MOS.
  • the second low pass filter includes a second resistor 133 and a third capacitor 134.
  • the input end of the second low pass filter is connected to the output end of the second comparator 122, and the output end of the second low pass filter is connected to the sixth MOS.
  • the voltage controlled resistor circuit 140 includes:
  • a fifth MOS transistor 141 a source of the fifth MOS transistor 141 is connected to the power source, and a drain of the fifth MOS transistor 141 is connected to the sources of the first MOS transistor 113 and the second MOS transistor 114;
  • the sixth MOS transistor 142 the source of the sixth MOS transistor 142 is grounded, and the drain of the sixth MOS transistor 142 is connected to the sources of the third MOS transistor 115 and the fourth MOS transistor 116.
  • the amplitude control of the limiting oscillating circuit of the embodiment of the present invention is mainly based on the source feedback. Therefore, there is no stability problem in the manner of the amplitude control, that is, the stability of the limiting oscillating circuit of the embodiment of the present invention is better.
  • a chip comprising the limiting oscillating circuit of the first aspect or any of the possible implementations of the first aspect.
  • FIG. 1 is a schematic diagram of a limiting oscillation circuit according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a limiting oscillation circuit according to another embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a limiting oscillation circuit according to still another embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a limiting oscillation circuit according to still another embodiment of the present invention.
  • FIG. 1 shows a schematic diagram of a limiting oscillation circuit 100 in accordance with an embodiment of the present invention.
  • the limiting oscillating circuit 100 can include an oscillating circuit 110, a pulse width modulating circuit 120, a low pass filtering circuit 130, and a voltage controlled resistor circuit 140.
  • the oscillation circuit 110 is for generating an oscillation signal.
  • the oscillating circuit 110 may be any type of oscillating circuit, such as an LC oscillating circuit, a crystal oscillating circuit, or a relaxation oscillating circuit.
  • the present invention does not limit the type of the oscillating circuit 110.
  • the oscillating circuit 110 can output two oscillating signals.
  • the two oscillating signals have opposite phases. That is, the oscillating circuit 110 may have a positive output terminal and a negative output terminal, and the positive output terminal and the negative output terminal respectively output oscillating signals of opposite phases.
  • the pulse width modulation circuit 120 is operative to generate a pulse width modulated signal based on the amplitude of the oscillating signal.
  • the pulse width modulation circuit 120 may include a comparator that generates a pulse width modulated signal by comparing the amplitudes of the reference signal and the oscillating signal. For example, if the amplitude of the oscillating signal Above the reference signal, a high level signal is generated; if the amplitude of the oscillating signal is lower than the reference signal, a low level signal is generated.
  • pulse width modulation circuit 120 can also be implemented by other circuits, and the present invention does not limit the pulse width modulation circuit 120 to be implemented only by the comparator.
  • the low pass filter circuit 130 is configured to convert the pulse width modulated signal into a DC control voltage signal, and the DC control voltage signal is used to control the voltage controlled resistor circuit 140.
  • the pulse width modulation signal generated by the pulse width modulation circuit 120 is input to the low pass filter circuit 130, and is converted into a DC control voltage signal by the low pass filter circuit 130.
  • the DC control voltage signal is input to the voltage control terminal of the voltage control resistor circuit 140, thereby controlling the voltage.
  • the resistance value of the control resistor circuit 140 changes.
  • the low pass filter circuit 130 may be a passive filter or an active filter, which is not limited in the present invention.
  • the voltage control resistor circuit 140 is configured to vary the resistance value of the voltage control resistor circuit 140 according to the control of the DC control voltage signal to control the amplitude of the oscillation signal.
  • the resistance value of the voltage controlled resistor circuit 140 is controlled by the control of the DC control voltage signal.
  • the resistance of the voltage controlled resistor circuit 140 may be a linear resistor or a non-linear resistor operating in a linear region.
  • the voltage controlled resistor circuit 140 may include a Metal-Oxide-Semiconductor (MOS). That is to say, the voltage control resistor may be a MOS transistor, but the invention is not limited thereto, and other voltage control resistors may also be used.
  • MOS Metal-Oxide-Semiconductor
  • FIG. 2 is a schematic diagram showing a specific implementation manner of the limiting oscillation circuit 100 according to the embodiment of the present invention.
  • FIG. 2 is only an example and is not intended to limit the scope of the embodiments of the present invention.
  • the oscillating circuit 110 of FIG. 1 can be implemented by an inductor, a capacitor, and a MOS transistor.
  • the oscillating circuit 110 may include an inductor 111, a first capacitor 112, a first MOS transistor 113, a second MOS transistor 114, a third MOS transistor 115, and a fourth MOS transistor 116.
  • the inductor 111 and the first capacitor 112 form a resonant tank.
  • the first MOS transistor 113, the second MOS transistor 114, the third MOS transistor 115, and the fourth MOS transistor 116 provide a negative resistance to the resonant tank.
  • the drain of the first MOS transistor 113 and the gate of the second MOS 114 transistor are the positive output terminals of the oscillating circuit 110, and the positive output terminal outputs the oscillating signal Vop; the gate of the third MOS transistor 115 and the drain of the fourth MOS transistor 116 are The negative output terminal of the oscillating circuit 110 outputs the oscillating signal Von.
  • the pulse width modulation circuit 120 can be implemented by two comparators.
  • the pulse width modulation circuit 120 may include a first comparator 121 and a second comparator 122.
  • the positive input terminal of the first comparator 121 is connected to the positive output terminal of the oscillating circuit 110, that is, the oscillating signal Vop can be input, and the negative input terminal of the first comparator 121 is used to input the first reference signal Vrp.
  • the positive input terminal of the second comparator 122 is connected to the negative output terminal of the oscillating circuit 110, that is, the oscillating signal Von can be input, and the negative input terminal of the second comparator 122 is used to input the second reference signal Vrn.
  • Vrp, Vrn may be DC voltage signals of adjustable size.
  • Vdd>Vrp>Vrn>Vgd where Vdd is the power supply voltage and Vgd is the ground voltage.
  • the first comparator 121 compares Vop and Vrp, and outputs a positive pulse width modulation signal Vp1;
  • the second comparator 122 compares Von and Vrn and outputs a negative pulse width modulation signal Vp2.
  • the low pass filter circuit 130 may be implemented by two low pass filters.
  • the low pass filter circuit 130 may include a first low pass filter and a second low pass filter.
  • the first low pass filter may include a first resistor 131 and a second capacitor 132.
  • the input end of the first low pass filter is connected to the output end of the first comparator 121, and the first low pass filter
  • the output terminal is connected to the gate of the fifth MOS transistor 141.
  • the input of the first low pass filter is Vp1, and the first low pass filter outputs a DC control voltage signal Vp2 to the gate of the fifth MOS transistor 141.
  • the second low pass filter may include a second resistor 133 and a third capacitor 134, the input of the second low pass filter is connected to the output of the second comparator 122, and the output of the second low pass filter is connected to the sixth MOS The gate of tube 142.
  • the input of the second low pass filter is Vn1, and the second low pass filter outputs a DC control voltage signal Vn2 to the gate of the sixth MOS transistor 142.
  • the voltage controlled resistor circuit 140 also includes two parts. As shown in FIG. 2, the voltage controlled resistor circuit 140 can include:
  • a fifth MOS transistor 141 a source of the fifth MOS transistor 141 is connected to the power source Vdd, and a drain of the fifth MOS transistor 141 is connected to the sources of the first MOS transistor 113 and the second MOS transistor 114;
  • the sixth MOS transistor 142 the source of the sixth MOS transistor 142 is grounded Vgd, and the sixth MOS transistor 142 The drain is connected to the sources of the third MOS transistor 115 and the fourth MOS transistor 116.
  • the gate of the fifth MOS transistor 141 and the gate of the sixth MOS transistor 142 are voltage control terminals of the voltage control resistor circuit 140.
  • the upper loop in Figure 2 can be referred to as a P-type feedback loop; the lower loop can be referred to as an N-type feedback loop.
  • the P-type feedback loop and the N-type feedback loop are completely symmetrical, and the working principle of the two is similar.
  • the amplitude of Vop gradually becomes larger.
  • the comparator 121 outputs a high pulse. Since Vop is a sine wave signal, the amplitude of Vop is larger. The width of the high pulse output by the comparator 121 is wider. After the pulse passes through the low pass filter, a DC voltage Vp2 proportional to the pulse width is obtained. If Vp2 is higher, the equivalent resistance of the fifth MOS transistor 141 is larger.
  • the working principle of the N-type feedback loop can be known.
  • the limiting oscillating circuit 100 may further include:
  • the switching circuit 150 is configured to switch the connection between the positive output terminal and the negative output terminal and the pulse width modulation circuit 120.
  • the connection of the positive output terminal and the negative output terminal to the different input terminals of the pulse width modulation circuit 120 can be switched by the switching circuit 150.
  • the switching circuit 150 may include:
  • the third comparator 151, the inverter 152, the first switch 153, the second switch 154, the third switch 155, and the fourth switch 156 is the third comparator 151, the inverter 152, the first switch 153, the second switch 154, the third switch 155, and the fourth switch 156.
  • the positive input terminal of the third comparator 151 is connected to the positive output terminal of the oscillating circuit 110, the negative input terminal of the third comparator 151 is connected to the negative output terminal of the oscillating circuit 110, and the input terminal of the inverter 152 is connected to the third comparator 151.
  • the output signal Vsp of the third comparator 151 is used to control the first switch 153 and the fourth switch 156, and the output signal Vsn of the inverter 152 is used to control the second switch 154 and the third switch 155.
  • the pulse width modulation circuit 120 may include:
  • the first comparator 121 has a positive input terminal connected to the positive output terminal of the oscillating circuit 110 through the first switch 153, and a negative output terminal of the oscillating circuit 110 through the second switch 154.
  • the negative of the first comparator 121 The input terminal is used for inputting the first reference signal Vrp;
  • the second comparator 122 has a positive input terminal connected to the positive output terminal of the oscillation circuit 110 through the third switch 155, a negative output terminal connected to the oscillation circuit 110 through the fourth switch 156, and a negative output terminal of the second comparator 122.
  • the input terminal is used to input the second reference signal Vrn.
  • Vsp When Vop is greater than Von, Vsp is at a high level, the first switch 153 and the fourth switch 156 are connected, the second switch 154 and the third switch 155 are turned off, the first comparator 121 compares Vop and Vrp, and outputs Vp1, second. Comparator 122 compares Von and Vrn, and outputs Vn1;
  • Vsp is low level
  • Vsn is high level
  • the second switch 154 and the third switch 155 are connected
  • the first switch 153 and the fourth switch 156 are disconnected
  • the first comparator 121 compares Von and Vrp
  • the second comparator 121 compares Von and Vrp
  • the second comparator 121 compares Von and Vrp
  • Comparator 122 compares Vop and Vrn and outputs Vn1.
  • the first comparator 121 can output Vp1
  • the second comparator 122 can output Vn1, that is, the duty ratio ranges of Vp1 and Vn1 can be changed. 0 to 100%.
  • the parts of the oscillating circuit, the low-pass filter circuit, and the voltage-controlled resistor circuit in FIG. 4 are similar to those in FIG. 2, and are not described herein again for the sake of brevity.
  • the working principle of the limiting oscillating circuit in FIG. 4 is similar to that of FIG. 2, except that since the switching circuit is used in FIG. 4, the adjustable range is expanded.
  • the duty cycle range of Vp1 in Figure 2 is 0-50%, and the voltage range of Vp2 after filtering is 0-0.5Vdd, and the adjustable range is relatively narrow.
  • the duty ratio range of Vp1 becomes 0 to 100%, thereby widening the adjustable range.
  • the voltage-controlled resistor circuit is used as the negative feedback, and the control loop does not introduce additional noise, so the limiting oscillating circuit has lower phase noise.
  • the amplitude control of the limiting oscillating circuit of the embodiment of the present invention is mainly based on the source feedback. Therefore, there is no stability problem in the manner of the amplitude control, that is, the stability of the limiting oscillating circuit of the embodiment of the present invention is better.
  • the amplitude of the limiting oscillating circuit depends on the reference voltage of the comparator, that is, the amplitude range of the final limiting oscillating circuit will be very close to the reference voltage of the comparator, and therefore, the limiting of the embodiment of the present invention
  • the oscillation amplitude of the oscillation circuit is easy to control.
  • the technical solution of the embodiment of the present invention can improve the performance of the limiting oscillating circuit.
  • the embodiment of the invention further provides a chip, which may include the limiting oscillating circuit of the embodiment of the invention described above.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention contributes in essence or to the prior art, or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)
  • Oscillators With Electromechanical Resonators (AREA)

Abstract

一种限幅振荡电路(100)。该限幅振荡电路(100)包括:振荡电路(110),用于产生振荡信号;脉冲宽度调制电路(120),用于根据该振荡信号的幅度,产生脉冲宽度调制信号;低通滤波电路(130),用于将该脉冲宽度调制信号转换为直流控制电压信号,该直流控制电压信号用于控制压控电阻电路(140);压控电阻电路(140),用于根据该直流控制电压信号的控制,变化该压控电阻电路(140)的电阻值,以控制该振荡信号的幅度。该限幅振荡电路(100)能够提高限幅振荡电路(100)的性能。

Description

限幅振荡电路 技术领域
本发明涉及信息技术领域,并且更具体地,涉及一种限幅振荡电路。
背景技术
常见的LC振荡电路若没有幅度限制,振荡电路的幅度最终会稳定到电源电压,这样的振荡电路存在以下几个缺点:1、振荡电路的振荡波形发生失真,其上升沿与下降沿不对称,使得振荡电路的1/f3的噪声拐点向高频移动,导致其低频相噪变差;2、振荡幅度大导致流过电感的电流会非常大,使得电感的磁芯饱和,导致电感值发生改变,最终影响频率的稳定性。
通常限制幅度的做法是采用幅度或峰值检测电路检测振荡幅度,然后输出一控制电压控制振荡电路的偏置电流,从而达到限制振荡电路幅度的效果,但是这一做法也存在以下几个缺点:1、该种方法的环路增益比较大,容易导致控制环路的不稳定;2、控制环路本身会引入较大的噪声,从而导致振荡电路的相噪变差;3、大部分的幅度检测电路无法准确的控制振荡幅度,从而限制了其实用性。
因此,提高限幅振荡电路的性能成为亟待解决的一个技术问题。
发明内容
本发明实施例提供了一种限幅振荡电路,能够提高限幅振荡电路的性能。
第一方面,提供了一种限幅振荡电路,包括:
振荡电路110,用于产生振荡信号;
脉冲宽度调制电路120,用于根据振荡信号的幅度,产生脉冲宽度调制信号;
低通滤波电路130,用于将脉冲宽度调制信号转换为直流控制电压信号,直流控制电压信号用于控制压控电阻电路140;
压控电阻电路140,用于根据直流控制电压信号的控制,变化压控电阻电路140的电阻值,以控制振荡信号的幅度。
本发明实施例的限幅振荡电路,采用压控电阻电路做负反馈,控制环路 不会引入额外的噪声,因此限幅振荡电路具有较低的相噪,从而能够提高限幅振荡电路的性能。
在一些可能的实现方式中,振荡电路110为LC振荡电路、晶体振荡电路或张弛振荡电路。
在一些可能的实现方式中,脉冲宽度调制电路120包括比较器,用于通过比较参考信号和振荡信号的幅度,产生脉冲宽度调制信号。
在采用比较器时,限幅振荡电路的幅度取决于比较器的参考电压,即最终限幅振荡电路的幅度范围将非常接近于比较器的参考电压,因此,本发明实施例的限幅振荡电路的振荡幅度易控制。
在一些可能的实现方式中,低通滤波电路130为无源滤波器或有源滤波器。
在一些可能的实现方式中,压控电阻电路140的电阻为线性电阻或者工作在线性区的非线性电阻。
在一些可能的实现方式中,压控电阻电路140包括金属氧化物半导体场效应晶体管MOS。
在一些可能的实现方式中,振荡电路110具有正输出端和负输出端。
在一些可能的实现方式中,振荡电路110包括:
电感111、第一电容112,电感111和第一电容112形成谐振回路;
第一MOS管113、第二MOS管114、第三MOS管115、第四MOS管116,第一MOS管113、第二MOS管114、第三MOS管115和第四MOS管116为谐振回路提供负阻,第一MOS管113的漏极和第二MOS114管的栅极为振荡电路110的正输出端,第三MOS管115的栅极和第四MOS管116的漏极为振荡电路110的负输出端。
在一些可能的实现方式中,脉冲宽度调制电路120包括:
第一比较器121,第一比较器121的正输入端连接振荡电路110的正输出端,第一比较器121的负输入端用于输入第一参考信号;
第二比较器122,第二比较器122的正输入端连接振荡电路110的负输出端,第二比较器122的负输入端用于输入第二参考信号。
在一些可能的实现方式中,限幅振荡电路还包括:
切换电路150,用于切换正输出端和负输出端与脉冲宽度调制电路120的连接。
在一些可能的实现方式中,切换电路150包括:
第三比较器151、反相器152、第一开关153、第二开关154、第三开关155和第四开关156;
第三比较器151的正输入端连接振荡电路110的正输出端,第三比较器151的负输入端连接振荡电路110的负输出端,反相器152的输入端连接第三比较器151的输出端,第三比较器151的输出信号用于控制第一开关153和第四开关156,反相器152的输出信号用于控制第二开关154和第三开关155。
在一些可能的实现方式中,脉冲宽度调制电路120包括:
第一比较器121,第一比较器121的正输入端通过第一开关153连接振荡电路110的正输出端,通过第二开关154连接振荡电路110的负输出端,第一比较器121的负输入端用于输入第一参考信号;
第二比较器122,第二比较器122的正输入端通过第三开关155连接振荡电路110的正输出端,通过第四开关156连接振荡电路110的负输出端,第二比较器122的负输入端用于输入第二参考信号。
本发明实施例的限幅振荡电路,采用切换电路,可以扩大可调范围。
在一些可能的实现方式中,低通滤波电路130包括:
第一低通滤波器,包括第一电阻131和第二电容132,第一低通滤波器的输入端连接第一比较器121的输出端,第一低通滤波器的输出端连接第五MOS管141的栅极;
第二低通滤波器,包括第二电阻133和第三电容134,第二低通滤波器的输入端连接第二比较器122的输出端,第二低通滤波器的输出端连接第六MOS管142的栅极;
压控电阻电路140,包括:
第五MOS管141,第五MOS管141的源极连接电源,第五MOS管141的漏极连接第一MOS管113和第二MOS管114的源极;
第六MOS管142,第六MOS管142的源极接地,第六MOS管142的漏极连接第三MOS管115和第四MOS管116的源极。
本发明实施例的限幅振荡电路的幅度控制主要基于源极反馈,因此该幅度控制的方式不存在稳定性问题,即本发明实施例的限幅振荡电路的稳定性能较好。
第二方面,提供了一种芯片,该芯片包括第一方面或第一方面的任一种可能的实现方式中的限幅振荡电路。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一个实施例的限幅振荡电路的示意图。
图2是本发明另一个实施例的限幅振荡电路的示意图。
图3是本发明又一个实施例的限幅振荡电路的示意图。
图4是本发明又一个实施例的限幅振荡电路的示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
图1示出了本发明实施例的限幅振荡电路100的示意图。
如图1所示,限幅振荡电路100可以包括振荡电路110,脉冲宽度调制电路120,低通滤波电路130和压控电阻电路140。
振荡电路110用于产生振荡信号。
振荡电路110可以为任一种振荡电路,例如LC振荡电路、晶体振荡电路或张弛振荡电路等,本发明并不限定振荡电路110的种类。
可选地,振荡电路110可以输出两路振荡信号。这两路振荡信号的相位相反。也就是说,振荡电路110可以具有正输出端和负输出端,正输出端和负输出端分别输出相位相反的振荡信号。
脉冲宽度调制电路120用于根据振荡信号的幅度,产生脉冲宽度调制信号。
可选地,脉冲宽度调制电路120可以包括比较器,比较器通过比较参考信号和振荡信号的幅度,产生脉冲宽度调制信号。例如,若振荡信号的幅度 高于参考信号,则产生高电平信号;若振荡信号的幅度低于参考信号,则产生低电平信号。
应理解,脉冲宽度调制电路120也可以通过其他电路实现,本发明并不限定脉冲宽度调制电路120只通过比较器实现。
低通滤波电路130用于将脉冲宽度调制信号转换为直流控制电压信号,直流控制电压信号用于控制压控电阻电路140。
脉冲宽度调制电路120产生的脉冲宽度调制信号输入低通滤波电路130,通过低通滤波电路130转换为直流控制电压信号,该直流控制电压信号输入压控电阻电路140的电压控制端,从而控制压控电阻电路140的电阻值变化。
可选地,低通滤波电路130可以为无源滤波器或有源滤波器,本发明对此并不限定。
压控电阻电路140用于根据直流控制电压信号的控制,变化压控电阻电路140的电阻值,以控制振荡信号的幅度。
压控电阻电路140的电阻值受直流控制电压信号的控制而变化。可选地,压控电阻电路140的电阻可以为线性电阻或者工作在线性区的非线性电阻。
可选地,压控电阻电路140可以包括金属氧化物半导体场效应晶体管(Metal-Oxide-Semiconductor,MOS)。也就是说,压控电阻可以是MOS管,但本发明对此并不限定,也可以采用其他压控电阻。
图2示出了本发明实施例的限幅振荡电路100的一种具体实现方式的示意图。
应理解,图2只是一种示例,而非限制本发明实施例的范围。
如图2所示,图1中的振荡电路110可以由电感、电容和MOS管实现。具体地,振荡电路110可以包括电感111、第一电容112、第一MOS管113、第二MOS管114、第三MOS管115和第四MOS管116。
电感111和第一电容112形成谐振回路。
第一MOS管113、第二MOS管114、第三MOS管115和第四MOS管116为谐振回路提供负阻。
第一MOS管113的漏极和第二MOS114管的栅极为振荡电路110的正输出端,该正输出端输出振荡信号Vop;第三MOS管115的栅极和第四MOS管116的漏极为振荡电路110的负输出端,该负输出端输出振荡信号Von。
可选地,在振荡电路110具有正输出端和负输出端的情况下,脉冲宽度调制电路120可以由两个比较器实现。
具体地,脉冲宽度调制电路120可以包括第一比较器121和第二比较器122。
第一比较器121的正输入端连接振荡电路110的正输出端,即可以输入振荡信号Vop,第一比较器121的负输入端用于输入第一参考信号Vrp。
第二比较器122的正输入端连接振荡电路110的负输出端,即可以输入振荡信号Von,第二比较器122的负输入端用于输入第二参考信号Vrn。
可选地,Vrp、Vrn可以是大小可调的直流电压信号。
可选地,Vdd>Vrp>Vrn>Vgd,其中,Vdd为电源电压,Vgd为接地端电压。
第一比较器121比较Vop和Vrp,输出正脉冲宽度调制信号Vp1;
第二比较器122比较Von和Vrn,输出负脉冲宽度调制信号Vp2。
可选地,在脉冲宽度调制电路120包括两个比较器的情况下,低通滤波电路130可以由两个低通滤波器实现。
具体地,低通滤波电路130可以包括第一低通滤波器和第二低通滤波器。
如图2所示,第一低通滤波器可以包括第一电阻131和第二电容132,第一低通滤波器的输入端连接第一比较器121的输出端,第一低通滤波器的输出端连接第五MOS管141的栅极。
第一低通滤波器的输入为Vp1,第一低通滤波器输出直流控制电压信号Vp2到第五MOS管141的栅极。
第二低通滤波器可以包括第二电阻133和第三电容134,第二低通滤波器的输入端连接第二比较器122的输出端,第二低通滤波器的输出端连接第六MOS管142的栅极。
第二低通滤波器的输入为Vn1,第二低通滤波器输出直流控制电压信号Vn2到第六MOS管142的栅极。
相应地,压控电阻电路140也包括两部分。如图2所示,压控电阻电路140可以包括:
第五MOS管141,第五MOS管141的源极连接电源Vdd,第五MOS管141的漏极连接第一MOS管113和第二MOS管114的源极;
第六MOS管142,第六MOS管142的源极接地Vgd,第六MOS管142 的漏极连接第三MOS管115和第四MOS管116的源极。
第五MOS管141的栅极和第六MOS管142的栅极为压控电阻电路140的电压控制端
图2中上方的环路可称为P型反馈环路;下方的环路可称为N型反馈环路。P型反馈环路和N型反馈环路完全对称,二者的工作原理类似。
以P型反馈环路为例,当振荡电路起振后,Vop的幅度逐渐变大,当幅度大于Vrp时,比较器121输出高脉冲,由于Vop是正弦波信号,因此Vop的幅度越大,比较器121输出的高脉冲的宽度就越宽。该脉冲通过低通滤波器后,得到一个与脉冲宽度成正比的直流电压Vp2。若Vp2越高,第五MOS管141等效的电阻就越大。也就是说,若振荡电路的幅度变大,脉宽变宽,Vp2升高,第五MOS管141的电阻增大,第一MOS管113和第二MOS管114由于源极负反馈的作用负阻减小,于是输出幅度开始减小。同理可知N型反馈环路的工作原理。
可选地,如图3所示,限幅振荡电路100还可以包括:
切换电路150,用于切换正输出端和负输出端与脉冲宽度调制电路120的连接。
在振荡电路110具有正输出端和负输出端的情况下,可以通过切换电路150切换正输出端和负输出端与脉冲宽度调制电路120的不同输入端的连接。
可选地,如图4所示,切换电路150可以包括:
第三比较器151、反相器152、第一开关153、第二开关154、第三开关155和第四开关156。
第三比较器151的正输入端连接振荡电路110的正输出端,第三比较器151的负输入端连接振荡电路110的负输出端,反相器152的输入端连接第三比较器151的输出端,第三比较器151的输出信号Vsp用于控制第一开关153和第四开关156,反相器152的输出信号Vsn用于控制第二开关154和第三开关155。
在这种情况下,可选地,脉冲宽度调制电路120可以包括:
第一比较器121,第一比较器121的正输入端通过第一开关153连接振荡电路110的正输出端,通过第二开关154连接振荡电路110的负输出端,第一比较器121的负输入端用于输入第一参考信号Vrp;
第二比较器122,第二比较器122的正输入端通过第三开关155连接振荡电路110的正输出端,通过第四开关156连接振荡电路110的负输出端,第二比较器122的负输入端用于输入第二参考信号Vrn。
在Vop大于Von时,Vsp为高电平,第一开关153以及第四开关156连通,第二开关154以及第三开关155断开,第一比较器121比较Vop和Vrp,输出Vp1,第二比较器122比较Von和Vrn,输出Vn1;
Vsp为低电平,Vsn为高电平,第二开关154以及第三开关155连通,第一开关153以及第四开关156断开,第一比较器121比较Von和Vrp,输出Vp1,第二比较器122比较Vop和Vrn,输出Vn1。
因此,在Vop大于Von时,以及Vop小于Von时,第一比较器121都能输出Vp1,第二比较器122都能输出Vn1,也就是说,Vp1和Vn1的占空比范围都可以变为0~100%。
图4中有关振荡电路、低通滤波电路以及压控电阻电路的部分与图2类似,为了简洁,在此不再赘述。
图4中限幅振荡电路的工作原理与图2类似,不同之处在于,由于图4采用了切换电路,扩大了可调范围。以P型反馈环路为例,图2中Vp1的占空比范围是0~50%,滤波后Vp2的电压范围为0~0.5Vdd,可调节的范围比较窄。而图4中Vp1的占空比范围变为0~100%,从而扩宽了可调范围。
本发明实施例的限幅振荡电路,采用压控电阻电路做负反馈,控制环路不会引入额外的噪声,因此限幅振荡电路具有较低的相噪。
进一步地,本发明实施例的限幅振荡电路的幅度控制主要基于源极反馈,因此该幅度控制的方式不存在稳定性问题,即本发明实施例的限幅振荡电路的稳定性能较好。
另外,在采用比较器时,限幅振荡电路的幅度取决于比较器的参考电压,即最终限幅振荡电路的幅度范围将非常接近于比较器的参考电压,因此,本发明实施例的限幅振荡电路的振荡幅度易控制。
因此,本发明实施例的技术方案,能够提高限幅振荡电路的性能。
本发明实施例还提供了一种芯片,该芯片可以包括上述本发明实施例的限幅振荡电路。
应理解,本文中的具体的例子只是为了帮助本领域技术人员更好地理解本发明实施例,而非限制本发明实施例的范围。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (13)

  1. 一种限幅振荡电路,其特征在于,包括:
    振荡电路(110),用于产生振荡信号;
    脉冲宽度调制电路(120),用于根据所述振荡信号的幅度,产生脉冲宽度调制信号;
    低通滤波电路(130),用于将所述脉冲宽度调制信号转换为直流控制电压信号,所述直流控制电压信号用于控制压控电阻电路(140);
    压控电阻电路(140),用于根据所述直流控制电压信号的控制,变化所述压控电阻电路(140)的电阻值,以控制所述振荡信号的幅度。
  2. 根据权利要求1所述的限幅振荡电路,其特征在于,所述振荡电路(110)为LC振荡电路、晶体振荡电路或张弛振荡电路。
  3. 根据权利要求1或2所述的限幅振荡电路,其特征在于,所述脉冲宽度调制电路(120)包括比较器,用于通过比较参考信号和所述振荡信号的幅度,产生所述脉冲宽度调制信号。
  4. 根据权利要求1至3中任一项所述的限幅振荡电路,其特征在于,所述低通滤波电路(130)为无源滤波器或有源滤波器。
  5. 根据权利要求1至4中任一项所述的限幅振荡电路,其特征在于,所述压控电阻电路(140)的电阻为线性电阻或者工作在线性区的非线性电阻。
  6. 根据权利要求1至5中任一项所述的限幅振荡电路,其特征在于,所述压控电阻电路(140)包括金属氧化物半导体场效应晶体管MOS。
  7. 根据权利要求1至6中任一项所述的限幅振荡电路,其特征在于,所述振荡电路(110)具有正输出端和负输出端。
  8. 根据权利要求1至7中任一项所述的限幅振荡电路,其特征在于,所述振荡电路(110)包括:
    电感(111)、第一电容(112),所述电感(111)和所述第一电容(112)形成谐振回路;
    第一MOS管(113)、第二MOS管(114)、第三MOS管(115)、第四MOS管(116),所述第一MOS管(113)、所述第二MOS管(114)、所述第三MOS管(115)和所述第四MOS管(116)为所述谐振回路提供负阻,所述第一MOS管(113)的漏极和所述第二MOS(114)管的栅极为所述振 荡电路(110)的正输出端,所述第三MOS管(115)的栅极和所述第四MOS管(116)的漏极为所述振荡电路(110)的负输出端。
  9. 根据权利要求7或8所述的限幅振荡电路,其特征在于,所述脉冲宽度调制电路(120)包括:
    第一比较器(121),所述第一比较器(121)的正输入端连接所述振荡电路(110)的正输出端,所述第一比较器(121)的负输入端用于输入第一参考信号;
    第二比较器(122),所述第二比较器(122)的正输入端连接所述振荡电路(110)的负输出端,所述第二比较器(122)的负输入端用于输入第二参考信号。
  10. 根据权利要求7或8所述的限幅振荡电路,其特征在于,所述限幅振荡电路还包括:
    切换电路(150),用于切换所述正输出端和所述负输出端与所述脉冲宽度调制电路(120)的连接。
  11. 根据权利要求10所述的限幅振荡电路,其特征在于,所述切换电路(150)包括:
    第三比较器(151)、反相器(152)、第一开关(153)、第二开关(154)、第三开关(155)和第四开关(156);
    所述第三比较器(151)的正输入端连接所述振荡电路(110)的正输出端,所述第三比较器(151)的负输入端连接所述振荡电路(110)的负输出端,所述反相器(152)的输入端连接所述第三比较器(151)的输出端,所述第三比较器(151)的输出信号用于控制所述第一开关(153)和所述第四开关(156),所述反相器(152)的输出信号用于控制所述第二开关(154)和所述第三开关(155)。
  12. 根据权利要求11所述的限幅振荡电路,其特征在于,所述脉冲宽度调制电路(120)包括:
    第一比较器(121),所述第一比较器(121)的正输入端通过所述第一开关(153)连接所述振荡电路(110)的正输出端,通过所述第二开关(154)连接所述振荡电路(110)的负输出端,所述第一比较器(121)的负输入端用于输入第一参考信号;
    第二比较器(122),所述第二比较器(122)的正输入端通过所述第三 开关(155)连接所述振荡电路(110)的正输出端,通过所述第四开关(156)连接所述振荡电路(110)的负输出端,所述第二比较器(122)的负输入端用于输入第二参考信号。
  13. 根据权利要求9或12所述的限幅振荡电路,其特征在于,所述低通滤波电路(130)包括:
    第一低通滤波器,包括第一电阻(131)和第二电容(132),所述第一低通滤波器的输入端连接所述第一比较器(121)的输出端,所述第一低通滤波器的输出端连接第五MOS管(141)的栅极;
    第二低通滤波器,包括第二电阻(133)和第三电容(134),所述第二低通滤波器的输入端连接所述第二比较器(122)的输出端,所述第二低通滤波器的输出端连接第六MOS管(142)的栅极;
    所述压控电阻电路(140),包括:
    所述第五MOS管(141),所述第五MOS管(141)的源极连接电源,所述第五MOS管(141)的漏极连接所述第一MOS管(113)和所述第二MOS管(114)的源极;
    所述第六MOS管(142),所述第六MOS管(142)的源极接地,所述第六MOS管(142)的漏极连接所述第三MOS管(115)和所述第四MOS管(116)的源极。
PCT/CN2016/103225 2016-10-25 2016-10-25 限幅振荡电路 WO2018076173A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2016/103225 WO2018076173A1 (zh) 2016-10-25 2016-10-25 限幅振荡电路
KR1020187002738A KR102083233B1 (ko) 2016-10-25 2016-10-25 진폭 제한 발진 회로
EP16910785.1A EP3340460B1 (en) 2016-10-25 2016-10-25 Amplitude-limit oscillation circuit
CN201680001376.1A CN106537767B (zh) 2016-10-25 2016-10-25 限幅振荡电路
US15/871,427 US10608585B2 (en) 2016-10-25 2018-01-15 Amplitude limiting oscillation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/103225 WO2018076173A1 (zh) 2016-10-25 2016-10-25 限幅振荡电路

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/871,427 Continuation US10608585B2 (en) 2016-10-25 2018-01-15 Amplitude limiting oscillation circuit

Publications (1)

Publication Number Publication Date
WO2018076173A1 true WO2018076173A1 (zh) 2018-05-03

Family

ID=58335981

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/103225 WO2018076173A1 (zh) 2016-10-25 2016-10-25 限幅振荡电路

Country Status (5)

Country Link
US (1) US10608585B2 (zh)
EP (1) EP3340460B1 (zh)
KR (1) KR102083233B1 (zh)
CN (1) CN106537767B (zh)
WO (1) WO2018076173A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI725626B (zh) * 2018-12-17 2021-04-21 美商高通公司 用於功率與高速應用的比較器

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109842374B (zh) * 2017-11-28 2023-03-14 炬芯科技股份有限公司 限幅高频振荡电路及振荡信号产生方法
EP3644508B1 (en) * 2018-08-31 2021-11-17 Shenzhen Goodix Technology Co., Ltd. Reverse-current switch
CN109672428B (zh) * 2018-12-19 2023-07-07 上海琪埔维半导体有限公司 一种张弛振荡器
US11228283B2 (en) 2019-04-08 2022-01-18 Mediatek Singapore Pte. Ltd. Negative impedance circuit for reducing amplifier noise
US11038493B1 (en) * 2020-02-14 2021-06-15 Qualcomm Incorporated Local oscillator (LO) for wireless communication
CN113497590A (zh) * 2020-04-06 2021-10-12 联发科技(新加坡)私人有限公司 用于降低放大器噪声的电路和负阻抗电路
CN111628637B (zh) * 2020-06-03 2021-06-01 浙江大学 一种高频软开关三相逆变器安全动态切换方法
US11329608B1 (en) * 2020-10-23 2022-05-10 Infineon Technologies Ag Oscillator circuit with negative resistance margin testing
EP4007160A1 (en) * 2020-11-30 2022-06-01 Nxp B.V. Crystal oscillator start-up circuit and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101771401A (zh) * 2008-12-31 2010-07-07 联咏科技股份有限公司 振荡器电路
CN102332912A (zh) * 2011-09-30 2012-01-25 中国科学技术大学 一种可调节增益线性度的vco以及基于该vco的两点调制器
CN103248320A (zh) * 2013-05-27 2013-08-14 苏州贝克微电子有限公司 带有开关电容频率控制和频率设置电阻的精密振荡器电路和方法
CN203233361U (zh) * 2013-04-25 2013-10-09 立锜科技股份有限公司 振荡电路

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8089324B2 (en) * 2006-08-05 2012-01-03 Min Ming Tarng Varactor-free amplitude controlled oscillator(ACO) for system on chip and system on card Xtaless clock SOC
US6680655B2 (en) * 2001-08-01 2004-01-20 Sige Semiconductor Inc. Automatic gain control for a voltage controlled oscillator
DE102004005261B4 (de) * 2004-02-03 2010-01-07 Infineon Technologies Ag Amplitudengeregelte Oszillatorschaltung und Verfahren zum Betreiben einer amplitudengeregelten Oszillatorschaltung
US7872542B2 (en) 2005-08-01 2011-01-18 Marvell World Trade Ltd. Variable capacitance with delay lock loop
US8093958B2 (en) * 2007-12-05 2012-01-10 Integrated Device Technology, Inc. Clock, frequency reference, and other reference signal generator with a controlled quality factor
CN101399908B (zh) * 2008-10-13 2010-08-18 深圳创维-Rgb电子有限公司 自动调节电视机视频输出信号幅度的电路
US8471644B2 (en) * 2011-01-19 2013-06-25 Avago Technologies General Ip (Singapore) Pte. Ltd. Digital automatic gain control circuits and methods for controlling the amplitude of a time-varying signal
CN104426479B (zh) * 2013-08-29 2018-02-13 京微雅格(北京)科技有限公司 一种低功耗、低抖动、宽工作范围的晶体振荡器电路
CN103645764B (zh) * 2013-12-18 2016-01-13 浙江师范大学 一种基于电压调节的电阻线性化隔离控制电路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101771401A (zh) * 2008-12-31 2010-07-07 联咏科技股份有限公司 振荡器电路
CN102332912A (zh) * 2011-09-30 2012-01-25 中国科学技术大学 一种可调节增益线性度的vco以及基于该vco的两点调制器
CN203233361U (zh) * 2013-04-25 2013-10-09 立锜科技股份有限公司 振荡电路
CN103248320A (zh) * 2013-05-27 2013-08-14 苏州贝克微电子有限公司 带有开关电容频率控制和频率设置电阻的精密振荡器电路和方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI725626B (zh) * 2018-12-17 2021-04-21 美商高通公司 用於功率與高速應用的比較器

Also Published As

Publication number Publication date
US10608585B2 (en) 2020-03-31
CN106537767B (zh) 2021-03-19
KR102083233B1 (ko) 2020-03-02
EP3340460A1 (en) 2018-06-27
US20180138860A1 (en) 2018-05-17
EP3340460A4 (en) 2018-11-21
KR20180063038A (ko) 2018-06-11
CN106537767A (zh) 2017-03-22
EP3340460B1 (en) 2019-12-11

Similar Documents

Publication Publication Date Title
WO2018076173A1 (zh) 限幅振荡电路
US8159308B1 (en) Low power voltage controlled oscillator (VCO)
US9515607B1 (en) Voltage controlled oscillator with common mode adjustment start-up
US11356082B2 (en) Folded ramp generator
CN104426523A (zh) 具有减小的抖动的波形转换电路
US9276565B2 (en) Duty ratio correction circuit and phase synchronization circuit
JP2010028809A (ja) 位相同期ループの出力vcoにおいて50%デューティサイクルを達成するための方法および装置
CN202617065U (zh) 一种能抑制电源噪声的低电压压控振荡器
CN105281760B (zh) 一种基于偶次非线性幅度反馈的压控振荡器
JP2016096533A (ja) 発振器デバイス
US8917143B2 (en) Method and apparatus for filter-less analog input class D audio amplifier clipping
CN103683937A (zh) 电压转换电路
US9136831B2 (en) Frequency to voltage converter
Cho et al. A 40–170 MHz PLL-based PWM driver using 2-/3-/5-level class-D PA in 130 nm CMOS
CN107800387B (zh) 一种振幅控制电路及电感电容压控振荡器电路
CN115208357A (zh) 复制电路和包括复制电路的振荡器
US9007135B1 (en) Slew rate edge enhancer
US10554199B2 (en) Multi-stage oscillator with current voltage converters
CN219372390U (zh) 一种用于mcu的高频外部晶振限幅电路
JP6492848B2 (ja) 復調回路及びこれを用いた無線タグ装置
RU2642405C1 (ru) Устройство формирования управляющих напряжений для генератора, управляемого напряжением
JP5689781B2 (ja) ゲーティッドvco回路
Zhang et al. An analog CMOS double-edge multi-phase low-latency pulse width modulator
CN107395141B (zh) 功率放大装置
US10230362B2 (en) Enhanced resonant circuit amplifier

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187002738

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16910785

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE