WO2018074022A1 - 空調装置の吹出装置 - Google Patents

空調装置の吹出装置 Download PDF

Info

Publication number
WO2018074022A1
WO2018074022A1 PCT/JP2017/026655 JP2017026655W WO2018074022A1 WO 2018074022 A1 WO2018074022 A1 WO 2018074022A1 JP 2017026655 W JP2017026655 W JP 2017026655W WO 2018074022 A1 WO2018074022 A1 WO 2018074022A1
Authority
WO
WIPO (PCT)
Prior art keywords
fin
wind
case
fins
air conditioner
Prior art date
Application number
PCT/JP2017/026655
Other languages
English (en)
French (fr)
Inventor
悠 中島
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to CN201780062486.3A priority Critical patent/CN109803844B/zh
Priority to JP2018546152A priority patent/JP6713543B2/ja
Priority to BR112019006734-5A priority patent/BR112019006734B1/pt
Priority to US16/339,440 priority patent/US11241941B2/en
Priority to DE112017005241.6T priority patent/DE112017005241T5/de
Publication of WO2018074022A1 publication Critical patent/WO2018074022A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/34Nozzles; Air-diffusers
    • B60H1/345Nozzles; Air-diffusers with means for adjusting divergence, convergence or oscillation of air stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/34Nozzles; Air-diffusers
    • B60H1/3414Nozzles; Air-diffusers with means for adjusting the air stream direction
    • B60H1/3428Nozzles; Air-diffusers with means for adjusting the air stream direction using a set of pivoting shutters and a pivoting frame
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/34Nozzles; Air-diffusers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/34Nozzles; Air-diffusers
    • B60H1/3414Nozzles; Air-diffusers with means for adjusting the air stream direction
    • B60H1/3421Nozzles; Air-diffusers with means for adjusting the air stream direction using only pivoting shutters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • F24F13/06Outlets for directing or distributing air into rooms or spaces, e.g. ceiling air diffuser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • F24F13/10Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers
    • F24F13/14Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of tilting members, e.g. louvre
    • F24F13/15Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of tilting members, e.g. louvre with parallel simultaneously tiltable lamellae

Definitions

  • the present invention relates to a blowing device for an air conditioner.
  • This application claims priority based on Japanese Patent Application No. 2016-203786 filed in Japan on October 17, 2016, the contents of which are incorporated herein by reference.
  • the vehicle is equipped with an air conditioner.
  • the air adjusted by the air conditioner is blown out from the blowing device (register) into the passenger compartment.
  • the blowing device is provided with a wind direction varying means (louver).
  • the wind direction varying means is formed so that the wind direction can be changed in the left-right direction and the up-down direction of the vehicle.
  • blowout device having an inclined surface in addition to a wind direction varying means has been proposed (for example, see Patent Document 1).
  • This blowing device changes the wind direction toward the inclined surface by the wind direction varying means.
  • the blowing device blows wind in a predetermined direction along the surface of the inclined surface.
  • one fin is provided as a wind direction varying means.
  • an object of this invention is to provide the blowing device of the air conditioner which can control the wind direction of a blowing wind correctly.
  • the air conditioner blowing device of the present invention employs the following configuration.
  • Case for example, in embodiment
  • air conditioner for example, air conditioner 3 in embodiment
  • vehicle for example, vehicle 1 in embodiment
  • duct for example, duct 5 in embodiment
  • a case 20 An air outlet (for example, the air outlet 50d in the embodiment) that blows wind toward the vehicle interior, and a ventilation direction (for example, X in the embodiment) from the inlet to the air outlet in the case.
  • a ventilation path (for example, the ventilation path 50 in the embodiment) formed to be ventilated along the direction), and provided on the inlet side of the case,
  • a first inclined portion (for example, the first inclined portion 51 in the embodiment) that inclines in the outward direction of the case toward the wind direction, and the case that is provided on the air outlet side of the case and that faces toward the ventilation direction.
  • a second inclined portion (for example, the second inclined portion 52 in the embodiment) that is inclined inwardly, and an intermediate portion formed between the first inclined portion and the second inclined portion of the case (for example, An intermediate portion 53) in the embodiment, and a wind direction variable means (for example, a wind direction changing means provided in the ventilation path and capable of changing the wind direction of the incoming air from the inflow port between the blowout port and the intermediate portion)
  • the wind direction varying means 40) in the embodiment includes a plurality of fins (for example, the plurality of fins 40f in the embodiment) that are inclined in conjunction with each other.
  • the plurality of fins are arranged side by side in a first direction (for example, the Z direction in the embodiment), and are arranged at both ends of the first direction (for example, the first fin in the embodiment). 41) and a second fin (for example, the second fin 42 in the embodiment), and an end portion (for example, an end portion 41c in the embodiment) of the first fin and the second fin.
  • An interval in the first direction (for example, W2 in the embodiment) with an end on the inlet side (for example, the end portion 42c in the embodiment) is an opening width in the first direction of the inflow port (for example, the embodiment). In W1) or higher.
  • the first fin and the second fin have a state in which the first fin and the second fin are inclined inward in the case toward the ventilation direction. According to this configuration, the wind that has flowed into both ends of the ventilation path in the first direction is changed in the direction of the wind inward by the first fin and the second fin. Therefore, the wind is blown out from the air outlet without colliding with the inner surface of the case around the air outlet. Therefore, it can be avoided that the wind force of the blowing wind is weakened due to the pressure loss.
  • the plurality of fins include intermediate fins (for example, intermediate fins 43 in the embodiment) disposed between the first fins and the second fins in the first direction.
  • the intermediate fin is formed longer than the first fin and the second fin in the ventilation direction. According to these configurations, when the plurality of fins are inclined to one side, the wind escaping to the other side is reduced. Therefore, the direction of the wind flowing into the ventilation path can be changed efficiently.
  • the first inclined portion is formed in a curved surface shape along a movement locus of the end portion on the inlet side of the first fin or the second fin. According to this configuration, the gap between the first fin or the second fin and the first inclined portion is reduced. Therefore, when the plurality of fins are inclined to one side, the outflow of wind to the other side is suppressed. Therefore, the wind direction can be accurately controlled.
  • the wind direction varying means when the wind direction varying means is rotated to the intermediate position, most of the wind flowing into the ventilation path is changed in direction by the plurality of fins. That is, less wind travels without changing the wind direction. Therefore, it becomes easy to blow wind in a predetermined direction along the surface of the second inclined portion, and the wind direction can be accurately controlled.
  • FIG. 4 is a sectional view taken along line IV-IV in FIG. 2.
  • A) is explanatory drawing of an effect
  • B) is a blowout device of a modification.
  • A) is explanatory drawing of an effect
  • B) is a blowing device of a comparative example.
  • the X direction, the Y direction, and the Z direction used in the following description are defined as follows.
  • the X direction is the extending direction (ventilation direction) of the ventilation path formed inside the blowing device.
  • the + X direction is the opening direction of the air outlet formed on the downstream side of the ventilation path.
  • the Y direction and the Z direction are orthogonal to each other, and are orthogonal to the X direction.
  • the longitudinal direction is the Y direction
  • the short direction is the Z direction.
  • the X direction is the front-rear direction of the vehicle
  • the + X direction is the direction from the front to the rear of the vehicle.
  • the Y direction is the left-right (width) direction of the vehicle
  • the + Y direction is the direction from right to left toward the front of the vehicle.
  • the Z direction is the vertical direction of the vehicle
  • the + Z direction is the direction from the bottom to the top of the vehicle.
  • the X direction, the Y direction, and the Z direction are not limited to these examples.
  • FIG. 1 is a front view of the instrument panel in the passenger compartment.
  • FIG. 2 is a perspective view of the blowing device of the embodiment.
  • the end surface of the case 20 in the + Y direction is transparently displayed for understanding the internal structure of the blowing device 10.
  • the vehicle includes an air conditioner 3.
  • the air conditioner 3 adjusts the temperature and humidity of the air in the passenger compartment.
  • a blower (register) 10 is connected to the air conditioner 3 via a duct 5.
  • the air adjusted by the air conditioner 3 is blown out from the blowing device 10 into the vehicle interior.
  • the blowing device 10 is disposed on an instrument panel 2 in a passenger compartment 1 a of the vehicle 1.
  • the blowing device 10a is arranged on the passenger seat side of the instrument panel 2, and the blowing device 10b is arranged on the driver seat side.
  • FIG. 3 is an exploded perspective view of the blowing device of the embodiment.
  • the blowing device 10 includes a case 20, a shutoff valve 25, a louver 30, and a wind direction varying unit 40.
  • Each member constituting the blowing device 10 is formed of a resin material, a metal material, or the like.
  • the case 20 includes a first case 21, a second case 22, and link support portions 24m and 24n.
  • the case 20 is divided into two in the Z direction.
  • the first case 21 is arranged in the + Z direction, and the second case 22 is arranged in the ⁇ Z direction.
  • the link support portions 24m and 24n are sandwiched between the first case 21 and the second case 22.
  • the link support portions 24m and 24n are respectively disposed at both ends in the Y direction.
  • FIG. 4 is a cross-sectional view taken along line IV-IV in FIG. Case 20 is connected to air conditioner 3 of the vehicle via duct 5 (see FIG. 2).
  • the case 20 includes an inflow port 50 c, an air outlet 50 d, and a ventilation path 50.
  • the inflow port 50 c is provided at the end portion (duct side) of the case 20 in the ⁇ X direction, and is connected to the duct 5.
  • the air outlet 50d is provided at the end of the case 20 in the + X direction (vehicle compartment side) and blows air toward the vehicle interior.
  • the air outlet 50d opens in the + X direction.
  • the ventilation path 50 extends between the inlet 50 c and the outlet 50 d inside the case 20.
  • the ventilation path 50 is formed along the ventilation direction (X direction) from the inflow port 50c toward the blowout port 50d. That is, the inflow port 50c is formed on the upstream side in the ventilation direction of the ventilation path 50, and the outlet 50d is formed on the downstream side.
  • a first inclined portion 51, a second inclined portion 52, and an intermediate portion 53 are formed on the inner surface of the case 20.
  • the first inclined portion 51 is provided adjacent to the downstream side of the inflow port 50 c of the case 20.
  • the 1st inclination part 51 inclines in the outward direction of case 20 toward a ventilation direction. That is, the first inclined portion 51 s formed on the inner surface in the + Z direction (the inner surface facing the ⁇ Z direction) of the case 20 is inclined in the + Z direction as it goes in the + X direction. Further, the first inclined portion 51r formed on the inner surface of the case 20 in the ⁇ Z direction (the inner surface facing the + Z direction) is inclined in the ⁇ Z direction toward the + X direction.
  • the 1st inclination part 51 is formed in the curved surface shape so that it may exhibit circular arc shape in the cross section (for example, FIG. 4) perpendicular
  • the second inclined portion 52 is provided adjacent to the upstream side of the air outlet 50d of the case 20.
  • the second inclined portion 52 is inclined inward of the case 20 toward the ventilation direction. That is, the second inclined portion 52s formed on the inner surface of the case 20 in the + Z direction (the inner surface facing the ⁇ Z direction) is inclined in the ⁇ Z direction as it goes toward the + X direction. Further, the second inclined portion 52r formed on the inner surface in the ⁇ Z direction (the inner surface facing the + Z direction) of the case 20 is inclined in the + Z direction toward the + X direction.
  • the 2nd inclination part 52 is formed in planar shape so that it may show linear form in the cross section (for example, FIG. 4) perpendicular
  • the intermediate portion 53 is formed between the first inclined portion 51 and the second inclined portion 52.
  • the intermediate portion 53 is formed in a planar shape and is arranged in parallel with the XY plane.
  • the intermediate portion 53 continuously connects the end portion of the first inclined portion 51 in the + X direction and the end portion of the second inclined portion 52 in the ⁇ X direction.
  • a shut-off valve 25 In the ventilation path 50 of the case 20, a shut-off valve 25, a wind direction varying means 40, and a louver 30 are provided.
  • the shutoff valve 25 is disposed at the inflow port 50c.
  • the air direction varying means 40 is disposed adjacent to the downstream side of the inflow port 50c.
  • the louver 30 is disposed adjacent to the upstream side of the second inclined portion 52.
  • the shut-off valve 25 is formed in a rectangular flat plate shape with the Y direction as the longitudinal direction.
  • the shutoff valve 25 is supported by the case 20 in a rotatable state.
  • a first link member 27 and a second link member 28 are sequentially connected to an end portion in the ⁇ Y direction of the shutoff valve 25.
  • the second link member 28 is supported by the link support portion 24m in a rotatable state.
  • the shutoff valve 25 rotates inside the case 20.
  • the shut-off valve 25 adjusts the amount of wind flowing into the blowing device 10.
  • the louver 30 includes a plurality of slats 32, a connecting member 35, and a dial 38.
  • the wing plate 32 is formed in a substantially rectangular plate shape.
  • the plurality of slats 32 are arranged in parallel in the Y direction.
  • Rotating pins 32p are erected on both end portions of the wing plate 32 in the Z direction.
  • the rotation pin 32p is inserted into the hole 32h of the case 20. Thereby, the slat 32 is supported by the case 20 in a rotatable state.
  • a connecting pin 34 is erected at a position at the end of the wing plate 32 in the + Z direction and away from the rotation pin 32p.
  • the rotation pin 32p is disposed at the end portion in the + X direction
  • the connecting pin 34 is disposed at the end portion in the ⁇ X direction away from the rotation pin 32p.
  • the connecting member 35 has a plurality of holes.
  • the connection pins 34 of the plurality of blades 32 are respectively inserted into the plurality of holes of the connection member 35.
  • a central rotation pin 30p is erected on an end portion in the ⁇ Z direction of the central wing plate 32C arranged at the central portion in the Y direction.
  • the dial 38 is connected to the central rotation pin 30p of the central slat 32C. When the dial 38 is rotated, the center blade 32C is rotated. In conjunction with this, the plurality of blades 32 connected by the connecting member 35 rotate.
  • the louver 30 changes the wind direction in the Y direction of the wind blown from the air outlet 50d by rotating the blade 32.
  • the air direction varying means 40 includes a plurality of fins 40f, an end plate 45, a third link member 47, and a fourth link member 48.
  • the plurality of fins 40f include first fins 41, intermediate fins 43, and second fins 42 arranged side by side in the Z direction (first direction).
  • the plurality of fins 40f are each formed in a rectangular flat plate shape whose longitudinal direction is the Y direction.
  • the end plate 45 is disposed in parallel with the XZ plane.
  • the end plates 45 are fixed to both ends in the Y direction of the plurality of fins 40f.
  • a rotation pin 40p is erected on the outer side surface of the end plate 45 in the Y direction. The rotation pin 40p is inserted into the hole 40h of the case 20.
  • the wind direction varying means 40 is supported by the case 20 in a rotatable state.
  • a third link member 47 and a fourth link member 48 are sequentially connected to the + Y direction rotation pin 40p of the wind direction varying means 40.
  • the fourth link member 48 is supported by the link support portion 24n in a rotatable state.
  • the wind direction varying means 40 rotates around the central axis (rotating axis) 40a of the rotating pin 40p.
  • a position position in FIG. 4 in which the first fin 41 and the second fin 42 are plane-symmetric with respect to the XY plane including the rotation shaft 40a.
  • This rotational position is referred to as the standard position of the wind direction varying means 40.
  • the state in which the wind direction varying means 40 is in the standard position is referred to as the standard state of the wind direction varying means 40.
  • the configuration of the plurality of fins 40f in the standard state of the wind direction varying means 40 will be described.
  • the first fin 41 and the second fin 42 are arranged at both ends of the wind direction varying means 40 in the Z direction.
  • the first fin 41 is disposed at the end in the + Z direction
  • the second fin 42 is disposed at the end in the ⁇ Z direction.
  • the first fin 41 and the second fin 42 are inclined inward of the case 20 in the X direction. That is, the first fin 41 is inclined in the ⁇ Z direction toward the + X direction.
  • the second fin 42 is inclined in the + Z direction as it goes in the + X direction.
  • the interval between the ⁇ X direction end portion 41c of the first fin 41 and the ⁇ X direction end portion 42c of the second fin 42 is defined as W2.
  • the interval between the + X direction end 41d of the first fin 41 and the + X direction end 42d of the second fin 42 is defined as W3.
  • the first fin 41 and the second fin 42 are formed such that W2 is larger than W3.
  • Q is the intersection of the extended line of the second inclined part 52s in the + Z direction and the extended line of the second inclined part 52r in the ⁇ Z direction.
  • the intersection point Q is disposed in the + X direction of the air outlet 50d. At this time, the intersection of the extension line of the first fin 41 and the extension line of the second fin coincides with Q.
  • the interval between the ⁇ X direction end 41c of the first fin 41 and the ⁇ X direction end 42c of the second fin 42 is defined as W2.
  • the opening width in the Z direction of the inflow port 50c is set to W1.
  • the 1st fin 41 and the 2nd fin 42 are formed so that W2 may become W1 or more.
  • the first inclined portion 51 of the case 20 is formed in a curved surface along the rotation locus of the end portion 41c of the first fin 41 in the ⁇ X direction or the end portion 42c of the second fin 42 in the ⁇ X direction.
  • the first inclined portion 51s is formed in a curved surface along the rotation locus of the end portion 41c of the first fin 41 in the ⁇ X direction. That is, the distance R2 from the rotation shaft 40a of the wind direction varying means 40 to the first inclined portion 51s is constant.
  • the distance from the rotation shaft 40a to the end portion 41c of the first fin 41 in the ⁇ X direction is R1.
  • the first inclined portion 51s is formed so that R2 is slightly larger than R1.
  • the first inclined portion 51r is formed in a curved shape along the rotation locus of the end portion 42c of the second fin 42 in the ⁇ X direction.
  • the intermediate fin 43 is disposed between the first fin 41 and the second fin 42 in the Z direction.
  • the intermediate fins 43 are arranged in parallel with the XY plane in the standard state of the wind direction varying means 40.
  • the intermediate fins 43 are formed longer than the first fins 41 and the second fins 42 in the X direction.
  • the end portion 43d in the + X direction of the intermediate fin 43 is disposed in the + X direction from the end portion 41d in the + X direction of the first fin 41 and the end portion 42d in the + X direction of the second fin 42.
  • An end portion 43c in the ⁇ X direction of the intermediate fin 43 is disposed in the ⁇ X direction from an end portion 41c in the ⁇ X direction of the first fin 41 and an end portion 42c in the ⁇ X direction of the second fin 42.
  • the end portion 43c of the intermediate fin 43 in the ⁇ X direction comes into contact with the inner surface of the inflow port 50c of the case 20.
  • the distance from the rotation shaft 40a to the end portion 43c of the intermediate fin 43 in the ⁇ X direction is R3.
  • the distance from the rotation shaft 40a to the first inclined portion 51s is R2.
  • the intermediate fin 43 is formed so that R3 is larger than R2.
  • FIG. 5A shows a state in which the wind direction varying means 40 has been rotated to the standard position
  • FIG. 6A shows a state in which the wind direction varying means 40 has been rotated to an intermediate position
  • FIG. Wind flows from the air conditioner 3 through the duct 5 into the inlet 50c of the blowing device 10 (see FIG. 2).
  • the intermediate fins 43 are arranged in parallel with the XY plane in a state where the wind direction varying means 40 is rotated to the standard position. Therefore, the wind direction of the wind 61 that has flowed into the central portion of the ventilation path 50 in the Z direction is not changed by the intermediate fins 43.
  • the wind 61 passes through the ventilation path 50 without colliding with the inner surface of the case 20, and is blown out in the + X direction from the outlet 50d.
  • the first fin 41 and the second fin 42 are inclined inward of the case 20 toward the + X direction.
  • the direction of the wind 62 that has flowed into both ends of the ventilation path 50 in the Z direction is changed inward of the case 20 by the first fins 41 and the second fins 42.
  • the angle at which the wind direction is changed is also small. Therefore, the wind 62 passes through the ventilation path 50 without colliding with the inner surface of the case 20, and is blown out from the outlet 50d.
  • the fins 40f are inclined in the same direction in a state where the wind direction varying means 40 is rotated to the intermediate position.
  • the plurality of fins 40f are inclined in the ⁇ Z direction toward the + X direction. Therefore, the wind direction flowing into the ventilation path 50 is changed in the direction inclined from the + X direction to the ⁇ Z direction by the plurality of fins 40f.
  • the wind 71 flowing in the ⁇ Z direction (lower half) of the ventilation path 50 collides with the second inclined portion 52r in the ⁇ Z direction by changing the wind direction in this way.
  • the wind direction of the wind 71 is changed in a predetermined direction (a direction inclined from the + X direction to the + Z direction) along the surface of the second inclined portion 52r.
  • the wind 72 flowing in the + Z direction (upper half) of the ventilation path 50 collides with the second inclined portion 52r even if the wind direction is changed from the + X direction to the ⁇ Z direction by the plurality of fins 40f. do not do.
  • the wind 72 is changed in the direction inclined from the + X direction to the + Z direction under the influence of the wind 71 whose direction is changed in a predetermined direction along the second inclined portion 52r. Thereby, the wind 71 and the wind 72 are blown out from the blower outlet 50d toward the direction inclined in the + Z direction from the + X direction.
  • the end portion 43c of the intermediate fin 43 in the ⁇ Z direction contacts the inner surface of the inflow port 50c of the case 20.
  • the plurality of fins 40f are greatly inclined in the same direction.
  • the plurality of fins 40f are greatly inclined in the ⁇ Z direction toward the + X direction. Therefore, the wind direction of the wind 80 flowing into the ventilation path 50 is greatly changed in the direction inclined from the + X direction to the ⁇ Z direction by the plurality of fins 40f.
  • the wind 80 collides with the intermediate portion 53r of the case 20 in the ⁇ Z direction and flows along the surface of the intermediate portion 53r. Furthermore, the wind direction of the wind 80 is changed in a predetermined direction along the surface of the second inclined portion 52r. And the wind 80 blows off from the blower outlet 50d toward the predetermined direction along the surface of the 2nd inclination part 52r.
  • the wind direction varying means 40 and the second inclined portion 52 determine the wind direction in the Z direction.
  • the wind direction in the Z direction is changed by rotating the plurality of fins 40 f in the wind direction varying means 40.
  • the blowing apparatus 10 can be reduced in thickness.
  • the blowing angle in the Z direction is determined by the second inclined portion 52, the wind can be blown out in a high angle range.
  • the air outlet 50d is viewed from the passenger compartment, only the louver 30 is visually recognized, and the wind direction varying means 40 is not visually recognized. Therefore, the designability of the blowing device 10 can be improved.
  • the ventilation path 50 has an elongated channel cross section with the Z direction as the short direction and the Y direction as the long direction. Therefore, a contracted flow is generated on the upstream side of the wind direction varying means 40.
  • the air direction varying means 40, the louver 30 and the second inclined portion 52 are arranged in this order from the ⁇ X direction to the + X direction in the ventilation path 50. In this case, the contracted flow does not occur on the downstream side of the louver 30, and the wind from the louver 30 is not pushed back by the contracted flow. Therefore, the louver 30 can accurately control the wind direction in the Y direction.
  • FIG. 6B is a cross-sectional view of a blowout device of a comparative example.
  • the blow-out device 510 of the comparative example includes a single fin 540 as a wind direction varying unit.
  • FIG. 6B shows a state in which the fin 540 is rotated to the intermediate position.
  • the wind 76 that has flowed in the ⁇ Z direction (lower half) of the ventilation path 50 collides with the second inclined portion 52r in the ⁇ Z direction by changing the wind direction from the + X direction to the ⁇ Z direction. .
  • the wind 77 flowing in the + Z direction (upper half) of the ventilation path 50 goes straight without changing the wind direction in the direction inclined from the + X direction to the ⁇ Z direction.
  • the wind 76 and the wind 77 are blown out from the outlet 50d in a direction slightly inclined from the + X direction to the + Z direction.
  • the straight wind 77 remains until the fin 540 is rotated to the maximum position. Therefore, it is difficult to blow wind in a predetermined direction along the surface of the second inclined portion 52r, and it is difficult to control the wind direction. Further, when the fin 540 is rotated to the maximum position, the wind direction is suddenly switched to a predetermined direction.
  • the wind direction varying means 40 has a plurality of fins 40f that are inclined in conjunction with each other. According to this configuration, in the state where the wind direction varying means 40 is rotated to the intermediate position, most of the wind that has flowed into the ventilation path 50 is changed by the plurality of fins 40f. This reduces the amount of wind that travels without changing the wind direction. Therefore, it becomes easy to blow wind in a predetermined direction along the surface of the second inclined portion 52r, and the wind direction can be accurately controlled. Further, the wind direction can be linearly changed according to the rotation amount of the wind direction varying means 40.
  • the interval W2 between the ⁇ X direction end portion 41c of the first fin 41 and the ⁇ X direction end portion 42c of the second fin 42 is set to the inflow port 50c. Is set to be equal to or larger than the opening width W1 in the Z direction.
  • FIG. 8B is a cross-sectional view of a blowout device of a comparative example.
  • the duct 5 is connected to the inflow port 50c of the blowing apparatus 510 of a comparative example.
  • the duct 5 is inclined in the + Z direction while extending in the + X direction, and is connected to the inflow port 50c.
  • the fin 540 is rotated to the standard position.
  • the wind 96 flowing from the duct 5 into the ⁇ Z direction (lower half) of the ventilation path 50 is changed in the wind direction by the fins 540 to the + X direction.
  • the wind direction of the wind 97 flowing from the duct 5 into the + Z direction (upper half) of the ventilation path 50 is not changed by the fins 540. Therefore, the wind 97 travels along the inclination direction of the duct 5 and collides with the intermediate portion 53 s of the case 20 in the + Z direction. Further, the wind 97 flows along the surfaces of the intermediate portion 53s and the second inclined portion 52s, and is blown out in a predetermined direction from the outlet 50d. Thus, in the blowing device 510 of the comparative example, when the inclined duct 5 is connected, it becomes difficult to control the wind direction.
  • the blowing device 10 of the embodiment shown in FIG. 8A includes a plurality of fins 40f.
  • the interval W2 between the ⁇ X direction end portion 41c of the first fin 41 and the ⁇ X direction end portion 42c of the second fin 42 is equal to or larger than the opening width W1 in the Z direction of the inflow port 50c.
  • Fig.8 (a) all the winds 91 and 92 which flow into the ventilation path 50 change a wind direction with the some fin 40f. That is, the wind direction of the wind 92 flowing from the duct 5 into the + Z direction (upper half) of the ventilation path 50 is changed by the first fin 41. Thereby, all of the winds 91 and 92 are blown out in the + X direction from the blower outlet 50d. Therefore, even when the inclined duct 5 is connected, the wind direction can be accurately controlled.
  • FIG.5 (b) is sectional drawing of the blowing apparatus of the modification of embodiment.
  • the first fin 141 and the second fin 142 are arranged in parallel with the XY plane in the standard state of the wind direction varying means 140.
  • the direction of the wind 67 flowing into both ends in the Z direction of the ventilation path 50 is not changed by the first fin 141 and the second fin 142. Therefore, the wind 67 travels straight in the + X direction or travels in the + X direction while slightly diffusing.
  • a part of the wind 67 collides with the inner surface of the case 20 around the outlet 50d. As a result, pressure loss occurs and the wind force of the blown wind is weakened.
  • the blowing device 10 of the embodiment shown in FIG. 5A in the standard state of the wind direction varying means 40, the first fin 41 and the second fin 42 are inward of the case 20 toward the X direction. It is inclined to. According to this configuration, the direction of the wind 62 that has flowed into both ends in the Z direction of the ventilation path 50 is changed inward of the case 20 by the first fins 41 and the second fins 42. Therefore, the wind 62 is blown out from the air outlet 50d without colliding with the inner surface of the case 20 around the air outlet 50d. Therefore, it can be avoided that the wind force of the blowing wind is weakened due to the pressure loss.
  • FIG. 9B is a cross-sectional view of a blowing device according to a modification of the embodiment.
  • the first fin 141 and the second fin 142 are arranged in parallel with the XY plane in the standard state of the wind direction varying means 140. Therefore, the wind 68 blown out from the outlet 50d advances straight in the + X direction or advances in the + X direction while being slightly diffused.
  • the wind 68 hardly spreads in the Z direction, the wind 68 is concentrated and sprayed on a narrow area in the passenger compartment. In this case, a wind spot characteristic peculiar to a thin blower is generated.
  • the first fin 41 and the second fin 42 are inward of the case 20 in the X direction in the standard state of the wind direction varying means 40. It is inclined to. According to this configuration, the wind 63 whose air direction is changed by the first fin 41 and the second fin 42 and blown from the outlet 50d travels in the + X direction while slightly spreading in the Z direction. Therefore, the wind 63 is not blown in a concentrated manner in a narrow area in the passenger compartment, and the occurrence of a wind spot feeling can be avoided.
  • the plurality of fins 40f in the present embodiment include intermediate fins 43 disposed between the first fins 41 and the second fins 42 in the Z direction.
  • the intermediate fin 43 efficiently directs the wind that is going straight in the + X direction in the intended direction.
  • the intermediate fins 43 are longer than the first fins 41 and the second fins 42 in the X direction. Thereby, when the plurality of fins 40f are inclined to one side, the wind escaping to the other side is reduced. Therefore, the direction of the wind flowing into the ventilation path 50 can be changed efficiently.
  • the end of the intermediate fin 43 in the ⁇ X direction comes into contact with the inflow port 50 c at the maximum inclination position of the wind direction varying means 40. Thereby, when the plurality of fins 40f are inclined to one side, the wind escaping to the other side is reduced. Therefore, the direction of the wind flowing into the ventilation path 50 can be changed efficiently.
  • the first inclined portion 51 is formed in a curved surface shape along the movement locus of the end of the first fin 41 or the second fin 42 in the ⁇ X direction. Thereby, the clearance gap between the 1st fin 41 or the 2nd fin 42, and the 1st inclination part 51 becomes small. Therefore, when the plurality of fins 40f are inclined to one side, the outflow of wind to the other side is suppressed. Therefore, the wind direction can be accurately controlled.
  • the longitudinal direction is the Y direction and the short direction is the Z direction.
  • the Y direction is the left-right (width) direction of the vehicle and the Z direction is the vertical direction of the vehicle. In this case, it is applied to a vehicle as a horizontally long blowing device. Thereby, the designability can be improved.
  • the Y direction is the vertical direction of the vehicle
  • the Z direction is the horizontal (width) direction of the vehicle.
  • the blowing device of this embodiment is applicable also when the cross-sectional shape orthogonal to the X direction of a ventilation path is a square.
  • ⁇ Left and right can be easily selected using a switch attached to the housing, and can be applied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Air-Flow Control Members (AREA)

Abstract

車両の空調装置に接続されるケース(20)と、ケース(20)の流入口(50c)から吹出口(50d)にかけて形成された通風路(50)と、ケース(20)の流入口(50c)側に設けられた第1傾斜部(51)と、ケース(20)の吹出口(50d)側に設けられた第2傾斜部(52)と、ケース(20)の第1傾斜部(51)と第2傾斜部(52)との間に形成された中間部(53)と、通風路(50)に設けられ、流入口(50c)からの流入風の風向を吹出口(50d)と中間部(53)との間に向かって変化させることが可能な風向可変手段(40)とを備え、風向可変手段(40)は、連動して傾斜する複数のフィン(40f)を有する。

Description

空調装置の吹出装置
 本発明は、空調装置の吹出装置に関するものである。
 本願は、2016年10月17日に、日本に出願された特願2016-203786号に基づき優先権を主張し、その内容をここに援用する。
 車両には空調装置が搭載されている。空調装置で調整された空気は、吹出装置(レジスタ)から車室内に吹出される。吹出装置は、風向可変手段(ルーバ)を備えている。風向可変手段は、車両の左右方向および上下方向に風向きを変更可能に形成されている。
 近時では、風向可変手段に加えて傾斜面を備えた吹出装置が提案されている(例えば特許文献1参照)。この吹出装置は、風向可変手段により傾斜面に向かって風向きを変更する。そして吹出装置は、傾斜面の表面に沿った所定方向に風を吹出す。この吹出装置では、風向可変手段として1枚のフィンを備えている。
特開2014-91376号公報
 上述した吹出装置では、フィンを中間位置に回動したとき、流入風の一部は傾斜面に向かって風向きを変更されるが、流入風の残部は風向きを変更されずに直進する。そのため、吹出風の風向きを正確に制御するのが困難である。
 そこで本発明は、吹出風の風向きを正確に制御できる空調装置の吹出装置の提供を目的とする。
 上記課題を解決するため、本発明の空調装置の吹出装置は、以下の構成を採用した。
 (1)車両(例えば、実施形態における車両1)の空調装置(例えば、実施形態における空調装置3)にダクト(例えば、実施形態におけるダクト5)を介して接続されるケース(例えば、実施形態におけるケース20)と、前記ケースの前記ダクト側に設けられ、前記ダクトに接続される流入口(例えば、実施形態における流入口50c)と、前記ケースの車室(例えば、実施形態における車室1a)側に設けられ、車室内に向けて風を吹き出す吹出口(例えば、実施形態における吹出口50d)と、前記ケースの内部において前記流入口から前記吹出口に向かう通風方向(例えば、実施形態におけるX方向)に沿って通風可能に形成された通風路(例えば、実施形態における通風路50)と、前記ケースの前記流入口側に設けられ、前記通風方向に向かって前記ケースの外方向に傾斜する第1傾斜部(例えば、実施形態における第1傾斜部51)と、前記ケースの前記吹出口側に設けられ、前記通風方向に向かって前記ケースの内方向に傾斜する第2傾斜部(例えば、実施形態における第2傾斜部52)と、前記ケースの前記第1傾斜部と前記第2傾斜部との間に形成された中間部(例えば、実施形態における中間部53)と、前記通風路に設けられ、前記流入口からの流入風の風向を前記吹出口と前記中間部との間に向かって変化させることが可能な風向可変手段(例えば、実施形態における風向可変手段40)と、を備え、前記風向可変手段は、連動して傾斜する複数のフィン(例えば、実施形態における複数のフィン40f)を有する。
 この構成によれば、風向可変手段を中間位置に回動したとき、通風路に流入する風の多くが複数のフィンによって風向を変更される。すなわち、風向きを変更されずに進行する風が少なくなる。そのため、第2傾斜部の表面に沿った所定方向に風を吹き出しやすくなり、風向きを正確に制御することができる。
 (2)前記複数のフィンは、第1方向(例えば、実施形態におけるZ方向)に並んで配置され、前記第1方向の両端部に配置された第1フィン(例えば、実施形態における第1フィン41)と第2フィン(例えば、実施形態における第2フィン42)とを含み、前記第1フィンの前記流入口側の端部(例えば、実施形態における端部41c)と前記第2フィンの前記流入口側の端部(例えば、実施形態における端部42c)との前記第1方向における間隔(例えば、実施形態におけるW2)は、前記流入口の前記第1方向における開口幅(例えば、実施形態におけるW1)以上に設定されている。
 この構成によれば、流入口を通って通風路に流入する風の全てが複数のフィンによって風向きを変更される。すなわち、風向きを変更されずに進行する風が残らない。したがって、風向きを正確に制御することができる。
 (3)前記第1フィンおよび前記第2フィンは、前記通風方向に向かって前記ケースの内方向に傾斜する状態を有する。
 この構成によれば、通風路の第1方向の両端部に流入した風が、第1フィンおよび第2フィンによりケースの内方向に風向きを変更される。そのため風は、吹出口の周囲におけるケースの内面に衝突することなく、吹出口から吹出される。したがって、圧力損失により吹出風の風力が弱まるのを回避できる。
 (4)前記複数のフィンは、前記第1方向において前記第1フィンと前記第2フィンとの間に配置された中間フィン(例えば、実施形態における中間フィン43)を含む。
 (5)前記中間フィンは、前記通風方向において前記第1フィンおよび前記第2フィンよりも長く形成されている。
 これらの構成によれば、複数のフィンを一方に傾斜させたとき、他方へ逃げる風が少なくなる。したがって、通風路に流入する風の風向きを効率よく変更できる。
 (6)前記中間フィンの前記流入口側の端部は、前記風向可変手段の最大傾斜位置において、前記流入口と当接する。
 この構成によれば、複数のフィンを一方に最大傾斜させたとき、他方へ逃げる風が発生しない。したがって、通風路に流入する風の風向きを効率よく変更できる。
 (7)前記第1傾斜部は、前記第1フィンまたは前記第2フィンの前記流入口側の端部の移動軌跡に沿った曲面状に形成されている。
 この構成によれば、第1フィンまたは第2フィンと第1傾斜部との隙間が小さくなる。そのため、複数のフィンを一方に傾斜させたとき、他方への風の流出が抑制される。したがって、風向きを正確に制御することができる。
 本発明によれば、風向可変手段を中間位置に回動したとき、通風路に流入する風の多くが複数のフィンによって風向きを変更される。すなわち、風向きを変更されずに進行する風が少なくなる。そのため、第2傾斜部の表面に沿った所定方向に風を吹き出しやすくなり、風向きを正確に制御することができる。
車室内のインスツルメントパネルの正面図である。 実施形態の吹出装置の斜視図である。 実施形態の吹出装置の分解斜視図である。 図2のIV-IV線における断面図である。 (a)は実施形態の吹出装置の作用の説明図であり、風向可変手段を標準位置に回動した状態である。(b)は変形例の吹出装置である。 (a)は実施形態の吹出装置の作用の説明図であり、風向可変手段を中間位置に回動した状態である。(b)は比較例の吹出装置である。 実施形態の吹出装置の作用の説明図であり、風向可変手段を最大位置に回動した状態である。 (a)は実施形態の吹出装置の作用の説明図であり、風向可変手段を標準位置に回動した状態である。(b)は比較例の吹出装置である。 (a)は実施形態の吹出装置の作用の説明図であり、風向可変手段を標準位置に回動した状態である。(b)は変形例の吹出装置である。
 以下、本発明における空調装置の吹出装置の一実施形態について、添付図面を参照しながら説明する。
 以下の説明で使用するX方向、Y方向およびZ方向は、以下のように定義される。X方向は、吹出装置の内部に形成された通風路の延在方向(通風方向)である。+X方向は、通風路の下流側に形成された吹出口の開口方向である。Y方向およびZ方向は、相互に直交する方向であって、それぞれX方向に直交する。一例を挙げれば、通風路のX方向に直交する断面形状が長方形の場合に、長手方向がY方向であり、短手方向がZ方向である。また車両との関係で一例を挙げれば、X方向は車両の前後方向であり、+X方向は車両の前から後に向かう方向である。Y方向は車両の左右(幅)方向であり、+Y方向は車両の前方に向かって右から左に向かう方向である。Z方向は車両の上下方向であり、+Z方向は車両の下から上に向かう方向である。ただしX方向、Y方向およびZ方向は、これらの各例に限定されない。
 図1は車室内のインスツルメントパネルの正面図である。図2は実施形態の吹出装置の斜視図である。図2は、吹出装置10の内部構造の理解のため、ケース20の+Y方向の端面を透過して表示している。図2に示すように、車両は空調装置3を備えている。空調装置3は、車室内の空気の温度や湿度などを調整する。空調装置3には、ダクト5を介して吹出装置(レジスタ)10が連結されている。空調装置3で調整された空気は、吹出装置10から車室内に吹出される。図1に示すように、吹出装置10は、車両1の車室1a内のインスツルメントパネル2に配置されている。例えば、インスツルメントパネル2の助手席側に吹出装置10aが配置され、運転席側に吹出装置10bが配置されている。
 図3は実施形態の吹出装置の分解斜視図である。図3に示すように、吹出装置10は、ケース20と、遮断弁25と、ルーバ30と、風向可変手段40とを備えている。吹出装置10を構成する各部材は、樹脂材料や金属材料等で形成されている。
 ケース20は、第1ケース21と、第2ケース22と、リンク支持部24m,24nとを備える。ケース20は、Z方向に2つに分かれる。第1ケース21は+Z方向に配置され、第2ケース22は-Z方向に配置されている。リンク支持部24m,24nは、第1ケース21と第2ケース22との間に挟まれている。リンク支持部24m,24nは、Y方向の両端部にそれぞれ配置されている。
 図4は、図2のIV-IV線における断面図である。ケース20は、車両の空調装置3にダクト5を介して接続される(図2参照)。
 図4に示すように、ケース20は、流入口50cと、吹出口50dと、通風路50とを備えている。流入口50cは、ケース20の-X方向の端部(ダクト側)に設けられ、ダクト5に接続される。吹出口50dは、ケース20の+X方向の端部(車室側)に設けられ、車室内に向けて風を吹き出す。吹出口50dは、+X方向に開口している。通風路50は、ケース20の内部において流入口50cと吹出口50dとの間に延在している。通風路50は、流入口50cから吹出口50dに向かう通風方向(X方向)に沿って形成されている。すなわち、通風路50の通風方向の上流側に流入口50cが形成され、下流側に吹出口50dが形成されている。
 ケース20の内面には、第1傾斜部51と、第2傾斜部52と、中間部53とが形成されている。
 第1傾斜部51は、ケース20の流入口50cの下流側に隣接して設けられている。第1傾斜部51は、通風方向に向かってケース20の外方向に傾斜する。すなわち、ケース20の+Z方向の内面(-Z方向を向く内面)に形成された第1傾斜部51sは、+X方向に向かうにしたがって+Z方向に傾斜している。また、ケース20の-Z方向の内面(+Z方向を向く内面)に形成された第1傾斜部51rは、+X方向に向かうにしたがって-Z方向に傾斜している。第1傾斜部51は、Y方向に垂直な断面(例えば図4)において円弧状を呈するように、曲面状に形成されている。
 第2傾斜部52は、ケース20の吹出口50dの上流側に隣接して設けられている。第2傾斜部52は、通風方向に向かってケース20の内方向に傾斜する。すなわちケース20の+Z方向の内面(-Z方向を向く内面)に形成された第2傾斜部52sは、+X方向に向かうにしたがって-Z方向に傾斜している。また、ケース20の-Z方向の内面(+Z方向を向く内面)に形成された第2傾斜部52rは、+X方向に向かうにしたがって+Z方向に傾斜している。第2傾斜部52は、Y方向に垂直な断面(例えば図4)において直線状を呈するように、平面状に形成されている。
 中間部53は、第1傾斜部51と第2傾斜部52との間に形成されている。中間部53は平面状に形成され、XY平面と平行に配置されている。中間部53は、第1傾斜部51の+X方向の端部と第2傾斜部52の-X方向の端部との間を連続的に接続している。
 ケース20の通風路50には、遮断弁25と、風向可変手段40と、ルーバ30とが設けられている。遮断弁25は、流入口50cに配置されている。風向可変手段40は、流入口50cの下流側に隣接して配置されている。ルーバ30は、第2傾斜部52の上流側に隣接して配置されている。
 図3に示すように、遮断弁25は、Y方向を長手方向とする長方形の平板状に形成されている。遮断弁25は、回動可能な状態でケース20に支持されている。遮断弁25の-Y方向の端部には、第1リンク部材27および第2リンク部材28が順に連結されている。第2リンク部材28は、回動可能な状態でリンク支持部24mに支持されている。第2リンク部材28の+X方向の端部をZ方向に移動させると、遮断弁25がケース20の内部で回動する。遮断弁25は、吹出装置10への風の流入量を調整する。
 ルーバ30は、複数の羽板32と、連結部材35と、ダイヤル38とを備える。羽板32は、略四角形の板状に形成されている。複数の羽板32は、Y方向に並んで平行に配置されている。羽板32のZ方向の両端部には、回動ピン32pが立設されている。回動ピン32pは、ケース20の孔32hに挿入されている。これにより羽板32は、回動可能な状態でケース20に支持されている。羽板32の+Z方向の端部であって回動ピン32pから離れた位置には、連結ピン34が立設されている。例えば、回動ピン32pは+X方向の端部に配置され、連結ピン34は回動ピン32pから離れて-X方向の端部に配置されている。連結部材35は複数の孔を備えている。連結部材35の複数の孔には、複数の羽板32の連結ピン34がそれぞれ挿入されている。Y方向の中央部に配置された中央羽板32Cの-Z方向の端部には、中央回動ピン30pが立設されている。ダイヤル38は、中央羽板32Cの中央回動ピン30pに連結されている。ダイヤル38を回動させると、中央羽板32Cが回動する。これに連動して、連結部材35により連結された複数の羽板32が回動する。ルーバ30は、羽板32を回動させることにより、吹出口50dから吹出す風のY方向の風向きを変化させる。
 風向可変手段40は、複数のフィン40fと、端板45と、第3リンク部材47と、第4リンク部材48とを備える。
 複数のフィン40fは、Z方向(第1方向)に並んで配置された第1フィン41と、中間フィン43と、第2フィン42とを含む。複数のフィン40fは、それぞれY方向を長手方向とする長方形の平板状に形成されている。端板45は、XZ平面と平行に配置されている。端板45は、複数のフィン40fのY方向の両端部に固定されている。端板45のY方向の外側面には、回動ピン40pが立設されている。回動ピン40pは、ケース20の孔40hに挿入されている。これにより風向可変手段40は、回動可能な状態でケース20に支持されている。風向可変手段40の+Y方向の回動ピン40pには、第3リンク部材47および第4リンク部材48が順に連結されている。第4リンク部材48は、回動可能な状態でリンク支持部24nに支持されている。第4リンク部材48の+X方向の端部をZ方向に移動させると、風向可変手段40がケース20の内部で回動する。
 図4に示すように、風向可変手段40は、回動ピン40pの中心軸(回動軸)40aを中心に回動する。風向可変手段40の回動位置の一つとして、第1フィン41と第2フィン42とが回動軸40aを含むXY平面に対して面対称になる位置(図4の位置)が存在する。この回動位置を風向可変手段40の標準位置と呼ぶ。また、風向可変手段40が標準位置にある状態を風向可変手段40の標準状態と呼ぶ。以下、風向可変手段40の標準状態において、複数のフィン40fの構成を説明する。
 第1フィン41および第2フィン42は、風向可変手段40のZ方向の両端部に配置されている。第1フィン41は+Z方向の端部に配置され、第2フィン42は-Z方向の端部に配置されている。風向可変手段40の標準状態において、第1フィン41および第2フィン42は、X方向に向かってケース20の内方向に傾斜する。すなわち第1フィン41は、+X方向に向かうにしたがって-Z方向に傾斜している。また第2フィン42は、+X方向に向かうにしたがって+Z方向に傾斜している。ここで、第1フィン41の-X方向の端部41cと第2フィン42の-X方向の端部42cとの間隔をW2とする。また、第1フィン41の+X方向の端部41dと第2フィン42の+X方向の端部42dとの間隔をW3とする。第1フィン41および第2フィン42は、W2がW3より大きくなるように形成されている。図4の断面図において、+Z方向の第2傾斜部52sの延長線と-Z方向の第2傾斜部52rの延長線との交点をQとする。交点Qは、吹出口50dの+X方向に配置される。このとき、第1フィン41の延長線と第2フィンの延長線との交点は、Qに一致している。
 前述したように、第1フィン41の-X方向の端部41cと第2フィン42の-X方向の端部42cとの間隔をW2とする。一方、流入口50cのZ方向における開口幅をW1とする。第1フィン41および第2フィン42は、W2がW1以上となるように形成されている。
 ケース20の第1傾斜部51は、第1フィン41の-X方向の端部41cまたは第2フィン42の-X方向の端部42cの回動軌跡に沿った曲面状に形成されている。第1傾斜部51sは、第1フィン41の-X方向の端部41cの回動軌跡に沿った曲面状に形成されている。すなわち、風向可変手段40の回動軸40aから第1傾斜部51sまでの距離R2は一定である。ここで、回動軸40aから第1フィン41の-X方向の端部41cまでの距離をR1とする。第1傾斜部51sは、R2がR1よりわずかに大きくなるように形成されている。同様に第1傾斜部51rは、第2フィン42の-X方向の端部42cの回動軌跡に沿った曲面状に形成されている。
 中間フィン43は、Z方向において第1フィン41と第2フィン42との間に配置されている。中間フィン43は、風向可変手段40の標準状態においてXY平面と平行に配置されている。中間フィン43は、X方向において第1フィン41および第2フィン42よりも長く形成されている。中間フィン43の+X方向の端部43dは、第1フィン41の+X方向の端部41dおよび第2フィン42の+X方向の端部42dより、+X方向に配置されている。中間フィン43の-X方向の端部43cは、第1フィン41の-X方向の端部41cおよび第2フィン42の-X方向の端部42cより、-X方向に配置されている。風向可変手段40を最大に回動した場合、中間フィン43の-X方向の端部43cは、ケース20の流入口50cの内面に当接する。ここで、回動軸40aから中間フィン43の-X方向の端部43cまでの距離をR3とする。前述したように、回動軸40aから第1傾斜部51sまでの距離をR2とする。中間フィン43は、R3がR2より大きくなるように形成されている。
 本実施形態の吹出装置10の作用について説明する。
 図5(a)、図6(a)および図7は、実施形態の吹出装置の作用の説明図である。図5(a)は風向可変手段40を標準位置に回動した状態であり、図6(a)は中間位置に回動した状態であり、図7は最大位置に回動した状態である。吹出装置10の流入口50cには、空調装置3からダクト5を介して風が流入する(図2参照)。
 図5(a)に示すように、風向可変手段40を標準位置に回動した状態では、中間フィン43がXY平面と平行に配置されている。そのため、通風路50のZ方向の中央部に流入した風61は、中間フィン43により風向きを変更されない。この風61は、ケース20の内面に衝突することなく通風路50を通過し、吹出口50dから+X方向に吹出される。一方、第1フィン41および第2フィン42は、+X方向に向かってケース20の内方向に傾斜している。そのため、通風路50のZ方向の両端部に流入した風62は、第1フィン41および第2フィン42により、ケース20の内方向に風向きを変更される。ただし、第1フィン41および第2フィン42の傾斜角度は小さいので、風向きを変更される角度も小さい。そのため風62は、ケース20の内面に衝突することなく通風路50を通過し、吹出口50dから吹出される。
 図6(a)に示すように、風向可変手段40を中間位置に回動した状態では、複数のフィン40fが同じ方向に傾斜している。図6(a)の例では、複数のフィン40fが、+X方向に向かって-Z方向に傾斜している。そのため、通風路50に流入した風は、複数のフィン40fにより+X方向から-Z方向に傾斜した方向に風向を変更される。通風路50の-Z方向(下半部)に流入した風71は、このように風向を変更されることで、-Z方向の第2傾斜部52rに衝突する。この風71は、第2傾斜部52rの表面に沿った所定方向(+X方向から+Z方向に傾斜した方向)に風向を変更される。一方、通風路50の+Z方向(上半部)に流入した風72は、複数のフィン40fにより+X方向から-Z方向に傾斜した方向に風向を変更されても、第2傾斜部52rに衝突しない。ただし風72は、第2傾斜部52rに沿った所定方向に風向を変更された風71の影響を受けて、+X方向から+Z方向に傾斜した方向に風向を変更される。これにより風71および風72は、+X方向から+Z方向に傾斜した方向に向かって、吹出口50dから吹出される。
 図7に示すように、風向可変手段40を最大位置に回動した状態では、中間フィン43の-Z方向の端部43cが、ケース20の流入口50cの内面に当接する。この状態では、複数のフィン40fが同じ方向に大きく傾斜している。図7の例では、複数のフィン40fが、+X方向に向かって-Z方向に大きく傾斜している。そのため、通風路50に流入した風80は、複数のフィン40fにより+X方向から-Z方向に傾斜した方向に大きく風向を変更される。この風80は、ケース20の-Z方向の中間部53rに衝突し、中間部53rの表面に沿って流れる。さらに風80は、第2傾斜部52rの表面に沿った所定方向に風向を変更される。そして風80は、第2傾斜部52rの表面に沿った所定方向に向かって、吹出口50dから吹出される。
 このように、本実施形態の吹出装置10では、風向可変手段40および第2傾斜部52がZ方向の風向きを決定する。Z方向の風向きは、風向可変手段40における複数のフィン40fを回動させることにより変化する。これにより、吹出装置10を薄型化することができる。また、第2傾斜部52によりZ方向の吹出し角度が決まるので、高角度範囲に風を吹き出すことができる。さらに、車室から吹出口50dを見たとき、ルーバ30のみが視認され、風向可変手段40は視認されない。したがって、吹出装置10の意匠性を向上させることができる。
 通風路50は、Z方向を短手方向としY方向を長手方向とする細長い流路断面を有している。そのため、風向可変手段40の上流側で縮流が発生する。しかし、通風路50には-X方向から+X方向に向かって、風向可変手段40、ルーバ30および第2傾斜部52がこの順で配置されている。この場合、ルーバ30の下流側には縮流が発生せず、ルーバ30から出た風が縮流によって押し戻されることがない。したがって、ルーバ30はY方向の風向きを正確に制御することができる。
 図6(b)は、比較例の吹出装置の断面図である。比較例の吹出装置510は、風向可変手段として1枚のフィン540を備えている。図6(b)は、フィン540を中間位置まで回動した状態である。通風路50の-Z方向(下半部)に流入した風76は、+X方向から-Z方向に傾斜した方向に風向を変更されることで、-Z方向の第2傾斜部52rに衝突する。しかし、通風路50の+Z方向(上半部)に流入した風77は、+X方向から-Z方向に傾斜した方向に風向を変更されずに直進する。そのため風76および風77は、+X方向から+Z方向にわずかに傾斜した方向に向かって、吹出口50dから吹出される。この比較例では、フィン540を最大位置に回動するまで、直進する風77が残ることになる。そのため、第2傾斜部52rの表面に沿った所定方向に風を吹出しにくく、風向の制御が困難である。また、フィン540が最大位置に回動した時点で、風向が急激に所定方向に切り替わることになる。
 これに対して、図6(a)に示す実施形態の吹出装置10では、風向可変手段40が、連動して傾斜する複数のフィン40fを有している。この構成によれば、風向可変手段40を中間位置に回動した状態で、通風路50に流入した風の多くが複数のフィン40fによって風向を変更される。これにより、風向きを変更されずに進行する風が少なくなる。したがって、第2傾斜部52rの表面に沿った所定方向に風を吹き出しやすくなり、風向きを正確に制御することができる。また、風向可変手段40の回動量に応じてリニアに風向きを変化させることができる。
 特に実施形態の吹出装置10では、図4に示すように、第1フィン41の-X方向の端部41cと第2フィン42の-X方向の端部42cとの間隔W2が、流入口50cのZ方向における開口幅W1以上に設定されている。この構成によれば、図6(a)に示すように、風向可変手段40を中間位置に回動した状態で、通風路50に流入した風71,72の全てが、複数のフィン40fによって風向を変更される。したがって、所定方向に風を吹き出しやすくなり、風向きを正確に制御することができる。
 図8(b)は、比較例の吹出装置の断面図である。図8(b)では、比較例の吹出装置510の流入口50cにダクト5が接続されている。ダクト5は、+X方向に伸びながら+Z方向に傾斜して、流入口50cに接続されている。図8(b)では、フィン540が標準位置に回動されている。ダクト5から通風路50の-Z方向(下半部)に流入した風96は、フィン540により風向を+X方向に変更される。しかし、ダクト5から通風路50の+Z方向(上半部)に流入した風97は、フィン540により風向を変更されない。そのため風97は、ダクト5の傾斜方向に沿って進行し、ケース20の+Z方向の中間部53sに衝突する。さらに風97は、中間部53sおよび第2傾斜部52sの表面に沿って流れ、吹出口50dから所定方向に傾斜して吹出される。このように、比較例の吹出装置510では、傾斜したダクト5が接続される場合に、風向の制御が困難になる。
 これに対して、図8(a)に示す実施形態の吹出装置10では、複数のフィン40fを備えている。特に図4に示すように、第1フィン41の-X方向の端部41cと第2フィン42の-X方向の端部42cとの間隔W2が、流入口50cのZ方向における開口幅W1以上に設定されている。この構成によれば、図8(a)に示すように、通風路50に流入する風91,92の全てが、複数のフィン40fによって風向を変更される。すなわち、ダクト5から通風路50の+Z方向(上半部)に流入する風92は、第1フィン41によって風向を変更される。これにより、風91,92の全てが吹出口50dから+X方向に吹出される。したがって、傾斜したダクト5が接続される場合でも、風向を正確に制御することができる。
 図5(b)は実施形態の変形例の吹出装置の断面図である。変形例の吹出装置110では、風向可変手段140の標準状態において、第1フィン141および第2フィン142がXY平面と平行に配置されている。この場合、通風路50のZ方向の両端部に流入した風67は、第1フィン141および第2フィン142により風向きを変更されない。そのため風67は、+X方向に直進するか、または少し拡散しながら+X方向に進行する。このとき、風67の一部が、吹出口50dの周囲におけるケース20の内面に衝突する。これにより、圧力損失が発生して、吹出風の風力が弱まることになる。
 これに対して、図5(a)に示す実施形態の吹出装置10では、風向可変手段40の標準状態において、第1フィン41および第2フィン42が、X方向に向かってケース20の内方向に傾斜している。この構成によれば、通風路50のZ方向の両端部に流入した風62が、第1フィン41および第2フィン42により、ケース20の内方向に風向きを変更される。そのため風62は、吹出口50dの周囲におけるケース20の内面に衝突することなく、吹出口50dから吹出される。したがって、圧力損失により吹出風の風力が弱まるのを回避できる。
 図9(b)は実施形態の変形例の吹出装置の断面図である。変形例の吹出装置110では、風向可変手段140の標準状態において、第1フィン141および第2フィン142がXY平面と平行に配置されている。そのため、吹出口50dから吹出した風68は、+X方向に直進するか、または少し拡散しながら+X方向に進行する。しかし風68は、Z方向にほとんど広がらないので、車室内の狭い領域に集中して吹き付けられる。この場合には、薄型の吹出装置に特有の風のスポット感が生じることになる。
 これに対して、図9(a)に示す実施形態の吹出装置10では、風向可変手段40の標準状態において、第1フィン41および第2フィン42が、X方向に向かってケース20の内方向に傾斜している。この構成によれば、第1フィン41および第2フィン42により風向を変更されて吹出口50dから吹出した風63は、Z方向に少し広がりながら+X方向に進行する。したがって、風63が車室内の狭い領域に集中して吹き付けられることがなくなり、風のスポット感が生じるのを回避できる。
 図4に示すように、本実施形態における複数のフィン40fは、Z方向において第1フィン41と第2フィン42との間に配置された中間フィン43を含む。風向可変手段40を回動させるとき、中間フィン43は、+X方向に直進しようとする風を効率よく意図した方向へ向ける。
 中間フィン43は、X方向において第1フィン41および第2フィン42よりも長く形成されている。これにより、複数のフィン40fを一方に傾斜させたとき、他方へ逃げる風が少なくなる。したがって、通風路50に流入する風の風向きを効率よく変更できる。
 中間フィン43の-X方向の端部は、風向可変手段40の最大傾斜位置において、流入口50cと当接する。これにより、複数のフィン40fを一方に傾斜させたとき、他方へ逃げる風が少なくなる。したがって、通風路50に流入する風の風向きを効率よく変更できる。
 第1傾斜部51は、第1フィン41または第2フィン42の-X方向の端部の移動軌跡に沿った曲面状に形成されている。これにより、第1フィン41または第2フィン42と第1傾斜部51との隙間が小さくなる。そのため、複数のフィン40fを一方に傾斜させたとき、他方への風の流出が抑制される。したがって、風向きを正確に制御することができる。
 なお、本発明の技術的範囲は上述した実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において、上述した実施形態に種々の変更を加えたものを含む。すなわち、上述した実施形態の構成はほんの一例に過ぎず、適宜変更が可能である。
 実施形態では、吹出装置の一例として、通風路のX方向に直交する断面形状が長方形の場合に、長手方向がY方向であり、短手方向がZ方向である場合を挙げた。また車両との関係での一例として、Y方向は車両の左右(幅)方向であり、Z方向は車両の上下方向である場合を挙げた。この場合には、横長の吹出装置として車両に適用される。これにより、意匠性を向上させることができる。
 これに対して、縦長の吹出装置として車両に適用されてもよい。この場合、Y方向は車両の上下方向であり、Z方向は車両の左右(幅)方向である。縦長の吹出装置として車両に適用される場合には、車幅方向のスペースを節約することができる。すなわち、車幅方向のスペースに制約の多い車両に対して好適な吹出装置を提供することができる。
 実施形態では、吹出装置の一例として、通風路のX方向に直交する断面形状が長方形の場合に、長手方向がY方向であり、短手方向がZ方向である場合を挙げた。これに対して、短手方向がY方向であり、長手方向がZ方向であってもよい。また、通風路のX方向に直交する断面形状が正方形の場合にも、本実施形態の吹出装置を適用することができる。
 筺体に取付けたスイッチを用いて容易に左右の選択ができ、…適用できる。
 1…車両、1a…車室、3…空調装置、5…ダクト、10…吹出装置、20…ケース、40…風向可変手段、40f…複数のフィン、41…第1フィン、42…第2フィン、43…中間フィン、50…通風路、50c…流入口、50d…吹出口、51…第1傾斜部、52…第2傾斜部、53…中間部。

Claims (7)

  1.  車両の空調装置にダクトを介して接続されるケースと、
     前記ケースの前記ダクト側に設けられ、前記ダクトに接続される流入口と、
     前記ケースの車室側に設けられ、車室内に向けて風を吹き出す吹出口と、
     前記ケースの内部において前記流入口から前記吹出口に向かう通風方向に沿って通風可能に形成された通風路と、
     前記ケースの前記流入口側に設けられ、前記通風方向に向かって前記ケースの外方向に傾斜する第1傾斜部と、
     前記ケースの前記吹出口側に設けられ、前記通風方向に向かって前記ケースの内方向に傾斜する第2傾斜部と、
     前記ケースの前記第1傾斜部と前記第2傾斜部との間に形成された中間部と、
     前記通風路に設けられ、前記流入口からの流入風の風向を前記吹出口と前記中間部との間に向かって変化させることが可能な風向可変手段と、を備え、
     前記風向可変手段は、連動して傾斜する複数のフィンを有する、
     ことを特徴とする空調装置の吹出装置。
  2.  前記複数のフィンは、第1方向に並んで配置され、前記第1方向の両端部に配置された第1フィンと第2フィンとを含み、
     前記第1フィンの前記流入口側の端部と前記第2フィンの前記流入口側の端部との前記第1方向における間隔は、前記流入口の前記第1方向における開口幅以上に設定されている、
     ことを特徴とする請求項1に記載の空調装置の吹出装置。
  3.  前記第1フィンおよび前記第2フィンは、前記通風方向に向かって前記ケースの内方向に傾斜する状態を有する、
     ことを特徴とする請求項2に記載の空調装置の吹出装置。
  4.  前記複数のフィンは、前記第1方向において前記第1フィンと前記第2フィンとの間に配置された中間フィンを含む、
     ことを特徴とする請求項2に記載の空調装置の吹出装置。
  5.  前記中間フィンは、前記通風方向において前記第1フィンおよび前記第2フィンよりも長く形成されている、
     ことを特徴とする請求項4に記載の空調装置の吹出装置。
  6.  前記中間フィンの前記流入口側の端部は、前記風向可変手段の最大傾斜位置において、前記流入口と当接する、
     ことを特徴とする請求項4又は5に記載の空調装置の吹出装置。
  7.  前記第1傾斜部は、前記第1フィンまたは前記第2フィンの前記流入口側の端部の移動軌跡に沿った曲面状に形成されている、
     ことを特徴とする請求項2に記載の空調装置の吹出装置。
PCT/JP2017/026655 2016-10-17 2017-07-24 空調装置の吹出装置 WO2018074022A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201780062486.3A CN109803844B (zh) 2016-10-17 2017-07-24 空调装置的吹出装置
JP2018546152A JP6713543B2 (ja) 2016-10-17 2017-07-24 空調装置の吹出装置
BR112019006734-5A BR112019006734B1 (pt) 2016-10-17 2017-07-24 Dispositivo de sopro de ar-condicionado
US16/339,440 US11241941B2 (en) 2016-10-17 2017-07-24 Blowing device of air conditioner
DE112017005241.6T DE112017005241T5 (de) 2016-10-17 2017-07-24 Ausblas-vorrichtung für eine klimaanlage

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016203786 2016-10-17
JP2016-203786 2016-10-17

Publications (1)

Publication Number Publication Date
WO2018074022A1 true WO2018074022A1 (ja) 2018-04-26

Family

ID=62019269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/026655 WO2018074022A1 (ja) 2016-10-17 2017-07-24 空調装置の吹出装置

Country Status (6)

Country Link
US (1) US11241941B2 (ja)
JP (1) JP6713543B2 (ja)
CN (1) CN109803844B (ja)
BR (1) BR112019006734B1 (ja)
DE (1) DE112017005241T5 (ja)
WO (1) WO2018074022A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019106963A1 (de) * 2019-03-19 2020-09-24 Dr. Schneider Kunststoffwerke Gmbh Luftausströmer
JP2021003930A (ja) * 2019-06-25 2021-01-14 本田技研工業株式会社 空調装置の吹出装置
JP2021109459A (ja) * 2020-01-06 2021-08-02 本田技研工業株式会社 空調装置の吹出装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019118243A1 (de) * 2019-07-05 2021-01-07 Fischer Automotive Systems Gmbh & Co. Kg Luftausströmer
DE102021123760A1 (de) 2021-09-14 2023-03-16 Novares Löhne GmbH Lüftungseinrichtung für eine Fahrgastzelle eines Kraftfahrzeuges

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60155844U (ja) * 1984-03-24 1985-10-17 日本プラスト株式会社 ベンチレ−タ
JPH0221112U (ja) * 1988-07-29 1990-02-13
JP2002337544A (ja) * 2001-05-15 2002-11-27 Honda Motor Co Ltd 空調用吹出口装置
WO2013061636A1 (ja) * 2011-10-28 2013-05-02 豊和化成株式会社 レジスタ
WO2013069316A1 (ja) * 2011-11-11 2013-05-16 豊和化成株式会社 レジスタ
JP2014091376A (ja) * 2012-11-01 2014-05-19 Howa Kasei Kk レジスタ

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1227157A (ja) 1968-11-13 1971-04-07
US4326452A (en) * 1977-10-24 1982-04-27 Matsushita Electric Industrial Co., Ltd. Fluid diverting assembly
JPS60155844A (ja) 1984-01-26 1985-08-15 Mitsubishi Electric Corp 空調器の制御装置
JPH0221112A (ja) 1988-07-06 1990-01-24 Matsushita Electric Ind Co Ltd 高負荷燃焼装置
DE102011115178B4 (de) * 2011-09-28 2014-10-09 Audi Ag Luftausströmer eines Lüftungs- und Heizungsmoduls für Kraftfahrzeuge mit einer Umschaltung zwischen einer Spotstellung und einer Diffusstellung
JP5958438B2 (ja) * 2012-10-30 2016-08-02 豊田合成株式会社 空調用レジスタ
DE102013209430B3 (de) * 2013-05-22 2014-09-11 Faurecia Innenraum Systeme Gmbh Luftausströmer
DE102013210055B3 (de) * 2013-05-29 2014-09-11 Faurecia Innenraum Systeme Gmbh Luftausströmer
DE102014101315A1 (de) * 2013-10-30 2015-04-30 Dr. Schneider Kunststoffwerke Gmbh Luftdüse
DE102014009850A1 (de) * 2014-07-03 2014-12-18 Daimler Ag Luftausströmer für ein Fahrzeug, insbesondere einen Personenkraftwagen
DE102014216573A1 (de) 2014-08-21 2016-02-25 Bayerische Motoren Werke Aktiengesellschaft Luftaustrittsvorrichtung zur gesteuerten Zufuhr von Luft zu einem Fahrzeuginnenraum
DE202014104226U1 (de) 2014-09-08 2014-11-12 Dr. Schneider Kunststoffwerke Gmbh Luftausströmer mit mehrteilig ausgebildeten Luftleitelementen
US10099536B2 (en) * 2014-12-02 2018-10-16 GM Global Technology Operations LLC Air vent for a vehicle
US20160288624A1 (en) * 2015-04-01 2016-10-06 GM Global Technology Operations LLC Air vent for a vehicle
JP6621998B2 (ja) 2015-04-22 2019-12-18 矢崎総業株式会社 車両用表示装置
DE102016122142B4 (de) * 2016-11-17 2021-07-15 Dr. Schneider Kunststoffwerke Gmbh Luftausströmer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60155844U (ja) * 1984-03-24 1985-10-17 日本プラスト株式会社 ベンチレ−タ
JPH0221112U (ja) * 1988-07-29 1990-02-13
JP2002337544A (ja) * 2001-05-15 2002-11-27 Honda Motor Co Ltd 空調用吹出口装置
WO2013061636A1 (ja) * 2011-10-28 2013-05-02 豊和化成株式会社 レジスタ
WO2013069316A1 (ja) * 2011-11-11 2013-05-16 豊和化成株式会社 レジスタ
JP2014091376A (ja) * 2012-11-01 2014-05-19 Howa Kasei Kk レジスタ

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019106963A1 (de) * 2019-03-19 2020-09-24 Dr. Schneider Kunststoffwerke Gmbh Luftausströmer
JP2021003930A (ja) * 2019-06-25 2021-01-14 本田技研工業株式会社 空調装置の吹出装置
US11179995B2 (en) 2019-06-25 2021-11-23 Honda Motor Co., Ltd. Blowing device of air conditioner
JP2021109459A (ja) * 2020-01-06 2021-08-02 本田技研工業株式会社 空調装置の吹出装置
US11370274B2 (en) 2020-01-06 2022-06-28 Honda Motor Co., Ltd. Blow-off device of air conditioner

Also Published As

Publication number Publication date
DE112017005241T5 (de) 2019-07-11
CN109803844A (zh) 2019-05-24
US20190283544A1 (en) 2019-09-19
US11241941B2 (en) 2022-02-08
JPWO2018074022A1 (ja) 2019-04-18
CN109803844B (zh) 2022-02-22
BR112019006734A2 (pt) 2019-06-25
BR112019006734B1 (pt) 2024-02-27
JP6713543B2 (ja) 2020-06-24

Similar Documents

Publication Publication Date Title
WO2018074022A1 (ja) 空調装置の吹出装置
JP7013149B2 (ja) レジスタ
JP6163182B2 (ja) 薄型レジスタ
JP2016033441A (ja) 空気吹出装置
JP2009160981A (ja) レジスタ
JP2019098878A (ja) レジスタ
CN112135743B (zh) 流体吹出装置
JP3215056U (ja) レジスタ
JP7105106B2 (ja) 風向調整装置
JP2016210396A (ja) 空気吹出装置及び当該空気吹出装置の集合体
JP2011051385A (ja) レジスタ
JP5916075B2 (ja) 風向調整装置
JP2015006851A (ja) 風向調整装置
JP2002267246A (ja) 風向調整装置
JP2013180593A (ja) 風向調整装置
JP6976290B2 (ja) 空調装置の吹出装置
JP5937447B2 (ja) 風向調整装置
JP2014141136A (ja) レジスタ
JP2020069961A (ja) 風向調整装置
JP4458982B2 (ja) 車両用空調装置
US11370274B2 (en) Blow-off device of air conditioner
JP2023173630A (ja) 風向調整装置
JP4428021B2 (ja) 車両用風向調整装置
JP2011218993A (ja) レジスタ
JP4353844B2 (ja) ベンチレータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17861953

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018546152

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019006734

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112019006734

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190403

122 Ep: pct application non-entry in european phase

Ref document number: 17861953

Country of ref document: EP

Kind code of ref document: A1